WorldWideScience

Sample records for model pitch angle

  1. Computer programs for calculation of sting pitch and roll angles required to obtain angles of attack and sideslip on wind tunnel models

    Science.gov (United States)

    Peterson, John B., Jr.

    1988-01-01

    Two programs have been developed to calculate the pitch and roll angles of a wind-tunnel sting drive system that will position a model at the desired angle of attack and and angle of sideslip in the wind tunnel. These programs account for the effects of sting offset angles, sting bending angles and wind-tunnel stream flow angles. In addition, the second program incorporates inputs from on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented in the report and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.

  2. Surface Pressure Estimates for Pitching Aircraft Model at High Angles-of-attack (Short Communication)

    OpenAIRE

    A.A. Pashilkar

    2002-01-01

    The surface pressure on a pitching delta wing aircraft is estimated from the normal force and the pitching moment characteristics. The pressure model is based on parametrising the surface pressure distribution on a simple delta wing. This model is useful as a first approximation of the load distribution on the aircraft wing. Leeward surface pressure distributions computed by this method are presented.

  3. Surface Pressure Estimates for Pitching Aircraft Model at High Angles-of-attack (Short Communication

    Directory of Open Access Journals (Sweden)

    A. A. Pashilkar

    2002-10-01

    Full Text Available The surface pressure on a pitching delta wing aircraft is estimated from the normal force and the pitching moment characteristics. The pressure model is based on parametrising the surface pressure distribution on a simple delta wing. This model is useful as a first approximation of the load distribution on the aircraft wing. Leeward surface pressure distributions computed by this method are presented.

  4. Transcription and the Pitch Angle of DNA

    CERN Document Server

    Olsen, Kasper W

    2013-01-01

    The question of the value of the pitch angle of DNA is visited from the perspective of a geometrical analysis of transcription. It is suggested that for transcription to be possible, the pitch angle of B-DNA must be smaller than the angle of zero-twist. At the zero-twist angle the double helix is maximally rotated and its strain-twist coupling vanishes. A numerical estimate of the pitch angle for B-DNA based on differential geometry is compared with numbers obtained from existing empirical data. The crystallographic studies shows that the pitch angle is approximately 38 deg., less than the corresponding zero-twist angle of 41.8 deg., which is consistent with the suggested principle for transcription.

  5. Pitch Perfect: How Fruit Flies Control their Body Pitch Angle

    CERN Document Server

    Whitehead, Samuel C; Canale, Luca; Cohen, Itai

    2015-01-01

    Flapping insect flight is a complex and beautiful phenomenon that relies on fast, active control mechanisms to counter aerodynamic instability. To directly investigate how freely-flying D. melanogaster control their body pitch angle against such instability, we perturb them using impulsive mechanical torques and film their corrective maneuvers with high-speed video. Combining experimental observations and numerical simulation, we find that flies correct for pitch deflections of up to 40 degrees in 29 +/- 8 ms by bilaterally modulating their wings' front-most stroke angle in a manner well-described by a linear proportional-integral (PI) controller. Flies initiate this corrective process after only 10 +/- 2 ms, indicating that pitch stabilization involves a fast reflex response. Remarkably, flies can also correct for very large-amplitude pitch perturbations--greater than 150 degrees--providing a regime in which to probe the limits of the linear-response framework. Together with previous studies regarding yaw an...

  6. Analysis of the distribution of pitch angles in model galactic disks - Numerical methods and algorithms

    Science.gov (United States)

    Russell, William S.; Roberts, William W., Jr.

    1993-01-01

    An automated mathematical method capable of successfully isolating the many different features in prototype and observed spiral galaxies and of accurately measuring the pitch angles and lengths of these individual features is developed. The method is applied to analyze the evolution of specific features in a prototype galaxy exhibiting flocculent spiral structure. The mathematical-computational method was separated into two components. Initially, the galaxy was partitioned into dense regions constituting features using two different methods. The results obtained using these two partitioning algorithms were very similar, from which it is inferred that no numerical biasing was evident and that capturing of the features was consistent. Standard least-squares methods underestimated the true slope of the cloud distribution and were incapable of approximating an orientation of 45 deg. The problems were overcome by introducing a superior fit least-squares method, developed with the intention of calculating true orientation rather than a regression line.

  7. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M;

    2008-01-01

    controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have......Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...

  8. Computer programs for the calculation of dual sting pitch and roll angles required for an articulated sting to obtain angles of attack and sideslip on wind-tunnel models

    Science.gov (United States)

    Peterson, John B., Jr.

    1991-01-01

    Two programs were developed to calculate the pitch and roll position of the conventional sting drive and the pitch of a high angle articulated sting to position a wind tunnel model at the desired angle of attack and sideslip and position the model as near as possible to the centerline of the tunnel. These programs account for the effects of sting offset angles, sting bending angles, and wind-tunnel stream flow angles. In addition, the second program incorporates inputs form on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.

  9. PITCH ANGLE RESTRICTIONS IN LATE-TYPE SPIRAL GALAXIES BASED ON CHAOTIC AND ORDERED ORBITAL BEHAVIOR

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Villegas, A.; Pichardo, B.; Moreno, E.; Peimbert, A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, A.P. 70-264, 04510 Mexico D.F. (Mexico); Velazquez, H. M., E-mail: barbara@astroscu.unam.mx [Observatorio Astronomico Nacional, Universidad Nacional Autonoma de Mexico, Apdo. Postal 877, 22800 Ensenada (Mexico)

    2012-01-20

    We built models for low bulge mass spiral galaxies (late type as defined by the Hubble classification) using a three-dimensional self-gravitating model for spiral arms, and analyzed the orbital dynamics as a function of pitch angle, ranging from 10 Degree-Sign to 60 Degree-Sign . Indirectly testing orbital self-consistency, we search for the main periodic orbits and studied the density response. For pitch angles up to approximately {approx}20 Degree-Sign , the response closely supports the potential readily permitting the presence of long-lasting spiral structures. The density response tends to 'avoid' larger pitch angles in the potential by keeping smaller pitch angles in the corresponding response. Spiral arms with pitch angles larger than {approx}20 Degree-Sign would not be long-lasting structures but would rather be transient. On the other hand, from an extensive orbital study in phase space, we also find that for late-type galaxies with pitch angles larger than {approx}50 Degree-Sign , chaos becomes pervasive, destroying the ordered phase space surrounding the main stable periodic orbits and even destroying them. This result is in good agreement with observations of late-type galaxies, where the maximum observed pitch angle is {approx}50 Degree-Sign .

  10. Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine

    Institute of Scientific and Technical Information of China (English)

    张立勋; 梁迎彬; 刘小红; 郭健

    2014-01-01

    Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine (S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.

  11. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    Science.gov (United States)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  12. Wind farm operation planning using optimal pitch angle pattern (OPAP)

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Natalia S.; Rudion, K. [Magdeburg Univ. (Germany). Chair for Electric Power Networks and Renewable Energy Sources

    2011-07-01

    This paper presents the possibilities of optimal operation planning to maximize the energy production from a wind farm based on optimal pitch angle pattern (OPAP). The current status of this work is to investigate the influence of the pitch angle adaptation of single wind turbines (WTs) on the overall energy yield of the farm. The approach proposed in this paper assumes a selective change of the pitch angle of the chosen WTs from the optimal value, which corresponds to the maximal utilization of kinetic energy from the wind flow, in order to minimize wake effect influence on the overall energy yield of the farm. In this paper the fundamental assumptions of the proposed approach will be specified and the calculation algorithm will be presented. Furthermore, an exemplary test system will be defined and chosen scenarios will be calculated in order to show the potentials of the OPAP method. (orig.)

  13. Pitch Angle Restrictions in Late Type Spiral Galaxies Based on Chaotic and Ordered Orbital Behavior

    CERN Document Server

    Perez-Villegas, Angeles; Moreno, Edmundo; Peimbert, Antonio; Velazquez, Hector M

    2011-01-01

    We built models for low bulge mass spiral galaxies (late type as defined by the Hubble classification) using a 3-D self-gravitating model for spiral arms, and analyzed the orbital dynamics as a function of pitch angle, going from 10$\\deg$ to 60$\\deg$. Testing undirectly orbital self-consistency, we search for the main periodic orbits and studied the density response. For pitch angles up to approximately $\\sim 20\\deg$, the response supports closely the potential permitting readily the presence of long lasting spiral structures. The density response tends to "avoid" larger pitch angles in the potential, by keeping smaller pitch angles in the corresponding response. Spiral arms with pitch angles larger than $\\sim 20\\deg$, would not be long-lasting structures but rather transient. On the other hand, from an extensive orbital study in phase space, we also find that for late type galaxies with pitch angles larger than $\\sim 50\\deg$, chaos becomes pervasive destroying the ordered phase space surrounding the main sta...

  14. Characteristics of Rotary Electromagnet with Large Tooth-pitch Angle

    Directory of Open Access Journals (Sweden)

    Ruan Jian

    2012-10-01

    Full Text Available Since the conventional electro-mechanical converter of 2D valve had problems of step lose due to its small tooth-pitch angle, a novel rotary electromagnet with large tooth-pitch angle and coreless rotor structure was proposed. Combined with the approaches of magnetic circuit analysis, finite element simulation and experimental study, the static and dynamic characteristics of electromagnet including torque-angle characteristics, frequency response and step response were studied. The experimental results are in a close agreement with the simulated results. The electromagnet has sinusoidal torque-angle characteristics and good dynamic response. The maximum static torque is approximately 0.083N.M, and its frequency width is about 125Hz/-3dB, 130Hz/-90°, respectively, and the rise time is about 5.5 ms. It is appropriate to be used as the electro-mechanical converter of 2D proportional valve.

  15. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment

    Science.gov (United States)

    Li, L.; Hirota, M.; Ouchi, K.; Saito, T.

    2016-03-01

    Shock vector control (SVC) in a converging-diverging nozzle with a rectangular cross-section is discussed as a fluidic thrust vectoring (FTV) method. The interaction between the primary nozzle flow and the secondary jet is examined using experiments and numerical simulations. The relationships between FTV parameters [nozzle pressure ratio (NPR) and secondary jet pressure ratio (SPR)] and FTV performance (thrust pitching angle and thrust pitching moment) are investigated. The experiments are conducted with an NPR of up to 10 and an SPR of up to 2.7. Numerical simulations of the nozzle flow are performed using a Navier-Stokes solver with input parameters set to match the experimental conditions. The thrust pitching angle and moment computed from the force-moment balance are used to evaluate FTV performance. The experiment and numerical results indicate that the FTV parameters (NPR and SPR) directly affect FTV performance. Conventionally, FTV performance evaluated by the common method using thrust pitching angle is highly dependent on the location of evaluation. Hence, in this study, we show that the thrust pitching moment, a parameter which is independent of the location, is the appropriate figure of merit to evaluate the performance of FTV systems.

  16. Pitch angle scattering of energetic particles by oblique whistler waves

    Science.gov (United States)

    Inan, U. S.; Bell, T. F.

    1991-01-01

    First order cyclotron or Landau resonant pitch angle scattering of electrons by oblique whistler waves propagating at large angles to the ambient field are found to be at least as large as that due to parallel propagating waves. Commonly observed precipitation of more than 40 keV electrons in association with ducted whistlers may thus be accompanied by substantial fluxes of lower energy (10 eV-40 keV) electrons precipitated by the nonducted components.

  17. Determining pitch-angle diffusion coefficients from test particle simulations

    OpenAIRE

    Ivascenko, A.; S. Lange; Spanier, F.; R. Vainio

    2016-01-01

    Transport and acceleration of charged particles in turbulent media is a topic of great interest in space physics and interstellar astrophysics. These processes are dominated by the scattering of particles off magnetic irregularities. The scattering process itself is usually described by small-angle scattering with the pitch-angle coefficient $D_{\\mu\\mu}$ playing a major role. Since the diffusion coefficient $D_{\\mu\\mu}$ can be determined analytically only for the approximation of quasi-linear...

  18. Determining pitch-angle diffusion coefficients from test particle simulations

    CERN Document Server

    Ivascenko, A; Spanier, F; Vainio, R

    2016-01-01

    Transport and acceleration of charged particles in turbulent media is a topic of great interest in space physics and interstellar astrophysics. These processes are dominated by the scattering of particles off magnetic irregularities. The scattering process itself is usually described by small-angle scattering with the pitch-angle coefficient $D_{\\mu\\mu}$ playing a major role. Since the diffusion coefficient $D_{\\mu\\mu}$ can be determined analytically only for the approximation of quasi-linear theory, the determination of this coefficient from numerical simulations has, therefore, become more important. So far these simulations yield particle tracks for small-scale scattering, which can then be interpreted using the running diffusion coefficients. This method has a limited range of validity. This paper presents two new methods that allow for the calculation of the pitch-angle diffusion coefficient from numerical simulations. These methods no longer analyse particle trajectories, but the change of particle dist...

  19. Pitch Angle Control of Variable Speed Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yousif El-Tous

    2008-01-01

    Full Text Available The aim of this study is to design a simple controller to maximize the extracted energy of wind turbines. In this study the pitch angle control of variable speed wind turbine is investigated. In particular, it concentrates on the extraction of maximum available energy, reduction of torque and output power variations, which gives stresses in the gearbox and mechanical structure. The control concentrates on separate wind speed internals as well as on whole wind speed region. It is found that the control structures varies substantially between the wind speed regions. Two different control systems are compared. The results show that pitch actuator with three levels of pitching speed have better response.

  20. Numerical analysis of the Fokker-Planck equation with adiabatic focusing: Realistic pitch-angle scattering

    Science.gov (United States)

    Lasuik, J.; Fiege, J. D.; Shalchi, A.

    2017-01-01

    We solve the focused transport equation of cosmic rays numerically to investigate non-isotropic models of the pitch-angle scattering coefficient. In previous work, the Fokker-Planck equation was solved either analytically by using approximations, or by using a numerical approach together with simple models for the pitch-angle scattering coefficient. It is the purpose of the current article so compute particle distribution functions as well as the parallel diffusion coefficient by solving numerically the focused transport equation for a more realistic Fokker-Planck coefficient of pitch-angle scattering. Our analytical form for the scattering parameter is based on non-linear diffusion theory that takes into account realistic scattering at pitch-angles close to 90 ° . This general form contains the isotropic form as well as the quasi-linear limit as special cases. We show that the ratio of the diffusion coefficients with and without focusing sensitively depends on the ratio of the turbulent magnetic field and the mean field. The assumed form of the pitch-angle Fokker-Planck coefficient has an influence on the parallel diffusion coefficient. In all considered cases we found a reduction of the ratio of the diffusion coefficients if the ratio of magnetic fields is reduced.

  1. The Norma spiral arm: large-scale pitch angle

    Science.gov (United States)

    Vallée, Jacques P.

    2017-09-01

    In the inner Galaxy, we statistically find the mean pitch angle of the recently mapped Norma arm in two galactic quadrants (observed tangentially at galactic longitudes near l=328° and near l=20°), using the twin-tangent method, and obtain -13.7°± 1.4°. We compared with other measurements in the literature. Also, using the latest published data on pitch angle and the latest published data on the radial starting point of the four arms (R_{Gal} = 2.2 kpc) in each galactic quadrant, a revised velocity plot of the Norma spiral arm is made, along with other spiral arms in the Milky Way, in each Galactic quadrant.

  2. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    Science.gov (United States)

    Shields, Douglas; Arkansas Galaxy Evolution Survey

    2017-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Computation time is typically on the order of 2 minutes per galaxy, assuming 8 GB of working memory. We tested the code using 117 synthetic spiral images with known pitches, varying both the spiral properties and the input parameters. The code yielded correct results for all synthetic spirals with galaxy-like properties. We also compared the code’s results to two-dimensional Fast Fourier Transform (2DFFT) measurements for the sample of nearby galaxies defined by DMS PPak. Spirality’s error bars overlapped 2DFFT’s error bars for 26 of the 30 galaxies. The two methods’ agreement correlates strongly with galaxy radius in pixels and also with i-band magnitude, but not with redshift, a result that is consistent with at least some galaxies’ spiral structure being fully formed by z=1.2, beyond which there are few galaxies in our sample. We also analyze apparent spiral structure of three galaxies beyond z=2. The Spirality code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

  3. Energy and pitch-angle dispersions of LLBL/cusp ions seen at middle altitudes: predictions by the open magnetosphere model

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low, the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp, even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region

    Key words. Low-latitude boundary layer · Cusp regions · Open magnetosphere model · Mid-altitudes

  4. Chaotic scattering of pitch angles in the current sheet of the magnetotail

    Science.gov (United States)

    Burkhart, G. R.; Chen, J.

    1992-01-01

    The modified Harris field model is used to investigate the process of pitch angle scattering by a current sheet. The relationship between the incoming asymptotic pitch angle alpha(in) and the outgoing asymptotic pitch angle alpha(out) is studied from first principles by numerically integrating the equation of motion. Evidence that charged particles undergo chaotic scattering by the current sheet is found. For fixed alpha(in), it is shown that alpha(out) exhibits sensitive dependence on the energy parameter in certain energy ranges. For a fixed energy parameter value in the same energy ranges, alpha(out) sensitively depends on alpha(in). For other energy values, alpha(out) does not show sensitive dependence on alpha(in) for most phase angles. A distribution of alpha(in) is mapped from the asymptotic region to the midplane, and it is found that the resulting particle distribution should have beam structures with well-collimated pitch angles near each resonance energy value. Implications for the particle distribution functions in the earth's magnetotail are discussed.

  5. Spirality: A Novel Way to Measure Spiral Arm Pitch Angle

    CERN Document Server

    Shields, Douglas W; Pfountz, Casey; Davis, Benjamin L; Hartley, Matthew; Imani, Hamed Pour; Slade, Zac; Kennefick, Daniel; Kennefick, Julia

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 117 synthetic spiral images with known pitches, varying both the spiral properties and the input parameters. The code yielded correct results for all synthetic spirals with galaxy-like properties. We also compared the code's results to two-dimensional Fast Fourier Transform (2DFFT) measurements for the sample of nearby galaxies defined by DMS PPak. Spirality's error bars overlapped 2DFFT's error bars for 26 of the 30 galaxies. The two methods' agreement correlates strongly with galaxy radius in pixels and also with i-band magnitude, but not with redshift, a result that is consistent with at least some galaxies' spiral structure being fully formed by z=1.2, beyond which there are few galaxies in our sample. The Spirality code pa...

  6. Numerical study of effect of pitch angle on performance characteristics of a HAWT

    Directory of Open Access Journals (Sweden)

    Sudhamshu A.R.

    2016-03-01

    Full Text Available Wind energy is one of the clean renewable forms of energy that can handle the existing global fossil fuel crisis. Although it contributes to 2.5% of the global electricity demand, with diminishing fossil fuel sources, it is important that wind energy is harnessed to a greater extent to meet the energy crisis and problem of pollution. The present work involves study of effect of pitch angle on the performance of a horizontal axis wind turbine (HAWT, NREL Phase VI. The wind velocities considered for the study are 7, 15.1 and 25.1 m/s. The simulations are performed using a commercial CFD code Fluent. A frozen rotor model is used for simulation, wherein the governing equations are solved in the moving frame of reference rotating with the rotor speed. The SST k-ω turbulence model has been used. It is seen that the thrust increases with increase in wind velocity, and decreases with increase in pitch angle. For a given wind velocity, there is an optimum pitch angle where the power generated by the turbine is maximum. The observed effect of pitch angle on the power produced has been correlated to the stall characteristics of the airfoil blade.

  7. Effect of pitch angle on initial stage of a transport airplane ditching

    Institute of Scientific and Technical Information of China (English)

    Guo Baodong; Liu Peiqing; Qu Qiulin; Wang Jiawen

    2013-01-01

    Airworthiness regulations require that the transport airplane should be proved to ensure the survivability of the ditching for the passengers.The planned ditching of a transport airplane on the calm water is numerically simulated.The effect of pitch angle on the impact characteristics is especially investigated by a subscaled model.The Reynolds-averaged Navier-Stokes (RANS) equations of unsteady compressible flow are solved and the realizable κ-ε equations are employed to model the turbulence.The transformation of the air-water interface is tracked by volume of fluid (VOF) model.The motion of the rigid body is modeled by dynamic mesh method.The initial ditching stage of the transport airplane is analyzed in detail.The numerical results show that as the pitching angle increases,the maximal normal force decreases and the pitching motion becomes much gentler.The aft fuselage would be sucked down by the water and lead to pitching up,whereas the low horizontal tail prevents this trend.Consequently,the transport aircraft with low horizontal tail should ditch on the water at an angle between 10° and 12° as a recommendation.

  8. Internal magnetic pitch angle measurements at KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.; Chung, J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Messmer, M. C. C. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2015-05-15

    Specification of the hardware for photo-detecting and digitizing electronics has almost complete as well and many of them are ready for procurement. The main collaboration party is Eindhoven University of Technology in the Netherlands, whose main responsibilities include the development of filter module design and off-line and real-time analysis schemes along with overall consultations. The following sections describe some major parts of the design progress. 3D MSE stokes-vector simulations have been tuned to match the MSE spectra measured in KSTAR and used to design the band-pass filters. From these simulations, 0.4-nm 2-cavity interference filters have been chosen to minimize pitch angle errors. Figure 4 shows an example of the MSE spectrum calculated from the simulation that is compared with the measured spectrum. Also shown in Figure 4 are the possible passband (shaded in green) of the spectrum where the redmost shifted polarization component (+4π) is chosen, the pitch angles and their errors. Due to the overlap of the spectra among ion sources, the second ion source of NBI1 (NBI1-2) should operate at about 15% lower voltage than that of the first ion source (NBI1-1). An example of this overlap in the spectrum and the large error in pitch angle it causes is shown in Figure 5. Pass-band control by the filter-angle tuning is under development to fully cover most of the KSTAR plasmas which include Ip = 0.5 - 1 MA, Bt = 1.5 - 3.5 T, and the beam energy (for the ion source 1 from NBI1) = 70 - 100 keV. The accuracy obtained is in the order of 0.5 % and compatible with the MSE requirement. The software also allows sequences creation, which consists of executing a series of a predefined central wavelength and a corresponding time delay. One PC can control 5 controller hubs each of which can accommodate up to 6 rotational stage/controller sets, resulting in the maximum 30 sets.

  9. Pitch angle scattering by triggered emissions from the Siple Station wave injection experiment

    Science.gov (United States)

    Harid, V.; Golkowski, M.; Bell, T. F.; Cohen, M.; Inan, U. S.

    2012-12-01

    Nonlinear amplification of whistler mode waves in the Earth's magnetosphere , due to gyroresonance with energetic electrons, also known as the phenomena of VLF triggered emissions, has been investigated extensively with analytical formulations, experimental observations and computer simulations. However, the pitch angle scattering of typical triggered emission waveforms has not been specifically considered. Most authors consider particle scattering either in the presence of a monochromatic constant amplitude wave or a broadband incoherent but time-frequency homogenous emission. Although investigation of these two limiting cases has provided valuable insight into radiation belt dynamics, a large class of waves including triggered emissions and chorus do not fall under either of the two descriptions. The inherent symmetry of a constant amplitude monochromatic wave around the equator results in non-cumulative pitch angle change for a large population of electrons. Wave amplification generated during linear and nonlinear growth result in wave gradients that can have a more significant effect on particle pitch angle and energy. In addition, coherent frequency changing signals are capable of shifting the cyclotron resonance condition and significantly perturbing particle trajectories from their adiabatic motion. The wave-injection experiment at Siple Station, Antarctica was designed to study wave growth and triggering processes in the magnetosphere. Amplified signals from Siple Station often show both wave gradients as well advances in phase and frequency. Using a numerical test-particle simulation, we model the effect of typical Siple Station signals on pitch angle scattering and particle precipitation. Results show that triggered emission type wave forms are more efficient in producing large pitch angle changes in resonant particles.

  10. THE BEHAVIOR OF THE PITCH ANGLE OF SPIRAL ARMS DEPENDING ON OPTICAL WAVELENGTH

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Eric E.; Puerari, Ivânio; Rosales-Ortega, F. F.; Luna, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); González-Lópezlira, Rosa A. [Centro de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, México, C.P. 58089 (Mexico); Fuentes-Carrera, Isaura, E-mail: ericmartinez@inaoep.mx [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Zacatenco, 07730 México, D.F. (Mexico)

    2014-09-20

    Based on integral field spectroscopy data from the CALIFA survey, we investigate the possible dependence of spiral arm pitch angle with optical wavelength. For three of the five studied objects, the pitch angle gradually increases at longer wavelengths. This is not the case for two objects where the pitch angle remains constant. This result is confirmed by the analysis of SDSS data. We discuss the possible physical mechanisms to explain this phenomenon, as well as the implications of the results.

  11. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  12. Pitch-Perfect: How Do Flies Control Their Pitch Angle During Aerial Stumbles?

    Science.gov (United States)

    Whitehead, Samuel; Canale, Luca; Beatus, Tsevi; Cohen, Itai

    2014-11-01

    The successful flight of flapping-wing insects is contingent upon a complex and beautiful relationship between sensory input, neural response, and muscular actuation. In particular, the inherent instabilities of flapping-wing flight require insects like D. melanogaster to constantly sense, process, and adjust for in-flight stumbles. Here we present an analysis of the mechanisms for pitch control in D. melanogaster. By gluing small ferromagnetic pins to the backs of the flies and applying an external magnetic field, we induce torques along the flies' pitch axis during free flight. Using an automated hull reconstruction technique developed in the lab, we analyze these torque events and the flies' subsequent recoveries in order to characterize the flies' response to external perturbations. Ultimately, we aim to develop a reduced-order controller model that will capture the salient aspects of the flies' recovery mechanism.

  13. Influence of Thread Pitch, Helix Angle, and Compactness on Micromotion of Immediately Loaded Implants in Three Types of Bone Quality: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Pan Ma

    2014-01-01

    Full Text Available This study investigated the influence of thread pitch, helix angle, and compactness on micromotion in immediately loaded implants in bone of varying density (D2, D3, and D4. Five models of the three-dimensional finite element (0.8 mm pitch, 1.6 mm pitch, 2.4 mm pitch, double-threaded, and triple-threaded implants in three types of bone were created using Pro/E, Hypermesh, and ABAQUS software. The study had three groups: Group 1, different pitches (Pitch Group; Group 2, same compactness but different helix angles (Angle Group; and Group 3, same helix angle but different compactness (Compact Group. Implant micromotion was assessed as the comprehensive relative displacement. We found that vertical relative displacement was affected by thread pitch, helix angle, and compactness. Under vertical loading, displacement was positively correlated with thread pitch and helix angle but negatively with compactness. Under horizontal loading in D2, the influence of pitch, helix angle, and compactness on implant stability was limited; however, in D3 and D4, the influence of pitch, helix angle, and compactness on implant stability is increased. The additional evidence was provided that trabecular bone density has less effect on implant micromotion than cortical bone thickness. Bone type amplifies the influence of thread pattern on displacement.

  14. Energetic Electron Pitch Angle Diffusion due to Whistler Wave during Terrestrial Storms

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; HE Hui-Yong

    2006-01-01

    A concise and elegant expression of cyclotron harmonic resonant quasi-pure pitch-angle diffusion is constructed for the parallel whistler mode waves, and the quasi-linear diffusion coefficient is prescribed in terms of the whistler mode wave spectral intensity. Numerical computations are performed for the specific case of energetic electrons interacting with a band of frequency of whistler mode turbulence at L ≈ 3. It is found that the quasi-pure pitch-angle diffusion driven by the whistler mode scatters energetic electrons from the larger pitch-angles into the loss cone, and causes pitch-angle distribution to evolve from the pancake-shaped before the terrestrial storms to the flat-top during the main phase. This probably accounts for the quasi-isotropic pitch-angle distribution observed by the combined release and radiation effects satellite spacecraft at L ≈ 3.

  15. Different studies of the global pitch angle of the Milky Way's spiral arms

    CERN Document Server

    Vallee, Jacques P

    2015-01-01

    There are many published values for the pitch angle of individual spiral arms, and their wide distribution (from -3 to -28 degrees) begs for various attempts for a single value. Each of the four statistical methods used here yields a mean pitch angle in a small range, between -12 and -14 degrees (table 7, figure 2). The final result of our meta-analysis yields a mean global pitch angle in the Milky Way's spiral arms of -13.1 degrees, plus or minus 0.6 degree.

  16. Pitch angle distributions of energetic ions in the lobes of the distant geomagnetic tail

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C.J.; Cowley, S.W.H.; Richardson, I.G.; Balogh, A. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)

    1990-07-01

    Analysis of energetic (> 35 keV) ion data from the ISEE-3 spacecraft obtained during 1982-1983, when the spacecraft made a series of traversals of the distant geomagnetic tail (X{sub GSE} > - 230 R{sub E}), indicates that the pitch angle distribution of energetic ions in the distant tail lobes is usually highly anisotropic, being peaked closely perpendicular to the magnetic field direction, but with a small net flow in the antisunward direction. In this paper we present a model, based on the motion of single particles into and within the tail lobes, which accounts for these observed distributions. This model assumes that the lobe ions originate in the magnetosheath, where the energetic ion population consists of two components; a spatially uniform ''solar'' population, and a population of ''terrestrial'' origin, which decreases in strength with downtail distance. The pitch angle distribution at any point within the lobe may be constructed, assuming that the value of the distribution function along the particle trajectory is conserved. In general, those ions with a large field-aligned component to their motion enter the lobes in the deep tail, where the ''terrestrial'' source is weak, whilst those moving closely perpendicular to the field enter the lobes at positions much closer to the Earth, where the source is strong. The fluxes of these latter ions are therefore much enhanced above the rest of the pitch angle distribution, and are shown to account for the form of the observed distributions. The model also accounts for the more isotropic ion population observed in the lobe during solar particle events, when the ''terrestrial'' component of the magnetosheath source may be considered negligible in comparison to the enhanced ''solar'' component. (author).

  17. Pitch Angle Distribution Evolution of Energetic Electrons by Whistler-Mode Chorus

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hui-Nan; SU Zhen-Peng; XIONG Ming

    2008-01-01

    We develop a two-dimensional momentum and pitch angle code to solve the typical Fokker-Planck equation which governs wave-particle interaction in space plasmas. We carry out detailed calculations of momentum and pitch angle diffusion coefficients, and temporal evolution of pitch angle distribution for a band of chorus frequency distributed over a standard Gaussian spectrum particularly in the heart of the Earth's radiation belt L = 4.5,where peaks of the electron phase space density are observed. We find that the Whistler-mode chorus can produce significant acceleration of electrons at large pitch angles, and can enhance the phase space density for energies of 0.5~1 MeV by a factor of 10 or above after about 24h. This result can account for observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm.

  18. The Inclination, Pitch Angle and Forbidden Radius of Spiral Arms of PGC 35105

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We have studied some properties including surface brightness in the u, g,r, i, and z bands of the nearly face-on galaxy PGC 35105. By subtracting a model surface brightness distribution from the observed image we obtain the residual image that shows only the spiral arms freed from the contamination by the bulge. From this we measured the the inclination, pitch angle, and forbidden radius (identified with the innermost point of the arm) for each of the two arms; and that for each of the five observing bands. We found these three parameters are largely independent of the observing band.

  19. Design and Pitch Angle Optimisation of Horizontal Axis Hydrokinetic Turbine with Constant Tip Speed Ratio

    Directory of Open Access Journals (Sweden)

    Nigam Suyash

    2017-01-01

    Full Text Available Booming population and associated energy demands, looming threat of exhaustion of conventional sources of energy and the severe environmental repercussions of the same call for alternate sources of clean energy. Hydrokinetic turbine is one such developing technology which harnesses zero-head free flow of water and affects hydrological ecology minimally. This paper discusses the optimisation of Horizontal Axis Hydrokinetic Turbine (HAHkT blade chord length and twist angle using blade element momentum (BEM theory to achieve a constant optimal angle of attack (AoA, thus maximising the power output. To achieve this while maintaining robustness at the hub end and eliminate cavitation, two different hydrofoils (S832 and E817 are selected. S832 is simulated using ANSYS 14.0 at low (00 and high (150 angles of attack and compared against more widely used NACA 4412 to study flow separation characteristics. This is followed by calculating angles of relative flow, ratios of chord length and subsequently twist angles for each blade element using MATLAB simulations. A blade model is thus developed for visualisation using computer aided designing after obtaining optimal chord lengths and pitch angles.

  20. Calculation on the pitch angle of rocker of a rocker lunar rover on uneven terrain and path planning

    Institute of Scientific and Technical Information of China (English)

    DENG Zong-quan; HOU Xu-yan; GAO Hai-bo; HU Ming

    2008-01-01

    Forthe concertedmotion of rockerlunar rover,the pitch angle of rocker of a rocker lunar rover in uneven terrain must be calculated.According to the character of passive shape-shifting adaptive suspension of rocker lunar rover,the model of rocker lunar rover and the model of terrain were both simplified.The pitch angle of rocker was calculated using forward solving,reverse solving and the method of offsetting the curve of terrain respectively.Because of the banishment of the nonlinearity of equation sets of calculation by reverse solving,the calculation of the pitch angle based on reverse solving was programmed by means of MATLAB.Simulations were carried out by means of ADAMS.The result verified the validity of the calculation based on reverse solving.It provides the theoretical foundation for motion planning and path planning of rocker lunar rover.As applications of the calculation of pitch angle of rocker,the multi-attribute decision making of path based on the concerted motion planning and the predictive control on lunar rover based on the Markov prediction model were introduced.

  1. Stellar Orbital Studies in Normal Spiral Galaxies I: Restrictions to the Pitch Angle

    CERN Document Server

    Pérez-Villegas, A; Moreno, E

    2013-01-01

    We built a family of non-axisymmetric potential models for normal non-barred or weakly-barred spiral galaxies as defined in the simplest classification of galaxies: the Hubble sequence. For this purpose a three-dimensional self-gravitating model for spiral arms PERLAS is superimposed to the galactic axisymmetric potentials. We analyze the stellar dynamics varying only the pitch angle of the spiral arms, from 4$\\deg$ to 40$\\deg$, for an Sa galaxy, from 8$\\deg$ to 45$\\deg$, for an Sb galaxy, and from 10$\\deg$ to 60$\\deg$, for an Sc galaxy. Self-consistency is indirectly tested through periodic orbital analysis, and through density response studies for each morphological type. Based on ordered behavior, periodic orbits studies show that for pitch angles up to approximately $15\\deg$, $18\\deg$, and $20\\deg$ for Sa, Sb and Sc galaxies, respectively, the density response supports the spiral arms potential, a requisite for the existence of a long-lasting large-scale spiral structure. Beyond those limits, the density ...

  2. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine.

  3. The pitch angle paradox and radiative life times in a synchrotron source

    CERN Document Server

    Singal, Ashok K

    2016-01-01

    In synchrotron radiation there is a paradox whether or not the pitch angle of a radiating charge varies. The conventional wisdom is that the pitch angle does not change during the radiation process. The argument is based on Larmor's radiation formula, where in a synchrotron case the radiation power is along the instantaneous direction of motion of the charge. Then the momentum loss will also be parallel to that direction and therefore the pitch angle of the charge would remain unaffected. The accordingly derived formulas for energy losses of synchrotron electrons in radio galaxies are the standard text-book material for the last 50 years. However, if we use the momentum transformation laws from special relativity, then we find that the pitch angle of a radiating charge varies. While the velocity component parallel to the magnetic field remains unaffected, the perpendicular component does reduce in magnitude due to radiative losses, implying a change in the pitch angle. This apparent paradox is resolved when e...

  4. Cyclotron maser emission from power-law electrons with strong pitch-angle anisotropy

    CERN Document Server

    Zhao, G Q; Wu, D J; Chen, L; Tang, J F; Liu, Q

    2016-01-01

    Energetic electrons with power-law spectrum are most commonly observed in astrophysics. This paper investigates electron cyclotron maser emission (ECME) from the power-law electrons, in which strong pitch-angle anisotropy is emphasized. The electron distribution function proposed in this paper can describe various types of pitch-angle anisotropy. Results show that the emission properties of ECME, including radiation growth, propagation, and frequency properties, depend considerably on the types of electron pitch-angle anisotropy, and different wave modes show different dependences on the pitch angle of electrons. In particular, the maximum growth rate of X2 mode rapidly decreases with respect to the electron pitch-angle cosine $\\mu_0$ at which the electron distribution peaks, while the growth rates for other modes (X1, O1, O2) initially increase before decreasing as $\\mu_0$ increases. Moreover, the O mode as well as the X mode can be the fastest growth mode, in terms of not only the plasma parameter but also ...

  5. Loss cone fluxes and pitch angle diffusion at the equatorial plane during auroral radio absorption events

    Energy Technology Data Exchange (ETDEWEB)

    Collis, P.N.; Hargreaves, J.K.

    1983-04-01

    Flux and pitch angle distributions of energetic electrons at geostationary altitude in the vicinity of the atmospheric loss cone associated with an auroral radio absorption event are investigated. Measurements were made in the energy range 15-300 keV by the medium energy charged particle spectrometer on board the GEOS-2 satellite at the times of absorption events detected near the predicted foot of the geomagnetic field line passing through the satellite. Comparisons with theoretical pitch angle distributions and recombination rates indicate pitch angle diffusion coefficients to be 0.001/sec for a 2-dB event and 0.0001/sec for a 1-dB event. Further comparisons of the average electron measurements in the pitch angle range 0-5 deg with observations of the radio absorption by the portion of this flux which is actually precipitated are used to deduce the degree of departure of the electron pitch angle distribution from isotropy, and to place limits upon the ranges of effective recombination rate profiles. An empirical relation is derived which allows radio absorption to be predicted from measured electron fluxes.

  6. Storm-Time Evolution of Energetic Electron Pitch Angle Distributions by Wave-Particle Interaction

    Institute of Scientific and Technical Information of China (English)

    XIAO Fuliang; HE Huiyong; ZHOU Qinghua; WU Guanhong; SHI Xianghua

    2008-01-01

    The quasi-pure pitch-angle scattering of energetic electrons driven by field-alignedpropagating whistler mode waves during the 9~15 October 1990 magnetic storm at L ≈ 3 ~ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler.mode waves can efficiently drive energetic electrons from the larger pitch-angles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ~ 4.

  7. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  8. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    CERN Document Server

    Davis, Benjamin L; Shields, Douglas W; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S; Lacy, Claud H S; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  9. STEREO/LET Observations of Solar Energetic Particle Pitch Angle Distributions

    Science.gov (United States)

    Leske, Richard; Cummings, Alan; Cohen, Christina; Mewaldt, Richard; Labrador, Allan; Stone, Edward; Wiedenbeck, Mark; Christian, Eric; von Rosenvinge, Tycho

    2015-04-01

    As solar energetic particles (SEPs) travel through interplanetary space, the shape of their pitch angle distributions is determined by magnetic focusing and scattering. Measurements of SEP anisotropies therefore probe interplanetary conditions far from the observer and can provide insight into particle transport. Bidirectional flows of SEPs are often seen within interplanetary coronal mass ejections (ICMEs), resulting from injection of particles at both footpoints of the CME or from mirroring of a unidirectional beam. Mirroring is clearly implicated in those cases that show a loss cone distribution, in which particles with large pitch angles are reflected but the magnetic field enhancement at the mirror point is too weak to turn around particles with the smallest pitch angles. The width of the loss cone indicates the magnetic field strength at the mirror point far from the spacecraft, while if timing differences are detectable between outgoing and mirrored particles they may help constrain the location of the reflecting boundary.The Low Energy Telescopes (LETs) onboard both STEREO spacecraft measure energetic particle anisotropies for protons through iron at energies of about 2-12 MeV/nucleon. With these instruments we have observed loss cone distributions in several SEP events, as well as other interesting anisotropies, such as unusual oscillations in the widths of the pitch angle distributions on a timescale of several minutes during the 23 July 2012 SEP event and sunward-flowing particles when the spacecraft was magnetically connected to the back side of a distant shock well beyond 1 AU. We present the STEREO/LET anisotropy observations and discuss their implications for SEP transport. In particular, we find that the shapes of the pitch angle distributions generally vary with energy and particle species, possibly providing a signature of the rigidity dependence of the pitch angle diffusion coefficient.

  10. Cosmic-ray pitch-angle scattering in imbalanced MHD turbulence simulations

    CERN Document Server

    Weidl, Martin S; Teaca, Bogdan; Schlickeiser, Reinhard

    2015-01-01

    Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.

  11. Sensitivity of magnetic field-line pitch angle measurements to sawtooth events in tokamaks

    Science.gov (United States)

    Ko, J.

    2016-11-01

    The sensitivity of the pitch angle profiles measured by the motional Stark effect (MSE) diagnostic to the evolution of the safety factor, q, profiles during the tokamak sawtooth events has been investigated for Korea Superconducting Tokamak Advanced Research (KSTAR). An analytic relation between the tokamak pitch angle, γ, and q estimates that Δγ ˜ 0.1° is required for detecting Δq ˜ 0.05 near the magnetic axis (not at the magnetic axis, though). The pitch angle becomes less sensitive to the same Δq for the middle and outer regions of the plasma (Δγ ˜ 0.5°). At the magnetic axis, it is not straightforward to directly relate the γ sensitivity to Δq since the gradient of γ(R), where R is the major radius of the tokamak, is involved. Many of the MSE data obtained from the 2015 KSTAR campaign, when calibrated carefully, can meet these requirements with the time integration down to 10 ms. The analysis with the measured data shows that the pitch angle profiles and their gradients near the magnetic axis can resolve the change of the q profiles including the central safety factor, q0, during the sawtooth events.

  12. Pitch Angle Regulation of Floating Wind Turbines with Dynamic Uncertainty and External Disturbances

    Directory of Open Access Journals (Sweden)

    Najah F. Jasim

    2015-06-01

    Full Text Available This paper addresses the problem of pitch angle regulation of floating wind turbines with the presence of dynamic uncertainty and unknown disturbances usually encountered in offshore wind turbines, where two control laws are derived for two different cases to continuously achieve zero pitch angle for the floating turbine. In the first case, the timevarying unknown coefficients that characterize the turbine's dynamics are assumed reasonably bounded by known functions, where robust controller is designed in terms of these known functions to achieve zero pitch angle for the turbine with exponential rate of convergence. While in the second case, the turbine's dynamics are considered to be characterized by unknown coefficients of unknown bounds. In this case, a slidingmode adaptive controller is constructed in terms of estimated values for the unknown coefficients, where these values are continuously updated by adaptive laws associated with the proposed controller to ensure asymptotic convergence to zero for the turbine's pitch angle. Simulations are performed to demonstrate the validity of the proposed controllers to achieve the required regulation objective.

  13. Radiation reaction and the pitch angle changes for a charge undergoing synchrotron losses

    CERN Document Server

    Singal, Ashok K

    2015-01-01

    In synchrotron radiation formulas it is always assumed that the pitch angle of a charged particle remains constant during the radiation process. The argument employed is that as the radiation is beamed along the instantaneous direction of motion of the charge, the momentum loss will also be along the direction of motion. Accordingly radiation reaction should not cause any change in the direction of the velocity vector, and the pitch angle of the charge would therefore remain constant during the radiation process. However, it turns out that this picture is not relativistically covariant and that in the case of synchrotron losses, the pitch angle in general varies. While the component of the velocity vector perpendicular to the magnetic field does reduce in magnitude due to radiative losses, the parallel component does not undergo any change during radiation. Therefore there is a change in the ratio of the two components, implying a change in the pitch angle. This apparent paradox gets resolved and one gets a c...

  14. The Black Hole Mass - Pitch Angle Relation of Type I AGN In Spiral Galaxies

    Science.gov (United States)

    Schilling, Amanda; Jones, Logan; Hughes, John A.; Barrows, R. Scott; Kennefick, Julia D.

    2017-01-01

    A relationship between the mass of supermassive black holes, M, at the center of galaxies and the pitch angle, P, a measure of tightness of spiral arms, was recently reported by Berrier, et al. (2013 ApJ 769, 132) for late type galaxies. The relationship, established for a local sample, shows that spiral galaxies with tighter pitch angles host higher mass black holes. In this work, we explore the M-P relation for a sample of 50 low to moderate redshift (0.04Pitch angles were measured using a 2DFFT technique (Davis, et al., 2012 ApJS 199, 33). We find that the M-P relation for the higher redshift, AGN sample differs from that of the local sample and discuss the possibility of AGN feedback by looking at a proposed Fundamental Plane for late-type galaxies - a correlation between bulge mass, disk mass, and spiral-arm pitch angle (Davis, et al. 2015, ApJ 802, L13).

  15. Relativistic electron dropouts by pitch angle scattering in the geomagnetic tail

    Directory of Open Access Journals (Sweden)

    J. J. Lee

    2006-11-01

    Full Text Available Relativistic electron dropout (RED events are characterized by fast electron flux decrease at the geostationary orbit. It is known that the main loss process is non adiabatic and more effective for the high energy particles. RED events generally start to occur at midnight sector and propagate to noon sector and are correlated with magnetic field stretching. In this paper, we discuss this kind of event can be caused from pitch angle diffusion induced when the gyro radius of the electrons is comparable to the radius of curvature of the magnetic field and the magnetic moment is not conserved any more. While this process has been studied theoretically, the question is whether electron precipitation could be explained with this process for the real field configuration. This paper will show that this process can successfully explain the precipitation that occurred on 14 June 2004 observed by the low-altitude (680 km polar orbiting Korean satellite, STSAT-1. In this precipitation event, the energy dispersion showed higher energy electron precipitation occurred at lower L values. This feature is a good indicator that precipitation was caused by the magnetic moment scattering in the geomagnetic tail. This interpretation is supported by the geosynchronous satellite GOES observations that showed significant magnetic field distortion occurred on the night side accompanying the electron flux depletion. Tsyganenko-01 model also shows the magnetic moment scattering could occur under the geomagnetic conditions existing at that time. We suggest the pitch angle scattering by field curvature violating the first adiabatic invariant as a possible candidate for loss mechanism of relativistic electrons in radiation belt.

  16. Flight Test Techniques for Quantifying Pitch Rate and Angle of Attack Rate Dependencies

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.; Murri, Daniel G.

    2017-01-01

    Three different types of maneuvers were designed to separately quantify pitch rate and angle of attack rate contributions to the nondimensional aerodynamic pitching moment coefficient. These maneuvers combined pilot inputs and automatic multisine excitations, and were own with the subscale T-2 and Bat-4 airplanes using the NASA AirSTAR flight test facility. Stability and control derivatives, in particular C(sub mq) and C(sub m alpha(.)) were accurately estimated from the flight test data. These maneuvers can be performed with many types of aircraft, and the results can be used to increase simulation prediction fidelity and facilitate more accurate comparisons with wind tunnel experiments or numerical investigations.

  17. Conical pitch angle distributions of very-low energy ion fluxes observed by ISEE 1

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, J.L.; Baugher, C.R.; Chappell, C.R.; Shelley, E.G.; Young, D.T.

    1982-04-01

    Observations of low-energy ionospheric ions by the plasma composition experiment abroad ISEE 1 often show conical pitch angle distributions, that is, peak fluxes between 0/sup 0/ and 90/sup 0/ to the directions parallel or antiparallel to the magnetic field. Frequently, all three primary ionospheric ion species (H/sup +/, He/sup +/, and O/sup +/) simultaneously exhibit conical distributions with peak fluxes at essentially the same pitch angle. A distinction is made here between unidirectional, or streaming, distributions, in which ions are traveling essentially from only one hemisphere, and symmetrical distributions, in which significant fluxes are observed traveling from both hemispheres. The orbital coverage for this survey was largely restricted to the night sector, approximately 2100--0600 LT, and moderate geomagnetic latitudes of 20/sup 0/--40/sup 0/. Also, lack of complete pitch angle coverage at all times may have reduced detection for conics with small cone angles. However, we may conclude that the unidirectional conical distributions observed in the northern hemisphere are always observed to be traveling from the northern hemisphere and that they exhibit the following characteristics relative to the symmetric distributions, in that they (1) are typically observed on higher L shells (that is, higher geomagnetic latitudes or larger geocentric distances or both), (2) tend to have significantly larger cone angles, and (3), are associated with higher magnetic activity levels.

  18. Electron pitch angle diffusion by electrostatic electron cyclotron harmonic waves: The origin of pancake distributions

    Science.gov (United States)

    Horne, Richard B.; Thorne, Richard M.

    2000-03-01

    It has been suggested that highly anisotropic electron pancake distributions are the result of pitch angle diffusion by electrostatic electron cyclotron harmonic (ECH) and whistler mode waves in the equatorial region. Here we present pitch angle diffusion rates for ECH wave spectra centered at different frequencies with respect to the electron gyrofrequency Ωe corresponding to spacecraft observations. The wave spectra are carefully mapped to the correct resonant electron velocities. We show that previous diffusion calculations of ECH waves at 1.5Ωe, driven by the loss cone instability, result in large diffusion rates confined to a small range of pitch angles near the loss cone and therefore cannot account for pancake distributions. However, when the wave spectrum is centered at higher frequencies in the band (>1.6Ωe), the diffusion rates become very small inside the loss cone, peak just outside, and remain large over a wide range of pitch angles up to 60° or more. When the upper hybrid resonance frequency ωUHR is several times Ωe, ECH waves excited in higher bands also contribute significantly to pitch angle diffusion outside the loss cone up to very large pitch angles. We suggest that ECH waves driven by a loss cone could form pancake distributions as they grow if the wave spectrum extends from the middle to the upper part of the first (and higher) gyroharmonic bands. Alternatively, we suggest that pancake distributions can be formed by outward propagation in a nonhomogeneous medium, so that resonant absorption occurs at higher frequencies between(n+12) and (n+1)Ωe in regions where waves are also growing locally at <=1.5Ωe. The calculated diffusion rates suggest that ECH waves with amplitudes of the order of 1 mV m-1 can form pancake distributions from an initially isotropic distribution on a timescale of a few hours. This is consistent with recent CRRES observations of ECH wave amplitudes following substorm injections near geostationary orbit and the

  19. Exploration of a SMBH Mass-Pitch Angle Relation at Intermediate Redshifts

    Science.gov (United States)

    Jones, Logan H.; Schilling, Amanda; Davis, Benjamin L.; Barrows, Robert S.; Kennefick, Julia D.

    2015-01-01

    Previous studies have established a correlation between central black hole mass M and spiral arm pitch angle P in disk galaxies. The mathematical form of this relation was developed for local objects (z < 0.04; Berrier, J. C. et al, 2013, ApJ, 769, 2), but the form at higher redshifts is currently unknown. Here we aim to develop an extended M-P relation in a sample of spiral galaxies with type 1 AGN, using spectroscopic techniques to estimate black hole masses and image analysis to measure pitch angle of the host galaxy. The sample was chosen from a list of 545 X-ray selected objects previously identified as type 1 AGN (Lusso, E. et al., 2010, A&A, 512, A34) and limited to those that had available spectral data (327 of 545) and visible spiral structure (14 of 327). The final sample consisted of thirteen objects with 0.196 < z < 1.34.Black hole masses were measured using optical or UV spectroscopic information from a number of emission lines, including [OIII] l5007, the broad-line component of Hβ, MgII, and CIV. Each spectrum was extinction corrected and fitted with an FeII template, an underlying power law curve, and Gaussian curves for the emission line(s) under consideration. Relationships developed by Vestergaard & Peterson (Vestergaard, M. & Peterson, B., 2006, ApJ, 641, 2) and Salviander & Shields (Salviander, S. & Shields, G. A., 2013, ApJ, 764, 82) use information from these fits to estimate log(MBH).Measurement of pitch angles was accomplished using a two-dimensional fast Fourier transform technique, 2DFFT (Davis, B. et al. 2012, ApJS, 199, 2). HST images were formatted for and processed by the 2DFFT program; output was analyzed for ranges of stable P for an appropriate number of spiral arms. Average pitch angle over these ranges were calculated using an extension of 2DFFT.

  20. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design...... can effectively contribute to power system stabilisation. (c) 2007 Elsevier Ltd. All rights reserved....

  1. Influence on the hydrodynamic performance of a variable vector propeller of different rules of pitch angle change

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To design a more effective blade pitch adjustment mechanism, research was done on changes to the hydrodynamic characteristics of VVPs (Variable Vector Propeller) caused by different rules for changing pitch angle.A mathematical method for predicting the hydrodynamic characteristics of a VVP under unsteady conditions is presented based on the panel method.Mathematical models for evaluation based on potential flow theory and the Green theorem are also presented.The hydrodynamic characteristics are numerically predicted.To avoid gaps between panels, hyperboloidal quadrilateral panels were used.The pressure Kutta condition on the trailing edge of the WP blade was satisfied by the Newton-Raphson iterative procedure.The influence coefficients of the panels were calculated by Morino's analytical formulations to improve numerical calculation speed, and the method developed by Yanagizawa was used to eliminate the point singularity on derivation calculus while determining the velocities on propeller surfaces.The calculation results show that it's best for the hydrodynamic characteristics of the VVP that pitch angle changes follow the sine rule.

  2. MreB helical pitch angle determines cell diameter in Escherichia coli

    CERN Document Server

    Ouzounov, Nikolay; Bratton, Benjamin; Jacobowitz, David; Gitai, Zemer; Shaevitz, Joshua W

    2015-01-01

    Bacteria have remarkably robust cell shape control mechanisms. For example, cell diameter only varies by a few percent across a population. MreB is necessary for establishment and maintenance of rod shape although the mechanism of shape control remains unknown. We perturbed MreB in two complimentary ways to produce steady-state cell diameters over a wide range, from 790+/-30 nm to 1700+/-20 nm. To determine which properties of MreB are important for diameter control, we correlated structural characteristics of fluorescently-tagged MreB polymers with cell diameter by simultaneously analyzing 3-dimensional images of MreB and cell shape. Our results indicate that the pitch angle of MreB inversely correlates with cell diameter. Other correlations are not found to be significant. These results demonstrate that the physical properties of MreB filaments are important for shape control and support a model in which MreB dictates cell diameter and organizes cell wall growth to produce a chiral cell wall.

  3. Tests of Two Full-Scale Propellers with Different Pitch Distributions, at Blade Angles up to 60 Degrees

    Science.gov (United States)

    Biermann, David; HARTMAN EDWIN P

    1939-01-01

    Two 3-blade 10-foot propellers were operated in front of a liquid-cooled engine nacelle. The propellers differed only in pitch distribution; one had normal distribution (nearly constant pitch for a blade angle of 15 degrees at 0.75 radius), and the other had the pitch of the tip sections decreased with respect to that for the shank sections (blade angle of 35 degrees for nearly constant pitch distribution). Propeller blade angles at 0.75r from 15 degrees to sixty degrees, corresponding to design speeds up to 500 miles per hour, were investigated. Propeller blade angles at 0.75r from 15 degrees to 60 degrees, corresponding to design speeds up to 500 miles per hour, were investigated. The results indicated that the propulsive efficiency at a blade angle of 60 degrees was about 9 percent less than the maximum value of 86 percent, which occurred at blade angle of about 30 degrees. The efficiency at a blade angle of 60 degrees was increased about 7 percent by correcting for the effect of a spinner and, at a blade angle of 30 degrees about 3 percent. The peak efficiencies for the propeller having the washed-out pitch distribution were slightly less than for the normal propeller but the take-off efficiency was generally higher.

  4. Kalman Filtering and Smoothing of the Van Allen Probes Observations to Estimate the Radial, Energy and Pitch Angle Diffusion Rates

    Science.gov (United States)

    Podladchikova, T.; Shprits, Y.; Kellerman, A. C.

    2015-12-01

    The Kalman filter technique combines the strengths of new physical models of the Earth's radiation belts with long-term spacecraft observations of electron fluxes and therefore provide an extremely useful method for the analysis of the state and evolution of the electron radiation belts. However, to get the reliable data assimilation output, the Kalman filter application is confronted with a set of fundamental problems. E.g., satellite measurements are usually limited to a single location in space, which confines the reconstruction of the global evolution of the radiation environment. The uncertainties arise from the imperfect description of the process dynamics and the presence of observation errors, which may cause the failure of data assimilation solution. The development of adaptive Kalman filter that combines the Van Allen Probes data and 3-D VERB code, its accurate customizations in the reconstruction of model describing the phase space density (PSD) evolution, extension of the possibilities to use measurement information, and the model adjustment by developing the identification techniques of model and measurement errors allowed us to reveal hidden and implicit regularities of the PSD dynamics and obtain quantitative and qualitative estimates of radial, energy and pitch angle diffusion characteristics from satellite observations. In this study we propose an approach to estimate radial, energy and pitch angle diffusion rates, as well as the direction of their propagation.

  5. Pitch Gestures in Generative Modeling of Music

    DEFF Research Database (Denmark)

    Jensen, Kristoffer

    2011-01-01

    Generative models of music are in need of performance and gesture additions, i.e. inclusions of subtle temporal and dynamic alterations, and gestures so as to render the music musical. While much of the research regarding music generation is based on music theory, the work presented here is based...... on the temporal perception, which is divided into three parts, the immediate (subchunk), the short-term memory (chunk), and the superchunk. By review of the relevant temporal perception literature, the necessary performance elements to add in the metrical generative model, related to the chunk memory......, are obtained. In particular, the pitch gestures are modeled as rising, falling, or as arches with positive or negative peaks....

  6. Electron - whistler interaction at the Earth`s bow shock: 2. Electron pitch angle diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, P.; Zimbardo, G. [Universita della Calabria, Cosenza (Italy)

    1993-08-01

    In this paper the authors further examine the interactions of whistler waves with electrons in the bow shock, simulating a crossing made on Nov 7, 1977. The authors consider the effects of whistler waves and electrostatic noise on the electron distribution function, using a Monte Carlo technique. Their simulations are able to reproduce the moments of the distribution function, including spatial and velocity profiles. They conclude that the fields in the bow shock accelerate electrons, creating asymmetric distributions, which are filled in due to diffusion caused by the electrostatic noise, and which have the velocity distributions balanced due to pitch angle scattering of parallel electrons from whistler waves.

  7. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures

    Directory of Open Access Journals (Sweden)

    Behzad Majidi

    2016-05-01

    Full Text Available Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger’s model is developed using the discrete element method (DEM on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger’s model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297–0.595 mm (−30 + 50 mesh to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  8. Stochastic wind turbine modeling for individual pitch control

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    By pitching the blades of a wind turbine individually it is possible to attenuate the asymmetric loads caused by a non-uniform wind field - this is denoted individual pitch control. In this work we investigate how to set up a simplified stochastic and deterministic description of the wind...... and a simplified description of the aerodynamics with sufficient detail to design model-based individual pitch controllers. Combined with a simplified model of the wind turbine, we exemplify how to use the model elements to systematically design an individual pitch controller. The design is investigated...

  9. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-04-01

    Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau

  10. Discharge Coefficient of 3-in-1 Hole with Various Inclination Angle and Hole Pitch

    Institute of Scientific and Technical Information of China (English)

    Li Guangchao; Zhu Huiren; Fan Huiming

    2008-01-01

    Discharge coefficients of 3-in- 1 hole of three inclination angles and three spacing between holes are presented which described the discharge behavior of a row of holes. The inlet and outlet of the 3-in-1 hole both have a 15° lateral expansion. The flow conditions considered are mainstream turbulence intensities and density ratios of secondary flow to mainstream. The momentum flux ratios varied in the range froom 1 to 4. The comparison is made of the discharge coefficients of three shaped holes to find an optimal hole with low flow loss. The results show that the discharge coefficients of 3-in-1 hole are highest in three shaped holes and therefore this article is focused on the measurements of discharge coefficients of 3-in-1 hole for various geometries and aerodynamic parameters. The measured results of 3-in-1 hole indicate that turbulence intensities, density ratios and momentum flux ratios have weak influence on discharge coefficients for inclination angle of 20°. The high turbulence intensity yields the small discharge coefficients for inclination angle of 45° and 90°.The increased both momentum flux ratios and density ratios lead to the increased discharge coefficients for inclination angle of 45° and 90°. The increased inclination angle causes the rapidly increased discharge coefficients. There is a weak dependence of discharge coefficients on hole pitches.

  11. Implications of unusual pitch-angle distributions observed by ISEE-1 and 2

    Directory of Open Access Journals (Sweden)

    C. A. Zuluaga

    2006-11-01

    Full Text Available Unusual energetic particle pitch angle distributions (PADs were observed by the ISEE-1 and 2 satellites at 3 h MLT and a radial distance of about 10–15 RE during the time period of 07:00-14:00 UT on 3 March 1979. The ISEE-1 satellite obtained complete 3-D distributions of energetic proton and electron fluxes as a function of energy, while ISEE-2 was configured to provide higher time resolution but less angular resolution than ISEE-1. The ISEE-1 observed a butterfly PAD (a minimum in the 90° PA particle flux for a period of about 2 h (10:00–12:00 UT for the electrons, and 3 h (09:00–12:00 UT for the protons over an energy range of 22.5–189 keV (E1–E4 for the electrons and 24–142 keV (P1–P4 for the protons. The small pitch angle (15°, 30° charged particles (electrons and protons are seen to behave collectively in all four energy ranges. The relative differences in electron fluxes between 15° PA and 90° PA are more significant for higher energy channels during the butterfly PAD period. Three different types of electron PADs (butterfly, isotropic, and peaked-at-90° were observed at the same location and time as a function of energy for a short period of time before 10:00 UT. Electron butterfly distributions were also observed by the ISEE-2 for about 1.5 h over 28–62 keV (E2–E4, although less well resolved than ISEE-1. Unlike the ISEE-1, no butterfly distributions were resolved in the ISEE-2 proton PADs due to less angular resolution. The measured drift effects by ISEE-1 suggest that the detected protons were much closer to the particle source than the electrons along their trajectories, and thus ruled out a nightside source within 18:00 MLT to 03:00 MLT. Compared to 07:30 UT, the charged particle fluxes measured by ISEE-1 were enhanced by up to three orders of magnitude during the period 08:30–12:00 UT. From 09:10:00 UT to 11:50 UT, the geomagnetic conditions were quiet (AE<100 nT, the LANL geosynchronous

  12. Further Evidence for a Supermassive Black Hole Mass - Pitch Angle Relation

    CERN Document Server

    Berrier, Joel C; Kennefick, Daniel; Kennefick, Julia D; Seigar, Marc S; Barrows, R Scott; Hartley, Matthew; Shields, Doug; Bentz, Misty C; Lacy, Claud H S

    2013-01-01

    We present new and stronger evidence for a previously reported relationship between galactic spiral arm pitch angle P (a measure of the tightness of spiral structure) and the mass M_BH of a disk galaxy's nuclear supermassive black hole (SMBH). We use an improved method to accurately measure the spiral arm pitch angle in disk galaxies to generate quantitative data on this morphological feature for 34 galaxies with directly measured black hole masses. We find a relation of log(M/M_sun) = (8.21 +/- 0.16) - (0.062 +/- 0.009)P. This method is compared with other means of estimating black hole mass to determine its effectiveness and usefulness relative to other existing relations. We argue that such a relationship is predicted by leading theories of spiral structure in disk galaxies, including the density wave theory. We propose this relationship as a tool for estimating SMBH masses in disk galaxies. This tool is potentially superior when compared to other methods for this class of galaxy, and has the advantage of ...

  13. Further evidence for a supermassive black hole mass-pitch angle relation

    Energy Technology Data Exchange (ETDEWEB)

    Berrier, Joel C.; Kennefick, Daniel; Kennefick, Julia D.; Hartley, Matthew; Lacy, Claud H. S. [Department of Physics, University of Arkansas, 825 West Dickson Street, Fayetteville, AR 72701 (United States); Davis, Benjamin L.; Barrows, Robert Scott; Shields, Doug [Arkansas Center for Space and Planetary Sciences, University of Arkansas, 202 Old Field House, Fayetteville, AR 72701 (United States); Seigar, Marc S. [Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2013-06-01

    We present new and stronger evidence for a previously reported relationship between galactic spiral arm pitch angle P (a measure of the tightness of spiral structure) and the mass M {sub BH} of a disk galaxy's nuclear supermassive black hole (SMBH). We use an improved method to accurately measure the spiral arm pitch angle in disk galaxies to generate quantitative data on this morphological feature for 34 galaxies with directly measured black hole masses. We find a relation of log (M/M {sub ☉}) = (8.21 ± 0.16) – (0.062 ± 0.009)P. This method is compared with other means of estimating black hole mass to determine its effectiveness and usefulness relative to other existing relations. We argue that such a relationship is predicted by leading theories of spiral structure in disk galaxies, including the density wave theory. We propose this relationship as a tool for estimating SMBH masses in disk galaxies. This tool is potentially superior when compared to other methods for this class of galaxy and has the advantage of being unambiguously measurable from imaging data alone.

  14. MAGNETIC VARIANCES AND PITCH-ANGLE SCATTERING TIMES UPSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Perri, Silvia; Zimbardo, Gaetano, E-mail: silvia.perri@fis.unical.it, E-mail: gaetano.zimbardo@fis.unical.it [Dipartimento di Fisica, Universita della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Arcavacata di Rende (Italy)

    2012-07-20

    Recent observations of power-law time profiles of energetic particles accelerated at interplanetary shocks have shown the possibility of anomalous, superdiffusive transport for energetic particles throughout the heliosphere. Those findings call for an accurate investigation of the magnetic field fluctuation properties at the resonance frequencies upstream of the shock's fronts. Normalized magnetic field variances, indeed, play a crucial role in the determination of the pitch-angle scattering times and then of the transport regime. The present analysis investigates the time behavior of the normalized variances of the magnetic field fluctuations, measured by the Ulysses spacecraft upstream of corotating interaction region (CIR) shocks, for those events which exhibit superdiffusion for energetic electrons. We find a quasi-constant value for the normalized magnetic field variances from about 10 hr to 100 hr from the shock front. This rules out the presence of a varying diffusion coefficient and confirms the possibility of superdiffusion for energetic electrons. A statistical analysis of the scattering times obtained from the magnetic fluctuations upstream of the CIR events has also been performed; the resulting power-law distributions of scattering times imply long range correlations and weak pitch-angle scattering, and the power-law slopes are in qualitative agreement with superdiffusive processes described by a Levy random walk.

  15. Pitch modelling for the Nguni languages

    CSIR Research Space (South Africa)

    Govender, N

    2007-06-01

    Full Text Available linguistic and physical variables of a prosodic nature in this family of languages. Firstly we undertake a set of experiments to select an appropriate pitch tracking algorithm for the the Nguni family of languages. We then use this pitch tracking algorithm...

  16. Aerodynamic modelling of variable pitch wind turbines; Modelagem aerodinamica de turbinas eolicas de passo variavel

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Armando [Pernambuco Univ., Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Grupo de Energia Eolica; Simoes, F.J.; Lima, A.M.N.; Jacobina, C.B. [Paraiba Univ., Campina Grande, PB (Brazil). Centro de Ciencias Tecnologicas

    1996-07-01

    This work gives a new procedure for rotor performance modeling of large size horizontal axis wind turbines where the pitch and yaw angle are treated as variables. By simulation it was observed a maximum error equal to 3% near the operating points. (author)

  17. Turbulent pitch-angle scattering and diffusive transport of hard-X-ray producing electrons in flaring coronal loops

    CERN Document Server

    Kontar, E P; Emslie, A G; Vilmer, N

    2013-01-01

    Recent observations from {\\em RHESSI} have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high energy electrons are confined to the coronal region of the source, we consider turbulent pitch angle scattering of fast electrons off low frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop and ...

  18. Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804 (China); Ou, Ting-Chia; Chiu, Tai-Ming [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 325 (China)

    2011-02-15

    This paper presents the design of a fuzzy sliding mode loss-minimization control for the speed of a permanent magnet synchronous generator (PMSG) and a high-performance on-line training radial basis function network (RBFN) for the turbine pitch angle control. The back-propagation learning algorithm is used to regulate the RBFN controller. The PMSG speed uses maximum power point tracking below the rated speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. A sliding mode controller with an integral-operation switching surface is designed, in which a fuzzy inference mechanism is utilized to estimate the upper bound of uncertainties. Furthermore, the fuzzy inference mechanism with center adaptation is investigated to estimate the optimal bound of uncertainties. (author)

  19. Direct detection of resonant electron pitch angle scattering by whistler waves in a laboratory plasma.

    Science.gov (United States)

    Van Compernolle, B; Bortnik, J; Pribyl, P; Gekelman, W; Nakamoto, M; Tao, X; Thorne, R M

    2014-04-11

    Resonant interactions between energetic electrons and whistler mode waves are an essential ingredient in the space environment, and in particular in controlling the dynamic variability of Earth's natural radiation belts, which is a topic of extreme interest at the moment. Although the theory describing resonant wave-particle interaction has been present for several decades, it has not been hitherto tested in a controlled laboratory setting. In the present Letter we report on the first laboratory experiment to directly detect resonant pitch angle scattering of energetic (∼keV) electrons due to whistler mode waves. We show that the whistler mode wave deflects energetic electrons at precisely the predicted resonant energy, and that varying both the maximum beam energy, and the wave frequency, alters the energetic electron beam very close to the resonant energy.

  20. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    Science.gov (United States)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  1. Pitch angle scattering of relativistic electrons near electromagnetic ion cyclotron resonances in diverging magnetic fields

    Science.gov (United States)

    Eliasson, B.; Papadopoulos, K.

    2017-10-01

    A theoretical study of the propagation of left-hand polarized shear Alfvén waves in spatially decreasing magnetic field geometries near the EMIC resonance, including the spectrum and amplitude of the mode converted EMIC waves and the pitch angle scattering of relativistic electrons transiting the resonant region, is presented. The objective of the paper is to motivate an experimental study of the subject using the UCLA LAPD chamber. The results are relevant in exploring the possibility that shear Alfvén waves strategically injected into the radiation belts using either ionospheric heating from ground based RF transmitters or injected by transmitters based on space platforms can enhance the precipitation rate of trapped relativistic electrons. Effects of multi-ionic composition are also investigated.

  2. Near-equatorial pitch angle diffusion of energetic electrons by oblique whistler waves

    Science.gov (United States)

    Villalon, Elena; Burke, William J.

    1991-06-01

    The pitch angle scattering of trapped, energetic electrons by obliquely propagating whistler waves in the equatorial regions of the plasmasphere is investigated. Storm-injected electrons moving along field lines near the equator interact with electromagnetic waves whose frequencies are Doppler-shifted to some harmonic of the cyclotron frequency. The wave normals are distributed almost parallel to the geomagnetic field. Waves grow from the combined contributions of a large reservoir of energetic electrons that are driven into the loss cone by the highest-harmonic interactions permitted to them. Relativistic, quasi-linear theory is applied to obtain self-consistent equations describing the temporal evolution of waves and particles over time scales which are longer than the particle bounce time and group time delay of the waves. The equilibrium solutions and their stability are studied, considering the reflection of the waves by the ionsphere and the coupling of multiple harmonic resonances.

  3. Simulating Galaxies: Investigating Spiral Pitch Angle and the Efficiency of Radial Mixing

    Science.gov (United States)

    Lifset, Noah; Barbano, Luke; Daniel, Kathryne J.

    2017-01-01

    Radial mixing refers to the permanent rearrangement of orbital angular momenta in a galactic disk due to interactions with transient spiral arms. A star is subject to this dynamical process when it is temporarily in a trapped orbit between the spiral arms near the corotation radius. The purpose of this research was to numerically investigate how spiral shape affects the efficiency of radial mixing. This was done by designing an orbital integrator that numerically simulated the motion of test particles in a 2D disk potential that had a steady spiral pattern and was populated using a Monte Carlo simulation. Several realizations of N=10^4 orbits were simulated and analyzed using the open source, distributed computing service Open Science Grid (OSG). The results were in agreement with previous theoretical predictions, and preliminary analysis of the data indicates that the RMS change in orbital angular momentum for stars in trapped orbits depends on spiral arm pitch angle.

  4. Particle acceleration with anomalous pitch angle scattering in 2D magnetohydrodynamic reconnection simulations

    Science.gov (United States)

    Borissov, A.; Kontar, E. P.; Threlfall, J.; Neukirch, T.

    2017-09-01

    The conversion of magnetic energy into other forms (such as plasma heating, bulk plasma flows, and non-thermal particles) during solar flares is one of the outstanding open problems in solar physics. It is generally accepted that magnetic reconnection plays a crucial role in these conversion processes. In order to achieve the rapid energy release required in solar flares, an anomalous resistivity, which is orders of magnitude higher than the Spitzer resistivity, is often used in magnetohydrodynamic (MHD) simulations of reconnection in the corona. The origin of Spitzer resistivity is based on Coulomb scattering, which becomes negligible at the high energies achieved by accelerated particles. As a result, simulations of particle acceleration in reconnection events are often performed in the absence of any interaction between accelerated particles and any background plasma. This need not be the case for scattering associated with anomalous resistivity caused by turbulence within solar flares, as the higher resistivity implies an elevated scattering rate. We present results of test particle calculations, with and without pitch angle scattering, subject to fields derived from MHD simulations of two-dimensional (2D) X-point reconnection. Scattering rates proportional to the ratio of the anomalous resistivity to the local Spitzer resistivity, as well as at fixed values, are considered. Pitch angle scattering, which is independent of the anomalous resistivity, causes higher maximum energies in comparison to those obtained without scattering. Scattering rates which are dependent on the local anomalous resistivity tend to produce fewer highly energised particles due to weaker scattering in the separatrices, even though scattering in the current sheet may be stronger when compared to resistivity-independent scattering. Strong scattering also causes an increase in the number of particles exiting the computational box in the reconnection outflow region, as opposed to along the

  5. Method for direct detection of pitch angle scattering of energetic electrons caused by whistler mode chorus emissions

    Science.gov (United States)

    Kitahara, M.; Katoh, Y.

    2016-06-01

    The Wave-Particle Interaction Analyzer (WPIA), a new instrument proposed by Fukuhara et al. (2009), measures the relative phase angle between the wave magnetic field vector and the velocity vector of each particle and calculates the energy exchange from waves to particles. In this study, we expand its applicability by proposing a method of using the WPIA to directly detect pitch angle scattering of resonant particles by plasma waves by calculating the g values. The g value is defined as the accumulation value of the Lorentz force acting on each particle and indicates the lost momentum of waves. We apply the proposed method to the results of a one-dimensional electron hybrid simulation reproducing the generation of whistler mode chorus emissions around the magnetic equator. Using the wave and particle data obtained at fixed observation points assumed in the simulation system, we conduct a pseudo-observation of the simulation result using the WPIA and analyze the g values. Our analysis yielded significant values indicating the strong pitch angle scattering for electrons in the kinetic energy and pitch angle ranges satisfying the cyclotron resonance condition with the reproduced chorus emissions. The results of this study demonstrate that the proposed method enables us to directly and quantitatively identify the location at which pitch angle scattering occurs in the simulation system and that the method can be applied to the results of space-based observations by the forthcoming Exploration of energization and Radiation in Geospace (ERG) satellite.

  6. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, A. K., E-mail: aktrip2001@yahoo.co.in; Singhal, R. P., E-mail: rpsiitbhu@yahoo.com [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh (India); Khazanov, G. V., E-mail: George.V.Khazanov@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Avanov, L. A., E-mail: levon.a.avanov@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Department of Astronomy, University of Maryland, College Park, Maryland 20742 (United States)

    2016-04-15

    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3

  7. A new method to estimate local pitch angles in spiral galaxies: Application to spiral arms and feathers in M81 and M51

    CERN Document Server

    Puerari, Ivânio; Block, David L

    2014-01-01

    We examine $8\\mu$m IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of $(\\ln R, \\theta)$ space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as a function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from ...

  8. Application of reflectometry power flow for magnetic field pitch angle measurements in tokamak plasmas (invited).

    Science.gov (United States)

    Gourdain, P-A; Peebles, W A

    2008-10-01

    Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.

  9. Near-equatorial pitch angle diffusion of energetic electrons by oblique whistler waves

    Energy Technology Data Exchange (ETDEWEB)

    Villalon, E. (Northeastern Univ., Boston, MA (USA)); Burke, W.J. (Geophysics Lab., Hanscom AFB, MA (USA))

    1991-06-01

    The pitch angle scattering of trapped, energetic electrons by obliquely propagating whistler waves in the equatorial regions of the plasmasphere is investigated. Storm-injected electrons moving along field lines near the equator interact with electromagnetic waves whose frequencies are Doppler-shifted to some harmonic of the cyclotron frequency. The wave normals are distributed almost parallel to the geomagnetic field. Waves grow from the combined contributions of a large reservoir of energetic electrons that are driven into the loss cone by the highest-harmonic interactions permitted to them. Relativistic, quasi-linear theory is applied to obtain self-consistent equations describing the temporal evolution of waves and particles over time scales which are longer than the particle bounce time and group time delay of the waves. The equilibrium solutions and their stability are studied, considering the reflection of the waves by the ionosphere and the coupling of multiple harmonic resonances. The contributions of nonlocal wave sources are also included in the theory. Numerical computations based on the authors theoretical analysis for regions inside the plasmasphere (L{le}2) and near the plasmapause (L{approximately}4.5) and for the first three harmonic resonances are presented.

  10. A Neural Network Approach for Identifying Particle Pitch Angle Distributions in Van Allen Probes Data

    Science.gov (United States)

    Souza, V. M.; Vieira, L. E. A.; Medeiros, C.; Da Silva, L. A.; Alves, L. R.; Koga, D.; Sibeck, D. G.; Walsh, B. M.; Kanekal, S. G.; Jauer, P. R.; hide

    2016-01-01

    Analysis of particle pitch angle distributions (PADs) has been used as a means to comprehend a multitude of different physical mechanisms that lead to flux variations in the Van Allen belts and also to particle precipitation into the upper atmosphere. In this work we developed a neural network-based data clustering methodology that automatically identifies distinct PAD types in an unsupervised way using particle flux data. One can promptly identify and locate three well-known PAD types in both time and radial distance, namely, 90deg peaked, butterfly, and flattop distributions. In order to illustrate the applicability of our methodology, we used relativistic electron flux data from the whole month of November 2014, acquired from the Relativistic Electron-Proton Telescope instrument on board the Van Allen Probes, but it is emphasized that our approach can also be used with multiplatform spacecraft data. Our PAD classification results are in reasonably good agreement with those obtained by standard statistical fitting algorithms. The proposed methodology has a potential use for Van Allen belt's monitoring.

  11. A Neural Network Approach for Identifying Relativistic Electron Pitch Angle Distributions in Van Allen Probes Data

    Science.gov (United States)

    Souza, V. M. C. E. S.; Vieira, L.; Alves, L. R.; Da Silva, L. A.; Koga, D.; Sibeck, D. G.; Walsh, B.; Kanekal, S. G.; Silveira, M. D.; Medeiros, C.; Mendes, O., Jr.; Marchezi, J.; Rockenbach, M.; Jauer, P. R.; Gonzalez, W.; Baker, D. N.

    2015-12-01

    A myriad of physical phenomena occur in the inner magnetosphere, in particular at the Earth's radiation belts, which can be a result of the combination of both internal and external processes. However, the connection between physical processes occurring deep within the magnetosphere and external interplanetary drivers it is not yet well understood. In this work we investigate whether a selected set of interplanetary structures affect the local time distribution of three different classes of high energy electron pitch angle distributions (PADs), namely normal, isotropic, and butterfly. We split this work into two parts: initially we focus on the methodology used which employs a Self-Organized Feature Map (SOFM) neural network for identifying different classes of electron PAD shapes in the Van Allen Probes' Relativistic Electron Proton Telescope (REPT) data. The algorithm can categorize the input data into an arbitrary number of classes from which three of them appears the most: normal, isotropic and butterfly. Other classes which are related with these three also emerge and deserve to be addressed in detail in future works. We also discuss the uncertainties of the algorithm. Then, we move to the second part where we describe in details the criteria used for selecting the interplanetary events, and also try to investigate the relation between key parameters characterizing such interplanetary structures and the local time distributions of electron PAD shapes.

  12. Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event

    Science.gov (United States)

    Zhang, X.-J.; Li, W.; Thorne, R. M.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.

    2016-09-01

    Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1 MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.

  13. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    Science.gov (United States)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  14. Development of swashplateless helicopter blade pitch control system using the limited angle direct-drive motor (LADDM

    Directory of Open Access Journals (Sweden)

    Wang Jian

    2015-10-01

    Full Text Available It can be greatly beneficial to remove the swashplate of conventional helicopter, because the swashplate is usually complicated, aerodynamically resistive, and obstacle of more complex pitch control for improving performance. The present technologies for helicopter vibration reduction are usually narrow in effective range or requiring additional actuators and signal transfer links, and more effective technology is desired. Helicopter blade pitch control system, which is removed of swashplate and integrated high-frequency pitch control function for active vibration reduction, is likely the suitable solution at current technical level. Several potential implementation schemes are discussed, such as blades being directly or indirectly driven by actuators mounted in rotating frame and application of different types of actuators, especially implementation schemes of electro-mechanical actuator with or without gear reducer. It is found that swashplateless blade pitch control system based on specially designed limited angle direct-drive motor (LADDM is a more practical implementation scheme. An experimental prototype of the finally selected implementation scheme has been designed, fabricated and tested on rotor tower. The test results show considerable feasibility of the swashplateless helicopter blade pitch control system using the LADDM.

  15. Development of swashplateless helicopter blade pitch control system using the limited angle direct-drive motor (LADDM)

    Institute of Scientific and Technical Information of China (English)

    Wang Jian; Wang Haowen; Wu Chao

    2015-01-01

    It can be greatly beneficial to remove the swashplate of conventional helicopter, because the swashplate is usually complicated, aerodynamically resistive, and obstacle of more complex pitch control for improving performance. The present technologies for helicopter vibration reduc-tion are usually narrow in effective range or requiring additional actuators and signal transfer links, and more effective technology is desired. Helicopter blade pitch control system, which is removed of swashplate and integrated high-frequency pitch control function for active vibration reduction, is likely the suitable solution at current technical level. Several potential implementation schemes are discussed, such as blades being directly or indirectly driven by actuators mounted in rotating frame and application of different types of actuators, especially implementation schemes of electro-mechanical actuator with or without gear reducer. It is found that swashplateless blade pitch control system based on specially designed limited angle direct-drive motor (LADDM) is a more practical implementation scheme. An experimental prototype of the finally selected implementation scheme has been designed, fabricated and tested on rotor tower. The test results show considerable feasibility of the swashplateless helicopter blade pitch control system using the LADDM.

  16. Relativistic electron's butterfly pitch angle distribution modulated by localized background magnetic field perturbation driven by hot ring current ions

    Science.gov (United States)

    Xiong, Ying; Chen, Lunjin; Xie, Lun; Fu, Suiyan; Xia, Zhiyang; Pu, Zuyin

    2017-05-01

    Dayside modulated relativistic electron's butterfly pitch angle distributions (PADs) from ˜200 keV to 2.6 MeV were observed by Van Allen Probe B at L = 5.3 on 15 November 2013. They were associated with localized magnetic dip driven by hot ring current ion (60-100 keV proton and 60-200 keV helium and oxygen) injections. We reproduce the electron's butterfly PADs at satellite's location using test particle simulation. The simulation results illustrate that a negative radial flux gradient contributes primarily to the formation of the modulated electron's butterfly PADs through inward transport due to the inductive electric field, while deceleration due to the inductive electric field and pitch angle change also makes in part contribution. We suggest that localized magnetic field perturbation, which is a frequent phenomenon in the magnetosphere during magnetic disturbances, is of great importance for creating electron's butterfly PADs in the Earth's radiation belts.

  17. GOES Observations of Pitch Angle Evolution During an Electron Radiation Belt Dropout

    Science.gov (United States)

    Hartley, D. P.; Denton, M. H.; Green, J. C.; Onsager, T. G.; Rodriguez, J. V.; Singer, H. J.

    2012-12-01

    High Speed Stream (HSS) events exhibit characteristic structure in the solar wind which, when studied in conjunction with in situ observations at geostationary orbit (GEO) from GOES, allows us to examine the temporal evolution of dropouts in the outer electron radiation belt. Using pitch-angle-resolved Magnetospheric Electron Detector (MAGED) data, we study the evolution of perpendicular and parallel electron flux. During the HSS commencing on January 6th 2011, the flux over the entire energy distribution (30-600 keV) takes ~1.5 hours to dropout by two orders of magnitude from its pre-onset level. At this time, the lower energy electrons begin to reappear at GEO; however the 350-600 keV electron flux becomes highly parallel oriented and continues to decrease. Calculating the phase space density as a function of the three adiabatic invariants allows us to further investigate these loss mechanisms. Taking partial moments of the available electron distribution, we observe the number density quickly recovers (~4 hours), as well as the flux of the lower energy channels, however, the highest energy channel takes ~18 hours to recover to an approximately constant elevated level. This indicates that the electrons quickly reappear at GEO following the dropout before being heated over a period of days. This is consistent with the temperature values from GOES, showing an increase after the arrival of the HSS, peaking after ~3 days. This study provides independent confirmation of earlier statistical work and is a first step toward gaining understanding of the electron radiation belt dropout and recovery phenomena, in conjunction with coincident magnetic field measurements.

  18. A new method to estimate local pitch angles in spiral galaxies: Application to spiral arms and feathers in M81 and M51

    Energy Technology Data Exchange (ETDEWEB)

    Puerari, Ivânio [Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Santa María Tonantzintla, Puebla (Mexico); Elmegreen, Bruce G. [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Block, David L., E-mail: puerari@inaoep.mx [School of Computational and Applied Mathematics, University of Witwatersrand, Private Bag 3, WITS 2050 (South Africa)

    2014-12-01

    We examine 8 μm IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses which fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of (lnR,θ) space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as a function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.

  19. First in situ evidence of electron pitch angle scattering due to magnetic field line curvature in the Ion diffusion region

    Science.gov (United States)

    Zhang, Y. C.; Shen, C.; Marchaudon, A.; Rong, Z. J.; Lavraud, B.; Fazakerley, A.; Yao, Z.; Mihaljcic, B.; Ji, Y.; Ma, Y. H.; Liu, Z. X.

    2016-05-01

    Theory predicts that the first adiabatic invariant of a charged particle may be violated in a region of highly curved field lines, leading to significant pitch angle scattering for particles whose gyroradius are comparable to the radius of the magnetic field line curvature. This scattering generates more isotropic particle distribution functions, with important impacts on the presence or absence of plasma instabilities. Using magnetic curvature analysis based on multipoint Cluster spacecraft observations, we present the first investigation of magnetic curvature in the vicinity of an ion diffusion region where reconnected field lines are highly curved. Electrons at energies > 8 keV show a clear pitch angle ordering between bidirectional and trapped distribution in surrounding regions, while we show that in the more central part of the ion diffusion region electrons above such energies become isotropic. By contrast, colder electrons (~1 keV) retain their bidirectional character throughout the diffusion regions. The calculated adiabatic parameter K2 for these electrons is in agreement with theory. This study provides the first observational evidence for particle pitch angle scattering due to magnetic field lines with well characterized curvature in a space plasma.

  20. Nonlinear switched models for control of unsteady forces on a rapidly pitching airfoil

    Science.gov (United States)

    Dawson, Scott; Brunton, Steven; Rowley, Clarence

    2013-11-01

    The unsteady aerodynamic forces incident on a pitching flat plate airfoil at a Reynolds number of 100 are investigated through direct numerical simulation. Linear state-space models, identified from impulse response data via the eigensystem realization algorithm, are used to accurately track rapid changes in lift coefficient through either feedback or feedforward control, even in the presence of gust disturbances. We develop a technique to project between states of linear models obtained at different angles of attack using primal and pseudo-adjoint balanced POD modes. This allows for the formation of a nonlinear switched model that is accurate over a wide range of angles of attack, in both pre- and post-stall regimes. We additionally investigate phenomena that are not captured by linear models, such as an increase in mean lift that occurs when vortex shedding frequencies are excited. The effect of changing the pitch axis is also investigated, where it is found that pitching aft of the mid-chord results in right half plane zeros that increase the difficulty of the control problem. This work was supported by AFOSR grant FA9550-12-1-0075.

  1. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    Science.gov (United States)

    Erfanian Saeedi, Nafise; Blamey, Peter J; Burkitt, Anthony N; Grayden, David B

    2016-04-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  2. Speech emotion recognition based on statistical pitch model

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiping; ZHAO Li; ZOU Cairong

    2006-01-01

    A modified Parzen-window method, which keep high resolution in low frequencies and keep smoothness in high frequencies, is proposed to obtain statistical model. Then, a gender classification method utilizing the statistical model is proposed, which have a 98% accuracy of gender classification while long sentence is dealt with. By separation the male voice and female voice, the mean and standard deviation of speech training samples with different emotion are used to create the corresponding emotion models. Then the Bhattacharyya distance between the test sample and statistical models of pitch, are utilized for emotion recognition in speech.The normalization of pitch for the male voice and female voice are also considered, in order to illustrate them into a uniform space. Finally, the speech emotion recognition experiment based on K Nearest Neighbor shows that, the correct rate of 81% is achieved, where it is only 73.85%if the traditional parameters are utilized.

  3. Pitch-angle diffusion coefficients from resonant interactions with electrostatic electron cyclotron harmonic waves in planetary magnetospheres

    Directory of Open Access Journals (Sweden)

    A. K. Tripathi

    2011-02-01

    Full Text Available Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH waves in the magnetospheres of Earth, Jupiter, Saturn, Uranus and Neptune. Calculations have been performed at two radial distances of each planet. It is found that observed wave electric field amplitudes in the magnetospheres of Earth and Jupiter are sufficient to put electrons on strong diffusion in the energy range of less than 100 eV. However, for Saturn, Uranus and Neptune, the observed ECH wave amplitude are insufficient to put electrons on strong diffusion at any radial distance.

  4. Pitch-angle diffusion coefficients from resonant interactions with electrostatic electron cyclotron harmonic waves in planetary magnetospheres

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Singh, K. P.

    2011-02-01

    Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves in the magnetospheres of Earth, Jupiter, Saturn, Uranus and Neptune. Calculations have been performed at two radial distances of each planet. It is found that observed wave electric field amplitudes in the magnetospheres of Earth and Jupiter are sufficient to put electrons on strong diffusion in the energy range of less than 100 eV. However, for Saturn, Uranus and Neptune, the observed ECH wave amplitude are insufficient to put electrons on strong diffusion at any radial distance.

  5. Signatures of the various regions of the outer magnetosphere in the pitch angle distributions of energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    West, H.I. Jr.

    1978-12-11

    An account is given of the obervations of the pitch angle distributions of energetic particles in the near equatorial regions of the Earth's magnetosphere. The emphasis is on relating the observed distributions to the field configuration responsible for the observed effects. The observed effects relate to drift-shell splitting, to the breakdown of adiabatic guiding center motion in regions of sharp field curvature relative to partial gyro radii, to wave-particle interactions, and to moving field configurations. 39 references.

  6. Computational investigation of heat transfer and pressure drop in a typical louver fin-and-tube heat exchanger for various louver angles and fin pitches

    Directory of Open Access Journals (Sweden)

    Okbaz Abdulkerim

    2017-01-01

    Full Text Available In this study 3-D numerical simulations on heat transfer and pressure drop characteristics for a typical louver fin-and- double-row tube heat exchanger were carried out. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles, fin pitch and Reynolds number, and reported in terms of Colburn j-factor and Fanning friction factor f. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles between 20° ≤Ө≤ 30°, louver pitch of Lp=3.8 mm and frontal velocities of U between 1.22 m/s - 3 m/s. In addition, flow visualization of detailed flow features results, such as velocity vectors, streamlines and temperature counters have been shown to understand heat transfer enhancement mechanism. The present results indicated that louver angle and fin pitch noticeably affected the thermal and hydraulic performance of heat exchanger. It has been seen that increasing louver angle, increases thermal performance while decreasing hydraulic performance associated to pressure drop for fin pitches of 3.2 mm and 2.5 mm. Fin pitch determines the flow behaviour that for fin pitch of 2 mm, increasing louver angle decreased heat transfer and pressure drop. Velocity vectors and streamlines give considerable information about the flow whether it is duct directed or louver directed. For all conditions the flow is louver directed.

  7. Effect of the pitch angle and of the number of blades on depression created under impellers

    Directory of Open Access Journals (Sweden)

    Băbuţanu Corina

    2017-01-01

    Full Text Available This work presents a set of experiments concerning the behavior of several types of impellers regarding the depression formatted and operating in a specific range of rotations. Various mixer designs including a four pitched blades impeller, a six flat blades impeller and four two flat blades impeller were compared. Experimental data confirmed the analytical results previously obtained. The results showed that there are similarities regarding the effects generated by four pitched blades impeller and one of the two flat blades impeller. Also, it is found that two shortblade impeller produces the lowest depression of all tested impeller. The maximum depression produced by all type of impellers do not exceeds 120 mmH2O at 400 rpm, which is a small value to realize the vaporization of the fluid and to reach the cavitation. The equipment is not in danger to be destroyed. The numerical results obtained by experiments can be used in various practical applications.

  8. Anisotropic pitch angle distribution of ~100 keV microburst electrons in the loss cone: measurements from STSAT-1

    Directory of Open Access Journals (Sweden)

    J. J. Lee

    2012-11-01

    Full Text Available Electron microburst energy spectra in the range of 170 keV to 360 keV have been measured using two solid-state detectors onboard the low-altitude (680 km, polar-orbiting Korean STSAT-1 (Science and Technology SATellite-1. Applying a unique capability of the spacecraft attitude control system, microburst energy spectra have been accurately resolved into two components: perpendicular to and parallel to the geomagnetic field direction. The former measures trapped electrons and the latter those electrons with pitch angles in the loss cone and precipitating into atmosphere. It is found that the perpendicular component energy spectra are harder than the parallel component and the loss cone is not completely filled by the electrons in the energy range of 170 keV to 360 keV. These results have been modeled assuming a wave-particle cyclotron resonance mechanism, where higher energy electrons travelling within a magnetic flux tube interact with whistler mode waves at higher latitudes (lower altitudes. Our results suggest that because higher energy (relativistic microbursts do not fill the loss cone completely, only a small portion of electrons is able to reach low altitude (~100 km atmosphere. Thus assuming that low energy microbursts and relativistic microbursts are created by cyclotron resonance with chorus elements (but at different locations, the low energy portion of the microburst spectrum will dominate at low altitudes. This explains why relativistic microbursts have not been observed by balloon experiments, which typically float at altitudes of ~30 km and measure only X-ray flux produced by collisions between neutral atmospheric particles and precipitating electrons.

  9. Pitch Wetting on Model Basal and Edge-Plane Surfaces

    Science.gov (United States)

    2004-06-04

    spin coating and then utilize the films as model substrates for pitch wetting studies. Experimental Films from indanthrone disulfonate (Optiva...Inc. South San Francisco) were formed on quartz from 7.5 wt% aqueous solution either by spin coating (rotation rate: 500 rmp for 20 seconds and then...formed by spin coating (Figs. 3,4) and Meyer-bar-coating (Fig. 5) of indanthrone disulfonate aqueous solutions followed by drying and direct

  10. Low-energy (<100 eV) ion pitch angle distributions in the magnetosphere by ISEE 1

    Science.gov (United States)

    Nagai, T.; Johnson, J. F. E.; Chappell, C. R.

    1983-09-01

    Low-energy (plasma composition experiment on ISEE 1 are examined statistically to study pitch angle distributions in all local times of the magnetosphere (L=3-10). The pitch angle distributions in the data set used here can be classified into seven types; however, there are four major types, i.e., isotropic distribution, bi-directional field-aligned distribution unidirectional field-aligned distribution, and low flux. The isotropic distribution that consists of very low energy (typically =10 eV) is a persistent feature on the outer dayside and it is seen just outside the isotropic distribution region of the nightside. It is noted that the loss cone-like structure is also a common feature of this type of distribution in the noon sector. On the outer nightside the unidirectional field-aligned distribution consisting of warm ions is the dominant signature, but in some cases only the low flux (no appreciable flux) is observed. The `sources' of ions in various regions are discussed on the basis of these results and others.

  11. Enabling High Fidelity Measurements of Energy and Pitch Angle for Escaping Energetic Ions with a Fast Ion Loss Detector

    Science.gov (United States)

    Chaban, R.; Pace, D. C.; Marcy, G. R.; Taussig, D.

    2016-10-01

    Energetic ion losses must be minimized in burning plasmas to maintain fusion power, and existing tokamaks provide access to energetic ion parameter regimes that are relevant to burning machines. A new Fast Ion Loss Detector (FILD) probe on the DIII-D tokamak has been optimized to resolve beam ion losses across a range of 30 - 90 keV in energy and 40° to 80° in pitch angle, thereby providing valuable measurements during many different experiments. The FILD is a magnetic spectrometer; once inserted into the tokamak, the magnetic field allows energetic ions to pass through a collimating aperture and strike a scintillator plate that is imaged by a wide view camera and narrow view photomultiplier tubes (PMTs). The design involves calculating scintillator strike patterns while varying probe geometry. Calculated scintillator patterns are then used to design an optical system that allows adjustment of the focus regions for the 1 MS/s resolved PMTs. A synthetic diagnostic will be used to determine the energy and pitch angle resolution that can be attained in DIII-D experiments. Work supported in part by US DOE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  12. Characteristics of Pitch Angle Distributions of 100s Kev Electrons in the Slot Region and Inner Radiation Belt­­­­­­­­

    Science.gov (United States)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100s keV electron PADs below L =4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°) and 90°-minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of 460 keV electrons for over a year, we find that the 90°-minimum PADs are generally present in the inner belt (Lbelt and relatively constant in the inner belt but changes significantly in the slot region (2mechanism can hardly explain the formation of 90°-minimum PADs at the center of inner belt. These new and compelling observations, made possible by the high-quality measurements of MagEIS, present a challenge for the wave modelers, and future work is still needed to fully understand them.

  13. Accuracy of pitch matching significantly improved by live voice model.

    Science.gov (United States)

    Granot, Roni Y; Israel-Kolatt, Rona; Gilboa, Avi; Kolatt, Tsafrir

    2013-05-01

    Singing is, undoubtedly, the most fundamental expression of our musical capacity, yet an estimated 10-15% of Western population sings "out-of-tune (OOT)." Previous research in children and adults suggests, albeit inconsistently, that imitating a human voice can improve pitch matching. In the present study, we focus on the potentially beneficial effects of the human voice and especially the live human voice. Eighteen participants varying in their singing abilities were required to imitate in singing a set of nine ascending and descending intervals presented to them in five different randomized blocked conditions: live piano, recorded piano, live voice using optimal voice production, recorded voice using optimal voice production, and recorded voice using artificial forced voice production. Pitch and interval matching in singing were much more accurate when participants repeated sung intervals as compared with intervals played to them on the piano. The advantage of the vocal over the piano stimuli was robust and emerged clearly regardless of whether piano tones were played live and in full view or were presented via recording. Live vocal stimuli elicited higher accuracy than recorded vocal stimuli, especially when the recorded vocal stimuli were produced in a forced vocal production. Remarkably, even those who would be considered OOT singers on the basis of their performance when repeating piano tones were able to pitch match live vocal sounds, with deviations well within the range of what is considered accurate singing (M=46.0, standard deviation=39.2 cents). In fact, those participants who were most OOT gained the most from the live voice model. Results are discussed in light of the dual auditory-motor encoding of pitch analogous to that found in speech. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  14. Impact of pitch angle setup error and setup error correction on dose distribution in volumetric modulated arc therapy for prostate cancer.

    Science.gov (United States)

    Takemura, Akihiro; Togawa, Kumiko; Yokoi, Tomohiro; Ueda, Shinichi; Noto, Kimiya; Kojima, Hironori; Isomura, Naoki; Kumano, Tomoyasu

    2016-07-01

    In volumetric modulated arc therapy (VMAT) for prostate cancer, a positional and rotational error correction is performed according to the position and angle of the prostate. The correction often involves body leaning, and there is concern regarding variation in the dose distribution. Our purpose in this study was to evaluate the impact of body pitch rotation on the dose distribution regarding VMAT. Treatment plans were obtained retrospectively from eight patients with prostate cancer. The body in the computed tomography images for the original VMAT plan was shifted to create VMAT plans with virtual pitch angle errors of ±1.5° and ±3°. Dose distributions for the tilted plans were recalculated with use of the same beam arrangement as that used for the original VMAT plan. The mean value of the maximum dose differences in the dose distributions between the original VMAT plan and the tilted plans was 2.98 ± 0.96 %. The value of the homogeneity index for the planning target volume (PTV) had an increasing trend according to the pitch angle error, and the values of the D 95 for the PTV and D 2ml, V 50, V 60, and V 70 for the rectum had decreasing trends (p < 0.05). However, there was no correlation between differences in these indexes and the maximum dose difference. The pitch angle error caused by body leaning had little effect on the dose distribution; in contrast, the pitch angle correction reduced the effects of organ displacement and improved these indexes. Thus, the pitch angle setup error in VMAT for prostate cancer should be corrected.

  15. Low-energy (less than 100 eV) ion pitch angle distributions in the magnetosphere by ISEE 1

    Science.gov (United States)

    Johnson, J. F. E.; Chappell, C. R.; Nagai, T.

    1983-09-01

    Attention is given to isotropic distribution, bidirectional field alignment distribution, unidirectional field alignment distribution, and low flux, in a statistical examination of low energy ion data from the ISEE 1 plasma composition experiment whose aim was the study of pitch angle distributions in all local times of the magnetosphere. The isotropic distribution consisting of less than 10 eV ions is a persistent inner region feature, while the bidirectional field-aligned distribution consisting of warm ions is a persistent feature of the outer dayside and is seen just outside the isotropic distribution region of the nightside. On the outer nightside, the unidirectional field-aligned distribution consisting of warm ions is the dominant signature. The 'sources' of ions in various regions are discussed in view of the present and other results.

  16. On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

    Science.gov (United States)

    Denton, M. H.; Reeves, G. D.; Larsen, B. A.; Friedel, R. F. W.; Thomsen, M. F.; Fernandes, P. A.; Skoug, R. M.; Funsten, H. O.; Sarno-Smith, L. K.

    2017-02-01

    Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from 30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at 30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

  17. Design and Pitch Angle Optimisation of Horizontal Axis Hydrokinetic Turbine with Constant Tip Speed Ratio

    OpenAIRE

    Nigam Suyash; Bansal Shubham; Nema Tanmay; Sharma Vansh; Singh Raj Kumar

    2017-01-01

    Booming population and associated energy demands, looming threat of exhaustion of conventional sources of energy and the severe environmental repercussions of the same call for alternate sources of clean energy. Hydrokinetic turbine is one such developing technology which harnesses zero-head free flow of water and affects hydrological ecology minimally. This paper discusses the optimisation of Horizontal Axis Hydrokinetic Turbine (HAHkT) blade chord length and twist angle using blade element ...

  18. Multifrequency Polarimetry of the Nrao 140 Jet: Possible Detection of a Helical Magnetic Field and Constraints on its Pitch Angle

    CERN Document Server

    Asada, Keiichi; Nakamura, Masanori; Kameno, Seiji; Nagai, Hiroshi

    2008-01-01

    We present results from multifrequency polarimetry of NRAO 140 using the Very Long Baseline Array. These observations allow us to reveal the distributions of both the polarization position angle and the Faraday rotation measure (RM). These distributions are powerful tools to discern the projected and line-of-sight components of the magnetic field, respectively. We find a systematic gradient in the RM distribution, with its sign being opposite at either side of the jet with respect to the jet axis. The sign of the RM changes only with the direction of the magnetic field component along the line of sight, so this can be explained by the existence of helical magnetic components associated with the jet itself. We derive two constraints for the pitch angle of the helical magnetic field from the distributions of the RM and the projected magnetic field; the RM distribution indicates that the helical fields are tightly wound, while that of the projected magnetic field suggests they are loosely wound around the jet ax...

  19. Pitch Controllability Based on Airplane Model without Short-Period Approximation—Flight Simulator Experiment—

    Science.gov (United States)

    Sato, Osamu; Kobayashi, Osamu

    Pitch controllability of an airplane is very important for longitudinal flying qualities, therefore, much research has been conducted. However, it has not been clarified why pitch handling qualities degrades in the low speed, e.g. take-off and landing flight phases. On this topic, this paper investigates the effect of several parameters of the short-period mode and phugoid mode using a flight simulator. The results show the following conclusions: The difference between the initial phase angles in two modal components in the pitch attitude response to elevator step input plays the most important role in the pitch handling qualities among modal parameters; and the difference of the two modal natural frequencies has small effect on the pitch controllability even when flight speed decreases.

  20. Energetic Particle Pitch Angle Distributions Observed At Widely-Spaced Longitudes in the 23 July 2012 and Other Large Solar Particle Events

    Science.gov (United States)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; von Rosenvinge, T. T.

    2015-12-01

    Solar energetic particle (SEP) pitch angle distributions arise from the competing effects of magnetic focusing and scattering as the particles travel through the interplanetary medium, and can therefore indicate interplanetary conditions far from the observer. The STEREO Low Energy Telescopes measure SEP pitch angle distributions for protons, helium, and heavier ions with energies of about 2-12 MeV/nucleon. A wide variety of particle anisotropies was observed in the extreme SEP event of 23 July 2012. At the STEREO-Ahead spacecraft, the solar source of the activity was near central meridian and the pitch angle distribution was initially an outward-flowing beam. High time resolution (1-minute) observations revealed peculiar oscillations in beam width on a timescale of several minutes; such behavior does not seem to have been previously reported in other events. Particle flow became bidirectional while inside a magnetic cloud following a tremendous shock. Particle intensities at the Behind spacecraft, from which the event occurred over the east limb of the Sun, were about 1000 times lower than at Ahead. Pitch angle distributions during the peak of the event show inward-flowing particles that underwent partial mirroring closer to the Sun and formed a distinctive loss-cone distribution (indicating that the magnetic field strength at the mirror point was too small to turn around particles with the smallest pitch angles). We present the observations of this rich variety of anisotropies within a single event, compare with observations in other events, and discuss the implications for SEP transport in the inner heliosphere.

  1. Conical pitch angle distributions of very low-energy ion fluxes observed by ISEE 1

    Science.gov (United States)

    Horwitz, J. L.; Baugher, C. R.; Chappell, C. R.; Shelley, E. G.; Young, D. T.

    1982-04-01

    Observations are presented of conical distributions of low-energy ion fluxes from throughout the magnetosphere. The data were provided by the plasma composition experiment (PCE) on ISEE 1. ISEE 1 was launched in October 1977 into a highly elliptical orbit with a 30 deg inclination to the equator and 22.5 earth radii apogee. Particular attention is given to data taken when the instrument was in its thermal plasma mode, sampling ions in the energy per charge range 0-100 eV/e. Attention is given to examples of conical distributions in 0- to 100-eV/e ions, the occurrence of conical distributions of 0- to 100-eV ions in local time-geocentric distance and latitude-geocentric distance coordinates, the cone angles in 0- to 100-eV ion conics, Kp distributions of 0- to 100-eV ion conics, and some compositional aspects of 0- to 100-eV ion conics.

  2. The effect of electron beam pitch angle and density gradient on solar type III radio bursts

    CERN Document Server

    Pechhacker, Roman

    2012-01-01

    1.5D Particle-In-Cell simulations of a hot, low density electron beam injected into magnetized, maxwellian plasma were used to further explore the alternative non-gyrotropic beam driven electromagnetic emission mechanism, first studied in Tsiklauri (2011). Variation of beam injection angle and background density gradient showed that the emission process is caused by the perpendicular component of the beam injection current, whereas the parallel component only produces Langmuir waves, which play no role in the generation of EM waves in our mechanism. Particular emphasis was put on the case, where the beam is injected perpendicularly to the background magnetic field, as this turned off any electrostatic wave generation along the field and left a purely electromagnetic signal in the perpendicular components. The simulations establish the following key findings: i) Initially waves at a few w_ce/gamma are excited, mode converted and emitted at w_pe ii) The emission intensity along the beam axis is proportional to ...

  3. Magnetic field amplitude and pitch angle measurements using Spectral MSE on EAST and Alcator C-Mod

    Science.gov (United States)

    Liao, Ken; Rowan, William; Fu, Jia; Lyu, Bo; Li, Ying-Ying; Marchuk, Oleksandr; Ralchenko, Yuri

    2016-10-01

    Magnetic field amplitude and pitch angle measurements follow from the analysis of the Motional Stark Effect spectrum emitted by high energy neutral beam emission in tokamaks. Here we focus on deriving these quantities on EAST and Alcator C-Mod. These measurements provide a cross check for the polarimetry MSE diagnostics, and also act as a proof of principle for a spectral MSE diagnostic, which could potentially provide real-time measurements of the magnetic field and be used to increase the accuracy of equilibrium reconstruction. Measurement uncertainty is evaluated using the NBASS synthetic diagnostic. The same code allows design of measurements with improved accuracy such as spectral measurements techniques which take advantage of polarization. Accurate fitting of the MSE spectrum requires taking into account non-statistical beam excited state populations. The spectral MSE analysis techniques have applications to measurement of the beam density, which allows for improved analysis of the charge exchange recombination spectroscopy diagnostic. Resolution of beam components improves with increased beam energy and magnetic field, so these techniques have high applicability to future fusion devices. Supported by USDoE Award DE-FG03- 96ER-54373.

  4. Singing with yourself: evidence for an inverse modeling account of poor-pitch singing.

    Science.gov (United States)

    Pfordresher, Peter Q; Mantell, James T

    2014-05-01

    Singing is a ubiquitous and culturally significant activity that humans engage in from an early age. Nevertheless, some individuals - termed poor-pitch singers - are unable to match target pitches within a musical semitone while singing. In the experiments reported here, we tested whether poor-pitch singing deficits would be reduced when individuals imitate recordings of themselves as opposed to recordings of other individuals. This prediction was based on the hypothesis that poor-pitch singers have not developed an abstract "inverse model" of the auditory-vocal system and instead must rely on sensorimotor associations that they have experienced directly, which is true for sequences an individual has already produced. In three experiments, participants, both accurate and poor-pitch singers, were better able to imitate sung recordings of themselves than sung recordings of other singers. However, this self-advantage was enhanced for poor-pitch singers. These effects were not a byproduct of self-recognition (Experiment 1), vocal timbre (Experiment 2), or the absolute pitch of target recordings (i.e., the advantage remains when recordings are transposed, Experiment 3). Results support the conceptualization of poor-pitch singing as an imitative deficit resulting from a deficient inverse model of the auditory-vocal system with respect to pitch. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. EXPERIMENTAL STUDY OF VENTILATED SUPERCAVITIES WITH A DYNAMIC PITCHING MODEL

    Institute of Scientific and Technical Information of China (English)

    LEE Qi-tao; XUE Lei-ping; HE You-sheng

    2008-01-01

    An investigation of the ventilated supercavitation for a supercavitating vehicle pitching up and down in the supercavity was carried out in a high-speed water tunnel. The emphasis is laid on the understanding of the interaction of the vehicle aft body with the cavity boundary. The flow characteristics were measured and the stability of supercaviting flow with different pitching frequencies and amplitudes was analyzed. In particular, the objectives of this study are to understand the effect of the impact upon the cavity distortion, and to quantify the impact process by investigating the evolution of the pressure inside the cavity and then the loads on the vehicle during the pitching motion. It is also shown that the evolution of the pressure detected in different,as inside the supercavity, is coherent and uniform during the periods of the pitching motion. This study is of direct relevance to reliable and accurate prediction of hydrodynamic loads associated with the slamming and impact on supercavitating vehicles.

  6. Individual Pitch Control. Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Van Engelen, T.G.; Van der Hooft, E.L. [ECN Wind Energy, Petten (Netherlands)

    2005-06-15

    The loads on the rotor blades, drive-train and tower of horizontal axis wind turbines are caused for a significant part by the rotational sampling of turbulence, the tower shadow and the windshear. These loads depend on the azimuthal blade position and are approximately periodic in (multiples of) the rotational speed. It seems attractive to just add pure azimuth dependent variations to the pitch angle of the individual blades. However, a small phase mismatch with respect to the tower shadow and windshear effect will cause higher instead of lower loads. Besides, the stochastic loads from the torationally sampled turbulence are not reduced at all. This inventory study concerns the design and potential of individual feedback pitch control for 3 bladed wind turbines. In this approach the danger of mismatch is avoided and the stochastic blade loads are also reduced. A simple design model is derived for the parametrisation of the feedback loops for individual pitch control around one time the rotational frequency (1p). Rainflow counts and power spectra obtained from time-domain simulations give an indication of the achievable reduction of loads. In addition, the concept of individual pitch control is extended to multiples of the rotational frequency (2p, 3p; multi-mode pitch control). Scoping calculations show a significant further reduction of blade loads as well as a reduction of 3p harmonics in tilt and yaw loads in the nacelle.

  7. Model-based fault detection of blade pitch system in floating wind turbines

    Science.gov (United States)

    Cho, S.; Gao, Z.; Moan, T.

    2016-09-01

    This paper presents a model-based scheme for fault detection of a blade pitch system in floating wind turbines. A blade pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be detected at the early stage to prevent failures. To detect faults of blade pitch actuators and sensors, an appropriate observer should be designed to estimate the states of the system. Residuals are generated by a Kalman filter and a threshold based on H optimization, and linear matrix inequality (LMI) is used for residual evaluation. The proposed method is demonstrated in a case study that bias and fixed output in pitch sensors and stuck in pitch actuators. The simulation results show that the proposed method detects different realistic fault scenarios of wind turbines under the stochastic external winds.

  8. Validation of an Actuator Line Model Coupled to a Dynamic Stall Model for Pitching Motions Characteristic to Vertical Axis Turbines

    Science.gov (United States)

    Mendoza, Victor; Bachant, Peter; Wosnik, Martin; Goude, Anders

    2016-09-01

    Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion.

  9. Wind turbines pitch and yaw control modelling; Modelagem de turbinas eolicas controladas pelo passo e pelo 'yaw'

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Armando [Pernambuco Univ., Recife, PE (Brazil). Dept. de Engenharia Mecanica. Grupo de Energia Eolica; Lima, Antonio M.N.; Jacobina, Cursino B.; Simoes, F.J. [Paraiba Univ., Campina Grande, PB (Brazil). Centro de Ciencias Tecnologicas. Dept. de Engenharia Eletrica

    1997-07-01

    This work presents the modelling of wind turbines operating above rated power. The new controller is designed to make the system operate close to the rated power by actuating on the blade pitch and on the way devices, simultaneously. Regarding the design of the controller, it is necessary to linearize the rotor torque function with respect to the rotor velocity, {omega}, the pitch {theta}, and the yaw angle, {delta}, around the steady state. The direction and velocity of the wind are considered random variables. Then, the closed loop representation of the wind turbine can be approximated, in the frequency domain, by a second order function. The optimal controller gain is also obtained by three different methods that lead to close results. (author)

  10. A thermodynamic model of contact angle hysteresis

    Science.gov (United States)

    Makkonen, Lasse

    2017-08-01

    When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.

  11. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A A Pashilkar

    2001-12-01

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a simple delta wing. The model is then extended to a wing/body combination where body-alone data are also available. The model is shown to be simple and consistent with experimental data. The pressure model can be used as a first approximation for the load estimation on the delta wing at high angles of attack.

  12. Electron pitch angle variations recorded at the high magnetic latitude boundary layer by the NUADU instrument on the TC-2 spacecraft

    Directory of Open Access Journals (Sweden)

    L. Lu

    2005-11-01

    Full Text Available The NUADU (NeUtral Atom Detector Unit experiment aboard TC-2 recorded, with high temporal and spatial resolution, 4π solid angle images of electrons (~50-125 keV spiraling around geomagnetic field lines at high northern magnetic latitudes (L>10, during its in-orbit commissioning phase (September 2004. The ambient magnetic field, as well as electrons in other energy ranges, were simultaneously measured by the TC-2 magnetometer (FGM, the plasma electron and current experiment (PEACE, the low energy ion detector (LEID and the high energy electron detector (HEED. The NUADU data showed that up-flowing electron beams could form "ring-like" and "dumbbell-type" pitch angle distributions (PADs in the region sampled. Changes in these pitch angle distributions due to transient magnetic variations are suggested to have been associated with electron acceleration along the geomagnetic field lines. A nested magnetic bottle configuration that formed due to the propagation towards the Earth of a magnetic pulse, is proposed to have been associated with this process.

  13. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  14. Self-consistent Monte Carlo simulations of proton acceleration in coronal shocks: Effect of anisotropic pitch-angle scattering of particles

    CERN Document Server

    Afanasiev, Alexandr; Vainio, Rami

    2016-01-01

    Context. Solar energetic particles observed in association with coronal mass ejections (CMEs) are produced by the CME-driven shock waves. The acceleration of particles is considered to be due to diffusive shock acceleration (DSA). Aims. We aim at a better understanding of DSA in the case of quasi-parallel shocks, in which self-generated turbulence in the shock vicinity plays a key role. Methods. We have developed and applied a new Monte Carlo simulation code for acceleration of protons in parallel coronal shocks. The code performs a self-consistent calculation of resonant interactions of particles with Alfv\\'en waves based on the quasi-linear theory. In contrast to the existing Monte Carlo codes of DSA, the new code features the full quasi-linear resonance condition of particle pitch-angle scattering. This allows us to take anisotropy of particle pitch-angle scattering into account, while the older codes implement an approximate resonance condition leading to isotropic scattering.We performed simulations with...

  15. Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model

    Directory of Open Access Journals (Sweden)

    Stanislav Rockel

    2014-03-01

    Full Text Available Wind tunnel experiments were performed, where the development of the wake of a model wind turbine was measured using stereo Particle Image Velocimetry to observe the influence of platform pitch motion. The wakes of a classical bottom fixed turbine and a streamwise oscillating turbine are compared. Results indicate that platform pitch creates an upward shift in all components of the flow and their fluctuations. The vertical flow created by the pitch motion as well as the reduced entrainment of kinetic energy from undisturbed flows above the turbine result in potentially higher loads and less available kinetic energy for a downwind turbine. Experimental results are compared with four wake models. The wake models employed are consistent with experimental results in describing the shapes and magnitudes of the streamwise velocity component of the wake for a fixed turbine. Inconsistencies between the model predictions and experimental results arise in the floating case particularly regarding the vertical displacement of the velocity components of the flow. Furthermore, it is found that the additional degrees of freedom of a floating wind turbine add to the complexity of the wake aerodynamics and improved wake models are needed, considering vertical flows and displacements due to pitch motion.

  16. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Woo, M.-H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Choi, E.-J. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); NASA Goddard Space Flight Center, Code 674, Greenbelt, Maryland 20770 (United States); Hwang, J.; Park, Y.-D. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Lee, D.-Y. [Department of Astronomy and Space Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2015-06-15

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.

  17. Mathematical Model and Geometrical Model of Double Pitch ZN-type Worm Gear Set Based on Generation Mechanism

    Institute of Scientific and Technical Information of China (English)

    SHU Linsen; CAO Huajun; LI Xianchong; ZHANG Chenglong; LI Yuxia

    2015-01-01

    The current researches on the tooth surface mathematical equations and the theory of gearing malnly pay attention to the ordinary type worm gear set (e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6´10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is avallable to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.

  18. Effect of tooth angle and pitch of labyrinth channel on performance of emitter%迷宫流道齿转角与齿间距对滴头性能的影响

    Institute of Scientific and Technical Information of China (English)

    谢巧丽; 牛文全; 李连忠

    2013-01-01

    An emitter with labyrinth channel was used as the study model,the channels were designed by using a full factorial experiment for two factors with four levels,the liquid-solid two-phase flows in them were simulated numerically by means of Fluent 6.3.Influences of tooth angle and pitch on the hydraulic and anti-clog performances of emitter were explored.The results showed that discharge coefficient can be correlated to tooth angle and pith with a positive relationship; moreover,the discharge coefficient increases with increasing tooth angle and pitch.The influences of tooth angle are more complicated ; when the tooth angle is more than 120°,the flow regime index decreases initially then increases with increasing tooth pitch; when the tooth angle is less than 120°,however,the index decreases firstly,then increases with increasing tooth pitch.It was proposed that the anti-clog performance can be analyzed by certain range of suspended sand particle concentration.The level of the maximum particle concentration in the channel is not completely proportional to the size of the area of high concentration,but the higher the maximum concentration,the greater chance the suspended particles to gather together and the greater the probability that a local sediment happens; at last the size of the area of high concentration gets larger and the emitter becomes clogged more easily.%以齿形迷宫流道为研究对象,齿转角和齿间距分别设置4个水平,采用两因素四水平全面试验方法设计,根据流体动力学两相流理论,利用Fluent 6.3软件对设计滴头进行了液固两相流数值模拟,分析了齿转角和齿间距对滴头水力性能和抗堵塞性能的影响.结果表明:齿转角、齿间距与流量系数均呈正相关关系,流量系数随齿转角和齿间距的增大而增大;齿转角对流态指数的影响较为复杂,以120°为转捩角呈2种变化趋势,当齿转角大于120°时,流态指数随着齿间距的增大呈先减小

  19. Constitutive modeling of contact angle hysteresis.

    Science.gov (United States)

    Vedantam, Srikanth; Panchagnula, Mahesh V

    2008-05-15

    We introduce a phase field model of wetting of surfaces by sessile drops. The theory uses a two-dimensional non-conserved phase field variable to parametrize the Gibbs free energy of the three-dimensional system. Contact line tension and contact angle hysteresis arise from the gradient term in the free energy and the kinetic coefficient respectively. A significant advantage of this approach is in the constitutive specification of hysteresis. The advancing and receding angles of a surface, the liquid-vapor interfacial energy and three-phase line tension are the only required constitutive inputs to the model. We first simulate hysteresis on a smooth chemically homogeneous surface using this theory. Next we show that it is possible to study heterogeneous surfaces whose component surfaces are themselves hysteretic. We use this theory to examine the wetting of a surface containing a circular heterogeneous island. The contact angle for this case is found to be determined solely by the material properties at the contact line in accord with recent experimental data.

  20. Intonation in unaccompanied singing: accuracy, drift, and a model of reference pitch memory.

    Science.gov (United States)

    Mauch, Matthias; Frieler, Klaus; Dixon, Simon

    2014-07-01

    This paper presents a study on intonation and intonation drift in unaccompanied singing, and proposes a simple model of reference pitch memory that accounts for many of the effects observed. Singing experiments were conducted with 24 singers of varying ability under three conditions (Normal, Masked, Imagined). Over the duration of a recording, ∼50 s, a median absolute intonation drift of 11 cents was observed. While smaller than the median note error (19 cents), drift was significant in 22% of recordings. Drift magnitude did not correlate with other measures of singing accuracy, singing experience, or the presence of conditions tested. Furthermore, it is shown that neither a static intonation memory model nor a memoryless interval-based intonation model can account for the accuracy and drift behavior observed. The proposed causal model provides a better explanation as it treats the reference pitch as a changing latent variable.

  1. Observational learning of a baseball-pitch: the effect of different model demonstrations

    OpenAIRE

    Ghorbani, Saeed

    2014-01-01

    The aim of the present research was to investigate the effects of observing different model demonstrations inclusive video, stick-figure and point-light models on observational learning of a Baseball pitch. 41 young adults performed 5 pretest trials, three blocks of 10 acquisition trials, and two retention tests of 5 trials in 10 min and one week after the last acquisition block. Kinematic pattern, movement form, and movement time of overall movement and movement phases were measured as depen...

  2. Measurement of Aerodynamic Forces for Various Mean Angles of Attack on an Airfoil Oscillating in Pitch and on Two Finite-span Wings Oscillating in Bending with Emphasis on Damping in the Stall

    Science.gov (United States)

    Rainey, A Gerald

    1957-01-01

    The oscillating air forces on a two-dimensional wing oscillating in pitch about the midchord have been measured at various mean angles of attack and at Mach numbers of 0.35 and 0.7. The magnitudes of normal-force and pitching-moment coefficients were much higher at high angles of attack than at low angles of attack for some conditions. Large regions of negative damping in pitch were found, and it was shown that the effect of increasing the Mach number 0.35 to 0.7 was to decrease the initial angle of attack at which negative damping occurred. Measurements of the aerodynamic damping of a 10-percent-thick and of a 3-percent-thick finite-span wing oscillating in the first bending mode indicate no regions of negative damping for this type of motion over the range of variables covered. The damping measured at high angles of attack was generally larger than that at low angles of attack. (author)

  3. Comparison of the Calcaneal Pitch Angle and Modified Projection Area Per Length Squared Method for Medial Longitudinal Arch Evaluation of the Foot

    Directory of Open Access Journals (Sweden)

    Esat Kıter2

    2012-12-01

    Full Text Available Objective: To compare the calcaneal pitch angle (CPA values measured on direct lateral radiographs of feet, and the modified projection area per length squared (PAL, which was calculated as a new method for the evaluation of the medial longitudinal arch (MLA of the foot.Material and Methods: Direct lateral radiographs of patients who had weightbearing feet radiographies for any reason except trauma were retrospectively obtained from the archives. Direct lateral radiographs of the feet were printed and a transparent sheet was placed on it. A straight line was drawn between the most plantar process of the calcaneus and the head of the first metatarsal bone for the calculation of the PAL of the MLA. Two semilunar arcs were drawn upon this straight line. PAL1 and PAL2 were estimated using a point-counting technique. The CPA, lateral talo-calcaneal angles (LTCA, and talo-first metatarsal angles (TFMA were measured. The correlations between PAL1, PAL2 of right and left feet and CPA, LTCA, and TFMA were explored.Results: Fifty patients (27 females, 23 males with a mean age of 40.12 (4-78 years were evaluated. Significant correlations were detected between PAL1, PAL2 and CPA, and TFMA for both right and left feet (p<0.05. Conclusion: A significant correlation was detected between the modified PAL method as a new technique and the standard CPA method for MLA evaluation. The PAL method is suggested as a simple and practical method for MLA evaluation.

  4. Perception and Modeling of Affective Qualities of Musical Instrument Sounds across Pitch Registers

    Science.gov (United States)

    McAdams, Stephen; Douglas, Chelsea; Vempala, Naresh N.

    2017-01-01

    Composers often pick specific instruments to convey a given emotional tone in their music, partly due to their expressive possibilities, but also due to their timbres in specific registers and at given dynamic markings. Of interest to both music psychology and music informatics from a computational point of view is the relation between the acoustic properties that give rise to the timbre at a given pitch and the perceived emotional quality of the tone. Musician and nonmusician listeners were presented with 137 tones produced at a fixed dynamic marking (forte) playing tones at pitch class D# across each instrument's entire pitch range and with different playing techniques for standard orchestral instruments drawn from the brass, woodwind, string, and pitched percussion families. They rated each tone on six analogical-categorical scales in terms of emotional valence (positive/negative and pleasant/unpleasant), energy arousal (awake/tired), tension arousal (excited/calm), preference (like/dislike), and familiarity. Linear mixed models revealed interactive effects of musical training, instrument family, and pitch register, with non-linear relations between pitch register and several dependent variables. Twenty-three audio descriptors from the Timbre Toolbox were computed for each sound and analyzed in two ways: linear partial least squares regression (PLSR) and nonlinear artificial neural net modeling. These two analyses converged in terms of the importance of various spectral, temporal, and spectrotemporal audio descriptors in explaining the emotion ratings, but some differences also emerged. Different combinations of audio descriptors make major contributions to the three emotion dimensions, suggesting that they are carried by distinct acoustic properties. Valence is more positive with lower spectral slopes, a greater emergence of strong partials, and an amplitude envelope with a sharper attack and earlier decay. Higher tension arousal is carried by brighter sounds

  5. Perception and Modeling of Affective Qualities of Musical Instrument Sounds across Pitch Registers.

    Science.gov (United States)

    McAdams, Stephen; Douglas, Chelsea; Vempala, Naresh N

    2017-01-01

    Composers often pick specific instruments to convey a given emotional tone in their music, partly due to their expressive possibilities, but also due to their timbres in specific registers and at given dynamic markings. Of interest to both music psychology and music informatics from a computational point of view is the relation between the acoustic properties that give rise to the timbre at a given pitch and the perceived emotional quality of the tone. Musician and nonmusician listeners were presented with 137 tones produced at a fixed dynamic marking (forte) playing tones at pitch class D# across each instrument's entire pitch range and with different playing techniques for standard orchestral instruments drawn from the brass, woodwind, string, and pitched percussion families. They rated each tone on six analogical-categorical scales in terms of emotional valence (positive/negative and pleasant/unpleasant), energy arousal (awake/tired), tension arousal (excited/calm), preference (like/dislike), and familiarity. Linear mixed models revealed interactive effects of musical training, instrument family, and pitch register, with non-linear relations between pitch register and several dependent variables. Twenty-three audio descriptors from the Timbre Toolbox were computed for each sound and analyzed in two ways: linear partial least squares regression (PLSR) and nonlinear artificial neural net modeling. These two analyses converged in terms of the importance of various spectral, temporal, and spectrotemporal audio descriptors in explaining the emotion ratings, but some differences also emerged. Different combinations of audio descriptors make major contributions to the three emotion dimensions, suggesting that they are carried by distinct acoustic properties. Valence is more positive with lower spectral slopes, a greater emergence of strong partials, and an amplitude envelope with a sharper attack and earlier decay. Higher tension arousal is carried by brighter sounds

  6. Interference in memory for tonal pitch: implications for a working-memory model.

    Science.gov (United States)

    Pechmann, T; Mohr, G

    1992-05-01

    The degree of interference caused by different kinds of stimuli on memory for tonal pitch was studied. Musically trained and untrained subjects heard a sequence of two tones separated by an interval of 5 sec. The tones were either identical in pitch or differed by a semitone. Subjects had to decide whether the tones were identical or not. The interval was filled with tonal, verbal, or visual material under attended and unattended conditions. The results revealed clear group differences. Musically trained subjects' retention of the first test tone was only affected by the interposition of other tones. In contrast, the performance of musically untrained subjects was also affected by verbal and visual items. The findings are discussed in the framework of Baddeley's (1986) working-memory model.

  7. Handling Qualities of Model Reference Adaptive Controllers with Varying Complexity for Pitch-Roll Coupled Failures

    Science.gov (United States)

    Schaefer, Jacob; Hanson, Curt; Johnson, Marcus A.; Nguyen, Nhan

    2011-01-01

    Three model reference adaptive controllers (MRAC) with varying levels of complexity were evaluated on a high performance jet aircraft and compared along with a baseline nonlinear dynamic inversion controller. The handling qualities and performance of the controllers were examined during failure conditions that induce coupling between the pitch and roll axes. Results from flight tests showed with a roll to pitch input coupling failure, the handling qualities went from Level 2 with the baseline controller to Level 1 with the most complex MRAC tested. A failure scenario with the left stabilator frozen also showed improvement with the MRAC. Improvement in performance and handling qualities was generally seen as complexity was incrementally added; however, added complexity usually corresponds to increased verification and validation effort required for certification. The tradeoff between complexity and performance is thus important to a controls system designer when implementing an adaptive controller on an aircraft. This paper investigates this relation through flight testing of several controllers of vary complexity.

  8. Optimizing radiation dose by using advanced modelled iterative reconstruction in high-pitch coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gordic, Sonja; Husarik, Daniela B.; Alkadhi, Hatem [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Desbiolles, Lotus; Leschka, Sebastian [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Kantonsspital, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Sedlmair, Martin; Schmidt, Bernhard [Siemens Healthcare, Computed Tomography Division, Forchheim (Germany); Manka, Robert [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Hospital Zurich, University of Zurich, Clinic of Cardiology, Zurich (Switzerland); University and ETH Zurich, Institute for Biomedical Engineering, Zurich (Switzerland); Plass, Andre; Maisano, Francesco [University Hospital Zurich, University of Zurich, Clinic for Cardiovascular Surgery, Zurich (Switzerland); Wildermuth, Simon [Kantonsspital, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland)

    2016-02-15

    To evaluate the potential of advanced modeled iterative reconstruction (ADMIRE) for optimizing radiation dose of high-pitch coronary CT angiography (CCTA). High-pitch 192-slice dual-source CCTA was performed in 25 patients (group 1) according to standard settings (ref. 100 kVp, ref. 270 mAs/rot). Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1-5). In another 25 patients (group 2), high-pitch CCTA protocol parameters were adapted according to results from group 1 (ref. 160 mAs/rot), and images were reconstructed with ADMIRE level 4. In ten patients of group 1, vessel sharpness using full width at half maximum (FWHM) analysis was determined. Image quality was assessed by two independent, blinded readers. Interobserver agreements for attenuation and noise were excellent (r = 0.88/0.85, p < 0.01). In group 1, ADMIRE level 4 images were most often selected (84 %, 21/25) as preferred data set; at this level noise reduction was 40 % compared to FBP. Vessel borders showed increasing sharpness (FWHM) at increasing ADMIRE levels (p < 0.05). Image quality in group 2 was similar to that of group 1 at ADMIRE levels 2-3. Radiation dose in group 2 (0.3 ± 0.1 mSv) was significantly lower than in group 1 (0.5 ± 0.3 mSv; p < 0.05). In a selected population, ADMIRE can be used for optimizing high-pitch CCTA to an effective dose of 0.3 mSv. (orig.)

  9. A Neuronal Network Model for Context-Dependence of Pitch Change Perception

    Directory of Open Access Journals (Sweden)

    Chengcheng eHuang

    2015-08-01

    Full Text Available Many natural stimuli have perceptual ambiguities that can be cognitively resolved by the surrounding context. In audition, preceding context can bias the perception of speech and non-speech stimuli. Here, we develop a neuronal network model that can account for how context affects the perception of pitch change between a pair of successive complex tones. We focus especially on an ambiguous comparison -- listeners experience opposite percepts (either ascending or descending for an ambiguous tone pair depending on the spectral location of preceding context tones.We developed a recurrent, firing-rate network model, which detects frequency-change-direction of successively played stimuli and successfully accounts for the context-dependent perception demonstrated in behavioral experiments. The model consists of two tonotopically organized, excitatory populations, Eup and Edown, that respond preferentially to ascending or descending stimuli in pitch, respectively. These preferences are generated by an inhibitory population that provides inhibition asymmetric in frequency to the two populations; context dependence arises from slow facilitation of inhibition. We show that contextual influence depends on the spectral distribution of preceding tones and the tuning width of inhibitory neurons. Further, we demonstrate, using phase-space analysis, how the facilitated inhibition from previous stimuli and the waning inhibition from the just-preceding tone shape the competition between the Eup and Edown populations. In sum, our model accounts for contextual influences on the pitch change perception of an ambiguous tone pair by introducing a novel decoding strategy based on direction-selective units. The model’s network architecture and slow facilitating inhibition emerge as predictions of neuronal mechanisms for these perceptual dynamics. Since the model structure does not depend on the specific stimuli, we show that it generalizes to other contextual effects

  10. Relating masses and mixing angles. A model-independent model

    Energy Technology Data Exchange (ETDEWEB)

    Hollik, Wolfgang Gregor [DESY, Hamburg (Germany); Saldana-Salazar, Ulises Jesus [CINVESTAV (Mexico)

    2016-07-01

    In general, mixing angles and fermion masses are seen to be independent parameters of the Standard Model. However, exploiting the observed hierarchy in the masses, it is viable to construct the mixing matrices for both quarks and leptons in terms of the corresponding mass ratios only. A closer view on the symmetry properties leads to potential realizations of that approach in extensions of the Standard Model. We discuss the application in the context of flavored multi-Higgs models.

  11. An Ad-Hoc Adaptive Pilot Model for Pitch Axis Gross Acquisition Tasks

    Science.gov (United States)

    Hanson, Curtis E.

    2012-01-01

    An ad-hoc algorithm is presented for real-time adaptation of the well-known crossover pilot model and applied to pitch axis gross acquisition tasks in a generic fighter aircraft. Off-line tuning of the crossover model to human pilot data gathered in a fixed-based high fidelity simulation is first accomplished for a series of changes in aircraft dynamics to provide expected values for model parameters. It is shown that in most cases, for this application, the traditional crossover model can be reduced to a gain and a time delay. The ad-hoc adaptive pilot gain algorithm is shown to have desirable convergence properties for most types of changes in aircraft dynamics.

  12. Optimization of limit angle for free variable-pitch vertical axis tidal turbine%潮流能自由变偏角水轮机限位角优化方法

    Institute of Scientific and Technical Information of China (English)

    张学伟; 张亮; 李志川; 盛其虎; 王树齐

    2012-01-01

    针对潮流能水轮机中的水动力问题,采用基于粘性CFD理论的多体耦合数值模拟方法对影响潮流能自由变偏角水轮机水动力性能的重要参数限位角进行研究.通过对比不同限位角下叶片偏角和水轮机转矩变化规律,阐明了限位角对水轮机运动特性和动力特性的影响规律.以水轮机功率最大化为优化目标,提出了限位角参数优化选取方法,并进行了实例验证.研究表明:当叶片摆动到限位角时,偏角由限位角的大小决定,限位角上限和下限对偏角的控制区域不同,这样可以通过单独调节限位角的上限或者下限分别改善叶片在不同方位角处的水动力特性.%In efforts to solve the hydrodynamic problem of tidal turbines, an investigation utilizing a multi-body coupling numerical method, based on the theory of viscous CFD is examined. The optimization of the limit angle is the most important factor that influences on the hydrodynamic performance of the free variable-pitch vertical axis tidal turbine. By analyzing the variation of the blade pitch angle and the turbine torque at different limit angles, the effect of the limit angle on the kinematics and dynamics characteristics of the turbine was expounded during this study. The optimization of the limit angle was proposed to maximize the turbine power, and it was verified by an example. The results showed the pitch angle was decided by the limit angle when turbine blade reached the bounds of limit angle, the control areas of upper and lower limit angle were different, and so hydrodynamic characteristics of tidal turbine at different azimuths can be improved by adjusting the upper or lower limit angle individually.

  13. Error Correction of Pitch Angle Measurement on IR Searching System%红外搜索系统俯仰角测量的大气折射修正

    Institute of Scientific and Technical Information of China (English)

    祁蒙; 邱朝阳; 宋亚

    2016-01-01

    大气的非均匀分布导致光线在大气传播时产生折射现象,其传输路径变成一条曲线,影响红外搜索系统对空中目标的探测精度。要精确引导跟踪系统对目标进行锁定和瞄准,必须对目标的俯仰角度进行修正。通过研究波长、大气压强和大气温度对大气折射率的影响来定量描述大气折射率的变化规律,在大气球面分层模型中利用微分法推导测角误差,最终得出误差角度的计算方法。红外搜索系统在通过 ADS-B技术进行标定之后,对高度500m的无人机和高度2km的飞机数据进行了验证,试验结果表明在低空红外探测系统中利用本方法可以有效提高测角精度。通过误差修正,提升了红外搜索系统的探测性能,使之在低空侦查、防御领域中能够发挥更为重要的作用。%Due to non-uniform distribution of the atmosphere, the light is refracted in the atmospheric propagation and become a curve. It affect on air target detection accuracy on IR searching system. To accurately guide the tracking system to lock on to and aim at the target, the target pitch angle must be corrected. By studying the influence of wavelength, atmospheric pressure and atmospheric temperature, the variation of the atmospheric refractivity is quantitatively described. The differential method is used in spherically stratified atmosphere model to derive angle measurement error, and obtain calculation of error angle. After the calibration of ADS-B, some experiments are made with the UAV (500m high) and the aircraft (2km high). The results show that this method can improve the accuracy of angle measurement effectively. By error correction, detection performance of the IR searching system is improved and it can play a more important role in the low-level detection and defense.

  14. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting

    CERN Document Server

    Li, Q; Kang, Q J; Chen, Q

    2014-01-01

    In this paper, we aim to investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model, the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions: the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper, are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles, however, is unable to reproduce static contact angles close to 180 degrees. Meanwhile, it is found that the proposed modif...

  15. Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability

    Science.gov (United States)

    Mason, M. L.; Burley, J. R., II

    1986-01-01

    A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg.

  16. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Bergami, Leonardo; Andersen, Peter Bjørn

    2013-01-01

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  17. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  18. Perturbative estimates of lepton mixing angles in unified models

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)], E-mail: antusch@mppmu.mpg.de; King, Stephen F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Malinsky, Michal [Department of Theoretical Physics, School of Engineering Sciences, Royal Institute of Technology (KTH) - AlbaNova University Center, Roslagstullsbacken 21, SE-106 91 Stockholm (Sweden)

    2009-10-11

    Many unified models predict two large neutrino mixing angles, with the charged lepton mixing angles being small and quark-like, and the neutrino masses being hierarchical. Assuming this, we present simple approximate analytic formulae giving the lepton mixing angles in terms of the underlying high energy neutrino mixing angles together with small perturbations due to both charged lepton corrections and renormalisation group (RG) effects, including also the effects of third family canonical normalization (CN). We apply the perturbative formulae to the ubiquitous case of tri-bimaximal neutrino mixing at the unification scale, in order to predict the theoretical corrections to mixing angle predictions and sum rule relations, and give a general discussion of all limiting cases. We also discuss the implications for the sum rule relations of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.

  19. Multi-pitch estimation

    CERN Document Server

    Christensen, Mads

    2009-01-01

    Periodic signals can be decomposed into sets of sinusoids having frequencies that are integer multiples of a fundamental frequency. The problem of finding such fundamental frequencies from noisy observations is important in many speech and audio applications, where it is commonly referred to as pitch estimation. These applications include analysis, compression, separation, enhancement, automatic transcription and many more. In this book, an introduction to pitch estimation is given and a number of statistical methods for pitch estimation are presented. The basic signal models and associated es

  20. Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests

    Science.gov (United States)

    Wong, Douglas T.

    1992-01-01

    The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled.

  1. Calculation and characteristics analysis of blade pitch loads for large scale wind turbines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the electric pitch system of large scale horizontal-axis wind turbines,the blade pitch loads coming mainly from centrifugal force,aerodynamic force and gravity are analyzed,and the calculation models for them are established in this paper.For illustration,a 1.2 MW wind turbine is introduced as a practical sample,and its blade pitch loads from centrifugal force,aerodynamic force and gravity are calculated and analyzed separately and synthetically.The research results showed that in the process of rotor rotating 360o,the fluctuation of blade pitch loads is similar to cosine curve when the rotor rotational speed,in-flow wind speed and pitch angle are constant.Furthermore,the amplitude of blade pitch load presents quite a difference at a different pitch angle.The ways of calculation for blade pitch loads are of the universality,and are helpful for further research of the individual pitch control system.

  2. System-level modeling and verification of a micro pitch-tunable grating

    Science.gov (United States)

    Lv, Xianglian; Xu, Jinghui; Yu, Yiting; He, Yang; Yuan, Weizheng

    2010-10-01

    Micro Pitch-tunable Grating based on microeletromechanical systems(MEMS) technology can modulate the grating period dynamically by controlling the drive voltage. The device is so complex that it is impossible to model and sumulation by FEA method or only analysis macromodel. In this paper, a new hybrid system-level modeling method was presented. Firstly the grating was decomposed into function components such as grating beam, supporting beam, electrostatic comb-driver. Block Arnoldi algorithm was used to obtain the numerical macromodel of the grating beams and supporting beams, the analytical macromodels called multi-port-elements(MPEs) of the comb-driver and other parts were also established, and the elements were connected together to form hybrid network for representing the systemlevel models of the grating in MEME Garden, which is a MEMS CAD tool developed by Micro and Nano Electromechanical Systems Laboratory, Northwestern Polytechnical University. Both frequency and time domain simulation were implemented. The grating was fabricated using silicon-on-glass(SOG) process. The measured working displacement is 16.5μm at a driving voltage of 40V. The simulation result is 17.6μm which shows an acceptable agreement with the measurement result within the error tolerance of 6.7%. The method proposed in this paper can solve the voltage-displacement simulation problem of this kind of complex grating. It can also be adapted to similar MEMS/MOEMS devices simulations.

  3. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting

    Science.gov (United States)

    Li, Qing; Luo, K. H.; Kang, Q. J.; Chen, Q.

    2014-11-01

    In this paper we investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio ρL/ρV=500 . The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994), 10.1103/PhysRevE.49.2941] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions, the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles θ static contact angles close to 180∘. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles θ >90∘ as compared with the two other types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.

  4. Reflectivity Model of Low Grazing Angle Radar Sea Clutter

    Institute of Scientific and Technical Information of China (English)

    FENG Sheng; CHEN Jie; CAI Tao; TU Xu-yan

    2005-01-01

    The commonly used reflectivity models of radar sea clutter are summarized. Among these models, the adjusted Barton model and the adjusted Morchin model are compared. From the analysis result, the γ-p reflectivity model is presented for low grazing angle radar sea clutter by the adjustment of the original Barton reflectivity model. The model takes into account radar frequency, grazing angle, sea condition, and polarization property. The influences of these factors on the proposed model are analyzed. The model absorbs the merits from commonly used reflectivity models for sea clutter. It introduces several researchers' opinions, and extends them. And it accounts for the reflectivity at arbitrary radar frequency from VHF to X-band, arbitrary low grazing angle, arbitrary sea condition and different polarization property. One of the main results is the proposed γ-p reflectivity model can reflect the influence of polarization on sea clutter reflectivity to some extent. The proposed γ-p reflectivity model of low-angle radar-sea clutter is validated by comparing the simulated and statistically experimental data.

  5. Dynamic Stall Prediction of a Pitching Airfoil using an Adjusted Two-Equation URANS Turbulence Model

    Directory of Open Access Journals (Sweden)

    Galih Bangga

    2017-01-01

    Full Text Available The necessity in the analysis of dynamic stall becomes increasingly important due to its impact on many streamlined structures such as helicopter and wind turbine rotor blades. The present paper provides Computational Fluid Dynamics (CFD predictions of a pitching NACA 0012 airfoil at reduced frequency of 0.1 and at small Reynolds number value of 1.35e5. The simulations were carried out by adjusting the k − ε URANS turbulence model in order to damp the turbulence production in the near wall region. The damping factor was introduced as a function of wall distance in the buffer zone region. Parametric studies on the involving variables were conducted and the effect on the prediction capability was shown. The results were compared with available experimental data and CFD simulations using some selected two-equation turbulence models. An improvement of the lift coefficient prediction was shown even though the results still roughly mimic the experimental data. The flow development under the dynamic stall onset was investigated with regards to the effect of the leading and trailing edge vortices. Furthermore, the characteristics of the flow at several chords length downstream the airfoil were evaluated.

  6. Mel-frequencies Stochastic Model for Gender Classification based on Pitch and Formant

    Directory of Open Access Journals (Sweden)

    Syifaun Nafisah

    2016-02-01

    Full Text Available Speech recognition applications are becoming more and more useful nowadays. Before this technology is applied, the first step is test the system to measure the reliability of system.  The reliability of system can be measured using accuracy to recognize the speaker such as speaker identity or gender.  This paper introduces the stochastic model based on mel-frequencies to identify the gender of speaker in a noisy environment.  The Euclidean minimum distance and back propagation neural networks were used to create a model to recognize the gender from his/her speech signal based on formant and pitch of Mel-frequencies. The system uses threshold technique as identification tool. By using this threshold value, the proposed method can identifies the gender of speaker up to 94.11% and the average of processing duration is 15.47 msec. The implementation result shows a good performance of the proposed technique in gender classification based on speech signal in a noisy environment.

  7. Pedestrian quick detection algorithm based on with pitch angle corrected HOG features%基于俯仰角修正的HOG特征快速行人检测算法

    Institute of Scientific and Technical Information of China (English)

    曹巧慧; 葛万成

    2014-01-01

    传统的HOG特征对正视或侧视行人有较好的识别率,但是对俯视行人的识别率仍有所欠缺。对检测图像的HOG特征根据不同的俯仰角进行了转换,同时优化了SVM分类器训练过程,提出了一种改进的快速行人检测算法。测试结果表明,该算法优于基于传统HOG特征的检测方法,有效提高了不同俯仰角视频中行人检测的准确性。%Traditional HOG feature detection method has a preferable recognition rate for envisaging and side-looking pedes-trians,but has a low recognition rate for overlooking pedestrians. An improved pedestrian quick detection algorithm is proposed in this paper,which is realized by converting HOG features in the detected images according to pitch angle and optimizing the SVM classifier training process. The testing result shows that the algorithm is better than the detection methods based on the tra-ditional HOG features and has improved the detection veracity of pedestrians in the different pitch angle video images.

  8. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  9. Experimental study on influence of pitch motion on the wake of a floating wind turbine model

    Science.gov (United States)

    Rockel, Stanislav; Cal, Raul Bayoan; Peinke, Joachim; Hoelling, Michael

    2013-11-01

    Wind energy has become a major contributor to energy from renewable sources and is still demanded to increase its portion to the overall energy supply. Offshore wind energy was found to have the highest potential to fulfill these demands, due to better and steadier wind conditions found on seas. Offshore wind turbines which have been installed lately use monopiles as foundations and are feasible in shallow water up to a depth of 50m. Such shallow areas are rare and often exploited, so floating support structures for offshore wind turbines in deep water are possible solutions. The additional degrees of freedom of a floating support structure will influence the aerodynamics at the rotor and its wake. Wind tunnel experiments were performed using a classical fixed turbine model and a streamwise oscillating turbine in free pitch motion. For both cases the turbines were operated under same inflow conditions and wakes up to 7 rotor diameters were measured using 2D-3C stereographic particle image velocimetry (SPIV). The obtained data was statistically analyzed and a direct comparison of the wake of the fixed and oscillating turbine was performed. Our results show that inclinations and oscillations of the turbine have a strong impact on the structure of the wake and its development.

  10. Repulsion-based model for contact angle saturation in electrowetting.

    Science.gov (United States)

    Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

  11. Off-Angle Iris Correction using a Biological Model

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Karakaya, Mahmut [ORNL; Barstow, Del R [ORNL; Boehnen, Chris Bensing [ORNL

    2013-01-01

    This work implements an eye model to simulate corneal refraction effects. Using this model, ray tracing is performed to calculate transforms to remove refractive effects in off-angle iris images when reprojected to a frontal view. The correction process is used as a preprocessing step for off-angle iris images for input to a commercial matcher. With this method, a match score distribution mean improvement of 11.65% for 30 degree images, 44.94% for 40 degree images, and 146.1% improvement for 50 degree images is observed versus match score distributions with unmodified images.

  12. Off-Angle Iris Correction using a Biological Model

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Joseph T [ORNL; Santos-Villalobos, Hector J [ORNL; Karakaya, Mahmut [ORNL; Barstow, Del R [ORNL; Bolme, David S [ORNL; Boehnen, Chris Bensing [ORNL

    2013-01-01

    This work implements an eye model to simulate corneal refraction effects. Using this model, ray tracing is performed to calculate transforms to remove refractive effects in off-angle iris images when reprojected to a frontal view. The correction process is used as a preprocessing step for off-angle iris images for input to a commercial matcher. With this method, a match score distribution mean improvement of 11.65% for 30 degree images, 44.94% for 40 degree images, and 146.1% improvement for 50 degree images is observed versus match score distributions with unmodi ed images.

  13. Modeling liquid bridge between surfaces with contact angle hysteresis.

    Science.gov (United States)

    Chen, H; Amirfazli, A; Tang, T

    2013-03-12

    This paper presents the behaviors of a liquid bridge when being compressed and stretched in a quasi-static fashion between two solid surfaces that have contact angle hysteresis (CAH). A theoretical model is developed to obtain the profiles of the liquid bridge given a specific separation between the surfaces. Different from previous models, both contact lines in the upper and lower surfaces were allowed to move when the contact angles reach their advancing or receding values. When the contact angles are between their advancing and receding values, the contact lines are pinned while the contact angles adjust to accommodate the changes in separation. Effects of CAH on both asymmetric and symmetric liquid bridges were analyzed. The model was shown to be able to correctly predict the behavior of the liquid bridge during a quasi-static compression/stretching loading cycle in experiments. Because of CAH, the liquid bridge can have two different profiles at the same separation during one loading and unloading cycle, and more profiles can be obtained during multiple cycles. The maximum adhesion force generated by the liquid bridge is found to be influenced by the CAH of surfaces. CAH also leads to energy cost during a loading cycle of the liquid bridge. In addition, the minimum separation between the two solid surfaces is shown to affect how the contact radii and angles change on the two surfaces as the liquid bridge is stretched.

  14. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft

    Science.gov (United States)

    Richard, Jacques C.

    1995-01-01

    This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.

  15. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting.

    Science.gov (United States)

    Li, Qing; Luo, K H; Kang, Q J; Chen, Q

    2014-11-01

    In this paper we investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio ρ_{L}/ρ_{V}=500. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)10.1103/PhysRevE.49.2941] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions, the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles θstatic contact angles close to 180^{∘}. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles θ>90^{∘} as compared with the two other types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.

  16. Compactness in the Euler-lattice: A parsimonious pitch spelling model

    NARCIS (Netherlands)

    Honingh, A.K.

    2009-01-01

    Compactness and convexity have been shown to represent important principles in music, reflecting a notion of consonance in scales and chords, and have been successfully applied to well-known problems from music research. In this paper, the notion of compactness is applied to the problem of pitch

  17. The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).

    Science.gov (United States)

    Cheng, Bo; Deng, Xinyan; Hedrick, Tyson L

    2011-12-15

    Insects produce a variety of exquisitely controlled manoeuvres during natural flight behaviour. Here we show how hawkmoths produce and control one such manoeuvre, an avoidance response consisting of rapid pitching up, rearward flight, pitching down (often past the original pitch angle), and then pitching up slowly to equilibrium. We triggered these manoeuvres via a sudden visual stimulus in front of free-flying hawkmoths (Manduca sexta) while recording the animals' body and wing movements via high-speed stereo videography. We then recreated the wing motions in a dynamically scaled model to: (1) associate wing kinematic changes with pitch torque production and (2) extract the open-loop dynamics of an uncontrolled moth. Next, we characterized the closed-loop manoeuvring dynamics from the observed flight behaviour assuming that hawkmoths use feedback control based on translational velocity, pitch angle and angular velocity, and then compared these with the open-loop dynamics to identify the control strategy used by the moth. Our analysis revealed that hawkmoths produce active pitch torque via changes in mean wing spanwise rotation angle. Additionally, body translations produce passive translational damping and pitch torque, both of which are linearly dependent on the translational velocity. Body rotations produce similar passive forces and torques, but of substantially smaller magnitudes. Our comparison of closed-loop and open-loop dynamics showed that hawkmoths rely largely on passive damping to reduce the body translation but use feedback control based on pitch angle and angular velocity to control their orientation. The resulting feedback control system remains stable with sensory delays of more than two wingbeats.

  18. Reduction of the acoustic noise emission of wind turbines by modification of rotor bade tip shapes, trailing edges and pitch angles. Final report; Geraeuschminderung durch Modifikation der Blattspitze, der Blatthinterkante und des Anstellwinkels von Windkraftanlagen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Betke, K. [Oldenburg Univ. (Germany). Inst. fuer Technische und Angewandte Physik; Gabriel, J.; Klug, H. [Deutsches Windenergie-Institut gGmbH (DEWI), Wilhelmshaven (Germany); Schumacher, K.; Wittwer, G. [Abeking und Rasmussen Faserverbundtechnik GmbH, Lemwerder (Germany); Litzka [Foerdergesellschaft Windenergie e.V., Brunsbuettel (Germany); Seel [Seewind Windenergiesysteme GmbH, Walzbachtal (Germany); Petersen; Partmann [Tacke Windtechnik GmbH und Co. KG, Rheine (Germany); Kolbert [Ventis Energietechnik GmbH, Braunschweig (Germany)

    1997-12-31

    In cooperation with manufacturers of wind turbines and rotor blades acoustic measurements on modified tip shapes, trailing edges and pitch angles were performed in a wind tunnel and on real turbines. The results provide manufacturers, developers and operators of wind turbines with a tool to reduce the noise radiation from wind turbines. Significant noise reductions were obtained by tip shape modifications. The sound power level of a modified 600 kW wind turbine was less than 98 dB(A). Modifications of the trailing edge were less effective than expected from theory. Sharp trailing edges were almost as effective as serrated trailing edges but both require special procedures in production and handling. Pitch angle modifications led to significant noise reductions when the angle of attack was reduced. The power curve of the modified turbine was measured and resulted in an energy loss in the range of 1% while the noise was reduced by 2 dB(A). (orig.) [Deutsch] In Zusammenarbeit mit Herstellern von Windenergieanlagen und Rotorblaettern wurden akustisch wirksame Modifikationen der Blattspitze, der Blatthinterkante und des Blatteinstellwinkels im Windkanal vermessen. Die gewonnenen Erkenntnisse wurden bei unterschiedlichen realen Windenergieanlagen umgesetzt und die erzielte Geraeuschminderung durch direkte Vergleichsmessungen vor Ort bestimmt. Aus den Ergebnissen des Projektes lassen sich allgemeine Aussagen ueber Geraeuschminderungsmassnahmen an Windenergieanlagen ableiten. Es hat sich gezeigt, dass bei vielen Windenergieanlagen deutliche Reduzierungen der Geraeuschabstrahlung durch eine Veraenderung der Blattspitzenform erzielt werden koennen (erzwungener Umschlag) vermieden werden kann. Die Modifikation der Blattspitze fuehrte zu dem niedrigsten Schalleistungspegel in der 600 kW - Leistungsklasse von unter 98 dB(A). Bei den Modifikationen der Hinterkante konnte der erhoffte Erfolg bei saegezahnfoermigen Hinterkanten im Windkanal nicht nachgewiesen werden. Im

  19. Design and research of calculation models of the tooth profile angles of thread milling cutter with helical flutes

    Directory of Open Access Journals (Sweden)

    O. V. Malkov

    2014-01-01

    Full Text Available The review of manufacturer's programs to make thread milling cutters has shown that most of milling cutters are produced with the helical flutes with the ω slope angle within the range of 10° ...30°. Thus, thread milling cutters, made of high speed steels, essentially, are not produced. In Russia there is GOST 1336-77, to regulate the parameters of thread milling cutter shaving with a straight flutes, made of high speed steels.It is established that available rake and clearance angles, and inclination angle of helical flutes at the accepted values of pitch and diameter of the tool lead to obtaining the angles of the tooth profile other than 30 degrees, thus requiring the calculation of angles β1 and β2 in each case of design. In the general case we have an asymmetrical profile with respect to the axis passing through the top of the tooth.Using the CATIA V5 R17 software, a geometric model that allows us to determine the angles of the tooth profile of thread milling cutter with helical flutes has been developed. The model research has been conducted for geometric and design parameters of thread milling cutter, made of cemented carbide and high speed steel. The paper presents a method for constructing models and key assumptions adopted for its development.Dependences are obtained for the model with a variation of the five factors (external diameter d, step profiles, P, rake γтц, clearance α, inclination angle of helical flutes ω for thread milling cutters, made of cemented carbide and according to the model that extends the range of variation factors (d, P, γтц, ω according to GOST 1336-77. Thus, this model to have the angles of the tooth profile of thread milling cutter with helical flutes can be used both to obtain the angles profile β1 and β2 in a wide range of varying tool parameters for all types of tool materials, and to broaden the possibilities for calculation of parameters according to GOST 1336-77.

  20. Visual field influence on manual roll and pitch stabilization

    Science.gov (United States)

    Huang, J.-K.; Young, L. R.

    1988-01-01

    Human control performance in nulling perceived tilt angles was investigated for combinations of pseudo-random vestibular disturbances and different waveforms of low frequency wide visual field motions. For both roll and pitch axes, subjects tilted the trainer in which they were seated in the direction of field rotation. This visual bias was much stronger for pitch backwards with upward field rotation. Frequency response analysis showed the dominance of visual cues at low frequencies (below 0.06 Hz) and the reliance on vestibular information in the high frequency range for both axes. Models suggest that operator balancing responses at high frequencies are mainly processed by the semicircular canals rather than the otolith organs. The results also suggest that the subject tends to rely less on the otolith organs for pitch perception than for roll.

  1. Modeling of Ship Roll Dynamics and Its Coupling with Heave and Pitch

    Directory of Open Access Journals (Sweden)

    R. A. Ibrahim

    2010-01-01

    Full Text Available In order to study the dynamic behavior of ships navigating in severe environmental conditions it is imperative to develop their governing equations of motion taking into account the inherent nonlinearity of large-amplitude ship motion. The purpose of this paper is to present the coupled nonlinear equations of motion in heave, roll, and pitch based on physical grounds. The ingredients of the formulation are comprised of three main components. These are the inertia forces and moments, restoring forces and moments, and damping forces and moments with an emphasis to the roll damping moment. In the formulation of the restoring forces and moments, the influence of large-amplitude ship motions will be considered together with ocean wave loads. The special cases of coupled roll-pitch and purely roll equations of motion are obtained from the general formulation. The paper includes an assessment of roll stochastic stability and probabilistic approaches used to estimate the probability of capsizing and parameter identification.

  2. Urine mutagenicity and biochemical parameters as markers of exposure to petroleum pitch using a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Pasquini, R.; Sforzolini, G.S.; Savino, A.; Fatigoni, C.; Puccetti, P. (Univ. of Perugia (Italy)); Monarca, S. (Univ. of Brescia (Italy))

    1990-01-01

    A petroleum pitch sample collected in a carbon electrode factory was studied using a series of in vivo assays for genotoxicity and enzymatic induction capability. Rats were treated with the petroleum derivative in three doses: 100, 50, and 10 mg/kg body weight. The treatment produced a rapid excretion of mutagenic substances in the urines of the first 24 hr only in rats treated with high doses (100 and 50 mg/kg). No fecal mutagenic activity was observed. Analyses of urinary thioethers showed that urinary metabolites derived from the compounds present in the pitchsample at the lowest dose administered (10 mg/kg) were eliminated primarily as cysteine conjugates. The pitch sample was found to be a good inducer of pulmonary and hepatic aryl hydrocarbon hydroxylase, especially after a 50 mg/kg dose. Urinary D-glucaric acid content was always statistically increased in treated animals compared with controls, confirming the enzymatic induction activity. Hepatic glutathione-S-transferase activity increased following treatment with 50 10 mg/kg doses.

  3. Effects of drift angle on model ship flow

    Science.gov (United States)

    Longo, J.; Stern, F.

    The effects of drift angle on model ship flow are investigated through towing tank tests for the Series 60 CB=0.6 cargo/container model ship. Resistance, side force, drift moment, sinkage, trim, and heel data are procured for a range of drift angles β and Froude numbers (Fr) and the model free condition. Detailed free-surface and mean velocity and pressure flow maps are procured for high and low Fr=0.316 and 0.16 and β=5° and 10° (free surface) and β=10° (mean velocity and pressure) for the model fixed condition (i.e. fixed with zero sinkage, trim, and heel). Comparison of results at high and low Fr and previous data for β=0° enables identification of important free-surface and drift effects. Geometry, conditions, data, and uncertainty analysis are documented in sufficient detail so as to be useful as a benchmark for computational fluid dynamics (CFD) validation. The resistance increases linearly with β with same slope for all Fr, whereas the increases in the side force, drift moment, sinkage, trim, and heel with β are quadratic. The wave profile is only affected near the bow, i.e. the bow wave amplitude increases/decreases on the windward/leeward sides, whereas the wave elevations are affected throughout the entire wave field. However, the wave envelope angle on both sides is nearly the same as β=0°, i.e. the near-field wave pattern rotates with the hull and remains within a similar wave envelope as β=0°. The wave amplitudes are significantly increased/decreased on the windward/leeward sides. The wake region is also asymmetric with larger wedge angle on the leeward side. The boundary layer and wake are dominated by the hull vortex system consisting of fore body keel, bilge, and wave-breaking vortices and after body bilge and counter-rotating vortices. The occurrence of a wave-breaking vortex for breaking bow waves has not been previously documented in the literature. The trends for the maximum vorticity, circulation, minimum axial velocity, and

  4. Study of contact angle hysteresis using the Cellular Potts Model.

    Science.gov (United States)

    Mortazavi, Vahid; D'Souza, Roshan M; Nosonovsky, Michael

    2013-02-28

    We use the Cellular Potts Model (CPM) to study the contact angle (CA) hysteresis in multiphase (solid-liquid-vapour) systems. We simulate a droplet over the tilted patterned surface, and a bubble placed under the surface immersed in liquid. The difference between bubbles and droplets was discussed through their CA hysteresis. Dependency of CA hysteresis on the surface structure and other parameters was also investigated. This analysis allows decoupling of the 1D (pinning of the triple line) and 2D (adhesion hysteresis in the contact area) effects and provides new insight into the nature of CA hysteresis.

  5. Analytical modeling of large-angle CMBR anisotropies from textures

    CERN Document Server

    Magueijo, J

    1995-01-01

    We propose an analytic method for predicting the large angle CMBR temperature fluctuations induced by model textures. The model makes use of only a small number of phenomenological parameters which ought to be measured from simple simulations. We derive semi-analytically the C^l-spectrum for 2\\leq l\\leq 30 together with its associated non-Gaussian cosmic variance error bars. A slightly tilted spectrum with an extra suppression at low l is found, and we investigate the dependence of the tilt on the parameters of the model. We also produce a prediction for the two point correlation function. We find a high level of cosmic confusion between texture scenarios and standard inflationary theories in any of these quantities. However, we discover that a distinctive non-Gaussian signal ought to be expected at low l, reflecting the prominent effect of the last texture in these multipoles.

  6. An experimental investigation of thrust vectoring two-dimensional convergent-divergent nozzles installed in a twin-engine fighter model at high angles of attack

    Science.gov (United States)

    Capone, Francis J.; Mason, Mary L.; Leavitt, Laurence D.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine thrust vectoring capability of subscale 2-D convergent-divergent exhaust nozzles installed on a twin engine general research fighter model. Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted at Mach numbers ranging from 0 to 1.20 and at angles of attack from -2 to 35 deg. High pressure air was used to simulate jet exhaust and provide values of nozzle pressure ratio up to 9.

  7. Adaptive pitch control of wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer Joergensen, H.

    1993-12-31

    The wind turbines used in Denmark today to produce electric power are mostly stall-controlled turbines up to 300-400 kW. The quality of the produced electrical power from small stall-controlled wind turbines is poor compared to the electrical power from the utility grid. The main goal of this report is to describe another way of generating electric power by wind turbines. The produced power is regulated by controlling the pitch of the rotor blades. Only medium wind speeds ranging from 14 m{sup 3} to 20 m{sup 3} are considered. The regulation problem is to keep the power at the nominal value and to minimize variations in the produced power and variations in the torques acting upon the turbine. Furthermore fluctuations in the displacement of the nacelle have to be controlled so the natural frequency of the nacelle is not excited. The regulation problem is solved for the 750 kW wind turbine, Windane 40, owned by ELKRAFT. A control model is developed for use in the control design procedure and a simulation model is developed to test the designed controllers. Several controllers are designed. A continuous-time PID-controller (Proportional Integrating Differentiating) is designed because this controller is used in practical pitch-control today - this controller is used as a reference of performance. A LQG-controller (Least Quadratic Gaussian) and a GSP-controller (General Stochastic Poleplacement) are designed to test some conventional controllers used to solve many other regulation problems. Finally an AGSP-controller (Adaptive General Stochastic Poleplacement) is designed to test a controller that is able to change the control law according to the wind speed. The controllers are tested at different wind conditions. All controllers are compared to a wind turbine with fixed pitch angle (stall-control). Simulation studies show that all controllers give better results than the fixed pitch-controlled system. (EG) (14 refs.)

  8. Handling Qualities Evaluations of Low Complexity Model Reference Adaptive Controllers for Reduced Pitch and Roll Damping Scenarios

    Science.gov (United States)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Johnson, Marcus; Nguyen, Nhan

    2011-01-01

    National Aeronautics and Space Administration (NASA) researchers have conducted a series of flight experiments designed to study the effects of varying levels of adaptive controller complexity on the performance and handling qualities of an aircraft under various simulated failure or damage conditions. A baseline, nonlinear dynamic inversion controller was augmented with three variations of a model reference adaptive control design. The simplest design consisted of a single adaptive parameter in each of the pitch and roll axes computed using a basic gradient-based update law. A second design was built upon the first by increasing the complexity of the update law. The third and most complex design added an additional adaptive parameter to each axis. Flight tests were conducted using NASA s Full-scale Advanced Systems Testbed, a highly modified F-18 aircraft that contains a research flight control system capable of housing advanced flight controls experiments. Each controller was evaluated against a suite of simulated failures and damage ranging from destabilization of the pitch and roll axes to significant coupling between the axes. Two pilots evaluated the three adaptive controllers as well as the non-adaptive baseline controller in a variety of dynamic maneuvers and precision flying tasks designed to uncover potential deficiencies in the handling qualities of the aircraft, and adverse interactions between the pilot and the adaptive controllers. The work was completed as part of the Integrated Resilient Aircraft Control Project under NASA s Aviation Safety Program.

  9. Supersonic Pitch Damping Predictions of Blunt Entry Vehicles from Static CFD Solutions

    Science.gov (United States)

    Schoenenberger, Mark

    2013-01-01

    A technique for predicting supersonic pitch damping of blunt axisymmetric bodies from static CFD data is presented. The contributions to static pitching moment due to forebody and aftbody pressure distributions are broken out and considered separately. The one-dimension moment equation is cast to model the separate contributions from forebody and aftbody pressures with no traditional damping term included. The aftbody contribution to pitching moment is lagged by a phase angle of the natural oscillation period. This lag represents the time for aftbody wake structures to equilibrate while the body is oscillation. The characteristic equation of this formulation indicates that the lagged backshell moment adds a damping moment equivalent in form to a constant pitch damping term. CFD calculations of the backshell's contribution to the static pitching moment for a range of angles-of-attack is used to predict pitch damping coefficients. These predictions are compared with ballistic range data taken of the Mars Exploration Rover (MER) capsule and forced oscillation data of the Mars Viking capsule. The lag model appears to capture dynamic stability variation due to backshell geometry as well as Mach number.

  10. 带异形反射腔和寄生螺旋的均匀升角轴向模螺旋天线%Symmetrical pitch angle axial mode helical antennas with especial reflection cavity and parasitic helix

    Institute of Scientific and Technical Information of China (English)

    问建; 张割

    2012-01-01

    A helical antenna with a cuiving reflection cavity was designed based on symmetrical pitch angle axial mode helical antenna with a parasitic helix to improve radiation performance of axial mode helical antennas. Its radiation properties was simulated with the software HFSS. The contrast result come from the simulation of several helical antennas shows that the helical antenna can effectively improve the power gain coefficient of axial mode helical antenna. Its circular polarizable consistency is good. The method is simple and efficient for improving radiation performance of axial mode helical antennas.%为了改善轴向模螺旋天线的辐射特性,在带有寄生螺旋的均匀升角轴向模螺旋天线基础上,设计了一种带有曲反射面背腔的螺旋天线,并用HFSS软件对天线的辐射特性进行了仿真分析.通过对比几种不同形式的螺旋天线的仿真结果,证明了该种螺旋天线可以有效地提高轴向模螺旋天线增益系数,圆极化一致性良好,是一种提高轴向模螺旋天线性能的有效方法.

  11. A Hydrodynamic Model of Dynamic Contact Angle Hysteresis.

    Science.gov (United States)

    contact angle hysteresis is developed in terms of the interaction of capillary, viscous, and...used to obtain the equations which describe the contact angle region and thereby to define the dynamic contact angle . The analysis is limited to...velocity dependence of the receding contact angle and of the thickness of the deposited film of the receding interface of a wetting liquid are determined as functions of the capillary, viscous, and disjoining forces.

  12. Harmonic Training and the formation of pitch representation in a neural network model of the auditory brain

    Directory of Open Access Journals (Sweden)

    Nasir eAhmad

    2016-03-01

    Full Text Available Attempting to explain the perceptual qualities of pitch has proven to be, and remains, a difficult problem. The wide range of sounds which illicit pitch and a lack of agreement across neurophysiological studies on how pitch is encoded by the brain have made this attempt more difficult. In describing the potential neural mechanisms by which pitch may be processed, a number of neural networks have been proposed and implemented. However, no unsupervised neural networks with biologically accurate cochlear inputs have yet been demonstrated. This paper proposes a simplified system in which pitch representing neurons are easily produced under a highly biological setting. Purely unsupervised regimes of neural network learning are implemented and these prove to be sufficient in identifying the pitch of sounds with a variety of spectral profiles, including missing fundamental sounds.

  13. 78 FR 14005 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Pitch and...

    Science.gov (United States)

    2013-03-04

    ...; Flight Envelope Protection: Pitch and Roll Limiting Functions AGENCY: Federal Aviation Administration... with pitch and roll limiting functions, specifically an electronic flight control system which contains... controls consist of hydraulically powered fly-by-wire elevators, aileron and rudder, controlled by the...

  14. 77 FR 69569 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Pitch and...

    Science.gov (United States)

    2012-11-20

    ...; Flight Envelope Protection: Pitch and Roll Limiting Functions AGENCY: Federal Aviation Administration... feature associated with pitch and roll limiting functions, specifically an electronic flight control... takeoff. The primary flight controls consist of hydraulically powered fly-by-wire elevators, aileron and...

  15. 78 FR 67320 - Special Conditions: Airbus, Model A350-900 series Airplane; Pitch and Roll Limiting by Electronic...

    Science.gov (United States)

    2013-11-12

    ... feature(s) associated with the Electronic Flight Control System that limits pitch and roll attitude...; Pitch and Roll Limiting by Electronic Flight Control System AGENCY: Federal Aviation Administration (FAA... Interface Branch, ANM-111, Transport Airplane Directorate, Aircraft Certification Service, 1601 Lind Avenue...

  16. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.

    Science.gov (United States)

    Lee, Kang Il; Hughes, E R; Humphrey, V F; Leighton, T G; Choi, Min Joo

    2007-01-01

    The Biot and the modified Biot-Attenborough (MBA) models have been found useful to understand ultrasonic wave propagation in cancellous bone. However, neither of the models, as previously applied to cancellous bone, allows for the angular dependence of acoustic properties with direction. The present study aims to account for the acoustic anisotropy in cancellous bone, by introducing empirical angle-dependent input parameters, as defined for a highly oriented structure, into the Biot and the MBA models. The anisotropy of the angle-dependent Biot model is attributed to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment. The angle-dependent MBA model employs a simple empirical way of using the parametric fit for the fast and the slow wave speeds. The angle-dependent models were used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the trabecular alignment of cancellous bone. The predictions were compared with those of the Schoenberg model for anisotropy in cancellous bone and in vitro experimental measurements from the literature. The angle-dependent models successfully predicted the angular dependence of phase velocity of the fast wave with direction. The root-mean-square errors of the measured versus predicted fast wave velocities were 79.2 m s(-1) (angle-dependent Biot model) and 36.1 m s(-1) (angle-dependent MBA model). They also predicted the fact that the slow wave is nearly independent of propagation angle for angles about 50 degrees , but consistently underestimated the slow wave velocity with the root-mean-square errors of 187.2 m s(-1) (angle-dependent Biot model) and 240.8 m s(-1) (angle-dependent MBA model). The study indicates that the angle-dependent models reasonably replicate the acoustic anisotropy in cancellous bone.

  17. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces.

    Science.gov (United States)

    Kusumaatmaja, H; Yeomans, J M

    2007-05-22

    We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasistatically increased and decreased. We consider both two (cylindrical drops) and three (spherical drops) dimensions using analytical and numerical approaches to minimize the free energy of the drop. In two dimensions, we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions, this behavior persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions, we identify analytically the advancing and receding contact angles on the different surfaces, and we use numerical insights to argue that these provide bounds for the three-dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.

  18. Can dynamic contact angle be measured using molecular modeling?

    Science.gov (United States)

    Malani, Ateeque; Raghavanpillai, Anilkumar; Wysong, Ernest B; Rutledge, Gregory C

    2012-11-02

    A method is presented for determining the dynamic contact angle at the three-phase contact between a solid, a liquid, and a vapor under an applied force, using molecular simulation. The method is demonstrated using a Lennard-Jones fluid in contact with a cylindrical shell of the fcc Lennard-Jones solid. Advancing and receding contact angles and the contact angle hysteresis are reported for the first time by this approach. The increase in force required to wet fully an array of solid cylinders (robustness) with decreasing separation distance between cylinders is evaluated. The dynamic contact angle is characterized by partial slipping of the three phase contact line when a force is applied.

  19. Development of advanced blade pitching kinematics for cycloturbines and cyclorotors

    Science.gov (United States)

    Adams, Zachary Howard

    Cycloturbines and cyclorotors are established concepts for extracting freesteam fluid energy and producing thrust which promise to exceed the performance of traditional horizontal axis turbines and rotors while maintaining unique operational advantages. However, their potential is not yet realized in widespread applications. A central barrier to their proliferation is the lack of fundamental understanding of the aerodynamic interaction between the turbine and the freestream flow. In particular, blade pitch must be precisely actuated throughout the revolution to achieve the proper blade angle of attack and maximize performance. So far, there is no adequate method for determining or implementing the optimal blade pitching kinematics for cyclorotors or cycloturbines. This dissertation bridges the pitching deficiency by introducing a novel low order model to predict improved pitch kinematics, experimentally demonstrating improved performance, and evaluating flow physics with a high order Navier-Stokes computational code. The foundation for developing advanced blade pitch motions is a low order model named Fluxline Theory. Fluid calculations are performed in a coordinate system fixed to streamlines whose spatial locations are not pre-described in order to capture the flow expansion/contraction and bending through the turbine. A transformation then determines the spatial location of streamlines through the rotor disk and finally blade element method integrations determine the power and forces produced. Validation against three sets of extant cycloturbine experimental data demonstrates improvement over other existing streamtube models. Fluxline Theory was extended by removing dependence on a blade element model to better understand how turbine-fluid interaction impacts thrust and power production. This pure momentum variation establishes a cycloturbine performance limit similar to the Betz Limit for horizontal axis wind turbines, as well as the fluid deceleration required

  20. Dynamic stall on a pitching and surging airfoil

    Science.gov (United States)

    Dunne, Reeve; McKeon, Beverley J.

    2015-08-01

    Vertical axis wind turbine blades undergo dynamic stall due to the large angle of attack variation they experience during a turbine rotation. The flow over a single blade was modeled using a sinusoidally pitching and surging airfoil in a non-rotating frame with a constant freestream flow at a mean chord Reynolds number of . Two-dimensional, time-resolved velocity fields were acquired using particle image velocimetry. Vorticity contours were used to visualize shear layer and vortex activity. A low-order model of dynamic stall was developed using dynamic mode decomposition, from which primary and secondary dynamic separation modes were identified. The interaction between these two modes was able to capture the physics of dynamic stall and as such can be extended to other turbine configurations and problems in unsteady aerodynamics. Results from the linear pitch/surge frame are extrapolated to the rotating VAWT frame to investigate the behavior of identified flow structures.

  1. Application of the Grey topological method to predict the effects of ship pitching

    Institute of Scientific and Technical Information of China (English)

    SUN Li-hong; SHEN Ji-hong

    2008-01-01

    Ship motion,with six degrees of freedom,is a complex stochastic process. Sea wind and waves are the primary influencing factors. Prediction of ship motion is significant for ship navigation. To eliminate errors,a path prediction model incorporating ship pitching was developed using the Gray topological method,after analyzing ship pitching motions. With the help of simple introduction to Gray system theory,we selected a group of threshold values. Based on an analysis of ship pitch angle sequences over 40 second intervals,a Grey metabolism GM(1,1) model was established according to the time-series which every threshold corresponded to. Forecasting future ship motion with the GM (1,1) model allowed drawing of the forecast curve with effective forecasting points. The precision of the test results show that the model is accurate,and the forecast results are reliable.

  2. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    Science.gov (United States)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  3. Contact Angle Adjustment in Equation of States Based Pseudo-Potential Model

    CERN Document Server

    Hu, Anjie; Uddin, Rizwan

    2015-01-01

    Single component pseudo-potential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many research, it has been claimed that this model can be stable for density ratios larger than 1000, however, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in present work show that, by applying the contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with the new...

  4. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    Science.gov (United States)

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  5. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  6. Cutting edge curve models for equal pitch cutters and their applications

    Institute of Scientific and Technical Information of China (English)

    吕广明; 王洪滨; 唐余勇; 彭龙刚

    2004-01-01

    A mathematic model is established using infinitesimal geometry for the cutting edge design of special milling cutters which use equal lead helix as cutting edges; equations are given for front-end and proclitic surface of revolution of ball pillar milling cutters, ball taper milling cutters and angularly conical milling cutters;and corresponding models are established for the continuity cutting edge curves of milling cutters. Typical examples are given to illustrate the applications of mathematic models, which prove the correctness and applicability of these geometric models.

  7. Static contact angle in lattice Boltzmann models of immiscible fluids.

    Science.gov (United States)

    Latva-Kokko, M; Rothman, Daniel H

    2005-10-01

    We study numerically the capillary rise between two horizontal plates and in a rectangular tube, using a lattice Boltzmann (LB) method. We derive an equation for the static fluid-solid contact angle as a function of the wetting tendency of the walls and test its validity. We show that the generalized Laplace law with two independent radii of curvature is followed in capillary rise in rectangular tubes. Our method removes the history dependence of the fluid-solid contact angle that had been present in earlier LB schemes.

  8. Modeling the influence of incident angle and deposition rate on a nanostructure grown by oblique angle deposition

    Science.gov (United States)

    Li, Kun-Dar; Dong, Yu-Wei

    2017-02-01

    In this study, numerical approaches were applied to theoretically investigate the influence of process parameters, such as the incident angle and the deposition rate, on the nanostructural formation of thin films by oblique angle deposition (OAD). A continuum model was first developed, and the atomic diffusion, shadowing effect and steering effect were incorporated in the formation mechanisms of the surface morphology and nanostructure of the deposited films. A characteristic morphology of columnar nanorods corresponding to an OAD was well reproduced through this kinetic model. With the increase of the incident angle, the shadowing effect played a significant role in the columnar structures and the ratio of the surface area to volume was raised, implying a high level of voids in the nanostructures. When the deposition rate decreased, the porosity was notably suppressed due to the atomic diffusion in the growth process. These simulation results coincide well with many experimental observations. With the manipulation of the numerical simulations, the underlying mechanisms of the morphological formation during OAD were revealed, which also provided plentiful information to stimulate the process designs for manufacturing advanced materials.

  9. A "Conveyor Belt" Model for the Dynamic Contact Angle

    Science.gov (United States)

    Della Volpe, C.; Siboni, S.

    2011-01-01

    The familiar Young contact angle measurement of a liquid at equilibrium on a solid is a fundamental aspect of capillary phenomena. But in the real world it is not so easy to observe it. This is due to the roughness and/or heterogeneity of real surfaces, which typically are not perfectly planar and chemically homogeneous. What can be easily…

  10. Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao;

    2014-01-01

    generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power...... and the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind...

  11. The viscoelastic flow behavior of pitches

    Science.gov (United States)

    Fleurot, Olivier

    1998-11-01

    For the first time, a commercial impregnating coal-tar pitch was air-blown (or heat-treated) for various periods of time to produce series of treated pitches. Each pitch was chemically and rheologically characterized. During air-blowing, the formation of large, aromatic, cross- linked molecules increased the elasticity of the pitch and prevented mesophase formation. During heat-treatment, large, planar, aromatic molecules formed and aggregated in mesophase spheres. These two-phase materials exhibited yield stress behavior. Also, their elasticity was similar to that of air-blown pitches. The flow/microstructure relationship in mesophase pitches was investigated. It was found that the steady and transient shear behaviors of mesophase pitches were qualitatively similar to that of LCPs. Also, the size of the structure decreased with increasing shear rate. Upon cessation of flow, the structure slowly coarsened. New techniques were proposed to estimate (1) relaxation time for structure recovery, and (2) the average elastic constant of mesophase pitches. Using Marrucci's model (originally designed for LCPs) it was possible for the first time to predict mesophase pitches' structure shrinkage during pure shear. Finally, the flow-induced structural development that occurs during extrusion of mesophase pitch through capillaries was observed and accurately predicted by coupling computational fluid dynamics (CFD) to Marrucci's model. Using a viscoelastic stress tensor to characterize the pitch flow behavior, the model was able to accurately predict the magnitude of the vortex experimentally observed at the spinnerette capillary counterbore as well as the extend of die swell at the exit of the capillary.

  12. Applying Contact Angle to a 2D Multiphase Smoothed Particle Hydrodynamics Model

    OpenAIRE

    Farrokhpanah, Amirsaman; Samareh, Babak; Mostaghimi, Javad

    2016-01-01

    Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using Smoothed Particle Hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. ...

  13. Asphalt Volcanism as a Model to Understand the Geochemical Nature of Pitch Lake, a Planetary Analog for Titan and the Implications towards Methane Flux into Earth's Atmosphere.

    Science.gov (United States)

    Khan, A.

    2016-12-01

    Pitch Lake is located in the southwest peninsula of the island near La Brea in Trinidad and Tobago, covering an area of approximately 46 hectares. It was discovered in the year 1595 and is the largest of three natural asphalt lakes that exist on Earth. Pitch Lake is a large oval shaped reservoir composed of dominantly hydrocarbon compounds, but also includes minor amounts of clay and muddy water. It is a natural liquid asphalt desert, which is nourished by a form of petroleum consisting of mostly asphaltines from the surrounding oil-rich region. The hydrocarbons mix with mud and gases under high pressure during upward seepage, and the lighter portion evaporates or is volatilized, which produces a high-viscosity liquid asphalt residue. The residue on and near the surface is a hydrocarbon matrix, which poses extremely challenging environmental conditions to microorganisms characterized by an average low water activity in the range of 0.49 to 0.75, recalcitrant carbon substrates, and toxic chemical compounds. Nevertheless, an active microbial community of archaea and bacteria, many of them novel strains, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical analyses of minerals, done by our team, which revealed sulfates, sulfides, silicates, and metals, normally associated with deep-water hydrothermal vents leads to our new hypothetical model to describe the origins of Pitch Lake and its importance to atmospheric and earth sciences. Pitch Lake is likely the terrestrial equivalent of an offshore submarine asphalt volcano just as La Brea Tar Pits are in some ways an on-land version of the asphalt volcanoes discovered off shore of Santa Barbara by Valentine et al. in 2010. Asphalt volcanism possibly also creates the habitat for chemosynthetic life that is widespread in this lake, as reported by Schulze-Makuch et al. in 2011 and Meckenstock et al. in 2014.

  14. 桨距角对风力发电机输出功率影响实验装置的研究设计%Study on the Effect of Pitch Angle Design of the Wind Generator Output Power and Other Parameters of the Experiment Equipment

    Institute of Scientific and Technical Information of China (English)

    赵丽军; 檀炜民; 鲍金雨; 张立宝; 蔺凯

    2016-01-01

    The wind power generation principle is used to make the simple fixed pitch wind power generation experimental device.Measurements of wind power generation unit output power and Rotor power coefficient.By the measurement results to explore variation under the same wind speed wind generator operating parameters concerned with pitch angle change.%利用风力发电原理,制作简易定桨距风力发电实验装置。测量风力发电装置输出功率及风能利用系数,利用测量结果探究同风速下风力发电机有关运行参数随桨距角改变的变化规律。

  15. MODTRAN Radiance Modeling of Multi-Angle Worldview-2 Imagery

    Science.gov (United States)

    2013-09-01

    speed of light 8 0 0 1 2.9979 10c µ ε = = ⋅ m/s. (2.10) From fundamental physics, the speed of wave propagation ( v ) is directly proportional to...reflectance properties—including the bidirectional reflectance distribution function—of surfaces detected from a space-based remote sensing platform. Eight... Bidirectional Reflectance Distribution Function, Multi-angle, Reflectance, Radiance, Rio de Janeiro. 15. NUMBER OF PAGES 105 16. PRICE CODE 17. SECURITY

  16. Mixed H2/H∞ Pitch Control of Wind Turbine with a Markovian Jump Model

    DEFF Research Database (Denmark)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei

    2016-01-01

    to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.......This paper proposes a Markovian jump model and the corresponding H2 /H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side...

  17. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  18. A CONTROL METHOD FOR SPLIT RANGE INDIVIDUAL PITCH BASED ON FEED-FORWARD AZIMUTH ANGLE WEIGHT NUMBER ASSIGNMENT%基于前馈补偿方位角权系数的分程独立变桨距控制研究

    Institute of Scientific and Technical Information of China (English)

    姚兴佳; 刘玥; 郭庆鼎

    2012-01-01

    依据风速特性及桨叶的空气动力学分析得到独立变桨距控制的基本控制规律,提出基于前馈补偿的方位角权系数分程独立变桨距控制,此控制方法采用方位角权系数分配分别对3个桨叶的桨距角进行调整,实现独立变桨距控制,然后根据前馈补偿理论对变桨距过程进行分程独立变桨距控制.在Matlab中进行仿真.仿真结果表明,该控制方法不仅可实现风力机的独立变桨,在稳定输出功率的同时减小桨叶的拍打振动,且可避免由于全程独立变桨距桨叶调节频繁所引起的电动变桨执行电机因过热损坏的问题.控制方法简单,更适合用于独立动作的电动变桨距执行机构.%The individual control law was obtained by analyzing of wind characteristics and wind turbine aerodynamics.A control method for split range individual pitch was proposed based on feed-forward compensator azimuth angle weight number assignment.The separate distribution for pitch angle of blades using azimuth angle weight number assignment was adopted to achieve individual pitch control.Then,the split range individual pitch control with feed-forward compensator was used to control wind turbine.The simulation results show that this control strategy can make the output power keep stable and the flapwise fluctuation be reduced at the same time.Moreover,the method can prevent the blades from adjusting frequently and the actuator motor superheating damage.The method is easy to control and more suitable for electric pitch regulated mechanism.

  19. Bending Angle Prediction Model Based on BPNN-Spline in Air Bending Springback Process

    OpenAIRE

    Zhefeng Guo; Wencheng Tang

    2017-01-01

    In order to rapidly and accurately predict the springback bending angle in V-die air bending process, a springback bending angle prediction model on the combination of error back propagation neural network and spline function (BPNN-Spline) is presented in this study. An orthogonal experimental sample set for training BPNN-Spline is obtained by finite element simulation. Through the analysis of network structure, the BPNN-Spline black box function of bending angle prediction is established, an...

  20. Simple Hydrostatic Model of Contact Angle Hysteresis of a Sessile Drop on Rough Surface

    Institute of Scientific and Technical Information of China (English)

    毛在砂; 杨超; 陈家镛

    2005-01-01

    The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model is used to interpret the process of drop volume increase or decrease of a planar sessile drop and to shed light on the contact angle hysteresis and its relationship with the solid surface roughness. With this model, the advancing and receding contact angles are conceptually explained in terms of equilibrium contact angle and surface roughness only,without invoking the thermodynamic multiplicity. The model is found to be qualitatively consistent to experimental observations on contact angle hysteresis and it suggests a possible way to approach the hysteresis of three-dimensional sessile drops.

  1. High coking value pitch

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  2. Consonance and pitch.

    Science.gov (United States)

    McLachlan, Neil; Marco, David; Light, Maria; Wilson, Sarah

    2013-11-01

    To date, no consensus exists in the literature as to theories of consonance and dissonance. Experimental data collected over the last century have raised questions about the dominant theories that are based on frequency relationships between the harmonics of music chords. This study provides experimental evidence that strongly challenges these theories and suggests a new theory of dissonance based on relationships between pitch perception and recognition. Experiment 1 shows that dissonance does not increase with increasing numbers of harmonics in chords as predicted by Helmholtz's (1863/1954) roughness theory, nor does it increase with fewer pitch-matching errors as predicted by Stumpf's (1898) tonal fusion theory. Dissonance was strongly correlated with pitch-matching error for chords, which in turn was reduced by chord familiarity and greater music training. This led to the proposition that long-term memory templates for common chords assist the perception of pitches in chords by providing an estimate of the chord intervals from spectral information. When recognition mechanisms based on these templates fail, the spectral pitch estimate is inconsistent with the period of the waveform, leading to cognitive incongruence and the negative affect of dissonance. The cognitive incongruence theory of dissonance was rigorously tested in Experiment 2, in which nonmusicians were trained to match the pitches of a random selection of 2-pitch chords. After 10 training sessions, they rated the chords they had learned to pitch match as less dissonant than the unlearned chords, irrespective of their tuning, providing strong support for a cognitive mechanism of dissonance.

  3. The Physics of the $θ$-angle for Composite Extensions of the Standard Model

    DEFF Research Database (Denmark)

    Vecchia, Paolo Di; Sannino, Francesco

    2014-01-01

    We analyse the $\\theta$-angle physics associated to extensions of the standard model of particle interactions featuring new strongly coupled sectors. We start by providing a pedagogical review of the $\\theta$-angle physics for Quantum Chromodynamics (QCD) including also the axion properties. We...

  4. Extending the Utility of the Parabolic Approximation in Medical Ultrasound Using Wide-Angle Diffraction Modeling.

    Science.gov (United States)

    Soneson, Joshua E

    2017-04-01

    Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.

  5. Statistically average atmospheric bending angle model based on COSMIC experimental data

    Science.gov (United States)

    Gorbunov, M. E.; Shmakov, A. V.

    2016-11-01

    The retrieval of profiles of meteorological variables from radio occultation observations requires knowledge of bending angle profiles up to heights of no less than 60-70 km. Because of the residual error of the ionospheric correction, retrieved profiles become too noisy by a height of about 40 km. In order to invert the bending angle profiles, the statistical optimization is used. This makes it possible to construct an optimal linear combination of the a priori estimate of the average bending angle profile and a posteriori noisy estimate based on observations. The estimate of the average bending angle profile for the given coordinates and the time of year is usually based on the climatological atmospheric model. MSIS and CIRA models that have been used for this purpose are now obsolete and do not describe the global changes in the atmospheric state. The model of average bending angles BA-IAP (Bending Angle-Institute of Atmospheric Physics) is built based on the processing of the array of COSMIC radio occultation observations during 2006-2013. The proposed model is statistically validated based on the COSMIC database. It is shown that our model describes the average bending angle profiles more accurately than the MSIS model.

  6. Contact angle adjustment in equation-of-state-based pseudopotential model.

    Science.gov (United States)

    Hu, Anjie; Li, Longjian; Uddin, Rizwan; Liu, Dong

    2016-05-01

    The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.

  7. Aspect-Oriented Modelling from a Different Angle

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Schmelter, David

    2008-01-01

    In this paper, we report on a new approach of aspect-oriented modelling, which is particularly suited for domains with naturally born aspects as part of that domain: MoDowA for Modelling Domains with Aspects. Though these models are on a very high level of abstraction and could be made early in t...

  8. Theoretical analysis of Sloshing effect on Pitch Angel to optimize quick dive on litoral submarine 22 M

    Science.gov (United States)

    Sinaga, L. T. P.

    2016-11-01

    This study considers the analytic theoretical model. The Submarine was considered to be rigid body are free sailing model with various angle of attack to be quick dive as pitching motion. By using Floating Body Mechanism supported by analytic model to describe the theoretical model analisys test. For the case of fluid level on 30% of the front balast tank and various angle of pitch. The paper describes a study on Analytic theoretical and modeling in CFD (Computational Fluid Dynamics). For Analyzing at special care of sloshing on free surce ballast tank after peak and fore peak were taken into consideration. In general, both methods (analytic model and CFD model) demonstrated such a good agreement, particularly in the consistent trend of RAO.

  9. Multilevel Models for the Analysis of Angle-Specific Torque Curves with Application to Master Athletes.

    Science.gov (United States)

    Carvalho, Humberto M

    2015-12-22

    The aim of this paper was to outline a multilevel modeling approach to fit individual angle-specific torque curves describing concentric knee extension and flexion isokinetic muscular actions in Master athletes. The potential of the analytical approach to examine between individual differences across the angle-specific torque curves was illustrated including between-individuals variation due to gender differences at a higher level. Torques in concentric muscular actions of knee extension and knee extension at 60º·s(-1) were considered within a range of motion between 5º and 85º (only torques "truly" isokinetic). Multilevel time series models with autoregressive covariance structures with standard multilevel models were superior fits compared with standard multilevel models for repeated measures to fit angle-specific torque curves. Third and fourth order polynomial models were the best fits to describe angle-specific torque curves of isokinetic knee flexion and extension concentric actions, respectively. The fixed exponents allow interpretations for initial acceleration, the angle at peak torque and the decrement of torque after peak torque. Also, the multilevel models were flexible to illustrate the influence of gender differences on the shape of torque throughout the range of motion and in the shape of the curves. The presented multilevel regression models may afford a general framework to examine angle-specific moment curves by isokinetic dynamometry, and add to the understanding mechanisms of strength development, particularly the force-length relationship, both related to performance and injury prevention.

  10. 基于COSMOSMotion的兆瓦级风力发电机组变桨机构建模和分析%Modeling and analysis on the variable propeller pitch mechanism of MW wind turbine based on COSMOSMotion

    Institute of Scientific and Technical Information of China (English)

    贾坤; 张锁怀; 张平满

    2011-01-01

    对兆瓦级风力发电机组的液压变桨机构进行了简化,在SolidWorks中建立了简化机构的三维实体模型,并用COSMOSMotion对其进行了运动仿真.通过仿真分析了控制油缸驱动变桨时,变桨机构各个主要构件尺寸参数与控制油缸所需性能之间的关系.其结果表明,将变桨机构中摇杆和连杆的杆长调节到合适的尺寸时,机构对控制油缸的性能要求降低,其运动也更平稳,桨叶受到的冲击更小;控制油缸在驱动变桨过程中所受到的阻力与摇杆和连杆的长度无关,而与它们之间的夹角有关.%Hydraulic pitch mechanism of a MW wind turbine is simplified and researched,then a three-dimensional solid model with simplified structure is established with SolidWorks,which motion simulation is carried out by COSMOSMotion.The relationship between the dimensions of components and the performance of control cylinder were analyzed by simulation,which results show that performance requirements of the mechanism to control cylinder is lowed,movement of mechanism is more stable with less shock upon blade when the length of rocker and connecting rod is adjusted to a appropriate size;while the resistance load acted on hydraulic cylinder is not affected by the length of connecting rod and rocker, but is affected by the angle between them, when the pitch mechanism is driven by control cylinder.

  11. Friction in Orthogonal Cutting Finite Elements Models with Large Negative Rake Angle

    Directory of Open Access Journals (Sweden)

    A.P. Markopoulos

    2016-06-01

    Full Text Available In this paper, orthogonal cutting finite elements models are built for the investigation of the impact of large negative rake angles on the friction coefficient in the tool-chip interface in machining. The simulation results give an insight on the mechanism of chip formation in processes with large negative active rake angle, such as machining with chamfered tools, grinding and micromachining. For the present analysis, cutting conditions resembling the qualitative and quantitative characteristics of the aforementioned processes were selected. More specifically, tool rake angles varying from -10o to -55o and Coulomb friction with constant friction coefficient were considered. The results indicate that friction coefficient is greatly affected by the negative tool rake angle, exhibiting values well above 1 for the high extreme of the examined rake angle spectrum.

  12. Mechanism of contact angle saturation and an energy-based model for electrowetting

    Science.gov (United States)

    Rui, Zhao; Zhong-Cheng, Liang

    2016-06-01

    Electrowetting, as a well-known approach to increasing droplet wettability on a solid surface by electrical bias, has broad applications. However, it is limited by contact angle saturation at large voltage. Although several debated hypotheses have been proposed to describe it, the physical origin of contact angle saturation still remains obscure. In this work, the physical factors responsible for the onset of contact angle saturation are explored, and the correlated theoretical models are established to characterize electrowetting behavior. Combination of the proper 3-phase system employed succeeds in dropping the saturating contact angle below 25°, and validates that the contact angle saturation is not a result of device-related imperfection. Project supported by the Fund from the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0402).

  13. Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem

    Science.gov (United States)

    Holsapple, Keith A.

    2013-07-01

    I discuss theories of granular material flows, with application to granular flows on the earth and planets. There are two goals. First, there is a lingering belief of some that the standard continuum plasticity Mohr-Coulomb and/or Drucker-Prager models are not adequate for many large-scale granular flow problems. The stated reason for those beliefs is the fact that the final slopes of the run-outs in collapse, landslide problems, and large-scale cratering are well below the angle of repose of the material. That observation, combined with the supposition that in those models flow cannot occur with slopes less than the angle of repose, has led to a number of researchers suggesting a need for lubrication or fluidization mechanisms and modeling. That issue is investigated in detail and shown to be false. A complete analysis of slope failures according to the Mohr-Coulomb model is presented, with special attention to the relations between the angle of repose and slope failures. It is shown that slope failure can occur for slope angles both larger than and smaller than the angle of repose. Second, to study the details of landslide run-outs, finite-difference continuum code simulations of the prototypical cliff collapse problem, using the classical plasticity models, are presented, analyzed and compared to experiments. Although devoid of any additional fluidization models, those simulations match experiments in the literature extremely well. The dynamics of this problem introduces additional important features relating to the run-out and final slope angles. The vertical free surface begins to fall at the initial 90° and flow continues to a final slope less than 10°. The detail in the calculation is examined to show why flow persists at slope angles that appear to be less than the angle of repose. The motions include regions of solid-like, fluid-like, and gas-like flows without invoking any additional models.

  14. Control of Pitching Airfoil Aerodynamics by Vorticity Flux Modification using Active Bleed

    Science.gov (United States)

    Kearney, John; Glezer, Ari

    2014-11-01

    Distributed active bleed driven by pressure differences across a pitching airfoil is used to regulate the vorticity flux over the airfoil's surface and thereby to control aerodynamic loads in wind tunnel experiments. The range of pitch angles is varied beyond the static stall margin of the 2-D VR-7 airfoil at reduced pitching rates up to k = 0.42. Bleed is regulated dynamically using piezoelectric louvers between the model's pressure side near the trailing edge and the suction surface near the leading edge. The time-dependent evolution of vorticity concentrations over the airfoil and in the wake during the pitch cycle is investigated using high-speed PIV and the aerodynamic forces and moments are measured using integrated load cells. The timing of the dynamic stall vorticity flux into the near wake and its effect on the flow field are analyzed in the presence and absence of bleed using proper orthogonal decomposition (POD). It is shown that bleed actuation alters the production, accumulation, and advection of vorticity concentrations near the surface with significant effects on the evolution, and, in particular, the timing of dynamic stall vortices. These changes are manifested by alteration of the lift hysteresis and improvement of pitch stability during the cycle, while maintaining cycle-averaged lift to within 5% of the base flow level with significant implications for improvement of the stability of flexible wings and rotor blades. This work is supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  15. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Nengchao Lyu

    2017-02-01

    Full Text Available In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  16. Aerodynamic response of an airfoil section undergoing pitch motion and trailing edge flap deflection: a comparison of simulation methods

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Riziotis, Vasilis A.; Gaunaa, Mac

    2015-01-01

    –inviscid interaction method and an engineering dynamic stall model suitable for implementation in aeroelastic codes based on blade element momentum theory. The aerodynamic integral forces and pitching moment coefficients are first determined in steady conditions, at angles of attack spanning from attached flow...... generated by the airfoil undergoing harmonic pitching motions and harmonic flap deflections. The unsteady aerodynamic coefficients exhibit significant variations over the corresponding steady-state values. The dynamic characteristics of the unsteady response are predicted with an excellent agreement among...

  17. Applying Contact Angle to a 2D Multiphase Smoothed Particle Hydrodynamics Model

    CERN Document Server

    Farrokhpanah, Amirsaman; Mostaghimi, Javad

    2016-01-01

    Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using Smoothed Particle Hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. Simulations show that a close match to the chosen contact angle values can be achieved for both stationary and moving contact lines. This technique has proven to reduce the amount of nonphysical shear stresses near the triple point and to enhance the convergence characteristics of the solver.

  18. Multilevel Models for the Analysis of Angle-Specific Torque Curves with Application to Master Athletes

    Directory of Open Access Journals (Sweden)

    Carvalho Humberto M.

    2015-12-01

    Full Text Available The aim of this paper was to outline a multilevel modeling approach to fit individual angle-specific torque curves describing concentric knee extension and flexion isokinetic muscular actions in Master athletes. The potential of the analytical approach to examine between individual differences across the angle-specific torque curves was illustrated including between-individuals variation due to gender differences at a higher level. Torques in concentric muscular actions of knee extension and knee extension at 60°·s-1 were considered within a range of motion between 5°and 85° (only torques “truly” isokinetic. Multilevel time series models with autoregressive covariance structures with standard multilevel models were superior fits compared with standard multilevel models for repeated measures to fit anglespecific torque curves. Third and fourth order polynomial models were the best fits to describe angle-specific torque curves of isokinetic knee flexion and extension concentric actions, respectively. The fixed exponents allow interpretations for initial acceleration, the angle at peak torque and the decrement of torque after peak torque. Also, the multilevel models were flexible to illustrate the influence of gender differences on the shape of torque throughout the range of motion and in the shape of the curves. The presented multilevel regression models may afford a general framework to examine angle-specific moment curves by isokinetic dynamometry, and add to the understanding mechanisms of strength development, particularly the force-length relationship, both related to performance and injury prevention.

  19. Study of Wear of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2000-01-01

    Full Text Available A study was made of the erosion of blades of pitched blade impellers in a suspension of solid particles in a liquid under a turbulent regime of flow of an agitated charge. The wear of the impeller is described by an analytical approximation in exponential form, and the influence of the pitch angle on the impeller blade wear was studied experimentally. It follows from the results of the experiments made that the wear rate of the pitched blade impellers increases linearly with the decreasing pitch angle within the interval a Î á15°; 45° ń. The proposed form of radial profile of the leading edge of the impeller blade enables us to calculate the surface of the worn blade. This quantity significantly decreases with the length of the period when the blades are affected by the solid particles, and its values calculated according to the suggested profile of the worn blade fit fairly well with the experimentally determined values. The results of the experiments performed are valid for homogeneous distribution of solid particles in an agitated suspension.

  20. Reference Model of Desired Yaw Angle for Automated Lane Changing Behavior of Vehicle

    Institute of Scientific and Technical Information of China (English)

    Dianbo Ren; Guanzhe Zhang; Hangzhe Wu

    2016-01-01

    In this paper, it studies the problem of trajectory planning and tracking for lane changing behavior of vehicle in automatic highway systems. Based on the model of yaw angle acceleration with positive and negative trapezoid constraint, by analyzing the variation laws of yaw motion of vehicle during a lane changing maneuver, the reference model of desired yaw angle and yaw rate for lane changing is generated. According to the yaw angle model, the vertical and horizontal coordinates of trajectory for vehicle lane change are calculated. Assuming that the road curvature is a constant, the difference and associations between two scenarios are analyzed, the lane changing maneuvers occurred on curve road and straight road, respectively. On this basis, it deduces the calculation method of desired yaw angle for lane changing on circular road. Simulation result shows that, it is different from traditional lateral acceleration planning method with the trapezoid constraint, by applying the trapezoidal yaw acceleration reference model proposed in this paper, the resulting expected yaw angular acceleration is continuous, and the step tracking for steering angle is not needed to implement. Due to the desired yaw model is direct designed based on the variation laws of raw movement of vehicle during a lane changing maneuver, rather than indirectly calculated from the trajectory model for lane changing, the calculation steps are simplified.

  1. Experimental model and analytic solution for real-time observation of vehicle's additional steer angle

    Science.gov (United States)

    Zhang, Xiaolong; Li, Liang; Pan, Deng; Cao, Chengmao; Song, Jian

    2014-03-01

    The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehicle dynamic model, in which only the lateral acceleration of vehicle body is considered. The observation accuracy resorting to this method cannot meet the requirements of vehicle real-time stability control, especially under extreme driving conditions. The paper explores the solution resorting to experimental method. Firstly, a multi-body dynamic model of a passenger car is built based on the ADAMS/Car software, whose dynamic accuracy is verified by the same vehicle's roadway test data of steady static circular test. Based on this simulation platform, several influencing factors of additional steer angle under different driving conditions are quantitatively analyzed. Then ɛ-SVR algorithm is employed to build the additional steer angle prediction model, whose input vectors mainly include the sensor information of standard electronic stability control system(ESC). The method of typical slalom tests and FMVSS 126 tests are adopted to make simulation, train model and test model's generalization performance. The test result shows that the influence of lateral acceleration on additional steer angle is maximal (the magnitude up to 1°), followed by the longitudinal acceleration-deceleration and the road wave amplitude (the magnitude up to 0.3°). Moreover, both the prediction accuracy and the calculation real-time of the model can meet the control requirements of ESC. This research expands the accurate observation methods of the additional steer angle under extreme driving conditions.

  2. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    Science.gov (United States)

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed.

  3. Ternary Free Energy Lattice Boltzmann Model with Tunable Surface Tensions and Contact Angles

    CERN Document Server

    Semprebon, Ciro; Kusumaatmaja, Halim

    2015-01-01

    We present a new ternary free energy lattice Boltzmann model. The distinguishing feature of our model is that we are able to analytically derive and independently vary all fluid-fluid surface tensions and the solid surface contact angles. We carry out a number of benchmark tests: (i) double emulsions and liquid lenses to validate the surface tensions, (ii) ternary fluids in contact with a square well to compare the contact angles against analytical predictions, and (iii) ternary phase separation to verify that the multicomponent fluid dynamics is accurately captured. Additionally we also describe how the model here presented here can be extended to include an arbitrary number of fluid components.

  4. Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller.

    Science.gov (United States)

    Gelves, Ricardo; Dietrich, A; Takors, Ralf

    2014-03-01

    A combined computational fluid dynamics (CFD) and population balance model (PBM) approach has been applied to simulate hydrodynamics and mass transfer in a 0.18 m(3) gas-liquid stirred bioreactor agitated by (1) a Rushton turbine, and (2) a new pitched blade geometry with rotating cartridges. The operating conditions chosen were motivated by typical settings used for culturing mammalian cells. The effects of turbulence, rotating flow, bubbles breakage and coalescence were simulated using the k-ε, multiple reference frame (MRF), Sliding mesh (SM) and PBM approaches, respectively. Considering the new pitched blade geometry with rotating aeration microspargers, [Formula: see text] mass transfer was estimated to be 34 times higher than the conventional Rushton turbine set-up. Notably, the impeller power consumption was modeled to be about 50 % lower. Independent [Formula: see text] measurements applying the same operational conditions confirmed this finding. Motivated by these simulated and experimental results, the new aeration and stirring device is qualified as a very promising tool especially useful for cell culture applications which are characterized by the challenging problem of achieving relatively high mass transfer conditions while inserting only low stirrer energy.

  5. MATHEMATICAL MODEL OF THE MOTION OF A LIGHT ATTACK AIRCRAFT WITH EXTERNAL LOAD SLINGS IN THE EXTREME AREA OF FLIGHT MODES ACCORDING TO THE ANGLE OF ATTACK

    Directory of Open Access Journals (Sweden)

    A. Popov Sergey

    2017-01-01

    Full Text Available For the time being, a combat-capable trainer aircraft has already been used as a light attack aircraft. The quality of mission effectiveness evaluation depends on the degree of relevance of mathematical models used. It is known that the mis- sion efficiency is largely determined by maneuvering capabilities of the aircraft which are realized most fully in extreme angle of attack flight modes. The article presents the study of the effect of Reynolds number, angle of attack and position on the external sling on the parameters characterizing the state of separated-vortex flow, which was conducted using soft- ware complexes such as Solid Works and Ansys Fluent. There given the dependences of the observed parameters for sta- tionary and nonstationary cases of light attack aircraft movement. The article considers the influence of time constants, which characterize the response rate and delaying of separated flow development and attached flow recovery on the state of separated-vortex flow. The author mentions how the speed of angle of attack change influences lift coefficient of a light attack aircraft with external slings due to response rate and delaying of separated flow development and attached flow recovery. The article describes the mathematical model invented by the authors. This is the model of the movements of light attack aircraft with external slings within a vertical flight maneuver, considering the peculiarities of separated-vortex flow. Using this model, there has been obtained the parameters of light attack aircraft output path from the pitch using large an- gles of attack. It is demonstrated that not considering the peculiarities of the separated-vortex flow model of light attack aircraft movements leads to certain increase of height loss at the pullout of the maneuver, which accordingly makes it pos- sible to decrease the height of the beginning of the pullout.

  6. A unified model for transfer alignment at random misalignment angles based on second-order EKF

    Science.gov (United States)

    Cui, Xiao; Mei, Chunbo; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo

    2017-04-01

    In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles.

  7. A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis

    CERN Document Server

    Colosqui, Carlos E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G

    2012-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo- potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled solid-fluid interface is diffuse, represented by a wall probability function which...

  8. Vortex wake interactions and energy harvesting from tandem pitching and heaving hydrofoils

    Science.gov (United States)

    Su, Yunxing; Cardona, Jennifer; Miller, Michael; Mandre, Shreyas; Breuer, Kenneth

    2016-11-01

    Measurements of flow structure and power extraction by tandem pitching and heaving hydrofoils are conducted in a flume. The leading and trailing hydrofoils are synchronized and aligned parallel to the oncoming flow. Force measurements and time-resolved PIV are used to characterize the system. The system efficiency of tandem foils with the same kinematics is quantified as a function of the phase difference between the foils and there exist favorable and unfavorable phase angles and that system efficiencies can be as large as 0.45. For unfavorable phase angles, PIV indicates that the leading edge vortex generated by the trailing foil, which is critical to good energy harvesting, is weakened by the oncoming wake from the leading foil. Conversely, at a favorable phase, the vortex shed from the leading foil enhances the performance of the trailing foil, compensating for the otherwise negative aspects of operating in the wake. A model, combining frequency, separation distance and a characteristic convection velocity, is introduced to predict the optimal phase region and is validated over a range of parameters. By changing the pitching amplitude and phase angle in trailing foil we show that relatively larger pitching amplitudes can further improve the system efficiency. ARPA-e.

  9. In-blade angle of attack measurement and comparison with models

    Science.gov (United States)

    Gallant, T. E.; Johnson, D. A.

    2016-09-01

    The torque generated by a wind turbine blade is dependent on several parameters, one of which is the angle of attack. Several models for predicting the angle of attack in yawed conditions have been proposed in the literature, but there is a lack of experimental data to use for direct validation. To address this problem, experiments were conducted at the University of Waterloo Wind Generation Research Facility using a 3.4 m diameter test turbine. A five-hole pressure probe was installed in a modular 3D printed blade and was used to measure the angle of attack, a, as a function of several parameters. Measurements were conducted at radial positions of r/R = 0.55 and 0.72 at tip speed ratios of λ = 5.0, 3.6, and 3.1. The yaw offset of the turbine was varied from -15° to +15°. Experimental results were compared directly to angle of attack values calculated using a model proposed by Morote in 2015. Modeled values were found to be in close agreement with the experimental results. The angle of attack was shown to vary cyclically in the yawed case while remaining mostly constant when aligned with the flow, as expected. The quality of results indicates the potential of the developed instrument for wind turbine measurements.

  10. Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces

    Science.gov (United States)

    Janeček, V.; Nikolayev, V. S.

    2013-01-01

    This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20∘ larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.

  11. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.

    Science.gov (United States)

    Raj, Rishi; Enright, Ryan; Zhu, Yangying; Adera, Solomon; Wang, Evelyn N

    2012-11-13

    Understanding the complexities associated with contact line dynamics on chemically heterogeneous and superhydrophobic surfaces is important for a wide variety of engineering problems. Despite significant efforts to capture the behavior of a droplet on these surfaces over the past few decades, modeling of the complex dynamics at the three-phase contact line is needed. In this work, we demonstrate that contact line distortion on heterogeneous and superhydrophobic surfaces is the key aspect that needs to be accounted for in the dynamic droplet models. Contact line distortions were visualized and modeled using a thermodynamic approach to develop a unified model for contact angle hysteresis on chemically heterogeneous and superhydrophobic surfaces. On a surface comprised of discrete wetting defects on an interconnected less wetting area, the advancing contact angle was determined to be independent of the defects, while the relative fraction of the distorted contact line with respect to the baseline surface was shown to govern the receding contact angle. This behavior reversed when the relative wettability of the discrete defects and interconnected area was inverted. The developed model showed good agreement with the experimental advancing and receding contact angles, both at low and high solid fractions. The thermodynamic model was further extended to demonstrate its capability to capture droplet shape evolution during liquid addition and removal in our experiments and those in literature. This study offers new insight extending the fundamental understanding of solid-liquid interactions required for design of advanced functional coatings for microfluidics, biological, manufacturing, and heat transfer applications.

  12. Pitch memory and exposure effects.

    Science.gov (United States)

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-02-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory, long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch," is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well-established premises: (1) frequency of occurrence has an influence on the way we process stimuli; (2) in Western music, some pitches and musical keys are much more frequent than others. Based on these premises, we hypothesize that if absolute pitch values are indeed represented in long-term memory, pitch frequency of occurrence in music would significantly affect cognitive processes, in particular pitch learning and evaluation. Two experiments were designed to test this hypothesis in participants with no absolute pitch, most with little or no musical training. Experiment 1 demonstrated a faster response and a learning advantage for frequent pitches over infrequent pitches in an identification task. In Experiment 2, participants evaluated infrequent pitches as more pleasing than frequent pitches when presented in isolation. These results suggest that absolute pitch representation in memory may play a substantial, hitherto unacknowledged role in auditory (and specifically musical) cognition. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Pitch features of environmental sounds

    Science.gov (United States)

    Yang, Ming; Kang, Jian

    2016-07-01

    A number of soundscape studies have suggested the need for suitable parameters for soundscape measurement, in addition to the conventional acoustic parameters. This paper explores the applicability of pitch features that are often used in music analysis and their algorithms to environmental sounds. Based on the existing alternative pitch algorithms for simulating the perception of the auditory system and simplified algorithms for practical applications in the areas of music and speech, the applicable algorithms have been determined, considering common types of sound in everyday soundscapes. Considering a number of pitch parameters, including pitch value, pitch strength, and percentage of audible pitches over time, different pitch characteristics of various environmental sounds have been shown. Among the four sound categories, i.e. water, wind, birdsongs, and urban sounds, generally speaking, both water and wind sounds have low pitch values and pitch strengths; birdsongs have high pitch values and pitch strengths; and urban sounds have low pitch values and a relatively wide range of pitch strengths.

  14. Vocal Pitch Shift in Congenital Amusia (Pitch Deafness)

    Science.gov (United States)

    Hutchins, Sean; Peretz, Isabelle

    2013-01-01

    We tested whether congenital amusics, who exhibit pitch perception deficits, nevertheless adjust the pitch of their voice in response to a sudden pitch shift applied to vocal feedback. Nine amusics and matched controls imitated their own previously-recorded speech or singing, while the online feedback they received was shifted mid-utterance by 25…

  15. Vocal Pitch Shift in Congenital Amusia (Pitch Deafness)

    Science.gov (United States)

    Hutchins, Sean; Peretz, Isabelle

    2013-01-01

    We tested whether congenital amusics, who exhibit pitch perception deficits, nevertheless adjust the pitch of their voice in response to a sudden pitch shift applied to vocal feedback. Nine amusics and matched controls imitated their own previously-recorded speech or singing, while the online feedback they received was shifted mid-utterance by 25…

  16. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  17. Modeling of Drilling Forces Based on Twist Drill Point Angles Using Multigene Genetic Programming

    Directory of Open Access Journals (Sweden)

    Myong-Il Kim

    2016-01-01

    Full Text Available The mathematical model was developed for predicting the influence of the drill point angles on the cutting forces in drilling with the twist drills, which was used to optimize those angles for reducing drilling forces. The approach was based on multigene genetic programming, for the training data, the grinding tests of twist drill were firstly conducted for the different drill point angles in Biglide parallel machine, and then drilling tests were performed on carbon fiber reinforced plastics using the grinded drills. The effectiveness of the proposed approach was verified through comparing with published data. It was found that the proposed model agreed well with the experimental data and was useful for improving the performance of twist drill.

  18. Bending Angle Prediction Model Based on BPNN-Spline in Air Bending Springback Process

    Directory of Open Access Journals (Sweden)

    Zhefeng Guo

    2017-01-01

    Full Text Available In order to rapidly and accurately predict the springback bending angle in V-die air bending process, a springback bending angle prediction model on the combination of error back propagation neural network and spline function (BPNN-Spline is presented in this study. An orthogonal experimental sample set for training BPNN-Spline is obtained by finite element simulation. Through the analysis of network structure, the BPNN-Spline black box function of bending angle prediction is established, and the advantage of BPNN-Spline is discussed in comparison with traditional BPNN. The results show a close agreement with simulated and experimental results by application examples, which means that the BPNN-Spline model in this study has higher prediction accuracy and better applicable ability. Therefore, it could be adopted in a numerical control bending machine system.

  19. Review of Advances in Cobb Angle Calculation and Image-Based Modelling Techniques for Spinal Deformities

    Science.gov (United States)

    Giannoglou, V.; Stylianidis, E.

    2016-06-01

    Scoliosis is a 3D deformity of the human spinal column that is caused from the bending of the latter, causing pain, aesthetic and respiratory problems. This internal deformation is reflected in the outer shape of the human back. The golden standard for diagnosis and monitoring of scoliosis is the Cobb angle, which refers to the internal curvature of the trunk. This work is the first part of a post-doctoral research, presenting the most important researches that have been done in the field of scoliosis, concerning its digital visualisation, in order to provide a more precise and robust identification and monitoring of scoliosis. The research is divided in four fields, namely, the X-ray processing, the automatic Cobb angle(s) calculation, the 3D modelling of the spine that provides a more accurate representation of the trunk and the reduction of X-ray radiation exposure throughout the monitoring of scoliosis. Despite the fact that many researchers have been working on the field for the last decade at least, there is no reliable and universal tool to automatically calculate the Cobb angle(s) and successfully perform proper 3D modelling of the spinal column that would assist a more accurate detection and monitoring of scoliosis.

  20. REVIEW OF ADVANCES IN COBB ANGLE CALCULATION AND IMAGE-BASED MODELLING TECHNIQUES FOR SPINAL DEFORMITIES

    Directory of Open Access Journals (Sweden)

    V. Giannoglou

    2016-06-01

    Full Text Available Scoliosis is a 3D deformity of the human spinal column that is caused from the bending of the latter, causing pain, aesthetic and respiratory problems. This internal deformation is reflected in the outer shape of the human back. The golden standard for diagnosis and monitoring of scoliosis is the Cobb angle, which refers to the internal curvature of the trunk. This work is the first part of a post-doctoral research, presenting the most important researches that have been done in the field of scoliosis, concerning its digital visualisation, in order to provide a more precise and robust identification and monitoring of scoliosis. The research is divided in four fields, namely, the X-ray processing, the automatic Cobb angle(s calculation, the 3D modelling of the spine that provides a more accurate representation of the trunk and the reduction of X-ray radiation exposure throughout the monitoring of scoliosis. Despite the fact that many researchers have been working on the field for the last decade at least, there is no reliable and universal tool to automatically calculate the Cobb angle(s and successfully perform proper 3D modelling of the spinal column that would assist a more accurate detection and monitoring of scoliosis.

  1. Effects of grit roughness and pitch oscillations on the S810 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, R.R.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-01-01

    An S810 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory 3 x 5 subsonic wind tunnel under steady state and unsteady conditions. The test defined baseline conditions for steady state angles of attack from -20{degrees} to +40{degrees} and examined unsteady behavior by oscillating the model about its pitch axis for three mean angles, three frequencies, and two amplitudes. For all cases, Reynolds numbers of 0.75, 1, 1.25, and 1.5 million were used. In addition, the above conditions were repeated after the application of leading edge grit roughness (LEGR) to determine contamination effects on the airfoil performance. Baseline steady state results of the S810 testing showed a maximum lift coefficient of 1.15 at 15.2{degrees}angle of attack. The application of LEGR reduced the maximum lift coefficient by 12% and increased the 0.0085 minimum drag coefficient value by 88%. The zero lift pitching moment of -0.0286 showed a 16% reduction in magnitude to -0.0241 with LEGR applied. Data were also obtained for two pitch oscillation amplitudes: {plus_minus}5.5{degrees} and {plus_minus}10{degrees}. The larger amplitude consistently gave a higher maximum lift coefficient than the smaller amplitude and both sets of unsteady maximum lift coefficients were greater than the steady state values. Stall was delayed on the airfoil while the angle of attack was increasing, thereby causing an increase in maximum lift coefficient. A hysteresis behavior was exhibited for all the unsteady test cases. The hysteresis loops were larger for the higher reduced frequencies and for the larger amplitude oscillations. In addition to the hysteresis behavior, an unusual feature of these data were a sudden increase in the lift coefficient where the onset of stall was expected. As in the steady case, the effect of LEGR in the unsteady case was to reduce the lift coefficient at high angles of attack.

  2. Effects of grit roughness and pitch oscillations on the LS(1)-0417MOD airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, J.M.; Ramsay, R.R.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-01-01

    Horizontal axis wind turbine rotors experience unsteady aerodynamics due to wind shear when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the calculations of rotor performance and loads. The rotors also experience performance degradation caused by surface roughness. These surface irregularities are due to the accumulation of insect debris, ice, and/or the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can be used to validate analytical computer codes. An LS(l)-0417MOD airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3{times}5 subsonic wind tunnel (3{times}5) under steady flow and stationary model conditions, as well as with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, 1.25, and 1.5 million, while the angle of attack ranged from {minus}20{degrees} to +40{degrees}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.5 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used, {plus_minus} 5.5%{degrees} and {plus_minus} 10{degrees}, at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For purposes herein, any reference to unsteady conditions foil model was in pitch oscillation about the quarter chord.

  3. Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment

    DEFF Research Database (Denmark)

    Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth

    1996-01-01

    Small-angle neutron scattering data obtained from fully hydrated, multilamellar phospholipid bilayers with deuterated acyl chains of different length are presented and analyzed within a paracrystalline theory and a geometric model that permit the bilayer structure to be determined under condition...

  4. Effect of the bifurcation angle on the flow within a synthetic model of lower human airways

    Science.gov (United States)

    Espinosa Moreno, Andres Santiago; Duque Daza, Carlos Alberto

    2016-11-01

    The effect of the bifurcation angle on the flow pattern developed during respiratory inhalation and exhalation processes was explored numerically using a synthetic model of lower human airways featuring three generations of a dichotomous morphology as described by a Weibel model. Laminar flow simulations were performed for six bifurcation angles and four Reynolds numbers relevant to human respiratory flow. Numerical results of the inhalation process showed a peak displacement trend of the velocity profile towards the inner walls of the model. This displacement exhibited correlation with Dean-type secondary flow patterns, as well as with the onset and location of vortices. High wall shear stress regions on the inner walls were observed for a range of bifurcation angles. Noteworthy, specific bifurcation angles produced higher values of pressure drop, compared to the average behavior, as well as changes in the volumetric flow through the branches. Results of the simulations for exhalation process showed a different picture, mainly the appearance of symmetrical velocity profiles and the change of location of the regions of high wall shear stress. The use of this modelling methodology for biomedical applications is discussed considering the validity of the obtained results. Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  5. Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F.

    2006-01-01

    We present a mesoscopic model, based on the Boltzmann equation, for the interaction between a solid wall and a nonideal fluid. We present an analytic derivation of the contact angle in terms of the surface tension between the liquid-gas, the liquid-solid, and the gas-solid phases. We study the depen

  6. Vortex interaction of tandem pitching and plunging plates: a two-dimensional model of hovering dragonfly-like flight

    Energy Technology Data Exchange (ETDEWEB)

    Rival, David; Schoenweitz, Dirk; Tropea, Cameron, E-mail: derival@ucalgary.ca [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Darmstadt (Germany)

    2011-03-15

    The force evolution and associated vortex dynamics on a nominal two-dimensional tandem pitching and plunging configuration inspired by hovering dragonfly-like flight have been investigated experimentally using time-resolved particle image velocimetry. The aerodynamic forces acting on the flat plates have been determined using a classic control-volume approach, i.e. a momentum balance. It was found that only the tandem phasing of {psi} = 90{sup 0} was capable of generating similar levels of thrust when compared to the single-plate reference case. For this tandem configuration, however, a much more constant thrust generation was developed over the cycle. Further examination showed that the force and vortex development on the fore-plate was unaffected by the tandem configuration and that nearly all variations in performance could be attributed to the vortex interaction on the hind-plate. By calculating the trajectory and strength of the hind-plate's trailing-edge vortex, the chain-like vortex interaction mechanism responsible for improved performance at {psi} = 90{sup 0} could be identified. The underlying result from this study suggests that the dominant vortex interaction in dragonfly flight is two dimensional and that the spanwise flow generated by root-flapping kinematics is not entirely necessary for efficient propulsion but potentially due to evolutionary restrictions in nature.

  7. Vortex interaction of tandem pitching and plunging plates: a two-dimensional model of hovering dragonfly-like flight.

    Science.gov (United States)

    Rival, David; Schönweitz, Dirk; Tropea, Cameron

    2011-03-01

    The force evolution and associated vortex dynamics on a nominal two-dimensional tandem pitching and plunging configuration inspired by hovering dragonfly-like flight have been investigated experimentally using time-resolved particle image velocimetry. The aerodynamic forces acting on the flat plates have been determined using a classic control-volume approach, i.e. a momentum balance. It was found that only the tandem phasing of ψ = 90° was capable of generating similar levels of thrust when compared to the single-plate reference case. For this tandem configuration, however, a much more constant thrust generation was developed over the cycle. Further examination showed that the force and vortex development on the fore-plate was unaffected by the tandem configuration and that nearly all variations in performance could be attributed to the vortex interaction on the hind-plate. By calculating the trajectory and strength of the hind-plate's trailing-edge vortex, the chain-like vortex interaction mechanism responsible for improved performance at ψ = 90° could be identified. The underlying result from this study suggests that the dominant vortex interaction in dragonfly flight is two dimensional and that the spanwise flow generated by root-flapping kinematics is not entirely necessary for efficient propulsion but potentially due to evolutionary restrictions in nature.

  8. Radiative generation of quark masses and mixing angles in the two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Alejandro [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany); Solaguren-Beascoa, Ana [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2014-09-07

    We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zeroth order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo–Kobayashi–Maskawa matrix are generated at first order, hence explaining the observed hierarchy |V{sub ub}|,|V{sub cb}|≪|V{sub us}|. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale.

  9. Radiative generation of quark masses and mixing angles in the two Higgs doublet model

    Directory of Open Access Journals (Sweden)

    Alejandro Ibarra

    2014-09-01

    Full Text Available We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zeroth order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo–Kobayashi–Maskawa matrix are generated at first order, hence explaining the observed hierarchy |Vub|,|Vcb|≪|Vus|. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale.

  10. Radiative Generation of Quark Masses and Mixing Angles in the Two Higgs Doublet Model

    CERN Document Server

    Ibarra, Alejandro

    2014-01-01

    We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zero-th order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo-Kobayashi-Maskawa matrix are generated at first order, hence explaining the observed hierarchy $|V_{ub}|,|V_{cb}|\\ll |V_{us}|$. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale.

  11. Modeling Spatio-Temporal Dynamics of Optimum Tilt Angles for Solar Collectors in Turkey

    Directory of Open Access Journals (Sweden)

    Recep Kulcu

    2008-05-01

    Full Text Available Quantifying spatial and temporal variations in optimal tilt angle of a solar collector relative to a horizontal position assists in maximizing its performance for energy collection depending on changes in time and space. In this study, optimal tilt angles were quantified for solar collectors based on the monthly global and diffuse solar radiation on a horizontal surface across Turkey. The dataset of monthly average daily global solar radiation was obtained from 158 places, and monthly diffuse radiation data were estimated using an empirical model in the related literature. Our results showed that high tilt angles during the autumn (September to November and winter (December to February and low tilt angles during the summer (March to August enabled the solar collector surface to absorb the maximum amount of solar radiation. Monthly optimum tilt angles were estimated devising a sinusoidal function of latitude and day of the year, and their validation resulted in a high R2 value of 98.8%, with root mean square error (RMSE of 2.06o.

  12. An MPC approach to individual pitch control of wind turbines using uncertain LIDAR measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad;

    2013-01-01

    Spatial distribution of the wind field exerts unbalanced loads on wind turbine structures and it is shown these loads could be mitigated by controlling each blade’s angle individually (individual pitch control). In this work the problem of individual pitch control of a variable-speed variablepitch...... wind turbine in the full load region is considered. Model predictive control (MPC) is used to solve the problem. A new approach is proposed to simplify the optimization problem of MPC. We linearize the obtained nonlinear model for different operating points which are determined by the effective wind...... speed on the rotor disc and take the wind speed as a scheduling variable. The wind speed is measurable ahead of the turbine using LIDARs, therefore the scheduling variable is known for the entire prediction horizon. We consider uncertainty in the wind propagation, which is the traveling time of wind...

  13. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    Science.gov (United States)

    Thøgersen, E.; Tranberg, B.; Herp, J.; Greiner, M.

    2017-05-01

    The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms.

  14. Gaze estimation for off-angle iris recognition based on the biometric eye model

    Science.gov (United States)

    Karakaya, Mahmut; Barstow, Del; Santos-Villalobos, Hector; Thompson, Joseph; Bolme, David; Boehnen, Christopher

    2013-05-01

    Iris recognition is among the highest accuracy biometrics. However, its accuracy relies on controlled high quality capture data and is negatively affected by several factors such as angle, occlusion, and dilation. Non-ideal iris recognition is a new research focus in biometrics. In this paper, we present a gaze estimation method designed for use in an off-angle iris recognition framework based on the ORNL biometric eye model. Gaze estimation is an important prerequisite step to correct an off-angle iris images. To achieve the accurate frontal reconstruction of an off-angle iris image, we first need to estimate the eye gaze direction from elliptical features of an iris image. Typically additional information such as well-controlled light sources, head mounted equipment, and multiple cameras are not available. Our approach utilizes only the iris and pupil boundary segmentation allowing it to be applicable to all iris capture hardware. We compare the boundaries with a look-up-table generated by using our biologically inspired biometric eye model and find the closest feature point in the look-up-table to estimate the gaze. Based on the results from real images, the proposed method shows effectiveness in gaze estimation accuracy for our biometric eye model with an average error of approximately 3.5 degrees over a 50 degree range.

  15. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: slip, films, and contact-angle hysteresis.

    Science.gov (United States)

    Colosqui, Carlos E; Kavousanakis, Michail E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G

    2013-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo-potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled fluid-solid interface is diffuse, represented by a wall probability function that ultimately controls the momentum exchange between solid and fluid phases. This approach allows us to effectively vary the slip length for a given wettability (i.e., a given static contact angle) of the solid substrate.

  16. Gaze Estimation for Off-Angle Iris Recognition Based on the Biometric Eye Model

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Mahmut [ORNL; Barstow, Del R [ORNL; Santos-Villalobos, Hector J [ORNL; Thompson, Joseph W [ORNL; Bolme, David S [ORNL; Boehnen, Chris Bensing [ORNL

    2013-01-01

    Iris recognition is among the highest accuracy biometrics. However, its accuracy relies on controlled high quality capture data and is negatively affected by several factors such as angle, occlusion, and dilation. Non-ideal iris recognition is a new research focus in biometrics. In this paper, we present a gaze estimation method designed for use in an off-angle iris recognition framework based on the ANONYMIZED biometric eye model. Gaze estimation is an important prerequisite step to correct an off-angle iris images. To achieve the accurate frontal reconstruction of an off-angle iris image, we first need to estimate the eye gaze direction from elliptical features of an iris image. Typically additional information such as well-controlled light sources, head mounted equipment, and multiple cameras are not available. Our approach utilizes only the iris and pupil boundary segmentation allowing it to be applicable to all iris capture hardware. We compare the boundaries with a look-up-table generated by using our biologically inspired biometric eye model and find the closest feature point in the look-up-table to estimate the gaze. Based on the results from real images, the proposed method shows effectiveness in gaze estimation accuracy for our biometric eye model with an average error of approximately 3.5 degrees over a 50 degree range.

  17. Controls on stream network branching angles, tested using landscape evolution models

    Science.gov (United States)

    Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.

    2016-04-01

    Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349

  18. Chatter Prediction for Variable Pitch and Variable Helix Milling

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-01-01

    Full Text Available Regenerative chatter is a self-excited vibration that can occur during milling, which shortens the lifetime of the tool and results in unacceptable surface quality. In this paper, an improved semidiscretization method for modeling and simulation with variable pitch and variable helix milling is proposed. Because the delay between each flute varies along the axial depth of the tool in milling, the cutting tool is discrete into some axial layers to simplify calculation. A comparison of the predicted and observed performance of variable pitch and variable helix against uniform pitch and uniform helix milling is presented. It is shown that variable pitch and variable helix milling can obtain larger stable cutting area than uniform pitch and uniform helix milling. Thus, it is concluded that variable pitch and variable helix milling are an effective way for suppressing chatter.

  19. Modeling and measurement of angle-beam wave propagation in a scatterer-free plate

    Science.gov (United States)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2017-02-01

    Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.

  20. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.

    Science.gov (United States)

    Ba, Yan; Liu, Haihu; Sun, Jinju; Zheng, Rongye

    2013-10-01

    Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.

  1. Variable structure strategy to avoid amplitude and rate saturation in pitch control of a wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Garelli, Fabricio; Camocardi, Pablo [CONICET, LEICI, Depto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900), La Plata (Argentina); Mantz, Ricardo J. [CICpBA, LEICI, Depto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900), La Plata (Argentina)

    2010-06-15

    This work proposes the application of a recent compensation technique for input constraints avoidance to the pitch control of a wind turbine. The pitch angle actuators commonly present a hard limit on their rate of change together with the natural amplitude saturation, and a dynamics during their unconstrained operation that can be modeled as a first-order linear system. This dynamic behavior of the pitch actuator requires a particular design of the compensation method, which is based on variable structure systems to avoid both amplitude and rate input saturation by means of an auxiliary loop. The developed methodology reduces the pitch actuator activity necessary to regulate the generated power around its nominal value when facing sudden wind gusts. Another interesting feature of the proposal is that it allows the operator to fix conservative bounds for the actuator speed operation in order to increment the structural robustness of the wind turbine and to extend in this way the service life of the energy system. The effectiveness of the proposed strategy is evaluated by simulation results in an autonomous wind energy conversion system for water pumping with a brushless double feed induction generator (BDFIG). (author)

  2. Pitch Analysis of Ukulele

    Directory of Open Access Journals (Sweden)

    Suphattharachai Chomphan

    2012-01-01

    Full Text Available Problem statement: The ukulele is a trendy instrument in the present day. It is a member of the guitar family of instruments which employs four nylon or gut strings or four courses of strings. However, a statistical analysis of the pitch of this instrument has not been conducted. To analysis pitch or fundamental frequency of its main cords should be performed in an appropriate way. This study brings about its effective sound synthesis which is an important issue in the future. Approach: An efficient technique for the analysis of the fundamental frequency (F0 of the human speech had been applied to the analysis of main cords of the ukulele. The autocorrelation-based technique was used with the signal waveform to extract the optimal period or pitch for the corresponding analyzed frame in time domain. Then the corresponding fundamental frequency was calculated in the frequency domain. Results: The 21 main cords were chosen in the study. It had been seen that the existing fundamental frequency values were varied from one to three values. The value was ranging from 65.42 Hz-329.93 Hz. Conclusion: By using the analysis technique of fundamental frequency of the human speech, the output frequencies of all main cords can be extracted. It can be empirically seen that they have their unique values from each others."

  3. A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.

    Science.gov (United States)

    Smith, E R; Müller, E A; Craster, R V; Matar, O K

    2016-12-06

    Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.

  4. Small-angle scattering from precipitates: Analysis by use of a polydisperse hard-sphere model

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    A general polydisperse hard-sphere model for analyzing small-angle-scattering data from spherical precipitates in alloys is presented. In the model the size distribution is chosen as a Weibull density distribution and the hard-sphere interaction radius is taken as being proportional to the radius...... very good fits to the experimental data and the results are in agreement with a Li content of 25% in the precipitates. The concentration of Li in the matrix is also in good agreement with the phase diagram of Al-Li found in the literature. Results from the application of a monodisperse hard-sphere...... of the precipitates. The Weibull distribution is monomodal, and depending on the parameters describing the distribution, it can skew to either side. Small-angle x-ray- and neutron-scattering data, taken from the literature, from spherical delta' precipitates in Al-Li alloys have been analyzed with the model. It gives...

  5. Running Effects on Lepton Mixing Angles in Flavour Models with Type I Seesaw

    CERN Document Server

    Lin, Y; Paris, A

    2009-01-01

    We study renormalization group running effects on neutrino mixing patterns when a (type I) seesaw model is implemented by suitable flavour symmetries. We are particularly interested in mass-independent mixing patterns to which the widely studied tribimaximal mixing pattern belongs. In this class of flavour models, the running contribution from neutrino Yukawa coupling, which is generally dominant at energies above the seesaw threshold, can be absorbed by a small shift on neutrino mass eigenvalues leaving mixing angles unchanged. Consequently, in the whole running energy range, the change in mixing angles is due to the contribution coming from charged lepton sector. Subsequently, we analyze in detail these effects in an explicit flavour model for tribimaximal neutrino mixing based on an A4 discrete symmetry group. We find that for normally ordered light neutrinos, the tribimaximal prediction is essentially stable under renormalization group evolution. On the other hand, in the case of inverted hierarchy, the d...

  6. Development of a Passively Varying Pitch Propeller

    Science.gov (United States)

    Heinzen, Stearns Beamon

    Small general aviation aircraft and unmanned aerial systems are often equipped with sophisticated navigation, control, and other avionics, but retain propulsion systems consisting of retrofitted radio control and ultralight equipment. Consequently, new high performance airframes often rely on relatively primitive propulsive technology. This trend is beginning to shift with recent advances in small turboprop engines, fuel injected reciprocating engines, and improved electric technologies. Although these systems are technologically advanced, they are often paired with standard fixed pitch propellers. To fully realize the potential of these aircraft and the new generation of engines, small propellers which can efficiently transmit power over wide flight envelopes and a variety of power settings must be developed. This work demonstrates a propeller which passively adjusts to incoming airflow at a low penalty to aircraft weight and complexity. This allows the propeller to operate in an efficient configuration over a wide flight envelope, and can prevent blade stall in low-velocity / highly-loaded thrust cases and over-speeding at high flight speeds. The propeller incorporates blades which pivot freely on a radial axis and are aerodynamically tailored to attain and maintain a pitch angle yielding favorable local blade angles of attack, matched to changing inflow conditions. This blade angle is achieved through the use of reflexed airfoils designed for a positive pitching moment, comparable to those used on many tailless flying wings. By setting the axis of rotation at a point forward of the blade aerodynamic center, the blades will naturally adjust to a predetermined positive lift 'trim' condition. Then, as inflow conditions change, the blade angle will automatically pivot to maintain the same angle with respect to incoming air. Computational, wind tunnel, and flight test results indicate that the extent of efficient propeller operation can be increased dramatically as

  7. Model benchmarking and reference signals for angled-beam shear wave ultrasonic nondestructive evaluation (NDE) inspections

    Science.gov (United States)

    Aldrin, John C.; Hopkins, Deborah; Datuin, Marvin; Warchol, Mark; Warchol, Lyudmila; Forsyth, David S.; Buynak, Charlie; Lindgren, Eric A.

    2017-02-01

    For model benchmark studies, the accuracy of the model is typically evaluated based on the change in response relative to a selected reference signal. The use of a side drilled hole (SDH) in a plate was investigated as a reference signal for angled beam shear wave inspection for aircraft structure inspections of fastener sites. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Increased error was observed with the simulation of angled shear wave beams in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. To achieve quality model benchmark results for this problem, it is critical to carefully align the probe with the part geometry, to verify symmetry in probe response, and ideally avoid using reference signals from the near-field response. Suggested reference signals for angled beam shear wave inspections include using the `through hole' corner specular reflection signal and the full skip' signal off of the far wall from the side drilled hole.

  8. 基于频谱建模合成技术的自动音调修正系统❋%An Automatic Pitch Correction System Based on Spectral Modeling Synthesis Technique

    Institute of Scientific and Technical Information of China (English)

    杨楠

    2016-01-01

    Pitch correction with preservation of timbre has been a difficult technical issue that hinders the development of music applications.To address this problem,a spectral modeling synthesis (SMS)based automatic pitch correction system is proposed.It extracts the pitch contour in real time with voiced/unvoiced decision and pitch detection.The extracted pitch contour is then compared with the reference pitches such that the detuned parts can be determined.Finally,the proposed SMS based method is applied to the voice to correct the pitches,preserving the timbre by preserving the spectral envelop. Experimental results suggest that the proposed system can provide good pitch correction effect.%保留音色的音调修正问题一直是困扰音乐类应用发展的技术难题。论文结合自动修音的应用需求,实现了一套基于频谱建模合成(Spectral Modeling Synthesis,SMS)技术的自动音调修正系统。它通过清浊音判决和音调检测来实时提取歌声的音调(音高),并与正确的参考音调(乐谱)进行对比,确定需要修正的跑调部分,最后采用论文提出的一种基于SMS技术的合成方法对歌声进行音调修正,通过保留其原有的频谱包络来确保修正后音色不变。论文对系统的清浊音判决算法和音调检测算法进行了客观评价,对歌声音调修正效果进行了主观听音评价,均达到了良好的效果。

  9. Bifurcation analysis of polynomial models for longitudinal motion at high angle of attack

    Institute of Scientific and Technical Information of China (English)

    Shi Zhongke; Fan Li

    2013-01-01

    To investigate the longitudinal motion stability of aircraft maneuvers conveniently,a new stability analysis approach is presented in this paper.Based on describing longitudinal aerodynamics at high angle-of-attack (α < 50°) motion by polynomials,a union structure of two-order differential equation is suggested.By means of nonlinear theory and method,analytical and global bifurcation analyses of the polynomial differential systems are provided for the study of the nonlinear phenomena of high angle-of-attack flight.Applying the theories of bifurcations,many kinds of bifurcations,such as equilibrium,Hopf,homoclinic (heteroclinic) orbit and double limit cycle bifurcations are discussed and the existence conditions for these bifurcations as well as formulas for calculating bifurcation curves are derived.The bifurcation curves divide the parameter plane into several regions; moreover,the complete bifurcation diagrams and phase portraits in different regions are obtained.Finally,our conclusions are applied to analyzing the stability and bifurcations of a practical example of a high angle-of-attack flight as well as the effects of elevator deflection on the asymptotic stability regions of equilibrium.The model and analytical methods presented in this paper can be used to study the nonlinear flight dynamic of longitudinal stall at high angle of attack.

  10. Pickup Ion Acceleration at the Solar Wind Termination Shock Based on a Focused Transport Approach Including a q-Gaussian Turbulence Model of Variations in the Spiral Magnetic Field Angle

    Science.gov (United States)

    Ye, J.; le Roux, J. A.; Arthur, A. D.

    2015-12-01

    Voyager spacecraft observations indicate that interstellar pickup ions are accelerated to ~1 MeV locally at the solar wind termination shock. We present modeling results of the diffusive shock acceleration (DSA) of locally born interstellar pickup ions at the solar wind termination shock by solving the standard focused transport equation numerically. Local time variations in the Parker spiral magnetic field angle are modeled using a q-Gaussian statistical description. The main results are: (1) The injection and DSA of pickup ions depends on the shape and width of the q-Gaussian distribution of the Parker spiral magnetic field angle. (2) Likewise, the accelerated pickup ion pitch-angle distribution also depends on the q-Gaussian distribution of the magnetic field angle. (3) The simulated accelerated pickup ion spectrum is much quieter far downstream than just behind the termination shock as observations show. (4) Magnetic reflection of accelerated pickup ions by the cross-shock magnetic field gradient results in the sporadic formation of highly anisotropic, energy-dependent intensity spikes in the accelerated pickup proton distribution at the termination shock.

  11. Incoherent scatter plasma lines at angles with the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, A.; Bjorna, N.; Lilensten, J. (Auroral Observatory, Tromso (Norway) Centre d' Etude des Phenomenes Aleatoires et Geophysiques, St.-Martin-d' Heres (France))

    1992-11-01

    The detectability and damping of photoelectron-enhanced plasma lines, as measured with the EISCAT UHF radar at off-field angles are evaluated, and the measured plasma line intensities are compared to the intensities computed from modeled photoelectron fluxes. It was found that, when allowing for a pitch angle dependence in the flux, the plasma line temperatures can be predicted to within a very good accuracy at altitudes where remnants of the N2 excitation dip are no longer present in the photoelectron distribution. 35 refs.

  12. Angle- and distance-constrained matcher with parallel implementations for model-based vision

    Science.gov (United States)

    Anhalt, David J.; Raney, Steven; Severson, William E.

    1992-02-01

    The matching component of a model-based vision system hypothesizes one-to-one correspondences between 2D image features and locations on the 3D model. As part of Wright Laboratory's ARAGTAP program [a synthetic aperture radar (SAR) object recognition program], we developed a matcher that searches for feature matches based on the hypothesized object type and aspect angle. Search is constrained by the presumed accuracy of the hypothesized aspect angle and scale. These constraints reduce the search space for matches, thus improving match performance and quality. The algorithm is presented and compared with a matcher based on geometric hashing. Parallel implementations on commercially available shared memory MIMD machines, distributed memory MIMD machines, and SIMD machines are presented and contrasted.

  13. The change of GRB polarization angles in the magnetic-dominated jet model

    CERN Document Server

    Chang, Zhe

    2014-01-01

    The polarimetric measurement on the prompt phase of GRB 100826A shows that the polarization angle changes $\\sim 90^{\\circ}$ between two adjacent time intervals. This phenomenon can be naturally interpreted in the framework of the magnetic-dominated-jet (MDJ) model. The MDJ model suggests that the bulk Lorentz factor of outflow increases as $\\Gamma\\propto r^{1/3}$ until reaching a saturated value $\\Gamma_{\\rm sat}$. Electrons move in the magnetic field and produce synchrotron photons. A beam of synchrotron photons travel alone the jet direction and then collide with the cold electrons at the front of the jet. After the Compton scattering process, these photons are detected by the observer locating slightly off-axis. If photons are emitted before the bulk Lorentz factor saturates, the change of polarization angle is a natural result of the acceleration of outflow.

  14. Analysis of Pitch Gear Deterioration using Indicators

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    This work concerns a case study in the context of risk-based operation and maintenance of offshore wind turbines. For wind turbines with electrical pitch systems, deterioration can generally be observed at the pitch gear teeth; especially at the point where the blades are located during normal...... of the damage, and can be used for Bayesian updating of a damage model used for risk-based decision making. For this decision problem, the risk of failure should be compared to the cost of preventive maintenance. The hypothesis that the maximum pitch motor torque is an indicator of the damage size is supported...... by results from a measurement campaign where measurements are available both before and after maintenance was performed. The loads dramatically decreased after the maintenance. However, after a few more months of measurements, and by including data from the SCADA system, it became obvious that seasonal...

  15. Intelligent control for large-scale variable speed variable pitch wind turbines

    Institute of Scientific and Technical Information of China (English)

    Xinfang ZHANG; Daping XU; Yibing LIU

    2004-01-01

    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  16. Joint DOA and multi-pitch estimation based on subspace techniques

    Science.gov (United States)

    Xi Zhang, Johan; Christensen, Mads Græsbøll; Jensen, Søren Holdt; Moonen, Marc

    2012-12-01

    In this article, we present a novel method for high-resolution joint direction-of-arrivals (DOA) and multi-pitch estimation based on subspaces decomposed from a spatio-temporal data model. The resulting estimator is termed multi-channel harmonic MUSIC (MC-HMUSIC). It is capable of resolving sources under adverse conditions, unlike traditional methods, for example when multiple sources are impinging on the array from approximately the same angle or similar pitches. The effectiveness of the method is demonstrated on a simulated an-echoic array recordings with source signals from real recorded speech and clarinet. Furthermore, statistical evaluation with synthetic signals shows the increased robustness in DOA and fundamental frequency estimation, as compared with to a state-of-the-art reference method.

  17. Integrative structural modeling with small angle X-ray scattering profiles

    Directory of Open Access Journals (Sweden)

    Schneidman-Duhovny Dina

    2012-07-01

    Full Text Available Abstract Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types.

  18. Lower pitch is larger, yet falling pitches shrink.

    Science.gov (United States)

    Eitan, Zohar; Schupak, Asi; Gotler, Alex; Marks, Lawrence E

    2014-01-01

    Experiments using diverse paradigms, including speeded discrimination, indicate that pitch and visually-perceived size interact perceptually, and that higher pitch is congruent with smaller size. While nearly all of these studies used static stimuli, here we examine the interaction of dynamic pitch and dynamic size, using Garner's speeded discrimination paradigm. Experiment 1 examined the interaction of continuous rise/fall in pitch and increase/decrease in object size. Experiment 2 examined the interaction of static pitch and size (steady high/low pitches and large/small visual objects), using an identical procedure. Results indicate that static and dynamic auditory and visual stimuli interact in opposite ways. While for static stimuli (Experiment 2), higher pitch is congruent with smaller size (as suggested by earlier work), for dynamic stimuli (Experiment 1), ascending pitch is congruent with growing size, and descending pitch with shrinking size. In addition, while static stimuli (Experiment 2) exhibit both congruence and Garner effects, dynamic stimuli (Experiment 1) present congruence effects without Garner interference, a pattern that is not consistent with prevalent interpretations of Garner's paradigm. Our interpretation of these results focuses on effects of within-trial changes on processing in dynamic tasks and on the association of changes in apparent size with implied changes in distance. Results suggest that static and dynamic stimuli can differ substantially in their cross-modal mappings, and may rely on different processing mechanisms.

  19. Apparent contact angles induced by evaporation into air: interferometric measurements and lubrication-type modeling

    Science.gov (United States)

    Colinet, Pierre; Tsoumpas, Yannis; Dehaeck, Sam; Rednikov, Alexey

    2014-11-01

    For volatile liquids, finite contact angles on solid substrates can occur even in the case of perfect wetting, immobile contact lines and ideally smooth surfaces. This is a fluid-dynamic effect due to evaporation typically intensifying towards a small vicinity of the contact line. In the present talk, we first overview recent theoretical results on the subject, where we focus primarily on the case of diffusion-limited evaporation into air. The model is based upon the so-called de Gennes' paradigm, incorporating simultaneously the spreading coefficient and the disjoining pressure in the form of an inverse cubic law. Then we carry out comparison with experimental results for the contact angles of evaporating sessile drops of several perfectly-wetting HFE liquids of different volatility recently obtained by Mach-Zehnder interferometry. The scaling-type theoretical prediction for the apparent contact angle is found to be in good agreement with experimental measurements. Another model based upon the Kelvin effect (curvature dependence of the saturation conditions) is also briefly discussed, an important conceptual feature of which being that contact-line singularities (both evaporation- and motion-induced) can be fully regularized, in contrast with the first model. Support from ESA, BELSPO and FRS-FNRS is gratefully acknowledged.

  20. A Langevin model for the Dynamic Contact Angle Parameterised Using Molecular Dynamics

    Science.gov (United States)

    Smith, Edward; Muller, Erich; Craster, Richard; Matar, Omar

    2016-11-01

    An understanding of droplet spreading is essential in a diverse range of applications, including coating processes, dip feed reactors, crop spraying and biomedical treatments such as surfactant replacement theory. The default modelling tools for engineering fluid dynamics assume that the continuum hypothesis is valid. The contact line motion is very difficult to capture in this paradigm and requires some form of closure model, often tuned a priori to experiments. Molecular dynamics (MD), by assuming only an inter-molecular potential, reproduces the full detail of the three-phase contact line with no additional modelling assumptions. This provides an ideal test-bed to understand contact line motion. In this talk, MD results for a sheared liquid bridge are presented. The evolution and fluctuations of the dynamic contact angle are paramterised over a range of wall sliding speeds and temperatures. A Langevin model is proposed to reproduce the fluctuations and evolution of the contact angle. Results from this model are compared to molecular simulation data showing excellent agreement. The potential applications of this model, as well as limitation and possible extensions, are discussed. EPSRC UK platform Grant MACIPh (EP/L020564/1).

  1. 大型风力机恒功率桨距非线性PID控制方法研究%RESEARCH ON BLADE PITCH NONLINEAR PID CONTROL FOR A LARGE-SCALE WIND TURBINE UNDER CONSTANT POWER

    Institute of Scientific and Technical Information of China (English)

    郑黎明; 林宇; 陈严; 吴捷

    2012-01-01

    建立了基于功率/桨距敏感性的变桨系统模型,综合出桨距非线性PID控制方法.通过Bladed软件计算不同桨距角下功率变化的敏感性,在Bladed外部控制器条件下,获得该方法和固有方法下系统输出的对照结果并进行分析和总结.%A new pitch regulation model based on power-pitch sensitivity was derived, and pitch nonlinear PID control was designed. Sensitivity of power variation under different pitch angle were figured out by mean of Bladed. System control results under Bladed external controllers of renovated and conventional approach were compared and analyzed, which is benefit to wind turbine control design.

  2. Fuzzy Control of Yaw and Roll Angles of a Simulated Helicopter Model Includes Articulated Manipulators

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2015-09-01

    Full Text Available Fuzzy logic controller (FLC is a heuristic method by If-Then Rules which resembles human intelligence and it is a good method for designing Non-linear control systems. In this paper, an arbitrary helicopter model includes articulated manipulators has been simulated with Matlab SimMechanics toolbox. Due to the difficulties of modeling this complex system, a fuzzy controller with simple fuzzy rules has been designed for its yaw and roll angles in order to stabilize the helicopter while it is in the presence of disturbances or its manipulators are moving for a task. Results reveal that a simple FLC can appropriately control this system.

  3. Interaction between electromagnetic waves and energetic particles by a realistic density model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Using a realistic density model,we present a first study on the interactions between electromagnetic waves and energetic particles in the inner magnetosphere.Numerical calculations show that as the latitude λ increases,the number density ne increases,and resonant frequency range moves to lower pitch angles.During L-mode/electron and L-mode/proton interactions,the pitch angle diffusion dominates over the momentum diffusion.This indicates that L-mode waves are primarily responsible for pitch angle scattering.For R-mode/electron interaction,the momentum diffusion is found to be comparable to the pitch angle diffusion,implying that R-mode waves can play an important role in both pitch angle scattering and stochastic acceleration of electrons.For R-mode/proton interaction,diffusion coefficients locate primarily below pitch angle 60° and increase as kinetic energy increases,suggesting that R-mode waves have potential for pitch angle scattering of highly energetic (~1 MeV) protons but cannot efficiently accelerate protons.

  4. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    geometric objects and the discrete approach were models are build from a large number of points. It is the basic hypothesis of this thesis, that analysis of smallangle scattering data can be approached in a way that combines the continuous and the discrete modelling methods, and that such an approach can...... the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... of bacteriorhodopsin and a continuous model of the nanodisc. The position and orientation of the membrane protein relative to the nanodisc is determined as well as the structural changes of the nanodisc. Paper II describes the use of the same approach to determine the relative position of a nanodisc and the membrane...

  5. Complex-tone pitch representations in the human auditory system

    DEFF Research Database (Denmark)

    Bianchi, Federica

    ) listeners and the effect of musical training for pitch discrimination of complex tones with resolved and unresolved harmonics. Concerning the first topic, behavioral and modeling results in listeners with sensorineural hearing loss (SNHL) indicated that temporal envelope cues of complex tones...... for the individual pitch-discrimination abilities, the musically trained listeners still allocated lower processing effort than did the non-musicians to perform the task at the same performance level. This finding suggests an enhanced pitch representation along the auditory system in musicians, possibly as a result......Understanding how the human auditory system processes the physical properties of an acoustical stimulus to give rise to a pitch percept is a fascinating aspect of hearing research. Since most natural sounds are harmonic complex tones, this work focused on the nature of pitch-relevant cues...

  6. Complex-tone pitch representations in the human auditory system

    DEFF Research Database (Denmark)

    Bianchi, Federica; Dau, Torsten; Santurette, Sébastien;

    , specifically those showing enhanced pitch cues (i.e., musicians) and those typically having disrupted pitch cues (i.e., hearing-impaired listeners). In particular, two main topics were addressed: the relative importance of resolved and unresolved harmonics for normal-hearing (NH) and hearing-impaired (HI......) listeners and the effect of musical training for pitch discrimination of complex tones with resolved and unresolved harmonics. Concerning the first topic, behavioral and modeling results in listeners with sensorineural hearing loss (SNHL) indicated that temporal envelope cues of complex tones...... discrimination to that of NH listeners. In the second part of this work, behavioral and objective measures of pitch discrimination were carried out in musicians and non-musicians. Musicians showed an increased pitch-discrimination performance relative to non-musicians for both resolved and unresolved harmonics...

  7. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... geometric objects and the discrete approach were models are build from a large number of points. It is the basic hypothesis of this thesis, that analysis of smallangle scattering data can be approached in a way that combines the continuous and the discrete modelling methods, and that such an approach can......This thesis consists of two parts. The rst part is divided into five chapters. Chapter 1 gives a general introduction to the bio-molecular systems that have been studied. These are membrane proteins and their lipid environments in the form of phospholipid nanodiscs. Membrane proteins...

  8. An Intrinsic Model for the Polarization Position Angle Swing Observed in QSO 1150+812

    Institute of Scientific and Technical Information of China (English)

    Shan-Jie Qian; Xi-Zhen Zhang

    2004-01-01

    The rapid polarization position angle swing of ~ 180° observed in QSO 1150+812 at 2cm by Kochenov and Gabuzda is quite a regular event. One interesting property of the event is that, during the time of the swing the polarized flux density remained almost constant. We suggest that such an event can be explained in terms of a relativistic thin shock propagating through a uniform helical magnetic field, giving rise to relativistic aberration effects as the transverse field component rotates. The model may also be applicable to other similar events in which variations in polarization are not accompanied by variations in total flux density.

  9. Nanostructured Surface with Tunable Contact Angle Hysteresis for Constructing In Vitro Tumor Model

    Directory of Open Access Journals (Sweden)

    Kang Sun

    2016-01-01

    Full Text Available Contact angle hysteresis (CAH is an important phenomenon in surface chemistry. In this paper, we fabricated nanostructured substrates and investigated the relationship between roughness and CAH. We demonstrated that by patterning well-tuned CAH in superhydrophobic background, we can pattern droplets with controlled sizes. We further showed that our system could be used in fabricating complex hydrogel architecture, allowing coculture of different types of cells in three-dimensional way. This CAH-based patterning strategy would provide in vitro models for tissue engineering and drug delivery.

  10. Transfer Scheme Evaluation Model for a Transportation Hub based on Vectorial Angle Cosine

    Directory of Open Access Journals (Sweden)

    Li-Ya Yao

    2014-07-01

    Full Text Available As the most important node in public transport network, efficiency of a transport hub determines the entire efficiency of the whole transport network. In order to put forward effective transfer schemes, a comprehensive evaluation index system of urban transport hubs’ transfer efficiency was built, evaluation indexes were quantified, and an evaluation model of a multi-objective decision hub transfer scheme was established based on vectorial angle cosine. Qualitative and quantitative analysis on factors affecting transfer efficiency is conducted, which discusses the passenger satisfaction, transfer coordination, transfer efficiency, smoothness, economy, etc. Thus, a new solution to transfer scheme utilization was proposed.

  11. Structural Load Analysis of a Wind Turbine under Pitch Actuator and Controller Faults

    Science.gov (United States)

    Etemaddar, Mahmoud; Gao, Zhen; Moan, Torgeir

    2014-12-01

    In this paper, we investigate the characteristics of a wind turbine under blade pitch angle and shaft speed sensor faults as well as pitch actuator faults. A land-based NREL 5MW variable speed pitch reg- ulated wind turbine is considered as a reference. The conventional collective blade pitch angle controller strategy with independent pitch actuators control is used for load reduction. The wind turbine class is IEC-BII. The main purpose is to investigate the severity of end effects on structural loads and responses and consequently identify the high-risk components according to the type and amplitude of fault using a servo-aero-elastic simulation code, HAWC2. Both transient and steady state effects of faults are studied. Such information is useful for wind turbine fault detection and identification as well as system reliability analysis. Results show the effects of faults on wind turbine power output and responses. Pitch sensor faults mainly affects the vibration of shaft main bearing, while generator power and aerodynamic thrust are not changed significantly, due to independent pitch actuator control of three blades. Shaft speed sensor faults can seriously affect the generator power and aerodynamic thrust. Pitch actuator faults can result in fully pitching of the blade, and consequently rotor stops due to negative aerodynamic torque.

  12. Parametric modeling and stagger angle optimization of an axial flow fan

    Science.gov (United States)

    Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.

    2013-12-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.

  13. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles

    Directory of Open Access Journals (Sweden)

    Maurer Till

    2005-04-01

    Full Text Available Abstract Background We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are calculated with an algorithm described earlier by Döker et al. (1999, BBRC, 257, 348–350. The overall long-range contacts are established via a small number of distance restraints between atoms involved in hydrogen bonds and backbone atoms of conserved residues. Employing the restraints generated by PERMOL three-dimensional structures are obtained using standard molecular dynamics programs such as DYANA or CNS. Results To test this modeling approach it has been used for predicting the structure of the histidine-containing phosphocarrier protein HPr from E. coli and the structure of the human peroxisome proliferator activated receptor γ (Ppar γ. The divergence between the modeled HPr and the previously determined X-ray structure was comparable to the divergence between the X-ray structure and the published NMR structure. The modeled structure of Ppar γ was also very close to the previously solved X-ray structure with an RMSD of 0.262 nm for the backbone atoms. Conclusion In summary, we present a new method for homology modeling capable of producing high-quality structure models. An advantage of the method is that it can be used in combination with incomplete NMR data to obtain reasonable structure models in accordance with the experimental data.

  14. An examination of slo-pitch pitching trajectories.

    Science.gov (United States)

    Wu, Tom; Gervais, Pierre

    2008-01-01

    Many slo-pitch coaches and players believe that generating spin on a ball can affect its trajectory. The influence of air resistance on a ball that is thrown at a moderate speed and spin is unclear. The aim of this study was to examine the influence of spin on the ball's trajectory in slo-pitch pitching using both experimental results and ball flight simulations. Fourteen pitchers participated in the study, each of whom threw five backspin and topspin pitches each. Data were collected using standard three-dimensional videography. The horizontal velocity, vertical velocity, angular velocity, release height, and horizontal displacement of the backspin pitches were significantly higher than those of the topspin pitches. The ball flight simulations were developed to examine the influence of the ball spin, and it was concluded that the spin of the ball had a significant effect on the ball's vertical and horizontal displacements. Furthermore, our results suggest that a backspin pitch that reaches the maximum height allowable and lands in the front edge of the strike zone has the steepest slope. The present results add to our understanding of projectile motion and aerodynamics.

  15. Multiple angle measurement and modeling of M-band x-ray fluxes from vacuum hohlraum

    Science.gov (United States)

    Guo, Liang; Li, Shanwei; Li, Zhichao; Jing, Longfei; Xie, Xufei; Jiang, Xiaohua; Yang, Dong; Du, Huabin; Hou, Lifei; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Hu, Guangyue; Zheng, Jian

    2016-09-01

    The energetics experiment of vacuum gold hohlraums is implemented on the Shenguang-II laser facility. The total and M-band x-ray fluxes from the laser entrance holes are measured by the flat response x-ray diodes which are set at multiple angles with respect to the axis of the hohlraums. The measured M-band fractions are from 5.72% to 7.71%, which present a specific angular distribution. Based on the fact that the M-band x-rays are mainly emitted from the under-dense high-temperature plasmas, a simplified model is developed to give a quantitative prediction of the intensity, temporal behavior, and angular distribution of the M-band x-ray flux. The results obtained with our model are in good agreement with the experimental data, showing that our model can be a useful tool for M-band x-ray investigation.

  16. Prediction accuracy of various models for angle-of-arrival fluctuations

    Science.gov (United States)

    Porat, O.; Shapira, J.

    2016-03-01

    We have compared measured angle-of-arrival (AOA) fluctuations to the prediction of various models, for a laser beam propagating through a turbulent atmosphere at ground level. Three models have been investigated: a simple small perturbation model, a model which incorporates also inner and outer scale effects and a third model which takes into account the contribution of additional spatial scales and is able to predict a saturation regime. Data were collected in an approximately ten year time span. We have used near infra-red LIDAR systems to determine the AOA fluctuations by measuring the short term movement of a laser spot in the receiver plane, reflected from targets placed at various distances. In parallel, we have also measured the turbulence strength with a short-range scintilometer and recorded the average wind speed along the laser path. Our analysis indicates that the simple model predictions are quite good for weak turbulence and short distances, however on the majority of the scenarios the conditions (turbulence strength and distance) are such that the AOA fluctuations deviate from the simple model and even approach saturation. In these cases the fluctuations follows the general form of the third model. We also found some differences between the day and night behavior which wasn't considered by any of the models.

  17. The pitch-heave dynamics of transportation vehicles

    Science.gov (United States)

    Sweet, L. M.; Richardson, H. H.

    1975-01-01

    The analysis and design of suspensions for vehicles of finite length using pitch-heave models is presented. Dynamic models for the finite length vehicle include the spatial distribution of the guideway input disturbance over the vehicle length, as well as both pitch and heave degrees-of-freedom. Analytical results relate the vehicle front and rear accelerations to the pitch and heave natural frequencies, which are functions of vehicle suspension geometry and mass distribution. The effects of vehicle asymmetry and suspension contact area are evaluated. Design guidelines are presented for the modification of vehicle and suspension parameters to meet alternative ride quality criteria.

  18. Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Hu, Weihao; Chen, Zhe;

    2012-01-01

    Grid connected wind turbines are the sources of power fluctuations during continuous operation due to wind speed variation, wind shear and tower shadow effects. This paper presents an individual pitch control (IPC) strategy to mitigate the wind turbine power fluctuation at both above and below...... the rated wind speed conditions. Three pitch angles are adjusted separately according to the generator output power and the azimuth angle of the wind turbine. The IPC strategy scheme is proposed and the individual pitch controller is designed. The simulations are performed on the NREL (National Renewable...

  19. Aircraft Pitch Attitude Control using Backstepping

    OpenAIRE

    Härkegård, Ola; Glad, Torkel

    2000-01-01

    A nonlinear approach to the automatic pitch attitude control problem for a generic fighter aircraft is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. Two tuning schemes are proposed based on the desired locally linear controller properties. The controller is evaluated using the HIRM fighter aircraft model.

  20. Aircraft Pitch Attitude Control using Backstepping

    OpenAIRE

    Härkegård, Ola; Glad, Torkel

    2000-01-01

    A nonlinear approach to the automatic pitch attitude control problem for a generic fighter aircraft is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. Two tuning schemes are proposed based on the desired locally linear controller properties. The controller is evaluated using the HIRM fighter aircraft model.

  1. Tri-bimaximal Mixing and Cabibbo Angle in S4 Flavor Model with SUSY

    CERN Document Server

    Ishimori, Hajime; Shimizu, Yusuke; Tanimoto, Morimitsu

    2010-01-01

    We present a flavor model of quarks and leptons with the non-Abelian discrete symmetry S_4 in the framework of the SU(5) SUSY GUT. Three generations of $\\bar 5$-plets in SU(5) are assigned to ${\\bf 3}$ of $S_4$ while the first and second generations of 10-plets in SU(5) are assigned to ${\\bf 2}$ of $S_4$, and the third generation of 10-plet is assigned to ${\\bf 1}$ of $S_4$. Right-handed neutrinos are also assigned to ${\\bf 2}$ for the first and second generations and ${\\bf 1}'$ for the third generation, respectively. We predict the Cabibbo angle as well as the tri-bimaximal mixing of neutrino flavors. We also predict the non-vanishing $U_{e3}$ of the neutrino flavor mixing due to higher dimensional mass operators. Our predicted CKM mixing angles and the CP violation are consistent with experimental values. We also study SUSY breaking terms in the slepton sector. Our model leads to smaller values of flavor changing neutral currents than the present experimental bounds.

  2. Model test of helical angle effect on coal loading performance of shear drum

    Institute of Scientific and Technical Information of China (English)

    Kuidong Gao; Changlong Du; Songyong Liu; Lin Fu

    2012-01-01

    The work presented in this paper focuses on improving coal loading performance of shear drum.Employing the similarity theory,we carried out a dimensional analysis of the correlation parameters which influence coal loading performance of shear drum.On the basis of similarity criterion,proportional relationship between the model and the prototype was taken on the condition of taking 1/3 as the similarity coefficient.Besides taking 1600 mm drum as the prototype,four helical angle models of shearer drums (15°,18°,21°,24°) were developed.Simultaneously,based on an established cutting test-bed,coal loading performance tests for the four drums were carried out at the same drum rotational and haulage speeds.After analyzing the data of coal-loading performance and torque,we concluded that:both the coal loading performance and torque vary along the track of the parabola with the opening side facing downwards;the best coal loading performance arises when the helical angle is at 19.3°,while the biggest torque arises at 22.1°;and the coal loading performance had nonlinear relationship with the torque.

  3. A model for distortions of polarisation-angle curves in radio pulsars

    CERN Document Server

    Dyks, J; Oslowski, S; Saha, L; Guillemot, L; Cognard, I; Rudak, B

    2016-01-01

    Some radio pulsar profiles (in particular those of millisecond pulsars contain wide emission structures which cover large intervals of pulse phase. Local distortions of an average curve of polarisation angle (PA) can be identified in such profiles, and they are often found to be associated with absorption features or narrow emission components. The features may be interpreted as a convolution of a lateral profile of an emitter with a microscopic radiation pattern of a non-negligible angular extent. We study a model which assumes that such an extended microbeam of the X-mode curvature radiation is spreading the radiation polarised at a fixed position angle within an interval of pulse phase. The model is capable of interpreting the strongly dissimilar polarisation of double notches in PSR B1821-24A (for which we present new polarisation data from the Nancay Radio Telescope) and PSR J0437-4715. It also explains a step-like change in PA observed at the bifurcated trailing component in the profile of J0437-4715. A...

  4. VOF simulations of the contact angle dynamics during the drop spreading: Standard models and a new wetting force model

    OpenAIRE

    Malgarinos, I.; Nikolopoulos, N.; Marengo, M.; Antonini, C.; Gavaises, M.

    2014-01-01

    Introduction In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interfa...

  5. A new nonlinear dynamic model of the rotor-bearing system considering preload and varying contact angle of the bearing

    Science.gov (United States)

    Zhang, Xuening; Han, Qinkai; Peng, Zhike; Chu, Fulei

    2015-05-01

    A great deal of research work has been done on the dynamic behaviors of the rotor-bearing system. However, the important effects of load and variation of contact angle on the bearing performance have not been focused on sufficiently. In this paper, a five-degree-of-freedom load distribution model is set up considering the bearing preload and the loads due to the rotor imbalance. Utilizing this model, the variation of the bearing contact angle is investigated thoroughly. The comparisons of the obtained contact angle against the results from literature validate that the proposed load distribution model is effective. With this model, the static ball deformations are obtained considering variation of the contact angle. Through resolving the dynamic displacements of the rotor, the dynamic ball deformations could also be obtained. Then the total restoring forces and moments of the bearings could be formulated. By introducing these nonlinear forces and moments into the rotating system, a new dynamic model considering the preload and the variation of contact angle is set up. The present analyses indicate that the bearing contact angle will be changed remarkably with the effect of bearing load. The deflection vibration of the rotor-bearing system will be underestimated without considering the varying contact angle. With the effect of varying contact angle, the ball passage frequency and its combinations with the shaft rotating frequency become more noticeable. The main resonance regions for the rotor-bearing system shift to the lower speed ranges when the variation of contact angle is taken into account.

  6. Pitch perception beyond the traditional existence region of pitch

    DEFF Research Database (Denmark)

    Oxenham, Andrew J.; Micheyl, Christophe; Keebler, Michael V.

    2011-01-01

    Humans’ ability to recognize musical melodies is generally limited to pure-tone frequencies below 4 or 5 kHz. This limit coincides with the highest notes on modern musical instruments and is widely believed to reflect the upper limit of precise stimulusdriven spike timing in the auditory nerve. We...... tested the upper limits of pitch and melody perception in humans using pure and harmonic complex tones, such as those produced by the human voice and musical instruments, in melody recognition and pitchmatching tasks. We found that robust pitch perception can be elicited by harmonic complex tones...... with fundamental frequencies below 2 kHz, even when all of the individual harmonics are above 6 kHz—well above the currently accepted existence region of pitch and above the currently accepted limits of neural phase locking. The results suggest that the perception of musical pitch at high frequencies...

  7. Evaluation of electrolytic tilt sensors for wind tunnel model angle-of-attack (AOA) measurements

    Science.gov (United States)

    Wong, Douglas T.

    1991-01-01

    The results of a laboratory evaluation of three types of electrolytic tilt sensors as potential candidates for model attitude or angle of attack (AOA) measurements in wind tunnel tests are presented. Their performance was also compared with that from typical servo accelerometers used for AOA measurements. Model RG-37 electrolytic tilt sensors were found to have the highest overall accuracy among the three types. Compared with the servo accelerometer, their accuracies are about one order of magnitude worse and each of them cost about two-thirds less. Therefore, the sensors are unsuitable for AOA measurements although they are less expensive. However, the potential for other applications exists where the errors resulting from roll interaction, vibration, and response time are less, and sensor temperature can be controlled.

  8. Dynamic Arm Gesture Recognition Using Spherical Angle Features and Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Hyesuk Kim

    2015-01-01

    Full Text Available We introduce a vision-based arm gesture recognition (AGR system using Kinect. The AGR system learns the discrete Hidden Markov Model (HMM, an effective probabilistic graph model for gesture recognition, from the dynamic pose of the arm joints provided by the Kinect API. Because Kinect’s viewpoint and the subject’s arm length can substantially affect the estimated 3D pose of each joint, it is difficult to recognize gestures reliably with these features. The proposed system performs the feature transformation that changes the 3D Cartesian coordinates of each joint into the 2D spherical angles of the corresponding arm part to obtain view-invariant and more discriminative features. We confirmed high recognition performance of the proposed AGR system through experiments with two different datasets.

  9. Evaluation of electrolytic tilt sensors for wind tunnel model angle-of-attack (AOA) measurements

    Science.gov (United States)

    Wong, Douglas T.

    1991-01-01

    The results of a laboratory evaluation of three types of electrolytic tilt sensors as potential candidates for model attitude or angle of attack (AOA) measurements in wind tunnel tests are presented. Their performance was also compared with that from typical servo accelerometers used for AOA measurements. Model RG-37 electrolytic tilt sensors were found to have the highest overall accuracy among the three types. Compared with the servo accelerometer, their accuracies are about one order of magnitude worse and each of them cost about two-thirds less. Therefore, the sensors are unsuitable for AOA measurements although they are less expensive. However, the potential for other applications exists where the errors resulting from roll interaction, vibration, and response time are less, and sensor temperature can be controlled.

  10. Experiments to investigate lift production mechanisms on pitching flat plates

    Science.gov (United States)

    Stevens, P. R. R. J.; Babinsky, H.

    2017-01-01

    Pitching flat plates are a useful simplification of flapping wings, and their study can provide useful insights into unsteady force generation. Non-circulatory and circulatory lift producing mechanisms for low Reynolds number pitching flat plates are investigated. A series of experiments are designed to measure forces and study the unsteady flowfield development. Two pitch axis positions are investigated, namely a leading edge and a mid-chord pitch axis. A novel PIV approach using twin laser lightsheets is shown to be effective at acquiring full field of view velocity data when an opaque wing model is used. Leading-edge vortex (LEV) circulations are extracted from velocity field data, using a Lamb-Oseen vortex fitting algorithm. LEV and trailing-edge vortex positions are also extracted. It is shown that the circulation of the LEV, as determined from PIV data, approximately matches the general trend of an unmodified Wagner function for a leading edge pitch axis and a modified Wagner function for a mid-chord pitch axis. Comparison of experimentally measured lift correlates well with the prediction of a reduced-order model for a LE pitch axis.

  11. Changing law of launching pitching angular velocity of rotating missile

    Institute of Scientific and Technical Information of China (English)

    Liu Guang; Xu Bin; Jiao Xiaojuan; Zhen Tiesheng

    2014-01-01

    In order to provide accurate launching pitching angular velocity (LPAV) for the exterior trajectory optimization design, multi-flexible body dynamics (MFBD) technology is presented to study the changing law of LPAV of the rotating missile based on spiral guideway. An MFBD virtual prototype model of the rotating missile launching system is built using multi-body dynamics modeling technology based on the built flexible body models of key components and the special force model. The built model is verified with the frequency spectrum analysis. With the flexible body contact theory and nonlinear theory of MFBD technology, the research is conducted on the influence of a series of factors on LPAV, such as launching angle change, clearance between launching canister and missile, thrust change, thrust eccentricity and mass eccentricity, etc. Through this research, some useful values of the key design parameters which are difficult to be measured in physical tests are obtained. Finally, a simplified mathematical model of the changing law of LPAV is presented through fitting virtual test results using the linear regression method and verified by physical flight tests. The research results have important significance for the exterior trajectory optimization design.

  12. Soluble guanylate cyclase α1-deficient mice: a novel murine model for primary open angle glaucoma.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Buys

    Full Text Available Primary open angle glaucoma (POAG is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1-deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and β1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.

  13. Expanding Model Independent Approaches for Measuring the CKM angle $\\gamma$ at LHCb

    CERN Multimedia

    Prouve, Claire

    2017-01-01

    Model independent approaches to measuring the CKM angle $\\gamma$ in $B\\rightarrow DK$ decays at LHCb are explored. In particular, we consider the case where the $D$ meson decays into a final state with four hadrons. Using four-body final states such as $\\pi^+ \\pi^- \\pi^+ \\pi^-$, $K^+ \\pi^- \\pi^+ \\pi^-$ and $K^+ K^- \\pi^+ \\pi^-$ in addition to traditional 2 and 3 body states and has the potential to significantly improve to the overall constraint on $\\gamma$. There is a significant systematic uncertainty associated with modelling the complex phase of the $D$ decay amplitude across the five-dimensional phase space of the four body decay. It is therefore important to replace these model-dependent quantities with model-independent parameters as input for the $\\gamma$ measurement. These model independent parameters have been measured using quantum-correlated $\\psi(3770) \\rightarrow D^0 \\overline{D^0}$ decays collected by the CLEO-c experiment, and, for $D\\rightarrow K^+ \\pi^- \\pi^+ \\pi^-$, with $D^0-\\overline{D^0...

  14. Do ferrets perceive relative pitch?

    OpenAIRE

    Yin, Pingbo; Fritz, Jonathan B.; Shamma, Shihab A.

    2010-01-01

    The existence of relative pitch perception in animals is difficult to demonstrate, since unlike humans, animals often attend to absolute rather than relative properties of sound elements. However, the results of the present study show that ferrets can be trained using relative pitch to discriminate two-tone sequences (rising vs. falling). Three ferrets were trained using a positive-reinforcement paradigm in which sequences of reference (one to five repeats) and target stimuli were presented, ...

  15. Pitch Sequence Complexity and Long-Term Pitcher Performance

    Directory of Open Access Journals (Sweden)

    Joel R. Bock

    2015-03-01

    Full Text Available Winning one or two games during a Major League Baseball (MLB season is often the difference between a team advancing to post-season play, or “waiting until next year”. Technology advances have made it feasible to augment historical data with in-game contextual data to provide managers immediate insights regarding an opponent’s next move, thereby providing a competitive edge. We developed statistical models of pitcher behavior using pitch sequences thrown during three recent MLB seasons (2011–2013. The purpose of these models was to predict the next pitch type, for each pitcher, based on data available at the immediate moment, in each at-bat. Independent models were developed for each player’s most frequent four pitches. The overall predictability of next pitch type is 74:5%. Additional analyses on pitcher predictability within specific game situations are discussed. Finally, using linear regression analysis, we show that an index of pitch sequence predictability may be used to project player performance in terms of Earned Run Average (ERA and Fielding Independent Pitching (FIP over a longer term. On a restricted range of the independent variable, reducing complexity in selection of pitches is correlated with higher values of both FIP and ERA for the players represented in the sample. Both models were significant at the α = 0.05 level (ERA: p = 0.022; FIP: p = 0.0114. With further development, such models may reduce risk faced by management in evaluation of potential trades, or to scouts assessing unproven emerging talent. Pitchers themselves might benefit from awareness of their individual statistical tendencies, and adapt their behavior on the mound accordingly. To our knowledge, the predictive model relating pitch-wise complexity and long-term performance appears to be novel.

  16. NUMERICAL STUDY OF THE PITCHING MOTIONS OF SUPERCAVITATING VEHICLES

    Institute of Scientific and Technical Information of China (English)

    YU Kai-ping; ZHANG Guang; ZHOU Jing-jun; ZOU Wang; LI Zhen-wang

    2012-01-01

    The pitching motions of supercavitating vehicles could not be avoided due to the lost water buoyancy.In order to have some insight for the design of the supercavitating vehicles,the fixed frequency and free pitching motions are investigated.A numerical predicting method based on the relative motion principle and the non-inertia coordinate system is proposed to simulate the free pitching motions of supercavitating vehicles in the longitudinal plane.Homogeneous and two fluid multiphase models are used to predict the natural and the ventilated supercavitating flows.In the fixed frequency pitching motions,a variety of working conditions are considered,including the pitching angular velocities and the supercavity scales and the results are found to be consistent with the available experimental results in literature.The mesh deformation technology controlled by the moment of momentum equation is adopted to study the free pitching motions and finally to obtain the planing states proposed by Savchenko.The numerical method is validated for predicting the pitching motions of supercavitating vehicles and is found to enjoy better calculation efficiency as comparing with the mesh regeneration technology.

  17. Pitch characteristics of infant-directed speech affect infants' ability to discriminate vowels.

    Science.gov (United States)

    Trainor, Laurel J; Desjardins, Renée N

    2002-06-01

    "Baby talk" or speech directed to prelinguistic infants is high in pitch and has exaggerated pitch contours (up/down patterns of pitch change) across languages and cultures. Using an acoustic model, we predicted that the large pitch contours of infant-directed speech should improve infants' ability to discriminate vowels. On the other hand, the same model predicted that high pitch would not benefit, and might actually impair, infants' ability to discriminate vowels. We then confirmed these predictions experimentally. We conclude that the exaggerated pitch contours of infant-directed speech aid infants' acquisition of vowel categories but that the high pitch of infant-directed speech must serve another function, such as attracting infants' attention or aiding emotional communication.

  18. Modeling of the ITER-like wide-angle infrared thermography view of JET.

    Science.gov (United States)

    Aumeunier, M-H; Firdaouss, M; Travère, J-M; Loarer, T; Gauthier, E; Martin, V; Chabaud, D; Humbert, E

    2012-10-01

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

  19. Modeling of the ITER-like wide-angle infrared thermography view of JET

    Energy Technology Data Exchange (ETDEWEB)

    Aumeunier, M.-H. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); OPTIS, ZE de La Farlede, F-83078 Toulon Cedex 9 (France); Firdaouss, M.; Travere, J.-M.; Loarer, T.; Gauthier, E.; Martin, V. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Chabaud, D.; Humbert, E. [OPTIS, ZE de La Farlede, F-83078 Toulon Cedex 9 (France); Collaboration: JET-EFDA Contributors

    2012-10-15

    Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

  20. Comparison of models and measurements of angle-resolved scatter from irregular aerosols

    Science.gov (United States)

    Milstein, Adam B.; Richardson, Jonathan M.

    2015-01-01

    We have developed and validated a method for modeling the elastic scattering properties of biological and inert aerosols of irregular shape at near- and mid-wave infrared wavelengths. The method, based on Gaussian random particles, calculates the ensemble-average optical cross section and Mueller scattering matrix, using the measured aerodynamic size distribution and previously-reported refractive index as inputs. The utility of the Gaussian particle model is that it is controlled by only two parameters (σ and Γ) which we have optimized such that the model best reproduces the full angle-resolved Mueller scattering matrices measured at λ=1.55 μm in the Standoff Aerosol Active Signature Testbed (SAAST). The method has been applied to wet-generated singlet biological spore samples, dry-generated biological spore clusters, and kaolin. The scattering computation is performed using the Discrete Dipole Approximation (DDA), which requires significant computational resources, and is thus implemented on LLGrid, a large parallel grid computer. For the cases presented, the best fit Gaussian particle model is in good qualitative correspondence with microscopy images of the corresponding class of particles. The measured and computed cross sections agree well within a factor of two overall, with certain cases bearing closer correspondence. In particular, the DDA reproduces the shape of the measured scatter function more accurately than Mie predictions. The DDA-computed depolarization factors are also in good agreement with measurement.

  1. Series pid pitch controller of large wind turbines generator

    Directory of Open Access Journals (Sweden)

    Micić Aleksandar D.

    2015-01-01

    Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016

  2. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...... that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate that APs may...

  3. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...... that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate that APs may...

  4. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  5. Pitch perception of complex sounds nonlinearity revisited

    CERN Document Server

    González, D L; Sportolari, F; Rosso, O; Cartwright, J H E; Piro, O

    1995-01-01

    The ability of the auditory system to perceive the fundamental frequency of a sound even when this frequency is removed from the stimulus is an interesting phenomenon related to the pitch of complex sounds. This capability is known as ``residue'' or ``virtual pitch'' perception and was first reported last century in the pioneering work of Seebeck. It is residue perception that allows one to listen to music with small transistor radios, which in general have a very poor and sometimes negligible response to low frequencies. The first attempt, due to Helmholtz, to explain the residue as a nonlinear effect in the ear considered it to originate from difference combination tones. However, later experiments have shown that the residue does not coincide with a difference combination tone. These results and the fact that dichotically presented signals also elicit residue perception have led to nonlinear theories being gradually abandoned in favour of central processor models. In this paper we use recent results from t...

  6. Dynamic inflow compensation for pitch controlled wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Van Engelen, T.G.; Van der Hooft, E.L. [ECN Wind Energy, Petten (Netherlands)

    2004-11-01

    An algorithm has been developed that provides filter parameters for pitch control loops in order to compensate for dynamic inflow effects. This improves the loop stability, especially near rated conditions. The filter behaviour reflects the 'inverse of the normalised' rotor-integral dynamic wake behaviour in accordance with the ECN differential equation wake model. Any (existing) pitch controller can be upgraded with such a filter. The algorithm has been implemented and incorporated in the ECN controlled design tool.

  7. Various Approaches to Forward and Inverse Wide-Angle Seismic Modelling Tested on Data from DOBRE-4 Experiment

    Directory of Open Access Journals (Sweden)

    Janik Tomasz

    2016-12-01

    Full Text Available The interpretation of seismic refraction and wide angle reflection data usually involves the creation of a velocity model based on an inverse or forward modelling of the travel times of crustal and mantle phases using the ray theory approach. The modelling codes differ in terms of model parameterization, data used for modelling, regularization of the result, etc. It is helpful to know the capabilities, advantages and limitations of the code used compared to others.

  8. Minimal see-saw model predicting best fit lepton mixing angles

    Energy Technology Data Exchange (ETDEWEB)

    King, Stephen F., E-mail: king@soton.ac.uk

    2013-07-09

    We discuss a minimal predictive see-saw model in which the right-handed neutrino mainly responsible for the atmospheric neutrino mass has couplings to (ν{sub e},ν{sub μ},ν{sub τ}) proportional to (0,1,1) and the right-handed neutrino mainly responsible for the solar neutrino mass has couplings to (ν{sub e},ν{sub μ},ν{sub τ}) proportional to (1,4,2), with a relative phase η=−2π/5. We show how these patterns of couplings could arise from an A{sub 4} family symmetry model of leptons, together with Z{sub 3} and Z{sub 5} symmetries which fix η=−2π/5 up to a discrete phase choice. The PMNS matrix is then completely determined by one remaining parameter which is used to fix the neutrino mass ratio m{sub 2}/m{sub 3}. The model predicts the lepton mixing angles θ{sub 12}≈34{sup ∘},θ{sub 23}≈41{sup ∘},θ{sub 13}≈9.5{sup ∘}, which exactly coincide with the current best fit values for a normal neutrino mass hierarchy, together with the distinctive prediction for the CP violating oscillation phase δ≈106{sup ∘}.

  9. Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting

    Directory of Open Access Journals (Sweden)

    José L. Santacruz

    2016-11-01

    Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.

  10. Forward Modeling of the Relationship Between Reflection Coefficient and Incident Angle of the P Wave in a Coal Seam

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Although the Zoeppritz equation is suitable for a single interface in a thick deposit, it has some limitations for composite reflection waves from both the floor and the roof of coal seams. Based on the ray model, the relationship of the overall reflection coefficient of composite reflection P waves, from coal seam versus incidence angle (AVO), is discussed. The result shows that: 1) the overall reflection coefficient of composite reflection waves from coal seams is a negative value and is determined mainly by the lithology of roof and floor, which is different from the reflection coefficient of a single interface; 2) if the incidence angle ranges from 0° to 6°, the reflection coefficient of composite waves of a coal seam does not change with the incidence angle and 3) if the incidence angle ranges from 6-60° , the reflection coefficient increases monotonically.

  11. A Double-Porosity Model for Pumping Test in a Fractured Formation of a Large Dip Angle

    Science.gov (United States)

    Ho, Shin-Wei; Chen, chia-shyun

    2016-04-01

    A Cenozoic sandstone fractured formation is found to have a dip angle, θ, as large as 47 degree. Assuming the dip angle creates a uniform regional flow in the fractured formation, the flow field due to pumping is no longer radially symmetric with respect to the pumping. Instead, a capture zone will appear in the neighborhood of the pumping well. A double porosity model is developed for the problem of interest, where the matrix flow is taken into account by the distributed parameter approach. Neglecting fracture storage, there are three hydrogeological parameters in the model; namely, fracture transmissivity Tf, matrix hydraulic conductivity Km, and matrix storage coefficient Sm. A Laplace-domain solution is determined, and its large time asymptotic solution analytically inverted, which indicates that the drawdown variation of large times exhibits a straight line in a semilog plot. When the dip angle is known, the slope of this straight line can be used to determine Tf, and the intercept of the logarithmic time axis can be used to estimate Sm. The remaining Km can be uniquely determined by the curve-matching method for drawdown of small and intermediate times without difficulty. The larger the dip angle, the closer the stagnation point to the pumping well, and the smaller the capture zone. An overestimate of Tf by a factor of cosθ results if the dip angle effect is neglected. However, neglecting the dip angle has less effect on the estimates of Km and Sm.

  12. The musical environment and auditory plasticity: Hearing the pitch of percussion

    OpenAIRE

    McLachlan, Neil M.; David J. T. Marco; Wilson, Sarah J

    2013-01-01

    Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It h...

  13. Are Thermoresponsive Microgels Model Systems for Concentrated Colloidal Suspensions? A Rheology and Small-Angle Neutron Scattering Study

    NARCIS (Netherlands)

    Stieger, M.A.; Pedersen, J.S.; Lindner, P.; Richtering, W.

    2004-01-01

    The structure of concentrated temperature-sensitive poly(N-isopropylacrylamide) (PNiPAM) microgel suspensions has been investigated employing rheology and small-angle neutron scattering (SANS). A previously described model expression for the particle form factor Pinho(q) is extended by a model hard

  14. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model

    Science.gov (United States)

    Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves

    2017-06-01

    As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future

  15. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  16. Structural evaluation of an amyloid fibril model using small-angle x-ray scattering

    Science.gov (United States)

    Dahal, Eshan; Choi, Mina; Alam, Nadia; Bhirde, Ashwinkumar A.; Beaucage, Serge L.; Badano, Aldo

    2017-08-01

    Amyloid fibrils are highly structured protein aggregates associated with a wide range of diseases including Alzheimer’s and Parkinson’s. We report a structural investigation of an amyloid fibril model prepared from a commonly used plasma protein (bovine serum albumin (BSA)) using small-angle x-ray scattering (SAXS) technique. As a reference, the size estimates from SAXS are compared to dynamic light scattering (DLS) data and the presence of amyloid-like fibrils is confirmed using Congo red absorbance assay. Our SAXS results consistently show the structural transformation of BSA from spheroid to rod-like elongated structures during the fibril formation process. We observe the elongation of fibrils over two months with fibril length growing from 35.9  ±  3.0 nm to 51.5  ±  2.1 nm. Structurally metastable fibrils with distinct SAXS profiles have been identified. As proof of concept, we demonstrate the use of such distinct SAXS profiles to detect fibrils in the mixture solutions of two species by estimating their volume fractions. This easily detectable and well-characterized amyloid fibril model from BSA can be readily used as a control or standard reference to further investigate SAXS applications in the detection of structurally diverse amyloid fibrils associated with protein aggregation diseases.

  17. Evolution of the pulsar inclination angle in the wind braking model

    CERN Document Server

    Kou, F F; Wang, N

    2016-01-01

    In a plasma filled magnetosphere, in addition to providing a torque to brake down the pulsar, the magnetosphere will also generate a torque to align the pulsar magnetic and rotational axes. The evolution of pulsar inclination angle in the wind braking model is calculated. In the wind braking model, the oblique pulsar tends to align. The pulsar alignment will also affect the spin-down behavior. Braking index will increase firstly and then decrease as the pulsar evolving from the magneto-dipole radiation dominated case to the wind braking dominated case. Braking index may be larger than $3$ in the early time. And during the following long time, braking index will be always smaller than $3$. This can explain braking index observations of larger than $3$ and smaller than $3$. Besides, the pulsar will evolve downwards straightly to the death valley after pulsar death in the $P-\\dot{P}$ diagram. This may explain the observed maximum spinning period of pulsars. And the long-term evolution of pulsars in the wind brak...

  18. Modelling and Simulation of Free Floating Pig for Different Pipeline Inclination Angles

    Directory of Open Access Journals (Sweden)

    Woldemichael Dereje Engida

    2016-01-01

    Full Text Available This paper presents a modelling and simulation of free floating pig to determine the flow parameters to avoid pig stalling in pigging operation. A free floating spherical shaped pig was design and equipped with necessary sensors to detect leak along the pipeline. The free floating pig does not have internal or external power supply to navigate through the pipeline. Instead, it is being driven by the flowing medium. In order to avoid stalling of the pig, it is essential to conduct simulation to determine the necessary flow parameters for different inclination angles. Accordingly, a pipeline section with inclination of 0°, 15°, 30°, 45°, 60°, 75°, and 90° were modelled and simulated using ANSYS FLUENT 15.0 with water and oil as working medium. For each case, the minimum velocity required to propel the free floating pig through the inclination were determined. In addition, the trajectory of the free floating pig has been visualized in the simulation.

  19. Dynamic surface measurements on a model helicopter rotor during blade slap at high angles of attack

    Science.gov (United States)

    Hubbard, J. E., Jr.; Harris, W. L.

    1982-01-01

    The modern helicopter offers a unique operational capability to both the public and private sectors. However, the use of the helicopter may become severely limited due to the radiated noise generated by the rotor system. A description is presented of some of the experimental results obtained with a model helicopter rotor in an anechoic wind tunnel with regard to blade stall as a source mechanism of blade slap. Attention is given to dynamic rotor blade surface phenomena and the resulting far field impulsive noise from the model helicopter rotor at high angles of attack and low tip speed. The results of the investigation strongly implicates the boundary layer as playing an important role in blade slap due to blade/vortex interaction (BVI) in a highly loaded rotor. Intermittent stall cannot be ruled out as a possible source mechanism for blade slap. This implies that blade surface characteristics, airfoil shape and local Reynolds number may now be used as tools to reduce the resultant far-field sound pressure levels in helicopters.

  20. Load consequences when sweeping blades - A case study of a 5 MW pitch controlled wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Verelst, D.R.S.; Larsen, Torben J.

    2010-08-15

    The generic 5 MW NREL wind turbine model is used in Risoe's aeroelastic simulator HAWC2 to investigate 120 different swept blade configurations (forward and backward sweep). Sensitivity for 2 different controllers is considered as well. Backward sweep results in a pitch to feather torsional moment of the blade, effectively reducing blade twist angles under increased loading. This behaviour results in decreased flap-wise fatigue and extreme loads, an increase for edge-wise fatigue loading and status quo or slight decrease in extreme loads (depending on the controller). Tower base and shaft-end bending moments are reduced as well. Forward sweep leads to an increase in angle of attack under loading. For a pitch controlled turbine this leads to an increase in fatigue and extreme loading in all cases. A controller inflicted instability is present for the more extreme forward swept cases. Due to the shape of considered sweep curves, an inherent and significant increase in torsional blade root bending moment is noted. A boomerang shaped sweep curve is proposed to counteract this problematic increased loading. Controller sensitivity shows that adding sweep affects some loadings differently. Power output is reduced for backward sweep since the blade twist is optimized as a rigid structure, ignoring the torsional deformations which for a swept blade can be significant. (author)

  1. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  2. Investigation on pitch system loads by means of an integral multi body simulation approach

    Science.gov (United States)

    Berroth, J.; Jacobs, G.; Kroll, T.; Schelenz, R.

    2016-09-01

    In modern horizontal axis wind turbines the rotor blades are adjusted by three individual pitch systems to control power output. The pitch system consists of either a hydraulic or an electrical actuator, the blade bearing, the rotor blade itself and the control. In case of an electrical drive a gearbox is used to transmit the high torques that are required for blade pitch angle adjustment. In this contribution a new integral multi body simulation approach is presented that enables detailed assessment of dynamic pitch system loads. The simulation results presented are compared and evaluated with measurement data of a 2 MW-class reference wind turbine. Major focus of this contribution is on the assessment of non linear tooth contact behaviour incorporating tooth backlash for the single gear stages and the impact on dynamic pitch system loads.

  3. Difficulties with Pitch Discrimination Influences Pitch Memory Performance: Evidence from Congenital Amusia

    OpenAIRE

    Cunmei Jiang; Lim, Vanessa K.; Hang Wang; Hamm, Jeff P.

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to crea...

  4. Production of Mesophase Pitch from Coal Tar and Petroleum Pitches using Supercritical Fluid Extraction

    OpenAIRE

    ÖZEL, Mustafa Z.

    2002-01-01

    Supercritical fluid extraction (SFE) is currently being investigated as a possible technique in the production of high quality mesophase pitch from coal tar and petroleum pitches. Mesophase pitch is used to make high technology products, such as carbon fibre. The conventional production of mesophase pitch initially involves the removal of low molecular weight species from coal tar and petroleum pitches. The remaining residue is then transformed into a mesophase pitch through a polym...

  5. Tinnitus pitch and acoustic trauma

    Energy Technology Data Exchange (ETDEWEB)

    Cahani, M.; Paul, G.; Shahar, A.

    1983-01-01

    Fifty-six subjects complaining of tinnitus underwent an audiometric test and a test for identifying the analogous pitch of their tinnitus. All of the subjects reported that they had been exposed to noise in the past. The subjects were divided into two groups on the basis of their audiometric test results. Group P was composed of subjects who showed a sensorineural hearing loss typical of acoustic trauma. Group N was composed of subjects whose hearing was within normal limits. The pitch of the tinnitus in group P was concentrated in the high-frequency range, whereas in group N tinnitus pitch values were distributed over the low and mid-audiometric frequency spectrum. It was deduced that different processes are involved in the generation of tinnitus in the two groups.

  6. A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle

    Institute of Scientific and Technical Information of China (English)

    陈鑫; 鲁传敬; 陈瑛; 曹嘉怡

    2014-01-01

    When a high-speed cavitated weapon moves under water, the flow properties are important issues for the sake of the trajectory predication and control. In this paper, a single-fluid multiphase flow method coupled with a natural cavitation model is proposed to numerically simulate the free moving phase of an underwater supercavitated vehicle under the action of the external thrust. The influence of the cavitator’s deflection angle ranging fromo-3 to3o on the cavity pattern, the hydrodynamics and the underwater trajectory is investigated. Based on computational results, several conclusions are qualitatively drawn by an analysis. The deflection angle has very little effect on the cavity pattern. When the deflection angle increases, the variation curves of the vertical linear velocity, the lift coefficient and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients will be and the higher the pitching moment coefficient becomes. At the finishing time of the free moving phase, when the deflection angle lies in the small range ofoo-1-1, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle is less thano-1 or greater than1o, the position of the center of mass and the pitching angle change greatly. If a proper deflection angle of the cavitator is adopted, the underwater vehicle can navigate in a pseudo-fixed depth.

  7. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    Directory of Open Access Journals (Sweden)

    Stovgaard Kasper

    2010-08-01

    Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for

  8. High-frequency complex pitch

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine-structure ......Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine...

  9. %159300 MUSICAL PERFECT PITCH [OMIM

    Lifescience Database Archive (English)

    Full Text Available e-recognition capacity and musical exposure and training, as well as demographic characteristics. The subjec...ts were selected from the musical communities of 4 large metropolitan areas. Perfect pitch was found to pred...fect pitch.) See 191200 for a discussion of a form of lack of musical ability, tune deafness. Schlaug et al....aterability in 30 healthy, right-handed professional musicians and compared the r...esults with those from nonmusicians matched for age, sex, and handedness. They found that musicians with per

  10. A New Method to Calibrate Attachment Angles of Data Loggers in Swimming Sharks

    OpenAIRE

    Shizuka Kawatsu; Katsufumi Sato; Yuuki Watanabe; Susumu Hyodo; Breves, Jason P.; Bradley K. Fox; Gordon Grau, E.; Nobuyuki Miyazaki

    2010-01-01

    Recently, animal-borne accelerometers have been used to record the pitch angle of aquatic animals during swimming. When evaluating pitch angle, it is necessary to consider a discrepancy between the angle of an accelerometer and the long axis of an animal. In this study, we attached accelerometers to 17 free-ranging scalloped hammerhead shark (Sphyrna lewini) pups from Kaneohe Bay, Hawaii. Although there are methods to calibrate attachment angles of accelerometers, we confirmed that previous ...

  11. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.

    Science.gov (United States)

    Ashish Saha, Auro; Mitra, Sushanta K

    2009-11-15

    We perform three-dimensional numerical and experimental study of the dynamic contact angle using volume of fluid (VOF) method applied to microfluidic channels with integrated pillars. Initially, we evaluated different dynamic contact angle models (hydrodynamic, molecular kinetic and empirical) for capillary filling of a two-dimensional microchannel using analytical formulation. Further, the models which require a minimum prescription of adjustable parameters are only used for the study of capillary filling of microchannels with integrated pillars using different working fluids such as DI water, ethanol and isopropyl alcohol. Different microchannel geometry with varying diameter/height/spacing were studied for circular pillars. Effect of square pillars and changing the overall number of pillars on the capillary phenomena were also simulated. Our study demonstrated that the dynamic contact angle models modifies the transient response of the meniscus displacement and also the observed trends are model specific for the various microchannel geometries and working fluids. However, the different models have minimal effect on the meniscus profile. Different inlet boundary conditions were applied to observe the effect of grid resolution selected for numerical study on the capillary filling time. A grid dependent dynamic contact angle model which incorporates effective slip in the model was also used to observe the grid convergence of the numerical results. The grid independence was shown to improve marginally by applying the grid dependent dynamic contact angle model. Further we did numerical experiments of capillary filling considering variable surface wettability on the top and bottom walls of the microchannel with alternate hydrophilic-hydrophobic patterns. The meniscus front pinning was noticed for a high wetting contrast between the patterns. Non uniform streamline patterns indicated mixing of the fluid when using patterned walls. Such a microfluidic device with

  12. Field singularities at lossless metal-dielectric arbitrary-angle edges and their ramifications to the numerical modeling of gratings.

    Science.gov (United States)

    Li, Lifeng

    2012-04-01

    I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.

  13. Mixing angles in SU(2)/sub L/ x U(1) gauge model

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, S.; Tanaka, K.

    1979-01-01

    Exact expressions for the mixing parameters are obtained in terms of mass ratios in the standard Weinberg-Salam model with permutation symmetry S/sub 3/ for six quarks. The CP-violating phase is ignored, and there are no arbitrary parameters except for the quark masses. In the lowest order, the angles defined by Kobayashi-Maskawa are sin theta/sub 1/ = sin theta/sub c/ = (m/sub d//m/sub d/ + m/sub s/)/sup 1/2/, sin theta/sub 3/ = -sin theta/sub 3/ = -m/sup 2//sub s//m/sup 2//sub b/, and m/sub t/m/sub s/ greater than or equal to m/sub c/m/sub b/ = 7.2 GeV/sup 2/ or m/sub t/ greater than or equal to 24 GeV for m/sub s/ = 0.3 GeV.

  14. A New Acute Attack of Angle Closure Glaucoma Animal Model with Healon 5

    Directory of Open Access Journals (Sweden)

    Silvania Y. F. Lau

    2011-05-01

    Full Text Available Acute angle closure glaucoma (AACG is an ocular emergency and sight -threatening disease in which the intraocular ocular pressure (IOP rises suddenly due to blockage of aqueous humor outflow. It can cause permanent loss in visual acuity and visual field. In animal study, the well-established model to study AACG is by fluid infusion and by adjusting the bottle level, a high IOP can be induced in a few seconds. However, there is no blockage of aqueous outflow and the pressure rise is unrealistically fast. To mimic human AACG, we suggest to use Healon 5, an ophthalmic viscosurgical device, which is injected intracamerally to block the aqueous outflow. The IOP is allowed to build up naturally. We found that, with this technique, the IOP elevated at a rate of 0.57 mmHg/min before it hit 40 mmHg, which is considered as AACG in human. The maximum IOP registered was above 70 mmHg. Thinning of retinal nerve fiber layer (RNFL and neural cells lost were seen. Visual function evaluated by ERG showed reduction in a-wave, b-wave, photopic negative response (PhNR and oscillatory potentials (OPs activities. In conclusion, Healon 5 is effective in inducing acute transient rise in IOP which mimics human AACG.

  15. Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data

    Science.gov (United States)

    Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.

    2017-07-01

    Deep seismic studies of the Sea of Okhotsk region started in late 1950s. Since that time, wide-angle reflection and refraction data on more than two dozen profiles were acquired. Only five of those profiles either crossed or entered the deep-water area of the South-Okhotsk Basin (also known as the Kuril Basin or the South-Okhotsk Deep-Water Trough). Only P-waves were used to develop velocity-interface models in all the early research. Thus, all seismic and geodynamic models of the Okhotsk region were based only on the information on compressional waves. Nevertheless, the use of Vp/Vs ratio in addition to P-wave velocity allows discriminating felsic and mafic crustal layers with similar Vp values. In 2007 the Russian seismic service company Sevmorgeo acquired multi-component data with ocean bottom seismometers (OBS) along the 1700-km-long north-south 2-DV-M Profile. Only P-wave information was used previously to develop models for the entire profile. In this study, a multi-wave processing, analysis, and interpretation of the OBS data are presented for the 550-km-long southern segment of this Profile that crosses the deep-water South-Okhotsk Basin. Within this segment 50 seismometers were deployed with nominal OBS station spacing of 10-12 km. Shot point spacing was 250 m. Not only primary P-waves and S-waves but also multiples and P-S, S-P converted waves were analyzed in this study to constrain velocity-interface models by means of travel time forward modeling. In offshore deep seismic studies, thick water layer hinders an estimation of velocities in the sedimentary cover and in the upper consolidated crust. Primarily, this is due to the fact that refracted waves propagating in low-velocity solid upper layers interfere with high-amplitude direct water wave. However, in multi-component measurements with ocean bottom seismometers, it is possible to use converted and multiple waves for velocity estimations in these layers. Consequently, one can obtain P- and S

  16. A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences.

    Science.gov (United States)

    Tsay, Jyh-Jong; Su, Shih-Chieh; Yu, Chin-Sheng

    2015-07-03

    Protein structure prediction (PSP) is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD) of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP.

  17. A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences

    Directory of Open Access Journals (Sweden)

    Jyh-Jong Tsay

    2015-07-01

    Full Text Available Protein structure prediction (PSP is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP.

  18. Manufacture of threads with variable pitch by using noncircular gears

    Science.gov (United States)

    Slătineanu, L.; Dodun, O.; Coteață, M.; Coman, I.; Nagîț, G.; Beșliu, I.

    2016-08-01

    There are mechanical equipments in which shafts threaded with variable pitch are included. Such a shaft could be met in the case of worm specific to the double enveloping worm gearing. Over the years, the researchers investigated some possibilities to geometrically define and manufacture the shaft zones characterized by a variable pitch. One of the methods able to facilitate the manufacture of threads with variable pitch is based on the use of noncircular gears in the threading kinematic chain for threading by cutting. In order to design the noncircular gears, the mathematical law of pitch variation has to be known. An analysis of pitch variation based on geometrical considerations was developed in the case of a double enveloping globoid worm. Subsequently, on the bases of a proper situation, a numerical model was determined. In this way, an approximately law of pitch variation was determined and it could be taken into consideration when designing the noncircular gears included in the kinematic chain of the cutting machine tool.

  19. Differences among fastball, curveball, and change-up pitching biomechanics across various levels of baseball.

    Science.gov (United States)

    Fleisig, Glenn S; Laughlin, Walter A; Aune, Kyle T; Cain, E Lyle; Dugas, Jeffrey R; Andrews, James R

    2016-06-01

    Controversy continues whether curveballs are stressful for young baseball pitchers. Furthermore, it is unproven whether professional baseball pitchers have fewer kinematic differences between fastballs and off-speed pitches than lower level pitchers. Kinematic and kinetic data were measured for 111 healthy baseball pitchers (26 youth, 21 high school, 20 collegiate, 26 minor league, and 18 major league level) throwing fastballs, curveballs, and change-ups in an indoor biomechanics laboratory with a high-speed, automated digitising system. Differences between pitch types and between competition levels were analysed with repeated measures ANOVA. Shoulder and elbow kinetics were greater in fastballs than in change-ups, while curveball kinetics were not different from the other two types of pitches. Kinematic angles at the instant of ball release varied between pitch types, while kinematic angles at the instant of lead foot contact varied between competition levels. There were no significant interactions between pitch type and competition level, meaning that kinetic and kinematic differences between pitch types did not vary by competition level. Like previous investigations, this study did not support the theory that curveballs are relatively more stressful for young pitchers. Although pitchers desire consistent kinematics, there were differences between pitch types, independent of competition level.

  20. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    at low rotational speed producing very less noise during operation, although these are less efficient than Horizontal Axis Wind Turbines (HAWT). The efficiency of a VAWT has been significantly improved by H-Darrieus VAWT design based on double airfoil technology as demonstrated by the authors...... in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  1. Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution.

    Science.gov (United States)

    Jacques, David A; Guss, J Mitchell; Svergun, Dmitri I; Trewhella, Jill

    2012-06-01

    Small-angle scattering is becoming a mainstream technique for structural molecular biology. As such, it is important to establish guidelines for publication that will ensure that there is adequate reporting of the data and its treatment so that reviewers and readers can independently assess the quality of the data and the basis for any interpretations presented. This article presents a set of preliminary guidelines that emerged after consultation with the IUCr Commission on Small-Angle Scattering and other experts in the field and discusses the rationale for their application. At the 2011 Congress of the IUCr in Madrid, the Commission on Journals agreed to adopt these preliminary guidelines for the presentation of biomolecular structures from small-angle scattering data in IUCr publications. Here, these guidelines are outlined and the reasons for standardizing the way in which small-angle scattering data are presented.

  2. Modelling spiral grain angle variation in New Zealand-grown radiata pine

    National Research Council Canada - National Science Library

    Moore, John R; Cown, Dave J; McKinley, Russell B

    2015-01-01

    Spiral grain angle (SGA) is a wood property that has a strong influence on end-product quality, particularly for solid timber, and most commercial log and timber grading rules restrict the amount of visible surface sloping grain...

  3. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.

    Science.gov (United States)

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the

  4. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference

    Science.gov (United States)

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008), 10.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of

  5. Pitch and roll hydrodynamics of a pericell hovercraft

    Science.gov (United States)

    Moran, David D.

    1986-12-01

    Pitch and roll responses of hovercraft have been extremely difficult to predict due to the complexity of hydrodynamic analyses on one hand and the difficulties of appropriate cushion scale modeling on the other. The paper presents comparisons of pitch and roll stiffness coefficients for overwater and overland operations. Data are presented from model-scale and full-scale trials and analytic-numerical modeling. The effects of model-scale on the cushion dynamics relative to rotational responses are presented and the important characteristics of overwater and overland responses are discussed.

  6. A Different Pitch to Slope

    Science.gov (United States)

    Wolbert, William

    2017-01-01

    The query "When are we ever going to use this?" is easily answered when discussing the slope of a line. The pitch of a roof, the grade of a road, and stair stringers are three applications of slope that are used extensively. The concept of slope, which is introduced fairly early in the mathematics curriculum has hands-on applications…

  7. Reliable Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; Soltani, Mohsen

    2015-01-01

    The key objectives of wind turbine manufactures and buyers are to reduce the Total Cost of Ownership and Total Cost of Energy. Among others, low downtime of a wind turbine is important to increase the amount of energy produced during its lifetime. Historical data indicate that pitch systems...

  8. Predicting the side-chain dihedral angle distributions of nonpolar, aromatic, and polar amino acids using hard sphere models.

    Science.gov (United States)

    Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne

    2014-10-01

    The side-chain dihedral angle distributions of all amino acids have been measured from myriad high-resolution protein crystal structures. However, we do not yet know the dominant interactions that determine these distributions. Here, we explore to what extent the defining features of the side-chain dihedral angle distributions of different amino acids can be captured by a simple physical model. We find that a hard-sphere model for a dipeptide mimetic that includes only steric interactions plus stereochemical constraints is able to recapitulate the key features of the back-bone dependent observed amino acid side-chain dihedral angle distributions of Ser, Cys, Thr, Val, Ile, Leu, Phe, Tyr, and Trp. We find that for certain amino acids, performing the calculations with the amino acid of interest in the central position of a short α-helical segment improves the match between the predicted and observed distributions. We also identify the atomic interactions that give rise to the differences between the predicted distributions for the hard-sphere model of the dipeptide and that of the α-helical segment. Finally, we point out a case where the hard-sphere plus stereochemical constraint model is insufficient to recapitulate the observed side-chain dihedral angle distribution, namely the distribution P(χ₃) for Met.

  9. Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from -10 deg to 110 deg. [Langley 12-foot low speed wind tunnel test

    Science.gov (United States)

    Moul, T. M.

    1979-01-01

    A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.

  10. Effects of Contrasting Nazca Slab Subduction Angles on Mantle Flow: Results From Three-Dimensional Numerical Models

    Science.gov (United States)

    Wild, S. C.; Georgen, J. E.

    2012-12-01

    In the southern Andes, the downgoing Nazca plate has adjacent zones with slab dip angles of 10° and 30°. To better understand the nature of mantle flow and plate deformation across the transition region between the juxtaposed angles, we calculate a steady-state, three-dimensional finite element numerical model. The overall three-dimensional model domain contains a rigid overlying plate, two subducting slabs (with dips of 10° and 30°), and a mantle wedge with a geometry that changes in the trench-parallel direction. The model space is generated by using two-dimensional solutions as boundary conditions for the trench-perpendicular "endcaps" of the numerical domain. Models solve the conservation equations of mass, momentum, and energy, neglecting heat production and thermal buoyancy and assuming isoviscous mantle flow. The sensitivity of the model to overriding plate thickness, coupling between the downgoing and overriding plates in the wedge corner region, and convergence velocity is also investigated. Temperature solutions from the three-dimensional models are used in calculations to delineate the brittle and ductile zones of the model domain. Models predict a significant amount of trench-parallel flow, as a result of the juxtaposition of the two slab angles. Also, the uppermost portion of the model space shows a continuous brittle section for trench-perpendicular distances of up to ~240 km, implying that the formation of a slab tear is relatively unlikely for the conditions and parameters simulated in this investigation. Future work will focus on different treatments of mantle viscosity and examining the sensitivity of the three-dimensional model to the selection of slab dip angle.

  11. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    Science.gov (United States)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from

  12. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    Science.gov (United States)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from

  13. Modelling the effect of pore structure and wetting angles on capillary rise in soils having different wettabilities

    Science.gov (United States)

    Czachor, Henryk

    2006-09-01

    SummaryCapillary rise in axis symmetrical sinusoidal capillary (SC) has been modelled. Analytical formula for meniscus radius, capillary pressure and meniscus rate in SC have been found. Capillary shape described by wall waviness highly influences all of them. The limit between wettability and repellency in such capillary is described by critical value of contact angle θc which is related to the pore geometry by the equation ctg( θc) = πd2, where d2 - pore wall waviness. Kinetics of capillary rise in sinusoidal capillary has been determined by numerical integration of meniscus rate equation for a wide range of pore wall waviness and several values of contact angles. Application of Washburn theory to the data obtained from simulation gives the contact angle value much higher than the true one. In contrast, the obtained pore radius value is usually well correlated with capillary neck. However, in some cases a calculated radius can be even smaller. Above conclusions have been qualitatively confirmed by experiments performed on glass beads and soils. Contact angle measured on flat glass was 27.4°. The calculations concerning the data from capillary rise experiments on 90-1000 μm fraction of glass powder and Washburn theory gave values ca. 80°. The contact angle values for peat soils and loamy sand have close values, which supports the opinion that non-cylindrical shape of soil pores highly influences both the wettability/repellency and the water flux in soils.

  14. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring

    Science.gov (United States)

    Beatus, Tsevi; Cohen, Itai

    2015-11-01

    While the wing kinematics of many flapping insects have been well characterized, understanding the underlying physiological mechanisms that determine these kinematics is still a challenge. Two of the main difficulties arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics the insect wing-hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here, we model the torques exerted by the wing-hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasi-static aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate flies can accurately control their wing-pitch kinematics on a sub-wing-beat time-scale by modulating all three effective spring parameters on longer time-scales.

  15. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  16. Cross-Cultural Perspectives on Pitch Memory

    Science.gov (United States)

    Trehub, Sandra E.; Schellenberg, E. Glenn; Nakata, Takayuki

    2008-01-01

    We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and…

  17. Cross-Cultural Perspectives on Pitch Memory

    Science.gov (United States)

    Trehub, Sandra E.; Schellenberg, E. Glenn; Nakata, Takayuki

    2008-01-01

    We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and…

  18. Music Lessons, Pitch Processing, and "g"

    Science.gov (United States)

    Schellenberg, E. Glenn; Moreno, Sylvain

    2010-01-01

    Musically trained and untrained participants were administered tests of pitch processing and general intelligence ("g"). Trained participants exhibited superior performance on tests of pitch-processing speed and relative pitch. They were also better at frequency discrimination with tones at 400 Hz but not with very high tones (4000 Hz). The two…

  19. Pitch and image quality in computed tomography; Pitch et qualite d'image en tomodensitometrie

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.; Le Marec, E.; Pharaboz, C. [Hopital d' Instruction des Armees Begin, 94 - Saint-Mande (France); Le Bruno, B. [Siemens SA, 92 - Saint-Denis (France)

    1999-10-01

    Pitch is a specific parameter in helical computed tomography. Once the definition of the pitch and its situation in parameters obtaining the image have been resumed, we propose to evaluate theoretic and experimental influence of the pitch on image quality. Best indications of pitch values greater than 1.0 are discussed. (author)

  20. Apparent Contact Angle Calculated from a Water Repellent Model with Pinning Effect.

    Science.gov (United States)

    Suzuki, Shojiro; Ueno, Kazuyuki

    2017-01-10

    A set of new theoretical equations for apparent contact angles is proposed. The equations are derived from an equilibrium of interfacial tensions of a three-phase contact line pinned at the edges of a fine structure. These equations are validated by comparison with contact-angle measurement results for 2 μL water droplets on poly(methyl methacrylate) microstructured samples with square pillars or holes. The equilibrium contact angles predicted by the new equations reasonably agree with the experimental results. In contrast, the values predicted by the Cassie-Baxter equation or the Wenzel equation do not qualitatively agree with the experimental results in pillar pattern cases because the Cassie-Baxter equation and the Wenzel equation do not account for the pinning effect.

  1. Wake visualization of a heaving and pitching foil in a soap film

    Science.gov (United States)

    Muijres, Florian T.; Lentink, David

    Many fish depend primarily on their tail beat for propulsion. Such a tail is commonly modeled as a twodimensional flapping foil. Here we demonstrate a novel experimental setup of such a foil that heaves and pitches in a soap film. The vortical flow field generated by the foil correlates with thickness variations in the soap film, which appear as interference fringes when the film is illuminated with a monochromatic light source (we used a high-frequency SOX lamp). These interference fringes are subsequently captured with high-speed video (500 Hz) and this allows us to study the unsteady vortical field of a flapping foil. The main advantage of our approach is that the flow fields are time and space resolved and can be obtained time-efficiently. The foil is driven by a flapping mechanism that is optimized for studying both fish swimming and insect flight inside and outside the behavioral envelope. The mechanism generates sinusoidal heave and pitch kinematics, pre-described by the non-dimensional heave amplitude (0-6), the pitch amplitude (0° - 90°), the phase difference between pitch and heave (0° - 360°), and the dimensionless wavelength of the foil (3-18). We obtained this wide range of wavelengths for a foil 4 mm long by minimizing the soap film speed (0.25 m s- 1) and maximizing the flapping frequency range (4-25 Hz). The Reynolds number of the foil is of order 1,000 throughout this range. The resulting setup enables an effective assessment of vortex wake topology as a function of flapping kinematics. The efficiency of the method is further improved by carefully eliminating background noise in the visualization (e.g., reflections of the mechanism). This is done by placing mirrors at an angle behind the translucent film such that the camera views the much more distant and out-of-focus reflections of the black laboratory wall. The resulting high-quality flow visualizations require minimal image processing for flow interpretation. Finally, we demonstrate the

  2. Control design for a pitch-regulated, variable speed wind turbine

    DEFF Research Database (Denmark)

    Hansen, M.H.; Hansen, Anca Daniela; Larsen, Torben J.;

    2005-01-01

    of tuning the parameters of the frequency converter to obtain a more constant power output. The dynamicmodelling of the power controller is an important result for the inclusion of generator dynamics in the aeroelastic modelling of wind turbines. A reduced dynamic model of the relation between generator...... different, which makes a directly quantitative comparison difficult. But there are some observations of similar behaviours should be mentioned: • Very similar step responses in rotor speed, pitch angle, and powerare seen for simulations with steps in wind speed. • All controllers show a peak in power...... for wind speed step-up over rated wind speed, which can be almost removed by changing the parameters of the frequency converter. • Responses of rotor speed, pitchangle, and power for different simulations with turbulent inflow are similar for all three controllers. Again, there seems to be an advantage...

  3. Direction of spin axis and spin rate of the pitched baseball.

    Science.gov (United States)

    Jinji, Tsutomu; Sakurai, Shinji

    2006-07-01

    In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.

  4. CFD Simulation of Fixed and Variable Pitch Vertical Axis Tidal Turbine

    Institute of Scientific and Technical Information of China (English)

    Qihu Sheng; Syed Shah Khalid; Zhimin Xiong; Ghazala Sahib; Liang Zhang

    2013-01-01

    In this paper,hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed.Two-dimensional numerical modeling & simulation of the unsteady flow through the blades of the turbine is performed using ANSYS CFX,hereafter CFX,which is based on a Reynolds-Averaged Navier-Stokes (RANS) model.A transient simulation is done for fixed pitch and variable pitch vertical axis tidal turbine using a Shear Stress Transport turbulence (SST) scheme.Main hydrodynamic parameters like torque T,combined moment CM,coefficients of performance CP and coefficient of torque CT,etc.are investigated.The modeling and meshing of turbine rotor is performed in ICEM-CFD.Moreover,the difference in meshing schemes between fixed pitch and variable pitch is also mentioned.Mesh motion option is employed for variable pitch turbine.This article is one part of the ongoing research on turbine design and developments.The numerical simulation results are validated with well reputed analytical results performed by Edinburgh Design Ltd.The article concludes with a parametric study of turbine performance,comparison between fixed and variable pitch operation for a four-bladed turbine.It is found that for variable pitch we get maximum CP and peak power at smaller revolution per minute N and tip sped ratio λ.

  5. Generation and extraction of second pitch-shift from cochlear biophysics

    CERN Document Server

    Gomez, Florian

    2013-01-01

    It has been long known that the perceived pitch of a complex harmonic sound changes if the partials of the sound are shifted in frequency by a fixed amount. Rules that this pitch-shift can be expected to follow can be derived from simple nonlinear modeling (first pitch-shift), but clear deviations were observed in corresponding psychoacoustic experiments (second pitch-shift effects). This raises the question of whether these deviations are due to the biophysics of the nonlinear hearing sensor, the cochlea, or are an artifact generated higher up in the auditory pathway. In this article, we explicitly confirm that the second pitch-shift originates in the cochlea, and that the key factors responsible for the phenomenon are combination-tone generation, low-pass filtering and feed-forward coupling in the cochlea. We find, in particular, that the scaling laws of Hopf cochlea combination tones fully explain the psychoacoustical pitch data of G.F. Smoorenburg (1970).

  6. A novel binaural pitch elicited by phase-modulated noise: MEG and psychophysical observations.

    Science.gov (United States)

    Witton, Caroline; Hillebrand, Arjan; Furlong, Paul L; Henning, G Bruce

    2012-06-01

    Binaural pitches are auditory percepts that emerge from combined inputs to the ears but that cannot be heard if the stimulus is presented to either ear alone. Here, we describe a binaural pitch that is not easily accommodated within current models of binaural processing. Convergent magnetoencephalography (MEG) and psychophysical measurements were used to characterize the pitch, heard when band-limited noise had a rapidly changing interaural phase difference. Several interesting features emerged: First, the pitch was perceptually lateralized, in agreement with the lateralization of the evoked changes in MEG spectral power, and its salience depended on dichotic binaural presentation. Second, the frequency of the pure tone that matched the binaural pitch lay within a lower spectral sideband of the phase-modulated noise and followed the frequency of that sideband when the modulation frequency or center frequency and bandwidth of the noise changed. Thus, the binaural pitch depended on the processing of binaural information in that lower sideband.

  7. Nonlocal hydrodynamic influence on the dynamic contact angle: slip models versus experiment.

    Science.gov (United States)

    Wilson, Mark C T; Summers, Jonathan L; Shikhmurzaev, Yulii D; Clarke, Andrew; Blake, Terence D

    2006-04-01

    Experiments reported by Blake [Phys. Fluids., 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field and geometry near the moving contact line. We examine quantitatively whether or not it is possible to attribute this effect to the bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so-called "apparent" contact angle. It is shown that this is not the case. Numerical analysis of the problem demonstrates that, at the spatial resolution reported in the experiments, the variations of the "apparent" contact angle (defined in two different ways) caused by variations in the flow field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate that the actual (macroscopic) dynamic contact angle--i.e., the one used in fluid mechanics as a boundary condition for the equation determining the free surface shape--must be regarded as dependent not only on the contact-line speed but also on the flow field and geometry in the vicinity of the moving contact line.

  8. Heterodyne Interferometer Angle Metrology

    Science.gov (United States)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  9. Relations of pitch matching, pitch discrimination, and otoacoustic emission suppression in individuals not formally trained as musicians.

    Science.gov (United States)

    Moore, Robert E; Estis, Julie M; Zhang, Fawen; Watts, Christopher; Marble, Elizabeth

    2007-06-01

    Research has yielded a relationship between pitch matching and pitch discrimination. Good pitch matchers tend to be good pitch discriminators and are often judged to be vocally talented. Otoacoustic emission suppression measures the function of the efferent auditory system which may affect accuracy for pitch matching and pitch discrimination. Formally trained musicians show pitch matching and pitch discrimination superior to those of nonmusicians and have greater efferent otoacoustic emission suppression than nonmusicians. This study investigated the relationship among pitch matching, pitch discrimination, and otoacoustic emission suppression in individuals with no formal musical training and who showed varied pitch matching and pitch discrimination. Analysis suggested a significant relationship between pitch matching and pitch discrimination but not between otoacoustic emission suppression and pitch matching and pitch discrimination. Findings are presented in the context of previous research indicating a significant relationship between otoacoustic emission suppression and musical talent in trained musicians.

  10. Turbulent Flow Over a Low-Camber Pitching Arc Wing

    Science.gov (United States)

    Molki, Majid

    2014-11-01

    Aerodynamics of pitching airfoils and wings are of great importance to the design of air vehicles. This investigation presents the effect of camber on flow field and force coefficient for a pitching circular-arc airfoil. The wing considered in this study is a cambered plate of zero thickness which executes a linear pitch ramp, hold and return of 45° amplitude. The momentum equation is solved on a mesh that is attached to the wing and executes a pitching motion with the wing about a pivot point located at 0.25-chord or 0.50-chord distance from the leading edge. Turbulence is modeled by the k - ω SST model. Using the open-source software OpenFOAM, the conservation equations are solved on a dynamic mesh and the flow is resolved all the way to the wall (y+ ~ 1). The computations are performed for Re = 40,000 with the reduced pitch rate equal to K = cθ˙ / 2U∞ = 0 . 2 . The results are presented for three wings, namely, a flat plate (zero camber) and wings of 4% and 10% camber. It is found that the flow has complex features such as leading-edge vortex, near-wake vortex pairs, clockwise and counter-clockwise vortices, and trailing-edge vortex. While vortices are formed over the flat plate, they are formed both over and under the cambered wing.

  11. Numerical simulation of the formation of short pitch corrugation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S. [ABB Research Center, Heidelberg (Germany); Knothe, K. [Technical Univ. Berlin (Germany)

    2000-07-01

    The formation of periodic wear patterns on the running surface of the rail has been observed for more than a hundred years. These wear patterns are the reason for unwelcome effects like noise and damage to the track. A high number of publications was concerned with the problem and most rail corrugation types can be explained to date. Only the mechanism which leads to so called short pitch corrugation is not understood yet. Therefore, based on previous work a linear wheel-track model has been developed to understand the formation of short pitch corrugation on tangent track. Numerical simulations have been undertaken with this model to analyse the corrugation process. Based on numerical results it is tried to explain why the corrugation pitch observed in practice vary little with train speed and it is shown how wheel-rail parameters influence the proneness to corrugation. (orig.)

  12. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  13. Disorders of pitch production in tone deafness.

    Science.gov (United States)

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as "tone deafness," has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  14. Modeling phase-angle dependence of lunar irradiance using long-term lunar measurements by VIRS on TRMM

    Science.gov (United States)

    Shao, Xi; Zhang, Bin; Cao, Changyong

    2014-11-01

    Moon reflects sun light and its surface is radiometicly stable, making it an ideal target for calibrating satellite radiometers. Since lunar irradiance depends strongly on lunar phase and differs between waxing and waning phases, an accurate modeling of dependence of lunar irradiance on lunar phase angle is needed and requires long term consistent observations of the moon. Since its operation in 1998, the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite makes regular observations of moon through space view for about 15 years with comprehensive coverage of lunar phases varying from waxing to waning. Two of these VIRS bands are reflected solar bands centered at 0.62 and 1.61um. Lunar measurements through space view of VIRS are not subject to atmospheric effects. Therefore, long term lunar observation by VIRS on TRMM is an invaluable dataset for both verifying and calibrating lunar irradiance models. In this study, analysis of long-term lunar observations using VIRS data are performed and phase-angle dependence of lunar irradiance is modeled. Effects of waxing and waning phases on lunar irradiance for two visible bands of VIRS are quantified. It is found that the lunar disk-integrated intensity of waxing lunar phase is higher than those of waning phase for phase angle >40° for both channels and is consistent with the fact that the waning moon shows more of dark maria. The derived phase angledependences of lunar disk effective reflectance for these two channels are compared with model.

  15. Evaluation of dose delivery accuracy due to variation in pitch and roll

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Young; Bae, Sun Myung; Lee, Dong Hyung; Min, Soon Ki; Kang, Tae Young; Baek, Geum Mun [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)

    2014-12-15

    The purpose of this study is to verify the accuracy of dose delivery according to the pitch and roll rotational setup error with 6D robotic couch in Intensity Modulated Radiation Therapy ( IMRT ) for pelvic region in patients. Trilogy(Varian, USA) and 6D robotic couch(ProturaTM 1.4, CIVCO, USA) were used to measure and analyze the rotational setup error of 14 patients (157 setup cases) for pelvic region. The total 157 Images(CBCT 78, Radiography 79) were used to calculate the mean value and the incidence of pitch and roll rotational setup error with Microsoft Office Excel 2007. The measured data (3 mm, 3%) at the reference angle (0 °) without couch rotation of pitch and roll direction was compared to the others at different pitch and roll angles (1 °, 1.5 °, 2 °, 2.5 °) to verify the accuracy of dose delivery by using 2D array ionization chamber (I'mRT Matrixx, IBA Dosimetry, Germany) and MultiCube Phantom(IBA Dosimetry, Germany). Result from the data, gamma index was evaluated. The mean values of pitch and roll rotational setup error were 0.9±0.7 °, 0.5±0.6 °. The maximum values of them were 2.8 °, 2.0 °. All of the minimum values were zero. The mean values of gamma pass rate at four different pitch angles (1 °, 1.5 °, 2 °, 2.5 °) were 97.75%, 96.65%, 94.38% and 90.91%. The mean values of gamma pass rate at four different roll angles (1 °, 1.5 °, 2 °, 2.5 °) were 93.68%, 93.05%, 87.77% and 84.96%. when the same angles (1 °, 1.5 °, 2 ° ) of pitch and roll were applied simultaneously, The mean values of each angle were 94.90%, 92.37% and 87.88%, respectively. As a result of this study, it was able to recognize that the accuracy of dose delivered is lowered gradually as pitch and roll increases. In order to increase the accuracy of delivered dose, therefore, it is recommended to perform IGRT or correct patient's position in the pitch and roll direction, to improve the quality of treatment.

  16. Using Order Tracking Analysis Method to Detect the Angle Faults of Blades on Wind Turbine

    DEFF Research Database (Denmark)

    Li, Pengfei; Hu, Weihao; Liu, Juncheng;

    2016-01-01

    The angle faults of blades on wind turbines are usually included in the set angle fault and the pitch angle fault. They are occupied with a high proportion in all wind turbine faults. Compare with the traditional fault detection methods, using order tracking analysis method to detect angle faults...

  17. Constructing the large mixing angle MNS matrix in see-saw models with right-handed neutrino dominance

    CERN Document Server

    King, S F

    2002-01-01

    Recent SNO results strongly favour the large mixing angle (LMA) MSW solar solution. We argue that there are only two technically natural low energy neutrino mass matrix structures consistent with the LMA MSW solution, corresponding to either a hierarchy or an inverted hierarchy with pseudo-Dirac neutrinos. We first present a model-independent analysis in which we diagonalise each of these two mass matrix structures to leading order in $\\theta_{13}$ and extract the neutrino masses, mixing angles and phases. In this analysis we express the MNS matrix to leading order in the small angle $\\theta_{13}$ including the neutrino {\\em and} charged lepton mixing angles and phases, the latter playing a crucial r\\^{o}le for allowing the inverted hierarchy solution to be consistent with the LMA MSW solution. We then consider the see-saw mechanism with right-handed neutrino dominance and show how the successful neutrino mass matrix structures may be constructed with no tuning and with small radiative corrections, leading to...

  18. Reducing radiation dose to selected organs by selecting the tube start angle in MDCT helical scans: A Monte Carlo based study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Di; Zankl, Maria; DeMarco, John J.; Cagnon, Chris H.; Angel, Erin; Turner, Adam C.; McNitt-Gray, Michael F. [David Geffen School of Medicine at UCLA, Los Angeles, California 90024 (United States); German Research Center for Environmental Health (GmbH), Institute of Radiation Protection, Helmholtz Zentrum Muenchen, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); David Geffen School of Medicine at UCLA, Los Angeles, California 90024 (United States)

    2009-12-15

    Purpose: Previous work has demonstrated that there are significant dose variations with a sinusoidal pattern on the peripheral of a CTDI 32 cm phantom or on the surface of an anthropomorphic phantom when helical CT scanning is performed, resulting in the creation of ''hot'' spots or ''cold'' spots. The purpose of this work was to perform preliminary investigations into the feasibility of exploiting these variations to reduce dose to selected radiosensitive organs solely by varying the tube start angle in CT scans. Methods: Radiation dose to several radiosensitive organs (including breasts, thyroid, uterus, gonads, and eye lenses) resulting from MDCT scans were estimated using Monte Carlo simulation methods on voxelized patient models, including GSF's Baby, Child, and Irene. Dose to fetus was also estimated using four pregnant female models based on CT images of the pregnant patients. Whole-body scans were simulated using 120 kVp, 300 mAs, both 28.8 and 40 mm nominal collimations, and pitch values of 1.5, 1.0, and 0.75 under a wide range of start angles (0 deg. - 340 deg. in 20 deg. increments). The relationship between tube start angle and organ dose was examined for each organ, and the potential dose reduction was calculated. Results: Some organs exhibit a strong dose variation, depending on the tube start angle. For small peripheral organs (e.g., the eye lenses of the Baby phantom at pitch 1.5 with 40 mm collimation), the minimum dose can be 41% lower than the maximum dose, depending on the tube start angle. In general, larger dose reductions occur for smaller peripheral organs in smaller patients when wider collimation is used. Pitch 1.5 and pitch 0.75 have different mechanisms of dose reduction. For pitch 1.5 scans, the dose is usually lowest when the tube start angle is such that the x-ray tube is posterior to the patient when it passes the longitudinal location of the organ. For pitch 0.75 scans, the dose is lowest

  19. A novel methodology based on contact angle hysteresis approach for surface changes monitoring in model PMMA-Corega Tabs system

    Science.gov (United States)

    Pogorzelski, Stanisław J.; Berezowski, Zdzisław; Rochowski, Paweł; Szurkowski, Janusz

    2012-02-01

    The aim of the paper is to propose a quantitative description of dental surface modifications, resulting from application of Corega and oral cavity liquids, with several surface parameters derived from liquid/solid contact angle measurements. In particular, to predict the long-term effectiveness of denture cleansers in prosthetics, it is necessary to determine surface wettability variations for model dental materials/probe liquid systems related to the contamination effect caused by substances found in the oral cavity. A novel simple low-cost methodology, based on liquid drop contact angle hysteresis CAH approach developed by Chibowski, was adopted to trace solid surface free energy changes in the model PMMA-Corega Tabs interfacial layer. Contact angle and its hysteresis were studied with a sessile drop-inclined plate method in contact with a cleanser (Corega Tabs) and model liquids found in the oral cavity. The apparent solid surface free energy, adsorptive film pressure, work of adhesion and spreading were derived from contact angle hysteresis data for both model solid surfaces (reference) and samples affected by different reactive liquids for a certain time. A time-dependent surface wettability changes of dentures were expressed quantitatively in terms of the corresponding variations of the surface energy parameters which turned out to be unequivocally related to the cleanser exposure time and polarity of the liquids applied to the dental material. The novel methodology appeared to be a useful tool for long term surface characterization of dental materials treated with surfactants-containing liquids capable of forming adhesive layers. The time of optimal use and effectiveness of cleansers are also reflected dynamically in the corresponding variations of the surface wettability parameters. Further studies on a large group of dental surface-probe liquid systems are required to specify the role played by other important factors (liquid polarity, pH and temperature).

  20. Propagation-of-uncertainty from contact angle and streaming potential measurements to XDLVO model assessments of membrane-colloid interactions.

    Science.gov (United States)

    Muthu, Satish; Childress, Amy; Brant, Jonathan

    2014-08-15

    Membrane fouling assessed from a fundamental standpoint within the context of the Derjaguin-Landau-Verwey-Overbeek (DLVO) model. The DLVO model requires that the properties of the membrane and foulant(s) be quantified. Membrane surface charge (zeta potential) and free energy values are characterized using streaming potential and contact angle measurements, respectively. Comparing theoretical assessments for membrane-colloid interactions between research groups requires that the variability of the measured inputs be established. The impact that such variability in input values on the outcome from interfacial models must be quantified to determine an acceptable variance in inputs. An interlaboratory study was conducted to quantify the variability in streaming potential and contact angle measurements when using standard protocols. The propagation of uncertainty from these errors was evaluated in terms of their impact on the quantitative and qualitative conclusions on extended DLVO (XDLVO) calculated interaction terms. The error introduced into XDLVO calculated values was of the same magnitude as the calculated free energy values at contact and at any given separation distance. For two independent laboratories to draw similar quantitative conclusions regarding membrane-foulant interfacial interactions the standard error in contact angle values must be⩽2.5°, while that for the zeta potential values must be⩽7 mV.

  1. Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties.

    Science.gov (United States)

    Ma, Ya-Jun; Shao, Hongda; Du, Jiang; Chang, Eric Y

    2016-11-01

    MRI biomarkers such as T2 , T2 * and T1rho have been widely used, but are confounded by the magic angle effect. The purpose of this study is to investigate the use of the two-dimensional ultrashort echo time magnetization transfer (UTE-MT) sequence for potential magic angle independent MR biomarkers. Magnetization transfer was investigated in cadaveric Achilles tendon samples using the UTE-MT sequence at five MT powers and five frequency offsets ranging from 2 to 50 kHz. The protocol was applied at five sample orientations ranging from 0 to 90° relative to the B0 field. The results were analyzed with a two-pool quantitative MT model. Multiple TE data were also acquired and mono-exponential T2 * was calculated for each orientation. Macromolecular proton fractions and exchange rates derived from UTE-MT modeling did not appreciably change between the various orientations, whereas the T2 * relaxation time demonstrated up to a sixfold increase from 0° to 55°. The UTE-MT technique with two-pool modeling shows promise as a clinically compatible technique that is resistant to the magic angle effect. This method provides information on the macromolecular proton pool that cannot be directly obtained by other methods, including regular UTE techniques. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Integrated guidance and control design for missile with terminal impact angle constraint based on sliding mode control

    Institute of Scientific and Technical Information of China (English)

    Peng Wu; Ming Yang

    2010-01-01

    Aimed at the guidance requirements of some missiles which attack targets with terminal impact angle at the terminal point,a new integrated guidance and control design scheme based on variable structure control approach for missile with terminal impact angle constraint is proposed.First,a mathematical model of an integrated guidance and control model in pitch plane is established,and then nonlinear transformation is employed to transform the mathematical model into a standard form suitable for sliding mode control method design.A sufficient condition for the existence of linear sliding surface is given in terms of linear matrix inequalities(LMIs),based on which the corresponding reaching motion controller is also developed.To verify the effectiveness of the proposed integrated design scheme,the numerical simulation of missile is made.The simulation results demonstrate that the proposed guidance and control law can guide missile to hit the target with desired impact angle and desired flight attitude angle simultaneously.

  3. The Effect of Glancing Angle Deposition Conditions on the Morphology of a Silver Nanohelix Array

    Directory of Open Access Journals (Sweden)

    Yi-Jun Jen

    2017-09-01

    Full Text Available Silver nanohelices were grown on smooth substrates using glancing angle deposition and substrate cooling. Various nanohelix arrays were deposited under different deposition conditions—different deposition rates, substrate spin rates, deposition angles, and substrate temperatures. The effect of deposition conditions on the morphology of each nanohelix array in terms of pitch angle, pitch length, wire diameter, and radius of curvature was investigated. The dependence of circular dichroism on the size of the nanohelix arrays was also measured and demonstrated.

  4. Ball Speed and Release Consistency Predict Pitching Success in Major League Baseball.

    Science.gov (United States)

    Whiteside, David; Martini, Douglas N; Zernicke, Ronald F; Goulet, Grant C

    2016-07-01

    Whiteside, D, Martini, DN, Zernicke, RF, and Goulet, GC. Ball speed and release consistency predict pitching success in Major League Baseball. J Strength Cond Res XX(X): 000-000, 2015-This study aimed to quantify how ball flight kinematics (i.e., ball speed and movement), release location, and variations therein relate to pitching success in Major League Baseball (MLB). One hundred ninety starting MLB pitchers met the inclusion criteria for this study. Ball trajectory information was collected for 76,000 pitches and inserted into a forward stepwise multiple regression model, which examined how (a) pitch selection, (b) ball speed, (c) ball movement (horizontal and lateral), (d) release location (horizontal and lateral), (e) variation in pitch speed, (f) variation in ball movement, and (g) variation in release location related to pitching success (as measured by fielding independent pitching-FIP). Pitch speed, release location variability, variation in pitch speed, and horizontal release location were significant predictors of FIP and, collectively, accounted for 24% of the variance in FIP. These findings suggest that (a) maximizing ball speed, (b) refining a consistent spatial release location, and (c) using varied pitch speeds should be primary foci for the pitching coach. However, between-pitcher variations underline how training interventions should be administered at the individual level, with consideration given to the pitcher's injury history. Finally, despite offering significant predictors of success, these three factors explained only 22% of the variance in FIP and should not be considered the only, or preeminent, indicators of a pitcher's effectiveness. Evidently, traditional pitching metrics only partly account for a pitcher's effectiveness, and future research is necessary to uncover the remaining contributors to success.

  5. Individual blade pitching system for horizontal axis tidal current turbine%水平轴潮流能发电机组独立变桨距系统

    Institute of Scientific and Technical Information of China (English)

    徐全坤; 李伟; 刘宏伟; 林勇刚; 石茂顺

    2013-01-01

    针对水平轴潮流能发电机组轮毂空间小、变桨角度大、变桨力矩大等特点,设计一种新型的基于电液比例控制的齿轮齿条传动方案的独立变桨距系统.该系统机械结构紧凑,占用空间小,各个桨叶变桨执行机构相互独立.在分析变桨距载荷的基础上,建立系统的数学模型,并在AMESim软件中对系统进行了仿真研究.仿真结果表明:该系统顺桨变桨180°只需1.1s,逆桨变桨180°只需3.4s,响应速度快,稳定性好,并且可以实现独立变桨,满足了水平轴潮流能发电机组的变桨要求.%Aiming at the characteristics of horizontal axis tidal current turbine such as small hub, large pitching load, large angles of pitch adjustment and so on, a novel pinion-and-rack individual pitch actuator based on electro-hydraulic proportional technology was designed. This pitching system has a compact structure, takes up little space and the mechanism of each blade works independently. Based on the analysis of the load that the blade subjected to during pitch adjustment, a mathematical model for the system was established, and then simulated in AMESim software. The simulation shows that the individual pitching system costs only 1. 1 s when pitching 180° during feathering, and 3. 4 s inverse. The system has good performance in terms of quick response and stability and can realize the pitch adjustment independently, meeting the requirements of tidal current turbine.

  6. An Experimental Investigation of Passive Variable-Pitch Vertical-Axis Ocean Current Turbine

    Directory of Open Access Journals (Sweden)

    Ridho Hantoro

    2011-04-01

    Full Text Available Vertical-axis hydrokinetic turbines with fixed pitch blades typically suffer from poor starting torque, low efficiency and shaking due to large fluctuations in both radial and tangential force with azimuth angle. Maximizing the turbine power output can be achieved only if the mechanism of generation of the hydrodynamic force on the blades is clearly identified and tools to design high-performance rotors are developed. This paper describes an initial experimental investigation to understand more of the performance on vertical-axis turbine related to the effect of fixed-pitch and passive variable-pitch application using airfoil NACA 0018. Comparative analysis according to aspects of rotation and tip speed ratios was discussed. Information regarding the changes of foil position in passive variable-pitch during rotation at a limited range of flow velocity variations test was obtained and analyzed.

  7. The Effects of Pitch Shifts on Delay-Induced Changes in Vocal Sequencing in a Songbird

    Science.gov (United States)

    Kelly, Conor W.

    2017-01-01

    Abstract Like human speech, vocal behavior in songbirds depends critically on auditory feedback. In both humans and songbirds, vocal skills are acquired by a process of imitation whereby current vocal production is compared to an acoustic target. Similarly, performance in adulthood relies strongly on auditory feedback, and online manipulations of auditory signals can dramatically alter acoustic production even after vocalizations have been well learned. Artificially delaying auditory feedback can disrupt both speech and birdsong, and internal delays in auditory feedback have been hypothesized as a cause of vocal dysfluency in persons who stutter. Furthermore, in both song and speech, online shifts of the pitch (fundamental frequency) of auditory feedback lead to compensatory changes in vocal pitch for small perturbations, but larger pitch shifts produce smaller changes in vocal output. Intriguingly, large pitch shifts can partially restore normal speech in some dysfluent speakers, suggesting that the effects of auditory feedback delays might be ameliorated by online pitch manipulations. Although birdsong provides a promising model system for understanding speech production, the interactions between sensory feedback delays and pitch shifts have not yet been assessed in songbirds. To investigate this, we asked whether the addition of a pitch shift modulates delay-induced changes in Bengalese finch song, hypothesizing that pitch shifts would reduce the effects of feedback delays. Compared with the effects of delays alone, combined delays and pitch shifts resulted in a significant reduction in behavioral changes in one type of sequencing (branch points) but not another (distribution of repeated syllables). PMID:28144622

  8. Heroes and Villains: The Relationship between Pitch Tessitura and Sociability of Operatic Characters

    Directory of Open Access Journals (Sweden)

    Daniel Shanahan

    2015-01-01

    Full Text Available Research in speech prosody and ethology suggests that pitch height indexes positive and negative social affects, in the sense that higher pitched voices are used to convey friendliness, whereas lower pitched voices are used to convey aggression (Bolinger, 1964. Research concerning animal calls suggests that this association generalizes to many species. In a study of the calls for 56 species, Morton (1977, 1994 proposed a sound-size model in which large size (and low pitch is associated with aggression, whereas small size (and high pitch is associated with friendliness, fear, or appeasement. We examine whether this association can be observed in music. Specifically, the results of three studies are reported in which the pitch-height of various voices is related to estimates of the sociability of the corresponding operatic characters. Results indeed indicate an association between lower-pitched voices and less sociable characters, in contrast to higher-pitched voices being associated with more sociable characters. In addition, older male characters tend to exhibit lower-pitched voices, consistent with known physiological changes (Linville, 2004; Reubold, Harrington & Kleber, 2010.

  9. The Effects of Pitch Shifts on Delay-Induced Changes in Vocal Sequencing in a Songbird.

    Science.gov (United States)

    Wyatt, MacKenzie; Berthiaume, Emily A; Kelly, Conor W; Sober, Samuel J

    2017-01-01

    Like human speech, vocal behavior in songbirds depends critically on auditory feedback. In both humans and songbirds, vocal skills are acquired by a process of imitation whereby current vocal production is compared to an acoustic target. Similarly, performance in adulthood relies strongly on auditory feedback, and online manipulations of auditory signals can dramatically alter acoustic production even after vocalizations have been well learned. Artificially delaying auditory feedback can disrupt both speech and birdsong, and internal delays in auditory feedback have been hypothesized as a cause of vocal dysfluency in persons who stutter. Furthermore, in both song and speech, online shifts of the pitch (fundamental frequency) of auditory feedback lead to compensatory changes in vocal pitch for small perturbations, but larger pitch shifts produce smaller changes in vocal output. Intriguingly, large pitch shifts can partially restore normal speech in some dysfluent speakers, suggesting that the effects of auditory feedback delays might be ameliorated by online pitch manipulations. Although birdsong provides a promising model system for understanding speech production, the interactions between sensory feedback delays and pitch shifts have not yet been assessed in songbirds. To investigate this, we asked whether the addition of a pitch shift modulates delay-induced changes in Bengalese finch song, hypothesizing that pitch shifts would reduce the effects of feedback delays. Compared with the effects of delays alone, combined delays and pitch shifts resulted in a significant reduction in behavioral changes in one type of sequencing (branch points) but not another (distribution of repeated syllables).

  10. Modelling of AlAs/GaAs interfacial structures using high-angle annular dark field (HAADF) image simulations.

    Science.gov (United States)

    Robb, Paul D; Finnie, Michael; Craven, Alan J

    2012-07-01

    High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis.

  11. Three-dimensional surface imaging by multi-frequency phase shift profilometry with angle and pattern modeling for system calibration

    Science.gov (United States)

    Wang, Zhenzhou

    2016-08-01

    In this paper, we present a 3D surface imaging system based on the well-known phase shift profilometry. To yield the analytical solutions, four shifted phases and three high carrier frequencies are used to compute the phase map and reduce the noises that are caused by the inherent optical aberrations and external influences, e.g. different illumination light sources, uneven intensity distribution and automatic image processing algorithms. To reduce the system noise, we propose to model the pattern of the calibration grid in a virtual space. To obtain the modeled pattern, we use a plane to intercept the rays that are modeled by the proposed angle modeling method. In the world coordinate system, the angle and the pattern are computed based on the calibration data. A registration method is used to transform the modeled pattern in the virtual space to the ideal pattern in the world coordinate system by computing the least squared errors between the true points in the modeled pattern and the measured points in the practical pattern. The modeled (true) points are used for re-calibration of the 3D imaging system. Experimental results showed that the measurement accuracy increases considerably and the MSE is reduced from 0.95 mm to 0.65 mm (32% average error decrease) after replacing the measured points with the true points for calibration.

  12. The effect of blade pitch in the rotor hydrodynamics of a cross-flow turbine

    Science.gov (United States)

    Somoano, Miguel; Huera-Huarte, Francisco

    2016-11-01

    In this work we will show how the hydrodynamics of the rotor of a straight-bladed Cross-Flow Turbine (CFT) are affected by the Tip Speed Ratio (TSR), and the blade pitch angle imposed to the rotor. The CFT model used in experiments consists of a three-bladed (NACA-0015) vertical axis turbine with a chord (c) to rotor diameter (D) ratio of 0.16. Planar Digital Particle Image Velocimetry (DPIV) was used, with the laser sheet aiming at the mid-span of the blades, illuminating the inner part of the rotor and the near wake of the turbine. Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the TSR, while being towed in a still-water tank at a constant Reynolds number of 61000. A range of TSRs from 0.7 to 2.3 were covered for different blade pitches, ranging from 8° toe-in to 16° toe-out. The interaction between the blades in the rotor will be discussed by examining dimensionless phase-averaged vorticity fields in the inner part of the rotor and mean velocity fields in the near wake of the turbine. Supported by the Spanish Ministry of Economy and Competitiveness, Grant BES-2013-065366 and project DPI2015-71645-P.

  13. Investigation of load reduction for a variable speed, variable pitch, and variable coning wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    A two bladed, variable speed and variable pitch wind turbine was modeled using ADAMS{reg_sign} to evaluate load reduction abilities of a variable coning configuration as compared to a teetered rotor, and also to evaluate control methods. The basic dynamic behavior of the variable coning turbine was investigated and compared to the teetered rotor under constant wind conditions as well as turbulent wind conditions. Results indicate the variable coning rotor has larger flap oscillation amplitudes and much lower root flap bending moments than the teetered rotor. Three methods of control were evaluated for turbulent wind simulations. These were a standard IPD control method, a generalized predictive control method, and a bias estimate control method. Each control method was evaluated for both the variable coning configuration and the teetered configuration. The ability of the different control methods to maintain the rotor speed near the desired set point is evaluated from the RMS error of rotor speed. The activity of the control system is evaluated from cycles per second of the blade pitch angle. All three of the methods were found to produce similar results for the variable coning rotor and the teetered rotor, as well as similar results to each other.

  14. Pitch Correlogram Clustering for Fast Speaker Identification

    Directory of Open Access Journals (Sweden)

    Nitin Jhanwar

    2004-12-01

    Full Text Available Gaussian mixture models (GMMs are commonly used in text-independent speaker identification systems. However, for large speaker databases, their high computational run-time limits their use in online or real-time speaker identification situations. Two-stage identification systems, in which the database is partitioned into clusters based on some proximity criteria and only a single-cluster GMM is run in every test, have been suggested in literature to speed up the identification process. However, most clustering algorithms used have shown limited success, apparently because the clustering and GMM feature spaces used are derived from similar speech characteristics. This paper presents a new clustering approach based on the concept of a pitch correlogram that captures frame-to-frame pitch variations of a speaker rather than short-time spectral characteristics like cepstral coefficient, spectral slopes, and so forth. The effectiveness of this two-stage identification process is demonstrated on the IVIE corpus of 110 speakers. The overall system achieves a run-time advantage of 500% as well as a 10% reduction of error in overall speaker identification.

  15. Improvements of Travel-time Tomography Models from Joint Inversion of Multi-channel and Wide-angle Seismic Data

    Science.gov (United States)

    Begović, Slaven; Ranero, César; Sallarès, Valentí; Meléndez, Adrià; Grevemeyer, Ingo

    2016-04-01

    Commonly multichannel seismic reflection (MCS) and wide-angle seismic (WAS) data are modeled and interpreted with different approaches. Conventional travel-time tomography models using solely WAS data lack the resolution to define the model properties and, particularly, the geometry of geologic boundaries (reflectors) with the required accuracy, specially in the shallow complex upper geological layers. We plan to mitigate this issue by combining these two different data sets, specifically taking advantage of the high redundancy of multichannel seismic (MCS) data, integrated with wide-angle seismic (WAS) data into a common inversion scheme to obtain higher-resolution velocity models (Vp), decrease Vp uncertainty and improve the geometry of reflectors. To do so, we have adapted the tomo2d and tomo3d joint refraction and reflection travel time tomography codes (Korenaga et al, 2000; Meléndez et al, 2015) to deal with streamer data and MCS acquisition geometries. The scheme results in a joint travel-time tomographic inversion based on integrated travel-time information from refracted and reflected phases from WAS data and reflected identified in the MCS common depth point (CDP) or shot gathers. To illustrate the advantages of a common inversion approach we have compared the modeling results for synthetic data sets using two different travel-time inversion strategies: We have produced seismic velocity models and reflector geometries following typical refraction and reflection travel-time tomographic strategy modeling just WAS data with a typical acquisition geometry (one OBS each 10 km). Second, we performed joint inversion of two types of seismic data sets, integrating two coincident data sets consisting of MCS data collected with a 8 km-long streamer and the WAS data into a common inversion scheme. Our synthetic results of the joint inversion indicate a 5-10 times smaller ray travel-time misfit in the deeper parts of the model, compared to models obtained using just

  16. Characterization of coal- and petroleum-derived binder pitches and the interaction of pitch/coke mixtures in pre-baked carbon anodes

    Science.gov (United States)

    Suriyapraphadilok, Uthaiporn

    study. Pitch itself is a very complex material. Studying the binding between pitch and the porous coke even adds another level of complexity to this subject. The high-temperature 1H NMR has been shown to be a promising technique to study the molecular interaction between different materials. The fraction of the mobile protons in the sample and their mobility as measured by the spin-spin relaxation time ( T*2 ), which is inversely proportional to the peak width at half maximum height (DeltaH1/2), seem to have a potential to probe the extent of the interaction between pitch and coke. Understanding of the interaction between coke and some simple compounds which are commonly found in pitch, i.e. model compounds, should help identify the binding efficiency between pitch and coke. The knowledge of (1) pitch chemistry and structure, (2) interaction between model compounds and filler cokes would lead to an understanding of the binding efficiency between pitch and coke. The mass distribution by MALDI analysis showed that the majority of the compounds in these pitches is in the range of 200-700 Da. The hexane-soluble (HS) fractions of all of the pitch samples in this study mainly consist of four-ring polycyclic aromatic compounds (PACs) as observed by GC/MS and Pyrolysis-GC/MS techniques. Coal-derived pitches contained mainly cata- and peri-condensed PACs and a few alkyl- and heteroatomic-substituted PACs, whereas those peteroleum-derived pitches consisted of a number of alkyl-substituted PACs with high sulfur substitution. Solid-state NMR results show that SCTP-2 and PP-1 contain six and five fused rings on average, respectively, whereas GP-115 and WVU-5 contain two and three fused rings on average, respectively. The latter two pitches contained mostly methyl substituents with a few ethyls. WVU-5 contains a higher degree of naphthenic substituents as compared to other pitches as confirmed by the GC/MS analysis. HTCCP and OXCCP contained three peri-condensed fused rings on

  17. Model building in AdS/CMT: DC Conductivity and Hall angle

    CERN Document Server

    Pal, Shesansu Sekhar

    2010-01-01

    Using the bottom-up approach in a holographic setting, we attempt to study both the transport and thermodynamic properties of a generic system in $3+1$ dimensional bulk spacetime. We show the exact $1/T$ and $T^2$ dependence of conductivity and Hall angle, as seen experimentally in most copper-oxide systems, which are believed to be close to quantum critical point. Generically, the study of transport properties, using the probe brane approach, at low temperature suggests us to consider only metrics with two exponents. More precisely, the spatial part of the metric components should not be same i.e., $g_{xx}\

  18. Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment

    OpenAIRE

    Wilson, M.C.T.; Summers, J.L.; Shikhmurzaev, Y. D.; Clarke, A.; Blake, T. D.

    2006-01-01

    Experiments reported by Blake et al. [Phys. Fluids. 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field/geometry near the moving contact line. The present paper examines quantitatively whether or not it is possible to attribute this effect to bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so...

  19. Superhydrophobic polyethylcyanoacrylate coatings. Contact area with water measured by Raman spectral images, contact angle and Cassie-Baxter model.

    Science.gov (United States)

    Bonugli, L O; dos Santos, M V Puydinger; de Souza, E F; Teschke, O

    2012-12-15

    Apolar fibers wired into a mesh-like microstructure forming a coating with a contact angle larger than 160° and fabricated by polycyanoacrylate polymerization are described. Interconnected fibers with diameters measuring approximately 5 μm are formed by texturized linear or folded nanowires. The structure forming the deposited film occupies ~1.5% of the coating's top geometric area. This value agrees with the water/coating contact area given by the Cassie-Baxter contact-angle model (~1.5%). The spatial distribution of the surface in contact with water was determined by Raman spectral imaging (~1.5%) using the polycyanoacrylate lines and by scanning electron microscopy (~2.0%).

  20. Scalings of pitches in music

    CERN Document Server

    Shi, Y

    1995-01-01

    We investigate correlations among pitches in several songs and pieces of piano music by mapping them to one-dimensional walks. Two kinds of correlations are studied, one is related to the real values of frequencies while they are treated only as different symbols for another. Long-range power law behavior is found in both kinds. The first is more meaningful. The structure of music, such as beat, measure and stanza, are reflected in the change of scaling exponents. Some interesting features are observed. Our results demonstrate the viewpoint that the fundamental principle of music is the balance between repetition and contrast.

  1. A Study of Electric Vehicle Suspension Control System Based on an Improved Half-vehicle Model

    Institute of Scientific and Technical Information of China (English)

    Jiang-Tao Cao; Hong-Hai Liu; Ping Li; David J.Brown; Georgi Dimirovski

    2007-01-01

    An improved half-vehicle model has been proposed for active suspension control systems, in contrast to existing models, it allows to explore the nature of the effect of vehicle speed changes by introducing a state vector of vehicle pitch angle. Three control strategies of linear quadratic control (LQ), improved LQ (ILQ) and wheelbase preview LQ (WLQ) have been implemented into the proposed model. ILQ has integrated an additional control parameter into LQ by concerning the correlation between acceleration values and their corresponding pitch angles. Simulation results have showed the effectiveness of the proposed model in terms of LQ, ILQ and WLQ control strategies.

  2. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Directory of Open Access Journals (Sweden)

    Cunmei Jiang

    Full Text Available Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  3. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Science.gov (United States)

    Jiang, Cunmei; Lim, Vanessa K; Wang, Hang; Hamm, Jeff P

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones) differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  4. Pitch strength and pitch dominance of iterated rippled noises in hearing-impaired listeners.

    Science.gov (United States)

    Leek, M R; Summers, V

    2001-06-01

    Reports using a variety of psychophysical tasks indicate that pitch perception by hearing-impaired listeners may be abnormal, contributing to difficulties in understanding speech and enjoying music. Pitches of complex sounds may be weaker and more indistinct in the presence of cochlear damage, especially when frequency regions are affected that form the strongest basis for pitch perception in normal-hearing listeners. In this study, the strength of the complex pitch generated by iterated rippled noise was assessed in normal-hearing and hearing-impaired listeners. Pitch strength was measured for broadband noises with spectral ripples generated by iteratively delaying a copy of a given noise and adding it back into the original. Octave-band-pass versions of these noises also were evaluated to assess frequency dominance regions for rippled-noise pitch. Hearing-impaired listeners demonstrated consistently weaker pitches in response to the rippled noises relative to pitch strength in normal-hearing listeners. However, in most cases, the frequency regions of pitch dominance, i.e., strongest pitch, were similar to those observed in normal-hearing listeners. Except where there exists a substantial sensitivity loss, contributions from normal pitch dominance regions associated with the strongest pitches may not be directly related to impaired spectral processing. It is suggested that the reduced strength of rippled-noise pitch in listeners with hearing loss results from impaired frequency resolution and possibly an associated deficit in temporal processing.

  5. Multi-pitch Estimation using Semidefinite Programming

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Vandenberghe, Lieven

    2017-01-01

    Multi-pitch estimation concerns the problem of estimating the fundamental frequencies (pitches) and amplitudes/phases of multiple superimposed harmonic signals with application in music, speech, vibration analysis etc. In this paper we formulate a complex-valued multi-pitch estimator via a semide......Multi-pitch estimation concerns the problem of estimating the fundamental frequencies (pitches) and amplitudes/phases of multiple superimposed harmonic signals with application in music, speech, vibration analysis etc. In this paper we formulate a complex-valued multi-pitch estimator via...... a semidefinite programming representation of an atomic decomposition over a continuous dictionary of complex exponentials and extend this to real-valued data via a real semidefinite pro-ram with the same dimensions (i.e. half the size). We further impose a continuous frequency constraint naturally occurring from...

  6. The musical environment and auditory plasticity: hearing the pitch of percussion.

    Science.gov (United States)

    McLachlan, Neil M; Marco, David J T; Wilson, Sarah J

    2013-01-01

    Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  7. The musical environment and auditory plasticity: Hearing the pitch of percussion

    Directory of Open Access Journals (Sweden)

    Neil M Mclachlan

    2013-10-01

    Full Text Available Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  8. Small-angle scattering from phospholipid nanodiscs: derivation and refinement of a molecular constrained analytical model form factor.

    Science.gov (United States)

    Skar-Gislinge, Nicholas; Arleth, Lise

    2011-02-28

    Nanodiscs™ consist of small phospholipid bilayer discs surrounded and stabilized by amphiphilic protein belts. Nanodiscs and their confinement and stabilization of nanometer sized pieces of phospholipid bilayer are highly interesting from a membrane physics point of view. We demonstrate how the detailed structure of Di-Lauroyl-Phosphatidyl Choline (DLPC) nanodiscs may be determined by simultaneous fitting of a structural model to small-angle scattering data from the nanodiscs as investigated in three different contrast situations, respectively two SANS contrasts and one SAXS contrast. The article gives a detailed account of the underlying structural model for the nanodiscs and describe how additional chemical and biophysical information can be incorporated in the model in terms of molecular constraints. We discuss and quantify the contribution from the different elements of the structural model and provide very strong experimental support for the nanodiscs as having an elliptical cross-section and with poly-histidine tags protruding out from the rim of the protein belt. The analysis also provides unprecedented information about the structural conformation of the phospholipids when these are localized in the nanodiscs. The model paves the first part of the way in order to reach our long term goal of using the nanodiscs as a platform for small-angle scattering based structural investigations of membrane proteins in solution.

  9. ADSORPTION OF PITCH AND STICKIES ON MAGNESIUM ALUMINUM HYDROXIDES TREATED AT DIFFERENT TEMPERAURES

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2011-04-01

    Full Text Available Magnesium aluminum hydroxides (MAH of nitrate and carbonate forms were prepared by co-precipitation, dried at different temperatures, and employed as an adsorbent for pitch and stickies in papermaking. Results indicated that MAH that had been heat-treated had higher adsorption capacity to model pitch and stickies at neutral pH. Low-temperature-dried magnesium aluminum hydroxides of nitrate form (MAH-NO3 had higher adsorption capacity to model pitch and model stickies than those of the carbonate form (MAH-CO3. Increasing the drying temperature of MAH reduced the difference of adsorption capacity between MAH-NO3 and MAH-CO3. Higher-temperature-dried magnesium aluminum hydroxides also showed higher adsorption capacity to model pitch and stickies when the drying temperature was lower than 550 oC. MAH displayed higher adsorption capacity while a lower initial adsorption rate of model stickies than of model pitch. The model pitch and stickies were adsorbed on MAH significantly by charge neutralization and distributed mainly on the surface of the platelets of magnesium aluminum hydroxides. The experimental isothermal adsorption data of model pitch and stickies on MAH dried at 500 oC fit well to the Freundlich and Dubinin–Radushkevich isotherm equations.

  10. Various Approaches to Forward and Inverse Wide-Angle Seismic Modelling Tested on Data from DOBRE-4 Experiment

    Science.gov (United States)

    Janik, Tomasz; Środa, Piotr; Czuba, Wojciech; Lysynchuk, Dmytro

    2016-12-01

    The interpretation of seismic refraction and wide angle reflection data usually involves the creation of a velocity model based on an inverse or forward modelling of the travel times of crustal and mantle phases using the ray theory approach. The modelling codes differ in terms of model parameterization, data used for modelling, regularization of the result, etc. It is helpful to know the capabilities, advantages and limitations of the code used compared to others. This work compares some popular 2D seismic modelling codes using the dataset collected along the seismic wide-angle profile DOBRE-4, where quite peculiar/uncommon reflected phases were observed in the wavefield. The 505 km long profile was realized in southern Ukraine in 2009, using 13 shot points and 230 recording stations. Double PMP phases with a different reduced time (7.5-11 s) and a different apparent velocity, intersecting each other, are observed in the seismic wavefield. This is the most striking feature of the data. They are interpreted as reflections from strongly dipping Moho segments with an opposite dip. Two steps were used for the modelling. In the previous work by Starostenko et al. (2013), the trial-and-error forward model based on refracted and reflected phases (SEIS83 code) was published. The interesting feature is the high-amplitude (8-17 km) variability of the Moho depth in the form of downward and upward bends. This model is compared with results from other seismic inversion methods: the first arrivals tomography package FAST based on first arrivals; the JIVE3D code, which can also use later refracted arrivals and reflections; and the forward and inversion code RAYINVR using both refracted and reflected phases. Modelling with all the codes tested showed substantial variability of the Moho depth along the DOBRE-4 profile. However, SEIS83 and RAYINVR packages seem to give the most coincident results.

  11. Development of controllable pitch propeller mechanism for small high speed boats; Kogata kosokuteiyo kahen pitch propeller kiko no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Shiba, H.; Inoue, R.; Mori, T. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1995-12-20

    For improving the navigating performance of racing boats, a controllable pitch propeller mechanism has been developed, capable of responding to changes in the propeller load and of making good use of the engine performance. The effort aimed at the optimization of the propeller load to follow changes in surrounding conditions such as weather and the resultant sea roughness, the engine performance, and at the improvement of acceleration features. The blade angle is made smaller for reduced torque absorption at a low engine speed and, as the engine gathers speed, the blade angle is changed to the optimum for rapid acceleration to the maximum boat speed. The blade angle is made smaller upon deceleration. The mechanism has been designed so that it may be added on a boat rigged with a fixed pitch propeller. The design enables a propeller to properly respond to changes in the propeller load without pre-run replacement or shape-changing work. When this propeller`s performance is optimized to match the engine characteristics, there will be a propelling device with its performance further advanced. This design expands the range of engine performance in which usable one may be found. 6 refs., 6 figs., 1 tab.

  12. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hung T. [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Case, David A., E-mail: case@biomaps.rutgers.edu [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2014-12-14

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb{sup +} and Sr{sup 2+}) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein–Zernike equations, with results from the Kovalenko–Hirata closure being closest to experiment for the cases studied here.

  13. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures.

    Science.gov (United States)

    Park, Sang Han; Kwon, Soonnam

    2016-05-10

    Angle-resolved photoemission spectroscopy (ARPES) data on electronic structure are difficult to interpret, because various factors such as atomic structure and experimental setup influence the quantum mechanical effects during the measurement. Therefore, we simulated ARPES of nano-sized molecules to corroborate the interpretation of experimental results. Applying the independent atomic-center approximation, we used density functional theory calculations and custom-made simulation code to compute photoelectron intensity in given experimental setups for every atomic orbital in poly-aromatic hydrocarbons of various size, and in a molecule of black phosphorus. The simulation results were validated by comparing them to experimental ARPES for highly-oriented pyrolytic graphite. This database provides the calculation method and every file used during the work flow.

  14. The measurement and modelling of light scattering by phytoplankton cells at narrow forward angles

    Science.gov (United States)

    MacCallum, Iain; Cunningham, Alex; McKee, David

    2004-07-01

    A procedure has been devised for measuring the angular dependence of light scattering from suspensions of phytoplankton cells at forward angles from 0.25° to 8°. The cells were illuminated with a spatially-filtered laser beam and the angular distribution of scattered light measured by tracking a photodetector across the Fourier plane of a collecting lens using a stepper-motor driven stage. The procedure was calibrated by measuring scattering from latex bead suspensions with known size distributions. It was then used to examine the scattering from cultures of the unicellular algae Isochrysis galbana (4 µm × 5 µm), Dunaliella primolecta (6 µm × 7 µm) and Rhinomonas reticulata (5 µm × 11 µm). The results were compared with the predictions of Mie theory. Excellent agreement was obtained for spherical particles. A suitable choice of spherical-equivalent scattering parameters was required to enable reasonable agreement within the first diffraction lobe for ellipsoidal particles.

  15. Direct determination of contact angles of model soils in comparison with wettability characterization by capillary rise

    Science.gov (United States)

    Ramírez-Flores, Juan Carlos; Bachmann, Jörg; Marmur, Abraham

    2010-03-01

    SummaryAn accurate method to determine contact angles (CA) of soils as a measure of water repellency is still missing. In the present research, we evaluated and compared different methods to determine the CA of dry soil samples. Experiments were made by using a set of porous materials (silt, sand and glass beads) with different levels of water repellency. The CAs were measured with the Capillary Rise Method ( θCRM; liquid penetration into a 3-d system), the Wilhelmy plate method ( θWPM; measurement of capillary forces acting on a plane sample) and the Sessile Drop Method ( θSDM; optical CA analysis of drop contour on a plane sample). Results were compared with the CAs calculated from capillary rise in long vertical columns ( θECR), where liquid profiles of the final capillary rise of water and ethanol, respectively, were used to derive the contact angle under the assumed equilibrium conditions. The results showed the overestimation of the CA by using the well established bi-liquid CRM technique for porous materials, in particular for material with a low degree of water repellency (CA < 40°) and for the finer textured materials. In contrast, a variant of the Wilhelmy plate method, i.e. the cosine-averaged advancing CA and receding CA ( θEWPM), as well as the Sessile Drop CA, θSDM, were close to the ones of θECR. We concluded that θEWPM and θSDM are apparent CA, but nevertheless able to predict the impact of wettability on the final capillary rise which is affected by pore topology as well as by wettability.

  16. Investigation and modeling of the effects of light spectrum and incident angle on the growth of Chlorella vulgaris in photobioreactors.

    Science.gov (United States)

    Souliès, Antoine; Legrand, Jack; Marec, Hélène; Pruvost, Jérémy; Castelain, Cathy; Burghelea, Teodor; Cornet, Jean-François

    2016-03-01

    An in-depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab-scale PBRs, a torus PBR and a thin flat-panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat-panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247-261, 2016.

  17. A model for pattern deposition from an evaporating solution subject to contact angle hysteresis and finite solubility.

    Science.gov (United States)

    Zigelman, Anna; Manor, Ofer

    2016-06-29

    We propose a model for the pattern deposition of the solute from an evaporating drop of a dilute solution on a horizontal substrate. In the model we take into account the three-phase contact angle hysteresis and the deposition of the solute whenever its concentration exceeds the solubility limit. The evaporating drop is governed by a film equation. We show that unless for a very small three-phase contact angle or a very rapid evaporation rate the film adopts a quasi-steady geometry, satisfying the Young-Laplace equation to leading order. The concentration profile is assumed to satisfy an advection diffusion equation subject to the standard Fick's law for the diffusive flux. We further use an integral boundary condition to describe the dynamics of the concentration in the vicinity of the three-phase contact line; we replace an exact geometric description of the vicinity of the contact line, which is usually assumed such that mathematical singularities are avoided, with general insights about the concentration and its flux. We use our model to explore the relationships between a variety of deposition patterns and the governing parameters, show that the model repeats previous findings, and suggest further insights.

  18. Estudio piloto del modelo técnico de ejecución del pitch a captura de pies en gimnasia acrobática. (A pilot study of technical model during a simulated toe pitch to catch in gymnastics acrobatics.

    Directory of Open Access Journals (Sweden)

    Juan Antonio León-Prados

    2010-04-01

    Full Text Available En Gimnasia Acrobática (GA el Toe Pitch to Catch (TPC es una acción técnica muy usual, lo que motiva la necesidad de proporcionar un modelo técnico del movimiento que permita facilitar la compresión de los factores relacionados con su ejecución. Se analizaron 12 ejecuciones sin penalizaciones técnicas realizadas por una pareja mixta de GA utilizando técnicas de fotogrametría y dinamometría. Para el análisis se dividió el movimiento en tres fases: Impulsión, Vuelo y Recepción. Los resultados indicaron que el valor máximo de fuerza en la Fase de Impulsión fue de 2,67 ± 0,06 BW (PC: Peso Corporal, BW: Body Weigth mientras que en la de Recepción fue de 2,78 ± 0,30 PC: Peso Corporal. En el modelo técnico individual analizado se destaca cómo en la Fase de Impulsión es más importante optimizar el impulso aplicado que la fuerza máxima. Durante la Fase de Vuelo, sobresale la alta reproducibilidad en los intentos satisfactorios de la altura alcanzada por el Top para facilitar su posterior recepción. Finalmente durante la Fase de Recepción, se destaca la acción de frenado del Base con el fin de minimizar las fuerzas de reacción verticales del suelo en los movimientos de recepción del Top.AbstractIn acrobatic gymnastics Toe Pitch to Catch (TPC is one of the most traditional skill. The aim of the study was to provide a technical model of the skill to facilitate the understanding of the principal factors associated with the execution. In order to elaborate the model, 12 tryouts without technical deductions performed by a mixed pair of gymnasts were analyzed using techniques of photogrammetric and dynamometry. The movement was divided into three different phases for analysing purposes: Propulsion, Flight and Reception. Results indicated that maximum value of the force during the Propulsion Phase was 2,67 ± 0,06 BW, whereas during the Reception Phase the value obtained was 2,78 ± 0,30 BW. In the technical model analyzed highlights

  19. Parasites pitched against nature: Pitch Lake water protects guppies (Poecilia reticulata) from microbial and gyrodactylid infections.

    Science.gov (United States)

    Schelkle, Bettina; Mohammed, Ryan S; Coogan, Michael P; McMullan, Mark; Gillingham, Emma L; VAN Oosterhout, Cock; Cable, Joanne

    2012-11-01

    SUMMARY The enemy release hypothesis proposes that in parasite depleted habitats, populations will experience relaxed selection and become more susceptible (or less tolerant) to pathogenic infections. Here, we focus on a population of guppies (Poecilia reticulata) that are found in an extreme environment (the Pitch Lake, Trinidad) and examine whether this habitat represents a refuge from parasites. We investigated the efficacy of pitch in preventing microbial infections in Pitch Lake guppies, by exposing them to dechlorinated water, and reducing gyrodactylid infections on non-Pitch Lake guppies by transferring them to Pitch Lake water. We show that (i) natural prevalence of ectoparasites in the Pitch Lake is low compared to reference populations, (ii) Pitch Lake guppies transferred into aquarium water develop microbial infections, and (iii) experimentally infected guppies are cured of their gyrodactylid infections both by natural Pitch Lake water and by dechlorinated water containing solid pitch. These results indicate a role for Pitch Lake water in the defence of guppies from their parasites and suggest that Pitch Lake guppies might have undergone enemy release in this extreme environment. The Pitch Lake provides an ideal ecosystem for studies on immune gene evolution in the absence of parasites and long-term evolutionary implications of hydrocarbon pollution for vertebrates.

  20. Feedback linearization control of constant output power for variable pitch wind turbine%变桨距风力发电机组恒功率反馈线性化控制

    Institute of Scientific and Technical Information of China (English)

    杨俊华; 郑俭华; 杨梦丽; 吴捷

    2012-01-01

    在额定风速以上时,为保证风电机组的安全稳定运行,需要降低风力机捕获风能,使风力机的转速及功率维持在额定值,基于微分几何反馈线性化方法,提出变桨距风力发电机组恒功率控制策略.建立了风力机的仿射非线性模型,采用微分几何反馈线性化变换实现全局精确线性化;根据新的线性化模型,以风力机转速为输出反馈变量,叶片桨距角为输入控制变量,设计桨距角控制器;在风速高于额定值时调节风力机维持在额定转速,从而实现额定风速以上的恒功率控制.仿真结果表明,所提控制策略能较好地解决变桨距风力发电机组额定风速以上的恒功率控制问题,控制方法具有较好的适应性和鲁棒性.%When the wind speed exceeds the rated value, the wind power captured by the wind turbine must be reduced to guarantee the wind turbine to operate in the safe and stable status. A control scheme for limiting the power of the variable pitch wind turbine based on the differential geometry feedback linearized theory is proposed to keep the rotational speed and output power at the rated value. An affine nonlinear model of the wind turbine is developed and then globally exactly linearized by a differential geometry transformation. With the new linearized model, we design a novel pitch angle controller in which the output feedback variable is the rotational speed and the input control variable is the blade pitch angle. When the wind speed exceeds the rated value, the pitch angle controller changes the blade pitch angle to reduce the rotational speed back to the rated value for ensuring the constant output power. Simulation results show that, when the wind speed is above the rated value, the proposed control strategy effectively implements the constant output power control for the variable pitch wind turbine with fine flexibility and robustness.

  1. A New Method to Calibrate Attachment Angles of Data Loggers in Swimming Sharks

    Directory of Open Access Journals (Sweden)

    Sato Katsufumi

    2010-01-01

    Full Text Available Recently, animal-borne accelerometers have been used to record the pitch angle of aquatic animals during swimming. When evaluating pitch angle, it is necessary to consider a discrepancy between the angle of an accelerometer and the long axis of an animal. In this study, we attached accelerometers to 17 free-ranging scalloped hammerhead shark (Sphyrna lewini pups from Kaneohe Bay, Hawaii. Although there are methods to calibrate attachment angles of accelerometers, we confirmed that previous methods were not applicable for hammerhead pups. According to raw data, some sharks ascended with a negative angle, which differs from tank observations of captive sharks. In turn, we developed a new method to account for this discrepancy in swimming sharks by estimating the attachment angle from the relationship between vertical speed (m/s and pitch angle obtained by each accelerometer. The new method can be utilized for field observation of a wide range of species.

  2. A New Method to Calibrate Attachment Angles of Data Loggers in Swimming Sharks

    Science.gov (United States)

    Kawatsu, Shizuka; Sato, Katsufumi; Watanabe, Yuuki; Hyodo, Susumu; Breves, Jason P.; Fox, Bradley K.; Grau, E. Gordon; Miyazaki, Nobuyuki

    2009-12-01

    Recently, animal-borne accelerometers have been used to record the pitch angle of aquatic animals during swimming. When evaluating pitch angle, it is necessary to consider a discrepancy between the angle of an accelerometer and the long axis of an animal. In this study, we attached accelerometers to 17 free-ranging scalloped hammerhead shark ( Sphyrna lewini) pups from Kaneohe Bay, Hawaii. Although there are methods to calibrate attachment angles of accelerometers, we confirmed that previous methods were not applicable for hammerhead pups. According to raw data, some sharks ascended with a negative angle, which differs from tank observations of captive sharks. In turn, we developed a new method to account for this discrepancy in swimming sharks by estimating the attachment angle from the relationship between vertical speed (m/s) and pitch angle obtained by each accelerometer. The new method can be utilized for field observation of a wide range of species.

  3. A New Method to Calibrate Attachment Angles of Data Loggers in Swimming Sharks

    Directory of Open Access Journals (Sweden)

    Shizuka Kawatsu

    2010-01-01

    Full Text Available Recently, animal-borne accelerometers have been used to record the pitch angle of aquatic animals during swimming. When evaluating pitch angle, it is necessary to consider a discrepancy between the angle of an accelerometer and the long axis of an animal. In this study, we attached accelerometers to 17 free-ranging scalloped hammerhead shark (Sphyrna lewini pups from Kaneohe Bay, Hawaii. Although there are methods to calibrate attachment angles of accelerometers, we confirmed that previous methods were not applicable for hammerhead pups. According to raw data, some sharks ascended with a negative angle, which differs from tank observations of captive sharks. In turn, we developed a new method to account for this discrepancy in swimming sharks by estimating the attachment angle from the relationship between vertical speed (m/s and pitch angle obtained by each accelerometer. The new method can be utilized for field observation of a wide range of species.

  4. Effective Connectivity Associated With Auditory Error Detection In Musicians With Absolute Pitch

    Directory of Open Access Journals (Sweden)

    Amy L Parkinson

    2014-03-01

    Full Text Available It is advantageous to study a wide range of vocal abilities in order to fully understand how vocal control measures vary across the full spectrum. Individuals with absolute pitch (AP are able to assign a verbal label to musical notes and have enhanced abilities in pitch identification without reliance on an external referent. In this study we used dynamic causal modeling (DCM to model effective connectivity of ERP responses to pitch perturbation in voice auditory feedback in musicians with relative pitch (RP, absolute pitch and non-musician controls. We identified a network compromising left and right hemisphere superior temporal gyrus (STG, primary motor cortex (M1 and premotor cortex (PM. We specified nine models and compared two main factors examining various combinations of STG involvement in feedback pitch error detection/correction process. Our results suggest that modulation of left to right STG connections are important in the identification of self-voice error and sensory motor integration in AP musicians. We also identify reduced connectivity of left hemisphere PM to STG connections in AP and RP groups during the error detection and corrections process relative to non-musicians. We suggest that this suppression may allow for enhanced connectivity relating to pitch identification in the right hemisphere in those with more precise pitch matching abilities. Musicians with enhanced pitch identification abilities likely have an improved auditory error detection and correction system involving connectivity of STG regions. Our findings here also suggest that individuals with AP are more adept at using feedback related to pitch from the right hemisphere.

  5. Investigation of compressibility effects on dynamic stall of pitching airfoil

    Science.gov (United States)

    Sangwan, Jyoti; Sengupta, Tapan K.; Suchandra, Prasoon

    2017-07-01

    In the present work, effects of compressibility on the dynamic stall of NACA 0012 airfoil, pitching sinusoidally from 5.03° to 24.79°, are investigated computationally using implicit large eddy simulations in a finite difference framework. Simulations of two-dimensional (2D), high Reynolds number, compressible flows are carried out without any transition or turbulence model to capture the physics of the dynamic stall process. The problem is formulated in a body-fixed, rotating, non-inertial frame. High accuracy, dispersion relation preserving optimized upwind compact scheme is used to compute convective flux derivatives, and an optimized three-stage Runge-Kutta method is used for time integration. Results are presented for free stream Mach number M∞ = 0.283, 0.4, and 0.5, where the Mach number is varied independent of the Reynolds number. The computations have been quite successful in capturing the essential features of the dynamic stall mechanism. It is observed that dynamic moment and lift stalls occur at smaller angles of attack as the Mach number increases. Reduction in the size of airload hysteresis loops and maximum attainable load coefficients are observed with increasing Mach number. Weak shock waves are observed near the leading edge (LE) at M∞ = 0.4, and lambda-shock is formed near the LE for M∞ = 0.5. It is observed that with increasing Mach number, the impact of dynamic stall on the aerodynamic loads (Cl, Cd, and Cm) becomes less dramatic as the maximum value attained by these aerodynamic loads decreases with an increase in the Mach number. An increase in positive damping area in the hysteresis loop is observed with an increase in the Mach number, inhibiting possible vulnerability to stall flutter.

  6. Model and Visualization of Ray Tracing using JavaScript and HTML5 for TIR Measurement System Equipped with Equilateral Right Angle Prism

    CERN Document Server

    Viridi, Sparisoma

    2013-01-01

    Trace of ray deviated by a prism, which is common in a TIR (total internal reflection) measurement system, is sometimes difficult to manage, especially if the prism is an equilateral right angle prism (ERAP). The point where the ray is reflected inside the right-angle prism is also changed as the angle of incident ray changed. In an ATR (attenuated total reflectance) measurement system, range of this point determines size of sample. Using JavaScript and HTML5 model and visualization of ray tracing deviated by an ERAP is perform and reported in this work. Some data are obtained from this visualization and an empirical relations between angle of incident ray source \\theta_S, angle of ray detector hand \\theta_D, and angle of ray detector \\theta'_D are presented for radial position of ray source R_S, radial position of ray detector R_D, height of right-angle prism t, and refractive index of the prism n. Keywords: deviation angle, equilateral right angle prism, total internal reflection, JavaScript, HTML5.

  7. Reliability and Validity of Quantitative Video Analysis of Baseball Pitching Motion.

    Science.gov (United States)

    Oyama, Sakiko; Sosa, Araceli; Campbell, Rebekah; Correa, Alexandra

    2017-02-01

    Video recordings are used to quantitatively analyze pitchers' techniques. However, reliability and validity of such analysis is unknown. The purpose of the study was to investigate the reliability and validity of joint and segment angles identified during a pitching motion using video analysis. Thirty high school baseball pitchers participated. The pitching motion was captured using 2 high-speed video cameras and a motion capture system. Two raters reviewed the videos to digitize the body segments to calculate 2-dimensional angles. The corresponding 3-dimensional angles were calculated from the motion capture data. Intrarater reliability, interrater reliability, and validity of the 2-dimensional angles were determined. The intrarater and interrater reliability of the 2-dimensional angles were high for most variables. The trunk contralateral flexion at maximum external rotation was the only variable with high validity. Trunk contralateral flexion at ball release, trunk forward flexion at foot contact and ball release, shoulder elevation angle at foot contact, and maximum shoulder external rotation had moderate validity. Two-dimensional angles at the shoulder, elbow, and trunk could be measured with high reliability. However, the angles are not necessarily anatomically correct, and thus use of quantitative video analysis should be limited to angles that can be measured with good validity.

  8. A semi-numerical model for near-critical angle scattering.

    Science.gov (United States)

    Fradkin, Larissa Ju; Darmon, Michel; Chatillon, Sylvain; Calmon, Pierre

    2016-01-01

    Numerous phenomena in the fields of physics and mathematics as seemingly different as seismology, ultrasonics, crystallography, photonics, relativistic quantum mechanics, and analytical number theory are described by integrals with oscillating integrands that contain three coalescing criticalities, a branch point, stationary phase point, and pole as well as accumulation points at which the speed of integrand oscillation is infinite. Evaluating such integrals is a challenge addressed in this paper. A fast and efficient numerical scheme based on the regularized composite Simpson's rule is proposed, and its efficacy is demonstrated by revisiting the scattering of an elastic plane wave by a stress-free half-plane crack embedded in an isotropic and homogeneous solid. In this canonical problem, the head wave, edge diffracted wave, and reflected (or compensating) wave each can be viewed as a respective contribution of a branch point, stationary phase point, and pole. The proposed scheme allows for a description of the non-classical diffraction effects near the "critical" rays (rays that separate regions irradiated by the head waves from their respective shadow zones). The effects include the spikes present in diffraction coefficients at the critical angles in the far field as well as related interference ripples in the near field.

  9. Learning Novel Musical Pitch via Distributional Learning

    Science.gov (United States)

    Ong, Jia Hoong; Burnham, Denis; Stevens, Catherine J.

    2017-01-01

    Because different musical scales use different sets of intervals and, hence, different musical pitches, how do music listeners learn those that are in their native musical system? One possibility is that musical pitches are acquired in the same way as phonemes, that is, via distributional learning, in which learners infer knowledge from the…

  10. Learning Novel Musical Pitch via Distributional Learning

    Science.gov (United States)

    Ong, Jia Hoong; Burnham, Denis; Stevens, Catherine J.

    2017-01-01

    Because different musical scales use different sets of intervals and, hence, different musical pitches, how do music listeners learn those that are in their native musical system? One possibility is that musical pitches are acquired in the same way as phonemes, that is, via distributional learning, in which learners infer knowledge from the…

  11. Femoral Graft-Tunnel Angles in Posterior Cruciate Ligament Reconstruction: Analysis with 3-Dimensional Models and Cadaveric Experiments

    Science.gov (United States)

    Kim, Sung-Jae; Chun, Yong-Min; Moon, Hong-Kyo; Jang, Jae-Won

    2013-01-01

    Purpose The purpose of this study was to compare four graft-tunnel angles (GTA), the femoral GTA formed by three different femoral tunneling techniques (the outside-in, a modified inside-out technique in the posterior sag position with knee hyperflexion, and the conventional inside-out technique) and the tibia GTA in 3-dimensional (3D) knee flexion models, as well as to examine the influence of femoral tunneling techniques on the contact pressure between the intra-articular aperture of the femoral tunnel and the graft. Materials and Methods Twelve cadaveric knees were tested. Computed tomography scans were performed at different knee flexion angles (0°, 45°, 90°, and 120°). Femoral and tibial GTAs were measured at different knee flexion angles on the 3D knee models. Using pressure sensitive films, stress on the graft of the angulation of the femoral tunnel aperture was measured in posterior cruciate ligament reconstructed cadaveric knees. Results Between 45° and 120° of knee flexion, there were no significant differences between the outside-in and modified inside-out techniques. However, the femoral GTA for the conventional inside-out technique was significantly less than that for the other two techniques (p<0.001). In cadaveric experiments using pressure-sensitive film, the maximum contact pressure for the modified inside-out and outside-in technique was significantly lower than that for the conventional inside-out technique (p=0.024 and p=0.017). Conclusion The conventional inside-out technique results in a significantly lesser GTA and higher stress at the intra-articular aperture of the femoral tunnel than the outside-in technique. However, the results for the modified inside-out technique are similar to those for the outside-in technique. PMID:23709438

  12. Scatterometry-based metrology for SAQP pitch walking using virtual reference

    Science.gov (United States)

    Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel

    2016-03-01

    Advanced technology nodes, 10nm and beyond, employing multi-patterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. Self-Aligned Quadruple Patterning (SAQP) process is used to create the Fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bares compounding effects from successive Reactive Ion Etch (RIE) and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes which work on an assumption that there is consistent spacing between fins. In SAQP there are 3 pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology such as Transmission Electron Microscopy (TEM). In this paper we will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.

  13. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. Perceptual limitations may be characterized by measuring an observer’s change in performance when introducting...... external noise in the physical stimulus (Lu and Dosher, 2008). The present study used this approach to attempt to quantify the “internal noise” involved in pitch coding of harmonic complex tones by estimating the amount of harmonic roving required to impair pitch discrimination performance. It remains...... a matter of debate whether pitch perception of natural complex sounds mostly relies on either spectral excitation-based information or temporal periodicity information. Comparing the way internal noise affects the internal representations of such information to how it affects pitch discrimination...

  14. Monte Carlo approach to assess the uncertainty of wide-angle layered models: Application to the Santos Basin, Brazil

    Science.gov (United States)

    Loureiro, Afonso; Afilhado, Alexandra; Matias, Luís; Moulin, Maryline; Aslanian, Daniel

    2016-06-01

    In the Santos Basin (Brazil), two parallel wide-angle refraction profiles show different crustal structures. One shows moderate crustal velocity gradient, and a clear Moho with topography. The other has an anomalous velocity zone, and no clear Moho reflections. This has large implications on the geological and geodynamical interpretation of the basin. Model uncertainties must be excluded as a source of these differences. We developed VMONTECARLO, a tool to assess model uncertainty of layered velocity models using a Monte Carlo approach and simultaneous parameter perturbation using all picked refracted and reflected arrivals. It gives insights into the acceptable geological interpretations allowed by data and model uncertainty through velocity-depth plots that provide: a) the velocity-depth profile range that is consistent with the travel times; b) the random model that provides the best fit, keeping most of the observations covered by ray-tracing; c) insight into valid models dispersion; d) main model features unequivocally required by the travel times, e.g., first-order versus second-order discontinuities, and velocity gradient magnitudes; e) parameter value probability distribution histograms. VMONTECARLO is seamlessly integrated into a RAYINVR-based modelling work-flow, and can be used to assess final models or sound the solution space for alternate models, and is also capable of evaluating forward models without the need for inversion, thus avoiding local minima that may trap the inversion algorithms and providing information for models still not well-parametrised. Results for the Brazilian models show that the imaged structures are indeed geologically different and are not due to different interpretations of the same features within the model uncertainty bounds. These differences highlight the strong heterogeneity of the crust in the middle of the Santos Basin, where the rift is supposed to have failed.

  15. A thermoanalytical study of the co-pyrolysis of coal-tar pitch and petroleum pitch

    Energy Technology Data Exchange (ETDEWEB)

    M. Perez; M. Granda; R. Santamaria; T. Morgan; R. Menendez [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2004-06-01

    Four pitch blends were prepared at laboratory scale by mixing a coal-tar pitch and a petroleum pitch in several proportions (CTP:PP 85:15, 70:30, 55:45 and 40:60). Single pitches and blends were characterized by standard procedures, infrared spectroscopy and size exclusion chromatography. Pyrolysis behaviour and interactions between the two pitches in the blends were studied by thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC). The results show that blending does not alter the composition of pitches. However, the TG/DTG curves reveal that coal-tar pitch and petroleum pitch interact actively during pyrolysis, modifying the temperature of initial weight loss and the temperature of the maximum rate of weight loss. Primary quinoline-insoluble particles present in coal-tar pitch and transferable hydrogen seem to be the main factors responsible for these modifications. The DSC curves show that the presence of coal-tar pitch in the blends reduces the reactivity of the petroleum pitch and shifts the exothermic peaks observed at the temperature of the cracking/polymerization reactions ({gt}400{sup o}C) to lower temperatures. 18 refs., 8 figs., 3 tabs.

  16. Comparison of Cole-Cole and Constant Phase Angle modeling in time-domain induced polarization

    DEFF Research Database (Denmark)

    Lajaunie, Myriam; Maurya, Pradip Kumar; Fiandaca, Gianluca

    is reflected in TDIP data, and therefore, at identifying (1) if and when it is possible to distinguish, in time domain, between a Cole-Cole description and a CPA one, and (2) if features of time domain data exist in order to know, from a simple data inspection, which model will be the most adapted to the data......, forward modeling of quadrupolar sequences on 1D and 2D heterogeneous CPA models shows that the CPA decays differ among each other only by a multiplication factor. Consequently, the inspection of field data in log-log plots gives insight on the modeling needed for fitting them: the CPA inversion cannot...

  17. Effects of pitch on auditory number comparisons.

    Science.gov (United States)

    Campbell, Jamie I D; Scheepers, Florence

    2015-05-01

    Three experiments investigated interactions between auditory pitch and the numerical quantities represented by spoken English number words. In Experiment 1, participants heard a pair of sequential auditory numbers in the range zero to ten. They pressed a left-side or right-side key to indicate if the second number was lower or higher in numerical value. The vocal pitches of the two numbers either ascended or descended so that pitch change was congruent or incongruent with number change. The error rate was higher when pitch and number were incongruent relative to congruent trials. The distance effect on RT (i.e., slower responses for numerically near than far number pairs) occurred with pitch ascending but not descending. In Experiment 2, to determine if these effects depended on the left/right spatial mapping of responses, participants responded "yes" if the second number was higher and "no" if it was lower. Again, participants made more number comparison errors when number and pitch were incongruent, but there was no distance × pitch order effect. To pursue the latter, in Experiment 3, participants were tested with response buttons assigned left-smaller and right-larger ("normal" spatial mapping) or the reverse mapping. Participants who received normal mapping first presented a distance effect with pitch ascending but not descending as in Experiment 1, whereas participants who received reverse mapping first presented a distance effect with pitch descending but not ascending. We propose that the number and pitch dimensions of stimuli both activated spatial representations and that strategy shifts from quantity comparison to order processing were induced by spatial incongruities.

  18. 考虑变桨驱动电机特性的风电机组运行性能仿真%Simulation on the operational performances of wind turbine generator system considering the variable pitch drive motor characteristics

    Institute of Scientific and Technical Information of China (English)

    李辉; 杨超; 赵斌; 唐显虎; 郑维棋

    2011-01-01

    为了更好地反映并网风电机组的动暂态运行特性,提出了考虑变桨系统的风力发电机组运行性能研究.在阐述变桨距控制原理的基础上,建立了以变频三相感应电动机作为驱动电机的变桨控制系统数学模型,并对其变桨距控制性能进行仿真.结合考虑变桨电机驱动特性的变桨系统控制模型,建立了并网笼型异步发电机组的动态数学模型.对额定风速以下和额定风速以上的并网异步风力发电机组动态运行性能进行仿真,并与不考虑变桨电机驱动特性时的机组运行性能进行比较.结果表明,建立的变桨控制系统能实现桨距角的准确控制;考虑变桨驱动电机特性的风电机组模型更能体现机组的动态特性,尤其是在额定风速以上情况.%In order to better reflect the dynamic and transient characteristics of a gird-connected wind turbine generator system ( WTGS ), studies on the operational performances of a WTGS considering the pitch control system are proposed. Firstly, based on the principle of variable pitch control. The mathematical model of the pitch control system is established by taking a variable-frequency three-phase induction motor as the drive motor, and its control performance of the pitch angle is simulated. Secondly, combining with the variable pitch control system models considering the features of pitch drive motor, the dynamic mathematical models of a grid-connected wind turbine with a squirrel cage induction generator ( SCIG ) are presented. Finally, the dynamic performance of the grid-connected wind turbine with SCIG is simulated when the wind speed is below and over the rated wind speed, respectively. The results are also compared with that of without considering the characteristics of the pitch drive motor. The compared results have shown that the presented pitch control system can achieve accurate control of pitch angle. Compared with a model without consideration of the pitch

  19. Modification of ITU-R Rain Fade Slope Prediction Model Based on Satellite Data Measured at High Elevation Angle

    Directory of Open Access Journals (Sweden)

    Hassan Dao

    2012-01-01

    Full Text Available Rain fade slope is one of fade dynamics behaviour used by system engineers to design fade mitigation techniques (FMT for space-earth microwave links. Recent measurements found that fade slope prediction model proposed by ITU-R is unable to predict fade slope distribution accurately in tropical regions. Rain fade measurement was conducted  in Kuala Lumpur (3.3° N, 101.7° E where located in heavy rain zone by receiving signal at 10.982 GHz (Ku-band from MEASAT3 (91.5° E on 77.4° elevation angle. The measurement has been carried out for one year period. Fade slope S parameter on ITU-R prediction model has been investigated. New parameter is proposed for the fade slope prediction modeling based on measured data at high elevation angle, Ku-band. ABSTRAK: Cerun hujan pudar adalah salah satu dinamik tingkah laku pudar yang digunakan oleh jurutera sistem untuk mereka bentuk teknik-teknik pengurangan pudar (FMT bagi link gelombang mikro ruang bumi. Ukuran baru-baru ini mendapati bahawa cerun pudar ramalan model yang dicadangkan oleh ITU-R tidak mampu untuk meramalkan pengagihan cerun pudar tepat di kawasan tropika. Pengukuran  hujan pudar telah dijalankan di Kuala Lumpur (3.3° N, 101.7° E yang terletak di kawasan hujan lebat dengan menerima isyarat pada 10,982 GHz (Ku-band dari MEASAT3 (91.5° E pada sudut ketinggian 77.4°. Pengukuran telah dijalankan untuk tempoh satu tahun. Parameter cerun pudar S pada model ramalan ITU-R telah disiasat. Parameter baru adalah dicadangkan untuk pemodelan cerun pudar ramalan berdasarkan data yang diukur pada sudut paras ketinggian, Ku-band.KEYWORDS: fade slope; ITU-R; fade mitigation techniques; sampling time interval

  20. Jovian magnetic models and the polarization angle of Jovian decimetric radiation

    Science.gov (United States)

    Birmingham, T. J.

    1981-04-01

    A comparative study of the direction of linear polarization of Jovian decimetric (synchrotron) radiation as measured astronomically and as determined from a model of the inner Jovian magnetosphere is discussed. It is noted that the model depicts the radiation as coming from rings of relativistic electrons in the Jovimagnetic equator at varying radial distances from the center of the planet. The equator is determined through each of two magnetic representations - the O4 model of Acuna and Ness (1976) and the P10-11 model of Smith et al. (1976) - derived from in situ Pioneer magnetometer measurements. Deviations from a (planar) dipole equator are found to occur at nearly all longitudes in both models; no evidence is found for a longitudinally localized magnetic anomaly.

  1. On the rotation and pitching of flat plates

    Science.gov (United States)

    Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.

    2016-11-01

    Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.

  2. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  3. Comparison of Two Independent Lidar-Based Pitch Control Designs

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Schlipf, D.; Pao, L. Y.; Wright, A. D.; Jonkman, B.; Kelley, N.; Simley, E.

    2012-01-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. One uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. The other uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  4. Aerodynamic Control of a Pitching Airfoil by Distributed Bleed Actuation

    Science.gov (United States)

    Kearney, John; Glezer, Ari

    2013-11-01

    The aerodynamic forces and moments on a dynamically pitching 2-D airfoil model are controlled in wind tunnel experiments using distributed active bleed. Bleed flow on the suction surface downstream of the leading edge is driven by pressure differences across the airfoil and is regulated by low-power louver actuators. The bleed interacts with cross flows to effect time-dependent variations of the vorticity flux and thereby alters the local flow attachment, resulting in significant changes in pre- and post-stall lift and pitching moment (over 50% increase in baseline post-stall lift). The flow field over the airfoil is measured using high-speed (2000 fps) PIV, resolving the dynamics and characteristic time-scales of production and advection of vorticity concentrations that are associated with transient variations in the aerodynamic forces and moments. In particular, it is shown that the actuation improves the lift hysteresis and pitch stability during the oscillatory pitching by altering the evolution of the dynamic stall vortex and the ensuing flow attachment during the downstroke. Supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  5. Modelling of Nonthermal Microwave Emission From Twisted Magnetic Loops

    CERN Document Server

    Sharykin, I N

    2016-01-01

    Microwave gyrosynchrotron radio emission generated by nonthermal electrons in twisted magnetic loops is modelled using the recently developed simulation tool GX Simulator. We consider isotropic and anisotropic pitch-angle distributions. The main scope of the work is to understand impact of the magnetic field twisted topology on resulted radio emission maps. We have found that nonthermal electrons inside twisted magnetic loops produce gyrosynchrotron radio emission with peculiar polarization distribution. The polarization sign inversion line is inclined relatively to the axis of the loop. Radio emission source is more compact in the case of less twisted loop, considering anisotropic pitch-angle distribution of nonthermal electrons.

  6. Fast Joint DOA and Pitch Estimation Using a Broadband MVDR Beamformer

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2013-01-01

    non-stationary speech signals in noisy conditions. In this paper, a joint DOA and pitch estimation (JDPE) method is proposed. The method is based on the minimum variance distortionless response (MVDR) beamformer in the frequency-domain and is much faster than previous joint methods, as it only...... methods combining existing DOA and pitch estimators.......The harmonic model, i.e., a sum of sinusoids having frequencies that are integer multiples of the pitch, has been widely used for modeling of voiced speech. In microphone arrays, the direction-of-arrival (DOA) adds an additional parameter that can help in obtaining a robust procedure for tracking...

  7. Characterization of thin-film multilayers using magnetization curves and modeling of low-angle X-ray diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M. [Emory & Henry College, VA (United States); Chaiken, A.; Michel, R.P. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    We have characterized thin-film multilayers grown by ion-beam sputtering using magnetization curves and modeling of low-angle x-ray diffraction data. In our films, we use ferromagnetic layer = Co, Fe, and NiFe and spacer layer = Si, Ge, FeSi{sub 2}, and CoSi{sub 2}. We have studied the effects of (1) deposition conditions; (2) thickness of layers; (3) different layer materials; and (4) annealing. We find higher magnetization in films grown at 1000V rather than 500V and in films with spacer layers of 50{angstrom} rather than 100{angstrom}. We find higher coercivity in films with cobalt grown on germanium rather than silicon, metal grown on gold underlayers rather than on glass substrates, and when using thinner spacer layers. Finally, modeling reveals that films grown with disilicide layers are more thermally stable than films grown with silicon spacer layers.

  8. A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis

    OpenAIRE

    Colosqui, Carlos E.; Kavousanakis, Michail E.; Papathanasiou, Athanasios G.; Kevrekidis, Ioannis G.

    2012-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibriu...

  9. Influence of both angle and position error of pentaprism on accuracy of pentaprism scanning system

    Science.gov (United States)

    Xu, Kun; Han, Sen; Zhang, Qiyuan; Wu, Quanying

    2014-11-01

    Pentaprism scanning system has been widely used in the measurement of large flat and wavefront, based on its property that the deviated beam will have no motion in the pitch direction. But the manufacturing and position errors of pentaprisms will bring error to the measurement and so a good error analysis method is indispensable. In this paper, we propose a new method of building mathematic models of pentaprism and through which the size and angle errors of a pentaprism can be put into the model as parameters. 4 size parameters are selected to determine the size and 11 angle parameters are selected to determine the angles of a pentaprism. Yaw, Roll and Pitch are used to describe the position error of a pentaprism and an autocollimator. A pentaprism scanning system of wavefront test is simulated by ray tracing using matlab. We design a method of separating the constant from the measurement results which will improve the measurement accuracy and analyze the system error by Monte Carlo method. This method is simple, rapid, accurate and convenient for computer programming.

  10. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  11. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  12. Effects of internal yaw-vectoring devices on the static performance of a pitch-vectoring nonaxisymmetric convergent-divergent nozzle

    Science.gov (United States)

    Asbury, Scott C.

    1993-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to evaluate the internal performance of a nonaxisymmetric convergent divergent nozzle designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap deflection for thrust vectoring in the pitch plane and flow-turning deflectors installed within the divergent flaps for yaw thrust vectoring. Modifications consisting of reducing the sidewall length and deflecting the sidewall outboard were investigated as means to increase yaw-vectoring performance. This investigation studied the effects of multiaxis (pitch and yaw) thrust vectoring on nozzle internal performance characteristics. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 13.0. The results indicate that this nozzle concept can successfully generate multiaxis thrust vectoring. Deflection of the divergent flaps produced resultant pitch vector angles that, although dependent on nozzle pressure ratio, were nearly equal to the geometric pitch vector angle. Losses in resultant thrust due to pitch vectoring were small or negligible. The yaw deflectors produced resultant yaw vector angles up to 21 degrees that were controllable by varying yaw deflector rotation. However, yaw deflector rotation resulted in significant losses in thrust ratios and, in some cases, nozzle discharge coefficient. Either of the sidewall modifications generally reduced these losses and increased maximum resultant yaw vector angle. During multiaxis (simultaneous pitch and yaw) thrust vectoring, little or no cross coupling between the thrust vectoring processes was observed.

  13. Fruit flies modulate passive wing pitching to generate in-flight turns

    CERN Document Server

    Bergou, Attila J; Guckenheimer, John; Cohen, Itai; Wang, Z Jane

    2009-01-01

    Flying insects execute aerial maneuvers through subtle manipulations of their wing motions. Here, we measure the free flight kinematics of fruit flies and determine how they modulate their wing pitching to induce sharp turns. By analyzing the torques these insects exert to pitch their wings, we infer that the wing hinge acts as a torsional spring that passively resists the wing's tendency to flip in response to aerodynamic and inertial forces. To turn, the insects asymmetrically change the spring rest angles to generate rowing motions of their wings. Thus, insects can generate these maneuvers using only a slight active actuation that biases their wing motion.

  14. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    Science.gov (United States)

    Zaman, Khairul; Fagan, Amy; Mankbadi, Mina

    2016-01-01

    An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.

  15. Pitch discrimination associated with phonological awareness: Evidence from congenital amusia

    National Research Council Canada - National Science Library

    Yanan Sun; Xuejing Lu; Hao Tam Ho; William Forde Thompson

    2017-01-01

    .... However, eight amusics with severe pitch impairment, as identified by the pitch discrimination task, exhibited significantly worse performance than all other participants in phonological awareness...

  16. A stochastic model of knee angle in response to electrical stimulation of the quadriceps and hamstrings muscles.

    Science.gov (United States)

    Lynch, Cheryl L; Popovic, Milos R

    2011-12-01

    A novel stochastic model of knee angle in response to stimulation of the quadriceps and hamstrings muscle groups is presented. This model includes uncertainty due to fatigue and day-to-day changes in the stimulated muscles. The model consists of a normally distributed random variable whose mean and standard deviation vary with time and is characterized using data from a complete spinal cord injuries subject. The experimental data show a significant difference between the left and right legs under certain conditions, and suggest that fatigue-related and day-to-day variation may also be important. The purpose of this model is to generate more realistic electrically stimulated knee movements. This stochastic modeling technique could be incorporated into a comprehensive model of a joint actuated with electrical stimulation, and has great potential as a tool for analyzing closed-loop performance of electrically stimulated systems. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Pitch memory, labelling and disembedding in autism.

    Science.gov (United States)

    Heaton, Pamela

    2003-05-01

    Autistic musical savants invariably possess absolute pitch ability and are able to disembed individual musical tones from chords. Enhanced pitch discrimination and memory has been found in non-savant individuals with autism who also show superior performance on visual disembedding tasks. These experiments investigate the extent that enhanced disembedding ability will be found within the musical domain in autism. High-functioning children with autism, together with age- and intelligence-matched controls, participated in three experiments testing pitch memory, labelling and chord disembedding. The findings from experiment 1 showed enhanced pitch memory and labelling in the autism group. In experiment 2, when subjects were pre-exposed to labelled individual tones, superior chord segmentation was also found. However, in experiment 3, when disembedding performance was less reliant on pitch memory, no group differences emerged and the children with autism, like controls, perceived musical chords holistically. These findings indicate that pitch memory and labelling is superior in autism and can facilitate performance on musical disembedding tasks. However, when task performance does not rely on long-term pitch memory, autistic children, like controls, succumb to the Gestalt qualities of chords.

  18. Musical pitch discrimination by cochlear implant users.

    Science.gov (United States)

    Ping, Lichuan; Yuan, Meng; Feng, Haihong

    2012-05-01

    The main goal of this study was to investigate the effects of acoustic characteristics, including timbre and fundamental frequency (F0), on the musical pitch discrimination of cochlear implant users. Eight postlingually deafened cochlear implant users were recruited, along with 8 control subjects with normal hearing. Pitch discrimination tests were carried out using test stimuli from 4 musical instruments plus synthetic complex stimuli. Three reference tones with different F0s were used. The mean difference limens were 1.8 to 10.7 semitones in the just-noticeable difference task and 2.1 to 13.6 semitones in the pitch-direction discrimination task for different timbre and F0 combinations. Three-way analysis of variance showed that the acoustic characteristics of the musical stimuli, such as timbre and F0, significantly influenced pitch discrimination performance. Acoustic characteristics determine the complexity of the electrical stimulation pattern, which directly affects performance in pitch discrimination. A place pattern with a clear and regular low-order harmonic structure is most important for good pitch discrimination. A clear F0-related temporal pattern is also useful when the F0 is low. Pitch perception performance will worsen when there is interference in the high-frequency channels.

  19. Modeling the effect of the inclination angle on natural convection from a flat plate: The case of a photovoltaic module

    Directory of Open Access Journals (Sweden)

    Perović Bojan D.

    2017-01-01

    Full Text Available The main purpose of this paper is to show how the inclination angle affects natural convection from a flat-plate photovoltaic module which is mounted on the ground surface. In order to model this effect, novel correlations for natural convection from isothermal flat plates are developed by using the fundamental dimensionless number. On the basis of the available experimental and numerical results, it is shown that the natural convection correlations correspond well with the existing empirical correlations for vertical, inclined, and horizontal plates. Five additional correlations for the critical Grashof number are derived from the available data, three indicating the onset of transitional flow regime and two indicating the onset of flow separation. The proposed correlations cover the entire range of inclination angles and the entire range of Prandtl numbers. This paper also provides two worked examples, one for natural convection combined with radiation and one for natural convection combined with forced convection and radiation. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR33046

  20. Validation of aerodynamic parameters at high angles of attack for RAE high incidence research models

    Science.gov (United States)

    Ross, A. Jean; Edwards, Geraldine F.; Klein, Vladislav; Batterson, James G.

    1987-01-01

    Two series of free-flight tests have been conducted for combat aircraft configuration research models in order to investigate flight behavior near departure conditions as well as to obtain response data from which aerodynamic characteristics can be derived. The structure of the mathematical model and values for the mathematical derivatives have been obtained through an analysis of the first series, using stepwise regression. The results thus obtained are the bases of the design of active control laws. Flight test results for a novel configuration are compared with predicted responses.