WorldWideScience

Sample records for model physics chammp

  1. CHAMMP

    International Nuclear Information System (INIS)

    Abarbanel, H.; Chervin, R.; Colella, P.; Dyson, F.; Flatte, S.; Freeman, M.; Gregg, M.; Koonin, S.; Leith, C.; MacDonald, G.; Nierenberg, W.; Rothaus, O.; Weinberger, P.; Westervelt, R.; Zachariasen, F.

    1992-12-01

    The US global change research program embraces three important classes of activities. One is the long-term monitoring of climatic variables to detect and measure global change. A second class comprises detailed short-term studies of the processes that govern the climate system. The third activity involves the construction of climate models (e.g., ocean and atmospheric general circulation models - GCMs) incorporating the results of process studies to improve the ability to predict and eventually to respond to global change. The CHAMMP program clearly falls within the third class of activities (modeling) and complements DOE's Atmospheric Radiation Measurement Program (ARM) of process studies in the atmosphere, and NASA's Earth Observing System (EOS) program, aimed primarily at monitoring. CHAMMP's stated goal is ''To develop, verify, and apply a new generation of climate model within a coordinated framework, that: (1) incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes; (2). fully utilizes the hardware and software capabilities of new computer architectures; (3)probes the limits of climate predictability; (4) can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of models to simulate time-dependent climatic changes over extended times with regional resolution.''

  2. Modeling land-surface/atmosphere dynamics for CHAMMP

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.

    1993-01-01

    Project progress is described on a DOE CHAMP project to model the land-surface/atmosphere coupling in a heterogeneous environment. This work is a collaboration between scientists at Iowa State University and the University of New Hampshire. Work has proceeded in two areas: baseline model coupling and data base development for model validation. The core model elements (land model, atmosphere model) have been ported to the Principal Investigator's computing system and baseline coupling has commenced. The initial target data base is the set of observations from the FIFE field campaign, which is in the process of being acquired. For the remainder of the project period, additional data from the region surrounding the FIFE site and from other field campaigns will be acquired to determine how to best extrapolate results from the initial target region to the rest of the globe. In addition, variants of the coupled model will be used to perform experiments examining resolution requirements and coupling strategies for land-atmosphere coupling in a heterogeneous environment

  3. Computer Hardware, Advanced Mathematics and Model Physics pilot project final report

    International Nuclear Information System (INIS)

    1992-05-01

    The Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP) Program was launched in January, 1990. A principal objective of the program has been to utilize the emerging capabilities of massively parallel scientific computers in the challenge of regional scale predictions of decade-to-century climate change. CHAMMP has already demonstrated the feasibility of achieving a 10,000 fold increase in computational throughput for climate modeling in this decade. What we have also recognized, however, is the need for new algorithms and computer software to capitalize on the radically new computing architectures. This report describes the pilot CHAMMP projects at the DOE National Laboratories and the National Center for Atmospheric Research (NCAR). The pilot projects were selected to identify the principal challenges to CHAMMP and to entrain new scientific computing expertise. The success of some of these projects has aided in the definition of the CHAMMP scientific plan. Many of the papers in this report have been or will be submitted for publication in the open literature. Readers are urged to consult with the authors directly for questions or comments about their papers

  4. Physical modeling of rock

    International Nuclear Information System (INIS)

    Cheney, J.A.

    1981-01-01

    The problems of statisfying similarity between a physical model and the prototype in rock wherein fissures and cracks place a role in physical behavior is explored. The need for models of large physical dimensions is explained but also testing of models of the same prototype over a wide range of scales is needed to ascertain the influence of lack of similitude of particular parameters between prototype and model. A large capacity centrifuge would be useful in that respect

  5. Identification of physical models

    DEFF Research Database (Denmark)

    Melgaard, Henrik

    1994-01-01

    of the model with the available prior knowledge. The methods for identification of physical models have been applied in two different case studies. One case is the identification of thermal dynamics of building components. The work is related to a CEC research project called PASSYS (Passive Solar Components......The problem of identification of physical models is considered within the frame of stochastic differential equations. Methods for estimation of parameters of these continuous time models based on descrete time measurements are discussed. The important algorithms of a computer program for ML or MAP...... design of experiments, which is for instance the design of an input signal that are optimal according to a criterion based on the information provided by the experiment. Also model validation is discussed. An important verification of a physical model is to compare the physical characteristics...

  6. Models in physics teaching

    DEFF Research Database (Denmark)

    Kneubil, Fabiana Botelho

    2016-01-01

    In this work we show an approach based on models, for an usual subject in an introductory physics course, in order to foster discussions on the nature of physical knowledge. The introduction of elements of the nature of knowledge in physics lessons has been emphasised by many educators and one uses...... the case of metals to show the theoretical and phenomenological dimensions of physics. The discussion is made by means of four questions whose answers cannot be reached neither for theoretical elements nor experimental measurements. Between these two dimensions it is necessary to realise a series...... of reasoning steps to deepen the comprehension of microscopic concepts, such as electrical resistivity, drift velocity and free electrons. When this approach is highlighted, beyond the physical content, aspects of its nature become explicit and may improve the structuring of knowledge for learners...

  7. Beyond Standard Model Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bellantoni, L.

    2009-11-01

    There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.

  8. Physical Modeling Modular Boxes: PHOXES

    DEFF Research Database (Denmark)

    Gelineck, Steven; Serafin, Stefania

    2010-01-01

    This paper presents the development of a set of musical instruments, which are based on known physical modeling sound synthesis techniques. The instruments are modular, meaning that they can be combined in various ways. This makes it possible to experiment with physical interaction and sonic...

  9. Standard Model physics

    CERN Multimedia

    Altarelli, Guido

    1999-01-01

    Introduction structure of gauge theories. The QEDand QCD examples. Chiral theories. The electroweak theory. Spontaneous symmetry breaking. The Higgs mechanism Gauge boson and fermion masses. Yukawa coupling. Charges current couplings. The Cabibo-Kobayashi-Maskawa matrix and CP violation. Neutral current couplings. The Glasow-Iliopoulos-Maiani mechanism. Gauge boson and Higgs coupling. Radiative corrections and loops. Cancellation of the chiral anomaly. Limits on the Higgs comparaison. Problems of the Standard Model. Outlook.

  10. Quasi standard model physics

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1986-01-01

    Possible small extensions of the standard model are considered, which are motivated by the strong CP problem and by the baryon asymmetry of the Universe. Phenomenological arguments are given which suggest that imposing a PQ symmetry to solve the strong CP problem is only tenable if the scale of the PQ breakdown is much above M W . Furthermore, an attempt is made to connect the scale of the PQ breakdown to that of the breakdown of lepton number. It is argued that in these theories the same intermediate scale may be responsible for the baryon number of the Universe, provided the Kuzmin Rubakov Shaposhnikov (B+L) erasing mechanism is operative. (orig.)

  11. Physical model of Nernst element

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou

    1998-08-01

    Generation of electric power by the Nernst effect is a new application of a semiconductor. A key point of this proposal is to find materials with a high thermomagnetic figure-of-merit, which are called Nernst elements. In order to find candidates of the Nernst element, a physical model to describe its transport phenomena is needed. As the first model, we began with a parabolic two-band model in classical statistics. According to this model, we selected InSb as candidates of the Nernst element and measured their transport coefficients in magnetic fields up to 4 Tesla within a temperature region from 270 K to 330 K. In this region, we calculated transport coefficients numerically by our physical model. For InSb, experimental data are coincident with theoretical values in strong magnetic field. (author)

  12. Instream Physical Habitat Modelling Types

    DEFF Research Database (Denmark)

    Conallin, John; Boegh, Eva; Krogsgaard, Jørgen

    2010-01-01

    The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages and disadvanta......The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages...... suit their situations. This paper analyses the potential of different methods available for water managers to assess hydrological and geomorphological impacts on the habitats of stream biota, as requested by the WFD. The review considers both conventional and new advanced research-based instream...... physical habitat models. In parametric and non-parametric regression models, model assumptions are often not satisfied and the models are difficult to transfer to other regions. Research-based methods such as the artificial neural networks and individual-based modelling have promising potential as water...

  13. Accelerator physics and modeling: Proceedings

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings

  14. Wave Generation in Physical Models

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...

  15. Development of the physical model

    International Nuclear Information System (INIS)

    Liu Zunqi; Morsy, Samir

    2001-01-01

    Full text: The Physical Model was developed during Program 93+2 as a technical tool to aid enhanced information analysis and now is an integrated part of the Department's on-going State evaluation process. This paper will describe the concept of the Physical Model, including its objectives, overall structure and the development of indicators with designated strengths, followed by a brief description of using the Physical Model in implementing the enhanced information analysis. The work plan for expansion and update of the Physical Model is also presented at the end of the paper. The development of the Physical Model is an attempt to identify, describe and characterize every known process for carrying out each step necessary for the acquisition of weapons-usable material, i.e., all plausible acquisition paths for highly enriched uranium (HEU) and separated plutonium (Pu). The overall structure of the Physical Model has a multilevel arrangement. It includes at the top level all the main steps (technologies) that may be involved in the nuclear fuel cycle from the source material production up to the acquisition of weapons-usable material, and then beyond the civilian fuel cycle to the development of nuclear explosive devices (weaponization). Each step is logically interconnected with the preceding and/or succeeding steps by nuclear material flows. It contains at its lower levels every known process that is associated with the fuel cycle activities presented at the top level. For example, uranium enrichment is broken down into three branches at the second level, i.e., enrichment of UF 6 , UCl 4 and U-metal respectively; and then further broken down at the third level into nine processes: gaseous diffusion, gas centrifuge, aerodynamic, electromagnetic, molecular laser (MLIS), atomic vapor laser (AVLIS), chemical exchange, ion exchange and plasma. Narratives are presented at each level, beginning with a general process description then proceeding with detailed

  16. Physical models of cell motility

    CERN Document Server

    2016-01-01

    This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force ...

  17. Physical model of reactor pulse

    International Nuclear Information System (INIS)

    Petrovic, A.; Ravnik, M.

    2004-01-01

    Pulse experiments have been performed at J. Stefan Institute TRIGA reactor since 1991. In total, more than 130 pulses have been performed. Extensive experimental information on the pulse physical characteristics has been accumulated. Fuchs-Hansen adiabatic model has been used for predicting and analysing the pulse parameters. The model is based on point kinetics equation, neglecting the delayed neutrons and assuming constant inserted reactivity in form of step function. Deficiencies of the Fuchs-Hansen model and systematic experimental errors have been observed and analysed. Recently, the pulse model was improved by including the delayed neutrons and time dependence of inserted reactivity. The results explain the observed non-linearity of the pulse energy for high pulses due to finite time of pulse rod withdrawal and the contribution of the delayed neutrons after the prompt part of the pulse. The results of the improved model are in good agreement with experimental results. (author)

  18. Cabin Environment Physics Risk Model

    Science.gov (United States)

    Mattenberger, Christopher J.; Mathias, Donovan Leigh

    2014-01-01

    This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.

  19. Excellence in Physics Education Award: Modeling Theory for Physics Instruction

    Science.gov (United States)

    Hestenes, David

    2014-03-01

    All humans create mental models to plan and guide their interactions with the physical world. Science has greatly refined and extended this ability by creating and validating formal scientific models of physical things and processes. Research in physics education has found that mental models created from everyday experience are largely incompatible with scientific models. This suggests that the fundamental problem in learning and understanding science is coordinating mental models with scientific models. Modeling Theory has drawn on resources of cognitive science to work out extensive implications of this suggestion and guide development of an approach to science pedagogy and curriculum design called Modeling Instruction. Modeling Instruction has been widely applied to high school physics and, more recently, to chemistry and biology, with noteworthy results.

  20. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  1. Models and structures: mathematical physics

    International Nuclear Information System (INIS)

    2003-01-01

    This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems

  2. Literature Review of Dredging Physical Models

    Science.gov (United States)

    This U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, special report presents a review of dredging physical ...model studies with the goal of understanding the most current state of dredging physical modeling, understanding conditions of similitude used in past...studies, and determining whether the flow field around a dredging operation has been quantified. Historical physical modeling efforts have focused on

  3. Evaluating a Model of Youth Physical Activity

    Science.gov (United States)

    Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary

    2010-01-01

    Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…

  4. A validated physical model of greenhouse climate.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the

  5. Numerical modelling in material physics

    International Nuclear Information System (INIS)

    Proville, L.

    2004-12-01

    The author first briefly presents his past research activities: investigation of a dislocation sliding in solid solution by molecular dynamics, modelling of metal film growth by phase field and Monte Carlo kinetics, phase field model for surface self-organisation, phase field model for the Al 3 Zr alloy, calculation of anharmonic photons, mobility of bipolarons in superconductors. Then, he more precisely reports the mesoscopic modelling in phase field, and some atomistic modelling (dislocation sliding, Monte Carlo simulation of metal surface growth, anharmonic network optical spectrum modelling)

  6. Problems in physical modeling of magnetic materials

    International Nuclear Information System (INIS)

    Della Torre, E.

    2004-01-01

    Physical modeling of magnetic materials should give insights into the basic processes involved and should be able to extrapolate results to new situations that the models were not necessarily intended to solve. Thus, for example, if a model is designed to describe a static magnetization curve, it should also be able to describe aspects of magnetization dynamics. Both micromagnetic modeling and Preisach modeling, the two most popular magnetic models, fulfill this requirement, but in the process of fulfilling this requirement, they both had to be modified in some ways. Hence, we should view physical modeling as an iterative process whereby we start with some simple assumptions and refine them as reality requires. In the process of refining these assumptions, we should try to appeal to physical arguments for the modifications, if we are to come up with good models. If we consider phenomenological models, on the other hand, that is as axiomatic models requiring no physical justification, we can follow them logically to see the end and examine the consequences of their assumptions. In this way, we can learn the properties, limitations and achievements of the particular model. Physical and phenomenological models complement each other in furthering our understanding of the behavior of magnetic materials

  7. High precision Standard Model Physics

    International Nuclear Information System (INIS)

    Magnin, J.

    2009-01-01

    The main goal of the LHCb experiment, one of the four large experiments of the Large Hadron Collider, is to try to give answers to the question of why Nature prefers matter over antimatter? This will be done by studying the decay of b quarks and their antimatter partners, b-bar, which will be produced by billions in 14 TeV p-p collisions by the LHC. In addition, as 'beauty' particles mainly decay in charm particles, an interesting program of charm physics will be carried on, allowing to measure quantities as for instance the D 0 -D-bar 0 mixing, with incredible precision.

  8. Physics Based Modeling of Compressible Turbulance

    Science.gov (United States)

    2016-11-07

    AFRL-AFOSR-VA-TR-2016-0345 PHYSICS -BASED MODELING OF COMPRESSIBLE TURBULENCE PARVIZ MOIN LELAND STANFORD JUNIOR UNIV CA Final Report 09/13/2016...on the AFOSR project (FA9550-11-1-0111) entitled: Physics based modeling of compressible turbulence. The period of performance was, June 15, 2011...by ANSI Std. Z39.18 Page 1 of 2FORM SF 298 11/10/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll PHYSICS -BASED MODELING OF COMPRESSIBLE

  9. The Physical Internet and Business Model Innovation

    Directory of Open Access Journals (Sweden)

    Diane Poulin

    2012-06-01

    Full Text Available Building on the analogy of data packets within the Digital Internet, the Physical Internet is a concept that dramatically transforms how physical objects are designed, manufactured, and distributed. This approach is open, efficient, and sustainable beyond traditional proprietary logistical solutions, which are often plagued by inefficiencies. The Physical Internet redefines supply chain configurations, business models, and value-creation patterns. Firms are bound to be less dependent on operational scale and scope trade-offs because they will be in a position to offer novel hybrid products and services that would otherwise destroy value. Finally, logistical chains become flexible and reconfigurable in real time, thus becoming better in tune with firm strategic choices. This article focuses on the potential impact of the Physical Internet on business model innovation, both from the perspectives of Physical-Internet enabled and enabling business models.

  10. Are Physical Education Majors Models for Fitness?

    Science.gov (United States)

    Kamla, James; Snyder, Ben; Tanner, Lori; Wash, Pamela

    2012-01-01

    The National Association of Sport and Physical Education (NASPE) (2002) has taken a firm stance on the importance of adequate fitness levels of physical education teachers stating that they have the responsibility to model an active lifestyle and to promote fitness behaviors. Since the NASPE declaration, national initiatives like Let's Move…

  11. Quark models in hadron physics

    International Nuclear Information System (INIS)

    Phatak, Shashikant C.

    2007-01-01

    In this talk, we review the role played by the quark models in the study of interaction of strong, weak and electromagnetic probes with hadrons at intermediate and high momentum transfers. By hadrons, we mean individual nucleons as well as nuclei. We argue that at these momentum transfers, the structure of hadrons plays an important role. The hadron structure of the hadrons is because of the underlying quark structure of hadrons and therefore the quark models play an important role in determining the hadron structure. Further, the properties of hadrons are likely to change when these are placed in nuclear medium and this change should arise from the underlying quark structure. We shall consider some quark models to look into these aspects. (author)

  12. Physics of the Quark Model

    Science.gov (United States)

    Young, Robert D.

    1973-01-01

    Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)

  13. Simplified Models for LHC New Physics Searches

    CERN Document Server

    Alves, Daniele; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Buckley, Matthew; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Chivukula, R.Sekhar; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig, Rouven; Evans, Jared A.; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto; Freitas, Ayres; Gainer, James S.; Gershtein, Yuri; Gray, Richard; Gregoire, Thomas; Gripaios, Ben; Gunion, Jack; Han, Tao; Haas, Andy; Hansson, Per; Hewett, JoAnne; Hits, Dmitry; Hubisz, Jay; Izaguirre, Eder; Kaplan, Jared; Katz, Emanuel; Kilic, Can; Kim, Hyung-Do; Kitano, Ryuichiro; Koay, Sue Ann; Ko, Pyungwon; Krohn, David; Kuflik, Eric; Lewis, Ian; Lisanti, Mariangela; Liu, Tao; Liu, Zhen; Lu, Ran; Luty, Markus; Meade, Patrick; Morrissey, David; Mrenna, Stephen; Nojiri, Mihoko; Okui, Takemichi; Padhi, Sanjay; Papucci, Michele; Park, Michael; Park, Myeonghun; Perelstein, Maxim; Peskin, Michael; Phalen, Daniel; Rehermann, Keith; Rentala, Vikram; Roy, Tuhin; Ruderman, Joshua T.; Sanz, Veronica; Schmaltz, Martin; Schnetzer, Stephen; Schuster, Philip; Schwaller, Pedro; Schwartz, Matthew D.; Schwartzman, Ariel; Shao, Jing; Shelton, Jessie; Shih, David; Shu, Jing; Silverstein, Daniel; Simmons, Elizabeth; Somalwar, Sunil; Spannowsky, Michael; Spethmann, Christian; Strassler, Matthew; Su, Shufang; Tait, Tim; Thomas, Brooks; Thomas, Scott; Toro, Natalia; Volansky, Tomer; Wacker, Jay; Waltenberger, Wolfgang; Yavin, Itay; Yu, Felix; Zhao, Yue; Zurek, Kathryn

    2012-01-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a...

  14. Modeling Cyber Physical War Gaming

    Science.gov (United States)

    2017-08-07

    games share similar constructs. We also provide a game-theoretic approach to mathematically analyze attacker and defender strategies in cyber war...Military Practice of Course-of-Action Analysis 4 2. Game-Theoretic Method 7 2.1 Mathematical Model 7 2.2 Strategy Selection 10 2.2.1 Pure...officers, hundreds of combat and support vehicles, helicopters, sophisticated intelligence and communication equipment and specialists , artillery and

  15. Physics beyond the Standard Model

    Science.gov (United States)

    Lach, Theodore

    2011-04-01

    Recent discoveries of the excited states of the Bs** meson along with the discovery of the omega-b-minus have brought into popular acceptance the concept of the orbiting quarks predicted by the Checker Board Model (CBM) 14 years ago. Back then the concept of orbiting quarks was not fashionable. Recent estimates of velocities of these quarks inside the proton and neutron are in excess of 90% the speed of light also in agreement with the CBM model. Still a 2D structure of the nucleus has not been accepted nor has it been proven wrong. The CBM predicts masses of the up and dn quarks are 237.31 MeV and 42.392 MeV respectively and suggests that a lighter generation of quarks u and d make up a different generation of quarks that make up light mesons. The CBM also predicts that the T' and B' quarks do exist and are not as massive as might be expected. (this would make it a 5G world in conflict with the SM) The details of the CB model and prediction of quark masses can be found at: http://checkerboard.dnsalias.net/ (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/.

  16. Ladder physics in the spin fermion model

    Science.gov (United States)

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  17. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  18. Modelling Mathematical Reasoning in Physics Education

    Science.gov (United States)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche

    2012-04-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

  19. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  20. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  1. A study on the intrusion model by physical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    In physical modeling, the actual phenomena of seismic wave propagation are directly measured like field survey and furthermore the structure and physical properties of subsurface can be known. So the measured datasets from physical modeling can be very desirable as input data to test the efficiency of various inversion algorithms. An underground structure formed by intrusion, which can be often seen in seismic section for oil exploration, is investigated by physical modeling. The model is characterized by various types of layer boundaries with steep dip angle. Therefore, this physical modeling data are very available not only to interpret seismic sections for oil exploration as a case history, but also to develop data processing techniques and estimate the capability of software such as migration, full waveform inversion. (author). 5 refs., 18 figs.

  2. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Tang, X.Z.; Strauss, H.R.; Sugiyama, L.E.

    1999-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of δf particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future. copyright 1999 American Institute of Physics

  3. Physically realistic modeling of maritime training simulation

    OpenAIRE

    Cieutat , Jean-Marc

    2003-01-01

    Maritime training simulation is an important matter of maritime teaching, which requires a lot of scientific and technical skills.In this framework, where the real time constraint has to be maintained, all physical phenomena cannot be studied; the most visual physical phenomena relating to the natural elements and the ship behaviour are reproduced only. Our swell model, based on a surface wave simulation approach, permits to simulate the shape and the propagation of a regular train of waves f...

  4. Computational models in physics teaching: a framework

    Directory of Open Access Journals (Sweden)

    Marco Antonio Moreira

    2012-08-01

    Full Text Available The purpose of the present paper is to present a theoretical framework to promote and assist meaningful physics learning through computational models. Our proposal is based on the use of a tool, the AVM diagram, to design educational activities involving modeling and computer simulations. The idea is to provide a starting point for the construction and implementation of didactical approaches grounded in a coherent epistemological view about scientific modeling.

  5. Simplified Models for LHC New Physics Searches

    International Nuclear Information System (INIS)

    Alves, Daniele; Arkani-Hamed, Nima; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Chivukula, R. Sekhar; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig, Rouven; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto

    2012-01-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ∼ 50-500 pb -1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  6. Simplified Models for LHC New Physics Searches

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele; /SLAC; Arkani-Hamed, Nima; /Princeton, Inst. Advanced Study; Arora, Sanjay; /Rutgers U., Piscataway; Bai, Yang; /SLAC; Baumgart, Matthew; /Johns Hopkins U.; Berger, Joshua; /Cornell U., Phys. Dept.; Buckley, Matthew; /Fermilab; Butler, Bart; /SLAC; Chang, Spencer; /Oregon U. /UC, Davis; Cheng, Hsin-Chia; /UC, Davis; Cheung, Clifford; /UC, Berkeley; Chivukula, R.Sekhar; /Michigan State U.; Cho, Won Sang; /Tokyo U.; Cotta, Randy; /SLAC; D' Alfonso, Mariarosaria; /UC, Santa Barbara; El Hedri, Sonia; /SLAC; Essig, Rouven, (ed.); /SLAC; Evans, Jared A.; /UC, Davis; Fitzpatrick, Liam; /Boston U.; Fox, Patrick; /Fermilab; Franceschini, Roberto; /LPHE, Lausanne /Pittsburgh U. /Argonne /Northwestern U. /Rutgers U., Piscataway /Rutgers U., Piscataway /Carleton U. /CERN /UC, Davis /Wisconsin U., Madison /SLAC /SLAC /SLAC /Rutgers U., Piscataway /Syracuse U. /SLAC /SLAC /Boston U. /Rutgers U., Piscataway /Seoul Natl. U. /Tohoku U. /UC, Santa Barbara /Korea Inst. Advanced Study, Seoul /Harvard U., Phys. Dept. /Michigan U. /Wisconsin U., Madison /Princeton U. /UC, Santa Barbara /Wisconsin U., Madison /Michigan U. /UC, Davis /SUNY, Stony Brook /TRIUMF; /more authors..

    2012-06-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first {approx} 50-500 pb{sup -1} of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  7. PHYSICAL EDUCATION - PHYSICAL CULTURE. TWO MODELS, TWO DIDACTIC

    Directory of Open Access Journals (Sweden)

    Manuel Vizuete Carrizosa

    2014-11-01

    The survival of these conflicting positions and their interests and different views on education, in a lengthy space of time, as a consequence threw two teaching approaches and two different educational models, in which the objectives and content of education differ , and with them the forms and methods of teaching. The need to define the cultural and educational approach, in every time and place, is now a pressing need and challenge the processes of teacher training, as responsible for shaping an advanced physical education, adjusted to the time and place, the interests and needs of citizens and the democratic values of modern society.

  8. Composing Models of Geographic Physical Processes

    Science.gov (United States)

    Hofer, Barbara; Frank, Andrew U.

    Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.

  9. PHYSICAL EDUCATION - PHYSICAL CULTURE. TWO MODELS, TWO DIDACTIC

    Directory of Open Access Journals (Sweden)

    Manuel Vizuete Carrizosa

    2014-10-01

    Full Text Available Physical Education is currently facing a number of problems that are rooted in the identity crisis prompted by the spread of the professional group, the confrontation of ideas from the scientific community and the competing interests of different political and social areas, compared to which physical education has failed, or unable, to react in time. The political and ideological confrontation that characterized the twentieth century gave us two forms, each with a consistent ideological position, in which the body as a subject of education was understood from two different positions: one set from the left and communism and another, from Western democratic societies.The survival of these conflicting positions and their interests and different views on education, in a lengthy space of time, as a consequence threw two teaching approaches and two different educational models, in which the objectives and content of education differ , and with them the forms and methods of teaching. The need to define the cultural and educational approach, in every time and place, is now a pressing need and challenge the processes of teacher training, as responsible for shaping an advanced physical education, adjusted to the time and place, the interests and needs of citizens and the democratic values of modern society.

  10. Physical models for high burnup fuel

    International Nuclear Information System (INIS)

    Kanyukova, V.; Khoruzhii, O.; Likhanskii, V.; Solodovnikov, G.; Sorokin, A.

    2003-01-01

    In this paper some models of processes in high burnup fuel developed in Src of Russia Troitsk Institute for Innovation and Fusion Research are presented. The emphasis is on the description of the degradation of the fuel heat conductivity, radial profiles of the burnup and the plutonium accumulation, restructuring of the pellet rim, mechanical pellet-cladding interaction. The results demonstrate the possibility of rather accurate description of the behaviour of the fuel of high burnup on the base of simplified models in frame of the fuel performance code if the models are physically ground. The development of such models requires the performance of the detailed physical analysis to serve as a test for a correct choice of allowable simplifications. This approach was applied in the SRC of Russia TRINITI to develop a set of models for the WWER fuel resulting in high reliability of predictions in simulation of the high burnup fuel

  11. The optical model in atomic physics

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1978-01-01

    The optical model for electron scattering on atoms has quite a short history in comparison with nuclear physics. The main reason for this is that there were insufficient data. Angular distribution for elastic and some inelastic scattering have now been measured for the atoms which exist in gaseous form at reasonable temperatures, inert gases, hydrogen, alkalies and mercury being the main ones out in. The author shows that the optical model makes sense in atomic physics by considering its theory and recent history. (orig./AH) [de

  12. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future

  13. A validated physical model of greenhouse climate

    International Nuclear Information System (INIS)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the greenhouse and of the control system. The greenhouse model is based on the energy, water vapour and CO 2 balances of the crop-greenhouse system. While the emphasis is on the dynamic behaviour of the greenhouse for implementation in continuous optimization, the state variables temperature, water vapour pressure and carbondioxide concentration in the relevant greenhouse parts crop, air, soil and cover are calculated from the balances over these parts. To do this in a proper way, the physical exchange processes between the system parts have to be quantified first. Therefore the greenhouse model is constructed from submodels describing these processes: a. Radiation transmission model for the modification of the outside to the inside global radiation. b. Ventilation model to describe the ventilation exchange between greenhouse and outside air. c. The description of the exchange of energy and mass between the crop and the greenhouse air. d. Calculation of the thermal radiation exchange between the various greenhouse parts. e. Quantification of the convective exchange processes between the greenhouse air and respectively the cover, the heating pipes and the soil surface and between the cover and the outside air. f. Determination of the heat conduction in the soil. The various submodels are validated first and then the complete greenhouse model is verified

  14. Topos models for physics and topos theory

    International Nuclear Information System (INIS)

    Wolters, Sander

    2014-01-01

    What is the role of topos theory in the topos models for quantum theory as used by Isham, Butterfield, Döring, Heunen, Landsman, Spitters, and others? In other words, what is the interplay between physical motivation for the models and the mathematical framework used in these models? Concretely, we show that the presheaf topos model of Butterfield, Isham, and Döring resembles classical physics when viewed from the internal language of the presheaf topos, similar to the copresheaf topos model of Heunen, Landsman, and Spitters. Both the presheaf and copresheaf models provide a “quantum logic” in the form of a complete Heyting algebra. Although these algebras are natural from a topos theoretic stance, we seek a physical interpretation for the logical operations. Finally, we investigate dynamics. In particular, we describe how an automorphism on the operator algebra induces a homeomorphism (or isomorphism of locales) on the associated state spaces of the topos models, and how elementary propositions and truth values transform under the action of this homeomorphism. Also with dynamics the focus is on the internal perspective of the topos

  15. Ladder physics in the spin fermion model

    International Nuclear Information System (INIS)

    Tsvelik, A. M.

    2017-01-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. Here, it is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  16. Statistical physics of pairwise probability models

    DEFF Research Database (Denmark)

    Roudi, Yasser; Aurell, Erik; Hertz, John

    2009-01-01

    (dansk abstrakt findes ikke) Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of  data......: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying...

  17. Mathematical and physical models and radiobiology

    International Nuclear Information System (INIS)

    Lokajicek, M.

    1980-01-01

    The hit theory of the mechanism of biological radiation effects in the cell is discussed with respect to radiotherapy. The mechanisms of biological effects and of intracellular recovery, the cumulative radiation effect and the cumulative biological effect in fractionated irradiation are described. The benefit is shown of consistent application of mathematical and physical models in radiobiology and radiotherapy. (J.P.)

  18. Protein Folding: Search for Basic Physical Models

    Directory of Open Access Journals (Sweden)

    Ivan Y. Torshin

    2003-01-01

    Full Text Available How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins, the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces. Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.

  19. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  20. Physical and mathematical modelling of extrusion processes

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Gronostajski, Z.; Niechajowics, A.

    2000-01-01

    The main objective of the work is to study the extrusion process using physical modelling and to compare the findings of the study with finite element predictions. The possibilities and advantages of the simultaneous application of both of these methods for the analysis of metal forming processes...

  1. Physical models for classroom teaching in hydrology

    Directory of Open Access Journals (Sweden)

    A. Rodhe

    2012-09-01

    Full Text Available Hydrology teaching benefits from the fact that many important processes can be illustrated and explained with simple physical models. A set of mobile physical models has been developed and used during many years of lecturing at basic university level teaching in hydrology. One model, with which many phenomena can be demonstrated, consists of a 1.0-m-long plexiglass container containing an about 0.25-m-deep open sand aquifer through which water is circulated. The model can be used for showing the groundwater table and its influence on the water content in the unsaturated zone and for quantitative determination of hydraulic properties such as the storage coefficient and the saturated hydraulic conductivity. It is also well suited for discussions on the runoff process and the significance of recharge and discharge areas for groundwater. The flow paths of water and contaminant dispersion can be illustrated in tracer experiments using fluorescent or colour dye. This and a few other physical models, with suggested demonstrations and experiments, are described in this article. The finding from using models in classroom teaching is that it creates curiosity among the students, promotes discussions and most likely deepens the understanding of the basic processes.

  2. Service Learning In Physics: The Consultant Model

    Science.gov (United States)

    Guerra, David

    2005-04-01

    Each year thousands of students across the country and across the academic disciplines participate in service learning. Unfortunately, with no clear model for integrating community service into the physics curriculum, there are very few physics students engaged in service learning. To overcome this shortfall, a consultant based service-learning program has been developed and successfully implemented at Saint Anselm College (SAC). As consultants, students in upper level physics courses apply their problem solving skills in the service of others. Most recently, SAC students provided technical and managerial support to a group from Girl's Inc., a national empowerment program for girls in high-risk, underserved areas, who were participating in the national FIRST Lego League Robotics competition. In their role as consultants the SAC students provided technical information through brainstorming sessions and helped the girls stay on task with project management techniques, like milestone charting. This consultant model of service-learning, provides technical support to groups that may not have a great deal of resources and gives physics students a way to improve their interpersonal skills, test their technical expertise, and better define the marketable skill set they are developing through the physics curriculum.

  3. Nuclear physics for applications. A model approach

    International Nuclear Information System (INIS)

    Prussin, S.G.

    2007-01-01

    Written by a researcher and teacher with experience at top institutes in the US and Europe, this textbook provides advanced undergraduates minoring in physics with working knowledge of the principles of nuclear physics. Simplifying models and approaches reveal the essence of the principles involved, with the mathematical and quantum mechanical background integrated in the text where it is needed and not relegated to the appendices. The practicality of the book is enhanced by numerous end-of-chapter problems and solutions available on the Wiley homepage. (orig.)

  4. Prototyping of cerebral vasculature physical models.

    Science.gov (United States)

    Khan, Imad S; Kelly, Patrick D; Singer, Robert J

    2014-01-01

    Prototyping of cerebral vasculature models through stereolithographic methods have the ability to accurately depict the 3D structures of complicated aneurysms with high accuracy. We describe the method to manufacture such a model and review some of its uses in the context of treatment planning, research, and surgical training. We prospectively used the data from the rotational angiography of a 40-year-old female who presented with an unruptured right paraclinoid aneurysm. The 3D virtual model was then converted to a physical life-sized model. The model constructed was shown to be a very accurate depiction of the aneurysm and its associated vasculature. It was found to be useful, among other things, for surgical training and as a patient education tool. With improving and more widespread printing options, these models have the potential to become an important part of research and training modalities.

  5. Assessing physical models used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Computer codes used to predict the behaviour of aerosols in water-cooled reactor containment buildings after severe accidents contain a variety of physical models. Special models are in place for describing agglomeration processes where small aerosol particles combine to form larger ones. Other models are used to calculate the rates at which aerosol particles are deposited on building structures. Condensation of steam on aerosol particles is currently a very active area in aerosol modelling. In this paper, the physical models incorporated in the current available international codes for all of these processes are reviewed and documented. There is considerable variation in models used in different codes, and some uncertainties exist as to which models are superior. 28 refs

  6. Electromagnetic Physics Models for Parallel Computing Architectures

    International Nuclear Information System (INIS)

    Amadio, G; Bianchini, C; Iope, R; Ananya, A; Apostolakis, J; Aurora, A; Bandieramonte, M; Brun, R; Carminati, F; Gheata, A; Gheata, M; Goulas, I; Nikitina, T; Bhattacharyya, A; Mohanty, A; Canal, P; Elvira, D; Jun, S Y; Lima, G; Duhem, L

    2016-01-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well. (paper)

  7. Electromagnetic Physics Models for Parallel Computing Architectures

    Science.gov (United States)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

  8. B physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hewett, J.A.L.

    1997-12-01

    The ability of present and future experiments to test the Standard Model in the B meson sector is described. The authors examine the loop effects of new interactions in flavor changing neutral current B decays and in Z → b anti b, concentrating on supersymmetry and the left-right symmetric model as specific examples of new physics scenarios. The procedure for performing a global fit to the Wilson coefficients which describe b → s transitions is outlined, and the results of such a fit from Monte Carlo generated data is compared to the predictions of the two sample new physics scenarios. A fit to the Zb anti b couplings from present data is also given

  9. A minimal physical model for crawling cells

    Science.gov (United States)

    Tiribocchi, Adriano; Tjhung, Elsen; Marenduzzo, Davide; Cates, Michael E.

    Cell motility in higher organisms (eukaryotes) is fundamental to biological functions such as wound healing or immune response, and is also implicated in diseases such as cancer. For cells crawling on solid surfaces, considerable insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. We present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.

  10. LHC Higgs physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Spannowsky, M.

    2007-01-01

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan β in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  11. LHC Higgs physics beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Spannowsky, M.

    2007-09-22

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan {beta} in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  12. Looking for physics beyond the standard model

    International Nuclear Information System (INIS)

    Binetruy, P.

    2002-01-01

    Motivations for new physics beyond the Standard Model are presented. The most successful and best motivated option, supersymmetry, is described in some detail, and the associated searches performed at LEP are reviewed. These include searches for additional Higgs bosons and for supersymmetric partners of the standard particles. These searches constrain the mass of the lightest supersymmetric particle which could be responsible for the dark matter of the universe. (authors)

  13. Statistical physics of pairwise probability models

    Directory of Open Access Journals (Sweden)

    Yasser Roudi

    2009-11-01

    Full Text Available Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of data: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying and using pairwise models. We build on our previous work on the subject and study the relation between different methods for fitting these models and evaluating their quality. In particular, using data from simulated cortical networks we study how the quality of various approximate methods for inferring the parameters in a pairwise model depends on the time bin chosen for binning the data. We also study the effect of the size of the time bin on the model quality itself, again using simulated data. We show that using finer time bins increases the quality of the pairwise model. We offer new ways of deriving the expressions reported in our previous work for assessing the quality of pairwise models.

  14. Physical models on discrete space and time

    International Nuclear Information System (INIS)

    Lorente, M.

    1986-01-01

    The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references

  15. Generomak: Fusion physics, engineering and costing model

    International Nuclear Information System (INIS)

    Delene, J.G.; Krakowski, R.A.; Sheffield, J.; Dory, R.A.

    1988-06-01

    A generic fusion physics, engineering and economics model (Generomak) was developed as a means of performing consistent analysis of the economic viability of alternative magnetic fusion reactors. The original Generomak model developed at Oak Ridge by Sheffield was expanded for the analyses of the Senior Committee on Environmental Safety and Economics of Magnetic Fusion Energy (ESECOM). This report describes the Generomak code as used by ESECOM. The input data used for each of the ten ESECOM fusion plants and the Generomak code output for each case is given. 14 refs., 3 figs., 17 tabs

  16. Gyrofluid Modeling of Turbulent, Kinetic Physics

    Science.gov (United States)

    Despain, Kate Marie

    2011-12-01

    Gyrofluid models to describe plasma turbulence combine the advantages of fluid models, such as lower dimensionality and well-developed intuition, with those of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows gyrofluid models to be more tractable computationally while still capturing much of the physics related to the FLR of the particles. We present a gyrofluid model derived to capture the behavior of slow solar wind turbulence and describe the computer code developed to implement the model. In addition, we describe the modifications we made to a gyrofluid model and code that simulate plasma turbulence in tokamak geometries. Specifically, we describe a nonlinear phase mixing phenomenon, part of the E x B term, that was previously missing from the model. An inherently FLR effect, it plays an important role in predicting turbulent heat flux and diffusivity levels for the plasma. We demonstrate this importance by comparing results from the updated code to studies done previously by gyrofluid and gyrokinetic codes. We further explain what would be necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport code, thus allowing gryffin to play a role in predicting profiles for fusion devices such as ITER and to explore novel fusion configurations. Such a coupling would require the use of Graphical Processing Units (GPUs) to make the modeling process fast enough to be viable. Consequently, we also describe our experience with GPU computing and demonstrate that we are poised to complete a gryffin port to this innovative architecture.

  17. Agent-Based Models in Social Physics

    Science.gov (United States)

    Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo

    2018-06-01

    We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.

  18. Modellus: Learning Physics with Mathematical Modelling

    Science.gov (United States)

    Teodoro, Vitor

    Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations

  19. Physics Beyond the Standard Model: Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, M.M.; /KEK, Tsukuba /Tsukuba, Graduate U. Adv. Studies /Tokyo U.; Plehn, T.; /Edinburgh U.; Polesello, G.; /INFN, Pavia; Alexander, John M.; /Edinburgh U.; Allanach, B.C.; /Cambridge U.; Barr, Alan J.; /Oxford U.; Benakli, K.; /Paris U., VI-VII; Boudjema, F.; /Annecy, LAPTH; Freitas, A.; /Zurich U.; Gwenlan, C.; /University Coll. London; Jager, S.; /CERN /LPSC, Grenoble

    2008-02-01

    This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop 'Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitly performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment.

  20. Models in Physics, Models for Physics Learning, and Why the Distinction May Matter in the Case of Electric Circuits

    Science.gov (United States)

    Hart, Christina

    2008-01-01

    Models are important both in the development of physics itself and in teaching physics. Historically, the consensus models of physics have come to embody particular ontological assumptions and epistemological commitments. Educators have generally assumed that the consensus models of physics, which have stood the test of time, will also work well…

  1. Physical model for membrane protrusions during spreading

    International Nuclear Information System (INIS)

    Chamaraux, F; Ali, O; Fourcade, B; Keller, S; Bruckert, F

    2008-01-01

    During cell spreading onto a substrate, the kinetics of the contact area is an observable quantity. This paper is concerned with a physical approach to modeling this process in the case of ameboid motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge. The physical model we propose is based on previous reports which highlight that membrane tension regulates cell spreading. Using a phenomenological feedback loop to mimic stress-dependent biochemistry, we show that the actin polymerization rate can be coupled to the stress which builds up at the margin of the contact area between the cell and the substrate. In the limit of small variation of membrane tension, we show that the actin polymerization rate can be written in a closed form. Our analysis defines characteristic lengths which depend on elastic properties of the membrane–cytoskeleton complex, such as the membrane–cytoskeleton interaction, and on molecular parameters, the rate of actin polymerization. We discuss our model in the case of axi-symmetric and non-axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental elastic constants such as the strength of membrane–cytoskeleton adherence

  2. Beyond the standard model with B and K physics

    International Nuclear Information System (INIS)

    Grossman, Y

    2003-01-01

    In the first part of the talk the flavor physics input to models beyond the standard model is described. One specific example of such new physics model is given: A model with bulk fermions in a non factorizable one extra dimension. In the second part of the talk we discuss several observables that are sensitive to new physics. We explain what type of new physics can produce deviations from the standard model predictions in each of these observables

  3. Pre-Service Physics Teachers' Argumentation in a Model Rocketry Physics Experience

    Science.gov (United States)

    Gürel, Cem; Süzük, Erol

    2017-01-01

    This study investigates the quality of argumentation developed by a group of pre-service physics teachers' (PSPT) as an indicator of subject matter knowledge on model rocketry physics. The structure of arguments and scientific credibility model was used as a design framework in the study. The inquiry of model rocketry physics was employed in…

  4. Physical and Chemical Environmental Abstraction Model

    International Nuclear Information System (INIS)

    Nowak, E.

    2000-01-01

    As directed by a written development plan (CRWMS M and O 1999a), Task 1, an overall conceptualization of the physical and chemical environment (P/CE) in the emplacement drift is documented in this Analysis/Model Report (AMR). Included are the physical components of the engineered barrier system (EBS). The intended use of this descriptive conceptualization is to assist the Performance Assessment Department (PAD) in modeling the physical and chemical environment within a repository drift. It is also intended to assist PAD in providing a more integrated and complete in-drift geochemical model abstraction and to answer the key technical issues raised in the U.S. Nuclear Regulatory Commission (NRC) Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). EBS-related features, events, and processes (FEPs) have been assembled and discussed in ''EBS FEPs/Degradation Modes Abstraction'' (CRWMS M and O 2000a). Reference AMRs listed in Section 6 address FEPs that have not been screened out. This conceptualization does not directly address those FEPs. Additional tasks described in the written development plan are recommended for future work in Section 7.3. To achieve the stated purpose, the scope of this document includes: (1) the role of in-drift physical and chemical environments in the Total System Performance Assessment (TSPA) (Section 6.1); (2) the configuration of engineered components (features) and critical locations in drifts (Sections 6.2.1 and 6.3, portions taken from EBS Radionuclide Transport Abstraction (CRWMS M and O 2000b)); (3) overview and critical locations of processes that can affect P/CE (Section 6.3); (4) couplings and relationships among features and processes in the drifts (Section 6.4); and (5) identities and uses of parameters transmitted to TSPA by some of the reference AMRs (Section 6.5). This AMR originally considered a design with backfill, and is now being updated (REV 00 ICN1) to address

  5. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  6. REPFLO model evaluation, physical and numerical consistency

    International Nuclear Information System (INIS)

    Wilson, R.N.; Holland, D.H.

    1978-11-01

    This report contains a description of some suggested changes and an evaluation of the REPFLO computer code, which models ground-water flow and nuclear-waste migration in and about a nuclear-waste repository. The discussion contained in the main body of the report is supplemented by a flow chart, presented in the Appendix of this report. The suggested changes are of four kinds: (1) technical changes to make the code compatible with a wider variety of digital computer systems; (2) changes to fill gaps in the computer code, due to missing proprietary subroutines; (3) changes to (a) correct programming errors, (b) correct logical flaws, and (c) remove unnecessary complexity; and (4) changes in the computer code logical structure to make REPFLO a more viable model from the physical point of view

  7. Physics-based models of the plasmasphere

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory; Pierrard, Vivane [BELGIUM; Goldstein, Jerry [SWRI; Andr' e, Nicolas [ESTEC/ESA; Kotova, Galina A [SRI, RUSSIA; Lemaire, Joseph F [BELGIUM; Liemohn, Mike W [U OF MICHIGAN; Matsui, H [UNIV OF NEW HAMPSHIRE

    2008-01-01

    We describe recent progress in physics-based models of the plasmasphere using the Auid and the kinetic approaches. Global modeling of the dynamics and inAuence of the plasmasphere is presented. Results from global plasmasphere simulations are used to understand and quantify (i) the electric potential pattern and evolution during geomagnetic storms, and (ii) the inAuence of the plasmasphere on the excitation of electromagnetic ion cyclotron (ElvIIC) waves a.nd precipitation of energetic ions in the inner magnetosphere. The interactions of the plasmasphere with the ionosphere a.nd the other regions of the magnetosphere are pointed out. We show the results of simulations for the formation of the plasmapause and discuss the inAuence of plasmaspheric wind and of ultra low frequency (ULF) waves for transport of plasmaspheric material. Theoretical formulations used to model the electric field and plasma distribution in the plasmasphere are given. Model predictions are compared to recent CLUSTER and MAGE observations, but also to results of earlier models and satellite observations.

  8. Propulsion Physics Using the Chameleon Density Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.

  9. Working group report: Flavor physics and model building

    Indian Academy of Sciences (India)

    cO Indian Academy of Sciences. Vol. ... This is the report of flavor physics and model building working group at ... those in model building have been primarily devoted to neutrino physics. ..... [12] Andrei Gritsan, ICHEP 2004, Beijing, China.

  10. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  11. A Holoinformational Model of the Physical Observer

    Science.gov (United States)

    di Biase, Francisco

    2013-09-01

    The author proposes a holoinformational view of the observer based, on the holonomic theory of brain/mind function and quantum brain dynamics developed by Karl Pribram, Sir John Eccles, R.L. Amoroso, Hameroff, Jibu and Yasue, and in the quantumholographic and holomovement theory of David Bohm. This conceptual framework is integrated with nonlocal information properties of the Quantum Field Theory of Umesawa, with the concept of negentropy, order, and organization developed by Shannon, Wiener, Szilard and Brillouin, and to the theories of self-organization and complexity of Prigogine, Atlan, Jantsch and Kauffman. Wheeler's "it from bit" concept of a participatory universe, and the developments of the physics of information made by Zureck and others with the concepts of statistical entropy and algorithmic entropy, related to the number of bits being processed in the mind of the observer are also considered. This new synthesis gives a self-organizing quantum nonlocal informational basis for a new model of awareness in a participatory universe. In this synthesis, awareness is conceived as meaningful quantum nonlocal information interconnecting the brain and the cosmos, by a holoinformational unified field (integrating nonlocal holistic (quantum) and local (Newtonian). We propose that the cosmology of the physical observer is this unified nonlocal quantum-holographic cosmos manifesting itself through awareness, interconnected in a participatory holistic and indivisible way the human mind-brain to all levels of the self-organizing holographic anthropic multiverse.

  12. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  13. Mathematical models of physics problems (physics research and technology)

    CERN Document Server

    Anchordoqui, Luis Alfredo

    2013-01-01

    This textbook is intended to provide a foundation for a one-semester introductory course on the advanced mathematical methods that form the cornerstones of the hard sciences and engineering. The work is suitable for first year graduate or advanced undergraduate students in the fields of Physics, Astronomy and Engineering. This text therefore employs a condensed narrative sufficient to prepare graduate and advanced undergraduate students for the level of mathematics expected in more advanced graduate physics courses, without too much exposition on related but non-essential material. In contrast to the two semesters traditionally devoted to mathematical methods for physicists, the material in this book has been quite distilled, making it a suitable guide for a one-semester course. The assumption is that the student, once versed in the fundamentals, can master more esoteric aspects of these topics on his or her own if and when the need arises during the course of conducting research. The book focuses on two cor...

  14. Differences in spatial understanding between physical and virtual models

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2014-03-01

    Full Text Available In the digital age, physical models are still used as major tools in architectural and urban design processes. The reason why designers still use physical models remains unclear. In addition, physical and 3D virtual models have yet to be differentiated. The answers to these questions are too complex to account for in all aspects. Thus, this study only focuses on the differences in spatial understanding between physical and virtual models. In particular, it emphasizes on the perception of scale. For our experiment, respondents were shown a physical model and a virtual model consecutively. A questionnaire was then used to ask the respondents to evaluate these models objectively and to establish which model was more accurate in conveying object size. Compared with the virtual model, the physical model tended to enable quicker and more accurate comparisons of building heights.

  15. Physical Model Method for Seismic Study of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Bogdan Roşca

    2008-01-01

    Full Text Available The study of the dynamic behaviour of concrete dams by means of the physical model method is very useful to understand the failure mechanism of these structures to action of the strong earthquakes. Physical model method consists in two main processes. Firstly, a study model must be designed by a physical modeling process using the dynamic modeling theory. The result is a equations system of dimensioning the physical model. After the construction and instrumentation of the scale physical model a structural analysis based on experimental means is performed. The experimental results are gathered and are available to be analysed. Depending on the aim of the research may be designed an elastic or a failure physical model. The requirements for the elastic model construction are easier to accomplish in contrast with those required for a failure model, but the obtained results provide narrow information. In order to study the behaviour of concrete dams to strong seismic action is required the employment of failure physical models able to simulate accurately the possible opening of joint, sliding between concrete blocks and the cracking of concrete. The design relations for both elastic and failure physical models are based on dimensional analysis and consist of similitude relations among the physical quantities involved in the phenomenon. The using of physical models of great or medium dimensions as well as its instrumentation creates great advantages, but this operation involves a large amount of financial, logistic and time resources.

  16. Chemico-physical models of cometary atmospheres

    International Nuclear Information System (INIS)

    Huebner, W.F.; Keady, J.J.; Boice, D.C.; Schmidt, H.U.; Wegmann, R.

    1985-01-01

    Sublimation (vaporization) of the icy component of a cometary nucleus determines the initial composition of the coma gas as it streams outward and escapes. Photolytic reactions in the inner coma, escape of fast, light species such as atomic and molecular hydrogen, and solar wind interaction in the outer coma alter the chemical composition and the physical nature of the coma gas. Models that describe these interactions must include (1) chemical kinetics, (2) coma energy balance, (3) multifluid flow for the rapidly escaping light components, the heavier bulk fluid, and the plasma with separate temperatures for electrons and the remainder of the gas, (4) transition from a collision dominated inner region to free molecular flow of neutrals in the outer region, (5) pickup of cometary ions by the solar wind, (6) counter and cross streaming of neutrals with respect to the plasma which outside of the contact surface also contains solar wind ions, and (7) magnetic fields carried by the solar wind. Progress on such models is described and results including velocity, temperature, and number density profiles for important chemical species are presented and compared with observations

  17. Physical model of optical inhomogeneities of water

    Science.gov (United States)

    Shybanov, E. B.

    2017-11-01

    The paper is devoted to theoretical aspects of the light scattering of water that does not contain suspended particles. To be consistent with current physical point of view the water as far as any liquid is regarded as a complex unstable nonergodic media. It was proposed that at fixed time the water as a condensed medium had global inhomogeneities similar to linear and planar defects in a solid. Anticipated own global inhomogeneities of water have been approximated by the system randomly distributed spherical clusters filling the entire water bulk. An analytical expression for the single scattered light has been derived. The formula simultaneously describes both the high anisotropy of light scattering and the high degree of polarization which one close to those for molecular scattering. It is shown that at general angles there is a qualitative coincidence with the two-component Kopelevich's model for the light scattering by marine particles. On the contrary towards to forwards angles the spectral law becomes much more prominent i.e. it corresponds to results for model of optically soft particles.

  18. A Structural Equation Model of Expertise in College Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Carr, Martha

    2009-01-01

    A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…

  19. A Structural Equation Model of Conceptual Change in Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  20. Four discourse models of physics teacher education

    OpenAIRE

    Larsson, Johanna; Airey, John

    2017-01-01

    In Sweden, as in many other countries, the education of high-school physics teachers is typically carried out in three different environments; the education department, the physics department and school itself during teaching practice. Trainee physics teachers are in the process of building their professional identity as they move between these three environments. Although much has been written about teacher professional identity (see overview in Beijaard, Meijer, & Verloop, 2004) little ...

  1. Teaching Einsteinian Physics at Schools: Part 2, Models and Analogies for Quantum Physics

    Science.gov (United States)

    Kaur, Tejinder; Blair, David; Moschilla, John; Zadnik, Marjan

    2017-01-01

    The Einstein-First project approaches the teaching of Einsteinian physics through the use of physical models and analogies. This paper presents an approach to the teaching of quantum physics which begins by emphasising the particle-nature of light through the use of toy projectiles to represent photons. This allows key concepts including the…

  2. Engaging Students In Modeling Instruction for Introductory Physics

    Science.gov (United States)

    Brewe, Eric

    2016-05-01

    Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.

  3. Modeling Organizational Design - Applying A Formalism Model From Theoretical Physics

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2008-06-01

    Full Text Available Modern organizations are exposed to diverse external environment influences. Currently accepted concepts of organizational design take into account structure, its interaction with strategy, processes, people, etc. Organization design and planning aims to align this key organizational design variables. At the higher conceptual level, however, completely satisfactory formulation for this alignment doesn’t exist. We develop an approach originating from the application of concepts of theoretical physics to social systems. Under this approach, the allocation of organizational resources is analyzed in terms of social entropy, social free energy and social temperature. This allows us to formalize the dynamic relationship between organizational design variables. In this paper we relate this model to Galbraith's Star Model and we also suggest improvements in the procedure of the complex analytical method in organizational design.

  4. Searches for Beyond Standard Model Physics with ATLAS and CMS

    CERN Document Server

    Rompotis, Nikolaos; The ATLAS collaboration

    2017-01-01

    The exploration of the high energy frontier with ATLAS and CMS experiments provides one of the best opportunities to look for physics beyond the Standard Model. In this talk, I review the motivation, the strategy and some recent results related to beyond Standard Model physics from these experiments. The review will cover beyond Standard Model Higgs boson searches, supersymmetry and searches for exotic particles.

  5. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  6. Physics-Based Pneumatic Hammer Instability Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Florida Turbine Technologies (FTT) proposes to conduct research necessary to develop a physics-based pneumatic hammer instability model for hydrostatic bearings...

  7. Flavor physics and right-handed models

    Energy Technology Data Exchange (ETDEWEB)

    Shafaq, Saba

    2010-08-20

    The Standard Model of particle physics only provides a parametrization of flavor which involves the values of the quark and lepton masses and unitary flavor mixing matrix i.e. CKM (Cabibbo-Kobayashi-Masakawa) matrix for quarks. The precise determination of elements of the CKM matrix is important for the study of the flavor sector of quarks. Here we concentrate on the matrix element vertical stroke V{sub cb} vertical stroke. In particular we consider the effects on the value of vertical stroke V{sub cb} vertical stroke from possible right-handed admixtures along with the usually left-handed weak currents. Left Right Symmetric Model provide a natural basis for right-handed current contributions and has been studied extensively in the literature but has never been discussed including flavor. In the first part of the present work an additional flavor symmetry is included in LRSM which allows a systematic study of flavor effects. The second part deals with the practical extraction of a possible right-handed contribution. Starting from the quark level transition b{yields}c we use heavy quark symmetries to relate the helicities of the quarks to experimentally accessible quantities. To this end we study the decays anti B{yields}D(D{sup *})l anti {nu} which have been extensively explored close to non recoil point. By taking into account SCET (Soft Collinear Effective Theory) formalism it has been extended to a maximum recoil point i.e. {upsilon} . {upsilon}{sup '} >>1. We derive a factorization formula, where the set of form factors is reduced to a single universal form factor {xi}({upsilon} . {upsilon}{sup '}) up to hard-scattering corrections. Symmetry relations on form factors for exclusive anti B {yields} D(D{sup *})l anti {nu} transition has been derived in terms of {xi}({upsilon} . {upsilon}{sup '}). These symmetries are then broken by perturbative effects. The perturbative corrections to symmetry-breaking corrections to first order in the strong

  8. Standard Model Physics at the LHC

    CERN Document Server

    CERN. Geneva

    1999-01-01

    1. Top Physics : Single top production and top polarization, D. O'Neil. Top mass determination, spin correlations and t-tbar asymmetries, L. Sonnenschein. FCNC-induced production and decays, S. Slabospitsky. MC tools for signals and backgrounds, M. Mangano. Plans for the writing of the final report, Conveners. Top physics: Discussion. 2. Electroweak physics (cont.) : Anomalous triple gauge boson couplings: analysis, strategies, and form factor considerations, M. Dobbs. Sensitivity to anomalous triple gauge boson couplings, W. Thuemmel. Drell-Yan production of W,Z with electroweak corrections, S. Dittmaier. Vector boson self-couplings and effective field theory, J.R. Pelaez. Recent theoretical progress, Z. Kunszt. Electroweak physics: Discussion. Recent theoretical progress in b production, G. Ridolf. Studies on b production, S. Gennai. Comparison of most recent b-production theoretical computations with PYTHIA, A. Kharchilava. Possibilities for b production measurements, P. Vikas. B production: Discussion....

  9. B physics in the standard model

    International Nuclear Information System (INIS)

    Takasugi, Eiichi

    1985-01-01

    Before discussing the beauty physics, the present status of the quark mixing is reviewed. Then the CP violation in the K meson physics is discussed. As for the quark mixing, it is concluded that the theroretical analysis of CP violation involves various uncertainties and it seems difficult to obtain the definite information of the quark mixing. As for the B physics, B 0 - anti B 0 mixing and some hopeful methods to detect the CP violation in the B system are discussed along with the two typical ways to measure it. In summary, it is concluded that the B 0 - anti B 0 mixing should be observed, but some luck is needed to observe the CP violation in the B physics. (Aoki, K.)

  10. Particle modeling of plasmas computational plasma physics

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1991-01-01

    Recently, through the development of supercomputers, a powerful new method for exploring plasmas has emerged; it is computer modeling of plasmas. Such modeling can duplicate many of the complex processes that go on in a plasma and allow scientists to understand what the important processes are. It helps scientists gain an intuition about this complex state of matter. It allows scientists and engineers to explore new ideas on how to use plasma before building costly experiments; it allows them to determine if they are on the right track. It can duplicate the operation of devices and thus reduce the need to build complex and expensive devices for research and development. This is an exciting new endeavor that is in its infancy, but which can play an important role in the scientific and technological competitiveness of the US. There are a wide range of plasma models that are in use. There are particle models, fluid models, hybrid particle fluid models. These can come in many forms, such as explicit models, implicit models, reduced dimensional models, electrostatic models, magnetostatic models, electromagnetic models, and almost an endless variety of other models. Here the author will only discuss particle models. He will give a few examples of the use of such models; these will be taken from work done by the Plasma Modeling Group at UCLA because he is most familiar with work. However, it only gives a small view of the wide range of work being done around the US, or for that matter around the world

  11. PWR surveillance based on correspondence between empirical models and physical

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Upadhyaya, B.R.; Kerlin, T.W.

    1976-01-01

    An on line surveillance method based on the correspondence between empirical models and physicals models is proposed for pressurized water reactors. Two types of empirical models are considered as well as the mathematical models defining the correspondence between the physical and empirical parameters. The efficiency of this method is illustrated for the surveillance of the Doppler coefficient for Oconee I (an 886 MWe PWR) [fr

  12. Physical Modelling of Geotechnical Structures in Ports and Offshore

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2017-04-01

    Full Text Available The physical modelling of subsoil behaviour and soil-structure interaction is essential for the proper design of offshore structures and port infrastructure. A brief introduction to such modelling of geoengineering problems is presented and some methods and experimental devices are described. The relationships between modelling scales are given. Some examples of penetration testing results in centrifuge and calibration chamber are presented. Prospects for physical modelling in geotechnics are also described.

  13. Concepts and models in particle physics

    International Nuclear Information System (INIS)

    Paty, M.

    1977-01-01

    The knowledge of Elementary Particle Physics is characterized by an object and a purpose which are both highly theoretical. This assessment is shown and analysed by some examples taken in recent achievements in the field. It is also tried to attempt an enonciation of some criteria of the reality for concepts and objects in this matter [fr

  14. Extracting physics from the lattice higgs model

    International Nuclear Information System (INIS)

    Neuberger, H.

    1988-05-01

    The relevance and usefulness of lattice /phi/ 4 for particle physics is discussed from older and newer points of view. The talk will start with a review of the main ideas and suggestions in my work in the past with Dashen and will proceed to present newer developments both on the conceptual and the practical level. 12 refs

  15. An Amotivation Model in Physical Education

    Science.gov (United States)

    Shen, Bo; Wingert, Robert K.; Li, Weidong; Sun, Haichun; Rukavina, Paul Bernard

    2010-01-01

    Amotivation refers to a state in which individuals cannot perceive a relationship between their behavior and that behavior's subsequent outcome. With the belief that considering amotivation as a multidimensional construct could reflect the complexity of motivational deficits in physical education, we developed this study to validate an amotivation…

  16. Hybrid computer modelling in plasma physics

    International Nuclear Information System (INIS)

    Hromadka, J; Ibehej, T; Hrach, R

    2016-01-01

    Our contribution is devoted to development of hybrid modelling techniques. We investigate sheath structures in the vicinity of solids immersed in low temperature argon plasma of different pressures by means of particle and fluid computer models. We discuss the differences in results obtained by these methods and try to propose a way to improve the results of fluid models in the low pressure area. There is a possibility to employ Chapman-Enskog method to find appropriate closure relations of fluid equations in a case when particle distribution function is not Maxwellian. We try to follow this way to enhance fluid model and to use it in hybrid plasma model further. (paper)

  17. Physical models of biological information and adaptation.

    Science.gov (United States)

    Stuart, C I

    1985-04-07

    The bio-informational equivalence asserts that biological processes reduce to processes of information transfer. In this paper, that equivalence is treated as a metaphor with deeply anthropomorphic content of a sort that resists constitutive-analytical definition, including formulation within mathematical theories of information. It is argued that continuance of the metaphor, as a quasi-theoretical perspective in biology, must entail a methodological dislocation between biological and physical science. It is proposed that a general class of functions, drawn from classical physics, can serve to eliminate the anthropomorphism. Further considerations indicate that the concept of biological adaptation is central to the general applicability of the informational idea in biology; a non-anthropomorphic treatment of adaptive phenomena is suggested in terms of variational principles.

  18. Physical models of semiconductor quantum devices

    CERN Document Server

    Fu, Ying

    2013-01-01

    The science and technology relating to nanostructures continues to receive significant attention for its applications to various fields including microelectronics, nanophotonics, and biotechnology. This book describes the basic quantum mechanical principles underlining this fast developing field. From the fundamental principles of quantum mechanics to nanomaterial properties, from device physics to research and development of new systems, this title is aimed at undergraduates, graduates, postgraduates, and researchers.

  19. Model of future officers' availability to the management physical training

    Directory of Open Access Journals (Sweden)

    Olkhovy O.M.

    2012-03-01

    Full Text Available A purpose of work is creation of model of readiness of graduating student to implementation of official questions of guidance, organization and leadthrough of physical preparation in the process of military-professional activity. An analysis is conducted more than 40 sources and questionnaire questioning of a 21 expert. For introduction of model to the system of physical preparation of students the list of its basic constituents is certain: theoretical methodical readiness; functionally-physical readiness; organizationally-administrative readiness. It is certain that readiness of future officers to military-professional activity foresees determination of level of forming of motive capabilities, development of general physical qualities.

  20. Comparison Study on Low Energy Physics Model of GEANT4

    International Nuclear Information System (INIS)

    Park, So Hyun; Jung, Won Gyun; Suh, Tae Suk

    2010-01-01

    The Geant4 simulation toolkit provides improved or renewed physics model according to the version. The latest Geant4.9.3 which has been recoded by developers applies inserted Livermore data and renewed physics model to the low energy electromagnetic physics model. And also, Geant4.9.3 improved the physics factors by modified code. In this study, the stopping power and CSDA(Continuously Slowing Down Approximation) range data of electron or particles were acquired in various material and then, these data were compared with NIST(National Institute of Standards and Technology) data. Through comparison between data of Geant4 simulation and NIST, the improvement of physics model on low energy electromagnetic of Geant4.9.3 was evaluated by comparing the Geant4.9.2

  1. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  2. Physical and mathematical models of communication systems

    International Nuclear Information System (INIS)

    Verkhovskaya, E.P.; Yavorskij, V.V.

    2006-01-01

    The theoretical parties connecting resources of communication system with characteristics of channels are received. The model of such systems from positions quasi-classical thermodynamics is considered. (author)

  3. Searching for Physics Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon [Syracuse Univ., NY (United States)

    2016-12-01

    This final report summarizes the work carried out by the Syracuse component of a multi-institutional SciDAC grant led by USQCD. This grant supported software development for theoretical high energy physics. The Syracuse component specifically targeted the development of code for the numerical simulation of N=4 super Yang-Mills theory. The work described in the final report includes this and a summary of results achieve in exploring the structure of this theory. It also describes the personnel - students and a postdoc who were directly or indirectly involved in this project. A list of publication is also described.

  4. A physical model of the evaporating meniscus

    International Nuclear Information System (INIS)

    Mirzamoghadam, A.; Catton, I.

    1985-01-01

    Transport phenomena associated with the heating of a saturated stationary fluid near saturation by an inclined, partially submerged copper plate was studied analytically. Under steady state evaporation, the meniscus profile was derived using an appropriate liquid film velocity and temperature distribution in an integral approach. The solution was then back-substituted in order to identify regions of influence of various physical phenomena given the fluid properties, wall superheat and plate tilt. The degree of superheat and wall tilt were seen to control instability in the meniscus. This instability, connected to the experimental observation of meniscus oscillation, was credited to contributions by liquid inertia and Marangoni convection

  5. Learning about physical parameters: the importance of model discrepancy

    International Nuclear Information System (INIS)

    Brynjarsdóttir, Jenný; O'Hagan, Anthony

    2014-01-01

    Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)

  6. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  7. Towards LHC physics with nonlocal Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Tirthabir, E-mail: tbiswas@loyno.edu [Department of Physics, Loyola University, 6363 St. Charles Avenue, Box 92, New Orleans, LA 70118 (United States); Okada, Nobuchika, E-mail: okadan@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States)

    2015-09-15

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.

  8. Darwin model in plasma physics revisited

    International Nuclear Information System (INIS)

    Xie, Huasheng; Zhu, Jia; Ma, Zhiwei

    2014-01-01

    Dispersion relations from the Darwin (a.k.a., magnetoinductive or magnetostatic) model are given and compared with those of the full electromagnetic model. Analytical and numerical solutions show that the errors from the Darwin approximation can be large even if phase velocity for a low-frequency wave is close to or larger than the speed of light. Besides missing two wave branches associated mainly with the electron dynamics, the coupling branch of the electrons and ions in the Darwin model is modified to become a new artificial branch that incorrectly represents the coupling dynamics of the electrons and ions. (paper)

  9. Principles of Physical Modelling of Unsaturated Soils

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc

    2014-01-01

    Centrifuge modelling has been widely used to simulate the performance of a variety of geotechnical works, most of them focusing on saturated clays or dry sands. On the other hand, the performance of some geotechnical works depends on the behaviour of shallow layers in the soil deposit where it is frequently unsaturated. Centrifuge modelling could be a powerful tool to study the performance of shallow geotechnical works. However all the experimental complexities related to unsaturated soils, w...

  10. A physics department's role in preparing physics teachers: The Colorado learning assistant model

    Science.gov (United States)

    Otero, Valerie; Pollock, Steven; Finkelstein, Noah

    2010-11-01

    In response to substantial evidence that many U.S. students are inadequately prepared in science and mathematics, we have developed an effective and adaptable model that improves the education of all students in introductory physics and increases the numbers of talented physics majors becoming certified to teach physics. We report on the Colorado Learning Assistant model and discuss its effectiveness at a large research university. Since its inception in 2003, we have increased the pool of well-qualified K-12 physics teachers by a factor of approximately three, engaged scientists significantly in the recruiting and preparation of future teachers, and improved the introductory physics sequence so that students' learning gains are typically double the traditional average.

  11. Searches for physics beyond the Standard Model at the Tevatron

    Indian Academy of Sciences (India)

    Publications ... Beyond Standard Model Physics Volume 79 Issue 4 October 2012 pp 703-717 ... a centre-of-mass energy of 1.96 TeV that the CDF and DO Collaborations have scrutinized looking for new physics in a wide range of final states.

  12. Multiphysics software and the challenge to validating physical models

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    This paper discusses multi physics software and validation of physical models in the nuclear industry. The major challenge is to convert the general purpose software package to a robust application-specific solution. This requires greater knowledge of the underlying solution techniques and the limitations of the packages. Good user interfaces and neat graphics do not compensate for any deficiencies

  13. The Dawn of physics beyond the standard model

    CERN Multimedia

    Kane, Gordon

    2003-01-01

    "The Standard Model of particle physics is at a pivotal moment in its history: it is both at the height of its success and on the verge of being surpassed [...] A new era in particle physics could soon be heralded by the detection of supersymmetric particles at the Tevatron collider at Fermi National Accelerator Laboratory in Batavia, Ill." (8 pages)

  14. Simple suggestions for including vertical physics in oil spill models

    International Nuclear Information System (INIS)

    D'Asaro, Eric; University of Washington, Seatle, WA

    2001-01-01

    Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)

  15. The Standard Model and Higgs physics

    Science.gov (United States)

    Torassa, Ezio

    2018-05-01

    The Standard Model is a consistent and computable theory that successfully describes the elementary particle interactions. The strong, electromagnetic and weak interactions have been included in the theory exploiting the relation between group symmetries and group generators, in order to smartly introduce the force carriers. The group properties lead to constraints between boson masses and couplings. All the measurements performed at the LEP, Tevatron, LHC and other accelerators proved the consistency of the Standard Model. A key element of the theory is the Higgs field, which together with the spontaneous symmetry breaking, gives mass to the vector bosons and to the fermions. Unlike the case of vector bosons, the theory does not provide prediction for the Higgs boson mass. The LEP experiments, while providing very precise measurements of the Standard Model theory, searched for the evidence of the Higgs boson until the year 2000. The discovery of the top quark in 1994 by the Tevatron experiments and of the Higgs boson in 2012 by the LHC experiments were considered as the completion of the fundamental particles list of the Standard Model theory. Nevertheless the neutrino oscillations, the dark matter and the baryon asymmetry in the Universe evidence that we need a new extended model. In the Standard Model there are also some unattractive theoretical aspects like the divergent loop corrections to the Higgs boson mass and the very small Yukawa couplings needed to describe the neutrino masses. For all these reasons, the hunt of discrepancies between Standard Model and data is still going on with the aim to finally describe the new extended theory.

  16. Algebraic fermion models and nuclear structure physics

    International Nuclear Information System (INIS)

    Troltenier, Dirk; Blokhin, Andrey; Draayer, Jerry P.; Rompf, Dirk; Hirsch, Jorge G.

    1996-01-01

    Recent experimental and theoretical developments are generating renewed interest in the nuclear SU(3) shell model, and this extends to the symplectic model, with its Sp(6,R) symmetry, which is a natural multi-(ℎ/2π)ω extension of the SU(3) theory. First and foremost, an understanding of how the dynamics of a quantum rotor is embedded in the shell model has established it as the model of choice for describing strongly deformed systems. Second, the symplectic model extension of the 0-(ℎ/2π)ω theory can be used to probe additional degrees of freedom, like core polarization and vorticity modes that play a key role in providing a full description of quadrupole collectivity. Third, the discovery and understanding of pseudo-spin has allowed for an extension of the theory from light (A≤40) to heavy (A≥100) nuclei. Fourth, a user-friendly computer code for calculating reduced matrix elements of operators that couple SU(3) representations is now available. And finally, since the theory is designed to cope with deformation in a natural way, microscopic features of deformed systems can be probed; for example, the theory is now being employed to study double beta decay and thereby serves to probe the validity of the standard model of particles and their interactions. A subset of these topics will be considered in this course--examples cited include: a consideration of the origin of pseudo-spin symmetry; a SU(3)-based interpretation of the coupled-rotor model, early results of double beta decay studies; and some recent developments on the pseudo-SU(3) theory. Nothing will be said about other fermion-based theories; students are referred to reviews in the literature for reports on developments in these related areas

  17. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  18. Simple mathematical models of symmetry breaking. Application to particle physics

    International Nuclear Information System (INIS)

    Michel, L.

    1976-01-01

    Some mathematical facts relevant to symmetry breaking are presented. A first mathematical model deals with the smooth action of compact Lie groups on real manifolds, a second model considers linear action of any group on real or complex finite dimensional vector spaces. Application of the mathematical models to particle physics is considered. (B.R.H.)

  19. Standard model Higgs physics at colliders

    International Nuclear Information System (INIS)

    Rosca, A.

    2007-01-01

    In this report we briefly review the experimental status and prospects to verify the Higgs mechanism of spontaneous symmetry breaking. The focus is on the most relevant aspects of the phenomenology of the Standard Model Higgs boson at current (Tevatron) and future (Large Hadron Collider, LHC and International Linear Collider, ILC) particle colliders. We review the Standard Model searches: searches at the Tevatron, the program planned at the LHC and prospects at the ILC. Emphasis is put on what follows after a candidate discovery at the LHC: the various measurements which are necessary to precisely determine what the properties of this Higgs candidate are. (author)

  20. Physics-Based Pneumatic Hammer Instability Model, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a physics-based pneumatic hammer instability model that accurately predicts the stability of hydrostatic bearings...

  1. Overview of the Higgs and Standard Model physics at ATLAS

    CERN Document Server

    Vazquez Schroeder, Tamara; The ATLAS collaboration

    2018-01-01

    This talk presents selected aspects of recent physics results from the ATLAS collaboration in the Standard Model and Higgs sectors, with a focus on the recent evidence for the associated production of the Higgs boson and a top quark pair.

  2. Can plane wave modes be physical modes in soliton models?

    International Nuclear Information System (INIS)

    Aldabe, F.

    1995-08-01

    I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs

  3. Physical characterization and kinetic modelling of matrix tablets of ...

    African Journals Online (AJOL)

    release mechanisms were characterized by kinetic modeling. Analytical ... findings demonstrate that both the desired physical characteristics and drug release profiles were obtained ..... on the compression, mechanical, and release properties.

  4. Standard model status (in search of ''new physics'')

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1993-03-01

    A perspective on successes and shortcomings of the standard model is given. The complementarity between direct high energy probes of new physics and lower energy searches via precision measurements and rare reactions is described. Several illustrative examples are discussed

  5. Model uncertainties in top-quark physics

    CERN Document Server

    Seidel, Markus

    2014-01-01

    The ATLAS and CMS collaborations at the Large Hadron Collider (LHC) are studying the top quark in pp collisions at 7 and 8 TeV. Due to the large integrated luminosity, precision measurements of production cross-sections and properties are often limited by systematic uncertainties. An overview of the modeling uncertainties for simulated events is given in this report.

  6. Introduction to physics beyond the Standard Model

    CERN Document Server

    Giudice, Gian Francesco

    1998-01-01

    These lectures will give an introductory review of the main ideas behind the attempts to extend the standard-model description of elementary particle interactions. After analysing the conceptual motivations that lead us to blieve in the existence of an underlying fundamental theory, wi will discuss the present status of various theoretical constructs : grand unification, supersymmetry and technicolour.

  7. Fixed-site physical protection system modeling

    International Nuclear Information System (INIS)

    Chapman, L.D.

    1975-01-01

    An evaluation of a fixed-site safeguard security system must consider the interrelationships of barriers, alarms, on-site and off-site guards, and their effectiveness against a forcible adversary attack whose intention is to create an act of sabotage or theft. A computer model has been developed at Sandia Laboratories for the evaluation of alternative fixed-site security systems. Trade-offs involving on-site and off-site response forces and response times, perimeter alarm systems, barrier configurations, and varying levels of threat can be analyzed. The computer model provides a framework for performing inexpensive experiments on fixed-site security systems for testing alternative decisions, and for determining the relative cost effectiveness associated with these decision policies

  8. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  9. Weibull Parameters Estimation Based on Physics of Failure Model

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Reliability estimation procedures are discussed for the example of fatigue development in solder joints using a physics of failure model. The accumulated damage is estimated based on a physics of failure model, the Rainflow counting algorithm and the Miner’s rule. A threshold model is used...... for degradation modeling and failure criteria determination. The time dependent accumulated damage is assumed linearly proportional to the time dependent degradation level. It is observed that the deterministic accumulated damage at the level of unity closely estimates the characteristic fatigue life of Weibull...

  10. Characterizing, modeling, and addressing gender disparities in introductory college physics

    Science.gov (United States)

    Kost-Smith, Lauren Elizabeth

    2011-12-01

    The underrepresentation and underperformance of females in physics has been well documented and has long concerned policy-makers, educators, and the physics community. In this thesis, we focus on gender disparities in the first- and second-semester introductory, calculus-based physics courses at the University of Colorado. Success in these courses is critical for future study and careers in physics (and other sciences). Using data gathered from roughly 10,000 undergraduate students, we identify and model gender differences in the introductory physics courses in three areas: student performance, retention, and psychological factors. We observe gender differences on several measures in the introductory physics courses: females are less likely to take a high school physics course than males and have lower standardized mathematics test scores; males outscore females on both pre- and post-course conceptual physics surveys and in-class exams; and males have more expert-like attitudes and beliefs about physics than females. These background differences of males and females account for 60% to 70% of the gender gap that we observe on a post-course survey of conceptual physics understanding. In analyzing underlying psychological factors of learning, we find that female students report lower self-confidence related to succeeding in the introductory courses (self-efficacy) and are less likely to report seeing themselves as a "physics person". Students' self-efficacy beliefs are significant predictors of their performance, even when measures of physics and mathematics background are controlled, and account for an additional 10% of the gender gap. Informed by results from these studies, we implemented and tested a psychological, self-affirmation intervention aimed at enhancing female students' performance in Physics 1. Self-affirmation reduced the gender gap in performance on both in-class exams and the post-course conceptual physics survey. Further, the benefit of the self

  11. Exotic smoothness and physics differential topology and spacetime models

    CERN Document Server

    Asselmeyer-Maluga, T

    2007-01-01

    The recent revolution in differential topology related to the discovery of non-standard ("exotic") smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit - but now shown to be incorrect - assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further app...

  12. Physical modelling and testing in environmental geotechnics

    International Nuclear Information System (INIS)

    Garnier, J.; Thorel, L.; Haza, E.

    2000-01-01

    The preservation of natural environment has become a major concern, which affects nowadays a wide range of professionals from local communities administrators to natural resources managers (water, wildlife, flora, etc) and, in the end, to the consumers that we all are. Although totally ignored some fifty years ago, environmental geotechnics has become an emergent area of study and research which borders on the traditional domains, with which the geo-technicians are confronted (soil and rock mechanics, engineering geology, natural and anthropogenic risk management). Dedicated to experimental approaches (in-situ investigations and tests, laboratory tests, small-scale model testing), the Symposium fits in with the geotechnical domains of environment and transport of soil pollutants. These proceedings report some progress of developments in measurement techniques and studies of transport of pollutants in saturated and unsaturated soils in order to improve our understanding of such phenomena within multiphase environments. Experimental investigations on decontamination and isolation methods for polluted soils are discussed. The intention is to assess the impact of in-situ and laboratory tests, as well as small-scale model testing, on engineering practice. One paper is analysed in INIS data base for its specific interest in nuclear industry. The other ones, concerning the energy, are analyzed in ETDE data base

  13. Physical modelling and testing in environmental geotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J.; Thorel, L.; Haza, E. [Laboratoire Central des Ponts et Chaussees a Nantes, 44 - Nantes (France)

    2000-07-01

    The preservation of natural environment has become a major concern, which affects nowadays a wide range of professionals from local communities administrators to natural resources managers (water, wildlife, flora, etc) and, in the end, to the consumers that we all are. Although totally ignored some fifty years ago, environmental geotechnics has become an emergent area of study and research which borders on the traditional domains, with which the geo-technicians are confronted (soil and rock mechanics, engineering geology, natural and anthropogenic risk management). Dedicated to experimental approaches (in-situ investigations and tests, laboratory tests, small-scale model testing), the Symposium fits in with the geotechnical domains of environment and transport of soil pollutants. These proceedings report some progress of developments in measurement techniques and studies of transport of pollutants in saturated and unsaturated soils in order to improve our understanding of such phenomena within multiphase environments. Experimental investigations on decontamination and isolation methods for polluted soils are discussed. The intention is to assess the impact of in-situ and laboratory tests, as well as small-scale model testing, on engineering practice. One paper has been analyzed in INIS data base for its specific interest in nuclear industry.

  14. Physical plausibility of cold star models satisfying Karmarkar conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fuloria, Pratibha [Kumaun University, Physics Dept., Almora (India); Pant, Neeraj [N.D.A., Maths Dept., Khadakwasla, Pune (India)

    2017-11-15

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9. The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models. (orig.)

  15. Physical plausibility of cold star models satisfying Karmarkar conditions

    International Nuclear Information System (INIS)

    Fuloria, Pratibha; Pant, Neeraj

    2017-01-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9. The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models. (orig.)

  16. Physical plausibility of cold star models satisfying Karmarkar conditions

    Science.gov (United States)

    Fuloria, Pratibha; Pant, Neeraj

    2017-11-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9 . The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models.

  17. The limitations of mathematical modeling in high school physics education

    Science.gov (United States)

    Forjan, Matej

    The theme of the doctoral dissertation falls within the scope of didactics of physics. Theoretical analysis of the key constraints that occur in the transmission of mathematical modeling of dynamical systems into field of physics education in secondary schools is presented. In an effort to explore the extent to which current physics education promotes understanding of models and modeling, we analyze the curriculum and the three most commonly used textbooks for high school physics. We focus primarily on the representation of the various stages of modeling in the solved tasks in textbooks and on the presentation of certain simplifications and idealizations, which are in high school physics frequently used. We show that one of the textbooks in most cases fairly and reasonably presents the simplifications, while the other two half of the analyzed simplifications do not explain. It also turns out that the vast majority of solved tasks in all the textbooks do not explicitly represent model assumptions based on what we can conclude that in high school physics the students do not develop sufficiently a sense of simplification and idealizations, which is a key part of the conceptual phase of modeling. For the introduction of modeling of dynamical systems the knowledge of students is also important, therefore we performed an empirical study on the extent to which high school students are able to understand the time evolution of some dynamical systems in the field of physics. The research results show the students have a very weak understanding of the dynamics of systems in which the feedbacks are present. This is independent of the year or final grade in physics and mathematics. When modeling dynamical systems in high school physics we also encounter the limitations which result from the lack of mathematical knowledge of students, because they don't know how analytically solve the differential equations. We show that when dealing with one-dimensional dynamical systems

  18. Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence

    CERN Document Server

    Hutter, Kolumban

    2004-01-01

    The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.

  19. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    Science.gov (United States)

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  20. Predictive modeling of coupled multi-physics systems: II. Illustrative application to reactor physics

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel; Badea, Madalina Corina

    2014-01-01

    Highlights: • We applied the PMCMPS methodology to a paradigm neutron diffusion model. • We underscore the main steps in applying PMCMPS to treat very large coupled systems. • PMCMPS reduces the uncertainties in the optimally predicted responses and model parameters. • PMCMPS is for sequentially treating coupled systems that cannot be treated simultaneously. - Abstract: This work presents paradigm applications to reactor physics of the innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS)” developed by Cacuci (2014). This methodology enables the assimilation of experimental and computational information and computes optimally predicted responses and model parameters with reduced predicted uncertainties, taking fully into account the coupling terms between the multi-physics systems, but using only the computational resources that would be needed to perform predictive modeling on each system separately. The paradigm examples presented in this work are based on a simple neutron diffusion model, chosen so as to enable closed-form solutions with clear physical interpretations. These paradigm examples also illustrate the computational efficiency of the PMCMPS, which enables the assimilation of additional experimental information, with a minimal increase in computational resources, to reduce the uncertainties in predicted responses and best-estimate values for uncertain model parameters, thus illustrating how very large systems can be treated without loss of information in a sequential rather than simultaneous manner

  1. Technical Manual for the SAM Physical Trough Model

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  2. Model-implementation fidelity in cyber physical system design

    CERN Document Server

    Fabre, Christian

    2017-01-01

    This book puts in focus various techniques for checking modeling fidelity of Cyber Physical Systems (CPS), with respect to the physical world they represent. The authors' present modeling and analysis techniques representing different communities, from very different angles, discuss their possible interactions, and discuss the commonalities and differences between their practices. Coverage includes model driven development, resource-driven development, statistical analysis, proofs of simulator implementation, compiler construction, power/temperature modeling of digital devices, high-level performance analysis, and code/device certification. Several industrial contexts are covered, including modeling of computing and communication, proof architectures models and statistical based validation techniques. Addresses CPS design problems such as cross-application interference, parsimonious modeling, and trustful code production Describes solutions, such as simulation for extra-functional properties, extension of cod...

  3. Snyder-de Sitter model from two-time physics

    International Nuclear Information System (INIS)

    Carrisi, M. C.; Mignemi, S.

    2010-01-01

    We show that the symplectic structure of the Snyder model on a de Sitter background can be derived from two-time physics in seven dimensions and propose a Hamiltonian for a free particle consistent with the symmetries of the model.

  4. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...

  5. A model for the physical adsorption of atomic hydrogen

    NARCIS (Netherlands)

    Bruch, L.W.; Ruijgrok, Th.W.

    1979-01-01

    The formation of the holding potential of physical adsorption is studied with a model in which a hydrogen atom interacts with a perfectly imaging substrate bounded by a sharp planar surface; the exclusion of the atomic electron from the substrate is an important boundary condition in the model. The

  6. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  7. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  8. Some aspects of continuum physics used in fuel pin modeling

    International Nuclear Information System (INIS)

    Bard, F.E.

    1975-06-01

    The mathematical formulation used in fuel pin modeling is described. Fuel pin modeling is not a simple extension of the experimental and interpretative methods used in classical mechanics. New concepts are needed to describe materials in a reactor environment. Some aspects of continuum physics used to develop these new constitutive equations for fuel pins are presented. (U.S.)

  9. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  10. A physical data model for fields and agents

    Science.gov (United States)

    de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek

    2016-04-01

    Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data

  11. Physical and numerical modeling of Joule-heated melters

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.

  12. Physical and numerical modeling of Joule-heated melters

    International Nuclear Information System (INIS)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs

  13. New physics beyond the standard model of particle physics and parallel universes

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Franzstr. 40, 53111 Bonn (Germany)]. E-mail: rainer.plaga@gmx.de

    2006-03-09

    It is shown that if-and only if-'parallel universes' exist, an electroweak vacuum that is expected to have decayed since the big bang with a high probability might exist. It would neither necessarily render our existence unlikely nor could it be observed. In this special case the observation of certain combinations of Higgs-boson and top-quark masses-for which the standard model predicts such a decay-cannot be interpreted as evidence for new physics at low energy scales. The question of whether parallel universes exist is of interest to our understanding of the standard model of particle physics.

  14. Female role models in physics education in Ireland

    Science.gov (United States)

    Chormaic, Síle Nic; Fee, Sandra; Tobin, Laura; Hennessy, Tara

    2013-03-01

    In this paper we consider the statistics on undergraduate student representation in Irish universities and look at student numbers in secondary (high) schools in one region in Ireland. There seems to be no significant change in female participation in physics from 2002 to 2011. Additionally, we have studied the influence of an educator's gender on the prevalence of girls studying physics in secondary schools in Co. Louth, Ireland, and at the postgraduate level in Irish universities. It would appear that strong female role models have a positive influence and lead to an increase in girls' participation in physics.

  15. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  16. Model-Independent and Quasi-Model-Independent Search for New Physics at CDF

    OpenAIRE

    CDF Collaboration

    2007-01-01

    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the standard model prediction. A model-independent approach (Vista) considers the gross features of the data, and is sensitive to new large cross section physics. A quasi-model-independent approach (Sleuth) searches for a significant excess of events with large summed t...

  17. Predictive modeling of coupled multi-physics systems: I. Theory

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2014-01-01

    Highlights: • We developed “predictive modeling of coupled multi-physics systems (PMCMPS)”. • PMCMPS reduces predicted uncertainties in predicted model responses and parameters. • PMCMPS treats efficiently very large coupled systems. - Abstract: This work presents an innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS).” This methodology takes into account fully the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PMCMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This “maximum entropy”-approximate a priori distribution is combined, using Bayes’ theorem, with the “likelihood” provided by the multi-physics simulation models. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PMCMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially

  18. Physics at the LHC - From Standard Model measurements to Searches for New Physics

    Energy Technology Data Exchange (ETDEWEB)

    Jakobs, Karl [Freiburg University (Germany)

    2014-07-01

    The successful operation of the Large Hadron Collider (LHC) during the past two years allowed to explore particle interaction in a new energy regime. Measurements of important Standard Model processes like the production of high-p{sub T} jets, W and Z bosons and top and b-quarks were performed by the LHC experiments. In addition, the high collision energy allowed to search for new particles in so far unexplored mass regions. Important constraints on the existence of new particles predicted in many models of physics beyond the Standard Model could be established. With integrated luminosities reaching values around 5 fb{sup −1} in 2011, the experiments reached as well sensitivity to probe the existence of the Standard Model Higgs boson over a large mass range. In the present report the major physics results obtained by the two general-purpose experiments ATLAS and CMS are summarized.

  19. A mathematical look at a physical power prediction model

    Energy Technology Data Exchange (ETDEWEB)

    Landberg, L. [Riso National Lab., Roskilde (Denmark)

    1997-12-31

    This paper takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations, and to give guidelines as to where the simplifications can be made and where they can not. This paper shows that there is a linear dependence between the geostrophic wind and the wind at the surface, but also that great care must be taken in the selection of the models since physical dependencies play a very important role, e.g. through the dependence of the turning of the wind on the wind speed.

  20. A mathematical look at a physical power prediction model

    DEFF Research Database (Denmark)

    Landberg, L.

    1998-01-01

    This article takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations and to give guidelines as to where simplifications can be made and where they cannot....... The article shows that there is a linear dependence between the geostrophic wind and the local wind at the surface, but also that great care must be taken in the selection of the simple mathematical models, since physical dependences play a very important role, e.g. through the dependence of the turning...

  1. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    Green, N.J.B.; Bolton, C.E.; Spencer-Smith, R.D.

    1999-01-01

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  2. Symmetry and the Standard Model mathematics and particle physics

    CERN Document Server

    Robinson, Matthew

    2011-01-01

    While elementary particle physics is an extraordinarily fascinating field, the huge amount of knowledge necessary to perform cutting-edge research poses a formidable challenge for students. The leap from the material contained in the standard graduate course sequence to the frontiers of M-theory, for example, is tremendous. To make substantial contributions to the field, students must first confront a long reading list of texts on quantum field theory, general relativity, gauge theory, particle interactions, conformal field theory, and string theory. Moreover, waves of new mathematics are required at each stage, spanning a broad set of topics including algebra, geometry, topology, and analysis. Symmetry and the Standard Model: Mathematics and Particle Physics, by Matthew Robinson, is the first volume of a series intended to teach math in a way that is catered to physicists. Following a brief review of classical physics at the undergraduate level and a preview of particle physics from an experimentalist's per...

  3. Models for physics of the very small and very large

    CERN Document Server

    Buckholtz, Thomas J

    2016-01-01

    This monograph tackles three challenges. First, show math that matches known elementary particles. Second, apply the math to match other known physics data. Third, predict future physics data The math features solutions to isotropic pairs of isotropic quantum harmonic oscillators. This monograph matches some solutions to known elementary particles. Matched properties include spin and types of interactions in which the particles partake Other solutions point to possible elementary particles This monograph applies the math and the extended particle list. Results narrow gaps between physics data and theory. Results pertain to elementary particles, astrophysics, and cosmology For example, this monograph predicts properties for beyond-the-Standard-Model elementary particles, proposes descriptions of dark matter and dark energy, provides new relationships between known physics constants, includes theory that dovetails with the ratio of dark matter to ordinary matter, includes math that dovetails with the number of ...

  4. Evaluating performances of simplified physically based landslide susceptibility models.

    Science.gov (United States)

    Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale

    2015-04-01

    Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk

  5. Electromagnetic physical modeling. 10; Denji yudoho no model jikken. 10

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K; Endo, M; Yoshimori, M [Waseda University, Tokyo (Japan). School of Science and Engineering; Saito, A [Mitsui Mineral Development Engineering Co. Ltd., Tokyo (Japan)

    1996-10-01

    The model experiment of a borehole electromagnetic (EM) method was carried out using the prepared waterproof sensor and materials with conductivity of 10{sup 0}-10{sup 2}S/m as medium. The 2-layered structure ground model was prepared by filling a water tank with saturated brine of nearly 20S/m up to 30cm. Square wave current was sent from an amplifier to a transmitter coil, and electro motive force induced in a receiver coil was measured. Although numerical simulation is widely used for EM method, analog model experiment is also effective. For the receiver coil installed in brine, preventive measures from short-circuit and water were prepared. Electro motive force was measured at receiver intervals of 1cm and at 0-10cm in depth using a bar carbon model immersed in brine by 5cm in depth under resistivity contrast of 1000 times. In addition, to reduce the resistivity contrast between brine and body, the model experiment was carried out using immersed thin metallic sheet structure with conductivity similar to that of ore under resistivity contrast of 250 times. The effect of medium on both models was thus clarified. 4 refs., 10 figs.

  6. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    International Nuclear Information System (INIS)

    Apostolakis, J; Burkhardt, H; Ivanchenko, V N; Asai, M; Bagulya, A; Grichine, V; Brown, J M C; Chikuma, N; Cortes-Giraldo, M A; Elles, S; Jacquemier, J; Guatelli, S; Incerti, S; Kadri, O; Maire, M; Urban, L; Pandola, L; Sawkey, D; Toshito, T; Yamashita, T

    2015-01-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed. (paper)

  7. Model-independent and quasi-model-independent search for new physics at CDF

    International Nuclear Information System (INIS)

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.; Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.

    2008-01-01

    Data collected in run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the standard model prediction. A model-independent approach (Vista) considers the gross features of the data and is sensitive to new large cross section physics. A quasi-model-independent approach (Sleuth) searches for a significant excess of events with large summed transverse momentum and is particularly sensitive to new electroweak scale physics that appears predominantly in one final state. This global search for new physics in over 300 exclusive final states in 927 pb -1 of pp collisions at √(s)=1.96 TeV reveals no such significant indication of physics beyond the standard model.

  8. Modern elementary particle physics explaining and extending the standard model

    CERN Document Server

    Kane, Gordon

    2017-01-01

    This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.

  9. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  10. Rock physics model of glauconitic greensand from the North Sea

    DEFF Research Database (Denmark)

    Hossain, Zakir; Mukerji, Tapan; Dvorkin, Jack

    2011-01-01

    . Results of rock-physics modeling and thin-section observations indicate that variations in the elastic properties of greensand can be explained by two main diagenetic phases: silica cementation and berthierine cementation. These diagenetic phases dominate the elastic properties of greensand reservoir......-stiff-sand or a stiff-sand model. Berthierine cement has different growth patterns in different parts of the greensand, resulting in a soft-sand model and an intermediate-stiff-sand model. © 2012 Society of Exploration Geophysicists....

  11. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  12. Short review of runoff and erosion physically based models

    Directory of Open Access Journals (Sweden)

    Gabrić Ognjen

    2015-01-01

    Full Text Available Processes of runoff and erosion are one of the main research subjects in hydrological science. Based on the field and laboratory measurements, and analogous with development of computational techniques, runoff and erosion models based on equations which describe the physics of the process are also developed. Several models of runoff and erosion which describes entire process of genesis and sediment transport on the catchment are described and compared.

  13. Plasma physics modeling and the Cray-2 multiprocessor

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-01-01

    The importance of computer modeling in the magnetic fusion energy research program is discussed. The need for the most advanced supercomputers is described. To meet the demand for more powerful scientific computers to solve larger and more complicated problems, the computer industry is developing multiprocessors. The role of the Cray-2 in plasma physics modeling is discussed with some examples. 28 refs., 2 figs., 1 tab

  14. Comparison of physically based catchment models for estimating Phosphorus losses

    OpenAIRE

    Nasr, Ahmed Elssidig; Bruen, Michael

    2003-01-01

    As part of a large EPA-funded research project, coordinated by TEAGASC, the Centre for Water Resources Research at UCD reviewed the available distributed physically based catchment models with a potential for use in estimating phosphorous losses for use in implementing the Water Framework Directive. Three models, representative of different levels of approach and complexity, were chosen and were implemented for a number of Irish catchments. This paper reports on (i) the lessons and experience...

  15. GASFLOW computer code (physical models and input data)

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2007-11-01

    The GASFLOW computer code was developed jointly by the Los Alamos National Laboratory, USA, and Forschungszentrum Karlsruhe, Germany. The code is primarily intended for calculations of the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and in other facilities. The physical models and the input data are described, and a commented simple calculation is presented

  16. Weak interactions physics: from its birth to the eletroweak model

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1987-01-01

    A review of the evolution of weak interaction physics from its beginning (Fermi-Majorana-Perrin) to the eletroweak model (Glashow-Weinberg-Salam). Contributions from Brazilian physicists are specially mentioned as well as the first prediction of electroweak-unification, of the neutral intermediate vector Z 0 and the first approximate value of the mass of the W-bosons. (Author) [pt

  17. Measuring damage in physical model tests of rubble mounds

    NARCIS (Netherlands)

    Hofland, B.; Rosa-Santos, Paulo; Taveira-Pinto, Francisco; Lemos, Rute; Mendonça, A.; Juana Fortes, C

    2017-01-01

    This paper studies novel ways to evaluate armour damage in physical models of coastal structures. High-resolution damage data for reference rubble mound breakwaters obtained under the HYDRALAB+ joint-research project are analysed and discussed. These tests are used to analyse the way to describe

  18. Physical and numerical modelling of low mach number compressible flows

    International Nuclear Information System (INIS)

    Paillerre, H.; Clerc, S.; Dabbene, F.; Cueto, O.

    1999-01-01

    This article reviews various physical models that may be used to describe compressible flow at low Mach numbers, as well as the numerical methods developed at DRN to discretize the different systems of equations. A selection of thermal-hydraulic applications illustrate the need to take into account compressibility and multidimensional effects as well as variable flow properties. (authors)

  19. Efforts - Final technical report on task 4. Physical modelling calidation

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Christensen, T. W.

    The present report is documentation for the work carried out in Task 4 at DTU Physical modelling-validation on the Brite/Euram project No. BE96-3340, contract No. BRPR-CT97-0398, with the title Enhanced Framework for forging design using reliable three-dimensional simulation (EFFORTS). The report...

  20. PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES

    Science.gov (United States)

    The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...

  1. On Practising in Physical Education: Outline for a Pedagogical Model

    Science.gov (United States)

    Aggerholm, K.; Standal, O.; Barker, D. M.; Larsson, H.

    2018-01-01

    Background: Models-based approaches to physical education have in recent years developed as a way for teachers and students to concentrate on a manageable number of learning objectives, and align pedagogical approaches with learning subject matter and context. This paper draws on Hannah Arendt's account of "vita activa" to map existing…

  2. Particle dark matter from physics beyond the standard model

    International Nuclear Information System (INIS)

    Matchev, Konstantin

    2004-01-01

    In this talk I contrast three different particle dark matter candidates, all motivated by new physics beyond the Standard Model: supersymmetric dark matter, Kaluza-Klein dark matter, and scalar dark matter. I then discuss the prospects for their discovery and identification in both direct detection as well as collider experiments

  3. Digital image technology and a measurement tool in physical models

    CSIR Research Space (South Africa)

    Phelp, David

    2006-05-01

    Full Text Available Advances in digital image technology has allowed us to use accurate, but relatively cost effective technology to measure a number of varied activities in physical models. The capturing and manipulation of high resolution digital images can be used...

  4. Speedminton: Using the Tactical Games Model in Secondary Physical Education

    Science.gov (United States)

    Oh, Hyun-Ju; Bullard, Susan; Hovatter, Rhonda

    2011-01-01

    Teaching and learning of sport and sports-related games dominates the curriculum in most secondary physical education programs in America. For many secondary school students, playing games can be exciting and lead to a lifetime of participation in sport-related activities. Using the Tactical Games Model (TGM) (Mitchell et al., 2006) to teach the…

  5. Physical-Socio-Economic Modeling of Climate Change

    Science.gov (United States)

    Chamberlain, R. G.; Vatan, F.

    2008-12-01

    Because of the global nature of climate change, any assessment of the effects of plans, policies, and response to climate change demands a model that encompasses the entire Earth System, including socio- economic factors. Physics-based climate models of the factors that drive global temperatures, rainfall patterns, and sea level are necessary but not sufficient to guide decision making. Actions taken by farmers, industrialists, environmentalists, politicians, and other policy makers may result in large changes to economic factors, international relations, food production, disease vectors, and beyond. These consequences will not be felt uniformly around the globe or even across a given region. Policy models must comprehend all of these considerations. Combining physics-based models of the Earth's climate and biosphere with societal models of population dynamics, economics, and politics is a grand challenge with high stakes. We propose to leverage our recent advances in modeling and simulation of military stability and reconstruction operations to models that address all these areas of concern. Following over twenty years' experience of successful combat simulation, JPL has started developing Minerva, which will add demographic, economic, political, and media/information models to capabilities that already exist. With these new models, for which we have design concepts, it will be possible to address a very wide range of potential national and international problems that were previously inaccessible. Our climate change model builds on Minerva and expands the geographical horizon from playboxes containing regions and neighborhoods to the entire globe. This system consists of a collection of interacting simulation models that specialize in different aspects of the global situation. They will each contribute to and draw from a pool of shared data. The basic models are: the physical model; the demographic model; the political model; the economic model; and the media

  6. Physical modelling of flow and dispersion over complex terrain

    Science.gov (United States)

    Cermak, J. E.

    1984-09-01

    Atmospheric motion and dispersion over topography characterized by irregular (or regular) hill-valley or mountain-valley distributions are strongly dependent upon three general sets of variables. These are variables that describe topographic geometry, synoptic-scale winds and surface-air temperature distributions. In addition, pollutant concentration distributions also depend upon location and physical characteristics of the pollutant source. Overall fluid-flow complexity and variability from site to site have stimulated the development and use of physical modelling for determination of flow and dispersion in many wind-engineering applications. Models with length scales as small as 1:12,000 have been placed in boundary-layer wind tunnels to study flows in which forced convection by synoptic winds is of primary significance. Flows driven primarily by forces arising from temperature differences (gravitational or free convection) have been investigated by small-scale physical models placed in an isolated space (gravitational convection chamber). Similarity criteria and facilities for both forced and gravitational-convection flow studies are discussed. Forced-convection modelling is illustrated by application to dispersion of air pollutants by unstable flow near a paper mill in the state of Maryland and by stable flow over Point Arguello, California. Gravitational-convection modelling is demonstrated by a study of drainage flow and pollutant transport from a proposed mining operation in the Rocky Mountains of Colorado. Other studies in which field data are available for comparison with model data are reviewed.

  7. Application of physical scaling towards downscaling climate model precipitation data

    Science.gov (United States)

    Gaur, Abhishek; Simonovic, Slobodan P.

    2018-04-01

    Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.

  8. Rock-physics modelling of the North Sea greensand

    DEFF Research Database (Denmark)

    Hossain, Zakir

    cemented, whereas Ty Formation is characterized by microcrystalline quartz cement. A series of laboratory experiments including core analysis, capillary pressure measurements, NMR T2 measurements, acoustic velocity measurements, electrical properties measurements and CO2 injection experiments were done...... cementation and berthierine cementation. Initially greensand is a mixture of mainly quartz and glauconite; when weakly cemented, it has relatively low elastic modulus and can be modeled by a Hertz-Mindlin contact model of two types of grains. Silica-cemented greensand has a relatively high elastic modulus...... and can be modeled by an intermediate-stiff-sand or a stiff-sand model. Berthierine cement has a different growth patterns in different part of the greensand, resulting in a soft-sand model and an intermediate-stiff-sand model. The second rock-physical model predicts Vp-Vs relations and AVO of a greensand...

  9. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  10. Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model

    Directory of Open Access Journals (Sweden)

    Adriana A. Zuniga-Teran

    2017-01-01

    Full Text Available Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486 distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.

  11. Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model.

    Science.gov (United States)

    Zuniga-Teran, Adriana A; Orr, Barron J; Gimblett, Randy H; Chalfoun, Nader V; Guertin, David P; Marsh, Stuart E

    2017-01-13

    Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire ( n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.

  12. Nuclear physics aspects in the parton model of Feynman

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.

    1995-01-01

    The basic fact that pions couple strongly to nucleons has dominated various nuclear physics thinkings since the birth of the field more than sixty years ago. The parton model of Feynman, in which the structure of a nucleon (or a hadron) is characterized by a set of parton distributions, was proposed originally in late 1960's to treat high energy deep inelastic scattering, and later many other high energy physics experiments involving hadrons. Introduction of the concept of parton distributions signifies the departure of particle physics from nuclear physics. Following the suggestion that the sea quark distributions in a nucleon, at low and moderate Q 2 (at least up to a few GeV 2 ), can be attributed primarily to the probability of finding such quarks or antiquarks in the mesons (or recoiling baryons) associated with the nucleon, the author examines how nuclear physics aspects offer quantitative understanding of several recent experimental results, including the observed violation of the Gotfried sum rule and the so-called open-quotes proton spin crisisclose quotes. These results suggest that determination of parton distributions of a hadron at Q 2 of a few GeV 2 (and at small x) must in general take into account nuclear physics aspects. Implication of these results for other high-energy reactions, such as semi-inclusive hadron production in deep inelastic scattering, are also discussed

  13. PHYSICS

    CERN Multimedia

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  14. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  15. Physical modeling of spent-nuclear-fuel container

    Directory of Open Access Journals (Sweden)

    Wang Liping

    2012-11-01

    Full Text Available A new physical simulation model was developed to simulate the casting process of the ductile iron heavy section spent-nuclear-fuel container. In this physical simulation model, a heating unit with DR24 Fe-Cr-Al heating wires was used to compensate the heat loss across the non-natural surfaces of the sample, and a precise and reliable casting temperature controlling/monitoring system was employed to ensure the thermal behavior of the simulated casting to be similar to the actual casting. Also, a mould system was designed, in which changeable mould materials can be used for both the outside and inside moulds for different applications. The casting test was carried out with the designed mould and the cooling curves of central and edge points at different isothermal planes of the casting were obtained. Results show that for most isothermal planes, the temperature control system can keep the temperature differences within 6 ℃ between the edge points and the corresponding center points, indicating that this new physical simulation model has high simulation accuracy, and the mould developed can be used for optimization of casting parameters of spent-nuclear-fuel container, such as composition of ductile iron, the pouring temperature, the selection of mould material and design of cooling system. In addition, to maintain the spheroidalization of the ductile iron, the force-chilling should be used for the current physical simulation to ensure the solidification of casting in less than 2 h.

  16. Undergraduate students’ challenges with computational modelling in physics

    Directory of Open Access Journals (Sweden)

    Simen A. Sørby

    2012-12-01

    Full Text Available In later years, computational perspectives have become essential parts in several of the University of Oslo’s natural science studies. In this paper we discuss some main findings from a qualitative study of the computational perspectives’ impact on the students’ work with their first course in physics– mechanics – and their learning and meaning making of its contents. Discussions of the students’ learning of physics are based on sociocultural theory, which originates in Vygotsky and Bakhtin, and subsequent physics education research. Results imply that the greatest challenge for students when working with computational assignments is to combine knowledge from previously known, but separate contexts. Integrating knowledge of informatics, numerical and analytical mathematics and conceptual understanding of physics appears as a clear challenge for the students. We also observe alack of awareness concerning the limitations of physical modelling. The students need help with identifying the appropriate knowledge system or “tool set”, for the different tasks at hand; they need helpto create a plan for their modelling and to become aware of its limits. In light of this, we propose thatan instructive and dialogic text as basis for the exercises, in which the emphasis is on specification, clarification and elaboration, would be of potential great aid for students who are new to computational modelling.

  17. Model Independent Search For New Physics At The Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Choudalakis, Georgios [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2008-04-01

    The Standard Model of elementary particles can not be the final theory. There are theoretical reasons to expect the appearance of new physics, possibly at the energy scale of few TeV. Several possible theories of new physics have been proposed, each with unknown probability to be confirmed. Instead of arbitrarily choosing to examine one of those theories, this thesis is about searching for any sign of new physics in a model-independent way. This search is performed at the Collider Detector at Fermilab (CDF). The Standard Model prediction is implemented in all final states simultaneously, and an array of statistical probes is employed to search for significant discrepancies between data and prediction. The probes are sensitive to overall population discrepancies, shape disagreements in distributions of kinematic quantities of final particles, excesses of events of large total transverse momentum, and local excesses of data expected from resonances due to new massive particles. The result of this search, first in 1 fb-1 and then in 2 fb-1, is null, namely no considerable evidence of new physics was found.

  18. Modelling of physical properties - databases, uncertainties and predictive power

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    in the estimated/predicted property values, how to assess the quality and reliability of the estimated/predicted property values? The paper will review a class of models for prediction of physical and thermodynamic properties of organic chemicals and their mixtures based on the combined group contribution – atom......Physical and thermodynamic property in the form of raw data or estimated values for pure compounds and mixtures are important pre-requisites for performing tasks such as, process design, simulation and optimization; computer aided molecular/mixture (product) design; and, product-process analysis...

  19. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  20. The strong interactions beyond the standard model of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Georg [Muenster Univ. (Germany). Inst. for Theoretical Physics

    2016-11-01

    SuperMUC is one of the most convenient high performance machines for our project since it offers a high performance and flexibility regarding different applications. This is of particular importance for investigations of new theories, where on the one hand the parameters and systematic uncertainties have to be estimated in smaller simulations and on the other hand a large computational performance is needed for the estimations of the scale at zero temperature. Our project is just the first investigation of the new physics beyond the standard model of particle physics and we hope to proceed with our studies towards more involved Technicolour candidates, supersymmetric QCD, and extended supersymmetry.

  1. Detecting physics beyond the Standard Model with the REDTOP experiment

    Science.gov (United States)

    González, D.; León, D.; Fabela, B.; Pedraza, M. I.

    2017-10-01

    REDTOP is an experiment at its proposal stage. It belongs to the High Intensity class of experiments. REDTOP will use a 1.8 GeV continuous proton beam impinging on a fixed target. It is expected to produce about 1013 η mesons per year. The main goal of REDTOP is to look for physics beyond the Standard Model by detecting rare η decays. The detector is designed with innovative technologies based on the detection of prompt Cherenkov light, such that interesting events can be observed and the background events are efficiently rejected. The experimental design, the physics program and the running plan of the experiment is presented.

  2. Future high precision experiments and new physics beyond Standard Model

    International Nuclear Information System (INIS)

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here

  3. Noise stabilization effects in models of interdisciplinary physics

    International Nuclear Information System (INIS)

    Spagnolo, B; Augello, G; Caldara, P; Fiasconaro, A; La Cognata, A; Pizzolato, N; Valenti, D; Dubkov, A A; Pankratov, A L

    2009-01-01

    Metastability is a generic feature of many nonlinear systems, and the problem of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical mechanics. The investigation of noise-induced phenomena in far from equilibrium systems is one of the approaches used to understand the behaviour of physical and biological complex systems. The enhancement of the lifetime of metastable states through the noise enhanced stability effect and the role played by the resonant activation phenomenon will be discussed in models of interdisciplinary physics: (i) polymer translocation dynamics; (ii) transient regime of FitzHugh-Nagumo model; (iii) market stability in a nonlinear Heston model; (iv) dynamics of Josephson junctions; (v) metastability in a quantum bitable system.

  4. Systems and models with anticipation in physics and its applications

    International Nuclear Information System (INIS)

    Makarenko, A

    2012-01-01

    Investigations of recent physics processes and real applications of models require the new more and more improved models which should involved new properties. One of such properties is anticipation (that is taking into accounting some advanced effects).It is considered the special kind of advanced systems – namely a strong anticipatory systems introduced by D. Dubois. Some definitions, examples and peculiarities of solutions are described. The main feature is presumable multivaluedness of the solutions. Presumable physical examples of such systems are proposed: self-organization problems; dynamical chaos; synchronization; advanced potentials; structures in micro-, meso- and macro- levels; cellular automata; computing; neural network theory. Also some applications for modeling social, economical, technical and natural systems are described.

  5. Constraining new physics models with isotope shift spectroscopy

    Science.gov (United States)

    Frugiuele, Claudia; Fuchs, Elina; Perez, Gilad; Schlaffer, Matthias

    2017-07-01

    Isotope shifts of transition frequencies in atoms constrain generic long- and intermediate-range interactions. We focus on new physics scenarios that can be most strongly constrained by King linearity violation such as models with B -L vector bosons, the Higgs portal, and chameleon models. With the anticipated precision, King linearity violation has the potential to set the strongest laboratory bounds on these models in some regions of parameter space. Furthermore, we show that this method can probe the couplings relevant for the protophobic interpretation of the recently reported Be anomaly. We extend the formalism to include an arbitrary number of transitions and isotope pairs and fit the new physics coupling to the currently available isotope shift measurements.

  6. Physical model and calculation code for fuel coolant interactions

    International Nuclear Information System (INIS)

    Goldammer, H.; Kottowski, H.

    1976-01-01

    A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)

  7. The Goddard multi-scale modeling system with unified physics

    Directory of Open Access Journals (Sweden)

    W.-K. Tao

    2009-08-01

    Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.

    This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.

  8. Microphysics in Multi-scale Modeling System with Unified Physics

    Science.gov (United States)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  9. Physics Bus: An Innovative Model for Public Engagement

    Science.gov (United States)

    Fox, Claire

    The Physics Bus is about doing science for fun. It is an innovative model for science outreach whose mission is to awaken joy and excitement in physics for all ages and walks of life - especially those underserved by science enrichment. It is a mobile exhibition of upcycled appliances-reimagined by kids-that showcase captivating physics phenomena. Inside our spaceship-themed school bus, visitors will find: a microwave ionized-gas disco-party, fog rings that shoot from a wheelbarrow tire, a tv whose electron beam is controlled by a toy keyboard, and over 20 other themed exhibits. The Physics Bus serves a wide range of public in diverse locations from local neighborhoods, urban parks and rural schools, to cross-country destinations. Its approachable, friendly and relaxed environment allows for self-paced and self-directed interactions, providing a positive and engaging experience with science. We believe that this environment enriches lives and inspires people. In this presentation we will talk about the nuts and bolts that make this model work, how the project got started, and the resources that keep it going. We will talk about the advantages of being a grassroots and community-based organization, and how programs like this can best interface with universities. We will explain the benefits of focusing on direct interactions and why our model avoids ``teaching'' physics content with words. Situating our approach within a body of research on the value of informal science we will discuss our success in capturing and engaging our audience. By the end of this presentation we hope to broaden your perception of what makes a successful outreach program and encourage you to value and support alternative outreach models such as this one. In Collaboration with: Eva Luna, Cornell University; Erik Herman, Cornell University; Christopher Bell, Ithaca City School District.

  10. Integrated modelling of physical, chemical and biological weather

    DEFF Research Database (Denmark)

    Kurganskiy, Alexander

    . This is an online-coupled meteorology-chemistry model where chemical constituents and different types of aerosols are an integrated part of the dynamical model, i.e., these constituents are transported in the same way as, e.g., water vapor and cloud water, and, at the same time, the aerosols can interactively...... impact radiation and cloud micro-physics. The birch pollen modelling study has been performed for domains covering Europe and western Russia. Verification of the simulated birch pollen concentrations against in-situ observations showed good agreement obtaining the best score for two Danish sites...

  11. Sound Synthesis of Objects Swinging through Air Using Physical Models

    Directory of Open Access Journals (Sweden)

    Rod Selfridge

    2017-11-01

    Full Text Available A real-time physically-derived sound synthesis model is presented that replicates the sounds generated as an object swings through the air. Equations obtained from fluid dynamics are used to determine the sounds generated while exposing practical parameters for a user or game engine to vary. Listening tests reveal that for the majority of objects modelled, participants rated the sounds from our model as plausible as actual recordings. The sword sound effect performed worse than others, and it is speculated that one cause may be linked to the difference between expectations of a sound and the actual sound for a given object.

  12. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  13. Eliciting physics students mental models via science fiction stories

    International Nuclear Information System (INIS)

    Acar, H.

    2005-01-01

    This paper presents the results of an experiment which investigated the effects of the using science fiction stories in physics lessons. A questionnaire form containing 2 open-ended questions related to Jules Vernes story From the Earth to the Moon was used with 353, 9th and 10th grade students to determine their pre-conceptions about gravity and weightlessness. Mental models explaining students scientific and alternative views were constructed, according to students replies. After these studies, 6 students were interviewed. In this interview, researches were done about whether science fiction stories had an effect on bringing students pre-conceptions related to physics subjects out, on students inquiring their own concepts and on increasing students interest and motivation towards physics subjects. Studies in this research show that science fiction stories have an effect on arousing students interest and curiosity, have a role encouraging students to inquire their own concepts and are effective in making students alternative views come out

  14. Testing the standard model of particle physics using lattice QCD

    International Nuclear Information System (INIS)

    Water, Ruth S van de

    2007-01-01

    Recent advances in both computers and algorithms now allow realistic calculations of Quantum Chromodynamics (QCD) interactions using the numerical technique of lattice QCD. The methods used in so-called '2+1 flavor' lattice calculations have been verified both by post-dictions of quantities that were already experimentally well-known and by predictions that occurred before the relevant experimental determinations were sufficiently precise. This suggests that the sources of systematic error in lattice calculations are under control, and that lattice QCD can now be reliably used to calculate those weak matrix elements that cannot be measured experimentally but are necessary to interpret the results of many high-energy physics experiments. These same calculations also allow stringent tests of the Standard Model of particle physics, and may therefore lead to the discovery of new physics in the future

  15. PHYSICS OF ECLIPSING BINARIES. II. TOWARD THE INCREASED MODEL FIDELITY

    Energy Technology Data Exchange (ETDEWEB)

    Prša, A.; Conroy, K. E.; Horvat, M.; Kochoska, A.; Hambleton, K. M. [Villanova University, Dept. of Astrophysics and Planetary Sciences, 800 E Lancaster Avenue, Villanova PA 19085 (United States); Pablo, H. [Université de Montréal, Pavillon Roger-Gaudry, 2900, boul. Édouard-Montpetit Montréal QC H3T 1J4 (Canada); Bloemen, S. [Radboud University Nijmegen, Department of Astrophysics, IMAPP, P.O. Box 9010, 6500 GL, Nijmegen (Netherlands); Giammarco, J. [Eastern University, Dept. of Astronomy and Physics, 1300 Eagle Road, St. Davids, PA 19087 (United States); Degroote, P. [KU Leuven, Instituut voor Sterrenkunde, Celestijnenlaan 200D, B-3001 Heverlee (Belgium)

    2016-12-01

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.

  16. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  17. Electromagnetic physical modeling. 11; Denji yudoho no model jikken. 11

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K.; Endo, M.; Yoshimori, M.; Ogura, W. [Waseda University, Tokyo (Japan). School of Science and Engineering; Saito, A. [Mitsui Mineral Development Engineering Co. Ltd., Tokyo (Japan)

    1997-05-27

    A model experiment on the well electromagnetic induction method was studied. Experimental apparatus consisted chiefly of A/D boards of 16 bit and 100 kHz. In the transmitting part, the transistor inverter and relay switch controlled by computer with car battery as current source generate rectangular wave current and make it run to the transmitter loop. In the receiving part, after electromotive force induced to the receiver coil was amplified by amplifier, it is A/D converted and recorded by computer. As a result of the experiment, the depth, plane position and shape of the structure could be caught by studying data on the well and earth surface together. Further, it was confirmed that in case the disk tilted, the response regularly changes according to the tilt. Moreover, it was found that even in case the structure is just under the inside of the transmitter loop, the thickness and tilt of the structure are influenced by the positional relation with the receiver loop. 2 refs., 18 figs.

  18. Physically-based modelling of polycrystalline semiconductor devices

    International Nuclear Information System (INIS)

    Lee, S.

    2000-01-01

    Thin-film technology using polycrystalline semiconductors has been widely applied to active-matrix-addressed liquid crystal displays (AMLCDs) where thin-film transistors act as digital pixel switches. Research and development is in progress to integrate the driver circuits around the peripheral of the display, resulting in significant cost reduction of connections between rows and columns and the peripheral circuitry. For this latter application, where for instance it is important to control the greyscale voltage level delivered to the pixel, an understanding of device behaviour is required so that models can be developed for analogue circuit simulation. For this purpose, various analytical models have been developed based on that of Seto who considered the effect of monoenergetic trap states and grain boundaries in polycrystalline materials but not the contribution of the grains to the electrical properties. The principal aim of this thesis is to describe the use of a numerical device simulator (ATLAS) as a tool to investigate the physics of the trapping process involved in the device operation, which additionally takes into account the effect of multienergetic trapping levels and the contribution of the grain into the modelling. A study of the conventional analytical models is presented, and an alternative approach is introduced which takes into account the grain regions to enhance the accuracy of the analytical modelling. A physically-based discrete-grain-boundary model and characterisation method are introduced to study the effects of the multienergetic trap states on the electrical characteristics of poly-TFTs using CdSe devices as the experimental example, and the electrical parameters such as the density distribution of the trapping states are extracted. The results show excellent agreement between the simulation and experimental data. The limitations of this proposed physical model are also studied and discussed. (author)

  19. Constraining new physics with collider measurements of Standard Model signatures

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, Jonathan M. [Department of Physics and Astronomy, University College London,Gower St., London, WC1E 6BT (United Kingdom); Grellscheid, David [IPPP, Department of Physics, Durham University,Durham, DH1 3LE (United Kingdom); Krämer, Michael; Sarrazin, Björn [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,Sommerfeldstr. 16, 52056 Aachen (Germany); Yallup, David [Department of Physics and Astronomy, University College London,Gower St., London, WC1E 6BT (United Kingdom)

    2017-03-14

    A new method providing general consistency constraints for Beyond-the-Standard-Model (BSM) theories, using measurements at particle colliders, is presented. The method, ‘Constraints On New Theories Using Rivet’, CONTUR, exploits the fact that particle-level differential measurements made in fiducial regions of phase-space have a high degree of model-independence. These measurements can therefore be compared to BSM physics implemented in Monte Carlo generators in a very generic way, allowing a wider array of final states to be considered than is typically the case. The CONTUR approach should be seen as complementary to the discovery potential of direct searches, being designed to eliminate inconsistent BSM proposals in a context where many (but perhaps not all) measurements are consistent with the Standard Model. We demonstrate, using a competitive simplified dark matter model, the power of this approach. The CONTUR method is highly scaleable to other models and future measurements.

  20. 3D physical modeling for patterning process development

    Science.gov (United States)

    Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed

    2010-03-01

    In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.

  1. Influence of a health-related physical fitness model on students' physical activity, perceived competence, and enjoyment.

    Science.gov (United States)

    Fu, You; Gao, Zan; Hannon, James; Shultz, Barry; Newton, Maria; Sibthorp, Jim

    2013-12-01

    This study was designed to explore the effects of a health-related physical fitness physical education model on students' physical activity, perceived competence, and enjoyment. 61 students (25 boys, 36 girls; M age = 12.6 yr., SD = 0.6) were assigned to two groups (health-related physical fitness physical education group, and traditional physical education group), and participated in one 50-min. weekly basketball class for 6 wk. Students' in-class physical activity was assessed using NL-1000 pedometers. The physical subscale of the Perceived Competence Scale for Children was employed to assess perceived competence, and children's enjoyment was measured using the Sport Enjoyment Scale. The findings suggest that students in the intervention group increased their perceived competence, enjoyment, and physical activity over a 6-wk. intervention, while the comparison group simply increased physical activity over time. Children in the intervention group had significantly greater enjoyment.

  2. Model of cosmology and particle physics at an intermediate scale

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S. F.

    2005-01-01

    We propose a model of cosmology and particle physics in which all relevant scales arise in a natural way from an intermediate string scale. We are led to assign the string scale to the intermediate scale M * ∼10 13 GeV by four independent pieces of physics: electroweak symmetry breaking; the μ parameter; the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-handed sneutrino playing the role of a coupled curvaton. We show that the correct curvature perturbations may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the seesaw mechanism, consistent with sequential dominance

  3. Performance of GeantV EM Physics Models

    Energy Technology Data Exchange (ETDEWEB)

    Amadio, G.; et al.

    2016-10-14

    The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.

  4. A student's guide to Python for physical modeling

    CERN Document Server

    Kinder, Jesse M

    2015-01-01

    Python is a computer programming language that is rapidly gaining popularity throughout the sciences. A Student’s Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This tutorial focuses on fundamentals and introduces a wide range of useful techniques, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Animation Numerous code samples and exercises—with solutions—illustrate new ideas as they are introduced. A website that accompanies this guide provides additional resourc...

  5. Performance of GeantV EM Physics Models

    Science.gov (United States)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2017-10-01

    The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.

  6. Performance of GeantV EM Physics Models

    CERN Document Server

    Amadio, G; Apostolakis, J; Aurora, A; Bandieramonte, M; Bhattacharyya, A; Bianchini, C; Brun, R; Canal P; Carminati, F; Cosmo, G; Duhem, L; Elvira, D; Folger, G; Gheata, A; Gheata, M; Goulas, I; Iope, R; Jun, S Y; Lima, G; Mohanty, A; Nikitina, T; Novak, M; Pokorski, W; Ribon, A; Seghal, R; Shadura, O; Vallecorsa, S; Wenzel, S; Zhang, Y

    2017-01-01

    The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.

  7. Physical Modelling Of The Steel Flow In RH Apparatus

    Directory of Open Access Journals (Sweden)

    Pieprzyca J.

    2015-09-01

    Full Text Available The efficiency of vacuum steel degassing using RH methods depends on many factors. One of the most important are hydrodynamic processes occurring in the ladle and vacuum chamber. It is always hard and expensive to determine the flow character and the way of steel mixing in industrial unit; thus in this case, methods of physical modelling are applied. The article presents the results of research carried out on the water physical model of RH apparatus concerning the influence of the flux value of inert gas introduced through the suck legs on hydrodynamic conditions of the process. Results of the research have visualization character and are presented graphically as a RTD curves. The main aim of such research is to optimize the industrial vacuum steel degassing process by means of RH method.

  8. Model-Based Dependability Analysis of Physical Systems with Modelica

    Directory of Open Access Journals (Sweden)

    Andrea Tundis

    2017-01-01

    Full Text Available Modelica is an innovative, equation-based, and acausal language that allows modeling complex physical systems, which are made of mechanical, electrical, and electrotechnical components, and evaluates their design through simulation techniques. Unfortunately, the increasing complexity and accuracy of such physical systems require new, more powerful, and flexible tools and techniques for evaluating important system properties and, in particular, the dependability ones such as reliability, safety, and maintainability. In this context, the paper describes some extensions of the Modelica language to support the modeling of system requirements and their relationships. Such extensions enable the requirement verification analysis through native constructs in the Modelica language. Furthermore, they allow exporting a Modelica-based system design as a Bayesian Network in order to analyze its dependability by employing a probabilistic approach. The proposal is exemplified through a case study concerning the dependability analysis of a Tank System.

  9. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  10. Artificial cilia : a physical model for ciliary propulsion

    OpenAIRE

    Babataheri , Avin

    2009-01-01

    Most microorganisms use cilia or flagella as a means of propulsion. These low Reynolds number swimming mechanisms have been studied theoretically and experimentally on living organisms. However, so far very few physical experimental models have been realised. We describe here the fabrication of microscopic artificial cilia, actuated by a magnetic field. These artificial cilia share with real cilia a large aspect ratio, great flexibility, and the actuation by a magnetic torque distributed alon...

  11. Model unspecific search for new physics in pp collisions

    International Nuclear Information System (INIS)

    Malhotra, Shivali

    2013-01-01

    The model-independent analysis systematically scans the data taken by Compact Muon Solenoid - CMS detector for deviations from the Standard Model (SM) predictions. This approach is sensitive to a variety of models for new physics due to the minimal theoretical bias i.e. without assumptions on specific models of new physics and covering a large phase space. Possible causes of the significant deviations could be insufficient understanding of the collision event generation or detector simulation, or indeed genuine new physics in the data. Thus the output of MUSiC must be seen as only the first, but important step in the potential discovery of new physics. To get the distinctive final states, events with at least one electron or muon are classified according to their content of reconstructed objects (muons, electrons, photons, jets and missing transverse energy) and sorted into event classes. A broad scan of three kinematic distributions (scalar sum of the transverse momentum, invariant mass of reconstructed objects and missing transverse energy) in those event classes is performed by identifying deviations from SM expectations, accounting for systematic uncertainties. A scanning algorithm determines the regions in the considered distributions where the measured data deviates most from the SM predictions. This search is sensitive to an excess as well as a deficit in the comparison of data and SM background. This approach has been applied to the CMS data and we have obtained the preliminary results. I will talk about the details of the analysis techniques, its implementation in analyzing CMS data, results obtained and the discussion on the discrepancy observed

  12. Physical Model Study of Cross Vanes and Ice

    Science.gov (United States)

    2009-08-01

    spacing since, in the pre-scour state, experiments and the HEC - RAS hydraulic model (USACE 2002b) found that water surface ele- vation merged with the...docs/eng-manuals/em1110- 2-1612/toc.htm. USACE (2002b) HEC - RAS , Hydraulic Reference Manual. US Army Corps of Engineers Hydrologic Engineering Center...Currently little design guidance is available for constructing these structures on ice-affected rivers . This study used physical and numerical

  13. Graphene growth process modeling: a physical-statistical approach

    Science.gov (United States)

    Wu, Jian; Huang, Qiang

    2014-09-01

    As a zero-band semiconductor, graphene is an attractive material for a wide variety of applications such as optoelectronics. Among various techniques developed for graphene synthesis, chemical vapor deposition on copper foils shows high potential for producing few-layer and large-area graphene. Since fabrication of high-quality graphene sheets requires the understanding of growth mechanisms, and methods of characterization and control of grain size of graphene flakes, analytical modeling of graphene growth process is therefore essential for controlled fabrication. The graphene growth process starts with randomly nucleated islands that gradually develop into complex shapes, grow in size, and eventually connect together to cover the copper foil. To model this complex process, we develop a physical-statistical approach under the assumption of self-similarity during graphene growth. The growth kinetics is uncovered by separating island shapes from area growth rate. We propose to characterize the area growth velocity using a confined exponential model, which not only has clear physical explanation, but also fits the real data well. For the shape modeling, we develop a parametric shape model which can be well explained by the angular-dependent growth rate. This work can provide useful information for the control and optimization of graphene growth process on Cu foil.

  14. Testing physical models for dipolar asymmetry with CMB polarization

    Science.gov (United States)

    Contreras, D.; Zibin, J. P.; Scott, D.; Banday, A. J.; Górski, K. M.

    2017-12-01

    The cosmic microwave background (CMB) temperature anisotropies exhibit a large-scale dipolar power asymmetry. To determine whether this is due to a real, physical modulation or is simply a large statistical fluctuation requires the measurement of new modes. Here we forecast how well CMB polarization data from Planck and future experiments will be able to confirm or constrain physical models for modulation. Fitting several such models to the Planck temperature data allows us to provide predictions for polarization asymmetry. While for some models and parameters Planck polarization will decrease error bars on the modulation amplitude by only a small percentage, we show, importantly, that cosmic-variance-limited (and in some cases even Planck) polarization data can decrease the errors by considerably better than the expectation of √{2 } based on simple ℓ-space arguments. We project that if the primordial fluctuations are truly modulated (with parameters as indicated by Planck temperature data) then Planck will be able to make a 2 σ detection of the modulation model with 20%-75% probability, increasing to 45%-99% when cosmic-variance-limited polarization is considered. We stress that these results are quite model dependent. Cosmic variance in temperature is important: combining statistically isotropic polarization with temperature data will spuriously increase the significance of the temperature signal with 30% probability for Planck.

  15. Flavor physics in the 3-3-1 models

    International Nuclear Information System (INIS)

    Pleitez, Vicente

    2013-01-01

    Full text: Flavor Physics is entering in a new precision era that will allow to uncover new physics scenarios at the TeV scale if they really do exist. We will discuss flavor changing neutral currents (FCNC) processes in the context of the minimal 3-3-1 model. In particular, we show that in this model, these processes do not impose necessarily strong constraints on the mass of the Z' of the model if we also consider the neutral scalar contributions to such processes, like the neutral meson mass differences and their rare semi-leptonic decays. We first obtain numerical values for all the mixing matrices of the model i.e., the unitary matrices that rotate the left- and right-handed quarks in each charge sector and give the correct mass of all the quarks and the CKM mixing matrix. Then, we find that there is a range of parameters in which the neutral scalar contributions to these processes may interfere with those of the Z', implying that this vector boson may be lighter than it has been thought. The model with right-handed neutrino will also brief discussed. (author)

  16. Interactive physically-based structural modeling of hydrocarbon systems

    International Nuclear Information System (INIS)

    Bosson, Mael; Grudinin, Sergei; Bouju, Xavier; Redon, Stephane

    2012-01-01

    Hydrocarbon systems have been intensively studied via numerical methods, including electronic structure computations, molecular dynamics and Monte Carlo simulations. Typically, these methods require an initial structural model (atomic positions and types, topology, etc.) that may be produced using scripts and/or modeling tools. For many systems, however, these building methods may be ineffective, as the user may have to specify the positions of numerous atoms while maintaining structural plausibility. In this paper, we present an interactive physically-based modeling tool to construct structural models of hydrocarbon systems. As the user edits the geometry of the system, atomic positions are also influenced by the Brenner potential, a well-known bond-order reactive potential. In order to be able to interactively edit systems containing numerous atoms, we introduce a new adaptive simulation algorithm, as well as a novel algorithm to incrementally update the forces and the total potential energy based on the list of updated relative atomic positions. The computational cost of the adaptive simulation algorithm depends on user-defined error thresholds, and our potential update algorithm depends linearly with the number of updated bonds. This allows us to enable efficient physically-based editing, since the computational cost is decoupled from the number of atoms in the system. We show that our approach may be used to effectively build realistic models of hydrocarbon structures that would be difficult or impossible to produce using other tools.

  17. Physical and mathematical modeling of antimicrobial photodynamic therapy

    Science.gov (United States)

    Bürgermeister, Lisa; López, Fernando Romero; Schulz, Wolfgang

    2014-07-01

    Antimicrobial photodynamic therapy (aPDT) is a promising method to treat local bacterial infections. The therapy is painless and does not cause bacterial resistances. However, there are gaps in understanding the dynamics of the processes, especially in periodontal treatment. This work describes the advances in fundamental physical and mathematical modeling of aPDT used for interpretation of experimental evidence. The result is a two-dimensional model of aPDT in a dental pocket phantom model. In this model, the propagation of laser light and the kinetics of the chemical reactions are described as coupled processes. The laser light induces the chemical processes depending on its intensity. As a consequence of the chemical processes, the local optical properties and distribution of laser light change as well as the reaction rates. The mathematical description of these coupled processes will help to develop treatment protocols and is the first step toward an inline feedback system for aPDT users.

  18. A physical model of Mirnov oscillations and plasma disruptions

    International Nuclear Information System (INIS)

    Cross, R.C.

    1983-07-01

    A physical model is proposed which accounts for the general behaviour of Mirnov oscillations and plasma disruptions in tokamak devices. The model also accounts for the stability of those devices which operate with edge safety factors less than 1.5. The model is based on the propagation of localized torsional Alfven and ion acoustic wavepackets. These packets remain phase coherent for considerable distances and are guided along helical field lines in toroidal plasmas, leading to the formation of standing waves on those field lines which close on themselves after one or more toroidal revolutions. Standing waves are driven resonantly on the rational surfaces by fluctuations in the poloidal field, causing localized heating and hence filamentation of the plasma current. This model indicates that Mirnov oscillations are produced by standing acoustic waves, while plasma disruptions occur as a result of the formation of MHD unstable current filaments

  19. Modelling the physics in iterative reconstruction for transmission computed tomography

    Science.gov (United States)

    Nuyts, Johan; De Man, Bruno; Fessler, Jeffrey A.; Zbijewski, Wojciech; Beekman, Freek J.

    2013-01-01

    There is an increasing interest in iterative reconstruction (IR) as a key tool to improve quality and increase applicability of X-ray CT imaging. IR has the ability to significantly reduce patient dose, it provides the flexibility to reconstruct images from arbitrary X-ray system geometries and it allows to include detailed models of photon transport and detection physics, to accurately correct for a wide variety of image degrading effects. This paper reviews discretisation issues and modelling of finite spatial resolution, Compton scatter in the scanned object, data noise and the energy spectrum. Widespread implementation of IR with highly accurate model-based correction, however, still requires significant effort. In addition, new hardware will provide new opportunities and challenges to improve CT with new modelling. PMID:23739261

  20. Modeling theoretical uncertainties in phenomenological analyses for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Jerome [CNRS, Aix-Marseille Univ, Universite de Toulon, CPT UMR 7332, Marseille Cedex 9 (France); Descotes-Genon, Sebastien [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Niess, Valentin [CNRS/IN2P3, UMR 6533, Laboratoire de Physique Corpusculaire, Aubiere Cedex (France); Silva, Luiz Vale [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Groupe de Physique Theorique, Institut de Physique Nucleaire, Orsay Cedex (France); J. Stefan Institute, Jamova 39, P. O. Box 3000, Ljubljana (Slovenia)

    2017-04-15

    The determination of the fundamental parameters of the Standard Model (and its extensions) is often limited by the presence of statistical and theoretical uncertainties. We present several models for the latter uncertainties (random, nuisance, external) in the frequentist framework, and we derive the corresponding p values. In the case of the nuisance approach where theoretical uncertainties are modeled as biases, we highlight the important, but arbitrary, issue of the range of variation chosen for the bias parameters. We introduce the concept of adaptive p value, which is obtained by adjusting the range of variation for the bias according to the significance considered, and which allows us to tackle metrology and exclusion tests with a single and well-defined unified tool, which exhibits interesting frequentist properties. We discuss how the determination of fundamental parameters is impacted by the model chosen for theoretical uncertainties, illustrating several issues with examples from quark flavor physics. (orig.)

  1. Efficient pan-European river flood hazard modelling through a combination of statistical and physical models

    NARCIS (Netherlands)

    Paprotny, D.; Morales Napoles, O.; Jonkman, S.N.

    2017-01-01

    Flood hazard is currently being researched on continental and global scales, using models of increasing complexity. In this paper we investigate a different, simplified approach, which combines statistical and physical models in place of conventional rainfall-run-off models to carry out flood

  2. Pyrometer model based on sensor physical structure and thermal operation

    International Nuclear Information System (INIS)

    Sebastian, Eduardo; Armiens, Carlos; Gomez-Elvira, Javier

    2010-01-01

    This paper proposes a new simplified thermal model for pyrometers, which takes into account both their internal and external physical structure and operation. The model is experimentally tested on the REMS GTS, an instrument for measuring ground temperature, which is part of the payload of the NASA MSL mission to Mars. The proposed model is based on an energy balance equation that represents the heat fluxes exchanged between sensor elements through radiation, conduction and convection. Despite being mathematically more complex than the more commonly used model, the proposed model makes it possible to design a methodology to compensate the effects of sensor spatial thermal gradients. The paper includes a practical methodology for identifying model constants, which is part of the GTS instrument calibration plan and uses a differential approach to avoid setup errors. Experimental results of the model identification methodology and a target temperature measurement performance after identification has been made are reported. Results demonstrate the good behaviour of the model, with errors below 0.15 deg. C in target temperature estimates.

  3. Creating physical 3D stereolithograph models of brain and skull.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2007-10-01

    Full Text Available The human brain and skull are three dimensional (3D anatomical structures with complex surfaces. However, medical images are often two dimensional (2D and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50 used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine.

  4. Activities and trends in physical protection modeling with microcomputers

    International Nuclear Information System (INIS)

    Chapman, L.D.; Harlan, C.P.

    1985-01-01

    Sandia National Laboratories developed several models in the mid to late 1970's including the Safeguards Automated Facility Evaluation (SAFE) method. The Estimate of Adversary Sequence Interruption (EASI), the Safeguards Network Analysis Procedure (SNAP), the Brief Adversary Threat Loss Estimator (BATLE), and others. These models were implemented on large computers such as the VAX 11/780 and the CDC machines. With the recent development and widespread use of the IBM PC and other microcomputers, it has become evident that several physical protection models should be made available for use on these microcomputers. Currently, there are programs under way to convert the EASI, SNAP and BATLE models to the IBM PC. The input and analysis using the EASI model has been designed to be very user friendly through the utilization of menu driven options. The SNAP modeling technique will be converted to an IBM PC/AT with many enhancements to user friendliness. Graphical assistance for entering the model and reviewing traces of the simulated output are planned. The BATLE model is being converted to the IBM PC while preserving its interactive nature. The current status of the these developments is reported in this paper

  5. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  6. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  7. PHYSICS

    CERN Document Server

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  8. Collider physics within the standard model a primer

    CERN Document Server

    Altarelli, Guido

    2017-01-01

    With this graduate-level primer, the principles of the standard model of particle physics receive a particular skillful, personal and enduring exposition by one of the great contributors to the field. In 2013 the late Prof. Altarelli wrote: The discovery of the Higgs boson and the non-observation of new particles or exotic phenomena have made a big step towards completing the experimental confirmation of the standard model of fundamental particle interactions. It is thus a good moment for me to collect, update and improve my graduate lecture notes on quantum chromodynamics and the theory of electroweak interactions, with main focus on collider physics. I hope that these lectures can provide an introduction to the subject for the interested reader, assumed to be already familiar with quantum field theory and some basic facts in elementary particle physics as taught in undergraduate courses. “These lecture notes are a beautiful example of Guido’s unique pedagogical abilities and scientific vision”. From...

  9. Simplified Physics Based Models Research Topical Report on Task #2

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta; Ganesh, Priya

    2014-10-31

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.

  10. Hidden physics models: Machine learning of nonlinear partial differential equations

    Science.gov (United States)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  11. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  12. Searches for Physics Beyond Standard Model at LHC with ATLAS

    CERN Document Server

    Soni, N; The ATLAS collaboration

    2013-01-01

    This contribution summarises some of the recent results on the searches for physics beyond the Standard Model using the pp-collision data collected at Large Hadron Collider (LHC) with ATLAS detector at centre-of-mass energy of sqrt{s} = 8 TeV. The search for supersymmetry (SUSY) is carried out in a large variety of production modes such as strong production of squarks and gluinos, weak production of sleptons and gauginos os production of massive long-lived particles through R-parity violation. No excess above the Standard Model background expectation is observed and exclusion limits are derived on the production of new physics. The results are interpreted as lower limits on sparticle masses in SUSY breaking scenarios. Searches for new exotic phenomena such as dark matter, large extra dimensions and black holes are also performed at ATLAS. As in the case of SUSY searches, no new exotic phenomena is observed and results are presented as upper limits on event yields from non-Standard-Model processes in a model i...

  13. A quality management model for radiation oncology physics

    International Nuclear Information System (INIS)

    Sternick, E.S.

    1991-01-01

    State-of-the-art radiation physics quality programs operate in a data rich environment. Given the abundance of recordable events, any formalism that serves to identify and monitor a set of attributes correlated with quality is to be regarded as an important management tool. The hierarchical tree structure model describes one such useful planning method. Of the several different types of tree structures, one of the most appropriate for quality management is the pyramid model. In this model, the associations between an overall program objective and the intermediate steps leading to its attainment, are indicated by both horizontal and vertical connectors. The overall objective of the system under study occupies the vertex of the pyramid, while the level immediately below contains its principal components. Further subdivisions of each component occur in successively lower levels. The tree finally terminates at a base level consisting of actions or requirements that must be fulfilled in order to satisfy the overall objective. A pyramid model for a radiation oncology physics quality program is discussed in detail. (author). 21 refs., 4 figs., 6 tabs

  14. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    Science.gov (United States)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2017-11-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  15. Physical Basis for Interfacial Traction-Separation Models

    International Nuclear Information System (INIS)

    Neville R. Moody

    2002-01-01

    Many weapon components contain interfaces between dissimilar materials where cracks can initiate and cause failure. In recent years many researchers in the fracture community have adopted a cohesive zone model for simulating crack propagation (based upon traction-separation relations) Sandia is implementing this model in its ASCI codes. There is, however, one important obstacle to using a cohesive zone modeling approach. At the present time traction-separation relations are chosen in an ad hoc manner. The goal of the present work is to determine a physical basis for Traction-Separation (T-U) relations. This report presents results of a program aimed at determining the dependence of such relations on adhesive and bulk properties. The work focused on epoxy/solid interfaces, although the approach is applicable to a broad range of materials. Asymmetric double cantilevered beam and free surface film nanoindentation fracture toughness tests were used to generate a unique set of data spanning length scales, applied mode mixities, and yield (plastic) zone constraint. The crucial roles of crack tip plastic zone size and interfacial adhesion were defined by varying epoxy layer thickness and using coupling agents or special self-assembled monolayers in preparing the samples. The nature of the yield zone was probed in collaborative experiments run at the Advanced Photon Source. This work provides an understanding of the major phenomena governing polymer/solid interfacial fracture and identifies the essential features that must be incorporated in a T-U based cohesive zone failure model. We believe that models using physically based T-U relations provide a more accurate and widely applicable description of interface cracking than models using ad hoc relations. Furthermore, these T-U relations provide an essential tool for using models to tailor interface properties to meet design needs

  16. Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories

    International Nuclear Information System (INIS)

    Wells, James

    2015-01-01

    The discovery of the Higgs boson is one of science's most impressive recent achievements. We have taken a leap forward in understanding what is at the heart of elementary particle mass generation. We now have a significant opportunity to develop even deeper understanding of how the fundamental laws of nature are constructed. As such, we need intense focus from the scientific community to put this discovery in its proper context, to realign and narrow our understanding of viable theory based on this positive discovery, and to detail the implications the discovery has for theories that attempt to answer questions beyond what the Standard Model can explain. This project's first main object is to develop a state-of-the-art analysis of precision Higgs boson physics. This is to be done in the tradition of the electroweak precision measurements of the LEP/SLC era. Indeed, the electroweak precision studies of the past are necessary inputs to the full precision Higgs program. Calculations will be presented to the community of Higgs boson observables that detail just how well various couplings of the Higgs boson can be measured, and more. These will be carried out using state-of-the-art theory computations coupled with the new experimental results coming in from the LHC. The project's second main objective is to utilize the results obtained from LHC Higgs boson experiments and the precision analysis, along with the direct search studies at LHC, and discern viable theories of physics beyond the Standard Model that unify physics to a deeper level. Studies will be performed on supersymmetric theories, theories of extra spatial dimensions (and related theories, such as compositeness), and theories that contain hidden sector states uniquely accessible to the Higgs boson. In addition, if data becomes incompatible with the Standard Model's low-energy effective lagrangian, new physics theories will be developed that explain the anomaly and put it into a more

  17. Dynamic modeling of physical phenomena for PRAs using neural networks

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Brown, N.N.; Paez, T.L.

    1998-04-01

    In most probabilistic risk assessments, there is a set of accident scenarios that involves the physical responses of a system to environmental challenges. Examples include the effects of earthquakes and fires on the operability of a nuclear reactor safety system, the effects of fires and impacts on the safety integrity of a nuclear weapon, and the effects of human intrusions on the transport of radionuclides from an underground waste facility. The physical responses of the system to these challenges can be quite complex, and their evaluation may require the use of detailed computer codes that are very time consuming to execute. Yet, to perform meaningful probabilistic analyses, it is necessary to evaluate the responses for a large number of variations in the input parameters that describe the initial state of the system, the environments to which it is exposed, and the effects of human interaction. Because the uncertainties of the system response may be very large, it may also be necessary to perform these evaluations for various values of modeling parameters that have high uncertainties, such as material stiffnesses, surface emissivities, and ground permeabilities. The authors have been exploring the use of artificial neural networks (ANNs) as a means for estimating the physical responses of complex systems to phenomenological events such as those cited above. These networks are designed as mathematical constructs with adjustable parameters that can be trained so that the results obtained from the networks will simulate the results obtained from the detailed computer codes. The intent is for the networks to provide an adequate simulation of the detailed codes over a significant range of variables while requiring only a small fraction of the computer processing time required by the detailed codes. This enables the authors to integrate the physical response analyses into the probabilistic models in order to estimate the probabilities of various responses

  18. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  19. A Model Independent General Search for new physics in ATLAS

    CERN Document Server

    Amoroso, S; The ATLAS collaboration

    2016-01-01

    We present results of a model-independent general search for new phenomena in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the LHC. The data set corresponds to a total integrated luminosity of 20.3~\\ifb. Event topologies involving isolated electrons, photons and muons, as well as jets, including those identified as originating from \\textit{b}-quarks (\\textit{b}-jets) and missing transverse momentum are investigated. The events are subdivided according to their final states into exclusive event classes. For the 697 classes with a Standard Model expectation greater than 0.1 events, a search algorithm tests the compatibility of data against the Monte Carlo simulated background in three kinematic variables sensitive to new physics effects. No significant deviation is found in data. The number and size of the observed deviations follow the Standard Model expectation obtained from simulated pseudo-experiments.

  20. A Model Independent General Search for new physics in ATLAS

    Science.gov (United States)

    Amoroso, S.; ATLAS Collaboration

    2016-04-01

    We present results of a model-independent general search for new phenomena in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the LHC. The data set corresponds to a total integrated luminosity of 20.3 fb-1. Event topologies involving isolated electrons, photons and muons, as well as jets, including those identified as originating from b-quarks (b-jets) and missing transverse momentum are investigated. The events are subdivided according to their final states into exclusive event classes. For the 697 classes with a Standard Model expectation greater than 0.1 events, a search algorithm tests the compatibility of data against the Monte Carlo simulated background in three kinematic variables sensitive to new physics effects. No significant deviation is found in data. The number and size of the observed deviations follow the Standard Model expectation obtained from simulated pseudo-experiments.

  1. Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins

    International Nuclear Information System (INIS)

    Sveum, P.; Ramstad, S.; Faksness, L.G.; Bech, C.; Johansen, B.

    1995-01-01

    This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems

  2. Thermal modeling: at the crossroads of several subjects of physics

    International Nuclear Information System (INIS)

    1997-01-01

    The modeling of thermal phenomena is of prime importance for the dimensioning of industrial facilities. However, the understanding of thermal processes requires to refer to other subjects of physics like electromagnetism, matter transformation, fluid mechanics, chemistry etc.. The aim of this workshop organized by the industrial electro-thermal engineering section of the French society of thermal engineers is to take stock of current or forthcoming advances in the coupling of thermal engineering codes with electromagnetic, fluid mechanics, chemical and mechanical engineering codes. The modeling of phenomena remains the essential link between the laboratory research of new processes and their industrial developments. From the 9 talks given during this workshop, 2 of them deal with thermal processes in nuclear reactors and fall into the INIS scope and the others concern the modeling of industrial heating or electrical processes and were selected for ETDE. (J.S.)

  3. Physical constraints on models of gamma-ray bursters

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1985-01-01

    This report deals with the constraints that can be placed on models of gamma-ray burst sources based on only the well-established observational facts and physical principles. The premise is developed that the very hard x-ray and gamma-ray continua spectra are well-established aspects of gamma-ray bursts. Recent theoretical work on gamma-ray bursts are summarized with emphasis on the geometrical properties of the models. Constraints on the source models which are implied by the x-ray and gamma-ray spectra are described. The allowed ranges for the luminosity and characteristic dimension for gamma-ray burst sources are shown. Some of the deductions and inferences about the nature of the gamma-ray burst sources are summarized. 67 refs., 3 figs

  4. Modelling of cardiovascular system: development of a hybrid (numerical-physical) model.

    Science.gov (United States)

    Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Mimmo, R; Guaragno, M; Tosti, G; Darowski, M

    2003-12-01

    Physical models of the circulation are used for research, training and for testing of implantable active and passive circulatory prosthetic and assistance devices. However, in comparison with numerical models, they are rigid and expensive. To overcome these limitations, we have developed a model of the circulation based on the merging of a lumped parameter physical model into a numerical one (producing therefore a hybrid). The physical model is limited to the barest essentials and, in this application, developed to test the principle, it is a windkessel representing the systemic arterial tree. The lumped parameters numerical model was developed in LabVIEW environment and represents pulmonary and systemic circulation (except the systemic arterial tree). Based on the equivalence between hydraulic and electrical circuits, this prototype was developed connecting the numerical model to an electrical circuit--the physical model. This specific solution is valid mainly educationally but permits the development of software and the verification of preliminary results without using cumbersome hydraulic circuits. The interfaces between numerical and electrical circuits are set up by a voltage controlled current generator and a voltage controlled voltage generator. The behavior of the model is analyzed based on the ventricular pressure-volume loops and on the time course of arterial and ventricular pressures and flow in different circulatory conditions. The model can represent hemodynamic relationships in different ventricular and circulatory conditions.

  5. PHYSICS

    CERN Multimedia

    J. D'Hondt

    The Electroweak and Top Quark Workshop (16-17th of July) A Workshop on Electroweak and Top Quark Physics, dedicated on early measurements, took place on 16th-17th July. We had more than 40 presentations at the Workshop, which was an important milestone for 2007 physics analyses in the EWK and TOP areas. The Standard Model has been tested empirically by many previous experiments. Observables which are nowadays known with high precision will play a major role for data-based CMS calibrations. A typical example is the use of the Z to monitor electron and muon reconstruction in di-lepton inclusive samples. Another example is the use of the W mass as a constraint for di-jets in the kinematic fitting of top-quark events, providing information on the jet energy scale. The predictions of the Standard Model, for what concerns proton collisions at the LHC, are accurate to a level that the production of W/Z and top-quark events can be used as a powerful tool to commission our experiment. On the other hand the measure...

  6. Effective models of new physics at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Llodra-Perez, J.

    2011-07-01

    With the start of the Large Hadron Collider runs, in 2010, particle physicists will be soon able to have a better understanding of the electroweak symmetry breaking. They might also answer to many experimental and theoretical open questions raised by the Standard Model. Surfing on this really favorable situation, we will first present in this thesis a highly model-independent parametrization in order to characterize the new physics effects on mechanisms of production and decay of the Higgs boson. This original tool will be easily and directly usable in data analysis of CMS and ATLAS, the huge generalist experiments of LHC. It will help indeed to exclude or validate significantly some new theories beyond the Standard Model. In another approach, based on model-building, we considered a scenario of new physics, where the Standard Model fields can propagate in a flat six-dimensional space. The new spatial extra-dimensions will be compactified on a Real Projective Plane. This orbifold is the unique six-dimensional geometry which possesses chiral fermions and a natural Dark Matter candidate. The scalar photon, which is the lightest particle of the first Kaluza-Klein tier, is stabilized by a symmetry relic of the six dimension Lorentz invariance. Using the current constraints from cosmological observations and our first analytical calculation, we derived a characteristic mass range around few hundred GeV for the Kaluza-Klein scalar photon. Therefore the new states of our Universal Extra-Dimension model are light enough to be produced through clear signatures at the Large Hadron Collider. So we used a more sophisticated analysis of particle mass spectrum and couplings, including radiative corrections at one-loop, in order to establish our first predictions and constraints on the expected LHC phenomenology. (author)

  7. Application of experiential learning model using simple physical kit to increase attitude toward physics student senior high school in fluid

    Science.gov (United States)

    Johari, A. H.; Muslim

    2018-05-01

    Experiential learning model using simple physics kit has been implemented to get a picture of improving attitude toward physics senior high school students on Fluid. This study aims to obtain a description of the increase attitudes toward physics senior high school students. The research method used was quasi experiment with non-equivalent pretest -posttest control group design. Two class of tenth grade were involved in this research 28, 26 students respectively experiment class and control class. Increased Attitude toward physics of senior high school students is calculated using an attitude scale consisting of 18 questions. Based on the experimental class test average of 86.5% with the criteria of almost all students there is an increase and in the control class of 53.75% with the criteria of half students. This result shows that the influence of experiential learning model using simple physics kit can improve attitude toward physics compared to experiential learning without using simple physics kit.

  8. The 5th Generation model of Particle Physics

    Science.gov (United States)

    Lach, Theodore

    2009-05-01

    The Standard model of Particle Physics is able to account for all known HEP phenomenon, yet it is not able to predict the masses of the quarks or leptons nor can it explain why they have their respective values. The Checker Board Model (CBM) predicts that there are 5 generation of quarks and leptons and shows a pattern to those masses, namely each three quarks or leptons (within adjacent generations or within a generation) are related to each other by a geometric mean relationship. A 2D structure of the nucleus can be imaged as 2D plate spinning on its axis, it would for all practical circumstances appear to be a 3D object. The masses of the hypothesized ``up'' and ``dn'' quarks determined by the CBM are 237.31 MeV and 42.392 MeV respectively. These new quarks in addition to a lepton of 7.4 MeV make up one of the missing generations. The details of this new particle physics model can be found at the web site: checkerboard.dnsalias.net. The only areas were this theory conflicts with existing dogma is in the value of the mass of the Top quark. The particle found at Fermi Lab must be some sort of composite particle containing Top quarks.

  9. Computational Methods for Physical Model Information Management: Opening the Aperture

    International Nuclear Information System (INIS)

    Moser, F.; Kirgoeze, R.; Gagne, D.; Calle, D.; Murray, J.; Crowley, J.

    2015-01-01

    The volume, velocity and diversity of data available to analysts are growing exponentially, increasing the demands on analysts to stay abreast of developments in their areas of investigation. In parallel to the growth in data, technologies have been developed to efficiently process, store, and effectively extract information suitable for the development of a knowledge base capable of supporting inferential (decision logic) reasoning over semantic spaces. These technologies and methodologies, in effect, allow for automated discovery and mapping of information to specific steps in the Physical Model (Safeguard's standard reference of the Nuclear Fuel Cycle). This paper will describe and demonstrate an integrated service under development at the IAEA that utilizes machine learning techniques, computational natural language models, Bayesian methods and semantic/ontological reasoning capabilities to process large volumes of (streaming) information and associate relevant, discovered information to the appropriate process step in the Physical Model. The paper will detail how this capability will consume open source and controlled information sources and be integrated with other capabilities within the analysis environment, and provide the basis for a semantic knowledge base suitable for hosting future mission focused applications. (author)

  10. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    J. Vacek

    2008-01-01

    Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect. 

  11. Cooling problems of thermal power plants. Physical model studies

    International Nuclear Information System (INIS)

    Neale, L.C.

    1975-01-01

    The Alden Research Laboratories of Worcester Polytechnic Institute has for many years conducted physical model studies, which are normally classified as river or structural hydraulic studies. Since 1952 one aspect of these studies has involved the heated discharge from steam power plants. The early studies on such problems concentrated on improving the thermal efficiency of the system. This was accomplished by minimizing recirculation and by assuring full use of available cold water supplies. With the growing awareness of the impact of thermal power generation on the environment attention has been redirected to reducing the effect of heated discharges on the biology of the receiving body of water. More specifically the efforts of designers and operators of power plants are aimed at meeting or complying with standards established by various governmental agencies. Thus the studies involve developing means of minimizing surface temperatures at an outfall or establishing a local area of higher temperature with limits specified in terms of areas or distances. The physical models used for these studies have varied widely in scope, size, and operating features. These models have covered large areas with both distorted geometric scales and uniform dimensions. Instrumentations has also varied from simple mercury thermometers to computer control and processing of hundreds of thermocouple indicators

  12. Steam generators clogging diagnosis through physical and statistical modelling

    International Nuclear Information System (INIS)

    Girard, S.

    2012-01-01

    Steam generators are massive heat exchangers feeding the turbines of pressurised water nuclear power plants. Internal parts of steam generators foul up with iron oxides which gradually close some holes aimed for the passing of the fluid. This phenomenon called clogging causes safety issues and means to assess it are needed to optimise the maintenance strategy. The approach investigated in this thesis is the analysis of steam generators dynamic behaviour during power transients with a mono dimensional physical model. Two improvements to the model have been implemented. One was taking into account flows orthogonal to the modelling axis, the other was introducing a slip between phases accounting for velocity difference between liquid water and steam. These two elements increased the model's degrees of freedom and improved the adequacy of the simulation to plant data. A new calibration and validation methodology has been proposed to assess the robustness of the model. The initial inverse problem was ill posed: different clogging spatial configurations can produce identical responses. The relative importance of clogging, depending on its localisation, has been estimated by sensitivity analysis with the Sobol' method. The dimension of the model functional output had been previously reduced by principal components analysis. Finally, the input dimension has been reduced by a technique called sliced inverse regression. Based on this new framework, a new diagnosis methodology, more robust and better understood than the existing one, has been proposed. (author)

  13. Physics-based Entry, Descent and Landing Risk Model

    Science.gov (United States)

    Gee, Ken; Huynh, Loc C.; Manning, Ted

    2014-01-01

    A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.

  14. Fundamentals of Cryobiology Physical Phenomena and Mathematical Models

    CERN Document Server

    Zhmakin, Alexander I

    2009-01-01

    The book gives a summary of the state-of-the-art of cryobiology and its applications. The accent is on the underlying physical phenomena, which are common in such opposite applications as cryosurgery and cryoconservation, and the corresponding mathematical models, including numerical ones. The treatment of some more special issues is moved to the appendices. The glossary contains definitions and explanations of the major entities. All the topics considered are well referenced. The book is useful to both biologists and physicits of different level including practioners and graduate students.

  15. Using polarized positrons to probe physics beyond the standard model

    Science.gov (United States)

    Furletova, Yulia; Mantry, Sonny

    2018-05-01

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.

  16. An Application of the Trans-Contextual Model of Motivation in Elementary School Physical Education

    Science.gov (United States)

    Ntovolis, Yannis; Barkoukis, Vassilis; Michelinakis, Evaggelos; Tsorbatzoudis, Haralambos

    2015-01-01

    Elementary school physical education can play a prominent role in promoting children's leisure-time physical activity. The trans-contextual model of motivation has been proven effective in describing the process through which school physical education can affect students' leisure-time physical activity. This model has been tested in secondary…

  17. The physical model of a terraced plot: first results

    Science.gov (United States)

    Perlotto, Chiara; D'Agostino, Vincenzo; Buzzanca, Giacomo

    2017-04-01

    Terrace building have been expanded in the 19th century because of the increased demographic pressure and the need to crop additional areas at steeper slopes. Terraces are also important to regulate the hydrological behavior of the hillslope. Few studies are available in literature on rainfall-runoff processes and flood risk mitigation in terraced areas. Bench terraces, reducing the terrain slope and the length of the overland flow, quantitatively control the runoff flow velocity, facilitating the drainage and thus leading to a reduction of soil erosion. The study of the hydrologic-hydraulic function of terraced slopes is essential in order to evaluate their possible use to cooperate for flood-risk mitigation also preserving the landscape value. This research aims to better focus the times of the hydrological response, which are determined by a hillslope plot bounded by a dry-stone wall, considering both the overland flow and the groundwater. A physical model, characterized by a quasi-real scale, has been built to reproduce the behavior of a 3% outward sloped terrace at bare soil condition. The model consists of a steel metal box (1 m large, 3.3 m long, 2 m high) containing the hillslope terrain. The terrain is equipped with two piezometers, 9 TDR sensors measuring the volumetric water content, a surface spillway at the head releasing the steady discharge under test, a scale at the wall base to measure the outflowing discharge. The experiments deal with different initial moisture condition (non-saturated and saturated), and discharges of 19.5, 12.0 and 5.0 l/min. Each experiment has been replicated, conducting a total number of 12 tests. The volumetric water content analysis produced by the 9 TDR sensors was able to provide a quite satisfactory representation of the soil moisture during the runs. Then, different lag times at the outlet since the inflow initiation were measured both for runoff and groundwater. Moreover, the time of depletion and the piezometer

  18. First experience of vectorizing electromagnetic physics models for detector simulation

    Energy Technology Data Exchange (ETDEWEB)

    Amadio, G. [Sao Paulo State U.; Apostolakis, J. [CERN; Bandieramonte, M. [Catania Astrophys. Observ.; Bianchini, C. [Mackenzie Presbiteriana U.; Bitzes, G. [CERN; Brun, R. [CERN; Canal, P. [Fermilab; Carminati, F. [CERN; Licht, J.de Fine [U. Copenhagen (main); Duhem, L. [Intel, Santa Clara; Elvira, D. [Fermilab; Gheata, A. [CERN; Jun, S. Y. [Fermilab; Lima, G. [Fermilab; Novak, M. [CERN; Presbyterian, M. [Bhabha Atomic Res. Ctr.; Shadura, O. [CERN; Seghal, R. [Bhabha Atomic Res. Ctr.; Wenzel, S. [CERN

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  19. First experience of vectorizing electromagnetic physics models for detector simulation

    International Nuclear Information System (INIS)

    Amadio, G; Bianchini, C; Apostolakis, J; Bitzes, G; Brun, R; Carminati, F; Gheata, A; Novak, M; Shadura, O; Wenzel, S; Bandieramonte, M; Canal, P; Elvira, D; Jun, S Y; Lima, G; Licht, J de Fine; Duhem, L; Presbyterian, M; Seghal, R

    2015-01-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project. (paper)

  20. First experience of vectorizing electromagnetic physics models for detector simulation

    Science.gov (United States)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  1. Combining catchment and instream modelling to assess physical habitat quality

    DEFF Research Database (Denmark)

    Olsen, Martin

    Study objectives After the implementation of EU's Water Framework Directive (WFD) in Denmark ecological impacts from groundwater exploitation on surface waters has to receive additional consideration. Small streams in particular are susceptible to changes in run-off but have only recieved little...... attention in past studies of run-off impact on the quality of stream physical habitats. This study combined catchment and instream models with instream habitat observations to assess the ecological impacts from groundwater exploitation on a small stream. The main objectives of this study was; • to assess...... which factors are controlling the run-off conditions in stream Ledreborg and to what degree • to assess the run-off reference condition of stream Ledreborg where intensive groundwater abstraction has taken place in 67 years using a simple rainfall-run-off-model • to assess how stream run-off affect...

  2. How to Become a Dictator: a Simple Model from Physics

    Science.gov (United States)

    Galam, Serge

    The dynamics of majority rule voting in hierarchical structures is studied using concepts from collective phenomena in physics. In the case of a two-party competition a very simple model to a democratic dictatorship is presented. For each running group, a critical threshold (in the overall support) is found to ensure full and total power at the hierarchy top. However, the respective value of this threshold may vary a lot from one party to the other. It is this difference which creates the dictatorian nature of the democratic voting system. While climbing up the hierarchy, the initial majority-minority ratio can be reversed at the profit of actual running party. Such a reversal is shown to be driven by the natural inertia of being in power. The model could shed light on last century Eastern European Communist collapse.

  3. A Physical – Geometrical Model of an Early Universe

    Directory of Open Access Journals (Sweden)

    Corneliu BERBENTE

    2014-12-01

    Full Text Available A physical-geometrical model for a possible early universe is proposed. One considers an initial singularity containing the energy of the whole universe. The singularity expands as a spherical wave at the speed of light generating space and time. The relations of the special theory of relativity, quantum mechanics and gas kinetics are considered applicable. A structuring of the primary wave is adopted on reasons of geometrical simplicity as well as on satisfying the conservation laws. The evolution is able to lead to particles very close to neutrons as mass and radius. The actually admitted values for the radius and mass of the universe as well as the temperature of the ground radiation (3-5 K can be obtained by using the proposed model.

  4. Physical-chemical model of nanodiamond formation at explosion

    International Nuclear Information System (INIS)

    Chernyshev, A.P.; Lukyanchikov, L.A.; Lyakhov, N.Z.; Pruuel, E.R.; Sheromov, M.A.; Ten, K.A.; Titov, V.M.; Tolochko, B.P.; Zhogin, I.L.; Zubkov, P.I.

    2007-01-01

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state

  5. Physical-chemical model of nanodiamond formation at explosion

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, A.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Lukyanchikov, L.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Lyakhov, N.Z. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Pruuel, E.R. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Sheromov, M.A. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ten, K.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Titov, V.M. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Tolochko, B.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)]. E-mail: b.p.tolochko@inp.nsk.su; Zhogin, I.L. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Zubkov, P.I. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation)

    2007-05-21

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state.

  6. Slush Fund: Modeling the Multiphase Physics of Oceanic Ices

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.

    2016-12-01

    The prevalence of ice interacting with an ocean, both on Earth and throughout the solar system, and its crucial role as the mediator of exchange between the hydrosphere below and atmosphere above, have made quantifying the thermodynamic, chemical, and physical properties of the ice highly desirable. While direct observations of these quantities exist, their scarcity increases with the difficulty of obtainment; the basal surfaces of terrestrial ice shelves remain largely unexplored and the icy interiors of moons like Europa and Enceladus have never been directly observed. Our understanding of these entities thus relies on numerical simulation, and the efficacy of their incorporation into larger systems models is dependent on the accuracy of these initial simulations. One characteristic of seawater, likely shared by the oceans of icy moons, is that it is a solution. As such, when it is frozen a majority of the solute is rejected from the forming ice, concentrating in interstitial pockets and channels, producing a two-component reactive porous media known as a mushy layer. The multiphase nature of this layer affects the evolution and dynamics of the overlying ice mass. Additionally ice can form in the water column and accrete onto the basal surface of these ice masses via buoyancy driven sedimentation as frazil or platelet ice. Numerical models hoping to accurately represent ice-ocean interactions should include the multiphase behavior of these two phenomena. While models of sea ice have begun to incorporate multiphase physics into their capabilities, no models of ice shelves/shells explicitly account for the two-phase behavior of the ice-ocean interface. Here we present a 1D multiphase model of floating oceanic ice that includes parameterizations of both density driven advection within the `mushy layer' and buoyancy driven sedimentation. The model is validated against contemporary sea ice models and observational data. Environmental stresses such as supercooling and

  7. Standard model parameters and the search for new physics

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1988-04-01

    In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs

  8. Application of Physically based landslide susceptibility models in Brazil

    Science.gov (United States)

    Carvalho Vieira, Bianca; Martins, Tiago D.

    2017-04-01

    Shallow landslides and floods are the processes responsible for most material and environmental damages in Brazil. In the last decades, some landslides events induce a high number of deaths (e.g. Over 1000 deaths in one event) and incalculable social and economic losses. Therefore, the prediction of those processes is considered an important tool for land use planning tools. Among different methods the physically based landslide susceptibility models having been widely used in many countries, but in Brazil it is still incipient when compared to other ones, like statistical tools and frequency analyses. Thus, the main objective of this research was to assess the application of some Physically based landslide susceptibility models in Brazil, identifying their main results, the efficiency of susceptibility mapping, parameters used and limitations of the tropical humid environment. In order to achieve that, it was evaluated SHALSTAB, SINMAP and TRIGRS models in some studies in Brazil along with the Geotechnical values, scales, DEM grid resolution and the results based on the analysis of the agreement between predicted susceptibility and the landslide scar's map. Most of the studies in Brazil applied SHALSTAB, SINMAP and to a lesser extent the TRIGRS model. The majority researches are concentrated in the Serra do Mar mountain range, that is a system of escarpments and rugged mountains that extends more than 1,500 km along the southern and southeastern Brazilian coast, and regularly affected by heavy rainfall that generates widespread mass movements. Most part of these studies used conventional topographic maps with scales ranging from 1:2000 to 1:50000 and DEM-grid resolution between 2 and 20m. Regarding the Geotechnical and hydrological values, a few studies use field collected data which could produce more efficient results, as indicated by international literature. Therefore, even though they have enormous potential in the susceptibility mapping, even for comparison

  9. MIANN models in medicinal, physical and organic chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  10. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  11. A deterministic combination of numerical and physical models for coastal waves

    DEFF Research Database (Denmark)

    Zhang, Haiwen

    2006-01-01

    of numerical and physical modelling hence provides an attractive alternative to the use of either tool on it's own. The goal of this project has been to develop a deterministically combined numerical/physical model where the physical wave tank is enclosed in a much larger computational domain, and the two......Numerical and physical modelling are the two main tools available for predicting the influence of water waves on coastlines and structures placed in the near-shore environment. Numerical models can cover large areas at the correct scale, but are limited in their ability to capture strong...... nonlinearities, wave breaking, splash, mixing, and other such complicated physics. Physical models naturally include the real physics (at the model scale), but are limited by the physical size of the facility and must contend with the fact that different physical effects scale differently. An integrated use...

  12. Modelling transport phenomena in a multi-physics context

    Science.gov (United States)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  13. Modelling transport phenomena in a multi-physics context

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  14. Modelling transport phenomena in a multi-physics context

    International Nuclear Information System (INIS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating

  15. A Hybrid Physical and Maximum-Entropy Landslide Susceptibility Model

    Directory of Open Access Journals (Sweden)

    Jerry Davis

    2015-06-01

    Full Text Available The clear need for accurate landslide susceptibility mapping has led to multiple approaches. Physical models are easily interpreted and have high predictive capabilities but rely on spatially explicit and accurate parameterization, which is commonly not possible. Statistical methods can include other factors influencing slope stability such as distance to roads, but rely on good landslide inventories. The maximum entropy (MaxEnt model has been widely and successfully used in species distribution mapping, because data on absence are often uncertain. Similarly, knowledge about the absence of landslides is often limited due to mapping scale or methodology. In this paper a hybrid approach is described that combines the physically-based landslide susceptibility model “Stability INdex MAPping” (SINMAP with MaxEnt. This method is tested in a coastal watershed in Pacifica, CA, USA, with a well-documented landslide history including 3 inventories of 154 scars on 1941 imagery, 142 in 1975, and 253 in 1983. Results indicate that SINMAP alone overestimated susceptibility due to insufficient data on root cohesion. Models were compared using SINMAP stability index (SI or slope alone, and SI or slope in combination with other environmental factors: curvature, a 50-m trail buffer, vegetation, and geology. For 1941 and 1975, using slope alone was similar to using SI alone; however in 1983 SI alone creates an Areas Under the receiver operator Curve (AUC of 0.785, compared with 0.749 for slope alone. In maximum-entropy models created using all environmental factors, the stability index (SI from SINMAP represented the greatest contributions in all three years (1941: 48.1%; 1975: 35.3; and 1983: 48%, with AUC of 0.795, 0822, and 0.859, respectively; however; using slope instead of SI created similar overall AUC values, likely due to the combined effect with plan curvature indicating focused hydrologic inputs and vegetation identifying the effect of root cohesion

  16. Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations

    Science.gov (United States)

    Bang, Youngsuk

    hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.

  17. A Test of the Fundamental Physics Underlying Exoplanet Climate Models

    Science.gov (United States)

    Beatty, Thomas; Keating, Dylan; Cowan, Nick; Gaudi, Scott; Kataria, Tiffany; Fortney, Jonathan; Stassun, Keivan; Collins, Karen; Deming, Drake; Bell, Taylor; Dang, Lisa; Rogers, Tamara; Colon, Knicole

    2018-05-01

    A fundamental issue in how we understand exoplanet atmospheres is the assumed physical behavior underlying 3D global circulation models (GCMs). Modeling an entire 3D atmosphere is a Herculean task, and so in exoplanet GCMs we generally assume that there are no clouds, no magnetic effects, and chemical equilibrium (e.g., Kataria et al 2016). These simplifying assumptions are computationally necessary, but at the same time their exclusion allows for a large theoretical lee-way when comparing to data. Thus, though significant discrepancies exist between almost all a priori GCM predictions and their corresponding observations, these are assumed to be due to the lack of clouds, or atmospheric drag, or chemical disequilibrium, in the models (e.g., Wong et al. 2016, Stevenson et al. 2017, Lewis et al. 2017, Zhang et al. 2018). Since these effects compete with one another and have large uncertainties, this makes tests of the fundamental physics in GCMs extremely difficult. To rectify this, we propose to use 88.4 hours of Spitzer time to observe 3.6um and 4.5um phase curves of the transiting giant planet KELT-9b. KELT-9b has an observed dayside temperature of 4600K (Gaudi et al. 2017), which means that there will very likely be no clouds on the day- or nightside, and is hot enough that the atmosphere should be close to local chemical equilibrium. Additionally, we plan to leverage KELT-9b's high temperature to make the first measurement of global wind speed on an exoplanet (Bell & Cowan 2018), giving a constraint on atmospheric drag and magnetic effects. Combined, this means KELT-9b is close to a real-world GCM, without most of the effects present on lower temperature planets. Additionally, since KELT-9b orbits an extremely bright host star these will be the highest signal-to-noise ratio phase curves taken with Spitzer by more than a factor of two. This gives us a unique opportunity to make the first precise and direct investigation into the fundamental physics that are the

  18. Numerical and physical modelling of oil spreading in broken ice

    International Nuclear Information System (INIS)

    Gjoesteen, Janne K. Oekland

    2002-01-01

    The present work focuses on oil spreading in broken ice and the content of this thesis falls into three categories: 1) The physical and numerical modelling of oil spreading in ice. 2) Ice models and parameters describing the ice cover. 3) Experiments on oil spreading in broken ice. A background study was carried out to investigate existing models for simulating oil in broken ice. Most of them describe motion of oil simply as a function of the ice motion and do not take advantage of the possibilities that recent ice models provide. We decided to choose another direction, starting from scratch with equations describing the flow of oil on top of a water surface. The equations were implemented numerically, including proper boundary conditions to account for the presence of physical restrictions in the form of ice floes in the simulation area. The implementation was designed to be able to apply data on ice motion calculated by an existing dynamic ice model. A first validation of the model was carried out using existing experimental data. As those data were obtained in a different setting, the recorded parameters and set-up of the experiment were not ideal for our purpose. However, we were able to conclude that our model behaviour was reasonable. We have carried out statistical analysis on meteorological data of wind speeds, temperatures, flow sizes and ice thickness to obtain probability distributions describing the parameters. Those data has been collected in the Pechora Sea. Wind and temperature had been recorded for a period of 30-40 years. For this region we also had available Argos satellite data from four buoys drifting in the ice in April-June 1998. The Argos data were carefully analysed to suggest probability distributions and return periods for certain speeds. (Indoor basin tests were carried out to obtain data on spreading of oil in broken ice. A set of 20 tests was conducted, each with different type of oil, ice concentration, slush concentration or ice

  19. Numerical and physical modelling of oil spreading in broken ice

    Energy Technology Data Exchange (ETDEWEB)

    Gjoesteen, Janne K. Oekland

    2002-07-01

    The present work focuses on oil spreading in broken ice and the content of this thesis falls into three categories: 1) The physical and numerical modelling of oil spreading in ice. 2) Ice models and parameters describing the ice cover. 3) Experiments on oil spreading in broken ice. A background study was carried out to investigate existing models for simulating oil in broken ice. Most of them describe motion of oil simply as a function of the ice motion and do not take advantage of the possibilities that recent ice models provide. We decided to choose another direction, starting from scratch with equations describing the flow of oil on top of a water surface. The equations were implemented numerically, including proper boundary conditions to account for the presence of physical restrictions in the form of ice floes in the simulation area. The implementation was designed to be able to apply data on ice motion calculated by an existing dynamic ice model. A first validation of the model was carried out using existing experimental data. As those data were obtained in a different setting, the recorded parameters and set-up of the experiment were not ideal for our purpose. However, we were able to conclude that our model behaviour was reasonable. We have carried out statistical analysis on meteorological data of wind speeds, temperatures, flow sizes and ice thickness to obtain probability distributions describing the parameters. Those data has been collected in the Pechora Sea. Wind and temperature had been recorded for a period of 30-40 years. For this region we also had available Argos satellite data from four buoys drifting in the ice in April-June 1998. The Argos data were carefully analysed to suggest probability distributions and return periods for certain speeds. (Indoor basin tests were carried out to obtain data on spreading of oil in broken ice. A set of 20 tests was conducted, each with different type of oil, ice concentration, slush concentration or ice

  20. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  1. A distance learning model in a physical therapy curriculum.

    Science.gov (United States)

    English, T; Harrison, A L; Hart, A L

    1998-01-01

    In response to the rural health initiative established in 1991, the University of Kentucky has developed an innovative distance learning program of physical therapy instruction that combines classroom lecture and discussion via compressed video technology with laboratory experiences. The authors describe the process of planning, implementing, and evaluating a specific distance learning course in pathomechanics for the professional-level master's-degree physical therapy students at the University of Kentucky. This presentation may serve as a model for teaching distance learning. Descriptions of optimal approaches to preclass preparation, scheduling, course delivery, use of audiovisual aids, use of handout material, and video production are given. Special activities that may enhance or deter the achievement of the learning objectives are outlined, and a problem-solving approach to common problems encountered is presented. An approach to evaluating and comparing course outcomes for the distance learnere is presented. For this particular course, there was no statistically significant difference in the outcome measures utilized to compare the distance learners with the on-site learners.

  2. Neurons compute internal models of the physical laws of motion.

    Science.gov (United States)

    Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David

    2004-07-29

    A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.

  3. Validation and Application of Concentrated Cesium Eluate Physical Property Models

    International Nuclear Information System (INIS)

    Choi, A.S.

    2004-01-01

    This work contained two objectives. To verify the mathematical equations developed for the physical properties of concentrated cesium eluate solutions against experimental test results obtained with simulated feeds. To estimate the physical properties of the radioactive AW-101 cesium eluate at saturation using the validated models. The Hanford River Protection Project (RPP) Hanford Waste Treatment and Immobilization Plant (WTP) is currently being built to extract radioisotopes from the vast inventory of Hanford tank wastes and immobilize them in a silicate glass matrix for eventual disposal at a geological repository. The baseline flowsheet for the pretreatment of supernatant liquid wastes includes removal of cesium using regenerative ion-exchange resins. The loaded cesium ion-exchange columns will be eluted with nitric acid nominally at 0.5 molar, and the resulting eluate solution will be concentrated in a forced-convection evaporator to reduce the storage volume and to recover the acid for reuse. The reboiler pot is initially charged with a concentrated nitric acid solution and kept under a controlled vacuum during feeding so the pot contents would boil at 50 degrees Celsius. The liquid level in the pot is maintained constant by controlling both the feed and boilup rates. The feeding will continue with no bottom removal until the solution in the pot reaches the target endpoint of 80 per cent saturation with respect to any one of the major salt species present

  4. Low order physical models of vertical axis wind turbines

    Science.gov (United States)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2016-11-01

    In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.

  5. A physical model of sensorimotor interactions during locomotion

    Science.gov (United States)

    Klein, Theresa J.; Lewis, M. Anthony

    2012-08-01

    In this paper, we describe the development of a bipedal robot that models the neuromuscular architecture of human walking. The body is based on principles derived from human muscular architecture, using muscles on straps to mimic agonist/antagonist muscle action as well as bifunctional muscles. Load sensors in the straps model Golgi tendon organs. The neural architecture is a central pattern generator (CPG) composed of a half-center oscillator combined with phase-modulated reflexes that is simulated using a spiking neural network. We show that the interaction between the reflex system, body dynamics and CPG results in a walking cycle that is entrained to the dynamics of the system. We also show that the CPG helped stabilize the gait against perturbations relative to a purely reflexive system, and compared the joint trajectories to human walking data. This robot represents a complete physical, or ‘neurorobotic’, model of the system, demonstrating the usefulness of this type of robotics research for investigating the neurophysiological processes underlying walking in humans and animals.

  6. Toward a mineral physics reference model for the Moon's core.

    Science.gov (United States)

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei

    2015-03-31

    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.

  7. A Survey On Physical Methods For Deformation Modeling

    Directory of Open Access Journals (Sweden)

    Huda Basloom

    2015-08-01

    Full Text Available Much effort has been dedicated to achieving realism in the simulation of deformable objects such as cloth hair rubber sea water smoke and human soft tissue in surgical simulation. However the deformable object in these simulations will exhibit physically correct behaviors true to the behavior of real objects when any force is applied to it and sometimes this requires real-time simulation. No matter how complex the geometry is real-time simulation is still required in some applications. Surgery simulation is an example of the need for real-time simulation. This situation has attracted the attention of a wide community of researchers such as computer scientists mechanical engineers biomechanics and computational geometers. This paper presents a review of the existing techniques for modeling deformable objects which have been developed within the last three decades for different computer graphics interactive applications.

  8. Physical activity among employee women based on transtheoretical model.

    Science.gov (United States)

    Mostafavi, Firoozeh; Pirzadeh, Asiyeh

    2015-01-01

    Today, many jobs are associated with the inactivity or sedentary lifestyle. Employees' health will be affected by their depriving of the benefits of physical activity (PA). Therefore, the present study was undertaken to determine the PA among employee women in Isfahan University of Medical Sciences based on the transtheoretical model. This is a cross-sectional study has been performed in Isfahan University of Medical Sciences employee women (2013). A convenience sample of 100 women was selected. Data were collected by validated and reliable questionnaire in three parts (demographics information, PA scale, and TTM constructs). Data were analyzed by SPSS SPSS (version 16.0; SPSS, IBM, Inc, Chicago, IL, USA) and descriptive and analytical statistics such as ANOVA and independent t-test were used. A two-tailed P employee.

  9. PREFACE: Physics-Based Mathematical Models for Nanotechnology

    Science.gov (United States)

    Voon, Lok C. Lew Yan; Melnik, Roderick; Willatzen, Morten

    2008-03-01

    stain-resistant clothing, but with thousands more anticipated. The focus of this interdisciplinary workshop was on determining what kind of new theoretical and computational tools will be needed to advance the science and engineering of nanomaterials and nanostructures. Thanks to the stimulating environment of the BIRS, participants of the workshop had plenty of opportunity to exchange new ideas on one of the main topics of this workshop—physics-based mathematical models for the description of low-dimensional semiconductor nanostructures (LDSNs) that are becoming increasingly important in technological innovations. The main objective of the workshop was to bring together some of the world leading experts in the field from each of the key research communities working on different aspects of LDSNs in order to (a) summarize the state-of-the-art models and computational techniques for modeling LDSNs, (b) identify critical problems of major importance that require solution and prioritize them, (c) analyze feasibility of existing mathematical and computational methodologies for the solution of some such problems, and (d) use some of the workshop working sessions to explore promising approaches in addressing identified challenges. With the possibility of growing practically any shape and size of heterostructures, it becomes essential to understand the mathematical properties of quantum-confined structures including properties of bulk states, interface states, and surface states as a function of shape, size, and internal strain. This workshop put strong emphasis on discussions of the new mathematics needed in nanotechnology especially in relation to geometry and material-combination optimization of device properties such as electronic, optical, and magnetic properties. The problems that were addressed at this meeting are of immense importance in determining such quantum-mechanical properties and the group of invited participants covered very well all the relevant disciplines

  10. Physics-Based Modeling of Meteor Entry and Breakup

    Science.gov (United States)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kang; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; hide

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  11. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  12. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  13. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  14. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  15. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  16. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  17. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    Lechelle, Jacques

    2013-01-01

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O 2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO 2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr 2 O 3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author) [fr

  18. Epidemic models for phase transitions: application to a physical gel

    Science.gov (United States)

    Bilge, A. H.; Pekcan, O.; Kara, S.; Ogrenci, A. S.

    2017-09-01

    Carrageenan gels are characterized by reversible sol-gel and gel-sol transitions under cooling and heating processes and these transitions are approximated by generalized logistic growth curves. We express the transitions of carrageenan-water system, as a representative of reversible physical gels, in terms of a modified Susceptible-Infected-Susceptible epidemic model, as opposed to the Susceptible-Infected-Removed model used to represent the (irreversible) chemical gel formation in the previous work. We locate the gel point Tc of sol-gel and gel-sol transitions and we find that, for the sol-gel transition (cooling), Tc > Tsg (transition temperature), i.e. Tc is earlier in time for all carrageenan contents and moves forward in time and gets closer to Tsg as the carrageenan content increases. For the gel-sol transition (heating), Tc is relatively closer to Tgs; it is greater than Tgs, i.e. later in time for low carrageenan contents and moves backward as carrageenan content increases.

  19. Modelling of thermalhydraulics and reactor physics in simulators

    International Nuclear Information System (INIS)

    Miettinen, J.

    1994-01-01

    The evolution of thermalhydraulic analysis methods for analysis and simulator purposes has brought closer the thermohydraulic models in both application areas. In large analysis codes like RELAP5, TRAC, CATHARE and ATHLET the accuracy for calculating complicated phenomena has been emphasized, but in spite of large development efforts many generic problems remain unsolved. For simulator purposes fast running codes have been developed and these include only limited assessment efforts. But these codes have more simulator friendly features than large codes, like portability and modular code structure. In this respect the simulator experiences with SMABRE code are discussed. Both large analysis codes and special simulator codes have their advances in simulator applications. The evolution of reactor physical calculation methods in simulator applications has started from simple point kinetic models. For analysis purposes accurate 1-D and 3-D codes have been developed being capable for fast and complicated transients. For simulator purposes capability for simulation of instruments has been emphasized, but the dynamic simulation capability has been less significant. The approaches for 3-dimensionality in simulators requires still quite much development, before the analysis accuracy is reached. (orig.) (8 refs., 2 figs., 2 tabs.)

  20. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W

    2013-01-01

    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  1. Modeling Physical Systems Using Vensim PLE Systems Dynamics Software

    Science.gov (United States)

    Widmark, Stephen

    2012-01-01

    Many physical systems are described by time-dependent differential equations or systems of such equations. This makes it difficult for students in an introductory physics class to solve many real-world problems since these students typically have little or no experience with this kind of mathematics. In my high school physics classes, I address…

  2. The Physical Education and Sport Interface: Models, Maxims and Maelstrom

    Science.gov (United States)

    Pope, Clive C.

    2011-01-01

    Within many school contexts physical education and sport have historically been positioned as polemic, and while there has been plenty of rhetoric about physical education as well as sport within education, there has seldom been engaged debate or discussion about the relationship between physical education and sport in school settings. This…

  3. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  4. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  5. Autonomous learning derived from experimental modeling of physical laws.

    Science.gov (United States)

    Grabec, Igor

    2013-05-01

    This article deals with experimental description of physical laws by probability density function of measured data. The Gaussian mixture model specified by representative data and related probabilities is utilized for this purpose. The information cost function of the model is described in terms of information entropy by the sum of the estimation error and redundancy. A new method is proposed for searching the minimum of the cost function. The number of the resulting prototype data depends on the accuracy of measurement. Their adaptation resembles a self-organized, highly non-linear cooperation between neurons in an artificial NN. A prototype datum corresponds to the memorized content, while the related probability corresponds to the excitability of the neuron. The method does not include any free parameters except objectively determined accuracy of the measurement system and is therefore convenient for autonomous execution. Since representative data are generally less numerous than the measured ones, the method is applicable for a rather general and objective compression of overwhelming experimental data in automatic data-acquisition systems. Such compression is demonstrated on analytically determined random noise and measured traffic flow data. The flow over a day is described by a vector of 24 components. The set of 365 vectors measured over one year is compressed by autonomous learning to just 4 representative vectors and related probabilities. These vectors represent the flow in normal working days and weekends or holidays, while the related probabilities correspond to relative frequencies of these days. This example reveals that autonomous learning yields a new basis for interpretation of representative data and the optimal model structure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Physically based modelling and optimal operation for product drying during post-harvest processing.

    NARCIS (Netherlands)

    Boxtel, van A.J.B.; Lukasse, L.; Farkas, I.; Rendik, Z.

    1996-01-01

    The development of new procedures for crop production and post-harvest processing requires models. Models based on physical backgrounds are most useful for this purpose because of their extrapolation potential. An optimal procedure is developed for alfalfa drying using a physical model. The model

  7. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2016-01-01

    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  8. Statistical Uncertainty Quantification of Physical Models during Reflood of LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Deog Yeon; Seul, Kwang Won; Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The use of the best-estimate (BE) computer codes in safety analysis for loss-of-coolant accident (LOCA) is the major trend in many countries to reduce the significant conservatism. A key feature of this BE evaluation requires the licensee to quantify the uncertainty of the calculations. So, it is very important how to determine the uncertainty distribution before conducting the uncertainty evaluation. Uncertainty includes those of physical model and correlation, plant operational parameters, and so forth. The quantification process is often performed mainly by subjective expert judgment or obtained from reference documents of computer code. In this respect, more mathematical methods are needed to reasonably determine the uncertainty ranges. The first uncertainty quantification are performed with the various increments for two influential uncertainty parameters to get the calculated responses and their derivatives. The different data set with two influential uncertainty parameters for FEBA tests, are chosen applying more strict criteria for selecting responses and their derivatives, which may be considered as the user’s effect in the CIRCÉ applications. Finally, three influential uncertainty parameters are considered to study the effect on the number of uncertainty parameters due to the limitation of CIRCÉ method. With the determined uncertainty ranges, uncertainty evaluations for FEBA tests are performed to check whether the experimental responses such as the cladding temperature or pressure drop are inside the limits of calculated uncertainty bounds. A confirmation step will be performed to evaluate the quality of the information in the case of the different reflooding PERICLES experiments. The uncertainty ranges of physical model in MARS-KS thermal-hydraulic code during the reflooding were quantified by CIRCÉ method using FEBA experiment tests, instead of expert judgment. Also, through the uncertainty evaluation for FEBA and PERICLES tests, it was confirmed

  9. PHYSICS

    CERN Multimedia

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  10. Creating safer coastal and port infrastructure with innovative physical and numerical modelling

    CSIR Research Space (South Africa)

    Tulsi, K

    2015-10-01

    Full Text Available Infrastructure with Innovative Physical and Numerical Modelling Kishan Tulsi  Physical and Numerical modelling  Breakwater Monitoring  Armour track  Vessel manoeuvring simulations for safe port design and operations  Simflex software... – Integrated Port Operations Support System  Virtual Buoy Physical modelling Numerical modelling Armour Track Armour Track Armour Track Armour Track Armour track using 3D data points Ship manoeuvring simulations: Ship Manoeuvring simulations Port...

  11. The Butterfly Effect: Correlations Between Modeling in Nuclear-Particle Physics and Socioeconomic Factors

    CERN Document Server

    Pia, Maria Grazia; Bell, Zane W.; Dressendorfer, Paul V.

    2010-01-01

    A scientometric analysis has been performed on selected physics journals to estimate the presence of simulation and modeling in physics literature in the past fifty years. Correlations between the observed trends and several social and economical factors have been evaluated.

  12. Modeling the Central California Coastal Upwelling System: Physics, Ecosystems and Resource Management

    National Research Council Canada - National Science Library

    Chavez, Francisco P; Barber, Richard T; Chai, Fei; Chao, Yi; De Vogelaere, Andrew P; Kindle, John C; Maffione, Robert A; Marinovic, Baldo; McWilliams, James C; Paduan, Jeffrey D

    2003-01-01

    To develop a coupled physical-biological model that can utilize available data to accurately simulate physical, chemical and biological processes within the Monterey Bay National Marine Sanctuary (MBNMS...

  13. Physical model of the nuclear fuel cycle simulation code SITON

    International Nuclear Information System (INIS)

    Brolly, Á.; Halász, M.; Szieberth, M.; Nagy, L.; Fehér, S.

    2017-01-01

    Finding answers to main challenges of nuclear energy, like resource utilisation or waste minimisation, calls for transient fuel cycle modelling. This motivation led to the development of SITON v2.0 a dynamic, discrete facilities/discrete materials and also discrete events fuel cycle simulation code. The physical model of the code includes the most important fuel cycle facilities. Facilities can be connected flexibly; their number is not limited. Material transfer between facilities is tracked by taking into account 52 nuclides. Composition of discharged fuel is determined using burnup tables except for the 2400 MW thermal power design of the Gas-Cooled Fast Reactor (GFR2400). For the GFR2400 the FITXS method is used, which fits one-group microscopic cross-sections as polynomial functions of the fuel composition. This method is accurate and fast enough to be used in fuel cycle simulations. Operation of the fuel cycle, i.e. material requests and transfers, is described by discrete events. In advance of the simulation reactors and plants formulate their requests as events; triggered requests are tracked. After that, the events are simulated, i.e. the requests are fulfilled and composition of the material flow between facilities is calculated. To demonstrate capabilities of SITON v2.0, a hypothetical transient fuel cycle is presented in which a 4-unit VVER-440 reactor park was replaced by one GFR2400 that recycled its own spent fuel. It is found that the GFR2400 can be started if the cooling time of its spent fuel is 2 years. However, if the cooling time is 5 years it needs an additional plutonium feed, which can be covered from the spent fuel of a Generation III light water reactor.

  14. Statistical physics of medical diagnostics: Study of a probabilistic model.

    Science.gov (United States)

    Mashaghi, Alireza; Ramezanpour, Abolfazl

    2018-03-01

    We study a diagnostic strategy which is based on the anticipation of the diagnostic process by simulation of the dynamical process starting from the initial findings. We show that such a strategy could result in more accurate diagnoses compared to a strategy that is solely based on the direct implications of the initial observations. We demonstrate this by employing the mean-field approximation of statistical physics to compute the posterior disease probabilities for a given subset of observed signs (symptoms) in a probabilistic model of signs and diseases. A Monte Carlo optimization algorithm is then used to maximize an objective function of the sequence of observations, which favors the more decisive observations resulting in more polarized disease probabilities. We see how the observed signs change the nature of the macroscopic (Gibbs) states of the sign and disease probability distributions. The structure of these macroscopic states in the configuration space of the variables affects the quality of any approximate inference algorithm (so the diagnostic performance) which tries to estimate the sign-disease marginal probabilities. In particular, we find that the simulation (or extrapolation) of the diagnostic process is helpful when the disease landscape is not trivial and the system undergoes a phase transition to an ordered phase.

  15. Statistical physics of medical diagnostics: Study of a probabilistic model

    Science.gov (United States)

    Mashaghi, Alireza; Ramezanpour, Abolfazl

    2018-03-01

    We study a diagnostic strategy which is based on the anticipation of the diagnostic process by simulation of the dynamical process starting from the initial findings. We show that such a strategy could result in more accurate diagnoses compared to a strategy that is solely based on the direct implications of the initial observations. We demonstrate this by employing the mean-field approximation of statistical physics to compute the posterior disease probabilities for a given subset of observed signs (symptoms) in a probabilistic model of signs and diseases. A Monte Carlo optimization algorithm is then used to maximize an objective function of the sequence of observations, which favors the more decisive observations resulting in more polarized disease probabilities. We see how the observed signs change the nature of the macroscopic (Gibbs) states of the sign and disease probability distributions. The structure of these macroscopic states in the configuration space of the variables affects the quality of any approximate inference algorithm (so the diagnostic performance) which tries to estimate the sign-disease marginal probabilities. In particular, we find that the simulation (or extrapolation) of the diagnostic process is helpful when the disease landscape is not trivial and the system undergoes a phase transition to an ordered phase.

  16. A Physical Model of Mass Ejection in Failed Supernovae

    Science.gov (United States)

    Coughlin, Eric R.; Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel

    2018-03-01

    During the core collapse of massive stars, the formation of the protoneutron star is accompanied by the emission of a significant amount of mass-energy (˜0.3 M⊙) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova. We analytically investigate this mass-loss-induced wave generation and propagation. Heuristic arguments provide an accurate estimate of the amount of energy contained in the outgoing sound pulse. We then develop a general formalism for analyzing the response of the star to centrally concentrated mass loss in linear perturbation theory. To build intuition, we apply this formalism to polytropic stellar models, finding qualitative and quantitative agreement with simulations and heuristic arguments. We also apply our results to realistic pre-collapse massive star progenitors (both giants and compact stars). Our analytic results for the sound pulse energy, excitation radius, and steepening in the stellar envelope are in good agreement with full time-dependent hydrodynamic simulations. We show that prior to the sound pulses arrival at the stellar photosphere, the photosphere has already reached velocities ˜20 - 100% of the local sound speed, thus likely modestly decreasing the stellar effective temperature prior to the star disappearing. Our results provide important constraints on the physical properties and observational appearance of failed supernovae.

  17. Machine learning, computer vision, and probabilistic models in jet physics

    CERN Multimedia

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  18. Gravitational wave background from Standard Model physics: qualitative features

    International Nuclear Information System (INIS)

    Ghiglieri, J.; Laine, M.

    2015-01-01

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors

  19. Dividing Streamline Formation Channel Confluences by Physical Modeling

    Directory of Open Access Journals (Sweden)

    Minarni Nur Trilita

    2010-02-01

    Full Text Available Confluence channels are often found in open channel network system and is the most important element. The incoming flow from the branch channel to the main cause various forms and cause vortex flow. Phenomenon can cause erosion of the side wall of the channel, the bed channel scour and sedimentation in the downstream confluence channel. To control these problems needed research into the current width of the branch channel. The incoming flow from the branch channel to the main channel flow bounded by a line distributors (dividing streamline. In this paper, the wide dividing streamline observed in the laboratory using a physical model of two open channels, a square that formed an angle of 30º. Observations were made with a variety of flow coming from each channel. The results obtained in the laboratory observation that the width of dividing streamline flow is influenced by the discharge ratio between the channel branch with the main channel. While the results of a comparison with previous studies showing that the observation in the laboratory is smaller than the results of previous research.

  20. A physical model of mass ejection in failed supernovae

    Science.gov (United States)

    Coughlin, Eric R.; Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel

    2018-06-01

    During the core collapse of massive stars, the formation of the proto-neutron star is accompanied by the emission of a significant amount of mass energy (˜0.3 M⊙) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova. We analytically investigate this mass-loss-induced wave generation and propagation. Heuristic arguments provide an accurate estimate of the amount of energy contained in the outgoing sound pulse. We then develop a general formalism for analysing the response of the star to centrally concentrated mass loss in linear perturbation theory. To build intuition, we apply this formalism to polytropic stellar models, finding qualitative and quantitative agreement with simulations and heuristic arguments. We also apply our results to realistic pre-collapse massive star progenitors (both giants and compact stars). Our analytic results for the sound pulse energy, excitation radius, and steepening in the stellar envelope are in good agreement with full time-dependent hydrodynamic simulations. We show that prior to the sound pulses arrival at the stellar photosphere, the photosphere has already reached velocities ˜ 20-100 per cent of the local sound speed, thus likely modestly decreasing the stellar effective temperature prior to the star disappearing. Our results provide important constraints on the physical properties and observational appearance of failed supernovae.

  1. SNAP: a tool for nuclear physical protection system modeling

    International Nuclear Information System (INIS)

    Engi, D.; Grant, F.H. III.

    1979-10-01

    Nuclear safeguards systems are concerned, in part, with the physical protection of nuclear materials. The function of a physical protection system is to define the facility against adversary activities which could lead to theft of nuclear material or sabotage resulting in a radiological release. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system analysis. This paper describes a detailed application of SNAP to a hypothetical nuclear facility

  2. Physical modelling and the poroelastic model with application to fluid detection in a VTI medium

    International Nuclear Information System (INIS)

    Li, Shengjie

    2013-01-01

    In this paper, both poroelasticity theory and pre-stack inversions have been combined to generate a flexible way to derive an effective fluid factor, which is then used to identify the presence of the hydrocarbon in weakly anisotropic VTI reservoirs. The effective fluid factor has been derived by using an approximate fluid substitution equation for anisotropic VTI media. The approximate equation provides a means of performing fluid substitution for elastic moduli along the vertical symmetry axis of a VTI medium with fewer elastic moduli. The effective fluid factor can be used to analyse the sensitivity of seismic attributes to fluid content. In order to examine the effectiveness of the effective fluid factor, an anisotropic physical model has been constructed. The rock properties of artificial sandstone used as a reservoir building material are properly selected by using an empirical model and Gassmann's equation. An effort is made to ensure the physical modelling data represent the 'true’ response of different fluid-filled sands. The fluid detection method is then applied to interpret the inverted seismic impedance obtained from physical modelling seismic data with some known gas-sands and wet-sands. The results shows that the interpretive resolution of seismic fluid detection has been dramatically improved by using the effective fluid factor. In addition, more information on lateral changes in fluid content can be distinguished. This study has demonstrated the potential of this method in detecting different fluid content in weakly anisotropic VTI reservoirs. (paper)

  3. The use of physical model simulation to emulate an AGV material handling system

    International Nuclear Information System (INIS)

    Hurley, R.G.; Coffman, P.E.; Dixon, J.R.; Walacavage, J.G.

    1987-01-01

    This paper describes an application of physical modeling to the simulation of a prototype AGV (Automatic Guided Vehicle) material handling system. Physical modeling is the study of complex automated manufacturing and material handling systems through the use of small scale components controlled by mini and/or microcomputers. By modeling the mechanical operations of the proposed AGV material handling system, it was determined that control algorithms and AGV dispatch rules could be developed and evaluated. This paper presents a brief explanation of physical modeling as a simulation tool and addresses in detail the development of the control algorithm, dispatching rules, and a prototype physical model of a flexible machining system

  4. Flavour alignment in physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Braeuninger, Carolin Barbara

    2012-11-21

    There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple

  5. Flavour alignment in physics beyond the standard model

    International Nuclear Information System (INIS)

    Braeuninger, Carolin Barbara

    2012-01-01

    There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple extension of the Standard

  6. Using Virtual Pets to Promote Physical Activity in Children: An Application of the Youth Physical Activity Promotion Model.

    Science.gov (United States)

    Ahn, Sun Joo Grace; Johnsen, Kyle; Robertson, Tom; Moore, James; Brown, Scott; Marable, Amanda; Basu, Aryabrata

    2015-01-01

    A virtual pet was developed based on the framework of the youth physical activity promotion model and tested as a vehicle for promoting physical activity in children. Children in the treatment group interacted with the virtual pet for three days, setting physical activity goals and teaching tricks to the virtual pet when their goals were met. The virtual pet became more fit and learned more sophisticated tricks as the children achieved activity goals. Children in the control group interacted with a computer system presenting equivalent features but without the virtual pet. Physical activity and goal attainment were evaluated using activity monitors. Results indicated that children in the treatment group engaged in 1.09 more hours of daily physical activity (156% more) than did those in the control group. Physical activity self-efficacy and beliefs served as mediators driving this increase in activity. Children that interacted with the virtual pet also expressed higher intentions than children in the control group to continue physical activity in the future. Theoretical and practical potentials of using a virtual pet to systematically promote physical activity in children are discussed.

  7. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  8. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  9. Advanced Computing Tools and Models for Accelerator Physics

    International Nuclear Information System (INIS)

    Ryne, Robert; Ryne, Robert D.

    2008-01-01

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics

  10. Linear Collider Physics Resource Book for Snowmass 2001, 3 Studies of Exotic and Standard Model Physics

    CERN Document Server

    Abe, T.; Asner, D.; Baer, H.; Bagger, J.; Balazs, C.; Baltay, C.; Barker, T.; Barklow, T.; Barron, J.; Baur, U.; Beach, R.; Bellwied, R.; Bigi, I.; Blochinger, C.; Boege, S.; Bolton, T.; Bower, G.; Brau, J.; Breidenbach, M.; Brodsky, S.J.; Burke, D.; Burrows, P.; Butler, J.N.; Chakraborty, D.; Cheng, H.C.; Chertok, M.; Choi, S.Y.; Cinabro, D.; Corcella, G.; Cordero, R.K.; Danielson, N.; Davoudiasl, H.; Dawson, S.; Denner, A.; Derwent, P.; Diaz, M.A.; Dima, M.; Dittmaier, S.; Dixit, M.; Dixon, L.; Dobrescu, B.; Doncheski, M.A.; Duckwitz, M.; Dunn, J.; Early, J.; Erler, J.; Feng, J.L.; Ferretti, C.; Fisk, H.E.; Fraas, H.; Freitas, A.; Frey, R.; Gerdes, D.; Gibbons, L.; Godbole, R.; Godfrey, S.; Goodman, E.; Gopalakrishna, S.; Graf, N.; Grannis, P.D.; Gronberg, J.; Gunion, J.; Haber, H.E.; Han, T.; Hawkings, R.; Hearty, C.; Heinemeyer, S.; Hertzbach, S.S.; Heusch, C.; Hewett, J.; Hikasa, K.; Hiller, G.; Hoang, A.; Hollebeek, R.; Iwasaki, M.; Jacobsen, R.; Jaros, J.; Juste, A.; Kadyk, J.; Kalinowski, J.; Kalyniak, P.; Kamon, T.; Karlen, D.; Keller, L.; Koltick, D.; Kribs, G.; Kronfeld, A.; Leike, A.; Logan, H.E.; Lykken, J.; Macesanu, C.; Magill, S.; Marciano, W.; Markiewicz, T.W.; Martin, S.; Maruyama, T.; Matchev, K.; Moenig, K.; Montgomery, H.E.; Moortgat-Pick, G.; Moreau, G.; Mrenna, S.; Murakami, B.; Murayama, H.; Nauenberg, U.; Neal, H.; Newman, B.; Nojiri, M.; Orr, L.H.; Paige, F.; Para, A.; Pathak, S.; Peskin, M.E.; Plehn, T.; Porter, F.; Potter, C.; Prescott, C.; Rainwater, D.; Raubenheimer, T.; Repond, J.; Riles, K.; Rizzo, T.; Ronan, M.; Rosenberg, L.; Rosner, J.; Roth, M.; Rowson, P.; Schumm, B.; Seppala, L.; Seryi, A.; Siegrist, J.; Sinev, N.; Skulina, K.; Sterner, K.L.; Stewart, I.; Su, S.; Tata, X.; Telnov, V.; Teubner, T.; Tkaczyk, S.; Turcot, A.S.; van Bibber, K.; van Kooten, R.; Vega, R.; Wackeroth, D.; Wagner, D.; Waite, A.; Walkowiak, W.; Weiglein, G.; Wells, J.D.; W. Wester, III; Williams, B.; Wilson, G.; Wilson, R.; Winn, D.; Woods, M.; Wudka, J.; Yakovlev, O.; Yamamoto, H.; Yang, H.J.

    2001-01-01

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.

  11. A Ball Pool Model to Illustrate Higgs Physics to the Public

    Science.gov (United States)

    Organtini, Giovanni

    2017-01-01

    A simple model is presented to explain Higgs boson physics to the grand public. The model consists of a children's ball pool representing a Universe filled with a certain amount of the Higgs field. The model is suitable for usage as a hands-on tool in scientific exhibits and provides a clear explanation of almost all the aspects of the physics of…

  12. Toward University Modeling Instruction--Biology: Adapting Curricular Frameworks from Physics to Biology

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER)…

  13. Effect Of Inquiry Learning Model And Motivation On Physics Outcomes Learning Students

    OpenAIRE

    Pardede, Dahlia Megawati; Manurung, Sondang Rina

    2016-01-01

    The purposes of the research are: (a) to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b) to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c) to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a) there are differences in physical students learning outcomes are taugh...

  14. PHYSICS

    CERN Multimedia

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  15. Sorption isotherms: A review on physical bases, modeling and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France) and Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France)]. E-mail: guillaumelimousin@yahoo.fr; Gaudet, J.-P. [Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France); Charlet, L. [Laboratoire de Geophysique Interne et Techtonophysique - CNRS-IRD-LCPC-UJF-Universite de Savoie, BP 53, 38041 Grenoble Cedex (France); Szenknect, S. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Barthes, V. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Krimissa, M. [Electricite de France, Division Recherche et Developpement, Laboratoire National d' Hydraulique et d' Environnement - P78, 6 quai Watier, 78401 Chatou (France)

    2007-02-15

    The retention (or release) of a liquid compound on a solid controls the mobility of many substances in the environment and has been quantified in terms of the 'sorption isotherm'. This paper does not review the different sorption mechanisms. It presents the physical bases underlying the definition of a sorption isotherm, different empirical or mechanistic models, and details several experimental methods to acquire a sorption isotherm. For appropriate measurements and interpretations of isotherm data, this review emphasizes 4 main points: (i) the adsorption (or desorption) isotherm does not provide automatically any information about the reactions involved in the sorption phenomenon. So, mechanistic interpretations must be carefully verified. (ii) Among studies, the range of reaction times is extremely wide and this can lead to misinterpretations regarding the irreversibility of the reaction: a pseudo-hysteresis of the release compared with the retention is often observed. The comparison between the mean characteristic time of the reaction and the mean residence time of the mobile phase in the natural system allows knowing if the studied retention/release phenomenon should be considered as an instantaneous reversible, almost irreversible phenomenon, or if reaction kinetics must be taken into account. (iii) When the concentration of the retained substance is low enough, the composition of the bulk solution remains constant and a single-species isotherm is often sufficient, although it remains strongly dependent on the background medium. At higher concentrations, sorption may be driven by the competition between several species that affect the composition of the bulk solution. (iv) The measurement method has a great influence. Particularly, the background ionic medium, the solid/solution ratio and the use of flow-through or closed reactor are of major importance. The chosen method should balance easy-to-use features and representativity of the studied

  16. Physical modeling of glacier contact with bedrock (experiment

    Directory of Open Access Journals (Sweden)

    V. P. Epifanov

    2013-01-01

    Full Text Available Studies of the adhesive strength of glacial ice connection with bedrock has been studied using the analysis of the amplitude-frequency characteristics of acoustic emission (AE in the frequency range from 15 Hz to 20,000 Hz. Identification of signal source on bed is based on physical modeling of adhesive ice fracture at the complex shear and patterns of elastic waves propagation in the ice using data on ice thickness of the ice and its acoustic properties. The experimental dependence of the ice and serpentinite substrate adhesive strength with temperature (from 0 °C to −30 °C has been obtained at constraint axial shear. It is shown that the destruction of adhesive ice contact with substrate begins long before the maximum shear stress achieved, and AE signals in the coordinates amplitude-frequency-time have been obtained for the for static friction and sliding parts of deformation curves. Influence of shear to normal stresses ratio on the adhesive ice/substrate strength has been shown. Influence of the ratio of longitudinal and transverse shear stresses on the adhesive bond strength of ice to the substrate has been shown. The natural glacier spectra revealed periodic reduction of AE signals frequency in the middle range of frequencies. The similar effect of AE signals shifting along the frequency axis to the low frequency domain was obtained by testing of freshwater ice samples and related with expansion of the destruction scale. Practical application of the strain AE results for remote determination of the local glacial stability and for studies of glacier ice mechanics is discussed.

  17. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  18. Measurement of Function Post Hip Fracture: Testing a Comprehensive Measurement Model of Physical Function.

    Science.gov (United States)

    Resnick, Barbara; Gruber-Baldini, Ann L; Hicks, Gregory; Ostir, Glen; Klinedinst, N Jennifer; Orwig, Denise; Magaziner, Jay

    2016-07-01

    Measurement of physical function post hip fracture has been conceptualized using multiple different measures. This study tested a comprehensive measurement model of physical function. This was a descriptive secondary data analysis including 168 men and 171 women post hip fracture. Using structural equation modeling, a measurement model of physical function which included grip strength, activities of daily living, instrumental activities of daily living, and performance was tested for fit at 2 and 12 months post hip fracture, and among male and female participants. Validity of the measurement model of physical function was evaluated based on how well the model explained physical activity, exercise, and social activities post hip fracture. The measurement model of physical function fit the data. The amount of variance the model or individual factors of the model explained varied depending on the activity. Decisions about the ideal way in which to measure physical function should be based on outcomes considered and participants. The measurement model of physical function is a reliable and valid method to comprehensively measure physical function across the hip fracture recovery trajectory. © 2015 Association of Rehabilitation Nurses.

  19. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    Science.gov (United States)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  20. Probing physics beyond the standard model in diatomic molecules

    International Nuclear Information System (INIS)

    Denis, M.

    2017-01-01

    Nowadays, the incompleteness of the Standard Model of particles (SM) is largely acknowledged. One of its most obvious shortcomings is the lack of explanation for the huge surplus of matter over antimatter in the universe, the so-called baryon asymmetry of the universe. New CP (charge conjugation and spatial parity) violations absent in the SM are assumed to be responsible for this asymmetry. Such a violation could be observed, in ordinary matter through a set of interactions violating both parity and time-reversal symmetries (P, T -odd) among which the preponderant ones are the electron Electric Dipole Moment (eEDM), the electron-nucleon scalar-pseudoscalar (enSPS) and the nuclear magnetic quadrupole moment (nMQM) interactions. Hence, an experimental evidence of a non-zero P, T -odd interaction constant would be a probe of this New Physics beyond the Standard Model. The calculation of the corresponding molecular parameters is performed by making use of an elaborate four-component relativistic configuration interaction approach in polar diatomic molecules containing an actinide, that are particularly adequate systems for eEDM experiments, such as ThO that allowed for assigning the most constraining upper bound on the eEDM and ThF"+ that will be used in a forthcoming experiment. Those results will be of crucial importance in the interpretation of the measurements since the fundamental constants can only be evaluated if one combines both experimental energy shift measurements and theoretical molecular parameters. This manuscript proceeds as follows, after an introduction to the general background of the search of CP-violations and its consequences for the understanding of the Universe (Chapter 1), a presentation of the underlying theory of the evidence of such violation in ordinary matter, namely the P, T -odd sources of the Electric Dipole Moment of a many-electron system, as well as the relevant molecular parameters is given in Chapter 2. A similar introduction to

  1. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  2. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    Science.gov (United States)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7Mental Modelling Ability (M-MMA) for 3Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.

  3. An introduction to particle physics and the standard model

    CERN Document Server

    Mann, Robert

    2010-01-01

    … thoroughly recommended for a final-year specialist or first-year postgraduate study level especially for those engaged in experimental high energy physics research. The author has performed an excellent service in making accessible the language and results of field theory applied to elementary particle physics.-John J. Quenby, Contemporary Physics, 52, 2011The first chapter shows how clearly the author can write and even though the subject matter gets more complex through the book, the clarity continues. … giv[es] readers greater insights into how the maths and the reality match (or don't ma

  4. Physics beyond the standard model in the non-perturbative unification scheme

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    The non-perturbative unification scenario predicts reasonably well the low energy gauge couplings of the standard model. Agreement with the measured low energy couplings is obtained by assuming certain kind of physics beyond the standard model. A number of possibilities for physics beyond the standard model is examined. The best candidates so far are the standard model with eight fermionic families and a similar number of Higgs doublets, and the supersymmetric standard model with five families. (author)

  5. Multi-physics modeling in electrical engineering. Application to a magneto-thermo-mechanical model

    International Nuclear Information System (INIS)

    Journeaux, Antoine

    2013-01-01

    The modeling of multi-physics problems in electrical engineering is presented, with an application to the numerical computation of vibrations within the end windings of large turbo-generators. This study is divided into four parts: the impositions of current density, the computation of local forces, the transfer of data between disconnected meshes, and the computation of multi-physics problems using weak coupling, Firstly, the representation of current density within numerical models is presented. The process is decomposed into two stages: the construction of the initial current density, and the determination of a divergence-free field. The representation of complex geometries makes the use of analytical methods impossible. A method based on an electrokinetic problem is used and a fully geometrical method are tested. The geometrical method produces results closer to the real current density than the electrokinetic problem. Methods to compute forces are numerous, and this study focuses on the virtual work principle and the Laplace force considering the recommendations of the literature. Laplace force is highly accurate but is applicable only if the permeability is uniform. The virtual work principle is finally preferred as it appears as the most general way to compute local forces. Mesh-to-mesh data transfer methods are developed to compute multi-physics models using multiples meshes adapted to the subproblems and multiple computational software. The interpolation method, a locally conservative projection, and an orthogonal projection are compared. Interpolation method is said to be fast but highly diffusive, and the orthogonal projections are highly accurate. The locally conservative method produces results similar to the orthogonal projection but avoid the assembly of linear systems. The numerical computation of multi-physical problems using multiple meshes and projections is then presented. However for a given class of problems, there is not an unique coupling

  6. Voices Physics awaits new options as Standard Model idles

    CERN Document Server

    Overbye, Dennis

    2006-01-01

    Author and New York Times deputy science editor Dennis Overbye says experimental clues have yet to produce a "tsunami moment" for revelations beyond the structure of physics formulated in the 1970s. But physicists are hoping for something bizarre.

  7. A Novel Hypothesis for Quantum Physics, Model with Telegraphs Equation

    Czech Academy of Sciences Publication Activity Database

    Fiala, P.; Bartušek, Karel; Steinbauer, M.

    2008-01-01

    Roč. 4, č. 4 (2008), s. 425-428 ISSN 1931-7360 Institutional research plan: CEZ:AV0Z20650511 Keywords : quantum physics * material wave the ory * MWT Subject RIV: JA - Electron ics ; Optoelectronics, Electrical Engineering

  8. Greenhouse climate : from physical processes to a dynamic model

    OpenAIRE

    Bot, G.P.A.

    1983-01-01

    In this thesis greenhouse climate has been studied as the set of environmental conditions in a greenhouse in so far as they affect crop growth and development. In chapter 2 this set has been defined in terms of temperatures and vapour pressures. Moreover we have indicated which physical processes co-operate in the greenhouse. So the dependency of the greenhouse climate on the outside weather, the physical properties of the greenhouse construction and the way ventilation and heating is perform...

  9. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  10. The influence of instructional interactions on students’ mental models about the quantization of physical observables: a modern physics course case

    Science.gov (United States)

    Didiş Körhasan, Nilüfer; Eryılmaz, Ali; Erkoç, Şakir

    2016-01-01

    Mental models are coherently organized knowledge structures used to explain phenomena. They interact with social environments and evolve with the interaction. Lacking daily experience with phenomena, the social interaction gains much more importance. In this part of our multiphase study, we investigate how instructional interactions influenced students’ mental models about the quantization of physical observables. Class observations and interviews were analysed by studying students’ mental models constructed in a modern physics course during an academic semester. The research revealed that students’ mental models were influenced by (1) the manner of teaching, including instructional methodologies and content specific techniques used by the instructor, (2) order of the topics and familiarity with concepts, and (3) peers.

  11. A physically-based constitutive model for SA508-III steel: Modeling and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Dingqian [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China); Chen, Fei, E-mail: feechn@gmail.com [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China); Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Cui, Zhenshan, E-mail: cuizs@sjtu.edu.cn [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China)

    2015-05-14

    Due to its good toughness and high weldability, SA508-III steel has been widely used in the components manufacturing of reactor pressure vessels (RPV) and steam generators (SG). In this study, the hot deformation behaviors of SA508-III steel are investigated by isothermal hot compression tests with forming temperature of (950–1250)°C and strain rate of (0.001–0.1)s{sup −1}, and the corresponding flow stress curves are obtained. According to the experimental results, quantitative analysis of work hardening and dynamic softening behaviors is presented. The critical stress and critical strain for initiation of dynamic recrystallization are calculated by setting the second derivative of the third order polynomial. Based on the classical stress–dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of SA508-III steel. Comparisons between the predicted and measured flow stress indicate that the established physically-based constitutive model can accurately characterize the hot deformations for the steel. Furthermore, a successful numerical simulation of the industrial upsetting process is carried out by implementing the developed constitutive model into a commercial software, which evidences that the physically-based constitutive model is practical and promising to promote industrial forging process for nuclear components.

  12. A physically-based constitutive model for SA508-III steel: Modeling and experimental verification

    International Nuclear Information System (INIS)

    Dong, Dingqian; Chen, Fei; Cui, Zhenshan

    2015-01-01

    Due to its good toughness and high weldability, SA508-III steel has been widely used in the components manufacturing of reactor pressure vessels (RPV) and steam generators (SG). In this study, the hot deformation behaviors of SA508-III steel are investigated by isothermal hot compression tests with forming temperature of (950–1250)°C and strain rate of (0.001–0.1)s −1 , and the corresponding flow stress curves are obtained. According to the experimental results, quantitative analysis of work hardening and dynamic softening behaviors is presented. The critical stress and critical strain for initiation of dynamic recrystallization are calculated by setting the second derivative of the third order polynomial. Based on the classical stress–dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of SA508-III steel. Comparisons between the predicted and measured flow stress indicate that the established physically-based constitutive model can accurately characterize the hot deformations for the steel. Furthermore, a successful numerical simulation of the industrial upsetting process is carried out by implementing the developed constitutive model into a commercial software, which evidences that the physically-based constitutive model is practical and promising to promote industrial forging process for nuclear components

  13. Dark matter physics, flavor physics and LHC constraints in the dark matter model with a bottom partner

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomohiro [Institute for Advanced Research, Nagoya University,Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan); Kawamura, Junichiro [Department of Physics, Waseda University,Tokyo 169-8555 (Japan); Okawa, Shohei [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Omura, Yuji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan)

    2017-03-10

    In the scenario that dark matter (DM) is a weakly interacting massive particle, there are many possibilities of the interactions with the Standard Model (SM) particles to achieve the relic density of DM. In this paper, we consider a simple DM model where the DM candidate is a complex scalar boson. The model contains a new complex gauge singlet scalar boson and a new fermion whose gauge charge is the same as the right-handed down-type quark. We dub the new fermion the bottom partner. These new particles have Yukawa interactions with the SM down-type quarks. The DM candidate interacts with the SM particles through the Yukawa interactions. The Yukawa interactions are not only relevant to the annihilation process of the DM but also contribute to the flavor physics, such as the ΔF=2 processes. In addition, the flavor alignment of the Yukawa couplings is related to the decay modes of the bottom partner, and thus we can find the explicit correlations among the physical observables in DM physics, flavor physics, and the signals at the LHC. We survey the ΔF=2 processes based on the numerical analyses of the thermal relic density, the direct detection of the DM, and the current LHC bounds. We investigate the perturbative bound on the Yukawa coupling as well. A Study of a fermionic DM model with extra scalar quarks is also given for comparison.

  14. A Model of Discrete-Continuum Time for a Simple Physical System

    Directory of Open Access Journals (Sweden)

    Karimov A. R.

    2008-04-01

    Full Text Available Proceeding from the assumption that the time flow of an individual object is a real physical value, in the framework of a physical kinetics approach we propose an analogy between time and temperature. The use of such an analogy makes it possible to work out a discrete-continuum model of time for a simple physical system. The possible physical properties of time for the single object and time for the whole system are discussed.

  15. Cosmic numbers: A physical classification for cosmological models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Martins, C.J.A.P.

    2003-01-01

    We introduce the notion of the cosmic numbers of a cosmological model, and discuss how they can be used to naturally classify models according to their ability to solve some of the problems of the standard cosmological model

  16. Physics of Failure Models for Capacitor Degradation in DC-DC Converters

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a combined energy-based model with an empirical physics of failure model for degradation analysis and prognosis of electrolytic capacitors in...

  17. The Effect of Physical Attractiveness of Models on Advertising Effectiveness for Male and Female Adolescents

    Science.gov (United States)

    Tsai, Chia-Ching; Chang, Chih-Hsiang

    2007-01-01

    This study investigates the effect of advertising with physically attractive models on male and female adolescents. The findings suggest that highly attractive models are less effective than those who are normally attractive. Implications of social comparison are discussed.

  18. Toward University Modeling Instruction—Biology: Adapting Curricular Frameworks from Physics to Biology

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence. PMID:23737628

  19. Toward university modeling instruction--biology: adapting curricular frameworks from physics to biology.

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-06-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.

  20. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  1. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  2. PHYSICS

    CERN Multimedia

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  3. Physical Models and Virtual Reality Simulators in Otolaryngology.

    Science.gov (United States)

    Javia, Luv; Sardesai, Maya G

    2017-10-01

    The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Information-preserving models of physics and computation: Final report

    International Nuclear Information System (INIS)

    1986-01-01

    This research pertains to discrete dynamical systems, as embodied by cellular automata, reversible finite-difference equations, and reversible computation. The research has strengthened the cross-fertilization between physics, computer science and discrete mathematics. It has shown that methods and concepts of physics can be exported to computation. Conversely, fully discrete dynamical systems have been shown to be fruitful for representing physical phenomena usually described with differential equations - cellular automata for fluid dynamics has been the most noted example of such a representation. At the practical level, the fully discrete representation approach suggests innovative uses of computers for scientific computing. The originality of these uses lies in their non-numerical nature: they avoid the inaccuracies of floating-point arithmetic and bypass the need for numerical analysis. 38 refs

  5. Anisotropic charged physical models with generalized polytropic equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Nasim, A.; Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2018-01-15

    In this paper, we found the exact solutions of Einstein-Maxwell equations with generalized polytropic equation of state (GPEoS). For this, we consider spherically symmetric object with charged anisotropic matter distribution. We rewrite the field equations into simple form through transformation introduced by Durgapal (Phys Rev D 27:328, 1983) and solve these equations analytically. For the physically acceptability of these solutions, we plot physical quantities like energy density, anisotropy, speed of sound, tangential and radial pressure. We found that all solutions fulfill the required physical conditions. It is concluded that all our results are reduced to the case of anisotropic charged matter distribution with linear, quadratic as well as polytropic equation of state. (orig.)

  6. ETFOD: a point model physics code with arbitrary input

    International Nuclear Information System (INIS)

    Rothe, K.E.; Attenberger, S.E.

    1980-06-01

    ETFOD is a zero-dimensional code which solves a set of physics equations by minimization. The technique used is different than normally used, in that the input is arbitrary. The user is supplied with a set of variables from which he specifies which variables are input (unchanging). The remaining variables become the output. Presently the code is being used for ETF reactor design studies. The code was written in a manner to allow easy modificaton of equations, variables, and physics calculations. The solution technique is presented along with hints for using the code

  7. EFFECTS OF INQUIRY TRAINING LEARNING MODEL BASED MULTIMEDIA AND MOTIVATION OF PHYSICS STUDENT LEARNING OUTCOMES

    OpenAIRE

    Hayati .; Retno Dwi Suyanti

    2013-01-01

    The objective in this research: (1) Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2) Determine the level of motivation to learn in affects physics student learning outcomes. (3) Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all s...

  8. Modelling physics detectors in a computer aided design system for simulation purposes

    International Nuclear Information System (INIS)

    Ahvenainen, J.; Oksakivi, T.; Vuoskoski, J.

    1995-01-01

    The possibility of transferring physics detector models from computer aided design systems into physics simulation packages like GEANT is receiving increasing attention. The problem of exporting detector models constructed in CAD systems into GEANT is well known. We discuss the problem and describe an application, called DDT, which allows one to design detector models in a CAD system and then transfer the models into GEANT for simulation purposes. (orig.)

  9. Physical characteristics of shrub and conifer fuels for fire behavior models

    Science.gov (United States)

    Jonathan R. Gallacher; Thomas H. Fletcher; Victoria Lansinger; Sydney Hansen; Taylor Ellsworth; David R. Weise

    2017-01-01

    The physical properties and dimensions of foliage are necessary inputs for some fire spread models. Currently, almost no data exist on these plant characteristics to fill this need. In this report, we measured the physical properties and dimensions of the foliage from 10 live shrub and conifer fuels throughout a 1-year period. We developed models to predict relative...

  10. INTRA/Mod3.2. Manual and Code Description. Volume I - Physical Modelling

    International Nuclear Information System (INIS)

    Andersson, Jenny; Edlund, O.; Hermann, J.; Johansson, Lise-Lotte

    1999-01-01

    The INTRA Manual consists of two volumes. Volume I of the manual is a thorough description of the code INTRA, the Physical modelling of INTRA and the ruling numerical methods and volume II, the User's Manual is an input description. This document, the Physical modelling of INTRA, contains code characteristics, integration methods and applications

  11. INTRA/Mod3.2. Manual and Code Description. Volume I - Physical Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jenny; Edlund, O; Hermann, J; Johansson, Lise-Lotte

    1999-01-01

    The INTRA Manual consists of two volumes. Volume I of the manual is a thorough description of the code INTRA, the Physical modelling of INTRA and the ruling numerical methods and volume II, the User`s Manual is an input description. This document, the Physical modelling of INTRA, contains code characteristics, integration methods and applications

  12. Simulation-based Education for Endoscopic Third Ventriculostomy : A Comparison Between Virtual and Physical Training Models

    NARCIS (Netherlands)

    Breimer, Gerben E.; Haji, Faizal A.; Bodani, Vivek; Cunningham, Melissa S.; Lopez-Rios, Adriana-Lucia; Okrainec, Allan; Drake, James M.

    BACKGROUND: The relative educational benefits of virtual reality (VR) and physical simulation models for endoscopic third ventriculostomy (ETV) have not been evaluated "head to head." OBJECTIVE: To compare and identify the relative utility of a physical and VR ETV simulation model for use in

  13. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    Science.gov (United States)

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  14. [Modern model of organization of pedagogical process in physical education of students in universities

    OpenAIRE

    Bashavets, N.A.

    2016-01-01

    Current studies are characterized by active development of models of physical education students (sectional, professionally oriented, individual, improving traditional etc.). The author, based on analysis of international experience, tryed to determine the most appropriate model of physical education in Ukrainian universities

  15. Meta II: Multi-Model Language Suite for Cyber Physical Systems

    Science.gov (United States)

    2013-03-01

    AVM META) projects have developed tools for designing cyber physical (or Mechatronic ) Systems . These systems are increasingly complex, take much...projects have developed tools for designing cyber physical (CPS) (or Mechatronic ) systems . Exemplified by modern amphibious and ground military...and parametric interface of Simulink models and defines associations with CyPhy components and component interfaces. 2. Embedded Systems Modeling

  16. Rock physics modeling of shallow marine sediments in the eastern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Sriram, G.; RamPrasad, T.

    Rock physics models are used to estimate the geo-technical properties such as the elastic moduli from the porosity and mineralogy datasets. If the velocity measurement is available the same rock physics model can be used to predict the saturation...

  17. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    Science.gov (United States)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  18. On Process Modelling Using Physical Oriented And Phenomena Based Principles

    Directory of Open Access Journals (Sweden)

    Mihai Culea

    2000-12-01

    Full Text Available This work presents a modelling framework based on phenomena description of the process. The approach is taken to easy understand and construct process model in heterogeneous possible distributed modelling and simulation environments. A simplified case study of a heat exchanger is considered and Modelica modelling language to check the proposed concept. The partial results are promising and the research effort will be extended in a computer aided modelling environment based on phenomena.

  19. Greenhouse climate : from physical processes to a dynamic model

    NARCIS (Netherlands)

    Bot, G.P.A.

    1983-01-01

    In this thesis greenhouse climate has been studied as the set of environmental conditions in a greenhouse in so far as they affect crop growth and development. In chapter 2 this set has been defined in terms of temperatures and vapour pressures. Moreover we have indicated which physical processes

  20. New analytical solutions for nonlinear physical models of the ...

    Indian Academy of Sciences (India)

    2016-10-18

    Oct 18, 2016 ... Graphical representations along with the numerical data reinforce the efficacy of the proce- dure used. The specified idea is very effective, pragmatic for partial differential equations of fractional order and could be protracted to other physical phenomena. Keywords. Rational exp(−ϕ(η))-expansion method; ...

  1. New analytical solutions for nonlinear physical models of the ...

    Indian Academy of Sciences (India)

    In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of ...

  2. Energy Blocks--A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams.…

  3. Physics-based simulation models for EBSD: advances and challenges

    Science.gov (United States)

    Winkelmann, A.; Nolze, G.; Vos, M.; Salvat-Pujol, F.; Werner, W. S. M.

    2016-02-01

    EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms.

  4. Models and methods can theory meet the B physics challenge?

    CERN Document Server

    Nierste, U

    2004-01-01

    The B physics experiments of the next generation, BTeV and LHCb, will perform measurements with an unprecedented accuracy. Theory predictions must control hadronic uncertainties with the same precision to extract the desired short-distance information successfully. I argue that this is indeed possible, discuss those theoretical methods in which hadronic uncertainties are under control and list hadronically clean observables.

  5. Travelling wave solutions to nonlinear physical models by means

    Indian Academy of Sciences (India)

    This paper presents the first integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established first integrals, exact solutions are successfully ...

  6. Physical Modeling of microtubule force generation and self-organization

    NARCIS (Netherlands)

    Tanase, C.

    2004-01-01

    Biological systems are complex heterogeneous and far from equilibrium systems. The fundamental questions posed by the physics of such systems are what the force generation mechanisms are, and how energy is processed and distributed among the components inside them. In answering these questions we

  7. Travelling wave solutions to nonlinear physical models by means of ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents the first integral method to carry out the integration of nonlinear ... NPDEs is an important and attractive research area. Not all ... cial types of analytic solutions to understand biological, physical and chemical phenomena ... Thus, based on the qualitative theory of ordinary differential equations.

  8. The Past, Present and Future of Cyber-Physical Systems: A Focus on Models

    Science.gov (United States)

    Lee, Edward A.

    2015-01-01

    This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical. PMID:25730486

  9. The Past, Present and Future of Cyber-Physical Systems: A Focus on Models

    Directory of Open Access Journals (Sweden)

    Edward A. Lee

    2015-02-01

    Full Text Available This paper is about better engineering of cyber-physical systems (CPSs through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems, which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.

  10. The past, present and future of cyber-physical systems: a focus on models.

    Science.gov (United States)

    Lee, Edward A

    2015-02-26

    This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.

  11. Numerical Modeling of Piezoelectric Transducers Using Physical Parameters

    NARCIS (Netherlands)

    Cappon, H.; Keesman, K.J.

    2012-01-01

    Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and

  12. PHYSICS

    CERN Multimedia

    Christopher Hill

    2013-01-01

    Since the last CMS Bulletin, the CMS Physics Analysis Groups have completed more than 70 new analyses, many of which are based on the complete Run 1 dataset. In parallel the Snowmass whitepaper on projected discovery potential of CMS for HL-LHC has been completed, while the ECFA HL-LHC future physics studies has been summarised in a report and nine published benchmark analyses. Run 1 summary studies on b-tag and jet identification, quark-gluon discrimination and boosted topologies have been documented in BTV-13-001 and JME-13-002/005/006, respectively. The new tracking alignment and performance papers are being prepared for submission as well. The Higgs analysis group produced several new results including the search for ttH with H decaying to ZZ, WW, ττ+bb (HIG-13-019/020) where an excess of ~2.5σ is observed in the like-sign di-muon channel, and new searches for high-mass Higgs bosons (HIG-13-022). Search for invisible Higgs decays have also been performed both using the associ...

  13. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    In the period since the last CMS Bulletin, the LHC – and CMS – have entered LS1. During this time, CMS Physics Analysis Groups have performed more than 40 new analyses, many of which are based on the complete 8 TeV dataset delivered by the LHC in 2012 (and in some cases on the full Run 1 dataset). These results were shown at, and well received by, several high-profile conferences in the spring of 2013, including the inaugural meeting of the Large Hadron Collider    Physics Conference (LHCP) in Barcelona, and the 26th International Symposium on Lepton Photon Interactions at High Energies (LP) in San Francisco. In parallel, there have been significant developments in preparations for Run 2 of the LHC and on “future physics” studies for both Phase 1 and Phase 2 upgrades of the CMS detector. The Higgs analysis group produced five new results for LHCP including a new H-to-bb search in VBF production (HIG-13-011), ttH with H to γ&ga...

  14. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    The period since the last CMS bulletin has seen the end of proton collisions at a centre-of-mass energy 8 TeV, a successful proton-lead collision run at 5 TeV/nucleon, as well as a “reference” proton run at 2.76 TeV. With these final LHC Run 1 datasets in hand, CMS Physics Analysis Groups have been busy analysing these data in preparation for the winter conferences. Moreover, despite the fact that the pp run only concluded in mid-December (and there was consequently less time to complete data analyses), CMS again made a strong showing at the Rencontres de Moriond in La Thuile (EW and QCD) where nearly 40 new results were presented. The highlight of these preliminary results was the eagerly anticipated updated studies of the properties of the Higgs boson discovered in July of last year. Meanwhile, preparations for Run 2 and physics performance studies for Phase 1 and Phase 2 upgrade scenarios are ongoing. The Higgs analysis group produced updated analyses on the full Run 1 dataset (~25 f...

  15. Adopting a Models-Based Approach to Teaching Physical Education

    Science.gov (United States)

    Casey, Ashley; MacPhail, Ann

    2018-01-01

    Background: The popularised notion of models-based practice (MBP) is one that focuses on the delivery of a model, e.g. Cooperative Learning, Sport Education, Teaching Personal and Social Responsibility, Teaching Games for Understanding. Indeed, while an abundance of research studies have examined the delivery of a single model and some have…

  16. Numerical modeling and the physical basis of seismic discriminants

    International Nuclear Information System (INIS)

    Denny, M.D.

    1993-01-01

    Accurate seismic event discrimination is critical to detection of nuclear explosions. Numerical modeling applied to seismic event discrimination can lead to increased reliability of proliferation detection. It is particularly applicable to error budgeting and to understanding explosion and earthquake phenomenologies. There also is a need for minimum requirements to validate the models used in numerical modeling

  17. Visual persuasion with physically attractive models in ads: An examination of how the ad model influences product evaluations

    OpenAIRE

    Söderlund, Magnus; Lange, Fredrik

    2006-01-01

    This paper examines the prevalent advertising practice of visually juxtaposing an anonymous, physically attractive ad model and a product in terms of its effects on the attitude toward the product. In this appeal, in which there are no explicit verbal claims about how the two objects are connected, we argue that the physically attractive model sets in motion a process in which emotions and the attitude toward the ad model serve as mediating variables, and that this process ultimately results ...

  18. Convolution product construction of interactions in probabilistic physical models

    International Nuclear Information System (INIS)

    Ratsimbarison, H.M.; Raboanary, R.

    2007-01-01

    This paper aims to give a probabilistic construction of interactions which may be relevant for building physical theories such as interacting quantum field theories. We start with the path integral definition of partition function in quantum field theory which recall us the probabilistic nature of this physical theory. From a Gaussian law considered as free theory, an interacting theory is constructed by nontrivial convolution product between the free theory and an interacting term which is also a probability law. The resulting theory, again a probability law, exhibits two proprieties already present in nowadays theories of interactions such as Gauge theory : the interaction term does not depend on the free term, and two different free theories can be implemented with the same interaction.

  19. Physical models for the description of an electrodynamically accelerated plasma sheath

    International Nuclear Information System (INIS)

    Zambreanu, V.

    1977-01-01

    An analysis of the models proposed for the description of the plasma sheath dynamics in a coaxial system (of the same type as that operating at the Bucharest Institute of Physics) is presented. A particular attention is paid to the physical structure of the accelerated plasma. It has been shown that a self-consistent model could be derived from a phenomenological description of the sheath structure. The physical models presented so far in the literature have been classified into three groups: the hydrodynamic models, the plasma sheet models and the shock wave models. Each of these models is briefly described. The simplifying assumptions used in the construction of these models have been pointed out. The final conclusion has been that, under these assumptions, none of these models taken separately could completely and correctly describe the dynamical state of the plasma sheath. (author)

  20. Enabling full field physics based OPC via dynamic model generation

    Science.gov (United States)

    Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas

    2017-03-01

    As EUV lithography marches closer to reality for high volume production, its peculiar modeling challenges related to both inter- and intra- field effects has necessitated building OPC infrastructure that operates with field position dependency. Previous state of the art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7nm and 5nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of EPE errors. The introduction of Dynamic Model Generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through field. DMG allows unique models for EMF, apodization, aberrations, etc to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.

  1. Physics in the model for a eurobachelor syllabus

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    of the following subjects: Classical mechanics, thermodynamics, quantum mechanics, elementary particles, radiation, fluid dynamics, spectros-copy, diffraction, crystallography, scattering and electromagnetism. Further details, as to the contents and to contemporary principles of pedagogy, will be provided...... of contact (teaching) hours amounts to 75. These hours are devoted to fundamentals of physics that enables the student to understand the principles of functionality of laboratory equipment and allow the student to operate such instruments at the user level. Details of the contents comprise elements...

  2. The hierarchy problem and Physics Beyond the Standard Model

    Indian Academy of Sciences (India)

    boson. Without the Higgs, theory is not unitary. Gautam Bhattacharyya ... highest scale of the theory. Thus physics at several orders of ... Hu. ≃ −|μ2| + O(1) m2. ˜t mh ≃ 125 GeV ⇒ m˜t ∼ few TeV ⇒ large cancellation ⇒ little hierarchy problem. Large mt drives M. 2. Hu negative. EWSB dynamically triggered by RG. 2. 4. 6. 8.

  3. Modeling Physical Processes at Galactic Scales and Above

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-12-16

    What should these lectures be? The subject is so broad that many books can be written about it. I decided to prepare these lectures as if I were teaching my own graduate student. Given my research interests, I selected what the student would need to know to be able to discuss science with me and to work on joint research projects. So, the story presented below is both personal and incomplete, but it does cover several subjects that are poorly represented in the existing textbooks (if at all). Some of topics I focus on below are closely connected, others are disjoint, some are just side detours on specific technical questions. There is an overlapping theme, however. Our goal is to follow the cosmic gas from large scales, low densities, (relatively) simple physics to progressively smaller scales, higher densities, closer relation to galaxies, and more complex and uncertain physics. We follow a "yellow brick road" from the gas well beyond any galaxy confines to the actual sites of star formation and stellar feedback. On the way we will stop at some places for a tour and run without looking back through some others. So, the road will be uneven. The organization of the material is as follows: physics of the intergalactic medium, from intergalactic medium to circumgalactic medium, interstellar medium: gas in galaxies, star formation, and stellar feedback.

  4. Patients' mental models and adherence to outpatient physical therapy home exercise programs.

    Science.gov (United States)

    Rizzo, Jon

    2015-05-01

    Within physical therapy, patient adherence usually relates to attending appointments, following advice, and/or undertaking prescribed exercise. Similar to findings for general medical adherence, patient adherence to physical therapy home exercise programs (HEP) is estimated between 35 and 72%. Adherence to HEPs is a multifactorial and poorly understood phenomenon, with no consensus regarding a common theoretical framework that best guides empirical or clinical efforts. Mental models, a construct used to explain behavior and decision-making in the social sciences, may serve as this framework. Mental models comprise an individual's tacit thoughts about how the world works. They include assumptions about new experiences and expectations for the future based on implicit comparisons between current and past experiences. Mental models play an important role in decision-making and guiding actions. This professional theoretical article discusses empirical research demonstrating relationships among mental models, prior experience, and adherence decisions in medical and physical therapy contexts. Specific issues related to mental models and physical therapy patient adherence are discussed, including the importance of articulation of patients' mental models, assessment of patients' mental models that relate to exercise program adherence, discrepancy between patient and provider mental models, and revision of patients' mental models in ways that enhance adherence. The article concludes with practical implications for physical therapists and recommendations for further research to better understand the role of mental models in physical therapy patient adherence behavior.

  5. Model-independent search for new physics at D0 experiment

    International Nuclear Information System (INIS)

    Naimuddin, Md.

    2012-01-01

    Finding the evidence of new physics beyond the Standard Model is one of the primary goals of RunII of the Tevatron. Many dedicated searches for new physics are ongoing at the Tevatron but in order to broaden the scope and maximize the chances of finding the new physics, we also search in a model-independent way. The results of such searches for indications of new physics at the electroweak scale are presented using data collected using the D0 detector from pp-bar-interactions at √s = 1.96 TeV. (author)

  6. Efficient Parameterization for Grey-box Model Identification of Complex Physical Systems

    DEFF Research Database (Denmark)

    Blanke, Mogens; Knudsen, Morten Haack

    2006-01-01

    Grey box model identification preserves known physical structures in a model but with limits to the possible excitation, all parameters are rarely identifiable, and different parametrizations give significantly different model quality. Convenient methods to show which parameterizations are the be...... that need be constrained to achieve satisfactory convergence. Identification of nonlinear models for a ship illustrate the concept....

  7. Bifactor Approach to Modeling Multidimensionality of Physical Self-Perception Profile

    Science.gov (United States)

    Chung, ChihMing; Liao, Xiaolan; Song, Hairong; Lee, Taehun

    2016-01-01

    The multi-dimensionality of Physical Self-Perception Profile (PSPP) has been acknowledged by the use of correlated-factor model and second-order model. In this study, the authors critically endorse the bifactor model, as a substitute to address the multi-dimensionality of PSPP. To cross-validate the models, analyses are conducted first in…

  8. Teaching physical activities to students with significant disabilities using video modeling.

    Science.gov (United States)

    Cannella-Malone, Helen I; Mizrachi, Sharona V; Sabielny, Linsey M; Jimenez, Eliseo D

    2013-06-01

    The objective of this study was to examine the effectiveness of video modeling on teaching physical activities to three adolescents with significant disabilities. The study implemented a multiple baseline across six physical activities (three per student): jumping rope, scooter board with cones, ladder drill (i.e., feet going in and out), ladder design (i.e., multiple steps), shuttle run, and disc ride. Additional prompt procedures (i.e., verbal, gestural, visual cues, and modeling) were implemented within the study. After the students mastered the physical activities, we tested to see if they would link the skills together (i.e., complete an obstacle course). All three students made progress learning the physical activities, but only one learned them with video modeling alone (i.e., without error correction). Video modeling can be an effective tool for teaching students with significant disabilities various physical activities, though additional prompting procedures may be needed.

  9. Modeling Feedbacks Between Individual Human Decisions and Hydrology Using Interconnected Physical and Social Models

    Science.gov (United States)

    Murphy, J.; Lammers, R. B.; Proussevitch, A. A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Alessa, L.; Kliskey, A. D.

    2014-12-01

    The global hydrological cycle intersects with human decision making at multiple scales, from dams and irrigation works to the taps in individuals' homes. Residential water consumers are commonly encouraged to conserve; these messages are heard against a background of individual values and conceptions about water quality, uses, and availability. The degree to which these values impact the larger-hydrological dynamics, the way that changes in those values have impacts on the hydrological cycle through time, and the feedbacks by which water availability and quality in turn shape those values, are not well explored. To investigate this domain we employ a global-scale water balance model (WBM) coupled with a social-science-grounded agent-based model (ABM). The integration of a hydrological model with an agent-based model allows us to explore driving factors in the dynamics in coupled human-natural systems. From the perspective of the physical hydrologist, the ABM offers a richer means of incorporating the human decisions that drive the hydrological system; from the view of the social scientist, a physically-based hydrological model allows the decisions of the agents to play out against constraints faithful to the real world. We apply the interconnected models to a study of Tucson, Arizona, USA, and its role in the larger Colorado River system. Our core concept is Technology-Induced Environmental Distancing (TIED), which posits that layers of technology can insulate consumers from direct knowledge of a resource. In Tucson, multiple infrastructure and institutional layers have arguably increased the conceptual distance between individuals and their water supply, offering a test case of the TIED framework. Our coupled simulation allows us to show how the larger system transforms a resource with high temporal and spatial variability into a consumer constant, and the effects of this transformation on the regional system. We use this to explore how pricing, messaging, and

  10. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    Science.gov (United States)

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface

  11. Physical modeling of joule heated ceramic glass melters for high level waste immobilization

    International Nuclear Information System (INIS)

    Quigley, M.S.; Kreid, D.K.

    1979-03-01

    This study developed physical modeling techniques and apparatus suitable for experimental analysis of joule heated ceramic glass melters designed for immobilizing high level waste. The physical modeling experiments can give qualitative insight into the design and operation of prototype furnaces and, if properly verified with prototype data, the physical models could be used for quantitative analysis of specific furnaces. Based on evaluation of the results of this study, it is recommended that the following actions and investigations be undertaken: It was not shown that the isothermal boundary conditions imposed by this study established prototypic heat losses through the boundaries of the model. Prototype wall temperatures and heat fluxes should be measured to provide better verification of the accuracy of the physical model. The VECTRA computer code is a two-dimensional analytical model. Physical model runs which are isothermal in the Y direction should be made to provide two-dimensional data for more direct comparison to the VECTRA predictions. The ability of the physical model to accurately predict prototype operating conditions should be proven before the model can become a reliable design tool. This will require significantly more prototype operating and glass property data than were available at the time of this study. A complete set of measurements covering power input, heat balances, wall temperatures, glass temperatures, and glass properties should be attempted for at least one prototype run. The information could be used to verify both physical and analytical models. Particle settling and/or sludge buildup should be studied directly by observing the accumulation of the appropriate size and density particles during feeding in the physical model. New designs should be formulated and modeled to minimize the potential problems with melter operation identifed by this study

  12. High Energy Physics Model Database - HEPMDB - Towards decoding the underlying theory at the LHC

    International Nuclear Information System (INIS)

    Bondarenko, M.; Belyaev, A.; Basso, L.; Boos, E.; Bunichev, V.; Sekhar Chivukula, R.; Christensen, D.; Cox, S.; De Roeck, A.; Moretti, S.; Pukhov, A.; Sekmen, S.; Semenov, A.; Simmons, E.H.; Shepherd-Themistocleus, C.; Speckner, C.

    2012-01-01

    We present here the first stage of development of the High Energy Physics Model Data-Base (HEPMDB) which is a convenient centralized storage environment for HEP (High Energy Physics) models, and can accommodate, via web interface to the HPC cluster, the validation of models, evaluation of LHC predictions and event generation-simulation chain. The ultimate goal of HEPMDB is to perform an effective LHC data interpretation isolating the most successful theory for explaining LHC observations. (authors)

  13. Physics at a 100 TeV pp Collider: Standard Model Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mangano, M. L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zanderighi, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Aguilar Saavedra, J. A. [Univ. of Granada (Spain); Alekhin, S. [Univ. of Hamburg (Germany). Inst. for Theoretical Physics; Inst. for High Energy Physics (IHEP), Moscow (Russian Federation); Badger, S. [Univ. of Edinburgh, Scotland (United Kingdom); Bauer, C. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Becher, T. [Univ. Bern (Switzerland); Bertone, V. [Univ. of Oxford (United Kingdom); Bonvini, M. [Univ. of Oxford (United Kingdom); Boselli, S. [Univ. of Pavia (Italy); Bothmann, E. [Gottingen Univ. (Germany); Boughezal, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Cacciari, M. [Univ. Paris Diderot (France); Sorbonne Univ., Paris (France); Carloni Calame, C M. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Caola, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Campbell, J. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Carrazza, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Chiesa, M. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Cieri, L. [Univ. of Zurich (Switzerland); Cimaglia, F. [Univ. degli Studi di Milano (Italy); Febres Cordero, F. [Physikalisches Inst., Freiburg (Germany); Ferrarese, P. [Gottingen Univ. (Germany); D' Enterria, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ferrera, G. [Univ. degli Studi di Milano (Italy); Garcia i Tormo, X. [Univ. Bern (Switzerland); Garzelli, M. V. [Univ. of Hamburg (Germany); Germann, E. [Monash Univ., Melbourne, VIC (Australia); Hirschi, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Han, T. [Univ. of Pittsburgh, PA (United States); Ita, H. [Physikalisches Inst., Freiburg (Germany); Jager, B. [Univ. of Tubingen (Germany); Kallweit, S. [Johannes Gutenberg Univ., Mainz (Germany); Karlberg, A. [Univ. of Oxford (United Kingdom); Kuttimalai, S. [Durham Univ. (United Kingdom); Krauss, F. [Durham Univ. (United Kingdom); Larkoski, A. J. [Harvard Univ., Cambridge, MA (United States); Lindert, J. [Univ. of Zurich (Switzerland); Luisoni, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Maierhofer, P. [Univ. of Freiburg (Germany); Mattelaer, O. [Durham Univ. (United Kingdom); Martinez, H. [Univ. of Pavia (Italy); Moch, S. [Univ. of Hamburg (Germany); Montagna, G. [Univ. of Pavia (Italy); Moretti, M. [Univ. of Ferrara (Italy); Nason, P. [Univ. of Milano (Italy); Nicrosini, O. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Oleari, C. [Univ. of Milano (Italy); Pagani, D. [Univ. Catholique de Louvain (Belgium); Papaefstathiou, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Petriello, F. [Northwestern Univ., Evanston, IL (United States); Piccinini, F. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Pierini, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pierog, T. [Karlsruhe Inst. of Technology (KIT) (Germany); Pozzorini, S. [Univ. of Zurich (Switzerland); Re, E. [National Centre for Scientific Research (CNRS), Annecy-le-Vieux (France). Lab. of Annecy-le-Vieux for Theoretical Physics (LAPTh); Robens, T. [Technische Universitat Dresden (Germany); Rojo, J. [Univ. of Oxford (United Kingdom); Ruiz, R. [Durham Univ. (United Kingdom); Sakurai, K. [Durham Univ. (United Kingdom); Salam, G. P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salfelder, L. [Univ. of Tubingen (Germany); Schonherr, M. [Univ. of Ferrara (Italy); Schulze, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schumann, S. [Univ. Gottingen (Germany); Selvaggi, M. [Univ. Catholique de Louvain (Belgium); Shivaji, A. [Istituto Nazionale di Fisica Nucleare (INFN), Pavia (Italy); Siodmok, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Polish Academy of Sciences (PAS), Krakow (Poland); Skands, P. [Monash Univ., Melbourne, VIC (Australia); Torrielli, P. [Univ. of Torino (Italy); Tramontano, F. [Univ. of Napoli (Italy); Tsinikos, I. [Univ. Catholique de Louvain (Belgium); Tweedie, B. [Univ. of Pittsburgh, PA (United States); Vicini, A. [Univ. degli Studi di Milano (Italy); Westhoff, S. [Heidelberg Univ. (Germany); Zaro, M. [Sorbonne Univ., Paris (France); Zeppenfeld, D. [Forschungszentrum Karlsruhe (Germany)

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  14. Mathematical and physical modeling of rainfall in centrifuge

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc; TRISTANCHO, Julian

    2015-01-01

    Rainfall simulation in centrifuge models is important for modelling soil-atmosphere interactions. However, the presence of Coriolis force, drag forces, evaporation and wind within the centrifuge may affect the distribution of rainfall over the model. As a result, development of appropriate centrifuge rain simulators requires a demanding process of experimental trial and error. This paper highlights the key factors involved in controlling rainfall in centrifuge simulations, develops a mathemat...

  15. Physical Modeling for Anomaly Diagnostics and Prognostics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop developed an innovative, model-driven anomaly diagnostic and fault characterization system for electromechanical actuator (EMA) systems to mitigate...

  16. Integrated Tokamak modeling: When physics informs engineering and research planning

    Science.gov (United States)

    Poli, Francesca Maria

    2018-05-01

    Modeling tokamaks enables a deeper understanding of how to run and control our experiments and how to design stable and reliable reactors. We model tokamaks to understand the nonlinear dynamics of plasmas embedded in magnetic fields and contained by finite size, conducting structures, and the interplay between turbulence, magneto-hydrodynamic instabilities, and wave propagation. This tutorial guides through the components of a tokamak simulator, highlighting how high-fidelity simulations can guide the development of reduced models that can be used to understand how the dynamics at a small scale and short time scales affects macroscopic transport and global stability of plasmas. It discusses the important role that reduced models have in the modeling of an entire plasma discharge from startup to termination, the limits of these models, and how they can be improved. It discusses the important role that efficient workflows have in the coupling between codes, in the validation of models against experiments and in the verification of theoretical models. Finally, it reviews the status of integrated modeling and addresses the gaps and needs towards predictions of future devices and fusion reactors.

  17. Physically-insightful equivalent circuit models for electromagnetic periodic structures

    Science.gov (United States)

    Mesa, F.; Rodríguez-Berral, R.; Medina, F.

    2018-02-01

    In this presentation it will be discussed how to obtain analytical or quasi-analytical equivalent circuits to deal with periodic structures such as frequency selective surfaces and/or metasurfaces. Both the topology and the values of the involved elements of these circuits are obtained from a basic rationale to solve the corresponding integral equation. This procedure, besides providing a very efficient analysis/design tool, allows for a good physical insight into the operating mechanisms of the structure in contrast with the almost blind numerical scheme of commercial simulators.

  18. Using Physical Models for Anomaly Detection in Control Systems

    Science.gov (United States)

    Svendsen, Nils; Wolthusen, Stephen

    Supervisory control and data acquisition (SCADA) systems are increasingly used to operate critical infrastructure assets. However, the inclusion of advanced information technology and communications components and elaborate control strategies in SCADA systems increase the threat surface for external and subversion-type attacks. The problems are exacerbated by site-specific properties of SCADA environments that make subversion detection impractical; and by sensor noise and feedback characteristics that degrade conventional anomaly detection systems. Moreover, potential attack mechanisms are ill-defined and may include both physical and logical aspects.

  19. Physical and mathematical modeling of pollutant emissions when burning peat

    Science.gov (United States)

    Vasilyev, A.; Lozhkin, V.; Tarkhov, D.; Lozhkina, O.; Timofeev, V.

    2017-11-01

    The article presents an original neural network model of CO dispersion around the experimentally simulated peat fire. It is a self-learning model considering both the measured CO concentrations in the smoke cloud and the refined coefficients of the main equation. The method is recommended for the development of air quality control and forecasting systems.

  20. General Dynamic Equivalent Modeling of Microgrid Based on Physical Background

    Directory of Open Access Journals (Sweden)

    Changchun Cai

    2015-11-01

    Full Text Available Microgrid is a new power system concept consisting of small-scale distributed energy resources; storage devices and loads. It is necessary to employ a simplified model of microgrid in the simulation of a distribution network integrating large-scale microgrids. Based on the detailed model of the components, an equivalent model of microgrid is proposed in this paper. The equivalent model comprises two parts: namely, equivalent machine component and equivalent static component. Equivalent machine component describes the dynamics of synchronous generator, asynchronous wind turbine and induction motor, equivalent static component describes the dynamics of photovoltaic, storage and static load. The trajectory sensitivities of the equivalent model parameters with respect to the output variables are analyzed. The key parameters that play important roles in the dynamics of the output variables of the equivalent model are identified and included in further parameter estimation. Particle Swarm Optimization (PSO is improved for the parameter estimation of the equivalent model. Simulations are performed in different microgrid operation conditions to evaluate the effectiveness of the equivalent model of microgrid.

  1. Factors Predicting the Physical Activity Behavior of Female Adolescents: A Test of the Health Promotion Model

    Directory of Open Access Journals (Sweden)

    Hashem Mohamadian

    2014-01-01

    Full Text Available ObjectivesPhysical activity behavior begins to decline during adolescence and continues to decrease throughout young adulthood. This study aims to explain factors that influence physical activity behavior in a sample of female adolescents using a health promotion model framework.MethodsThis cross-sectional survey was used to explore physical activity behavior among a sample of female adolescents. Participants completed measures of physical activity, perceived self-efficacy, self-esteem, social support, perceived barriers, and perceived affect. Interactions among the variables were examined using path analysis within a covariance modeling framework.ResultsThe final model accounted for an R2 value of 0.52 for physical activity and offered a good model-data fit. The results indicated that physical activity was predicted by self-esteem (β=0.46, p<0.001, perceived self-efficacy (β=0.40, p<0.001, social support (β=0.24, p<0.001, perceived barriers (β=-0.19, p<0.001, and perceived affect (β=0.17, p<0.001.ConclusionsThe findings of this study showed that the health promotion model was useful to predict physical activity behavior among the Iranian female adolescents. Information related to the predictors of physical activity behavior will help researchers plan more tailored culturally relevant health promotion interventions for this population.

  2. Modeling Instruction in AP Physics C: Mechanics and Electricity and Magnetism

    Science.gov (United States)

    Belcher, Nathan Tillman

    This action research study used data from multiple assessments in Mechanics and Electricity and Magnetism to determine the viability of Modeling Instruction as a pedagogy for students in AP Physics C: Mechanics and Electricity and Magnetism. Modeling Instruction is a guided-inquiry approach to teaching science in which students progress through the Modeling Cycle to develop a fully-constructed model for a scientific concept. AP Physics C: Mechanics and Electricity and Magnetism are calculus-based physics courses, approximately equivalent to first-year calculus-based physics courses at the collegiate level. Using a one-group pretest-posttest design, students were assessed in Mechanics using the Force Concept Inventory, Mechanics Baseline Test, and 2015 AP Physics C: Mechanics Practice Exam. With the same design, students were assessed in Electricity and Magnetism on the Brief Electricity and Magnetism Assessment, Electricity and Magnetism Conceptual Assessment, and 2015 AP Physics C: Electricity and Magnetism Practice Exam. In a one-shot case study design, student scores were collected from the 2017 AP Physics C: Mechanics and Electricity and Magnetism Exams. Students performed moderately well on the assessments in Mechanics and Electricity and Magnetism, demonstrating that Modeling Instruction is a viable pedagogy in AP Physics C: Electricity and Magnetism.

  3. Physical aggression, compromised social support, and 10-year marital outcomes: Testing a relational spillover model.

    Science.gov (United States)

    Sullivan, Kieran T; Pasch, Lauri A; Lawrence, Erika; Bradbury, Thomas N

    2015-12-01

    The purpose of the present study was to test a relational spillover model of physical aggression whereby physical aggression affects marital outcomes due to its effects on how spouses ask for and provide support to one another. Newlywed couples (n = 172) reported levels of physical aggression over the past year and engaged in interactions designed to elicit social support; marital adjustment, and stability were assessed periodically over the first 10 years of marriage. Multilevel modeling revealed that negative support behavior mediated the relationship between physical aggression and 10-year marital adjustment levels whereas positive support behavior mediated the relationship between physical aggression and divorce status. These findings emphasize the need to look beyond conflict when explaining how aggression affects relationships and when working with couples with a history of physical aggression who are seeking to improve their relationships. (c) 2015 APA, all rights reserved).

  4. Children's motivation in elementary physical education: an expectancy-value model of achievement choice.

    Science.gov (United States)

    Xiang, Ping; McBride, Ron; Guan, Jianmin; Solmon, Melinda

    2003-03-01

    This study examined children's motivation in elementary physical education within an expectancy-value model developed by Eccles and her colleagues. Four hundred fourteen students in second and fourth grades completed questionnaires assessing their expectancy-related beliefs, subjective task values, and intention for future participation in physical education. Results indicated that expectancy-related beliefs and subjective task values were clearly distinguishable from one another across physical education and throwing. The two constructs were related to each other positively. Children's intention for future participation in physical education was positively associated with their subjective task values and/or expectancy-related beliefs. Younger children had higher motivation for learning in physical education than older children. Gender differences emerged and the findings provided empirical evidence supporting the validity of the expectancy-value model in elementary physical education.

  5. PHYSICS

    CERN Multimedia

    V.Ciulli

    2011-01-01

    The main programme of the Physics Week held between 16th and 20th May was a series of topology-oriented workshops on di-leptons, di-photons, inclusive W, and all-hadronic final states. The goal of these workshops was to reach a common understanding for the set of objects (ID, cleaning...), the handling of pile-up, calibration, efficiency and purity determination, as well as to revisit critical common issues such as the trigger. Di-lepton workshop Most analysis groups use a di-lepton trigger or a combination of single and di-lepton triggers in 2011. Some groups need to collect leptons with as low PT as possible with strong isolation and identification requirements as for Higgs into WW at low mass, others with intermediate PT values as in Drell-Yan studies, or high PT as in the Exotica group. Electron and muon reconstruction, identification and isolation, was extensively described in the workshop. For electrons, VBTF selection cuts for low PT and HEEP cuts for high PT were discussed, as well as more complex d...

  6. Paleomagnetic analysis of curved thrust belts reproduced by physical models

    Science.gov (United States)

    Costa, Elisabetta; Speranza, Fabio

    2003-12-01

    This paper presents a new methodology for studying the evolution of curved mountain belts by means of paleomagnetic analyses performed on analogue models. Eleven models were designed aimed at reproducing various tectonic settings in thin-skinned tectonics. Our models analyze in particular those features reported in the literature as possible causes for peculiar rotational patterns in the outermost as well as in the more internal fronts. In all the models the sedimentary cover was reproduced by frictional low-cohesion materials (sand and glass micro-beads), which detached either on frictional or on viscous layers. These latter were reproduced in the models by silicone. The sand forming the models has been previously mixed with magnetite-dominated powder. Before deformation, the models were magnetized by means of two permanent magnets generating within each model a quasi-linear magnetic field of intensity variable between 20 and 100 mT. After deformation, the models were cut into closely spaced vertical sections and sampled by means of 1×1-cm Plexiglas cylinders at several locations along curved fronts. Care was taken to collect paleomagnetic samples only within virtually undeformed thrust sheets, avoiding zones affected by pervasive shear. Afterwards, the natural remanent magnetization of these samples was measured, and alternating field demagnetization was used to isolate the principal components. The characteristic components of magnetization isolated were used to estimate the vertical-axis rotations occurring during model deformation. We find that indenters pushing into deforming belts from behind form non-rotational curved outer fronts. The more internal fronts show oroclinal-type rotations of a smaller magnitude than that expected for a perfect orocline. Lateral symmetrical obstacles in the foreland colliding with forward propagating belts produce non-rotational outer curved fronts as well, whereas in between and inside the obstacles a perfect orocline forms

  7. Impact of Physics Parameterization Ordering in a Global Atmosphere Model

    Science.gov (United States)

    Donahue, Aaron S.; Caldwell, Peter M.

    2018-02-01

    Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effect of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.

  8. Cosmology and Particle Physics beyond Standard Models Ten Years of the SEENET-MTP Network

    CERN Document Server

    Álvarez-Gaumé, Luis; Stojkovic, Dejan

    2014-01-01

    This publication - "Cosmology and Particle Physics beyond Standard Models" - is dedicated to the celebration of the tenth anniversary of the Southeastern European Network in Mathematical and Theoretical Physics (SEENET-MTP). As a Theme Collection, rather than a Monograph or Proceedings, this volume presents a number of reports and overviews, a few research papers and a short note. However, some of them are excellent examples of a nowadays increasingly deep interplay between particle physics and cosmology. Contributions span a wide range of topics in cosmology, particle physics, but also gravity, including the interface of these fields. The presented work is of both theoretical and experimental/ observational nature. The contributions represent recent progress in their respective fields: inflation, dark matter, neutrino physics, supersymmetry, collider physics, string theory, quantum gravity, black hole physics and massive gravity.

  9. Use of model analysis to analyse Thai students’ attitudes and approaches to physics problem solving

    Science.gov (United States)

    Rakkapao, S.; Prasitpong, S.

    2018-03-01

    This study applies the model analysis technique to explore the distribution of Thai students’ attitudes and approaches to physics problem solving and how those attitudes and approaches change as a result of different experiences in physics learning. We administered the Attitudes and Approaches to Problem Solving (AAPS) survey to over 700 Thai university students from five different levels, namely students entering science, first-year science students, and second-, third- and fourth-year physics students. We found that their inferred mental states were generally mixed. The largest gap between physics experts and all levels of the students was about the role of equations and formulas in physics problem solving, and in views towards difficult problems. Most participants of all levels believed that being able to handle the mathematics is the most important part of physics problem solving. Most students’ views did not change even though they gained experiences in physics learning.

  10. A conceptual model of independence and dependence for adults with chronic physical illness and disability.

    Science.gov (United States)

    Gignac, M A; Cott, C

    1998-09-01

    This paper presents a conceptual model of physical independence and dependence as it relates to adult onset, chronic physical illness and disability. Physical independence and dependence are presented as two separate, continuous, and multiply determined constructs, and illustrations are provided of situations where people can be independent, dependent, not independent, or experience imposed dependence. The paper also discusses potential determinants of physical independence and dependence, including different domains of disability, the role of subjective perceptions, demographics, the physical and social/political environments, personal resources, attitudes and coping resources, illness and efficacy appraisals, and the nature of the assistive relationship. The paper extends work on physical independence and dependence by synthesizing the findings from previous studies and incorporating the findings from other relevant areas of research into the area. It also expands on the concepts of physical independence and dependence, as well as their determinants, and relates independence and dependence to other outcomes of interest such as service delivery.

  11. Large scale shell model calculations: the physics in and the physics out

    International Nuclear Information System (INIS)

    Zuker, A.P.

    1997-01-01

    After giving a few examples of recent results of the (SM) 2 collaboration, the monopole modified realistic interactions to be used in shell model calculations are described and analyzed. Rotational motion is discussed in some detail, and some introductory remarks on level densities are made. (orig.)

  12. Learning reliable manipulation strategies without initial physical models

    Science.gov (United States)

    Christiansen, Alan D.; Mason, Matthew T.; Mitchell, Tom M.

    1990-01-01

    A description is given of a robot, possessing limited sensory and effectory capabilities but no initial model of the effects of its actions on the world, that acquires such a model through exploration, practice, and observation. By acquiring an increasingly correct model of its actions, it generates increasingly successful plans to achieve its goals. In an apparently nondeterministic world, achieving reliability requires the identification of reliable actions and a preference for using such actions. Furthermore, by selecting its training actions carefully, the robot can significantly improve its learning rate.

  13. A Multi-Physics PWR Model for the Load Following

    OpenAIRE

    Muniglia , Mathieu; Do , Jean-Michel; Jean-Charles , Le Pallec; Grard , Hubert; Verel , Sébastien; David , S.

    2016-01-01

    International audience; In this paper, a new model of a Pressurized Water Reactor (PWR) is described. This model includes the description of the core as well as a simplified secondary loop: the goal is to reproduce a load-following type transient, where the output power of the plant is controlled by the electric grid. Consequently, the control systems are also modeled, as the control rods or the soluble boron. The reference power plant is a 1300MW electrical PWR, managed with the french G mode.

  14. VIRTUAL MODELING OF PHYSICAL EXPERIMENT FOR DISTANCE LEARNING SYSTEMS IN THE SECONDARY AND HIGHER PEDAGOGICAL SCHOOLS

    Directory of Open Access Journals (Sweden)

    Mykola V. Holovko

    2015-05-01

    Full Text Available The article investigates the state of the educational computer simulation and its modern features. It deals with psychological and didactic approaches to modeling in physics education and school physical experiment. It was considered the possible classification of computer models for distance learning system, as well as proposed the ways of implementing virtual experiment in distance education in physics. The main types of virtual modeling, the most widely used computer systems support in teaching physics, their possible application in teaching secondary school students were characterized. The peculiarities of distance education of future physics teachers by means of electronic teaching methods as a combination of integrated electronic educational resources and services were highlighted.

  15. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    Science.gov (United States)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  16. The search for supersymmetry: Probing physics beyond the standard model

    International Nuclear Information System (INIS)

    Haber, H.E.; Kane, G.L.

    1985-01-01

    In this paper we survey methods by which supersymmetry (or other new physics) could be observed in experiments at present and future accelerators. We review some of the motivation for supposing supersymmetry might be a symmetry of nature even though there is presently no evidence for it. We try to systematize the necessary new notation, and discuss in some detail how to calculate results, with considerable emphasis on pedagogical completeness. We summarize present limits on the existence of supersymmetric partners of ordinary particles, and show how to get improved quantitative limits if supersymmetric particles are not detected, so that eventually it is possible to be sure they are either detected or do not exist on the mass scale accessible to experiments. (orig.)

  17. Modeling detachment physics in the NSTX snowflake divertor

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E.T., E-mail: emeier@wm.edu [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bell, R.E.; Diallo, A.; Kaita, R.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08540 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Podestà, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08540 (United States); Rognlien, T.D.; Scotti, F. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2015-08-15

    The snowflake divertor is a proposed technique for coping with the tokamak power exhaust problem in next-step experiments and eventually reactors, where extreme power fluxes to material surfaces represent a leading technological and physics challenge. In lithium-conditioned National Spherical Torus Experiment (NSTX) discharges, application of the snowflake divertor typically induced partial outer divertor detachment and severalfold heat flux reduction. UEDGE is used to analyze and compare conventional and snowflake divertor configurations in NSTX. Matching experimental upstream profiles and divertor measurements in the snowflake requires target recycling of 0.97 vs. 0.91 in the conventional case, implying partial saturation of the lithium-based pumping mechanism. Density scans are performed to analyze the mechanisms that facilitate detachment in the snowflake, revealing that increased divertor volume provides most of the parallel heat flux reduction. Also, neutral gas power loss is magnified by the increased wetted area in the snowflake, and plays a key role in generating volumetric recombination.

  18. On coupling fluid plasma and kinetic neutral physics models

    Directory of Open Access Journals (Sweden)

    I. Joseph

    2017-08-01

    Full Text Available The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.

  19. Holistic simulation of geotechnical installation processes numerical and physical modelling

    CERN Document Server

    2015-01-01

    The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installat...

  20. Knowledge management: High energy physics as model case

    International Nuclear Information System (INIS)

    Trabelsi, A.

    2004-01-01

    Full text: The world-wide High Energy Physics (HEP) community has emerged as one of the major forces in developing new tools and concepts to enhance the overall quality of knowledge management and to support technological innovation in this field. Though joint research and academic activities in HEP represent a more than 50-years old tradition, collaboration in this field has changed over the decades. In coming years, bigger and more distributed than ever before collaborations, with several thousand physicists and engineers, will concentrate on fewer major HEP experiments. They will face unprecedented challenges to accomplish their work at the leading laboratories where large accelerators are being constructed. These challenges arise primarily from the rapidly increasing size and complexity of datasets to be collected and the enormous computational, storage and networking resources to be deployed by global collaborations in order to process, distribute and analyze information. During the last two decades, the Web was HEP community response to the new wave of scientific collaborations. Almost all data networking in the HEP community is today based on the Internet which has since grown into a global information highway. Currently, HEP community needs to attempt to progress beyond structure information towards automated knowledge management of scientific data which requires extremely capable computing infrastructures supporting several key areas. Together with computer scientists, HEP community recognised as a driving force, is extremely well positioned to continue this successful strategy with respect to the initiative to build 'the next generation internet'. Facing knowledge sharing, acquisition and organisation growing requirement, HEP scientists invented the preprint concept in order to facilitate and speed up access to the ongoing research development and results. Preprint archive has since become a global repository for research particularly in physics

  1. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  2. Design of the Model of Constructivist Learning Theory for Moral Education in Physical Education Teaching

    Science.gov (United States)

    Wang, Chenyu

    2011-01-01

    In order to achieve better effect of moral education in physical education teaching, this article employed constructivist learning theory to design the model of moral education according to the characteristics of physical education teaching, in order that the majority of P.E. teachers draw lessons from it in their teaching practice, and service to…

  3. Causal Modeling of Secondary Science Students' Intentions to Enroll in Physics.

    Science.gov (United States)

    Crawley, Frank E.; Black, Carolyn B.

    1992-01-01

    Reports a study using the causal modeling method to verify underlying causes of student interest in enrolling in physics as predicted by the theory of planned behavior. Families were identified as major referents in the social support system for physics enrollment. Course and extracurricular conflicts and fear of failure were primary beliefs…

  4. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology

    Science.gov (United States)

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani

    2015-01-01

    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  5. Accelerated physical modelling of radioactive waste migration in soil

    International Nuclear Information System (INIS)

    Zimmie, T.F.; De, A.; Mahmud, M.B.

    1994-01-01

    A 100 g-tonne geotechnical centrifuge was used to study the long-term migration of a contaminant and radioactive tracer through a saturated soil medium. The use of the centrifuge simulates the acceleration of travel time in the prototype, which is N times larger than the model, by N 2 , where N is the desired g level. For a 5 h run at 60 g, the test modelled a migration time of about 2 years for a prototype 60 times larger than the small-scale model tested. Iodine 131, used as the tracer, was injected onto the surface of the soil, and was allowed to migrate with a constant head of water through the saturated soil. End window Geiger-Mueller (G-M) tubes were used to measure the count rate of the radioactive tracer flowing through the soil. The time from the peak response of one G-M tube to the other denotes the travel time between the two points in the flow domain. The results obtained using the radioactive tracer are in good agreement with the test performed on the same model setup using potassium permanganate as tracer and with numerical flow net modelling. Radioactive tracers can be useful in the study of nonradioactive contaminants as well, offering a nonintrusive (nondestructive) method of measuring contaminant migration. (author). 18 refs., 1 tab., 7 figs

  6. Simulation models for computational plasma physics: Concluding report

    International Nuclear Information System (INIS)

    Hewett, D.W.

    1994-01-01

    In this project, the authors enhanced their ability to numerically simulate bounded plasmas that are dominated by low-frequency electric and magnetic fields. They moved towards this goal in several ways; they are now in a position to play significant roles in the modeling of low-frequency electromagnetic plasmas in several new industrial applications. They have significantly increased their facility with the computational methods invented to solve the low frequency limit of Maxwell's equations (DiPeso, Hewett, accepted, J. Comp. Phys., 1993). This low frequency model is called the Streamlined Darwin Field model (SDF, Hewett, Larson, and Doss, J. Comp. Phys., 1992) has now been implemented in a fully non-neutral SDF code BEAGLE (Larson, Ph.D. dissertation, 1993) and has further extended to the quasi-neutral limit (DiPeso, Hewett, Comp. Phys. Comm., 1993). In addition, they have resurrected the quasi-neutral, zero-electron-inertia model (ZMR) and began the task of incorporating internal boundary conditions into this model that have the flexibility of those in GYMNOS, a magnetostatic code now used in ion source work (Hewett, Chen, ICF Quarterly Report, July--September, 1993). Finally, near the end of this project, they invented a new type of banded matrix solver that can be implemented on a massively parallel computer -- thus opening the door for the use of all their ADI schemes on these new computer architecture's (Mattor, Williams, Hewett, submitted to Parallel Computing, 1993)

  7. Multi-physics modeling of plasma-material interactions

    Science.gov (United States)

    Lasa, Ane; Green, David; Canik, John; Younkin, Timothy; Blondel, Sophie; Wirth, Brian; Drobny, Jon; Curreli, Davide

    2017-10-01

    Plasma-material interactions (PMI) can degrade both plasma and material properties. Often, PMI modeling focuses on either the plasma or surface. Here, we present an integrated model with high-fidelity codes coupled within the IPS framework that self-consistently addresses PMI. The model includes, calculation of spatially resolved influx of plasma and impurities to the surface and their implantation; surface erosion and roughening; evolution of implanted species and sub-surface composition; and transport of eroded particles across the plasma and their re-deposition. The model is applied and successfully compared to dedicated PISCES linear device experiments, where a tungsten (W) target was exposed to helium (He) plasma. The present contribution will focus on the analysis of W erosion, He retention and sub-surface gas bubble and surface composition evolution, under the different He plasma conditions across the surface that are calculated by impurity transport modeling. Impact of code coupling, reflected as interplay between surface erosion, fuel / impurity implantation and retention, and evolution of target composition, as well as sensitivity of these processes to plasma exposure conditions is also analyzed in detail. This work is supported by the US DOE under contract DE-AC05-00OR22725.

  8. A PERFORMANCE MANAGEMENT MODEL FOR PHYSICAL ASSET MANAGEMENT

    Directory of Open Access Journals (Sweden)

    J.L. Jooste

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: There has been an emphasis shift from maintenance management towards asset management, where the focus is on reliable and operational equipment and on effective assets at optimum life-cycle costs. A challenge in the manufacturing industry is to develop an asset performance management model that is integrated with business processes and strategies. The authors developed the APM2 model to satisfy that requirement. The model has a generic reference structure and is supported by operational protocols to assist in operations management. It facilitates performance measurement, business integration and continuous improvement, whilst exposing industry to the latest developments in asset performance management.

    AFRIKAANSE OPSOMMING: Daar is ‘n klemverskuiwing vanaf onderhoudsbestuur na batebestuur, waar daar gefokus word op betroubare en operasionele toerusting, asook effektiewe bates teen optimum lewensikluskoste. ‘n Uitdaging in die vervaardigingsindustrie is die ontwikkeling van ‘n prestasiemodel vir bates, wat geïntegreer is met besigheidsprosesse en –strategieë. Die outeurs het die APM2 model ontwikkel om in hierdie behoefte te voorsien. Die model het ‘n generiese verwysingsstruktuur, wat ondersteun word deur operasionele instruksies wat operasionele bestuur bevorder. Dit fasiliteer prestasiebestuur, besigheidsintegrasie en voortdurende verbetering, terwyl dit die industrie ook blootstel aan die nuutste ontwikkelinge in prestasiebestuur van bates.

  9. A simplified physics-based model for nickel hydrogen battery

    Science.gov (United States)

    Liu, Shengyi; Dougal, Roger A.; Weidner, John W.; Gao, Lijun

    This paper presents a simplified model of a nickel hydrogen battery based on a first approximation. The battery is assumed uniform throughout. The reversible potential is considered primarily due to one-electron transfer redox reaction of nickel hydroxide and nickel oxyhydroxide. The non-ideality due to phase reactions is characterized by the two-parameter activity coefficients. The overcharge process is characterized by the oxygen reaction. The overpotentials are lumped to a tunable resistive drop to fit particular battery designs. The model is implemented in the Virtual Test Bed environment, and the characteristics of the battery are simulated and in good agreement with the experimental data within the normal operating regime. The model can be used for battery dynamic simulation and design in a satellite power system, an example of which is given.

  10. Physics of human cooperation: experimental evidence and theoretical models

    Science.gov (United States)

    Sánchez, Angel

    2018-02-01

    In recent years, many physicists have used evolutionary game theory combined with a complex systems perspective in an attempt to understand social phenomena and challenges. Prominent among such phenomena is the issue of the emergence and sustainability of cooperation in a networked world of selfish or self-focused individuals. The vast majority of research done by physicists on these questions is theoretical, and is almost always posed in terms of agent-based models. Unfortunately, more often than not such models ignore a number of facts that are well established experimentally, and are thus rendered irrelevant to actual social applications. I here summarize some of the facts that any realistic model should incorporate and take into account, discuss important aspects underlying the relation between theory and experiments, and discuss future directions for research based on the available experimental knowledge.

  11. Probing models of quantum decoherence in particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatos, Nikolaos E; Sarkar, Sarben [King' s College London, Department of Physics, Theoretical Physics, Strand London WC2R 2LS (United Kingdom)

    2007-05-15

    In this review we discuss the string theoretical motivations for induced decoherence and deviations from ordinary quantum-mechanical behaviour; this leads to intrinsic CPT violation in the context of an extended class of quantum-gravity models. We proceed to a description of precision tests of CPT symmetry and quantum mechanics using mainly neutral kaons and neutrinos. We emphasize the possibly unique role of neutral meson factories in providing tests of models where the quantum-mechanical CPT operator is not well-defined, leading to modifications of Einstein-Podolsky-Rosen particle correlators. Finally, we discuss experimental probes of decoherence in cosmology, including studies of dissipative relaxation models of dark energy in non-critical (non-equilibrium) string theory and the associated modifications of the Boltzmann equation for the evolution of species abundances.

  12. A Simple Physics-Based Model Predicts Oil Production from Thousands of Horizontal Wells in Shales

    KAUST Repository

    Patzek, Tadeusz; Saputra, Wardana; Kirati, Wissem

    2017-01-01

    and ultimate recovery in shale wells. Here we introduce a simple model of producing oil and solution gas from the horizontal hydrofractured wells. This model is consistent with the basic physics and geometry of the extraction process. We then apply our model

  13. Physical model of evolution of oxygen subsystem of PLZT-ceramics at neutron irradiation and annealing

    CERN Document Server

    Kulikov, D V; Trushin, Y V; Veber, K V; Khumer, K; Bitner, R; Shternberg, A R

    2001-01-01

    The physical model of evolution of the oxygen subsystem defects of the ferroelectric PLZT-ceramics by the neutron irradiation and isochrone annealing is proposed. The model accounts for the effect the lanthanum content on the material properties. The changes in the oxygen vacancies concentration, calculated by the proposed model, agree well with the polarization experimental behavior by the irradiated material annealing

  14. Secure and Resilient Functional Modeling for Navy Cyber-Physical Systems

    Science.gov (United States)

    2017-05-24

    control systems, it was determined that this project will employ the model of a Ship Chilled Water Distribution System as a central use case. This model...Siemens Corporation Corporate Technology Unrestricted. Distribution Statement A. Approved for public...release; distribution is unlimited. Page 1 of 4 Secure & Resilient Functional Modeling for Navy Cyber-Physical Systems FY17 Quarter 1 Technical Progress

  15. Shyness, Masculine Ideology, Physical Attractiveness, and Emotional Inexpressiveness: Testing a Mediational Model of Men's Interpersonal Competence.

    Science.gov (United States)

    Bruch, Monroe A.; Berko, Eric H.; Haase, Richard F.

    1998-01-01

    A model was tested in which emotional inexpressiveness fully mediates the relationship of shyness, gender identity, and physical attractiveness with men's interpersonal competence. In a second study, a partially mediated model explained the data better. Implications for further modifications and testing of the model and for counseling practice are…

  16. Developing the Practising Model in Physical Education: An Expository Outline Focusing on Movement Capability

    Science.gov (United States)

    Barker, D. M.; Aggerholm, K.; Standal, O.; Larsson, H.

    2018-01-01

    Background: Physical educators currently have a number of pedagogical (or curricular) models at their disposal. While existing models have been well-received in educational contexts, these models seek to extend students' capacities within a limited number of "human activities" (Arendt, 1958). The activity of "human practising,"…

  17. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    Science.gov (United States)

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  18. Physical optics modeling of modal patterns in a crossed porro prism resonator

    CSIR Research Space (South Africa)

    Litvin, IA

    2006-07-01

    Full Text Available A physical optics model is proposed to describe the transverse modal patterns in crossed Porro prism resonators. The model departs from earlier attempts in that the prisms are modeled as non-classical rotating elements with amplitude and phase...

  19. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  20. A Physics-Based Starting Model for Gas Turbine Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing an integrated starting model for gas turbine engines using a new physics-based...