WorldWideScience

Sample records for model physical systems

  1. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  2. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  3. Predictive modeling of coupled multi-physics systems: I. Theory

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2014-01-01

    Highlights: • We developed “predictive modeling of coupled multi-physics systems (PMCMPS)”. • PMCMPS reduces predicted uncertainties in predicted model responses and parameters. • PMCMPS treats efficiently very large coupled systems. - Abstract: This work presents an innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS).” This methodology takes into account fully the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PMCMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This “maximum entropy”-approximate a priori distribution is combined, using Bayes’ theorem, with the “likelihood” provided by the multi-physics simulation models. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PMCMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially

  4. Predictive modeling of coupled multi-physics systems: II. Illustrative application to reactor physics

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel; Badea, Madalina Corina

    2014-01-01

    Highlights: • We applied the PMCMPS methodology to a paradigm neutron diffusion model. • We underscore the main steps in applying PMCMPS to treat very large coupled systems. • PMCMPS reduces the uncertainties in the optimally predicted responses and model parameters. • PMCMPS is for sequentially treating coupled systems that cannot be treated simultaneously. - Abstract: This work presents paradigm applications to reactor physics of the innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS)” developed by Cacuci (2014). This methodology enables the assimilation of experimental and computational information and computes optimally predicted responses and model parameters with reduced predicted uncertainties, taking fully into account the coupling terms between the multi-physics systems, but using only the computational resources that would be needed to perform predictive modeling on each system separately. The paradigm examples presented in this work are based on a simple neutron diffusion model, chosen so as to enable closed-form solutions with clear physical interpretations. These paradigm examples also illustrate the computational efficiency of the PMCMPS, which enables the assimilation of additional experimental information, with a minimal increase in computational resources, to reduce the uncertainties in predicted responses and best-estimate values for uncertain model parameters, thus illustrating how very large systems can be treated without loss of information in a sequential rather than simultaneous manner

  5. Modelling of cardiovascular system: development of a hybrid (numerical-physical) model.

    Science.gov (United States)

    Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Mimmo, R; Guaragno, M; Tosti, G; Darowski, M

    2003-12-01

    Physical models of the circulation are used for research, training and for testing of implantable active and passive circulatory prosthetic and assistance devices. However, in comparison with numerical models, they are rigid and expensive. To overcome these limitations, we have developed a model of the circulation based on the merging of a lumped parameter physical model into a numerical one (producing therefore a hybrid). The physical model is limited to the barest essentials and, in this application, developed to test the principle, it is a windkessel representing the systemic arterial tree. The lumped parameters numerical model was developed in LabVIEW environment and represents pulmonary and systemic circulation (except the systemic arterial tree). Based on the equivalence between hydraulic and electrical circuits, this prototype was developed connecting the numerical model to an electrical circuit--the physical model. This specific solution is valid mainly educationally but permits the development of software and the verification of preliminary results without using cumbersome hydraulic circuits. The interfaces between numerical and electrical circuits are set up by a voltage controlled current generator and a voltage controlled voltage generator. The behavior of the model is analyzed based on the ventricular pressure-volume loops and on the time course of arterial and ventricular pressures and flow in different circulatory conditions. The model can represent hemodynamic relationships in different ventricular and circulatory conditions.

  6. Meta II: Multi-Model Language Suite for Cyber Physical Systems

    Science.gov (United States)

    2013-03-01

    AVM META) projects have developed tools for designing cyber physical (or Mechatronic ) Systems . These systems are increasingly complex, take much...projects have developed tools for designing cyber physical (CPS) (or Mechatronic ) systems . Exemplified by modern amphibious and ground military...and parametric interface of Simulink models and defines associations with CyPhy components and component interfaces. 2. Embedded Systems Modeling

  7. Functional modelling for integration of human-software-hardware in complex physical systems

    International Nuclear Information System (INIS)

    Modarres, M.

    1996-01-01

    A framework describing the properties of complex physical systems composed of human-software-hardware interactions in terms of their functions is described. It is argued that such a framework is domain-general, so that functional primitives present a language that is more general than most other modeling methods such as mathematical simulation. The characteristics and types of functional models are described. Examples of uses of the framework in modeling physical systems composed of human-software-hardware (hereby we refer to them as only physical systems) are presented. It is concluded that a function-centered model of a physical system provides a capability for generating a high-level simulation of the system for intelligent diagnostic, control or other similar applications

  8. Cyber Physical System Modelling of Distribution Power Systems for Dynamic Demand Response

    Science.gov (United States)

    Chu, Xiaodong; Zhang, Rongxiang; Tang, Maosen; Huang, Haoyi; Zhang, Lei

    2018-01-01

    Dynamic demand response (DDR) is a package of control methods to enhance power system security. A CPS modelling and simulation platform for DDR in distribution power systems is presented in this paper. CPS modelling requirements of distribution power systems are analyzed. A coupled CPS modelling platform is built for assessing DDR in the distribution power system, which combines seamlessly modelling tools of physical power networks and cyber communication networks. Simulations results of IEEE 13-node test system demonstrate the effectiveness of the modelling and simulation platform.

  9. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  10. Model-implementation fidelity in cyber physical system design

    CERN Document Server

    Fabre, Christian

    2017-01-01

    This book puts in focus various techniques for checking modeling fidelity of Cyber Physical Systems (CPS), with respect to the physical world they represent. The authors' present modeling and analysis techniques representing different communities, from very different angles, discuss their possible interactions, and discuss the commonalities and differences between their practices. Coverage includes model driven development, resource-driven development, statistical analysis, proofs of simulator implementation, compiler construction, power/temperature modeling of digital devices, high-level performance analysis, and code/device certification. Several industrial contexts are covered, including modeling of computing and communication, proof architectures models and statistical based validation techniques. Addresses CPS design problems such as cross-application interference, parsimonious modeling, and trustful code production Describes solutions, such as simulation for extra-functional properties, extension of cod...

  11. The use of physical model simulation to emulate an AGV material handling system

    International Nuclear Information System (INIS)

    Hurley, R.G.; Coffman, P.E.; Dixon, J.R.; Walacavage, J.G.

    1987-01-01

    This paper describes an application of physical modeling to the simulation of a prototype AGV (Automatic Guided Vehicle) material handling system. Physical modeling is the study of complex automated manufacturing and material handling systems through the use of small scale components controlled by mini and/or microcomputers. By modeling the mechanical operations of the proposed AGV material handling system, it was determined that control algorithms and AGV dispatch rules could be developed and evaluated. This paper presents a brief explanation of physical modeling as a simulation tool and addresses in detail the development of the control algorithm, dispatching rules, and a prototype physical model of a flexible machining system

  12. Interactive physically-based structural modeling of hydrocarbon systems

    International Nuclear Information System (INIS)

    Bosson, Mael; Grudinin, Sergei; Bouju, Xavier; Redon, Stephane

    2012-01-01

    Hydrocarbon systems have been intensively studied via numerical methods, including electronic structure computations, molecular dynamics and Monte Carlo simulations. Typically, these methods require an initial structural model (atomic positions and types, topology, etc.) that may be produced using scripts and/or modeling tools. For many systems, however, these building methods may be ineffective, as the user may have to specify the positions of numerous atoms while maintaining structural plausibility. In this paper, we present an interactive physically-based modeling tool to construct structural models of hydrocarbon systems. As the user edits the geometry of the system, atomic positions are also influenced by the Brenner potential, a well-known bond-order reactive potential. In order to be able to interactively edit systems containing numerous atoms, we introduce a new adaptive simulation algorithm, as well as a novel algorithm to incrementally update the forces and the total potential energy based on the list of updated relative atomic positions. The computational cost of the adaptive simulation algorithm depends on user-defined error thresholds, and our potential update algorithm depends linearly with the number of updated bonds. This allows us to enable efficient physically-based editing, since the computational cost is decoupled from the number of atoms in the system. We show that our approach may be used to effectively build realistic models of hydrocarbon structures that would be difficult or impossible to produce using other tools.

  13. Systems and models with anticipation in physics and its applications

    International Nuclear Information System (INIS)

    Makarenko, A

    2012-01-01

    Investigations of recent physics processes and real applications of models require the new more and more improved models which should involved new properties. One of such properties is anticipation (that is taking into accounting some advanced effects).It is considered the special kind of advanced systems – namely a strong anticipatory systems introduced by D. Dubois. Some definitions, examples and peculiarities of solutions are described. The main feature is presumable multivaluedness of the solutions. Presumable physical examples of such systems are proposed: self-organization problems; dynamical chaos; synchronization; advanced potentials; structures in micro-, meso- and macro- levels; cellular automata; computing; neural network theory. Also some applications for modeling social, economical, technical and natural systems are described.

  14. Modelling physics detectors in a computer aided design system for simulation purposes

    International Nuclear Information System (INIS)

    Ahvenainen, J.; Oksakivi, T.; Vuoskoski, J.

    1995-01-01

    The possibility of transferring physics detector models from computer aided design systems into physics simulation packages like GEANT is receiving increasing attention. The problem of exporting detector models constructed in CAD systems into GEANT is well known. We discuss the problem and describe an application, called DDT, which allows one to design detector models in a CAD system and then transfer the models into GEANT for simulation purposes. (orig.)

  15. Model-Based Dependability Analysis of Physical Systems with Modelica

    Directory of Open Access Journals (Sweden)

    Andrea Tundis

    2017-01-01

    Full Text Available Modelica is an innovative, equation-based, and acausal language that allows modeling complex physical systems, which are made of mechanical, electrical, and electrotechnical components, and evaluates their design through simulation techniques. Unfortunately, the increasing complexity and accuracy of such physical systems require new, more powerful, and flexible tools and techniques for evaluating important system properties and, in particular, the dependability ones such as reliability, safety, and maintainability. In this context, the paper describes some extensions of the Modelica language to support the modeling of system requirements and their relationships. Such extensions enable the requirement verification analysis through native constructs in the Modelica language. Furthermore, they allow exporting a Modelica-based system design as a Bayesian Network in order to analyze its dependability by employing a probabilistic approach. The proposal is exemplified through a case study concerning the dependability analysis of a Tank System.

  16. Teaching the fundamentals of the modelling of cyber-physical systems

    OpenAIRE

    Tendeloo, Van, Yentl; Vangheluwe, Hans

    2016-01-01

    Abstract: Current Cyber-Physical Systems are becoming too complex to model and simulate using the usual approaches. This complexity is not only due to a large number of components, but also by the increasing diversity of components and problem aspects. In this paper, we report on over a decade of experience in teaching the modelling and simulation of complex Cyber-Physical Systems, at both McGill University, and the University of Antwerp. We tackle complexity through the use of multiple forma...

  17. Secure and Resilient Functional Modeling for Navy Cyber-Physical Systems

    Science.gov (United States)

    2017-05-24

    control systems, it was determined that this project will employ the model of a Ship Chilled Water Distribution System as a central use case. This model...Siemens Corporation Corporate Technology Unrestricted. Distribution Statement A. Approved for public...release; distribution is unlimited. Page 1 of 4 Secure & Resilient Functional Modeling for Navy Cyber-Physical Systems FY17 Quarter 1 Technical Progress

  18. The past, present and future of cyber-physical systems: a focus on models.

    Science.gov (United States)

    Lee, Edward A

    2015-02-26

    This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.

  19. Microphysics in Multi-scale Modeling System with Unified Physics

    Science.gov (United States)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  20. Integrating 3D geological information with a national physically-based hydrological modelling system

    Science.gov (United States)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE land cover change studies and integrated assessments of groundwater and surface water resources.

  1. The Past, Present and Future of Cyber-Physical Systems: A Focus on Models

    Science.gov (United States)

    Lee, Edward A.

    2015-01-01

    This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical. PMID:25730486

  2. The Past, Present and Future of Cyber-Physical Systems: A Focus on Models

    Directory of Open Access Journals (Sweden)

    Edward A. Lee

    2015-02-01

    Full Text Available This paper is about better engineering of cyber-physical systems (CPSs through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems, which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.

  3. A Model of Discrete-Continuum Time for a Simple Physical System

    Directory of Open Access Journals (Sweden)

    Karimov A. R.

    2008-04-01

    Full Text Available Proceeding from the assumption that the time flow of an individual object is a real physical value, in the framework of a physical kinetics approach we propose an analogy between time and temperature. The use of such an analogy makes it possible to work out a discrete-continuum model of time for a simple physical system. The possible physical properties of time for the single object and time for the whole system are discussed.

  4. Advances in the physics modelling of CANDU liquid injection shutdown systems

    International Nuclear Information System (INIS)

    Smith, H.J.; Robinson, R.; Guertin, C.

    1993-01-01

    The physics modelling of liquid poison injection shutdown systems in CANDU reactors accounts for the major phenomena taking place by combining the effects of both moderator hydraulics and neutronics. This paper describes the advances in the physics modelling of liquid poison injection shutdown systems (LISS), discusses some of the effects of the more realistic modelling, and briefly describes the automation methodology. Modifications to the LISS methodology have improved the realism of the physics modelling, showing that the previous methodology significantly overestimated energy deposition during the simulation of a loss of coolant transient in Bruce A, by overestimating the reactivity transient. Furthermore, the automation of the modelling process has reduced the time needed to carry put LISS evaluations to the same level as required for shutoff-rod evaluations, while at the same time minimizing the amount of input, and providing a method for tracing all files used, thus adding a level of quality assurance to the calculation. 5 refs., 11 figs

  5. The Goddard multi-scale modeling system with unified physics

    Directory of Open Access Journals (Sweden)

    W.-K. Tao

    2009-08-01

    Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.

    This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.

  6. Utilization of mesoscale atmospheric dynamic model PHYSIC as a meteorological forecast model in nuclear emergency response system

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1997-01-01

    It is advantageous for an emergency response system to have a forecast function to provide a time margin for countermeasures in case of a nuclear accident. We propose to apply an atmospheric dynamic model PHYSIC (Prognostic HYdroStatic model Including turbulence Closure model) as a meteorological forecast model in the emergency system. The model uses GPV data which are the output of the numerical weather forecast model of Japan Meteorological Agency as the initial and boundary conditions. The roles of PHYSIC are the interface between GPV data and the emergency response system and the forecast of local atmospheric phenomena within the model domain. This paper presents a scheme to use PHYSIC to forecast local wind and its performance. Horizontal grid number of PHYSIC is fixed to 50 x 50, whereas the mesh and domain sizes are determined in consideration of topography causing local winds at an objective area. The model performance was examined for the introduction of GPV data through initial and boundary conditions and the predictability of local wind field and atmospheric stability. The model performance was on an acceptable level as the forecast model. It was also recognized that improvement of cloud calculation was necessary in simulating atmospheric stability. (author)

  7. Modeling Physical Systems Using Vensim PLE Systems Dynamics Software

    Science.gov (United States)

    Widmark, Stephen

    2012-01-01

    Many physical systems are described by time-dependent differential equations or systems of such equations. This makes it difficult for students in an introductory physics class to solve many real-world problems since these students typically have little or no experience with this kind of mathematics. In my high school physics classes, I address…

  8. A time use survey derived integrative human-physical household system energy performance model

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Y.S. [Carnegie Mellon Univ., Pittsburgh, PA (United States). School of Architecture

    2009-07-01

    This paper reported on a virtual experiment that extrapolated the stochastic yet patterned behaviour of the integrative model of a 4-bedroom house in Chicago with 4 different household compositions. The integrative household system theory considers the household as a combination of 2 sub-systems, notably the physical system and the human system. The physical system is the materials and devices of a dwelling, and the human system is the occupants that live within the dwelling. A third element is the environment that influences the operation of the 2 sub-systems. The human-physical integrative household energy model provided a platform to simulate the effect of sub-house energy conservation measures. The virtual experiment showed that the use of the bootstrap sampling approach on American Time Use Survey (ATUS) data to determine the occupant's stochastic energy consumption behaviour has resulted in a robust complex system model. Bell-shaped distributions were presented for annual appliance, heating and cooling load demands. The virtual experiment also pointed to the development of advanced multi-zone residential HVAC system as a suitable strategy for major residential energy efficiency improvement. The load profiles generated from the integrative model simulation were found to be in good agreement with those from field studies. It was concluded that the behaviour of the integrative model is a good representation of the energy consumption behaviour of real households. 10 refs., 4 tabs., 12 figs.

  9. A model of heavy ion detection in physical and biological systems

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    1988-01-01

    Track structure theory (the Katz model) and its application to the detection of heavy ions in physical and biological systems are reviewed. Following the use of a new corrected formula describing the radial distribution of average dose around the path of a heavy ion, based on results of Monte Carlo calculations and on results of experimental measurements, better agreement is achieved between model calculations and experimentally measured relative effectiveness, for enzymatic and viral systems, for the Fricke dosemeter and for alanine and thermoluminescent (TDL-700) dosemeters irradiated with beams of heavy charged particles. From experimentally measured RBE dependences for survival and frequency of neoplastic transformations in a mammalian cell culture irradiated with beams of energetic heavy ions, values of model parameters for these biological endpoints have been extracted, and a model extrapolation to the low-dose region performed. Results of model calculations are then compared with evaluations of the lung cancer hazard in populations exposed to radon and its progeny. The model can be applied to practical phenomenological analysis of radiation damage in solid-state systems and to dosimetry of charged particle and fast neutron beams using a variety of detectors. The model can also serve as a guide in building more basic models of the action of ionizing radiation with physical and biological systems and guide of development of models of radiation risk more relevant than that used presently. 185 refs., 31 figs., 3 tabs. (author)

  10. The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling

    Directory of Open Access Journals (Sweden)

    Yongping Yang

    2018-03-01

    Full Text Available Optimal operation of energy systems plays an important role to enhance their lifetime security and efficiency. The determination of optimal operating strategies requires intelligent utilization of massive data accumulated during operation or prediction. The investigation of these data solely without combining physical models may run the risk that the established relationships between inputs and outputs, the models which reproduce the behavior of the considered system/component in a wide range of boundary conditions, are invalid for certain boundary conditions, which never occur in the database employed. Therefore, combining big data with physical models via cyber physical systems (CPS is of great importance to derive highly-reliable and -accurate models and becomes more and more popular in practical applications. In this paper, we focus on the description of a systematic method to apply CPS to the performance analysis and decision making of thermal power plants. We proposed a general procedure of CPS with both offline and online phases for its application to thermal power plants and discussed the corresponding methods employed to support each sub-procedure. As an example, a data-driven model of turbine island of an existing air-cooling based thermal power plant is established with the proposed procedure and demonstrates its practicality, validity and flexibility. To establish such model, the historical operating data are employed in the cyber layer for modeling and linking each physical component. The decision-making procedure of optimal frequency of air-cooling condenser is also illustrated to show its applicability of online use. It is concluded that the cyber physical system with the data mining technique is effective and promising to facilitate the real-time analysis and control of thermal power plants.

  11. Collaborative Model-based Systems Engineering for Cyber-Physical Systems, with a Building Automation Case Study

    DEFF Research Database (Denmark)

    Fitzgerald, John; Gamble, Carl; Payne, Richard

    2016-01-01

    We describe an approach to the model-based engineering of cyber-physical systems that permits the coupling of diverse discrete-event and continuous-time models and their simulators. A case study in the building automation domain demonstrates how such co-models and co-simulation can promote early...

  12. Enhancement of Physics-of-Failure Prognostic Models with System Level Features

    National Research Council Canada - National Science Library

    Kacprzynski, Gregory

    2002-01-01

    .... The novelty in the current prognostic tool development is that predictions are made through the fusion of stochastic physics-of-failure models, relevant system or component level health monitoring...

  13. Modeling and Application of Vehicular Cyber Physical System Based Petri Nets

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2014-11-01

    Full Text Available Mobile cyber physical system (MCPS has been a hot research area, where mobile nodes can mobile, and communicate with each other. As a typical MCPS, vehicular cyber physical system (VCPS plays an important role in intelligent transportation, especially in collision avoidance. There is no, however, a formal modeling and analysis method for VCPS. In the paper, the modeling method based Petri nets (PN is presented. Furthermore, the behavior expression analysis method is also presented which can deal with arbitrary distribution timed transitions. Finally, a case is introduced to verify the effectiveness about proposed method, and the results show that VCPS can greatly reduce the reaction time of vehicles behind when emergent accident occurs and then enhance the traffic safety.

  14. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Huang, Y.F.; Huang, G.H.; Wang, G.Q.; Lin, Q.G.; Chakma, A.

    2006-01-01

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  15. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    Science.gov (United States)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  16. An undergraduate course, and new textbook, on ``Physical Models of Living Systems''

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.

  17. A Multi-State Physics Modeling approach for the reliability assessment of Nuclear Power Plants piping systems

    International Nuclear Information System (INIS)

    Di Maio, Francesco; Colli, Davide; Zio, Enrico; Tao, Liu; Tong, Jiejuan

    2015-01-01

    Highlights: • We model piping systems degradation of Nuclear Power Plants under uncertainty. • We use Multi-State Physics Modeling (MSPM) to describe a continuous degradation process. • We propose a Monte Carlo (MC) method for calculating time-dependent transition rates. • We apply MSPM to a piping system undergoing thermal fatigue. - Abstract: A Multi-State Physics Modeling (MSPM) approach is here proposed for degradation modeling and failure probability quantification of Nuclear Power Plants (NPPs) piping systems. This approach integrates multi-state modeling to describe the degradation process by transitions among discrete states (e.g., no damage, micro-crack, flaw, rupture, etc.), with physics modeling by (physic) equations to describe the continuous degradation process within the states. We propose a Monte Carlo (MC) simulation method for the evaluation of the time-dependent transition rates between the states of the MSPM. Accountancy is given for the uncertainty in the parameters and external factors influencing the degradation process. The proposed modeling approach is applied to a benchmark problem of a piping system of a Pressurized Water Reactor (PWR) undergoing thermal fatigue. The results are compared with those obtained by a continuous-time homogeneous Markov Chain Model

  18. Integration of topological modification within the modeling of multi-physics systems: Application to a Pogo-stick

    Science.gov (United States)

    Abdeljabbar Kharrat, Nourhene; Plateaux, Régis; Miladi Chaabane, Mariem; Choley, Jean-Yves; Karra, Chafik; Haddar, Mohamed

    2018-05-01

    The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.

  19. VIRTUAL MODELING OF PHYSICAL EXPERIMENT FOR DISTANCE LEARNING SYSTEMS IN THE SECONDARY AND HIGHER PEDAGOGICAL SCHOOLS

    Directory of Open Access Journals (Sweden)

    Mykola V. Holovko

    2015-05-01

    Full Text Available The article investigates the state of the educational computer simulation and its modern features. It deals with psychological and didactic approaches to modeling in physics education and school physical experiment. It was considered the possible classification of computer models for distance learning system, as well as proposed the ways of implementing virtual experiment in distance education in physics. The main types of virtual modeling, the most widely used computer systems support in teaching physics, their possible application in teaching secondary school students were characterized. The peculiarities of distance education of future physics teachers by means of electronic teaching methods as a combination of integrated electronic educational resources and services were highlighted.

  20. Component- and system-level degradation modeling of digital Instrumentation and Control systems based on a Multi-State Physics Modeling Approach

    International Nuclear Information System (INIS)

    Wang, Wei; Di Maio, Francesco; Zio, Enrico

    2016-01-01

    Highlights: • A Multi-State Physics Modeling (MSPM) framework for reliability assessment is proposed. • Monte Carlo (MC) simulation is utilized to estimate the degradation state probability. • Due account is given to stochastic uncertainty and deterministic degradation progression. • The MSPM framework is applied to the reliability assessment of a digital I&C system. • Results are compared with the results obtained with a Markov Chain Model (MCM). - Abstract: A system-level degradation modeling is proposed for the reliability assessment of digital Instrumentation and Control (I&C) systems in Nuclear Power Plants (NPPs). At the component level, we focus on the reliability assessment of a Resistance Temperature Detector (RTD), which is an important digital I&C component used to guarantee the safe operation of NPPs. A Multi-State Physics Model (MSPM) is built to describe this component degradation progression towards failure and Monte Carlo (MC) simulation is used to estimate the probability of sojourn in any of the previously defined degradation states, by accounting for both stochastic and deterministic processes that affect the degradation progression. The MC simulation relies on an integrated modeling of stochastic processes with deterministic aging of components that results to be fundamental for estimating the joint cumulative probability distribution of finding the component in any of the possible degradation states. The results of the application of the proposed degradation model to a digital I&C system of literature are compared with the results obtained by a Markov Chain Model (MCM). The integrated stochastic-deterministic process here proposed to drive the MC simulation is viable to integrate component-level models into a system-level model that would consider inter-system or/and inter-component dependencies and uncertainties.

  1. Analyzing Cyber Security Threats on Cyber-Physical Systems Using Model-Based Systems Engineering

    Science.gov (United States)

    Kerzhner, Aleksandr; Pomerantz, Marc; Tan, Kymie; Campuzano, Brian; Dinkel, Kevin; Pecharich, Jeremy; Nguyen, Viet; Steele, Robert; Johnson, Bryan

    2015-01-01

    The spectre of cyber attacks on aerospace systems can no longer be ignored given that many of the components and vulnerabilities that have been successfully exploited by the adversary on other infrastructures are the same as those deployed and used within the aerospace environment. An important consideration with respect to the mission/safety critical infrastructure supporting space operations is that an appropriate defensive response to an attack invariably involves the need for high precision and accuracy, because an incorrect response can trigger unacceptable losses involving lives and/or significant financial damage. A highly precise defensive response, considering the typical complexity of aerospace environments, requires a detailed and well-founded understanding of the underlying system where the goal of the defensive response is to preserve critical mission objectives in the presence of adversarial activity. In this paper, a structured approach for modeling aerospace systems is described. The approach includes physical elements, network topology, software applications, system functions, and usage scenarios. We leverage Model-Based Systems Engineering methodology by utilizing the Object Management Group's Systems Modeling Language to represent the system being analyzed and also utilize model transformations to change relevant aspects of the model into specialized analyses. A novel visualization approach is utilized to visualize the entire model as a three-dimensional graph, allowing easier interaction with subject matter experts. The model provides a unifying structure for analyzing the impact of a particular attack or a particular type of attack. Two different example analysis types are demonstrated in this paper: a graph-based propagation analysis based on edge labels, and a graph-based propagation analysis based on node labels.

  2. Minding the Cyber-Physical Gap: Model-Based Analysis and Mitigation of Systemic Perception-Induced Failure

    Directory of Open Access Journals (Sweden)

    Yaniv Mordecai

    2017-07-01

    Full Text Available The cyber-physical gap (CPG is the difference between the ‘real’ state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS. Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME, a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer’s ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015—Object Process Methodology as our conceptual modeling framework.

  3. Modeling and analysis of real-time and embedded systems with UML and MARTE developing cyber-physical systems

    CERN Document Server

    Selic, Bran

    2013-01-01

    Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE explains how to apply the complex MARTE standard in practical situations. This approachable reference provides a handy user guide, illustrating with numerous examples how you can use MARTE to design and develop real-time and embedded systems and software. Expert co-authors Bran Selic and Sébastien Gérard lead the team that drafted and maintain the standard and give you the tools you need apply MARTE to overcome the limitations of cyber-physical systems. The functional sophistication required of modern cyber-physical

  4. SNAP: a tool for nuclear physical protection system modeling

    International Nuclear Information System (INIS)

    Engi, D.; Grant, F.H. III.

    1979-10-01

    Nuclear safeguards systems are concerned, in part, with the physical protection of nuclear materials. The function of a physical protection system is to define the facility against adversary activities which could lead to theft of nuclear material or sabotage resulting in a radiological release. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of physical protection system analysis. This paper describes a detailed application of SNAP to a hypothetical nuclear facility

  5. Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    Science.gov (United States)

    Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.

    1992-01-01

    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.

  6. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    International Nuclear Information System (INIS)

    Moiseyev, A.V.

    2008-01-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k eff , control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  7. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moiseyev, A.V. [SSC RF - IPPE, 1 Bondarenko Square, Obninsk, Kaluga Region 249033 (Russian Federation)

    2008-07-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k{sub eff}, control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  8. A Baseline Patient Model to Support Testing of Medical Cyber-Physical Systems.

    Science.gov (United States)

    Silva, Lenardo C; Perkusich, Mirko; Almeida, Hyggo O; Perkusich, Angelo; Lima, Mateus A M; Gorgônio, Kyller C

    2015-01-01

    Medical Cyber-Physical Systems (MCPS) are currently a trending topic of research. The main challenges are related to the integration and interoperability of connected medical devices, patient safety, physiologic closed-loop control, and the verification and validation of these systems. In this paper, we focus on patient safety and MCPS validation. We present a formal patient model to be used in health care systems validation without jeopardizing the patient's health. To determine the basic patient conditions, our model considers the four main vital signs: heart rate, respiratory rate, blood pressure and body temperature. To generate the vital signs we used regression models based on statistical analysis of a clinical database. Our solution should be used as a starting point for a behavioral patient model and adapted to specific clinical scenarios. We present the modeling process of the baseline patient model and show its evaluation. The conception process may be used to build different patient models. The results show the feasibility of the proposed model as an alternative to the immediate need for clinical trials to test these medical systems.

  9. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  10. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  11. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  12. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  13. Physical inventory by use of modeling for the tritium aqueous waste recovery system

    International Nuclear Information System (INIS)

    Sienkiewicz, C.J.; Lentz, J.E.; Wiggins, D.V.

    1988-01-01

    Physical inventory requirements for the Tritium Aqueous Waste Recovery System (TAWRS) presented constraints that required unique solutions. Available analytical techniques for which sound measurement control practices existed could not be readily adapted to the system without significant modifications and expense. Based on the assumption that would accurately estimate total system inventory given a few key measurements, a model was developed for TAWRS. Tritium concentrations in two streams, the tritiated feed stream to the process and the tritiated hydrogen stream generated by the electrolysis cells, provided the key values to the model. The proposed mathematical model relates the tritium concentration throughout the system to the tritium concentration in these two streams. Testing of the system using low-level tritiated feed water was conducted to characterize tritium distribution in the system and to relate key values to total inventory. 4 refs., 2 figs.,

  14. Study of seismic data acquisition using physical modeling system; Butsuri model jikken sochi wo mochiita data shutoku gijutsu ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, R; Tsuru, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-10-01

    For the physical modeling system of Technology Research Center, Japan National Oil Corporation, data acquisition on the ocean and ground can be simulated using models. This system can provide data for verification of the data processing and elastic wave simulation algorithm. This can also provide data for decision of experiment specifications by making a model simulating the underground structure of the given test field. The model used for the physical modeling system is a gradient multilayer model with six-layer structure. Depth migration before stacking was conducted using data obtained through two acquisition methods, i.e., up-dip acquisition and down-dip acquisition. The depth migration before stacking was performed for data obtained by up-dip acquisition in addition to the records obtained by down-dip acquisition. Consequently, a definite reflection surface was observed, which has not been observed from the processing results of down-dip acquisition data. 9 figs.

  15. Incorporating Prognostic Marine Nitrogen Fixers and Related Bio-Physical Feedbacks in an Earth System Model

    Science.gov (United States)

    Paulsen, H.; Ilyina, T.; Six, K. D.

    2016-02-01

    Marine nitrogen fixers play a fundamental role in the oceanic nitrogen and carbon cycles by providing a major source of `new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Furthermore, nitrogen fixers may regionally have a direct impact on ocean physics and hence the climate system as they form extensive surface mats which can increase light absorption and surface albedo and reduce the momentum input by wind. Resulting alterations in temperature and stratification may feed back on nitrogen fixers' growth itself.We incorporate nitrogen fixers as a prognostic 3D tracer in the ocean biogeochemical component (HAMOCC) of the Max Planck Institute Earth system model and assess for the first time the impact of related bio-physical feedbacks on biogeochemistry and the climate system.The model successfully reproduces recent estimates of global nitrogen fixation rates, as well as the observed distribution of nitrogen fixers, covering large parts of the tropical and subtropical oceans. First results indicate that including bio-physical feedbacks has considerable effects on the upper ocean physics in this region. Light absorption by nitrogen fixers leads locally to surface heating, subsurface cooling, and mixed layer depth shoaling in the subtropical gyres. As a result, equatorial upwelling is increased, leading to surface cooling at the equator. This signal is damped by the effect of the reduced wind stress due to the presence of cyanobacteria mats, which causes a reduction in the wind-driven circulation, and hence a reduction in equatorial upwelling. The increase in surface albedo due to nitrogen fixers has only inconsiderable effects. The response of nitrogen fixers' growth to the alterations in temperature and stratification varies regionally. Simulations with the fully coupled Earth system model are in progress to assess the implications of the biologically induced changes in upper ocean physics for the global climate system.

  16. Nonlinear Fluctuation Behavior of Financial Time Series Model by Statistical Physics System

    Directory of Open Access Journals (Sweden)

    Wuyang Cheng

    2014-01-01

    Full Text Available We develop a random financial time series model of stock market by one of statistical physics systems, the stochastic contact interacting system. Contact process is a continuous time Markov process; one interpretation of this model is as a model for the spread of an infection, where the epidemic spreading mimics the interplay of local infections and recovery of individuals. From this financial model, we study the statistical behaviors of return time series, and the corresponding behaviors of returns for Shanghai Stock Exchange Composite Index (SSECI and Hang Seng Index (HSI are also comparatively studied. Further, we investigate the Zipf distribution and multifractal phenomenon of returns and price changes. Zipf analysis and MF-DFA analysis are applied to investigate the natures of fluctuations for the stock market.

  17. Data-driven modeling, control and tools for cyber-physical energy systems

    Science.gov (United States)

    Behl, Madhur

    Energy systems are experiencing a gradual but substantial change in moving away from being non-interactive and manually-controlled systems to utilizing tight integration of both cyber (computation, communications, and control) and physical representations guided by first principles based models, at all scales and levels. Furthermore, peak power reduction programs like demand response (DR) are becoming increasingly important as the volatility on the grid continues to increase due to regulation, integration of renewables and extreme weather conditions. In order to shield themselves from the risk of price volatility, end-user electricity consumers must monitor electricity prices and be flexible in the ways they choose to use electricity. This requires the use of control-oriented predictive models of an energy system's dynamics and energy consumption. Such models are needed for understanding and improving the overall energy efficiency and operating costs. However, learning dynamical models using grey/white box approaches is very cost and time prohibitive since it often requires significant financial investments in retrofitting the system with several sensors and hiring domain experts for building the model. We present the use of data-driven methods for making model capture easy and efficient for cyber-physical energy systems. We develop Model-IQ, a methodology for analysis of uncertainty propagation for building inverse modeling and controls. Given a grey-box model structure and real input data from a temporary set of sensors, Model-IQ evaluates the effect of the uncertainty propagation from sensor data to model accuracy and to closed-loop control performance. We also developed a statistical method to quantify the bias in the sensor measurement and to determine near optimal sensor placement and density for accurate data collection for model training and control. Using a real building test-bed, we show how performing an uncertainty analysis can reveal trends about

  18. MPM4CPS: multi-pardigm modelling for cyber-physical systems

    NARCIS (Netherlands)

    Vangeheluwe, Hans; Ameral, Vasco; Giese, Holger; Broenink, Johannes F.; Schätz, Bernhard; Norta, Alexander; Carreira, Paulo; Lukovic, Ivan; Mayerhofer, Tanja; Wimmer, Manuel; Vellecillo, Antonio

    2016-01-01

    The last decades have seen the emergence of truly complex, designed systems, known as Cyber-Physical Systems (CPS). Engineering such systems requires integrating physical, software, and network aspects. To date, neither a unifying theory nor systematic design methods, techniques and tools exist to

  19. Tidal Simulations of an Incised-Valley Fluvial System with a Physics-Based Geologic Model

    Science.gov (United States)

    Ghayour, K.; Sun, T.

    2012-12-01

    Physics-based geologic modeling approaches use fluid flow in conjunction with sediment transport and deposition models to devise evolutionary geologic models that focus on underlying physical processes and attempt to resolve them at pertinent spatial and temporal scales. Physics-based models are particularly useful when the evolution of a depositional system is driven by the interplay of autogenic processes and their response to allogenic controls. This interplay can potentially create complex reservoir architectures with high permeability sedimentary bodies bounded by a hierarchy of shales that can effectively impede flow in the subsurface. The complex stratigraphy of tide-influenced fluvial systems is an example of such co-existing and interacting environments of deposition. The focus of this talk is a novel formulation of boundary conditions for hydrodynamics-driven models of sedimentary systems. In tidal simulations, a time-accurate boundary treatment is essential for proper imposition of tidal forcing and fluvial inlet conditions where the flow may be reversed at times within a tidal cycle. As such, the boundary treatment at the inlet has to accommodate for a smooth transition from inflow to outflow and vice-versa without creating numerical artifacts. Our numerical experimentations showed that boundary condition treatments based on a local (frozen) one-dimensional approach along the boundary normal which does not account for the variation of flow quantities in the tangential direction often lead to unsatisfactory results corrupted by numerical artifacts. In this talk, we propose a new boundary treatment that retains all spatial and temporal terms in the model and as such is capable to account for nonlinearities and sharp variations of model variables near boundaries. The proposed approach borrows heavily from the idea set forth by J. Sesterhenn1 for compressible Navier-Stokes equations. The methodology is successfully applied to a tide-influenced incised

  20. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  1. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  2. Sensor selection of helicopter transmission systems based on physical model and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Lyu Kehong

    2014-06-01

    Full Text Available In the helicopter transmission systems, it is important to monitor and track the tooth damage evolution using lots of sensors and detection methods. This paper develops a novel approach for sensor selection based on physical model and sensitivity analysis. Firstly, a physical model of tooth damage and mesh stiffness is built. Secondly, some effective condition indicators (CIs are presented, and the optimal CIs set is selected by comparing their test statistics according to Mann–Kendall test. Afterwards, the selected CIs are used to generate a health indicator (HI through sen slop estimator. Then, the sensors are selected according to the monotonic relevance and sensitivity to the damage levels. Finally, the proposed method is verified by the simulation and experimental data. The results show that the approach can provide a guide for health monitoring of helicopter transmission systems, and it is effective to reduce the test cost and improve the system’s reliability.

  3. Real-time virtual EAST physical experiment system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: lidan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Xiao, B.J., E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui (China); Xia, J.Y., E-mail: jyxia@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Yang, Fei, E-mail: fyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Department of Computer Science, Anhui Medical University, Hefei, Anhui (China)

    2014-05-15

    Graphical abstract: - Highlights: • 3D model of experimental advanced superconducting tokamak is established. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, plasma shape visualization and simulation. • Browser-oriented system is web-based and more interactive, immersive and convenient. • The system provides the framework for virtual physical experimental environment. - Abstract: As a large fusion reaction device, experimental advanced superconducting tokamak (EAST)’s internal structure is complicated and not easily accessible. Moreover, various diagnostic systems and complicated configuration bring about the inconveniency to the scientists who are unfamiliar with the system but interested in the data. We propose a virtual system to display the 3D model of EAST facility and enable people to view its inner structure and get access to the information of its components in various view sights. We would also provide most of the diagnostic configuration details together with their signal names and physical properties. Compared to the previous ways of viewing information by reference to collected drawings and videos, virtual EAST system is more interactive and immersive. We constructed the browser-oriented virtual EAST physical experiment system, integrated real-time experiment data acquisition, plasma shape visualization and experiment result simulation in order to reproduce physical experiments in a web browser. This system used B/S (Browser/Server) structure in combination with the technology of virtual reality – VRML (Virtual Reality Modeling Language) and Java 3D. In order to avoid the bandwidth limit across internet, we balanced the rendering speed and the precision of the virtual model components. Any registered user can view the experimental information visually and efficiently by logining the system through a web browser. The establishment of the system provides the

  4. Real-time virtual EAST physical experiment system

    International Nuclear Information System (INIS)

    Li, Dan; Xiao, B.J.; Xia, J.Y.; Yang, Fei

    2014-01-01

    Graphical abstract: - Highlights: • 3D model of experimental advanced superconducting tokamak is established. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, plasma shape visualization and simulation. • Browser-oriented system is web-based and more interactive, immersive and convenient. • The system provides the framework for virtual physical experimental environment. - Abstract: As a large fusion reaction device, experimental advanced superconducting tokamak (EAST)’s internal structure is complicated and not easily accessible. Moreover, various diagnostic systems and complicated configuration bring about the inconveniency to the scientists who are unfamiliar with the system but interested in the data. We propose a virtual system to display the 3D model of EAST facility and enable people to view its inner structure and get access to the information of its components in various view sights. We would also provide most of the diagnostic configuration details together with their signal names and physical properties. Compared to the previous ways of viewing information by reference to collected drawings and videos, virtual EAST system is more interactive and immersive. We constructed the browser-oriented virtual EAST physical experiment system, integrated real-time experiment data acquisition, plasma shape visualization and experiment result simulation in order to reproduce physical experiments in a web browser. This system used B/S (Browser/Server) structure in combination with the technology of virtual reality – VRML (Virtual Reality Modeling Language) and Java 3D. In order to avoid the bandwidth limit across internet, we balanced the rendering speed and the precision of the virtual model components. Any registered user can view the experimental information visually and efficiently by logining the system through a web browser. The establishment of the system provides the

  5. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    Science.gov (United States)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  6. Design of Soil Salinity Policies with Tinamit, a Flexible and Rapid Tool to Couple Stakeholder-Built System Dynamics Models with Physically-Based Models

    Science.gov (United States)

    Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with

  7. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    International Nuclear Information System (INIS)

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the open-quotes constructionclose quotes of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc

  8. Study of seismic data acquisition using physical modeling system; Butsuri model jikken sochi wo mochiita data shutoku gijutsu ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, R; Tsuru, T [Tech. Research Center, Japan National Oil Corp., Tokyo (Japan); Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-05-01

    The Physical Modeling System introduced into the Technology Research Center, Japan National Oil Corporation, and data collected by use of the system are presented. The Physical Modeling System is 10,000 times smaller than the real one, comprising a water tub section, measuring device section, and control section, etc. The water tub section comprises a tub for housing the model, transducers for transmitting and receiving vibration, controllers, etc. The water tub measures 1.8{times}1.2{times}0.9m. The model used in the experiment is an `inclined multilayer model` with each of its six layers pinching out toward the top, and is usable for the comparison of various migration methods. In one case in the records, reception was made at 184 reception points deployed at intervals of 3mm, when the minimum offset was 15mm and the maximum offset 564mm. Nothing very obvious was observed when the ordinary overlapping of DMO and CDP was applied to this record, which suggests that pre-overlapping migration treatment is required. 5 figs.

  9. Multi-physics Model for the Aging Prediction of a Vanadium Redox Flow Battery System

    International Nuclear Information System (INIS)

    Merei, Ghada; Adler, Sophie; Magnor, Dirk; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Present a multi-physics model of vanadium redox-flow battery. • This model is essential for aging prediction. • It is applicable for VRB system of different power and capacity ratings. • Good results comparing with current research in this field. - Abstract: The all-vanadium redox-flow battery is an attractive candidate to compensate the fluctuations of non-dispatchable renewable energy generation. While several models for vanadium redox batteries have been described yet, no model has been published, which is adequate for the aging prediction. Therefore, the present paper presents a multi-physics model which determines all parameters that are essential for an aging prediction. In a following paper, the corresponding aging model of vanadium redox flow battery (VRB) is described. The model combines existing models for the mechanical losses and temperature development with new approaches for the batteries side reactions. The model was implemented in Matlab/Simulink. The modeling results presented in the paper prove to be consistent with the experimental results of other research groups

  10. Technical Manual for the SAM Physical Trough Model

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  11. Learning about physical parameters: the importance of model discrepancy

    International Nuclear Information System (INIS)

    Brynjarsdóttir, Jenný; O'Hagan, Anthony

    2014-01-01

    Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)

  12. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    Science.gov (United States)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  13. Fixed-site physical protection system modeling

    International Nuclear Information System (INIS)

    Chapman, L.D.

    1975-01-01

    An evaluation of a fixed-site safeguard security system must consider the interrelationships of barriers, alarms, on-site and off-site guards, and their effectiveness against a forcible adversary attack whose intention is to create an act of sabotage or theft. A computer model has been developed at Sandia Laboratories for the evaluation of alternative fixed-site security systems. Trade-offs involving on-site and off-site response forces and response times, perimeter alarm systems, barrier configurations, and varying levels of threat can be analyzed. The computer model provides a framework for performing inexpensive experiments on fixed-site security systems for testing alternative decisions, and for determining the relative cost effectiveness associated with these decision policies

  14. Semantical Markov Logic Network for Distributed Reasoning in Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Abdul-Wahid Mohammed

    2017-01-01

    Full Text Available The challenges associated with developing accurate models for cyber-physical systems are attributable to the intrinsic concurrent and heterogeneous computations of these systems. Even though reasoning based on interconnected domain specific ontologies shows promise in enhancing modularity and joint functionality modelling, it has become necessary to build interoperable cyber-physical systems due to the growing pervasiveness of these systems. In this paper, we propose a semantically oriented distributed reasoning architecture for cyber-physical systems. This model accomplishes reasoning through a combination of heterogeneous models of computation. Using the flexibility of semantic agents as a formal representation for heterogeneous computational platforms, we define autonomous and intelligent agent-based reasoning procedure for distributed cyber-physical systems. Sensor networks underpin the semantic capabilities of this architecture, and semantic reasoning based on Markov logic networks is adopted to address uncertainty in modelling. To illustrate feasibility of this approach, we present a Markov logic based semantic event model for cyber-physical systems and discuss a case study of event handling and processing in a smart home.

  15. Stephen Jay Kline on systems, or physics, complex systems, and the gap between.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Philip LaRoche

    2011-06-01

    At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers are of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.

  16. A method for the quantification of model form error associated with physical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Wallen, Samuel P.; Brake, Matthew Robert

    2014-03-01

    In the process of model validation, models are often declared valid when the differences between model predictions and experimental data sets are satisfactorily small. However, little consideration is given to the effectiveness of a model using parameters that deviate slightly from those that were fitted to data, such as a higher load level. Furthermore, few means exist to compare and choose between two or more models that reproduce data equally well. These issues can be addressed by analyzing model form error, which is the error associated with the differences between the physical phenomena captured by models and that of the real system. This report presents a new quantitative method for model form error analysis and applies it to data taken from experiments on tape joint bending vibrations. Two models for the tape joint system are compared, and suggestions for future improvements to the method are given. As the available data set is too small to draw any statistical conclusions, the focus of this paper is the development of a methodology that can be applied to general problems.

  17. Development of 3-axis precise positioning seismic physical modeling system in the simulation of marine seismic exploration

    Science.gov (United States)

    Kim, D.; Shin, S.; Ha, J.; Lee, D.; Lim, Y.; Chung, W.

    2017-12-01

    Seismic physical modeling is a laboratory-scale experiment that deals with the actual and physical phenomena that may occur in the field. In seismic physical modeling, field conditions are downscaled and used. For this reason, even a small error may lead to a big error in an actual field. Accordingly, the positions of the source and the receiver must be precisely controlled in scale modeling. In this study, we have developed a seismic physical modeling system capable of precisely controlling the 3-axis position. For automatic and precise position control of an ultrasonic transducer(source and receiver) in the directions of the three axes(x, y, and z), a motor was mounted on each of the three axes. The motor can automatically and precisely control the positions with positional precision of 2''; for the x and y axes and 0.05 mm for the z axis. As it can automatically and precisely control the positions in the directions of the three axes, it has an advantage in that simulations can be carried out using the latest exploration techniques, such as OBS and Broadband Seismic. For the signal generation section, a waveform generator that can produce a maximum of two sources was used, and for the data acquisition section, which receives and stores reflected signals, an A/D converter that can receive a maximum of four signals was used. As multiple sources and receivers could be used at the same time, the system was set up in such a way that diverse exploration methods, such as single channel, multichannel, and 3-D exploration, could be realized. A computer control program based on LabVIEW was created, so that it could control the position of the transducer, determine the data acquisition parameters, and check the exploration data and progress in real time. A marine environment was simulated using a water tank 1 m wide, 1 m long, and 0.9 m high. To evaluate the performance and applicability of the seismic physical modeling system developed in this study, single channel and

  18. Improving doctor-patient communication: content validity examination of a novel urinary system-simulating physical model.

    Science.gov (United States)

    Hu, WenGang; Song, YaJun; Zhong, Xiao; Feng, JiaYu; Wang, PingXian; Huang, ChiBing

    2016-01-01

    Effective doctor-patient communication is essential for establishing a successful doctor-patient relationship and implementing high-quality health care. In this study, a novel urinary system-simulating physical model was designed and fabricated, and its content validity for improving doctor-patient communication was examined by conducting a randomized controlled trial in which this system was compared with photographs. A total of 240 inpatients were randomly selected and assigned to six doctors for treatment. After primary diagnosis and treatment had been determined, these patients were randomly divided into the experimental group and the control group. Patients in the experimental group participated in model-based doctor-patient communication, whereas control group patients received picture-based communication. Within 30 min after this communication, a Demographic Information Survey Scale and a Medical Interview Satisfaction Scale (MISS) were distributed to investigate patients' demographic characteristics and their assessments of total satisfaction, distress relief, communication comfort, rapport, and compliance intent. The study results demonstrated that the individual groups were comparable with respect to demographic variables but that relative to patients in the picture-based communication group, patients in the model-based communication group had significantly higher total satisfaction scores and higher ratings for distress relief, communication comfort, rapport, and compliance intent. These results indicate that the physical model is more effective than the pictures at improving doctor-patient communication and patient outcomes. The application of the physical model in doctor-patient communication is helpful and valuable and therefore merits widespread clinical popularization.

  19. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  20. Method of modelization assistance with bond graphs and application to qualitative diagnosis of physical systems

    International Nuclear Information System (INIS)

    Lucas, B.

    1994-05-01

    After having recalled the usual diagnosis techniques (failure index, decision tree) and those based on an artificial intelligence approach, the author reports a research aimed at exploring the knowledge and model generation technique. He focuses on the design of an aid to model generation tool and aid-to-diagnosis tool. The bond graph technique is shown to be adapted to the aid to model generation, and is then adapted to the aid to diagnosis. The developed tool is applied to three projects: DIADEME (a diagnosis system based on physical model), the improvement of the SEXTANT diagnosis system (an expert system for transient analysis), and the investigation on an Ariane 5 launcher component. Notably, the author uses the Reiter and Greiner algorithm

  1. Cyber-physical-social System in Intelligent Transportation

    Institute of Scientific and Technical Information of China (English)

    Gang Xiong; Fenghua Zhu; Xiwei Liu; Xisong Dong; Wuling Huang; Songhang Chen; Kai Zhao

    2015-01-01

    A cyber-physical system(CPS) is composed of a physical system and its corresponding cyber systems that are tightly fused at all scales and levels.CPS is helpful to improve the controllability,efficiency and reliability of a physical system,such as vehicle collision avoidance and zero-net energy buildings systems.It has become a hot R&D and practical area from US to EU and other countries.In fact,most of physical systems and their cyber systems are designed,built and used by human beings in the social and natural environments.So,social systems must be of the same importance as their CPSs.The indivisible cyber,physical and social parts constitute the cyber-physical-social system(CPSS),a typical complex system and it’s a challengeable problem to control and manage it under traditional theories and methods.An artificial systems,computational experiments and parallel execution(ACP) methodology is introduced based on which data-driven models are applied to social system.Artificial systems,i.e.,cyber systems,are applied for the equivalent description of physical-social system(PSS).Computational experiments are applied for control plan validation.And parallel execution finally realizes the stepwise control and management of CPSS.Finally,a CPSS-based intelligent transportation system(ITS) is discussed as a case study,and its architecture,three parts,and application are described in detail.

  2. Physical protection system design and evaluation

    International Nuclear Information System (INIS)

    Williams, J.D.

    1997-01-01

    The design of an effective physical protection system includes the determination of physical protection system objectives, initial design of a physical protection system, design evaluation, and probably a redesign or refinement. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary's capabilities, and range of adversary's tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the physical protection system, that is, open-quotes what to protect against whom.close quotes The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control elements, procedures, communication devices, and protective forces personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. This paper reviews the physical protection system design and methodology mentioned above. Examples of the steps required and a brief introduction to some of the technologies used in modem physical protections system are given

  3. The limitations of mathematical modeling in high school physics education

    Science.gov (United States)

    Forjan, Matej

    The theme of the doctoral dissertation falls within the scope of didactics of physics. Theoretical analysis of the key constraints that occur in the transmission of mathematical modeling of dynamical systems into field of physics education in secondary schools is presented. In an effort to explore the extent to which current physics education promotes understanding of models and modeling, we analyze the curriculum and the three most commonly used textbooks for high school physics. We focus primarily on the representation of the various stages of modeling in the solved tasks in textbooks and on the presentation of certain simplifications and idealizations, which are in high school physics frequently used. We show that one of the textbooks in most cases fairly and reasonably presents the simplifications, while the other two half of the analyzed simplifications do not explain. It also turns out that the vast majority of solved tasks in all the textbooks do not explicitly represent model assumptions based on what we can conclude that in high school physics the students do not develop sufficiently a sense of simplification and idealizations, which is a key part of the conceptual phase of modeling. For the introduction of modeling of dynamical systems the knowledge of students is also important, therefore we performed an empirical study on the extent to which high school students are able to understand the time evolution of some dynamical systems in the field of physics. The research results show the students have a very weak understanding of the dynamics of systems in which the feedbacks are present. This is independent of the year or final grade in physics and mathematics. When modeling dynamical systems in high school physics we also encounter the limitations which result from the lack of mathematical knowledge of students, because they don't know how analytically solve the differential equations. We show that when dealing with one-dimensional dynamical systems

  4. Noise stabilization effects in models of interdisciplinary physics

    International Nuclear Information System (INIS)

    Spagnolo, B; Augello, G; Caldara, P; Fiasconaro, A; La Cognata, A; Pizzolato, N; Valenti, D; Dubkov, A A; Pankratov, A L

    2009-01-01

    Metastability is a generic feature of many nonlinear systems, and the problem of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical mechanics. The investigation of noise-induced phenomena in far from equilibrium systems is one of the approaches used to understand the behaviour of physical and biological complex systems. The enhancement of the lifetime of metastable states through the noise enhanced stability effect and the role played by the resonant activation phenomenon will be discussed in models of interdisciplinary physics: (i) polymer translocation dynamics; (ii) transient regime of FitzHugh-Nagumo model; (iii) market stability in a nonlinear Heston model; (iv) dynamics of Josephson junctions; (v) metastability in a quantum bitable system.

  5. Development and evaluation of a physics-based windblown dust emission scheme implemented in the CMAQ modeling system

    Science.gov (United States)

    A new windblown dust emission treatment was incorporated in the Community Multiscale Air Quality (CMAQ) modeling system. This new model treatment has been built upon previously developed physics-based parameterization schemes from the literature. A distinct and novel feature of t...

  6. Development of a Corrosion Potential Measuring System Based on the Generalization of DACS Physical Scale Modeling

    Directory of Open Access Journals (Sweden)

    Song Dalei

    2015-01-01

    Full Text Available A feasible method in evaluating the protection effect and corrosion state of marine cathodic protection (CP systems is collecting sufficient electric potential data around a submarine pipeline and then establishing the mapping relations between these data and corrosion states of pipelines. However, it is difficult for scientists and researchers to obtain those data accurately due to the harsh marine environments and absence of dedicated potential measurement device. In this paper, to alleviate these two problems, firstly, the theory of dimension and conductivity scaling (DACS physical scale modeling of marine impressed current cathodic protection (ICCP systems is generalized to marine CP systems, secondly, a potential measurement device is developed specially and analogue experiment is designed according to DACS physical scale modeling to verify the feasibility of the measuring system. The experimental results show that 92 percent of the measurement errors are less than 0.25mv, thereby providing an economical and feasible measuring system to get electric potential data around an actual submarine pipeline under CP.

  7. Physical Protection System Design Analysis against Insider Threat based on Game Theoretic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo-Nam; Suh, Young-A; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of); Schneider, Erich [The University of Texas, Austin (United States)

    2015-05-15

    This study explores the use of game-theoretic modeling of physical protection analysis by incorporating the implications of an insider threat. The defender-adversary interaction along with the inclusion of an insider is demonstrated using a simplified test case problem at an experimental fast reactor system. Non-detection probability and travel time are used as a baseline of physical protection parameters in this model. As one of the key features of the model is its ability to choose among security upgrades given the constraints of a budget, the study also performed cost benefit analysis for security upgrades options. In this study, we analyzed the expected adversarial path and security upgrades with a limited budget with insider threat modeled as increasing the non-detection probability. Our test case problem categorized three types of adversary paths assisted by the insider and derived the largest insider threat in terms of the budget for security upgrades. More work needs to be done to incorporate complex dimensions of insider threats, which include but are not limited to: a more realistic mapping of insider threat, accounting for information asymmetry between the adversary, insider, and defenders, and assignment of more pragmatic parameter values.

  8. Physical Protection System Design Analysis against Insider Threat based on Game Theoretic Modeling

    International Nuclear Information System (INIS)

    Kim, Kyo-Nam; Suh, Young-A; Yim, Man-Sung; Schneider, Erich

    2015-01-01

    This study explores the use of game-theoretic modeling of physical protection analysis by incorporating the implications of an insider threat. The defender-adversary interaction along with the inclusion of an insider is demonstrated using a simplified test case problem at an experimental fast reactor system. Non-detection probability and travel time are used as a baseline of physical protection parameters in this model. As one of the key features of the model is its ability to choose among security upgrades given the constraints of a budget, the study also performed cost benefit analysis for security upgrades options. In this study, we analyzed the expected adversarial path and security upgrades with a limited budget with insider threat modeled as increasing the non-detection probability. Our test case problem categorized three types of adversary paths assisted by the insider and derived the largest insider threat in terms of the budget for security upgrades. More work needs to be done to incorporate complex dimensions of insider threats, which include but are not limited to: a more realistic mapping of insider threat, accounting for information asymmetry between the adversary, insider, and defenders, and assignment of more pragmatic parameter values

  9. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  10. The physics of disordered systems

    CERN Document Server

    Ray, Purusattam

    2012-01-01

    Disordered systems are ubiquitous in nature and their study remains a profound and challenging subject of current research. Ideas and methods from the physics of Disordered systems have been fruitfully applied to several fields ranging from computer science to neuroscience. This book contains a selection of lectures delivered at the 'SERC School on Disordered Systems', spanning topics from classic results to frontier areas of research in this field. Spin glasses, disordered Ising models, quantum disordered systems, structural glasses, dilute magnets, interfaces in random field systems and disordered vortex systems are among the topics discussed in the text, in chapters authored by active researchers in the field, including Bikas Chakrabarti, Arnab Das, Deepak Kumar, Gautam Menon, G. Ravikumar, Purusattam Ray, Srikanth Sastry and Prabodh Shukla. This book provides a gentle and comprehensive introduction to the physics of disordered systems and is aimed at graduate students and young scientists either working i...

  11. Statistical physics of pairwise probability models

    DEFF Research Database (Denmark)

    Roudi, Yasser; Aurell, Erik; Hertz, John

    2009-01-01

    (dansk abstrakt findes ikke) Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of  data......: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying...

  12. Mathematical Modeling of Constrained Hamiltonian Systems

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    1995-01-01

    Network modelling of unconstrained energy conserving physical systems leads to an intrinsic generalized Hamiltonian formulation of the dynamics. Constrained energy conserving physical systems are directly modelled as implicit Hamiltonian systems with regard to a generalized Dirac structure on the

  13. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2010-01-01

    In this report we describe the (1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and (2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  14. Physical disintegration of toilet papers in wastewater systems: experimental analysis and mathematical modeling.

    Science.gov (United States)

    Eren, Beytullah; Karadagli, Fatih

    2012-03-06

    Physical disintegration of representative toilet papers was investigated in this study to assess their disintegration potential in sewer systems. Characterization of toilet papers from different parts of the world indicated two main categories as premium and average quality. Physical disintegration experiments were conducted with representative products from each category according to standard protocols with improvements. The experimental results were simulated by mathematical model to estimate best-fit values of disintegration rate coefficients and fractional distribution ratios. Our results from mathematical modeling and experimental work show that premium products release more amounts of small fibers and disintegrate more slowly than average ones. Comparison of the toilet papers with the tampon applicators studied previously indicates that premium quality toilet papers present significant potential to persist in sewer pipes. Comparison of turbulence level in our experimental setup with those of partial flow conditions in sewer pipes indicates that drains and small sewer pipes are critical sections where disintegration of toilet papers will be limited. For improvement, requirements for minimum pipe slopes may be increased to sustain transport and disintegration of flushable products in small pipes. In parallel, toilet papers can be improved to disintegrate rapidly in sewer systems, while they meet consumer expectations.

  15. Integrating Simulated Physics and Device Virtualization in Control System Testbeds

    OpenAIRE

    Redwood , Owen; Reynolds , Jason; Burmester , Mike

    2016-01-01

    Part 3: INFRASTRUCTURE MODELING AND SIMULATION; International audience; Malware and forensic analyses of embedded cyber-physical systems are tedious, manual processes that testbeds are commonly not designed to support. Additionally, attesting the physics impact of embedded cyber-physical system malware has no formal methodologies and is currently an art. This chapter describes a novel testbed design methodology that integrates virtualized embedded industrial control systems and physics simula...

  16. Physical modeling of spent-nuclear-fuel container

    Directory of Open Access Journals (Sweden)

    Wang Liping

    2012-11-01

    Full Text Available A new physical simulation model was developed to simulate the casting process of the ductile iron heavy section spent-nuclear-fuel container. In this physical simulation model, a heating unit with DR24 Fe-Cr-Al heating wires was used to compensate the heat loss across the non-natural surfaces of the sample, and a precise and reliable casting temperature controlling/monitoring system was employed to ensure the thermal behavior of the simulated casting to be similar to the actual casting. Also, a mould system was designed, in which changeable mould materials can be used for both the outside and inside moulds for different applications. The casting test was carried out with the designed mould and the cooling curves of central and edge points at different isothermal planes of the casting were obtained. Results show that for most isothermal planes, the temperature control system can keep the temperature differences within 6 ℃ between the edge points and the corresponding center points, indicating that this new physical simulation model has high simulation accuracy, and the mould developed can be used for optimization of casting parameters of spent-nuclear-fuel container, such as composition of ductile iron, the pouring temperature, the selection of mould material and design of cooling system. In addition, to maintain the spheroidalization of the ductile iron, the force-chilling should be used for the current physical simulation to ensure the solidification of casting in less than 2 h.

  17. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  18. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  19. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  20. Composing Models of Geographic Physical Processes

    Science.gov (United States)

    Hofer, Barbara; Frank, Andrew U.

    Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.

  1. Models and structures: mathematical physics

    International Nuclear Information System (INIS)

    2003-01-01

    This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems

  2. Design and evaluation of physical protection systems of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    An, Jin Soo; Lee, Hyun Chul; Hwang, In Koo; Kwack, Eun Ho; Choi, Yung Myung

    2001-06-01

    Nuclear material and safety equipment of nuclear facilities are required to be protected against any kind of theft or sabotage. Physical protection is one of the measures to prevent such illegally potential threats for public security. It should cover all the cases of use, storage, and transportation of nuclear material. A physical protection system of a facility consists of exterior intrusion sensors, interior intrusion sensors, an alarm assessment and communication system, entry control systems, access delay equipment, etc. The design of an effective physical protection system requires a comprehensive approach in which the designers define the objective of the system, establish an initial design, and evaluate the proposed design. The evaluation results are used to determine whether or not the initial design should be modified and improved. Some modelling techniques are commonly used to analyse and evaluate the performance of a physical protection system. Korea Atomic Energy Research Institute(KAERI) has developed a prototype of software as a part of a full computer model for effectiveness evaluation for physical protection systems. The input data elements for the prototype, contain the type of adversary, tactics, protection equipment, and the attributes of each protection component. This report contains the functional and structural requirements defined in the development of the evaluation computer model.

  3. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  4. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  5. Physical Model Method for Seismic Study of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Bogdan Roşca

    2008-01-01

    Full Text Available The study of the dynamic behaviour of concrete dams by means of the physical model method is very useful to understand the failure mechanism of these structures to action of the strong earthquakes. Physical model method consists in two main processes. Firstly, a study model must be designed by a physical modeling process using the dynamic modeling theory. The result is a equations system of dimensioning the physical model. After the construction and instrumentation of the scale physical model a structural analysis based on experimental means is performed. The experimental results are gathered and are available to be analysed. Depending on the aim of the research may be designed an elastic or a failure physical model. The requirements for the elastic model construction are easier to accomplish in contrast with those required for a failure model, but the obtained results provide narrow information. In order to study the behaviour of concrete dams to strong seismic action is required the employment of failure physical models able to simulate accurately the possible opening of joint, sliding between concrete blocks and the cracking of concrete. The design relations for both elastic and failure physical models are based on dimensional analysis and consist of similitude relations among the physical quantities involved in the phenomenon. The using of physical models of great or medium dimensions as well as its instrumentation creates great advantages, but this operation involves a large amount of financial, logistic and time resources.

  6. Physical and mathematical models of communication systems

    International Nuclear Information System (INIS)

    Verkhovskaya, E.P.; Yavorskij, V.V.

    2006-01-01

    The theoretical parties connecting resources of communication system with characteristics of channels are received. The model of such systems from positions quasi-classical thermodynamics is considered. (author)

  7. Physical models of cell motility

    CERN Document Server

    2016-01-01

    This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force ...

  8. Optimization and Control of Cyber-Physical Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Justin M. Bradley

    2015-09-01

    Full Text Available A cyber-physical system (CPS is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  9. Optimization and Control of Cyber-Physical Vehicle Systems.

    Science.gov (United States)

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  10. A validated physical model of greenhouse climate

    International Nuclear Information System (INIS)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the greenhouse and of the control system. The greenhouse model is based on the energy, water vapour and CO 2 balances of the crop-greenhouse system. While the emphasis is on the dynamic behaviour of the greenhouse for implementation in continuous optimization, the state variables temperature, water vapour pressure and carbondioxide concentration in the relevant greenhouse parts crop, air, soil and cover are calculated from the balances over these parts. To do this in a proper way, the physical exchange processes between the system parts have to be quantified first. Therefore the greenhouse model is constructed from submodels describing these processes: a. Radiation transmission model for the modification of the outside to the inside global radiation. b. Ventilation model to describe the ventilation exchange between greenhouse and outside air. c. The description of the exchange of energy and mass between the crop and the greenhouse air. d. Calculation of the thermal radiation exchange between the various greenhouse parts. e. Quantification of the convective exchange processes between the greenhouse air and respectively the cover, the heating pipes and the soil surface and between the cover and the outside air. f. Determination of the heat conduction in the soil. The various submodels are validated first and then the complete greenhouse model is verified

  11. Cyber physical systems approach to smart electric power grid

    CERN Document Server

    Khaitan, Siddhartha Kumar; Liu, Chen Ching

    2015-01-01

    This book documents recent advances in the field of modeling, simulation, control, security and reliability of Cyber- Physical Systems (CPS) in power grids. The aim of this book is to help the reader gain insights into working of CPSs and understand their potential in transforming the power grids of tomorrow. This book will be useful for all those who are interested in design of cyber-physical systems, be they students or researchers in power systems, CPS modeling software developers, technical marketing professionals and business policy-makers.

  12. Modeling and simulation of systems using Matlab and Simulink

    CERN Document Server

    Chaturvedi, Devendra K

    2009-01-01

    Introduction to SystemsSystemClassification of SystemsLinear SystemsTime-Varying vs. Time-Invariant Systems Lumped vs. Distributed Parameter SystemsContinuous- and Discrete-Time Systems Deterministic vs. Stochastic Systems Hard and Soft Systems Analysis of Systems Synthesis of Systems Introduction to System Philosophy System Thinking Large and Complex Applied System Engineering: A Generic ModelingSystems ModelingIntroduction Need of System Modeling Modeling Methods for Complex Systems Classification of ModelsCharacteristics of Models ModelingMathematical Modeling of Physical SystemsFormulation of State Space Model of SystemsPhysical Systems Theory System Components and Interconnections Computation of Parameters of a Component Single Port and Multiport Systems Techniques of System Analysis Basics of Linear Graph Theoretic ApproachFormulation of System Model for Conceptual SystemFormulation System Model for Physical SystemsTopological RestrictionsDevelopment of State Model of Degenerative SystemSolution of Stat...

  13. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  14. Modeling the Central California Coastal Upwelling System: Physics, Ecosystems and Resource Management

    National Research Council Canada - National Science Library

    Chavez, Francisco P; Barber, Richard T; Chai, Fei; Chao, Yi; De Vogelaere, Andrew P; Kindle, John C; Maffione, Robert A; Marinovic, Baldo; McWilliams, James C; Paduan, Jeffrey D

    2003-01-01

    To develop a coupled physical-biological model that can utilize available data to accurately simulate physical, chemical and biological processes within the Monterey Bay National Marine Sanctuary (MBNMS...

  15. Using Physical Models for Anomaly Detection in Control Systems

    Science.gov (United States)

    Svendsen, Nils; Wolthusen, Stephen

    Supervisory control and data acquisition (SCADA) systems are increasingly used to operate critical infrastructure assets. However, the inclusion of advanced information technology and communications components and elaborate control strategies in SCADA systems increase the threat surface for external and subversion-type attacks. The problems are exacerbated by site-specific properties of SCADA environments that make subversion detection impractical; and by sensor noise and feedback characteristics that degrade conventional anomaly detection systems. Moreover, potential attack mechanisms are ill-defined and may include both physical and logical aspects.

  16. The ALADDIN atomic physics database system

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1990-01-01

    ALADDIN is an atomic physics database system which has been developed in order to provide a broadly-based standard medium for the exchange and management of atomic data. ALADDIN consists of a data format definition together with supporting software for both interactive searches as well as for access to the data by plasma modeling and other codes. 8AB The ALADDIN system is designed to offer maximum flexibility in the choice of data representations and labeling schemes, so as to support a wide range of atomic physics data types and allow natural evolution and modification of the database as needs change. Associated dictionary files are included in the ALADDIN system for data documentation. The importance of supporting the widest possible user community was also central to be ALADDIN design, leading to the use of straightforward text files with concatentated data entries for the file structure, and the adoption of strict FORTRAN 77 code for the supporting software. This will allow ready access to the ALADDIN system on the widest range of scientific computers, and easy interfacing with FORTRAN modeling codes, user developed atomic physics codes and database, etc. This supporting software consists of the ALADDIN interactive searching and data display code, together with the ALPACK subroutine package which provides ALADDIN datafile searching and data retrieval capabilities to user's codes

  17. Quantitative evaluation of physical protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Sun Yahua; Li Bin; Li Shiju

    2009-01-01

    Based on the prompt detection analysis, this paper introduced one analysis model of intrusion path in nuclear power plant by means of morphology analysis and developed the evaluation software for path model analysis of physical protection system. Quantitative analysis on three elements (detection, delay, and response) of physical protection system was presented with an imaginary intrusion event example in Mac Arthur nuclear center. The results indicated that the path prompt detection analysis worked effectively to find the weak point of the physical protection system in NPP, and meantime we can also get the high cost-effectiveness improved measures. It is an effective approach to evaluate the overall performance of the system. (authors)

  18. Temporary physical protection systems

    International Nuclear Information System (INIS)

    Williams, J.D.; Gangel, D.J.; Madsen, R.W.

    1991-01-01

    Terrorism and other aspects of world political instability have created a high demand for temporary physical protection systems within the nuclear materials management community. They can be used when vehicles carrying important assets are away from their permanent fixed site location, around areas where experiments are being temporarily conducted, around construction areas and one portions of a fixed site physical security system which is temporarily inoperable. Physical security systems can be grouped into four categories: tactical, portable, semi-permanent, and fixed. The resources and experience gained at Sandia National Laboratories in over forty years of developing and implementing security systems for protecting nuclear weapons and fixed nuclear facilities is now being applied to temporary physical security systems. This paper emphasizes temporary physical security systems and their component parts that are presently available and identify additional system-subsystem objectives, requirements, and concepts

  19. Physics detector simulation facility system software description

    International Nuclear Information System (INIS)

    Allen, J.; Chang, C.; Estep, P.; Huang, J.; Liu, J.; Marquez, M.; Mestad, S.; Pan, J.; Traversat, B.

    1991-12-01

    Large and costly detectors will be constructed during the next few years to study the interactions produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy of a proposed design will be determined by a detailed computer model of the detectors. Physics and detector simulations will be performed on the computer model using high-powered computing system at the Physics Detector Simulation Facility (PDSF). The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo calculations for the simulation of SSCL physics and detectors. The numerical calculations to be performed in each simulation are lengthy and detailed; they could require many more months per run on a VAX 11/780 computer and may produce several gigabytes of data per run. Consequently, a distributed computing environment of several networked high-speed computing engines is envisioned to meet these needs. These networked computers will form the basis of a centralized facility for SSCL physics and detector simulation work. Our computer planning groups have determined that the most efficient, cost-effective way to provide these high-performance computing resources at this time is with RISC-based UNIX workstations. The modeling and simulation application software that will run on the computing system is usually written by physicists in FORTRAN language and may need thousands of hours of supercomputing time. The system software is the ''glue'' which integrates the distributed workstations and allows them to be managed as a single entity. This report will address the computing strategy for the SSC

  20. C++ Toolbox for Object-Oriented Modeling and Dynamic Simulation of Physical Systems

    DEFF Research Database (Denmark)

    Wagner, Falko Jens; Poulsen, Mikael Zebbelin

    1999-01-01

    This paper presents the efforts made in an ongoing project that exploits the advantages of using object-oriented methodologies for describing and simulating dynamical systems. The background for this work is a search for new and better ways to simulate physical systems.......This paper presents the efforts made in an ongoing project that exploits the advantages of using object-oriented methodologies for describing and simulating dynamical systems. The background for this work is a search for new and better ways to simulate physical systems....

  1. Efficient Parameterization for Grey-box Model Identification of Complex Physical Systems

    DEFF Research Database (Denmark)

    Blanke, Mogens; Knudsen, Morten Haack

    2006-01-01

    Grey box model identification preserves known physical structures in a model but with limits to the possible excitation, all parameters are rarely identifiable, and different parametrizations give significantly different model quality. Convenient methods to show which parameterizations are the be...... that need be constrained to achieve satisfactory convergence. Identification of nonlinear models for a ship illustrate the concept....

  2. An Artificially Intelligent Physical Model-Checking Approach to Detect Switching-Related Attacks on Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    El Hariri, Mohamad [Florida Intl Univ., Miami, FL (United States); Faddel, Samy [Florida Intl Univ., Miami, FL (United States); Mohammed, Osama [Florida Intl Univ., Miami, FL (United States)

    2017-11-01

    Decentralized and hierarchical microgrid control strategies have lain the groundwork for shaping the future smart grid. Such control approaches require the cooperation between microgrid operators in control centers, intelligent microcontrollers, and remote terminal units via secure and reliable communication networks. In order to enhance the security and complement the work of network intrusion detection systems, this paper presents an artificially intelligent physical model-checking that detects tampered-with circuit breaker switching control commands whether, due to a cyber-attack or human error. In this technique, distributed agents, which are monitoring sectionalized areas of a given microgrid, will be trained and continuously adapted to verify that incoming control commands do not violate the physical system operational standards and do not put the microgrid in an insecure state. The potential of this approach has been tested by deploying agents that monitor circuit breakers status commands on a 14-bus IEEE benchmark system. The results showed the accuracy of the proposed framework in characterizing the power system and successfully detecting malicious and/or erroneous control commands.

  3. Physical modeling of rock

    International Nuclear Information System (INIS)

    Cheney, J.A.

    1981-01-01

    The problems of statisfying similarity between a physical model and the prototype in rock wherein fissures and cracks place a role in physical behavior is explored. The need for models of large physical dimensions is explained but also testing of models of the same prototype over a wide range of scales is needed to ascertain the influence of lack of similitude of particular parameters between prototype and model. A large capacity centrifuge would be useful in that respect

  4. Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bonvini, Marco [Whisker Labs, Oakland, CA (United States); Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Page, Janie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lin, Guanjing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hu, R. Lilly [Univ. of California, Berkeley, CA (United States)

    2017-08-11

    We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and building behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.

  5. Identification of physical models

    DEFF Research Database (Denmark)

    Melgaard, Henrik

    1994-01-01

    of the model with the available prior knowledge. The methods for identification of physical models have been applied in two different case studies. One case is the identification of thermal dynamics of building components. The work is related to a CEC research project called PASSYS (Passive Solar Components......The problem of identification of physical models is considered within the frame of stochastic differential equations. Methods for estimation of parameters of these continuous time models based on descrete time measurements are discussed. The important algorithms of a computer program for ML or MAP...... design of experiments, which is for instance the design of an input signal that are optimal according to a criterion based on the information provided by the experiment. Also model validation is discussed. An important verification of a physical model is to compare the physical characteristics...

  6. Grid architecture for future distribution system — A cyber-physical system perspective

    DEFF Research Database (Denmark)

    Li, Chendan; Dragicevic, Tomislav; Leonardo Diaz Aldana, Nelson

    2017-01-01

    system need more insight into the system architecture of the grid. In this paper, in light of the start-of-the-art control strategies for microgrids which rely on power electronics systems, a grid architecture model for future distribution system is proposed based on microgrid clusters. Both the physical...

  7. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  8. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  9. Design and implementation of space physics multi-model application integration based on web

    Science.gov (United States)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into

  10. Experimental Modeling of Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten Haack

    2006-01-01

    An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...

  11. Physics of Life: A Model for Non-Newtonian Properties of Living Systems

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    This innovation proposes the reconciliation of the evolution of life with the second law of thermodynamics via the introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution; i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. All these specific non-Newtonian properties equip the model with the levels of complexity that matches the complexity of life, and that makes the model applicable for description of behaviors of ecological, social, and economical systems. Rather than addressing the six aspects of life (organization, metabolism, growth, adaptation, response to stimuli, and reproduction), this work focuses only on biosignature ; i.e. the mechanical invariants of life, and in particular, the geometry and kinematics of behavior of living things. Living things obey the First Principles of Newtonian mechanics. One main objective of this model is to extend the First Principles of classical physics to include phenomenological behavior on living systems; to develop a new mathematical formalism within the framework of classical dynamics that would allow one to capture the specific properties of natural or artificial living systems such as formation of the collective mind based upon abstract images of the selves and non-selves; exploitation of this collective mind for communications and predictions of future expected characteristics of evolution; and for making decisions and implementing the corresponding corrections if

  12. A Multi-area Model of a Physical Protection System for a Vulnerability Assessment

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Yoo, Ho Sik

    2008-01-01

    A physical protection system (PPS) integrates people, procedures and equipment for the protection of assets or facilities against theft, sabotage or other malevolent human attacks. Among critical facilities, nuclear facilities and nuclear weapon sites require the highest level of PPS. After the September 11, 2001 terrorist attacks, international communities, including the IAEA, have made substantial efforts to protect nuclear material and nuclear facilities. These efforts include the Nuclear Security Fund established by the IAEA in 2002 and the Global Initiative to Combat Nuclear Terrorism which is launched by the USA and Russia in 2006. Without a regular assessment, the PPS might waste valuable resources on unnecessary protection or, worse yet, fail to provide adequate protection at critical points of a facility. Due to the complexity of protection systems, the assessment usually requires computer modeling techniques. Several Codes were developed to model and analyze a PPS. We also devised and implemented new analysis method and named it as Systematic Analysis of physical Protection Effectiveness (SAPE). A SAPE code consumes much time to analyze a PPS over a large area in detail. It is because SAPE uses meshes of an equal size for the analysis of a 2D map. The analysis is more accurate when the meshes of a smaller size are used. However, the analysis time is roughly proportional to the exponential of the number of meshes. Thus, the speed and accuracy is in a trade-off relation. In the paper, we suggest a multi-area model of a PPS for a vulnerability assessment to solve this problem. Using multi areas with different scales, we can accurately analyze a PPS near a target and can analyze it over a large area rather roughly

  13. Transfer of physics detector models into CAD systems using modern techniques

    International Nuclear Information System (INIS)

    Dach, M.; Vuoskoski, J.

    1996-01-01

    Designing high energy physics detectors for future experiments requires sophisticated computer aided design and simulation tools. In order to satisfy the future demands in this domain, modern techniques, methods, and standards have to be applied. We present an interface application, designed and implemented using object-oriented techniques, for the widely used GEANT physics simulation package. It converts GEANT detector models into the future industrial standard, STEP. (orig.)

  14. Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems

    CERN Document Server

    Tricaud, Christophe

    2012-01-01

    A successful cyber-physical system, a complex interweaving of hardware and software in direct interaction with some parts of the physical environment, relies heavily on proper identification of the, often pre-existing, physical elements. Based on information from that process, a bespoke “cyber” part of the system may then be designed for a specific purpose. Optimal Mobile Sensing and Actuation Strategies in Cyber-physical Systems focuses on distributed-parameter systems the dynamics of which can be modelled with partial differential equations. Such systems are very challenging to measure, their states being distributed throughout a spatial domain. Consequently, optimal strategies are needed and systematic approaches to the optimization of sensor locations have to be devised for parameter estimation. The text begins by reviewing the newer field of cyber-physical systems and introducing background notions of distributed parameter systems and optimal observation theory. New research opportunities are then de...

  15. A 3-D Approach for Teaching and Learning about Surface Water Systems through Computational Thinking, Data Visualization and Physical Models

    Science.gov (United States)

    Caplan, B.; Morrison, A.; Moore, J. C.; Berkowitz, A. R.

    2017-12-01

    Understanding water is central to understanding environmental challenges. Scientists use `big data' and computational models to develop knowledge about the structure and function of complex systems, and to make predictions about changes in climate, weather, hydrology, and ecology. Large environmental systems-related data sets and simulation models are difficult for high school teachers and students to access and make sense of. Comp Hydro, a collaboration across four states and multiple school districts, integrates computational thinking and data-related science practices into water systems instruction to enhance development of scientific model-based reasoning, through curriculum, assessment and teacher professional development. Comp Hydro addresses the need for 1) teaching materials for using data and physical models of hydrological phenomena, 2) building teachers' and students' comfort or familiarity with data analysis and modeling, and 3) infusing the computational knowledge and practices necessary to model and visualize hydrologic processes into instruction. Comp Hydro teams in Baltimore, MD and Fort Collins, CO are integrating teaching about surface water systems into high school courses focusing on flooding (MD) and surface water reservoirs (CO). This interactive session will highlight the successes and challenges of our physical and simulation models in helping teachers and students develop proficiency with computational thinking about surface water. We also will share insights from comparing teacher-led vs. project-led development of curriculum and our simulations.

  16. Game theoretic analysis of physical protection system design

    International Nuclear Information System (INIS)

    Canion, B.; Schneider, E.; Bickel, E.; Hadlock, C.; Morton, D.

    2013-01-01

    The physical protection system (PPS) of a fictional small modular reactor (SMR) facility have been modeled as a platform for a game theoretic approach to security decision analysis. To demonstrate the game theoretic approach, a rational adversary with complete knowledge of the facility has been modeled attempting a sabotage attack. The adversary adjusts his decisions in response to investments made by the defender to enhance the security measures. This can lead to a conservative physical protection system design. Since defender upgrades were limited by a budget, cost benefit analysis may be conducted upon security upgrades. One approach to cost benefit analysis is the efficient frontier, which depicts the reduction in expected consequence per incremental increase in the security budget

  17. Excellence in Physics Education Award: Modeling Theory for Physics Instruction

    Science.gov (United States)

    Hestenes, David

    2014-03-01

    All humans create mental models to plan and guide their interactions with the physical world. Science has greatly refined and extended this ability by creating and validating formal scientific models of physical things and processes. Research in physics education has found that mental models created from everyday experience are largely incompatible with scientific models. This suggests that the fundamental problem in learning and understanding science is coordinating mental models with scientific models. Modeling Theory has drawn on resources of cognitive science to work out extensive implications of this suggestion and guide development of an approach to science pedagogy and curriculum design called Modeling Instruction. Modeling Instruction has been widely applied to high school physics and, more recently, to chemistry and biology, with noteworthy results.

  18. Modeling Physical Processes at the Nanoscale—Insight into Self-Organization of Small Systems (abstract)

    Science.gov (United States)

    Proykova, Ana

    2009-04-01

    Essential contributions have been made in the field of finite-size systems of ingredients interacting with potentials of various ranges. Theoretical simulations have revealed peculiar size effects on stability, ground state structure, phases, and phase transformation of systems confined in space and time. Models developed in the field of pure physics (atomic and molecular clusters) have been extended and successfully transferred to finite-size systems that seem very different—small-scale financial markets, autoimmune reactions, and social group reactions to advertisements. The models show that small-scale markets diverge unexpectedly fast as a result of small fluctuations; autoimmune reactions are sequences of two discontinuous phase transitions; and social groups possess critical behavior (social percolation) under the influence of an external field (advertisement). Some predicted size-dependent properties have been experimentally observed. These findings lead to the hypothesis that restrictions on an object's size determine the object's total internal (configuration) and external (environmental) interactions. Since phases are emergent phenomena produced by self-organization of a large number of particles, the occurrence of a phase in a system containing a small number of ingredients is remarkable.

  19. Creating safer coastal and port infrastructure with innovative physical and numerical modelling

    CSIR Research Space (South Africa)

    Tulsi, K

    2015-10-01

    Full Text Available Infrastructure with Innovative Physical and Numerical Modelling Kishan Tulsi  Physical and Numerical modelling  Breakwater Monitoring  Armour track  Vessel manoeuvring simulations for safe port design and operations  Simflex software... – Integrated Port Operations Support System  Virtual Buoy Physical modelling Numerical modelling Armour Track Armour Track Armour Track Armour Track Armour track using 3D data points Ship manoeuvring simulations: Ship Manoeuvring simulations Port...

  20. Statistical physics of complex systems a concise introduction

    CERN Document Server

    Bertin, Eric

    2016-01-01

    This course-tested primer provides graduate students and non-specialists with a basic understanding of the concepts and methods of statistical physics and demonstrates their wide range of applications to interdisciplinary topics in the field of complex system sciences, including selected aspects of theoretical modeling in biology and the social sciences. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting units, and on the other to predict the macroscopic, collective behavior of the system considered from the perspective of the microscopic laws governing the dynamics of the individual entities. These two goals are essentially also shared by what is now called 'complex systems science', and as such, systems studied in the framework of statistical physics may be considered to be among the simplest examples of complex systems – while also offering a rather well developed mathematical treatment. The second ...

  1. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  2. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  3. Biology meets Physics: Reductionism and Multi-scale Modeling of Morphogenesis

    DEFF Research Database (Denmark)

    Green, Sara; Batterman, Robert

    2017-01-01

    A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism ...... modeling in developmental biology. In such contexts, the relation between models at different scales and from different disciplines is neither reductive nor completely autonomous, but interdependent....... from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back in asking whether bottom......-up modeling is feasible even when modeling simple physical systems across scales. By comparing examples of multi-scale modeling in physics and biology, we argue that the “tyranny of scales” problem present a challenge to reductive explanations in both physics and biology. The problem refers to the scale...

  4. Physical model of lean suppression pressure oscillation phenomena: steam condensation in the light water reactor pressure suppression system (PSS)

    International Nuclear Information System (INIS)

    McCauley, E.W.; Holman, G.S.; Aust, E.; Schwan, H.; Vollbrandt, J.

    1980-01-01

    Using the results of large scale multivent tests conducted by GKSS, a physical model of chugging is developed. The unique combination of accurate digital data and cinematic data has provided the derivation of a detailed, quantified correlation between the dynamic physical variables and the associated two-phase thermo-hydraulic phenomena occurring during lean suppression (chugging) phases of the loss-of-coolant accident in a boiling water reactor pressure suppression system

  5. Graph modeling systems and methods

    Science.gov (United States)

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  6. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL; Poore III, Willis P. [ORNL; Muhlheim, Michael David [ORNL

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  7. A physical data model for fields and agents

    Science.gov (United States)

    de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek

    2016-04-01

    Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data

  8. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    Science.gov (United States)

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  9. A Cyber Physical Model Based on a Hybrid System for Flexible Load Control in an Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-02-01

    Full Text Available To strengthen the integration of the primary and secondary systems, a concept of Cyber Physical Systems (CPS is introduced to construct a CPS in Power Systems (Power CPS. The most basic work of the Power CPS is to build an integration model which combines both a continuous process and a discrete process. The advanced form of smart grid, the Active Distribution Network (ADN is a typical example of Power CPS. After designing the Power CPS model architecture and its application in ADN, a Hybrid System based model and control method of Power CPS is proposed in this paper. As an application example, ADN flexible load is modeled and controlled with ADN feeder power control by a control strategy which includes the normal condition and the underpowered condition. In this model and strategy, some factors like load power consumption and load functional demand are considered and optimized. In order to make up some of the deficiencies of centralized control, a distributed control method is presented to reduce model complexity and improve calculation speed. The effectiveness of all the models and methods are demonstrated in the case study.

  10. A Weighted Deep Representation Learning Model for Imbalanced Fault Diagnosis in Cyber-Physical Systems

    Science.gov (United States)

    Guo, Yang; Lin, Wenfang; Yu, Shuyang; Ji, Yang

    2018-01-01

    Predictive maintenance plays an important role in modern Cyber-Physical Systems (CPSs) and data-driven methods have been a worthwhile direction for Prognostics Health Management (PHM). However, two main challenges have significant influences on the traditional fault diagnostic models: one is that extracting hand-crafted features from multi-dimensional sensors with internal dependencies depends too much on expertise knowledge; the other is that imbalance pervasively exists among faulty and normal samples. As deep learning models have proved to be good methods for automatic feature extraction, the objective of this paper is to study an optimized deep learning model for imbalanced fault diagnosis for CPSs. Thus, this paper proposes a weighted Long Recurrent Convolutional LSTM model with sampling policy (wLRCL-D) to deal with these challenges. The model consists of 2-layer CNNs, 2-layer inner LSTMs and 2-Layer outer LSTMs, with under-sampling policy and weighted cost-sensitive loss function. Experiments are conducted on PHM 2015 challenge datasets, and the results show that wLRCL-D outperforms other baseline methods. PMID:29621131

  11. A Weighted Deep Representation Learning Model for Imbalanced Fault Diagnosis in Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Zhenyu Wu

    2018-04-01

    Full Text Available Predictive maintenance plays an important role in modern Cyber-Physical Systems (CPSs and data-driven methods have been a worthwhile direction for Prognostics Health Management (PHM. However, two main challenges have significant influences on the traditional fault diagnostic models: one is that extracting hand-crafted features from multi-dimensional sensors with internal dependencies depends too much on expertise knowledge; the other is that imbalance pervasively exists among faulty and normal samples. As deep learning models have proved to be good methods for automatic feature extraction, the objective of this paper is to study an optimized deep learning model for imbalanced fault diagnosis for CPSs. Thus, this paper proposes a weighted Long Recurrent Convolutional LSTM model with sampling policy (wLRCL-D to deal with these challenges. The model consists of 2-layer CNNs, 2-layer inner LSTMs and 2-Layer outer LSTMs, with under-sampling policy and weighted cost-sensitive loss function. Experiments are conducted on PHM 2015 challenge datasets, and the results show that wLRCL-D outperforms other baseline methods.

  12. Model of future officers' availability to the management physical training

    Directory of Open Access Journals (Sweden)

    Olkhovy O.M.

    2012-03-01

    Full Text Available A purpose of work is creation of model of readiness of graduating student to implementation of official questions of guidance, organization and leadthrough of physical preparation in the process of military-professional activity. An analysis is conducted more than 40 sources and questionnaire questioning of a 21 expert. For introduction of model to the system of physical preparation of students the list of its basic constituents is certain: theoretical methodical readiness; functionally-physical readiness; organizationally-administrative readiness. It is certain that readiness of future officers to military-professional activity foresees determination of level of forming of motive capabilities, development of general physical qualities.

  13. Hunting Solomonoff's Swans: Exploring the Boundary Between Physics and Statistics in Hydrological Modeling

    Science.gov (United States)

    Nearing, G. S.

    2014-12-01

    Statistical models consistently out-perform conceptual models in the short term, however to account for a nonstationary future (or an unobserved past) scientists prefer to base predictions on unchanging and commutable properties of the universe - i.e., physics. The problem with physically-based hydrology models is, of course, that they aren't really based on physics - they are based on statistical approximations of physical interactions, and we almost uniformly lack an understanding of the entropy associated with these approximations. Thermodynamics is successful precisely because entropy statistics are computable for homogeneous (well-mixed) systems, and ergodic arguments explain the success of Newton's laws to describe systems that are fundamentally quantum in nature. Unfortunately, similar arguments do not hold for systems like watersheds that are heterogeneous at a wide range of scales. Ray Solomonoff formalized the situation in 1968 by showing that given infinite evidence, simultaneously minimizing model complexity and entropy in predictions always leads to the best possible model. The open question in hydrology is about what happens when we don't have infinite evidence - for example, when the future will not look like the past, or when one watershed does not behave like another. How do we isolate stationary and commutable components of watershed behavior? I propose that one possible answer to this dilemma lies in a formal combination of physics and statistics. In this talk I outline my recent analogue (Solomonoff's theorem was digital) of Solomonoff's idea that allows us to quantify the complexity/entropy tradeoff in a way that is intuitive to physical scientists. I show how to formally combine "physical" and statistical methods for model development in a way that allows us to derive the theoretically best possible model given any given physics approximation(s) and available observations. Finally, I apply an analogue of Solomonoff's theorem to evaluate the

  14. Construction of database server system for fuel thermo-physical properties

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kwon Ho; Song, Kee Chan

    2003-12-01

    To perform the evaluation of various fuels in the nuclear reactors, not only the mechanical properties but also thermo-physical properties are required as one of most important inputs for fuel performance code system. The main objective of this study is to make a database system for fuel thermo-physical properties and a PC-based hardware system has been constructed for ease use for the public with visualization such as web-based server system. This report deals with the hardware and software which are used in the database server system for nuclear fuel thermo-physical properties. It is expected to be highly useful to obtain nuclear fuel data without such a difficulty through opening the database of fuel properties to the public and is also helpful to research of development of various fuel of nuclear industry. Furthermore, the proposed models of nuclear fuel thermo-physical properties will be enough utilized to the fuel performance code system

  15. PHYSICAL OBJECT-ORIENTED MODELING IN DEVELOPMENT OF INDIVIDUALIZED TEACHING AND ORGANIZATION OF MINI-RESEARCH IN MECHANICS COURSES

    Directory of Open Access Journals (Sweden)

    Alexander S. Chirtsov

    2017-03-01

    Full Text Available Subject of Research. The paper presents a relatively simple method to develop interactive computer models of physical systems without computer programming skills or automatic generation of the numerical computer code for the complex physical systems. Developed computer models are available over the Internet for educational purposes and can be edited by users in an unlimited number of possibilities. An applicability of computer simulations for the massive open individualized teaching and an organization of undergraduate research are also discussed. Method. The presented approach employs an original physical object-oriented modeling method, which is an extension of object-oriented programming ideas to tasks of developing simulations of the complex physical systems. In this framework, a computer model of the physical system is constructed as a set of interconnected computer objects simulating the system components: particles and fields. Interactions between the system components are described by self-adapting algorithms that are specified during the model initiation stage and are set according to either the classical or relativistic approach. The utilized technique requires neither a priori knowledge regarding an evolution of the physical system nor a formulation of differential equations describing the physical system. Main Results. Testing of the numerical implementation and an accuracy of the algorithms was performed with the use of benchmarks with the known analytical solutions. The developed method - a physical reality constructor - has provided an opportunity to assemble a series of computer models to demonstrate physical phenomena studied in the high school and university mechanic courses. More than 150 original interactive models were included into the collections of multi-level multimedia resources to support teaching of the mechanics. The physical reality constructor was successfully tested to serve as a test bed for the independent

  16. A study on the intrusion model by physical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    In physical modeling, the actual phenomena of seismic wave propagation are directly measured like field survey and furthermore the structure and physical properties of subsurface can be known. So the measured datasets from physical modeling can be very desirable as input data to test the efficiency of various inversion algorithms. An underground structure formed by intrusion, which can be often seen in seismic section for oil exploration, is investigated by physical modeling. The model is characterized by various types of layer boundaries with steep dip angle. Therefore, this physical modeling data are very available not only to interpret seismic sections for oil exploration as a case history, but also to develop data processing techniques and estimate the capability of software such as migration, full waveform inversion. (author). 5 refs., 18 figs.

  17. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    Science.gov (United States)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  18. Implementation of interactive virtual simulation of physical systems

    International Nuclear Information System (INIS)

    Sanchez, H; Escobar, J J; Gonzalez, J D; Beltran, J

    2014-01-01

    Considering the limited availability of laboratories for physics teaching and the difficulties this causes in the learning of school students in Santa Marta Colombia, we have developed software in order to generate greater student interaction with the phenomena physical and improve their understanding. Thereby, this system has been proposed in an architecture Model/View- View- Model (MVVM), sharing the benefits of MVC. Basically, this pattern consists of 3 parts: The Model, that is responsible for business logic related. The View, which is the part with which we are most familiar and the user sees. Its role is to display data to the user and allowing manipulation of the data of the application. The ViewModel, which is the middle part of the Model and the View (analogous to the Controller in the MVC pattern), as well as being responsible for implementing the behavior of the view to respond to user actions and expose data model in a way that is easy to use links to data in the view. .NET Framework 4.0 and editing package Silverlight 4 and 5 are the main requirements needed for the deployment of physical simulations that are hosted in the web application and a web browser (Internet Explorer, Mozilla Firefox or Chrome). The implementation of this innovative application in educational institutions has shown that students improved their contextualization of physical phenomena

  19. A Hierarchical Security Architecture for Cyber-Physical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Quanyan Zhu; Tamer Basar

    2011-08-01

    Security of control systems is becoming a pivotal concern in critical national infrastructures such as the power grid and nuclear plants. In this paper, we adopt a hierarchical viewpoint to these security issues, addressing security concerns at each level and emphasizing a holistic cross-layer philosophy for developing security solutions. We propose a bottom-up framework that establishes a model from the physical and control levels to the supervisory level, incorporating concerns from network and communication levels. We show that the game-theoretical approach can yield cross-layer security strategy solutions to the cyber-physical systems.

  20. Modeling the effects of multicontextual physics instruction on learner expectations and understanding of force and motion systems

    Science.gov (United States)

    Deese Becht, Sara-Maria Francis

    1999-11-01

    The purpose of this study is two-fold involving both practical and theoretical modeling components. The practical component, an experiential-learning phase, investigated a study population for effects that increasing levels of multicontextual physics activities have on student understanding of Newtonian systems of motion. This contextual-learning model measured learner convictions and non-response gaps and analyzed learner response trends on context, technology, challenge, growth, and success. The theoretical component, a model-building phase, designed a dynamic-knowing model for learning along a range of experiential tasks, from low to high context, monitored for indicators of learning in science and mathematics: learner academic performance and ability, learner control and academic attitude, and a learner non- response gap. This knowing model characterized a learner's process-of-knowing on a less to more expert- like learner-response continuum using performance and perspective indices associated with level of contextual- imagery referent system. Data for the contextual-learning model were collected on 180 secondary subjects: 72 middle and 108 high, with 36 physics subjects as local experts. Subjects were randomly assigned to one of three experimental groups differing only on context level of force and motion activities. Three levels of information were presented through context-based tasks: momentum constancy as inertia, momentum change as impulse, and momentum rate of change as force. The statistical analysis used a multi-level factorial design with repeated measures and discriminate analysis of response-conviction items. Subject grouping criteria included school level, ability level in science and mathematics, gender and race. Assessment criteria used pre/post performance scores, confidence level in physics concepts held, and attitude towards science, mathematics, and technology. Learner indices were computed from logit- transforms applied to learner outcomes

  1. Pre-Service Physics Teachers' Argumentation in a Model Rocketry Physics Experience

    Science.gov (United States)

    Gürel, Cem; Süzük, Erol

    2017-01-01

    This study investigates the quality of argumentation developed by a group of pre-service physics teachers' (PSPT) as an indicator of subject matter knowledge on model rocketry physics. The structure of arguments and scientific credibility model was used as a design framework in the study. The inquiry of model rocketry physics was employed in…

  2. Assessment of physical activity of the human body considering the thermodynamic system.

    Science.gov (United States)

    Hochstein, Stefan; Rauschenberger, Philipp; Weigand, Bernhard; Siebert, Tobias; Schmitt, Syn; Schlicht, Wolfgang; Převorovská, Světlana; Maršík, František

    2016-01-01

    Correctly dosed physical activity is the basis of a vital and healthy life, but the measurement of physical activity is certainly rather empirical resulting in limited individual and custom activity recommendations. Certainly, very accurate three-dimensional models of the cardiovascular system exist, however, requiring the numeric solution of the Navier-Stokes equations of the flow in blood vessels. These models are suitable for the research of cardiac diseases, but computationally very expensive. Direct measurements are expensive and often not applicable outside laboratories. This paper offers a new approach to assess physical activity using thermodynamical systems and its leading quantity of entropy production which is a compromise between computation time and precise prediction of pressure, volume, and flow variables in blood vessels. Based on a simplified (one-dimensional) model of the cardiovascular system of the human body, we develop and evaluate a setup calculating entropy production of the heart to determine the intensity of human physical activity in a more precise way than previous parameters, e.g. frequently used energy considerations. The knowledge resulting from the precise real-time physical activity provides the basis for an intelligent human-technology interaction allowing to steadily adjust the degree of physical activity according to the actual individual performance level and thus to improve training and activity recommendations.

  3. Agent-Based Models in Social Physics

    Science.gov (United States)

    Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo

    2018-06-01

    We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.

  4. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve ''control loops'' between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  5. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely-activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve (control loops) between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  6. On the use of a standard spreadsheet to model physical systems in school teaching*

    Science.gov (United States)

    Quale, Andreas

    2012-05-01

    In the teaching of physics at upper secondary school level (K10-K12), the students are generally taught to solve problems analytically, i.e. using the dynamics describing a system (typically in the form of differential equations) to compute its evolution in time, e.g. the motion of a body along a straight line or in a plane. This reduces the scope of problems, i.e. the kind of problems that are within students' capabilities. To make the tasks mathematically solvable, one is restricted to very idealized situations; more realistic problems are too difficult (or even impossible) to handle analytically with the mathematical abilities that may be expected from students at this level. For instance, ordinary ballistic trajectories under the action of gravity, when air resistance is included, have been 'out of reach'; in school textbooks such trajectories are generally assumed to take place in a vacuum. Another example is that according to Newton's law of universal gravitation satellites will in general move around a large central body in elliptical orbits, but the students can only deal with the special case where the orbit is circular, thus precluding (for example) a verification and discussion of Kepler's laws. It is shown that standard spreadsheet software offers a tool that can handle many such realistic situations in a uniform way, and display the results both numerically and graphically on a computer screen, quite independently of whether the formal description of the physical system itself is 'mathematically tractable'. The method employed, which is readily accessible to high school students, is to perform a numerical integration of the equations of motion, exploiting the spreadsheet's capability of successive iterations. The software is used to model and study motion of bodies in external force fields; specifically, ballistic trajectories in a homogeneous gravity field with air resistance and satellite motion in a centrally symmetric gravitational field. The

  7. Modeling and Vulnerability Analysis of Cyber-Physical Power Systems Considering Network Topology and Power Flow Properties

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2017-01-01

    Full Text Available Conventional power systems are developing into cyber-physical power systems (CPPS with wide applications of communication, computer and control technologies. However, multiple practical cases show that the failure of cyber layers is a major factor leading to blackouts. Therefore, it is necessary to discuss the cascading failure process considering cyber layer failures and analyze the vulnerability of CPPS. In this paper, a CPPS model, which consists of cyber layer, physical layer and cyber-physical interface, is presented using complex network theory. Considering power flow properties, the impacts of cyber node failures on the cascading failure propagation process are studied. Moreover, two vulnerability indices are established from the perspective of both network structure and power flow properties. A vulnerability analysis method is proposed, and the CPPS performance before and after cascading failures is analyzed by the proposed method to calculate vulnerability indices. In the case study, three typical scenarios are analyzed to illustrate the method, and vulnerabilities under different interface strategies and attack strategies are compared. Two thresholds are proposed to value the CPPS vulnerability roughly. The results show that CPPS is more vulnerable under malicious attacks and cyber nodes with high indices are vulnerable points which should be reinforced.

  8. An introduction to computer simulation methods applications to physical systems

    CERN Document Server

    Gould, Harvey; Christian, Wolfgang

    2007-01-01

    Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels , An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing phy...

  9. Physical models for the description of an electrodynamically accelerated plasma sheath

    International Nuclear Information System (INIS)

    Zambreanu, V.

    1977-01-01

    An analysis of the models proposed for the description of the plasma sheath dynamics in a coaxial system (of the same type as that operating at the Bucharest Institute of Physics) is presented. A particular attention is paid to the physical structure of the accelerated plasma. It has been shown that a self-consistent model could be derived from a phenomenological description of the sheath structure. The physical models presented so far in the literature have been classified into three groups: the hydrodynamic models, the plasma sheet models and the shock wave models. Each of these models is briefly described. The simplifying assumptions used in the construction of these models have been pointed out. The final conclusion has been that, under these assumptions, none of these models taken separately could completely and correctly describe the dynamical state of the plasma sheath. (author)

  10. The evaluation of the efficiency of introducing the model of the methodical system of physical education of agrarian students

    Directory of Open Access Journals (Sweden)

    Gryban G.P.

    2012-12-01

    Full Text Available Quality indicators of an educational process in agricultural universities after methodology model of physical education has been implemented. The purpose of the work was to determine the effectiveness of methodology model of physical education by the students of agricultural institutes. The evaluation system included a program-based purposeful approach to quality assurance of training and management integration of different aspects of training and educating the students by the physical education. It was based on the general principles of the administration theory and included ensuring the proper coordination between the teacher and students to obtain reliable and objective information about the effectiveness of the educational process. The study involved 188 first-year students of the experimental groups (105 men, 83 women and 181 first-year students of the control groups (92 men, 89 women of the Zhytomyr National Agroecological University in 2006/2007 academic year who have been trained in this program for four years. The effectiveness of the model was evaluated according to the following parameters: the effectiveness of a educational process in physical education and the level of preparedness of students of agricultural institutes to sport and health promotion during their professional work in the agricultural sector after motivational, cognitive and activity criteria.

  11. Cabin Environment Physics Risk Model

    Science.gov (United States)

    Mattenberger, Christopher J.; Mathias, Donovan Leigh

    2014-01-01

    This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.

  12. Real time physics analysis with the ATLAS tau trigger system

    International Nuclear Information System (INIS)

    Casado Lechuga, M. P.

    2009-01-01

    The scope of the ATLAS tau trigger system at the LHC is most ambitious. It aims at reconstructing in real time, a matter of seconds, a detailed picture of the high energy proton proton collisions at the LHC. Such system is mandatory in order to select efficiently data needed for discovery of new physics in a proton proton collision environment where the rates of jets observed in the detector are high and the tau identification is difficult. New physics scenarios targeted specifically by the the ATLAS tau trigger system are Standard Model or Supersymmetric Higgs production, and production of new exotic resonances. This contribution will detail how the analysis techniques developed offline for efficient data analysis have been implemented in the algorithms which run online at the trigger. In particular, the focus will be on how to satisfy the requirements imposed by the physics goals while addressing the limitations from the overall event rate and latency allowed. The prospects for early running during the first LHC collisions and trigger evolution from first collisions to stable running will be also summarized, following change of trigger goals from commissioning of detector to measurement of Standard Model physics and discoveries. (author)

  13. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    Science.gov (United States)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  14. Ergodic theory and dynamical systems from a physical point of view

    International Nuclear Information System (INIS)

    Sabbagan, M.; Nasertayoob, P.

    2008-01-01

    Ergodic theory and a large part of dynamical systems are in essence some mathematical modeling, which belongs to statistical physics. This paper is an attempt to present some of the results and principles in ergodic theory and dynamical systems from certain view points of physics such as thermodynamics and classical mechanics. The significance of the varational principle in the statistical physics, the relation between classical approach and statistical approach, also comparison between reversibility from statistical of view are discussed. (author)

  15. Development of the physical model

    International Nuclear Information System (INIS)

    Liu Zunqi; Morsy, Samir

    2001-01-01

    Full text: The Physical Model was developed during Program 93+2 as a technical tool to aid enhanced information analysis and now is an integrated part of the Department's on-going State evaluation process. This paper will describe the concept of the Physical Model, including its objectives, overall structure and the development of indicators with designated strengths, followed by a brief description of using the Physical Model in implementing the enhanced information analysis. The work plan for expansion and update of the Physical Model is also presented at the end of the paper. The development of the Physical Model is an attempt to identify, describe and characterize every known process for carrying out each step necessary for the acquisition of weapons-usable material, i.e., all plausible acquisition paths for highly enriched uranium (HEU) and separated plutonium (Pu). The overall structure of the Physical Model has a multilevel arrangement. It includes at the top level all the main steps (technologies) that may be involved in the nuclear fuel cycle from the source material production up to the acquisition of weapons-usable material, and then beyond the civilian fuel cycle to the development of nuclear explosive devices (weaponization). Each step is logically interconnected with the preceding and/or succeeding steps by nuclear material flows. It contains at its lower levels every known process that is associated with the fuel cycle activities presented at the top level. For example, uranium enrichment is broken down into three branches at the second level, i.e., enrichment of UF 6 , UCl 4 and U-metal respectively; and then further broken down at the third level into nine processes: gaseous diffusion, gas centrifuge, aerodynamic, electromagnetic, molecular laser (MLIS), atomic vapor laser (AVLIS), chemical exchange, ion exchange and plasma. Narratives are presented at each level, beginning with a general process description then proceeding with detailed

  16. Synthetic Earthquake Statistics From Physical Fault Models for the Lower Rhine Embayment

    Science.gov (United States)

    Brietzke, G. B.; Hainzl, S.; Zöller, G.

    2012-04-01

    As of today, seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates they fail to provide a link between the observed seismicity and the underlying physical processes. Solving a state-of-the-art fully dynamic description set of all relevant physical processes related to earthquake fault systems is likely not useful since it comes with a large number of degrees of freedom, poor constraints on its model parameters and a huge computational effort. Here, quasi-static and quasi-dynamic physical fault simulators provide a compromise between physical completeness and computational affordability and aim at providing a link between basic physical concepts and statistics of seismicity. Within the framework of quasi-static and quasi-dynamic earthquake simulators we investigate a model of the Lower Rhine Embayment (LRE) that is based upon seismological and geological data. We present and discuss statistics of the spatio-temporal behavior of generated synthetic earthquake catalogs with respect to simplification (e.g. simple two-fault cases) as well as to complication (e.g. hidden faults, geometric complexity, heterogeneities of constitutive parameters).

  17. Evaluating performances of simplified physically based landslide susceptibility models.

    Science.gov (United States)

    Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale

    2015-04-01

    Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk

  18. A federation of simulations based on cellular automata in cyber-physical systems

    Directory of Open Access Journals (Sweden)

    Hoang Van Tran

    2016-02-01

    Full Text Available In cyber-physical system (CPS, cooperation between a variety of computational and physical elements usually poses difficulties to current modelling and simulation tools. Although much research has proposed to address those challenges, most solutions do not completely cover uncertain interactions in CPS. In this paper, we present a new approach to federate simulations for CPS. A federation is a combination of, and coordination between simulations upon a standard of communication. In addition, a mixed simulation is defined as several parallel simulations federated in a common time progress. Such simulations run on the models of physical systems, which are built based on cellular automata theory. The experimental results are performed on a federation of three simulations of forest fire spread, river pollution diffusion and wireless sensor network. The obtained results can be utilized to observe and predict the behaviours of physical systems in their interactions.

  19. Statistical physics of pairwise probability models

    Directory of Open Access Journals (Sweden)

    Yasser Roudi

    2009-11-01

    Full Text Available Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of data: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying and using pairwise models. We build on our previous work on the subject and study the relation between different methods for fitting these models and evaluating their quality. In particular, using data from simulated cortical networks we study how the quality of various approximate methods for inferring the parameters in a pairwise model depends on the time bin chosen for binning the data. We also study the effect of the size of the time bin on the model quality itself, again using simulated data. We show that using finer time bins increases the quality of the pairwise model. We offer new ways of deriving the expressions reported in our previous work for assessing the quality of pairwise models.

  20. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-31

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesian inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.

  1. Workshop on data acquisition and trigger system simulations for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit & The Design of a Queue for this Circuit; Fast Data Compression & Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ & Online Processing at the SSC; Planned Enhancements to MODSEM II & SIMOBJECT -- an Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies.

  2. Workshop on data acquisition and trigger system simulations for high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit ampersand The Design of a Queue for this Circuit; Fast Data Compression ampersand Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ ampersand Online Processing at the SSC; Planned Enhancements to MODSEM II ampersand SIMOBJECT -- an Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies

  3. Physical security system effectiveness evaluation: a status report

    International Nuclear Information System (INIS)

    Todd, J.L.; Nickell, W.C.

    1975-01-01

    A method to permit objective comparisons of physical security systems is under development and is expected to be useful in the optimization of system design and in cost benefit analysis. The procedure involves identifying the possible or potential characteristics of a postulated adversary, the counter-measures to deny or diminish adversary success and the response capabilities of the defender. These, in conjunction with system definition information, are evaluated by the use of analytical models which provide a menas of ranking systems against threats. The status of this effort and an overview of the methodology with a brief description of various models being considered for use in effective evaluation are discussed. (U.S.)

  4. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    Science.gov (United States)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  5. Literature Review of Dredging Physical Models

    Science.gov (United States)

    This U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, special report presents a review of dredging physical ...model studies with the goal of understanding the most current state of dredging physical modeling, understanding conditions of similitude used in past...studies, and determining whether the flow field around a dredging operation has been quantified. Historical physical modeling efforts have focused on

  6. Instream Physical Habitat Modelling Types

    DEFF Research Database (Denmark)

    Conallin, John; Boegh, Eva; Krogsgaard, Jørgen

    2010-01-01

    The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages and disadvanta......The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages...... suit their situations. This paper analyses the potential of different methods available for water managers to assess hydrological and geomorphological impacts on the habitats of stream biota, as requested by the WFD. The review considers both conventional and new advanced research-based instream...... physical habitat models. In parametric and non-parametric regression models, model assumptions are often not satisfied and the models are difficult to transfer to other regions. Research-based methods such as the artificial neural networks and individual-based modelling have promising potential as water...

  7. Models in Physics, Models for Physics Learning, and Why the Distinction May Matter in the Case of Electric Circuits

    Science.gov (United States)

    Hart, Christina

    2008-01-01

    Models are important both in the development of physics itself and in teaching physics. Historically, the consensus models of physics have come to embody particular ontological assumptions and epistemological commitments. Educators have generally assumed that the consensus models of physics, which have stood the test of time, will also work well…

  8. Propulsion Physics Using the Chameleon Density Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.

  9. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Pu; Niestemski, Liang Ren; Deem, Michael W [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Barrick, Jeffrey E, E-mail: mwdeem@rice.edu [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712 (United States)

    2013-04-15

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called 'spacers' into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. (paper)

  10. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Science.gov (United States)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  11. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    International Nuclear Information System (INIS)

    Han, Pu; Niestemski, Liang Ren; Deem, Michael W; Barrick, Jeffrey E

    2013-01-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. (paper)

  12. Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System

    Directory of Open Access Journals (Sweden)

    D. I. Pikulin

    2017-07-01

    Full Text Available A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti–de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.

  13. On knowledge representation for high energy physics control systems

    International Nuclear Information System (INIS)

    Huuskonen, P.; Kaarela, K.; Meri, M.; Le Goff, J.M.

    1994-01-01

    A framework for knowledge representation in the domain of high energy physics control systems is presented. Models of process equipment, controls, documents, information systems, functional dependencies, physical interconnections, and design decisions are necessary to allow for automated reasoning about such systems. A number of support systems can use these models: alarm processing, fault diagnosis, sensor validation, preventive maintenance, action analysis, information abstraction, intelligent help systems, and on-line documentation. Our aim is to achieve representations that would be understood by end users, could be constructed by domain experts, and would be powerful enough to function as a basis for these support systems. It is proposed to base these models on means-end-analysis, implemented through an entity-relationship type of representation and extended with the notion of contribution. The paper outlines class hierarchies and relation types to form a vocabulary for talking about this specific domain. A number of implementation concerns are raised and some examples of how these representations can be used in real cases are offered. The representations are likely to prove most useful for support systems that function in the user assisting mode, as opposed to fully autonomous systems. Intelligent help and information abstraction applications, in particular, are expected to benefit. The main focus of the work is that of the control information system concepts based on encapsulated real- time objects (CICERO) project at CERN, experiment controls, but the results are usable for accelerator control systems and for industrial control systems in general. (author). 37 refs., 7 figs

  14. Physics of far-from-equilibrium systems and self-organization

    International Nuclear Information System (INIS)

    Nicolis, G.

    1993-01-01

    The status of self-organization phenomena from the stand point of the physical sciences are analyzed. Non linear dynamics and the presence of constraints maintaining the system far from equilibrium are shown to be the basic mechanism involved in the emergence of these phenomena. Some particularly representative experiments are first presented: thermal conversion, chemical reactions (Benard problem), biological systems, and their explanation through order, disorder, non-linearity, irreversibility, stability, bifurcation, symmetry breaking, etc., concepts. Then it is shown how the self-organization paradigm allows to model problems outside the traditional realm of the physical sciences. 29 figs., 27 refs

  15. Regulatory control of physical protection systems

    International Nuclear Information System (INIS)

    Rajdeep; Mayya, Y.S.

    2017-01-01

    The safety of facilities in BARC is under the regulatory oversight of BSC. The security architecture for these facilities incorporates multiple layers of Physical Protection Systems. The demands of safety may sometimes conflict with the needs of security. Realizing the need to identify these interfaces and extend the regulatory coverage to Physical Protection Systems, a Standing Committee named Physical Protection System Review Committee (PPSRC) has been constituted as a 2"n"d tier entity of BSC. PPSRC includes experts from various domains concerned with nuclear security, viz. physical protection systems, cyber security, radiation safety, security operations, technical services and security administration

  16. Airborne Collision Avoidance System as a Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Andrei C. NAE

    2015-12-01

    Full Text Available In this paper the key concepts of ITS - Intelligent Transport Systems, CPS - Cyber-Physical Systems and SM - Smart Mobility are defined and correlated with the need for ACAS – Airborne Collision Avoidance System, as the last resort safety net and indispensable ingredient in civil aviation. Smart Mobility is addressed from a Cyber Physical-Systems perspective, detailing some of the elements that this entails. Here we consider the Air Transportations System of the future as a Cyber-Physical System and analyze the implications of doing so from different perspectives. The objective is to introduce a 4D collision avoidance shield technology which forms a last resort safety net technology for the next generation air transport (2050 and beyond. The new system will represent a step change over the performance of current technology. As conclusions, the benefits of implementing Transport Cyber-Physical Systems are discussed, as well as what this would require for future deployment.

  17. Simplified Physics Based Models Research Topical Report on Task #2

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta; Ganesh, Priya

    2014-10-31

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.

  18. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  19. Physics Based Modeling of Compressible Turbulance

    Science.gov (United States)

    2016-11-07

    AFRL-AFOSR-VA-TR-2016-0345 PHYSICS -BASED MODELING OF COMPRESSIBLE TURBULENCE PARVIZ MOIN LELAND STANFORD JUNIOR UNIV CA Final Report 09/13/2016...on the AFOSR project (FA9550-11-1-0111) entitled: Physics based modeling of compressible turbulence. The period of performance was, June 15, 2011...by ANSI Std. Z39.18 Page 1 of 2FORM SF 298 11/10/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll PHYSICS -BASED MODELING OF COMPRESSIBLE

  20. Physical security system effectiveness evaluation, a status report

    International Nuclear Information System (INIS)

    Todd, J.L. Jr.; Nickell, W.C.

    1975-07-01

    A method to permit objective comparisons of physical security is under development and is expected to be useful in the optimization of system design and in cost benefit analysis. The procedure involves identifying the possible or potential characteristics of a postulated adversary, the countermeasures to deny or diminish adversary success, and the response capabilities of the defender. These, in conjunction with system definition information, are evaluated by the use of analytical models which provide a means of ranking systems against threats. This paper describes the status of this effort and includes an overview of the methodology with a brief description of various models being considered for use in effectiveness evaluation. (U.S.)

  1. An introduction to the European Hydrological SystemSysteme Hydrologique Europeen, ``SHE'', 2: Structure of a physically-based, distributed modelling system

    Science.gov (United States)

    Abbott, M. B.; Bathurst, J. C.; Cunge, J. A.; O'Connell, P. E.; Rasmussen, J.

    1986-10-01

    The paper forms the second part of an introduction to the SHE, a physically-based, distributed catchment modelling system produced jointly by the Danish Hydraulic Institute, the British Institute of Hydrology and SOGREAH (France) with the financial support of the Commission of the European Communities. The SHE is physically-based in the sense that the hydrological processes of water movement are modelled either by finite difference representations of the partial differential equations of mass, momentum and energy conservation, or by empirical equations derived from independent experimental research. Spatial distribution of catchment parameters, rainfall input and hydrological response is achieved in the horizontal by an orthogonal grid network and in the vertical by a column of horizontal layers at each grid square. Each of the primary processes of the land phase of the hydrological cycle is modelled in a separate component as follows: interception, by the Rutter accounting procedure; evapotranspiration, by the Penman-Monteith equation; overland and channel flow, by simplifications of the St. Venant equations; unsaturated zone flow, by the one-dimensional Richards equation; saturated zone flow, by the two-dimensional Boussinesq equation; snowmelt, by an energy budget method. Overall control of the parallel running of the components and the information exchanges between them is managed by a FRAME component. Careful attention has been devoted to a modular construction so that improvements or additional components (e.g. water quality and sediment yield) can be added in the future. Considerable operating flexibility is provided through the ability to vary the level of sophistication of the calculation mode to match the availability or quality of the data.

  2. Vortex Tube Modeling Using the System Identification Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)

    2017-05-15

    In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

  3. Physical-Socio-Economic Modeling of Climate Change

    Science.gov (United States)

    Chamberlain, R. G.; Vatan, F.

    2008-12-01

    Because of the global nature of climate change, any assessment of the effects of plans, policies, and response to climate change demands a model that encompasses the entire Earth System, including socio- economic factors. Physics-based climate models of the factors that drive global temperatures, rainfall patterns, and sea level are necessary but not sufficient to guide decision making. Actions taken by farmers, industrialists, environmentalists, politicians, and other policy makers may result in large changes to economic factors, international relations, food production, disease vectors, and beyond. These consequences will not be felt uniformly around the globe or even across a given region. Policy models must comprehend all of these considerations. Combining physics-based models of the Earth's climate and biosphere with societal models of population dynamics, economics, and politics is a grand challenge with high stakes. We propose to leverage our recent advances in modeling and simulation of military stability and reconstruction operations to models that address all these areas of concern. Following over twenty years' experience of successful combat simulation, JPL has started developing Minerva, which will add demographic, economic, political, and media/information models to capabilities that already exist. With these new models, for which we have design concepts, it will be possible to address a very wide range of potential national and international problems that were previously inaccessible. Our climate change model builds on Minerva and expands the geographical horizon from playboxes containing regions and neighborhoods to the entire globe. This system consists of a collection of interacting simulation models that specialize in different aspects of the global situation. They will each contribute to and draw from a pool of shared data. The basic models are: the physical model; the demographic model; the political model; the economic model; and the media

  4. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  5. Tinamit: Making coupled system dynamics models accessible to stakeholders

    Science.gov (United States)

    Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo

    2017-04-01

    Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model

  6. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  7. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  8. Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    OpenAIRE

    Hehenberger, P.; Vogel-Heuser, B.; Bradley, D.; Eynard, B.; Tomiyama, Tetsuo; Achiche, S.

    2016-01-01

    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process w...

  9. Physical/biogeochemical coupled model : impact of an offline vs online strategy

    Science.gov (United States)

    Hameau, Angélique; Perruche, Coralie; Bricaud, Clément; Gutknecht, Elodie; Reffray, Guillaume

    2014-05-01

    Mercator-Ocean, the French ocean forecasting center, has been developing several operational forecasting systems and reanalysis of the physical and biogeochemical 3D-Ocean. Here we study the impact of an offline vs online strategy to couple the physical (OPA) and biogeochemical (PISCES) modules included in the NEMO platform. For this purpose, we perform global one-year long simulations at 1° resolution. The model was initialized with global climatologies. The spin-up involved 10 years of biogeochemical off-line simulation forced by a climatology of ocean physics. The online mode consists in running physical and biogeochemical models simultaneously whereas in the offline mode, the biogeochemical model is launched alone, forced by averaged physical forcing (1 day, 7 days,… ). The Mercator operational biogeochemical system is currently using the offline mode with a weekly physical forcing. A special treatment is applied to the vertical diffusivity coefficient (Kz): as it varies of several orders of magnitude, we compute the mean of the LOG10 of Kz. Moreover, a threshold value is applied to remove the highest values corresponding to enhanced convection. To improve this system, 2 directions are explored. First, 3 physical forcing frequencies are compared to quantify errors due to the offline mode: 1 hour (online mode), 1 day and 1 week (offline modes). Secondly, sensitivity tests to the threshold value applied to Kz are performed. The simulations are evaluated by systematically comparing model fields to observations (Globcolour product and World Ocean Atlas 2005) at global and regional scales. We show first that offline simulations are in good agreement with online simulation. As expected, the lower the physical forcing frequency is, the closer to the online solution is the offline simulation. The threshold value on the vertical diffusivity coefficient manages the mixing strength within the mixed layer. A value of 1 m2.s-1 appears to be a good compromise to approach

  10. High Assurance Control of Cyber-Physical Systems with Application to Unmanned Aircraft Systems

    Science.gov (United States)

    Kwon, Cheolhyeon

    physical and logical process model of the CPS. Specifically, three main tasks are discussed in this presentation: (i) we first investigate diverse granularity of the interactions inside the CPS and propose feasible cyber attack models to characterize the compromised behavior of the CPS with various measures, from its severity to detectability; (ii) based on this risk information, our approach to securing the CPS addresses both monitoring of and high assurance control design against cyber attacks by developing on-line safety assessment and mitigation algorithms; and (iii) by extending the developed theories and methods from a single CPS to multiple CPSs, we examine the security and safety of multi-CPS network that are strongly dependent on the network topology, cooperation protocols between individual CPSs, etc. The effectiveness of the analytical findings is demonstrated and validated with illustrative examples, especially unmanned aircraft system (UAS) applications.

  11. Causal Modeling of Secondary Science Students' Intentions to Enroll in Physics.

    Science.gov (United States)

    Crawley, Frank E.; Black, Carolyn B.

    1992-01-01

    Reports a study using the causal modeling method to verify underlying causes of student interest in enrolling in physics as predicted by the theory of planned behavior. Families were identified as major referents in the social support system for physics enrollment. Course and extracurricular conflicts and fear of failure were primary beliefs…

  12. A diagnosis method for physical systems using a multi-modeling approach

    International Nuclear Information System (INIS)

    Thetiot, R.

    2000-01-01

    In this thesis we propose a method for diagnosis problem solving. This method is based on a multi-modeling approach describing both normal and abnormal behavior of a system. This modeling approach allows to represent a system at different abstraction levels (behavioral, functional and teleological. Fundamental knowledge is described according to a bond-graph representation. We show that bond-graph representation can be exploited in order to generate (completely or partially) the functional models. The different models of the multi-modeling approach allows to define the functional state of a system at different abstraction levels. We exploit this property to exonerate sub-systems for which the expected behavior is observed. The behavioral and functional descriptions of the remaining sub-systems are exploited hierarchically in a two steps process. In a first step, the abnormal behaviors explaining some observations are identified. In a second step, the remaining unexplained observations are used to generate conflict sets and thus the consistency based diagnoses. The modeling method and the diagnosis process have been applied to a Reactor Coolant Pump Sets. This application illustrates the concepts described in this thesis and shows its potentialities. (authors)

  13. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  14. Undergraduate students’ challenges with computational modelling in physics

    Directory of Open Access Journals (Sweden)

    Simen A. Sørby

    2012-12-01

    Full Text Available In later years, computational perspectives have become essential parts in several of the University of Oslo’s natural science studies. In this paper we discuss some main findings from a qualitative study of the computational perspectives’ impact on the students’ work with their first course in physics– mechanics – and their learning and meaning making of its contents. Discussions of the students’ learning of physics are based on sociocultural theory, which originates in Vygotsky and Bakhtin, and subsequent physics education research. Results imply that the greatest challenge for students when working with computational assignments is to combine knowledge from previously known, but separate contexts. Integrating knowledge of informatics, numerical and analytical mathematics and conceptual understanding of physics appears as a clear challenge for the students. We also observe alack of awareness concerning the limitations of physical modelling. The students need help with identifying the appropriate knowledge system or “tool set”, for the different tasks at hand; they need helpto create a plan for their modelling and to become aware of its limits. In light of this, we propose thatan instructive and dialogic text as basis for the exercises, in which the emphasis is on specification, clarification and elaboration, would be of potential great aid for students who are new to computational modelling.

  15. Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins

    International Nuclear Information System (INIS)

    Sveum, P.; Ramstad, S.; Faksness, L.G.; Bech, C.; Johansen, B.

    1995-01-01

    This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems

  16. A system for designing and simulating particle physics experiments

    International Nuclear Information System (INIS)

    Zelazny, R.; Strzalkowski, P.

    1987-01-01

    In view of the rapid development of experimental facilities and their costs, the systematic design and preparation of particle physics experiments have become crucial. A software system is proposed as an aid for the experimental designer, mainly for experimental geometry analysis and experimental simulation. The following model is adopted: the description of an experiment is formulated in a language (here called XL) and put by its processor in a data base. The language is based on the entity-relationship-attribute approach. The information contained in the data base can be reported and analysed by an analyser (called XA) and modifications can be made at any time. In particular, the Monte Carlo methods can be used in experiment simulation for both physical phenomena in experimental set-up and detection analysis. The general idea of the system is based on the design concept of ISDOS project information systems. The characteristics of the simulation module are similar to those of the CERN Geant system, but some extensions are proposed. The system could be treated as a component of greater, integrated software environment for the design of particle physics experiments, their monitoring and data processing. (orig.)

  17. An integrated system for physical protection

    International Nuclear Information System (INIS)

    Kumar, Ranajit

    2001-01-01

    An Integrated Physical Protection System (IPPS) was developed for the consolidation of all sub systems, sensors and elements related to physical protection for an efficient and effective security environment of a facility. An effective physical protection system discharges the functions of detection, delay, communication, response, access control etc. IPPS performs, controls and monitors all the above functionality and helps in taking quick action on occurrence of unusual incidents by instantly reporting the incident in easily understandable audio, video, graphical and textual format and also by initiating automatic interactions among sub-systems

  18. Problems in physical modeling of magnetic materials

    International Nuclear Information System (INIS)

    Della Torre, E.

    2004-01-01

    Physical modeling of magnetic materials should give insights into the basic processes involved and should be able to extrapolate results to new situations that the models were not necessarily intended to solve. Thus, for example, if a model is designed to describe a static magnetization curve, it should also be able to describe aspects of magnetization dynamics. Both micromagnetic modeling and Preisach modeling, the two most popular magnetic models, fulfill this requirement, but in the process of fulfilling this requirement, they both had to be modified in some ways. Hence, we should view physical modeling as an iterative process whereby we start with some simple assumptions and refine them as reality requires. In the process of refining these assumptions, we should try to appeal to physical arguments for the modifications, if we are to come up with good models. If we consider phenomenological models, on the other hand, that is as axiomatic models requiring no physical justification, we can follow them logically to see the end and examine the consequences of their assumptions. In this way, we can learn the properties, limitations and achievements of the particular model. Physical and phenomenological models complement each other in furthering our understanding of the behavior of magnetic materials

  19. A Concise Introduction to the Statistical Physics of Complex Systems

    CERN Document Server

    Bertin, Eric

    2012-01-01

    This concise primer (based on lectures given at summer schools on complex systems and on a masters degree course in complex systems modeling) will provide graduate students and newcomers to the field with the basic knowledge of the concepts and methods of statistical physics and its potential for application to interdisciplinary topics.  Indeed, in recent years, statistical physics has begun to attract the interest of a broad community of researchers in the field of complex system sciences, ranging from biology to the social sciences, economics and computer science. More generally, a growing number of graduate students and researchers feel the need to learn some basic concepts and questions originating in other disciplines without necessarily having to master all of the corresponding technicalities and jargon. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting ‘entities’, and on the other to predict...

  20. Control systems for experimental physics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    At an international conference last year at Villars-sur-Ollon (Switzerland), scientists from all over the world looked at the problems of controlling complex physics installations, including particle accelerators, nuclear reactors, large telescopes and high energy physics detectors. The meeting, organized by the European Physical Society's Interdivisional Group on Experimental Physics Control Systems, EPCS, brought together 180 scientists from the world's leading experimental physics research laboratories, universities and industries

  1. Nondeducibility-Based Analysis of Cyber-Physical Systems

    Science.gov (United States)

    Gamage, Thoshitha; McMillin, Bruce

    Controlling information flow in a cyber-physical system (CPS) is challenging because cyber domain decisions and actions manifest themselves as visible changes in the physical domain. This paper presents a nondeducibility-based observability analysis for CPSs. In many CPSs, the capacity of a low-level (LL) observer to deduce high-level (HL) actions ranges from limited to none. However, a collaborative set of observers strategically located in a network may be able to deduce all the HL actions. This paper models a distributed power electronics control device network using a simple DC circuit in order to understand the effect of multiple observers in a CPS. The analysis reveals that the number of observers required to deduce all the HL actions in a system increases linearly with the number of configurable units. A simple definition of nondeducibility based on the uniqueness of low-level projections is also presented. This definition is used to show that a system with two security domain levels could be considered “nondeducibility secure” if no unique LL projections exist.

  2. Multi-Objective Optimal Design of a Building Envelope and Structural System Using Cyber-Physical Modeling in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Michael L. Whiteman

    2018-03-01

    Full Text Available This paper explores the use of a cyber-physical systems (CPS “loop-in-the-model” approach to optimally design the envelope and structural system of low-rise buildings subject to wind loads. Both the components and cladding (C&C and the main wind force resisting system (MWFRS are considered through multi-objective optimization. The CPS approach combines the physical accuracy of wind tunnel testing and efficiency of numerical optimization algorithms to obtain an optimal design. The approach is autonomous: experiments are executed in a boundary layer wind tunnel (BLWT, sensor feedback is monitored and analyzed by a computer, and optimization algorithms dictate physical changes to the structural model in the BLWT through actuators. To explore a CPS approach to multi-objective optimization, a low-rise building with a parapet wall of variable height is considered. In the BLWT, servo-motors are used to adjust the parapet to a particular height. Parapet walls alter the location of the roof corner vortices, reducing suction loads on the windward facing roof corners and edges, a C&C design load. At the same time, parapet walls increase the surface area of the building, leading to an increase in demand on the MWFRS. A combination of non-stochastic and stochastic optimization algorithms were implemented to minimize the magnitude of suction and positive pressures on the roof of a low-rise building model, followed by stochastic multi-objective optimization to simultaneously minimize the magnitude of suction pressures and base shear. Experiments were conducted at the University of Florida Experimental Facility (UFEF of the National Science Foundation’s (NSF Natural Hazard Engineering Research Infrastructure (NHERI program.

  3. Intelligent Mechatronic Systems Modeling, Control and Diagnosis

    CERN Document Server

    Merzouki, Rochdi; Pathak, Pushparaj Mani; Ould Bouamama, Belkacem

    2013-01-01

    Acting as a support resource for practitioners and professionals looking to advance their understanding of complex mechatronic systems, Intelligent Mechatronic Systems explains their design and recent developments from first principles to practical applications. Detailed descriptions of the mathematical models of complex mechatronic systems, developed from fundamental physical relationships, are built on to develop innovative solutions with particular emphasis on physical model-based control strategies. Following a concurrent engineering approach, supported by industrial case studies, and drawing on the practical experience of the authors, Intelligent Mechatronic Systems covers range of topic and includes:  • An explanation of a common graphical tool for integrated design and its uses from modeling and simulation to the control synthesis • Introductions to key concepts such as different means of achieving fault tolerance, robust overwhelming control and force and impedance control • Dedicated chapters ...

  4. Physical system requirements: Overall system

    International Nuclear Information System (INIS)

    1992-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Direct subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. This approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. The functional analysis approach recognizes that just the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being

  5. Modelling of two-zone accelerator-driven systems

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2012-09-01

    Full Text Available Neutron-physical modelings of two-zone subcritical reactor driven by high-intensity neutron generator are considered. The cascade principle in subcritical reactors, the use of which can hypothetically substantially amplify the neutron flux from the external source is discussed in this article. The theoretical preconditions of the cascade principle are discussed, and the directions of practical realization of the cascade subcritical system are considered, namely the possible methods of neutron feedback between reactor sections elimination. The results of Monte Carlo neutron-physical modeling of the cascade subcritical systems are presented and discussed.

  6. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  7. Dynamic modeling of physical phenomena for PRAs using neural networks

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Brown, N.N.; Paez, T.L.

    1998-04-01

    In most probabilistic risk assessments, there is a set of accident scenarios that involves the physical responses of a system to environmental challenges. Examples include the effects of earthquakes and fires on the operability of a nuclear reactor safety system, the effects of fires and impacts on the safety integrity of a nuclear weapon, and the effects of human intrusions on the transport of radionuclides from an underground waste facility. The physical responses of the system to these challenges can be quite complex, and their evaluation may require the use of detailed computer codes that are very time consuming to execute. Yet, to perform meaningful probabilistic analyses, it is necessary to evaluate the responses for a large number of variations in the input parameters that describe the initial state of the system, the environments to which it is exposed, and the effects of human interaction. Because the uncertainties of the system response may be very large, it may also be necessary to perform these evaluations for various values of modeling parameters that have high uncertainties, such as material stiffnesses, surface emissivities, and ground permeabilities. The authors have been exploring the use of artificial neural networks (ANNs) as a means for estimating the physical responses of complex systems to phenomenological events such as those cited above. These networks are designed as mathematical constructs with adjustable parameters that can be trained so that the results obtained from the networks will simulate the results obtained from the detailed computer codes. The intent is for the networks to provide an adequate simulation of the detailed codes over a significant range of variables while requiring only a small fraction of the computer processing time required by the detailed codes. This enables the authors to integrate the physical response analyses into the probabilistic models in order to estimate the probabilities of various responses

  8. Physical and Chemical Environmental Abstraction Model

    International Nuclear Information System (INIS)

    Nowak, E.

    2000-01-01

    As directed by a written development plan (CRWMS M and O 1999a), Task 1, an overall conceptualization of the physical and chemical environment (P/CE) in the emplacement drift is documented in this Analysis/Model Report (AMR). Included are the physical components of the engineered barrier system (EBS). The intended use of this descriptive conceptualization is to assist the Performance Assessment Department (PAD) in modeling the physical and chemical environment within a repository drift. It is also intended to assist PAD in providing a more integrated and complete in-drift geochemical model abstraction and to answer the key technical issues raised in the U.S. Nuclear Regulatory Commission (NRC) Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). EBS-related features, events, and processes (FEPs) have been assembled and discussed in ''EBS FEPs/Degradation Modes Abstraction'' (CRWMS M and O 2000a). Reference AMRs listed in Section 6 address FEPs that have not been screened out. This conceptualization does not directly address those FEPs. Additional tasks described in the written development plan are recommended for future work in Section 7.3. To achieve the stated purpose, the scope of this document includes: (1) the role of in-drift physical and chemical environments in the Total System Performance Assessment (TSPA) (Section 6.1); (2) the configuration of engineered components (features) and critical locations in drifts (Sections 6.2.1 and 6.3, portions taken from EBS Radionuclide Transport Abstraction (CRWMS M and O 2000b)); (3) overview and critical locations of processes that can affect P/CE (Section 6.3); (4) couplings and relationships among features and processes in the drifts (Section 6.4); and (5) identities and uses of parameters transmitted to TSPA by some of the reference AMRs (Section 6.5). This AMR originally considered a design with backfill, and is now being updated (REV 00 ICN1) to address

  9. A quality management model for radiation oncology physics

    International Nuclear Information System (INIS)

    Sternick, E.S.

    1991-01-01

    State-of-the-art radiation physics quality programs operate in a data rich environment. Given the abundance of recordable events, any formalism that serves to identify and monitor a set of attributes correlated with quality is to be regarded as an important management tool. The hierarchical tree structure model describes one such useful planning method. Of the several different types of tree structures, one of the most appropriate for quality management is the pyramid model. In this model, the associations between an overall program objective and the intermediate steps leading to its attainment, are indicated by both horizontal and vertical connectors. The overall objective of the system under study occupies the vertex of the pyramid, while the level immediately below contains its principal components. Further subdivisions of each component occur in successively lower levels. The tree finally terminates at a base level consisting of actions or requirements that must be fulfilled in order to satisfy the overall objective. A pyramid model for a radiation oncology physics quality program is discussed in detail. (author). 21 refs., 4 figs., 6 tabs

  10. Probabilistic short-term forecasting of eruption rate at Kīlauea Volcano using a physics-based model

    Science.gov (United States)

    Anderson, K. R.

    2016-12-01

    Deterministic models of volcanic eruptions yield predictions of future activity conditioned on uncertainty in the current state of the system. Physics-based eruption models are well-suited for deterministic forecasting as they can relate magma physics with a wide range of observations. Yet, physics-based eruption forecasting is strongly limited by an inadequate understanding of volcanic systems, and the need for eruption models to be computationally tractable. At Kīlauea Volcano, Hawaii, episodic depressurization-pressurization cycles of the magma system generate correlated, quasi-exponential variations in ground deformation and surface height of the active summit lava lake. Deflations are associated with reductions in eruption rate, or even brief eruptive pauses, and thus partly control lava flow advance rates and associated hazard. Because of the relatively well-understood nature of Kīlauea's shallow magma plumbing system, and because more than 600 of these events have been recorded to date, they offer a unique opportunity to refine a physics-based effusive eruption forecasting approach and apply it to lava eruption rates over short (hours to days) time periods. A simple physical model of the volcano ascribes observed data to temporary reductions in magma supply to an elastic reservoir filled with compressible magma. This model can be used to predict the evolution of an ongoing event, but because the mechanism that triggers events is unknown, event durations are modeled stochastically from previous observations. A Bayesian approach incorporates diverse data sets and prior information to simultaneously estimate uncertain model parameters and future states of the system. Forecasts take the form of probability distributions for eruption rate or cumulative erupted volume at some future time. Results demonstrate the significant uncertainties that still remain even for short-term eruption forecasting at a well-monitored volcano - but also the value of a physics

  11. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  12. The UK Earth System Model project

    Science.gov (United States)

    Tang, Yongming

    2016-04-01

    In this talk we will describe the development and current status of the UK Earth System Model (UKESM). This project is a NERC/Met Office collaboration and has two objectives; to develop and apply a world-leading Earth System Model, and to grow a community of UK Earth System Model scientists. We are building numerical models that include all the key components of the global climate system, and contain the important process interactions between global biogeochemistry, atmospheric chemistry and the physical climate system. UKESM will be used to make key CMIP6 simulations as well as long-time (e.g. millennium) simulations, large ensemble experiments and investigating a range of future carbon emission scenarios.

  13. Three tenets for secure cyber-physical system design and assessment

    Science.gov (United States)

    Hughes, Jeff; Cybenko, George

    2014-06-01

    This paper presents a threat-driven quantitative mathematical framework for secure cyber-physical system design and assessment. Called The Three Tenets, this originally empirical approach has been used by the US Air Force Research Laboratory (AFRL) for secure system research and development. The Tenets were first documented in 2005 as a teachable methodology. The Tenets are motivated by a system threat model that itself consists of three elements which must exist for successful attacks to occur: - system susceptibility; - threat accessibility and; - threat capability. The Three Tenets arise naturally by countering each threat element individually. Specifically, the tenets are: Tenet 1: Focus on What's Critical - systems should include only essential functions (to reduce susceptibility); Tenet 2: Move Key Assets Out-of-Band - make mission essential elements and security controls difficult for attackers to reach logically and physically (to reduce accessibility); Tenet 3: Detect, React, Adapt - confound the attacker by implementing sensing system elements with dynamic response technologies (to counteract the attackers' capabilities). As a design methodology, the Tenets mitigate reverse engineering and subsequent attacks on complex systems. Quantified by a Bayesian analysis and further justified by analytic properties of attack graph models, the Tenets suggest concrete cyber security metrics for system assessment.

  14. Mathematical modeling of the evolution of a simple biological system

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.; Neetu, S.; Krishnan, K.P.; Attri, K.; LokaBharathi, P.A.

    be constructed to simulate the observed movement. The comparison between the observed data and the predictions based on the model then tell us how satisfactory the model is. In physical systems the model is usually based on fundamental principles of physics...

  15. Modeling Feedbacks Between Individual Human Decisions and Hydrology Using Interconnected Physical and Social Models

    Science.gov (United States)

    Murphy, J.; Lammers, R. B.; Proussevitch, A. A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Alessa, L.; Kliskey, A. D.

    2014-12-01

    The global hydrological cycle intersects with human decision making at multiple scales, from dams and irrigation works to the taps in individuals' homes. Residential water consumers are commonly encouraged to conserve; these messages are heard against a background of individual values and conceptions about water quality, uses, and availability. The degree to which these values impact the larger-hydrological dynamics, the way that changes in those values have impacts on the hydrological cycle through time, and the feedbacks by which water availability and quality in turn shape those values, are not well explored. To investigate this domain we employ a global-scale water balance model (WBM) coupled with a social-science-grounded agent-based model (ABM). The integration of a hydrological model with an agent-based model allows us to explore driving factors in the dynamics in coupled human-natural systems. From the perspective of the physical hydrologist, the ABM offers a richer means of incorporating the human decisions that drive the hydrological system; from the view of the social scientist, a physically-based hydrological model allows the decisions of the agents to play out against constraints faithful to the real world. We apply the interconnected models to a study of Tucson, Arizona, USA, and its role in the larger Colorado River system. Our core concept is Technology-Induced Environmental Distancing (TIED), which posits that layers of technology can insulate consumers from direct knowledge of a resource. In Tucson, multiple infrastructure and institutional layers have arguably increased the conceptual distance between individuals and their water supply, offering a test case of the TIED framework. Our coupled simulation allows us to show how the larger system transforms a resource with high temporal and spatial variability into a consumer constant, and the effects of this transformation on the regional system. We use this to explore how pricing, messaging, and

  16. Computational physics simulation of classical and quantum systems

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...

  17. Principles of object-oriented modeling and simulation with Modelica 3.3 a cyber-physical approach

    CERN Document Server

    Fritzson, Peter

    2014-01-01

    Fritzson covers the Modelica language in impressive depth from the basic concepts such as cyber-physical, equation-base, object-oriented, system, model, and simulation, while also incorporating over a hundred exercises and their solutions for a tutorial, easy-to-read experience. The only book with complete Modelica 3.3 coverage Over one hundred exercises and solutions Examines basic concepts such as cyber-physical, equation-based, object-oriented, system, model, and simulation

  18. Models in physics teaching

    DEFF Research Database (Denmark)

    Kneubil, Fabiana Botelho

    2016-01-01

    In this work we show an approach based on models, for an usual subject in an introductory physics course, in order to foster discussions on the nature of physical knowledge. The introduction of elements of the nature of knowledge in physics lessons has been emphasised by many educators and one uses...... the case of metals to show the theoretical and phenomenological dimensions of physics. The discussion is made by means of four questions whose answers cannot be reached neither for theoretical elements nor experimental measurements. Between these two dimensions it is necessary to realise a series...... of reasoning steps to deepen the comprehension of microscopic concepts, such as electrical resistivity, drift velocity and free electrons. When this approach is highlighted, beyond the physical content, aspects of its nature become explicit and may improve the structuring of knowledge for learners...

  19. Physics-based statistical model and simulation method of RF propagation in urban environments

    Science.gov (United States)

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  20. We need theoretical physics approaches to study living systems

    Science.gov (United States)

    Blagoev, Krastan B.; Shukla, Kamal; affil="3" >Herbert Levine,

    2013-08-01

    Living systems, as created initially by the transition from assemblies of large molecules to self-reproducing information-rich cells, have for centuries been studied via the empirical toolkit of biology. This has been a highly successful enterprise, bringing us from the vague non-scientific notions of vitalism to the modern appreciation of the biophysical and biochemical bases of life. Yet, the truly mind-boggling complexity of even the simplest self-sufficient cells, let alone the emergence of multicellular organisms, of brain and consciousness, and to ecological communities and human civilizations, calls out for a complementary approach. In this editorial, we propose that theoretical physics can play an essential role in making sense of living matter. When faced with a highly complex system, a physicist builds simplified models. Quoting Philip W Anderson's Nobel prize address, 'the art of model-building is the exclusion of real but irrelevant parts of the problem and entails hazards for the builder and the reader. The builder may leave out something genuinely relevant and the reader, armed with too sophisticated an experimental probe, may take literally a schematized model. Very often such a simplified model throws more light on the real working of nature....' In his formulation, the job of a theorist is to get at the crux of the system by ignoring details and yet to find a testable consequence of the resulting simple picture. This is rather different than the predilection of the applied mathematician who wants to include all the known details in the hope of a quantitative simulacrum of reality. These efforts may be practically useful, but do not usually lead to increased understanding. To illustrate how this works, we can look at a non-living example of complex behavior that was afforded by spatiotemporal patterning in the Belousov-Zhabotinsky reaction [1]. Physicists who worked on this system did not attempt to determine all the relevant chemical intermediates

  1. A physical model of sensorimotor interactions during locomotion

    Science.gov (United States)

    Klein, Theresa J.; Lewis, M. Anthony

    2012-08-01

    In this paper, we describe the development of a bipedal robot that models the neuromuscular architecture of human walking. The body is based on principles derived from human muscular architecture, using muscles on straps to mimic agonist/antagonist muscle action as well as bifunctional muscles. Load sensors in the straps model Golgi tendon organs. The neural architecture is a central pattern generator (CPG) composed of a half-center oscillator combined with phase-modulated reflexes that is simulated using a spiking neural network. We show that the interaction between the reflex system, body dynamics and CPG results in a walking cycle that is entrained to the dynamics of the system. We also show that the CPG helped stabilize the gait against perturbations relative to a purely reflexive system, and compared the joint trajectories to human walking data. This robot represents a complete physical, or ‘neurorobotic’, model of the system, demonstrating the usefulness of this type of robotics research for investigating the neurophysiological processes underlying walking in humans and animals.

  2. Automated comparison of Bayesian reconstructions of experimental profiles with physical models

    International Nuclear Information System (INIS)

    Irishkin, Maxim

    2014-01-01

    In this work we developed an expert system that carries out in an integrated and fully automated way i) a reconstruction of plasma profiles from the measurements, using Bayesian analysis ii) a prediction of the reconstructed quantities, according to some models and iii) an intelligent comparison of the first two steps. This system includes systematic checking of the internal consistency of the reconstructed quantities, enables automated model validation and, if a well-validated model is used, can be applied to help detecting interesting new physics in an experiment. The work shows three applications of this quite general system. The expert system can successfully detect failures in the automated plasma reconstruction and provide (on successful reconstruction cases) statistics of agreement of the models with the experimental data, i.e. information on the model validity. (author) [fr

  3. Assessing physical models used in nuclear aerosol transport models

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1987-01-01

    Computer codes used to predict the behaviour of aerosols in water-cooled reactor containment buildings after severe accidents contain a variety of physical models. Special models are in place for describing agglomeration processes where small aerosol particles combine to form larger ones. Other models are used to calculate the rates at which aerosol particles are deposited on building structures. Condensation of steam on aerosol particles is currently a very active area in aerosol modelling. In this paper, the physical models incorporated in the current available international codes for all of these processes are reviewed and documented. There is considerable variation in models used in different codes, and some uncertainties exist as to which models are superior. 28 refs

  4. A semi-physical simulation platform of attitude determination and control system for satellite

    Directory of Open Access Journals (Sweden)

    Yuanjin Yu

    2016-05-01

    Full Text Available A semi-physical simulation platform for attitude determination and control system is proposed to verify the attitude estimator and controller on ground. A simulation target, a host PC, many attitude sensors, and actuators compose the simulation platform. The simulation target is composed of a central processing unit board with VxWorks operating system and many input/output boards connected via Compact Peripheral Component Interconnect bus. The executable programs in target are automatically generated from the simulation models in Simulink based on Real-Time Workshop of MATLAB. A three-axes gyroscope, a three-axes magnetometer, a sun sensor, a star tracer, three flywheels, and a Global Positioning System receiver are connected to the simulation target, which formulates the attitude control cycle of a satellite. The simulation models of the attitude determination and control system are described in detail. Finally, the semi-physical simulation platform is used to demonstrate the availability and rationality of the control scheme of a micro-satellite. Comparing the results between the numerical simulation in Simulink and the semi-physical simulation, the semi-physical simulation platform is available and the control scheme successfully achieves three-axes stabilization.

  5. Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions

    Science.gov (United States)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system.

  6. Economic model of pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.

    1977-07-29

    The objective of the work reported here was to develop a model which could be used to assess the economic effects of energy-conservative technological innovations upon the pipeline industry. The model is a dynamic simulator which accepts inputs of two classes: the physical description (design parameters, fluid properties, and financial structures) of the system to be studied, and the postulated market (throughput and price) projection. The model consists of time-independent submodels: the fluidics model which simulates the physical behavior of the system, and the financial model which operates upon the output of the fluidics model to calculate the economics outputs. Any of a number of existing fluidics models can be used in addition to that developed as a part of this study. The financial model, known as the Systems, Science and Software (S/sup 3/) Financial Projection Model, contains user options whereby pipeline-peculiar characteristics can be removed and/or modified, so that the model can be applied to virtually any kind of business enterprise. The several dozen outputs are of two classes: the energetics and the economics. The energetics outputs of primary interest are the energy intensity, also called unit energy consumption, and the total energy consumed. The primary economics outputs are the long-run average cost, profit, cash flow, and return on investment.

  7. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    Science.gov (United States)

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  8. Statistical Physics of Complex Substitutive Systems

    Science.gov (United States)

    Jin, Qing

    Diffusion processes are central to human interactions. Despite extensive studies that span multiple disciplines, our knowledge is limited to spreading processes in non-substitutive systems. Yet, a considerable number of ideas, products, and behaviors spread by substitution; to adopt a new one, agents must give up an existing one. This captures the spread of scientific constructs--forcing scientists to choose, for example, a deterministic or probabilistic worldview, as well as the adoption of durable items, such as mobile phones, cars, or homes. In this dissertation, I develop a statistical physics framework to describe, quantify, and understand substitutive systems. By empirically exploring three collected high-resolution datasets pertaining to such systems, I build a mechanistic model describing substitutions, which not only analytically predicts the universal macroscopic phenomenon discovered in the collected datasets, but also accurately captures the trajectories of individual items in a complex substitutive system, demonstrating a high degree of regularity and universality in substitutive systems. I also discuss the origins and insights of the parameters in the substitution model and possible generalization form of the mathematical framework. The systematical study of substitutive systems presented in this dissertation could potentially guide the understanding and prediction of all spreading phenomena driven by substitutions, from electric cars to scientific paradigms, and from renewable energy to new healthy habits.

  9. Numerical Modelling Approaches for Sediment Transport in Sewer Systems

    DEFF Research Database (Denmark)

    Mark, Ole

    A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....

  10. Fault-tolerant Control of a Cyber-physical System

    Science.gov (United States)

    Roxana, Rusu-Both; Eva-Henrietta, Dulf

    2017-10-01

    Cyber-physical systems represent a new emerging field in automatic control. The fault system is a key component, because modern, large scale processes must meet high standards of performance, reliability and safety. Fault propagation in large scale chemical processes can lead to loss of production, energy, raw materials and even environmental hazard. The present paper develops a multi-agent fault-tolerant control architecture using robust fractional order controllers for a (13C) cryogenic separation column cascade. The JADE (Java Agent DEvelopment Framework) platform was used to implement the multi-agent fault tolerant control system while the operational model of the process was implemented in Matlab/SIMULINK environment. MACSimJX (Multiagent Control Using Simulink with Jade Extension) toolbox was used to link the control system and the process model. In order to verify the performance and to prove the feasibility of the proposed control architecture several fault simulation scenarios were performed.

  11. Physical model of Nernst element

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou

    1998-08-01

    Generation of electric power by the Nernst effect is a new application of a semiconductor. A key point of this proposal is to find materials with a high thermomagnetic figure-of-merit, which are called Nernst elements. In order to find candidates of the Nernst element, a physical model to describe its transport phenomena is needed. As the first model, we began with a parabolic two-band model in classical statistics. According to this model, we selected InSb as candidates of the Nernst element and measured their transport coefficients in magnetic fields up to 4 Tesla within a temperature region from 270 K to 330 K. In this region, we calculated transport coefficients numerically by our physical model. For InSb, experimental data are coincident with theoretical values in strong magnetic field. (author)

  12. Physical protection system design and evaluation

    International Nuclear Information System (INIS)

    Williams, J.D.

    1997-11-01

    The design of an effective physical protection system (PPS) includes the determination of the PPS objectives, the initial design of a PPS, the evaluation of the design, and probably, the redesign or refinement of the system. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary's capabilities, and range of adversary's tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the PPS, that is, ''what to protect against whom.'' The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control devices, communication devices, procedures, and protective force personnel to meet the objectives of the system. Once a PPS is designed, it must be analyzed and evaluated to ensure it meets the PPS objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. After the system is installed, the threat and system parameters may change with time. If they do, the analysis must be performed periodically to ensure the system objectives are still being met

  13. Engaging Students In Modeling Instruction for Introductory Physics

    Science.gov (United States)

    Brewe, Eric

    2016-05-01

    Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.

  14. Evaluating system behavior through Dynamic Master Logic Diagram (DMLD) modeling

    International Nuclear Information System (INIS)

    Hu, Y.-S.; Modarres, Mohammad

    1999-01-01

    In this paper, the Dynamic Master Logic Diagram (DMLD) is introduced for representing full-scale time-dependent behavior and uncertain behavior of complex physical systems. Conceptually, the DMLD allows one to decompose a complex system hierarchically to model and to represent: (1) partial success/failure of the system, (2) full-scale logical, physical and fuzzy connectivity relations, (3) probabilistic, resolutional or linguistic uncertainty, (4) multiple-state system dynamics, and (5) floating threshold and transition effects. To demonstrate the technique, examples of using DMLD to model, to diagnose and to control dynamic behavior of a system are presented. A DMLD-based expert system building tool, called Dynamic Reliability Expert System (DREXs), is introduced to automate the DMLD modeling process

  15. Physical Modeling Modular Boxes: PHOXES

    DEFF Research Database (Denmark)

    Gelineck, Steven; Serafin, Stefania

    2010-01-01

    This paper presents the development of a set of musical instruments, which are based on known physical modeling sound synthesis techniques. The instruments are modular, meaning that they can be combined in various ways. This makes it possible to experiment with physical interaction and sonic...

  16. A multi-physics modelling framework to describe the behaviour of nano-scale multilayer systems undergoing irradiation damage

    International Nuclear Information System (INIS)

    Villani, Aurelien

    2015-01-01

    Radiation damage is known to lead to material failure and thus is of critical importance to lifetime and safety within nuclear reactors. While mechanical behaviour of materials under irradiation has been the subject of numerous studies, the current predictive capabilities of such phenomena appear limited. The clustering of point defects such as vacancies and self interstitial atoms gives rise to creep, void swelling and material embrittlement. Nano-scale metallic multilayer systems have be shown to have the ability to evacuate such point defects, hence delaying the occurrence of critical damage. In addition, they exhibit outstanding mechanical properties. The objective of this work is to develop a thermodynamically consistent continuum framework at the meso and nano-scales, which accounts for the major physical processes encountered in such metallic multilayer systems and is able to predict their microstructural evolution and behavior under irradiation. Mainly three physical phenomena are addressed in the present work: stress-diffusion coupling and diffusion induced creep, the void nucleation and growth in multilayer systems under irradiation, and the interaction of dislocations with the multilayer interfaces. In this framework, the microstructure is explicitly modeled, in order to account accurately for their effects on the system behavior. The diffusion creep strain rate is related to the gradient of the vacancy flux. A Cahn-Hilliard approach is used to model void nucleation and growth, and the diffusion equations for vacancies and self interstitial atoms are complemented to take into account the production of point defects due to irradiation cascades, the mutual recombination of defects and their evacuation through grain boundaries. In metallic multilayers, an interface affected zone is defined, with an additional slip plane to model the interface shearable character, and where dislocations cores are able to spread. The model is then implemented numerically

  17. Differences in spatial understanding between physical and virtual models

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2014-03-01

    Full Text Available In the digital age, physical models are still used as major tools in architectural and urban design processes. The reason why designers still use physical models remains unclear. In addition, physical and 3D virtual models have yet to be differentiated. The answers to these questions are too complex to account for in all aspects. Thus, this study only focuses on the differences in spatial understanding between physical and virtual models. In particular, it emphasizes on the perception of scale. For our experiment, respondents were shown a physical model and a virtual model consecutively. A questionnaire was then used to ask the respondents to evaluate these models objectively and to establish which model was more accurate in conveying object size. Compared with the virtual model, the physical model tended to enable quicker and more accurate comparisons of building heights.

  18. Component-oriented approach to the development and use of numerical models in high energy physics

    International Nuclear Information System (INIS)

    Amelin, N.S.; Komogorov, M.Eh.

    2002-01-01

    We discuss the main concepts of a component approach to the development and use of numerical models in high energy physics. This approach is realized as the NiMax software system. The discussed concepts are illustrated by numerous examples of the system user session. In appendix chapter we describe physics and numerical algorithms of the model components to perform simulation of hadronic and nuclear collisions at high energies. These components are members of hadronic application modules that have been developed with the help of the NiMax system. Given report is served as an early release of the NiMax manual mainly for model component users

  19. Using Physical Context-Based Authentication against External Attacks: Models and Protocols

    Directory of Open Access Journals (Sweden)

    Wilson S. Melo

    2018-01-01

    Full Text Available Modern systems are increasingly dependent on the integration of physical processes and information technologies. This trend is remarkable in applications involving sensor networks, cyberphysical systems, and Internet of Things. Despite its complexity, such integration results in physical context information that can be used to improve security, especially authentication. In this paper, we show that entities sharing the same physical context can use it for establishing a secure communication channel and protecting each other against external attacks. We present such approach proposing a theoretical model for generating unique bitstreams. Two different protocols are suggested. Each one is evaluated using probabilistic analysis and simulation. In the end, we implement the authentication mechanism in a case study using networks radio signal as physical event generator. The results demonstrate the performance of each of the protocols and their suitability for applications in real world.

  20. Statistical physics of networks, information and complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    In this project we explore the mathematical methods and concepts of statistical physics that are fmding abundant applications across the scientific and technological spectrum from soft condensed matter systems and bio-infonnatics to economic and social systems. Our approach exploits the considerable similarity of concepts between statistical physics and computer science, allowing for a powerful multi-disciplinary approach that draws its strength from cross-fertilization and mUltiple interactions of researchers with different backgrounds. The work on this project takes advantage of the newly appreciated connection between computer science and statistics and addresses important problems in data storage, decoding, optimization, the infonnation processing properties of the brain, the interface between quantum and classical infonnation science, the verification of large software programs, modeling of complex systems including disease epidemiology, resource distribution issues, and the nature of highly fluctuating complex systems. Common themes that the project has been emphasizing are (i) neural computation, (ii) network theory and its applications, and (iii) a statistical physics approach to infonnation theory. The project's efforts focus on the general problem of optimization and variational techniques, algorithm development and infonnation theoretic approaches to quantum systems. These efforts are responsible for fruitful collaborations and the nucleation of science efforts that span multiple divisions such as EES, CCS, 0 , T, ISR and P. This project supports the DOE mission in Energy Security and Nuclear Non-Proliferation by developing novel infonnation science tools for communication, sensing, and interacting complex networks such as the internet or energy distribution system. The work also supports programs in Threat Reduction and Homeland Security.

  1. Model-independent and quasi-model-independent search for new physics at CDF

    International Nuclear Information System (INIS)

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.; Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.

    2008-01-01

    Data collected in run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the standard model prediction. A model-independent approach (Vista) considers the gross features of the data and is sensitive to new large cross section physics. A quasi-model-independent approach (Sleuth) searches for a significant excess of events with large summed transverse momentum and is particularly sensitive to new electroweak scale physics that appears predominantly in one final state. This global search for new physics in over 300 exclusive final states in 927 pb -1 of pp collisions at √(s)=1.96 TeV reveals no such significant indication of physics beyond the standard model.

  2. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    Science.gov (United States)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  3. Physical factors that influence patients' privacy perception toward a psychiatric behavioral monitoring system: a qualitative study.

    Science.gov (United States)

    Zakaria, Nasriah; Ramli, Rusyaizila

    2018-01-01

    Psychiatric patients have privacy concerns when it comes to technology intervention in the hospital setting. In this paper, we present scenarios for psychiatric behavioral monitoring systems to be placed in psychiatric wards to understand patients' perception regarding privacy. Psychiatric behavioral monitoring refers to systems that are deemed useful in measuring clinical outcomes, but little research has been done on how these systems will impact patients' privacy. We conducted a case study in one teaching hospital in Malaysia. We investigated the physical factors that influence patients' perceived privacy with respect to a psychiatric monitoring system. The eight physical factors identified from the information system development privacy model, a comprehensive model for designing a privacy-sensitive information system, were adapted in this research. Scenario-based interviews were conducted with 25 patients in a psychiatric ward for 3 months. Psychiatric patients were able to share how physical factors influence their perception of privacy. Results show how patients responded to each of these dimensions in the context of a psychiatric behavioral monitoring system. Some subfactors under physical privacy are modified to reflect the data obtained in the interviews. We were able to capture the different physical factors that influence patient privacy.

  4. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system

    Science.gov (United States)

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-01-01

    The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  5. From the physical model to the electronic system - OMTF Trigger for CMS

    CERN Document Server

    Bluj, Michael; Byszuk, Adrian; Doroba, Krzysztof; Drabik, Pawel; Górski, Maciej; Kalinowski, A; Kierzkowski, Krzysztof; Konecki, Marcin; Miętki, Pawel; Okliński, Wojciech; Olszewski, Michal; Poźniak, Krzysztof; Zabołotny, Wojiech M; Zawistowski, Krystian; Żarnecki, Grzegorz

    2016-01-01

    The paper presents the development of the Overlap Muon Track Finder (OMTF) trigger for the CMS experiment at CERN. The transition from the data produced by the physical model to the algorithm suitable for practical implementation is shown. The paper also concentrates on the problems related to the necessity of continuous adaptation of the algorithm to the changing operating conditions of the detector

  6. Grey Box Modelling of Hydrological Systems

    DEFF Research Database (Denmark)

    Thordarson, Fannar Ørn

    of two papers where the stochastic differential equation based model is used for sewer runoff from a drainage system. A simple model is used to describe a complex rainfall-runoff process in a catchment, but the stochastic part of the system is formulated to include the increasing uncertainty when...... rainwater flows through the system, as well as describe the lower limit of the uncertainty when the flow approaches zero. The first paper demonstrates in detail the grey box model and all related transformations required to obtain a feasible model for the sewer runoff. In the last paper this model is used......The main topic of the thesis is grey box modelling of hydrologic systems, as well as formulation and assessment of their embedded uncertainties. Grey box model is a combination of a white box model, a physically-based model that is traditionally formulated using deterministic ordinary differential...

  7. Using the Model Coupling Toolkit to couple earth system models

    Science.gov (United States)

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  8. PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES

    Science.gov (United States)

    The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...

  9. Implicit Lagrangian equations and the mathematical modeling of physical systems

    NARCIS (Netherlands)

    Moreau, Luc; van der Schaft, Arjan

    2002-01-01

    We introduce a class of optimal control problems on manifolds which gives rise (via the Pontryagin maximum principle) to a class of implicit Lagrangian systems (a notion which is introduced in the paper). We apply this to the mathematical modeling of interconnected mechanical systems and mechanical

  10. Neural Network Modeling of the Lithium/Thionyl Chloride Battery System

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Jungst, R.G.; O' Gorman, C.C.; Paez, T.L.

    1998-10-29

    Battery systems have traditionally relied on extensive build and test procedures for product realization. Analytical models have been developed to diminish this reliance, but have only been partially successful in consistently predicting the performance of battery systems. The complex set of interacting physical and chemical processes within battery systems has made the development of analytical models a significant challenge. Advanced simulation tools are needed to more accurately model battery systems which will reduce the time and cost required for product realization. Sandia has initiated an advanced model-based design strategy to battery systems, beginning with the performance of lithiumhhionyl chloride cells. As an alternative approach, we have begun development of cell performance modeling using non-phenomenological models for battery systems based on artificial neural networks (ANNs). ANNs are inductive models for simulating input/output mappings with certain advantages over phenomenological models, particularly for complex systems. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. For example, ANN models are also being studied for simulating complex physical processes within the Li/SOC12 cell, such as the time and temperature dependence of the anode interracial resistance. ANNs have been shown to provide a very robust and computationally efficient simulation tool for predicting voltage and capacity output for Li/SOC12 cells under a variety of operating conditions. The ANN modeling approach should be applicable to a wide variety of battery chemistries, including rechargeable systems.

  11. PHYSICS UPDATE: The global positioning system

    Science.gov (United States)

    Walton, Alan J.; Black, Richard J.

    1999-01-01

    A hand-held global positioning system receiver displays the operator's latitude, longitude and velocity. Knowledge of GCSE-level physics will allow the basic principles of the system to be understood; knowledge of A-level physics will allow many important aspects of their implementation to be comprehended. A discussion of the system provides many simple numerical calculations relevant to school and first-year undergraduate syllabuses.

  12. A 100% renewable power system for Europe - Let the weather and physics decide!

    DEFF Research Database (Denmark)

    Greiner, Martin; Heide, Dominik; Rasmussen, Morten Grud

    The design of sustainable energy systems is no longer only the domain of politics, economics and engineering. Mathematical physics is able to contribute with its generic understanding of everything. A new modeling approach is presented and applied to design a fully renewable European power system....... This approach is based on weather data with good spatio-temporal resolution, which is first converted into wind and solar power generation and then used to derive estimates on the optimal mix between the renewable resources and the storage needs.......The design of sustainable energy systems is no longer only the domain of politics, economics and engineering. Mathematical physics is able to contribute with its generic understanding of everything. A new modeling approach is presented and applied to design a fully renewable European power system...

  13. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models

    Science.gov (United States)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  14. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.

    Science.gov (United States)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  15. The Physical Internet and Business Model Innovation

    Directory of Open Access Journals (Sweden)

    Diane Poulin

    2012-06-01

    Full Text Available Building on the analogy of data packets within the Digital Internet, the Physical Internet is a concept that dramatically transforms how physical objects are designed, manufactured, and distributed. This approach is open, efficient, and sustainable beyond traditional proprietary logistical solutions, which are often plagued by inefficiencies. The Physical Internet redefines supply chain configurations, business models, and value-creation patterns. Firms are bound to be less dependent on operational scale and scope trade-offs because they will be in a position to offer novel hybrid products and services that would otherwise destroy value. Finally, logistical chains become flexible and reconfigurable in real time, thus becoming better in tune with firm strategic choices. This article focuses on the potential impact of the Physical Internet on business model innovation, both from the perspectives of Physical-Internet enabled and enabling business models.

  16. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Tang, X.Z.; Strauss, H.R.; Sugiyama, L.E.

    1999-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of δf particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future. copyright 1999 American Institute of Physics

  17. Key issues and technical route of cyber physical distribution system

    Science.gov (United States)

    Zheng, P. X.; Chen, B.; Zheng, L. J.; Zhang, G. L.; Fan, Y. L.; Pei, T.

    2017-01-01

    Relying on the National High Technology Research and Development Program, this paper introduced the key issues in Cyber Physical Distribution System (CPDS), mainly includes: composite modelling method and interaction mechanism, system planning method, security defence technology, distributed control theory. Then on this basis, the corresponding technical route is proposed, and a more detailed research framework along with main schemes to be adopted is also presented.

  18. Analysis of different atmospheric physical parameterizations in COAWST modeling system for the Tropical Storm Nock-ten application

    DEFF Research Database (Denmark)

    Ren, Danqin; Du, Jianting; Hua, Feng

    2016-01-01

    the storm center area. As a result, using Kain–Fritsch cumulus scheme, Goddard shortwave radiation scheme and RRTM longwave radiation scheme in WRF may lead to much larger wind intensity, significant wave height, current intensity, as well as lower SST and sea surface pressure. Thus......A coupled ocean–atmosphere–wave–sediment transport modeling system was applied to study the atmosphere and ocean dynamics during Tropical Storm Nock-ten. Different atmospheric physical parameterizations in WRF model were investigated through ten groups of numerical experiments. Results...... of atmosphere, ocean wave and current features were compared with storm observations, ERA-Interim data, NOAA sea surface temperature data, AVISO current data and HYCOM data, respectively. It was found that the storm track and intensity are sensitive to the cumulus and radiation schemes in WRF, especially around...

  19. Anticipatory Cognitive Systems: a Theoretical Model

    Science.gov (United States)

    Terenzi, Graziano

    This paper deals with the problem of understanding anticipation in biological and cognitive systems. It is argued that a physical theory can be considered as biologically plausible only if it incorporates the ability to describe systems which exhibit anticipatory behaviors. The paper introduces a cognitive level description of anticipation and provides a simple theoretical characterization of anticipatory systems on this level. Specifically, a simple model of a formal anticipatory neuron and a model (i.e. the τ-mirror architecture) of an anticipatory neural network which is based on the former are introduced and discussed. The basic feature of this architecture is that a part of the network learns to represent the behavior of the other part over time, thus constructing an implicit model of its own functioning. As a consequence, the network is capable of self-representation; anticipation, on a oscopic level, is nothing but a consequence of anticipation on a microscopic level. Some learning algorithms are also discussed together with related experimental tasks and possible integrations. The outcome of the paper is a formal characterization of anticipation in cognitive systems which aims at being incorporated in a comprehensive and more general physical theory.

  20. Sizing and scaling requirements of a large-scale physical model for code validation

    International Nuclear Information System (INIS)

    Khaleel, R.; Legore, T.

    1990-01-01

    Model validation is an important consideration in application of a code for performance assessment and therefore in assessing the long-term behavior of the engineered and natural barriers of a geologic repository. Scaling considerations relevant to porous media flow are reviewed. An analysis approach is presented for determining the sizing requirements of a large-scale, hydrology physical model. The physical model will be used to validate performance assessment codes that evaluate the long-term behavior of the repository isolation system. Numerical simulation results for sizing requirements are presented for a porous medium model in which the media properties are spatially uncorrelated

  1. A Preliminary Evaluation of the GFS Physics in the Navy Global Environmental Model

    Science.gov (United States)

    Liu, M.; Langland, R.; Martini, M.; Viner, K.

    2017-12-01

    Global extended long-range weather forecast is a goal in the near future at Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). In an effort to improve the performance of the Navy Global Environmental Model (NAVGEM) operated at FNMOC, and to gain more understanding of the impact of atmospheric physics in the long-range forecast, the physics package of the Global Forecast System (GFS) of the National Centers for Environmental Prediction is being evaluated in the framework of NAVGEM. That is GFS physics being transported by NAVGEM Semi-Lagrangian Semi-Implicit advection, and update-cycled by the 4D-variational data assimilation along with the assimilated land surface data of NASA's Land Information System. The output of free long runs of 10-day GFS physics forecast in a summer and a winter season are evaluated through the comparisons with the output of NAVGEM physics long forecast, and through the validations with observations and with the European Center's analyses data. It is found that the GFS physics is able to effectively reduce some of the modeling biases of NAVGEM, especially wind speed of the troposphere and land surface temperature that is an important surface boundary condition. The bias corrections increase with forecast leads, reaching maximum at 240 hours. To further understand the relative roles of physics and dynamics in extended long-range forecast, the tendencies of physics components and advection are also calculated and analyzed to compare their forces of magnitudes in the integration of winds, temperature, and moisture. The comparisons reveal the strength and limitation of GFS physics in the overall improvement of NAVGEM prediction system.

  2. Beyond the standard model with B and K physics

    International Nuclear Information System (INIS)

    Grossman, Y

    2003-01-01

    In the first part of the talk the flavor physics input to models beyond the standard model is described. One specific example of such new physics model is given: A model with bulk fermions in a non factorizable one extra dimension. In the second part of the talk we discuss several observables that are sensitive to new physics. We explain what type of new physics can produce deviations from the standard model predictions in each of these observables

  3. Operating systems for experimental physics

    International Nuclear Information System (INIS)

    Davies, H.E.

    1976-01-01

    Modern high energy physics experiments are very dependent on the use of computers and present a fairly well defined list of technical demands on them. It is therefore possible to look at the construction of a computer operating system and to see how the design choices should be made in order to make the systems as useful as possible to physics experiments or, more practically, to look at existing operating systems to see which can most easily be used to do the jobs of rapid data acquisition and checking. In these notes, operating systems are looked at from the point of view of the informed user. Emphasis is placed on systems which are intended for single processor microcomputers of the type frequently used for data acquisition applications. The principles described are, of course, equally valid for other kinds of system. (Auth.)

  4. Towards a model for egocentric interaction with physical and virtual objects

    DEFF Research Database (Denmark)

    Pederson, Thomas; Janlert, Lars-Erik; Surie, Dipak

    2010-01-01

    Designers of mobile context-aware systems are struggling with the problem of conceptually incorporating the real world into the system design. We present a body-centric modeling framework (as opposed to device-centric) that incorporates physical and virtual objects of interest on the basis...... of proximity and human perception, framed in the context of an emerging "egocentric" interaction paradigm....

  5. Development of a mathematical model for physical disintegration of flushable consumer products in wastewater systems.

    Science.gov (United States)

    Karadagli, Fatih; McAvoy, Drew C; Rittmann, Bruce E

    2009-05-01

    The processes that flushable solid products may undergo after discharge to wastewater systems are (1) physical disintegration of solids resulting from turbulence, (2) direct dissolution of water-soluble components, (3) hydrolysis of solids to form soluble components, and (4) biodegradation of soluble and insoluble components. We develop a mathematical model for physical disintegration of flushable solid consumer products and test it with two different flushable products--product A, which has 40% water soluble-content, and product B, which has no water-soluble components. We present our modeling analysis of experimental results, from which we computed disintegration rate constants and fractional distribution coefficients for the disintegration of larger solids. The rate constants for solids of product A in units of (hour(-1)) are 0.45 for > 8-mm, 2.25 x 10(-2) for 4- to 8-mm, 0.9 x 10(-2) for 2- to 4-mm, and 1.26 x 10(-2) for 1- to 2-mm solids. The rate constants for solids of product B in units of hour(-1) are 1.8 for > 8-mm, 1.8 for 4- to 8-mm, 3.6 x 10(-1) for 2- to 4-mm, and 2.25 x 10(-3) for 1- to 2-mm solids. As indicated by the rate constants, larger solids disintegrate at a faster rate than smaller solids. In addition, product B disintegrated much faster and went mostly to the smallest size range, while product A disintegrated more slowly and was transferred to a range of intermediate solid sizes.

  6. An extensible analysable system model

    DEFF Research Database (Denmark)

    Probst, Christian W.; Hansen, Rene Rydhof

    2008-01-01

    , this does not hold for real physical systems. Approaches such as threat modelling try to target the formalisation of the real-world domain, but still are far from the rigid techniques available in security research. Many currently available approaches to assurance of critical infrastructure security...

  7. Mechatronic Systems Design Methods, Models, Concepts

    CERN Document Server

    Janschek, Klaus

    2012-01-01

    In this textbook, fundamental methods for model-based design of mechatronic systems are presented in a systematic, comprehensive form. The method framework presented here comprises domain-neutral methods for modeling and performance analysis: multi-domain modeling (energy/port/signal-based), simulation (ODE/DAE/hybrid systems), robust control methods, stochastic dynamic analysis, and quantitative evaluation of designs using system budgets. The model framework is composed of analytical dynamic models for important physical and technical domains of realization of mechatronic functions, such as multibody dynamics, digital information processing and electromechanical transducers. Building on the modeling concept of a technology-independent generic mechatronic transducer, concrete formulations for electrostatic, piezoelectric, electromagnetic, and electrodynamic transducers are presented. More than 50 fully worked out design examples clearly illustrate these methods and concepts and enable independent study of th...

  8. Evaluating performance of simplified physically based models for shallow landslide susceptibility

    Directory of Open Access Journals (Sweden)

    G. Formetta

    2016-11-01

    Full Text Available Rainfall-induced shallow landslides can lead to loss of life and significant damage to private and public properties, transportation systems, etc. Predicting locations that might be susceptible to shallow landslides is a complex task and involves many disciplines: hydrology, geotechnical science, geology, hydrogeology, geomorphology, and statistics. Two main approaches are commonly used: statistical or physically based models. Reliable model applications involve automatic parameter calibration, objective quantification of the quality of susceptibility maps, and model sensitivity analyses. This paper presents a methodology to systemically and objectively calibrate, verify, and compare different models and model performance indicators in order to identify and select the models whose behavior is the most reliable for particular case studies.The procedure was implemented in a package of models for landslide susceptibility analysis and integrated in the NewAge-JGrass hydrological model. The package includes three simplified physically based models for landslide susceptibility analysis (M1, M2, and M3 and a component for model verification. It computes eight goodness-of-fit indices by comparing pixel-by-pixel model results and measurement data. The integration of the package in NewAge-JGrass uses other components, such as geographic information system tools, to manage input–output processes, and automatic calibration algorithms to estimate model parameters. The system was applied for a case study in Calabria (Italy along the Salerno–Reggio Calabria highway, between Cosenza and Altilia. The area is extensively subject to rainfall-induced shallow landslides mainly because of its complex geology and climatology. The analysis was carried out considering all the combinations of the eight optimized indices and the three models. Parameter calibration, verification, and model performance assessment were performed by a comparison with a detailed landslide

  9. Mathematical modeling of earth's dynamical systems a primer

    CERN Document Server

    Slingerland, Rudy

    2011-01-01

    Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be f...

  10. Physical factors that influence patients’ privacy perception toward a psychiatric behavioral monitoring system: a qualitative study

    Science.gov (United States)

    Zakaria, Nasriah; Ramli, Rusyaizila

    2018-01-01

    Background Psychiatric patients have privacy concerns when it comes to technology intervention in the hospital setting. In this paper, we present scenarios for psychiatric behavioral monitoring systems to be placed in psychiatric wards to understand patients’ perception regarding privacy. Psychiatric behavioral monitoring refers to systems that are deemed useful in measuring clinical outcomes, but little research has been done on how these systems will impact patients’ privacy. Methods We conducted a case study in one teaching hospital in Malaysia. We investigated the physical factors that influence patients’ perceived privacy with respect to a psychiatric monitoring system. The eight physical factors identified from the information system development privacy model, a comprehensive model for designing a privacy-sensitive information system, were adapted in this research. Scenario-based interviews were conducted with 25 patients in a psychiatric ward for 3 months. Results Psychiatric patients were able to share how physical factors influence their perception of privacy. Results show how patients responded to each of these dimensions in the context of a psychiatric behavioral monitoring system. Conclusion Some subfactors under physical privacy are modified to reflect the data obtained in the interviews. We were able to capture the different physical factors that influence patient privacy. PMID:29343963

  11. The Livingstone Model of a Main Propulsion System

    Science.gov (United States)

    Bajwa, Anupa; Sweet, Adam; Korsmeyer, David (Technical Monitor)

    2003-01-01

    Livingstone is a discrete, propositional logic-based inference engine that has been used for diagnosis of physical systems. We present a component-based model of a Main Propulsion System (MPS) and say how it is used with Livingstone (L2) in order to implement a diagnostic system for integrated vehicle health management (IVHM) for the Propulsion IVHM Technology Experiment (PITEX). We start by discussing the process of conceptualizing such a model. We describe graphical tools that facilitated the generation of the model. The model is composed of components (which map onto physical components), connections between components and constraints. A component is specified by variables, with a set of discrete, qualitative values for each variable in its local nominal and failure modes. For each mode, the model specifies the component's behavior and transitions. We describe the MPS components' nominal and fault modes and associated Livingstone variables and data structures. Given this model, and observed external commands and observations from the system, Livingstone tracks the state of the MPS over discrete time-steps by choosing trajectories that are consistent with observations. We briefly discuss how the compiled model fits into the overall PITEX architecture. Finally we summarize our modeling experience, discuss advantages and disadvantages of our approach, and suggest enhancements to the modeling process.

  12. “PROCESS”: A systems code for fusion power plants—Part 1: Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kovari, M., E-mail: michael.kovari@ccfe.ac.uk; Kemp, R.; Lux, H.; Knight, P.; Morris, J.; Ward, D.J.

    2014-12-15

    Highlights: • PROCESS is a fusion reactor systems code. • It optimises a figure of merit subject to constraints chosen by the user. • CCFE are working to make the assumptions and equations explicit and public. • The PROCESS homepage is (www.ccfe.ac.uk/powerplants.aspx). - Abstract: PROCESS is a reactor systems code – it assesses the engineering and economic viability of a hypothetical fusion power station using simple models of all parts of a reactor system, from the basic plasma physics to the generation of electricity. It has been used for many years, but details of its operation have not been previously published. This paper describes some of its capabilities. PROCESS is usually used in optimisation mode, in which it finds a set of parameters that maximise (or minimise) a figure of merit chosen by the user, while being consistent with the inputs and the specified constraints. Because the user can apply all the physically relevant constraints, while allowing a large number of parameters to vary, it is in principle only necessary to run the code once to produce a self-consistent, physically plausible reactor model. The scope of PROCESS is very wide and goes well beyond reactor physics, including conversion of heat to electricity, buildings, and costs, but this paper describes only the plasma physics and magnetic field calculations. The capabilities of PROCESS in plasma physics are limited, as its main aim is to combine engineering, physics and economics. A model is described which shows the main plasma features of an inductive ITER scenario. Significant differences between the PROCESS results and the published scenario include the bootstrap current and loop voltage. The PROCESS models for these are being revised. Two new models for DEMO have been obtained. The first, DEMO A, is intended to be “conservative” in that it might be possible to build it using the technology of the near future. For example, since current drive technologies are not yet

  13. Laboratory Modelling of Volcano Plumbing Systems: a review

    Science.gov (United States)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to

  14. A validated physical model of greenhouse climate.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the

  15. An Integrated Cyber Security Risk Management Approach for a Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Halima Ibrahim Kure

    2018-05-01

    Full Text Available A cyber-physical system (CPS is a combination of physical system components with cyber capabilities that have a very tight interconnectivity. CPS is a widely used technology in many applications, including electric power systems, communications, and transportation, and healthcare systems. These are critical national infrastructures. Cybersecurity attack is one of the major threats for a CPS because of many reasons, including complexity and interdependencies among various system components, integration of communication, computing, and control technology. Cybersecurity attacks may lead to various risks affecting the critical infrastructure business continuity, including degradation of production and performance, unavailability of critical services, and violation of the regulation. Managing cybersecurity risks is very important to protect CPS. However, risk management is challenging due to the inherent complex and evolving nature of the CPS system and recent attack trends. This paper presents an integrated cybersecurity risk management framework to assess and manage the risks in a proactive manner. Our work follows the existing risk management practice and standard and considers risks from the stakeholder model, cyber, and physical system components along with their dependencies. The approach enables identification of critical CPS assets and assesses the impact of vulnerabilities that affect the assets. It also presents a cybersecurity attack scenario that incorporates a cascading effect of threats and vulnerabilities to the assets. The attack model helps to determine the appropriate risk levels and their corresponding mitigation process. We present a power grid system to illustrate the applicability of our work. The result suggests that risk in a CPS of a critical infrastructure depends mainly on cyber-physical attack scenarios and the context of the organization. The involved risks in the studied context are both from the technical and

  16. 1st International Conference on Machine Learning for Cyber Physical Systems and Industry 4.0

    CERN Document Server

    Beyerer, Jürgen

    2016-01-01

    The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 1-2, 2015. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.

  17. Skill assessment of the coupled physical-biogeochemical operational Mediterranean Forecasting System

    Science.gov (United States)

    Cossarini, Gianpiero; Clementi, Emanuela; Salon, Stefano; Grandi, Alessandro; Bolzon, Giorgio; Solidoro, Cosimo

    2016-04-01

    The Mediterranean Monitoring and Forecasting Centre (Med-MFC) is one of the regional production centres of the European Marine Environment Monitoring Service (CMEMS-Copernicus). Med-MFC operatively manages a suite of numerical model systems (3DVAR-NEMO-WW3 and 3DVAR-OGSTM-BFM) that provides gridded datasets of physical and biogeochemical variables for the Mediterranean marine environment with a horizontal resolution of about 6.5 km. At the present stage, the operational Med-MFC produces ten-day forecast: daily for physical parameters and bi-weekly for biogeochemical variables. The validation of the coupled model system and the estimate of the accuracy of model products are key issues to ensure reliable information to the users and the downstream services. Product quality activities at Med-MFC consist of two levels of validation and skill analysis procedures. Pre-operational qualification activities focus on testing the improvement of the quality of a new release of the model system and relays on past simulation and historical data. Then, near real time (NRT) validation activities aim at the routinely and on-line skill assessment of the model forecast and relays on the NRT available observations. Med-MFC validation framework uses both independent (i.e. Bio-Argo float data, in-situ mooring and vessel data of oxygen, nutrients and chlorophyll, moored buoys, tide-gauges and ADCP of temperature, salinity, sea level and velocity) and semi-independent data (i.e. data already used for assimilation, such as satellite chlorophyll, Satellite SLA and SST and in situ vertical profiles of temperature and salinity from XBT, Argo and Gliders) We give evidence that different variables (e.g. CMEMS-products) can be validated at different levels (i.e. at the forecast level or at the level of model consistency) and at different spatial and temporal scales. The fundamental physical parameters temperature, salinity and sea level are routinely validated on daily, weekly and quarterly base

  18. Cyber-Physical Systems Security: a Systematic Mapping Study

    OpenAIRE

    Lun, Yuriy Zacchia; D'Innocenzo, Alessandro; Malavolta, Ivano; Di Benedetto, Maria Domenica

    2016-01-01

    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds some light on how security is actually addressed when dealing with cyber-physical systems. The provided systematic map of 118 selected studies is based on, for instance, application fields, various system components, relate...

  19. Modellus: Learning Physics with Mathematical Modelling

    Science.gov (United States)

    Teodoro, Vitor

    Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations

  20. Causal modeling of secondary science students' intentions to enroll in physics

    Science.gov (United States)

    Crawley, Frank E.; Black, Carolyn B.

    The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students

  1. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future

  2. Resilient control of cyber-physical systems against intelligent attacker: a hierarchal stackelberg game approach

    Science.gov (United States)

    Yuan, Yuan; Sun, Fuchun; Liu, Huaping

    2016-07-01

    This paper is concerned with the resilient control under denial-of-service attack launched by the intelligent attacker. The resilient control system is modelled as a multi-stage hierarchical game with a corresponding hierarchy of decisions made at cyber and physical layer, respectively. Specifically, the interaction in the cyber layer between different security agents is modelled as a static infinite Stackelberg game, while in the underlying physical layer the full-information H∞ minimax control with package drops is modelled as a different Stackelberg game. Both games are solved sequentially, which is consistent with the actual situations. Finally, the proposed method is applied to the load frequency control of the power system, which demonstrates its effectiveness.

  3. Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Omur [Carnegie Mellon Univ., Pittsburgh, PA (United States); Weekrakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-10-23

    Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. With the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.

  4. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  5. Challenges to modeling the Sun-Earth System: A Workshop Summary

    Science.gov (United States)

    Spann, James F.

    2006-01-01

    This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress

  6. Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model

    Science.gov (United States)

    O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.

    2015-12-01

    Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.

  7. A closed-loop hybrid physiological model relating to subjects under physical stress.

    Science.gov (United States)

    El-Samahy, Emad; Mahfouf, Mahdi; Linkens, Derek A

    2006-11-01

    The objective of this research study is to derive a comprehensive physiological model relating to subjects under physical stress conditions. The model should describe the behaviour of the cardiovascular system, respiratory system, thermoregulation and brain activity in response to physical workload. An experimental testing rig was built which consists of recumbent high performance bicycle for inducing the physical load and a data acquisition system comprising monitors and PCs. The signals acquired and used within this study are the blood pressure, heart rate, respiration, body temperature, and EEG signals. The proposed model is based on a grey-box based modelling approach which was used because of the sufficient level of details it provides. Cardiovascular and EEG Data relating to 16 healthy subject volunteers (data from 12 subjects were used for training/validation and the data from 4 subjects were used for model testing) were collected using the Finapres and the ProComp+ monitors. For model validation, residual analysis via the computing of the confidence intervals as well as related histograms was performed. Closed-loop simulations for different subjects showed that the model can provide reliable predictions for heart rate, blood pressure, body temperature, respiration, and the EEG signals. These findings were also reinforced by the residual analyses data obtained, which suggested that the residuals were within the 90% confidence bands and that the corresponding histograms were of a normal distribution. A higher intelligent level was added to the model, based on neural networks, to extend the capabilities of the model to predict over a wide range of subjects dynamics. The elicited physiological model describing the effect of physiological stress on several physiological variables can be used to predict performance breakdown of operators in critical environments. Such a model architecture lends itself naturally to exploitation via feedback control in a 'reverse

  8. Protein Folding: Search for Basic Physical Models

    Directory of Open Access Journals (Sweden)

    Ivan Y. Torshin

    2003-01-01

    Full Text Available How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins, the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces. Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.

  9. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  10. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.

  11. Modeling Organizational Design - Applying A Formalism Model From Theoretical Physics

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2008-06-01

    Full Text Available Modern organizations are exposed to diverse external environment influences. Currently accepted concepts of organizational design take into account structure, its interaction with strategy, processes, people, etc. Organization design and planning aims to align this key organizational design variables. At the higher conceptual level, however, completely satisfactory formulation for this alignment doesn’t exist. We develop an approach originating from the application of concepts of theoretical physics to social systems. Under this approach, the allocation of organizational resources is analyzed in terms of social entropy, social free energy and social temperature. This allows us to formalize the dynamic relationship between organizational design variables. In this paper we relate this model to Galbraith's Star Model and we also suggest improvements in the procedure of the complex analytical method in organizational design.

  12. Life as physics and chemistry: A system view of biology.

    Science.gov (United States)

    Baverstock, Keith

    2013-04-01

    Cellular life can be viewed as one of many physical natural systems that extract free energy from their environments in the most efficient way, according to fundamental physical laws, and grow until limited by inherent physical constraints. Thus, it can be inferred that it is the efficiency of this process that natural selection acts upon. The consequent emphasis on metabolism, rather than replication, points to a metabolism-first origin of life with the adoption of DNA template replication as a second stage development. This order of events implies a cellular regulatory system that pre-dates the involvement of DNA and might, therefore, be based on the information acquired as peptides fold into proteins, rather than on genetic regulatory networks. Such an epigenetic cell regulatory model, the independent attractor model, has already been proposed to explain the phenomenon of radiation induced genomic instability. Here it is extended to provide an epigenetic basis for the morphological and functional diversity that evolution has yielded, based on natural selection of the most efficient free energy transduction. Empirical evidence which challenges the current genetic basis of cell and molecular biology and which supports the above proposal is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    Science.gov (United States)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  14. A physics department's role in preparing physics teachers: The Colorado learning assistant model

    Science.gov (United States)

    Otero, Valerie; Pollock, Steven; Finkelstein, Noah

    2010-11-01

    In response to substantial evidence that many U.S. students are inadequately prepared in science and mathematics, we have developed an effective and adaptable model that improves the education of all students in introductory physics and increases the numbers of talented physics majors becoming certified to teach physics. We report on the Colorado Learning Assistant model and discuss its effectiveness at a large research university. Since its inception in 2003, we have increased the pool of well-qualified K-12 physics teachers by a factor of approximately three, engaged scientists significantly in the recruiting and preparation of future teachers, and improved the introductory physics sequence so that students' learning gains are typically double the traditional average.

  15. Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms

    Science.gov (United States)

    Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria

    2012-01-01

    A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…

  16. 5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016)

    International Nuclear Information System (INIS)

    Vagenas, Elias C.; Vlachos, Dimitrios S.

    2016-01-01

    The 5th International Conference on Mathematical Modeling in Physical Sciences (IC- MSQUARE) took place at Athens, Greece, from Monday, 23"t"h of May, to Thursday, 26"t"h of May 2016. The Conference was attended by more than 130 participants and hosted about 170 oral, poster, and virtual presentations while counted more than 500 pre-registered authors. The 5"t"h IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with high level talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. (paper)

  17. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  18. The kaon factory - towards the physics of strongly interacting systems

    International Nuclear Information System (INIS)

    Vogt, Erich

    1988-01-01

    With the advent of the standard model for quarks and leptons and unified forces there are profound new questions for the physics of strongly interacting systems: the nature of the nucleon, the physics of quark confinement, fundamental symmetries governing hadron decay and the effect of quarks and gluons on nuclear behaviour. Of the new large facilities now planned to respond to these questions the kaon factory is central. It uses very intense (∼100 μA) primary proton beams (∼30 GeV) to generate intense secondary beams of various hadrons and leptons. (author)

  19. Model-Independent and Quasi-Model-Independent Search for New Physics at CDF

    OpenAIRE

    CDF Collaboration

    2007-01-01

    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with respect to the standard model prediction. A model-independent approach (Vista) considers the gross features of the data, and is sensitive to new large cross section physics. A quasi-model-independent approach (Sleuth) searches for a significant excess of events with large summed t...

  20. [Changes of soil physical properties during the conversion of cropland to agroforestry system].

    Science.gov (United States)

    Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin

    2017-01-01

    To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.

  1. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  2. Physical factors that influence patients’ privacy perception toward a psychiatric behavioral monitoring system: a qualitative study

    Directory of Open Access Journals (Sweden)

    Zakaria N

    2017-12-01

    Full Text Available Nasriah Zakaria,1,2 Rusyaizila Ramli3 1Research Chair of Health Informatics and Promotion, 2Medical Informatics and E-learning Unit, Medical Education Department, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia; 3Advanced Military Maintenance Repair and Overhaul Center (AMMROC, Abu Dhabi, UAE Background: Psychiatric patients have privacy concerns when it comes to technology intervention in the hospital setting. In this paper, we present scenarios for psychiatric behavioral monitoring systems to be placed in psychiatric wards to understand patients’ perception regarding privacy. Psychiatric behavioral monitoring refers to systems that are deemed useful in measuring clinical outcomes, but little research has been done on how these systems will impact patients’ privacy. Methods: We conducted a case study in one teaching hospital in Malaysia. We investigated the physical factors that influence patients’ perceived privacy with respect to a psychiatric monitoring system. The eight physical factors identified from the information system development privacy model, a comprehensive model for designing a privacy-sensitive information system, were adapted in this research. Scenario-based interviews were conducted with 25 patients in a psychiatric ward for 3 months. Results: Psychiatric patients were able to share how physical factors influence their perception of privacy. Results show how patients responded to each of these dimensions in the context of a psychiatric behavioral monitoring system. Conclusion: Some subfactors under physical privacy are modified to reflect the data obtained in the interviews. We were able to capture the different physical factors that influence patient privacy. Keywords: information system development (ISD, physical factor, privacy, psychiatric monitoring system

  3. Control systems: More for experimental physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-03-15

    The European Physical Society's Interdivisional Group on Experimental Physics Control Systems (EPCS) ended 1989 on an optimistic note, welcoming its 30th member institution and having substantially enlarged its range of activities.

  4. The Binary System Laboratory Activities Based on Students Mental Model

    Science.gov (United States)

    Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.

    2017-09-01

    Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.

  5. Evaluating a Model of Youth Physical Activity

    Science.gov (United States)

    Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary

    2010-01-01

    Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…

  6. From Competitive to Cooperative Resource Management for Cyber-Physical Systems

    OpenAIRE

    Lindberg, Mikael

    2014-01-01

    This thesis presents models and methods for feedback-based resource management for cyber-physical systems. Common for the scenarios considered are severe resource constraints, uncertain and time-varying conditions and the goal of enabling flexibility in systems design rather than restricting it. A brief survey on reservation-based scheduling, an important enabling technology for this thesis, is provided and shows how modern day resource reservation techniques are derived from their real-time ...

  7. Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.

    Science.gov (United States)

    Selesnick, S A; Rawling, J P; Piccinini, Gualtiero

    2017-09-01

    Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.

  8. Research on effectiveness assessment programs for physical protection system

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Yoo, Hosik; Ham, Taekyu [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    PPS (Physical Protection System) is an integrated set of procedures, installation and human resources to protect valuable assets from physical attack of potential adversaries. Since nuclear facilities or radioactive materials can be attractive targets for terrorists, PPS should be installed and maintained throughout the entire lifecycle of nuclear energy systems. One of key ingredients for effective protection is a reliable assessment procedure of the PPS capability. Due to complexity of possible threat categories and pathways, several pathway analysis programs have been developed to ease analysis or visualization. ASSESS using ASD approach runs fast and adopts a relatively simple modeling process for facility elements. But uncertainty due to assumptions used in modeling might complicate the interpretation of results. On the other hand, 2D pathway program such as TESS can utilize more self-consistent detection probability and delay time since actual pathway on 2D map is available. Also, this pathway visualization helps users understand analysis result more intuitively. But, in general, 2D pathway programs require strong computational power and careful optimization. Another possible difference between two approaches is response force deployment and RFT.

  9. Research on effectiveness assessment programs for physical protection system

    International Nuclear Information System (INIS)

    Seo, Janghoon; Yoo, Hosik; Ham, Taekyu

    2015-01-01

    PPS (Physical Protection System) is an integrated set of procedures, installation and human resources to protect valuable assets from physical attack of potential adversaries. Since nuclear facilities or radioactive materials can be attractive targets for terrorists, PPS should be installed and maintained throughout the entire lifecycle of nuclear energy systems. One of key ingredients for effective protection is a reliable assessment procedure of the PPS capability. Due to complexity of possible threat categories and pathways, several pathway analysis programs have been developed to ease analysis or visualization. ASSESS using ASD approach runs fast and adopts a relatively simple modeling process for facility elements. But uncertainty due to assumptions used in modeling might complicate the interpretation of results. On the other hand, 2D pathway program such as TESS can utilize more self-consistent detection probability and delay time since actual pathway on 2D map is available. Also, this pathway visualization helps users understand analysis result more intuitively. But, in general, 2D pathway programs require strong computational power and careful optimization. Another possible difference between two approaches is response force deployment and RFT

  10. Simplified Models for LHC New Physics Searches

    CERN Document Server

    Alves, Daniele; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Buckley, Matthew; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Chivukula, R.Sekhar; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig, Rouven; Evans, Jared A.; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto; Freitas, Ayres; Gainer, James S.; Gershtein, Yuri; Gray, Richard; Gregoire, Thomas; Gripaios, Ben; Gunion, Jack; Han, Tao; Haas, Andy; Hansson, Per; Hewett, JoAnne; Hits, Dmitry; Hubisz, Jay; Izaguirre, Eder; Kaplan, Jared; Katz, Emanuel; Kilic, Can; Kim, Hyung-Do; Kitano, Ryuichiro; Koay, Sue Ann; Ko, Pyungwon; Krohn, David; Kuflik, Eric; Lewis, Ian; Lisanti, Mariangela; Liu, Tao; Liu, Zhen; Lu, Ran; Luty, Markus; Meade, Patrick; Morrissey, David; Mrenna, Stephen; Nojiri, Mihoko; Okui, Takemichi; Padhi, Sanjay; Papucci, Michele; Park, Michael; Park, Myeonghun; Perelstein, Maxim; Peskin, Michael; Phalen, Daniel; Rehermann, Keith; Rentala, Vikram; Roy, Tuhin; Ruderman, Joshua T.; Sanz, Veronica; Schmaltz, Martin; Schnetzer, Stephen; Schuster, Philip; Schwaller, Pedro; Schwartz, Matthew D.; Schwartzman, Ariel; Shao, Jing; Shelton, Jessie; Shih, David; Shu, Jing; Silverstein, Daniel; Simmons, Elizabeth; Somalwar, Sunil; Spannowsky, Michael; Spethmann, Christian; Strassler, Matthew; Su, Shufang; Tait, Tim; Thomas, Brooks; Thomas, Scott; Toro, Natalia; Volansky, Tomer; Wacker, Jay; Waltenberger, Wolfgang; Yavin, Itay; Yu, Felix; Zhao, Yue; Zurek, Kathryn

    2012-01-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a...

  11. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    Science.gov (United States)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  12. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  13. Control systems: More for experimental physics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The European Physical Society's Interdivisional Group on Experimental Physics Control Systems (EPCS) ended 1989 on an optimistic note, welcoming its 30th member institution and having substantially enlarged its range of activities.

  14. Quantitative Models and Analysis for Reactive Systems

    DEFF Research Database (Denmark)

    Thrane, Claus

    phones and websites. Acknowledging that now more than ever, systems come in contact with the physical world, we need to revise the way we construct models and verification algorithms, to take into account the behavior of systems in the presence of approximate, or quantitative information, provided...

  15. Collective systems:physical and information exergies.

    Energy Technology Data Exchange (ETDEWEB)

    Robinett, Rush D. III (.; ); Wilson, David Gerald

    2007-04-01

    Collective systems are typically defined as a group of agents (physical and/or cyber) that work together to produce a collective behavior with a value greater than the sum of the individual parts. This amplification or synergy can be harnessed by solving an inverse problem via an information-flow/communications grid: given a desired macroscopic/collective behavior find the required microscopic/individual behavior of each agent and the required communications grid. The goal of this report is to describe the fundamental nature of the Hamiltonian function in the design of collective systems (solve the inverse problem) and the connections between and values of physical and information exergies intrinsic to collective systems. In particular, physical and information exergies are shown to be equivalent based on thermodynamics and Hamiltonian mechanics.

  16. Physics and financial economics (1776–2014): puzzles, Ising and agent-based models

    International Nuclear Information System (INIS)

    Sornette, Didier

    2014-01-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets. (key issues reviews)

  17. Model Identification for Control of Display Units in Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Andersen, Philip Hvidthøft Delff

    in a supermarket refrigeration system. The grey-box modelling approach is adopted, using stochastic differential equations to define the dynamics of the model, combining prior knowledge of the physical system with data-driven modelling. Model identification is performed using the forward selection method...... model can contribute to the extension of the control capabilities of the entire supermarket refrigeration system....

  18. Beyond Standard Model Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bellantoni, L.

    2009-11-01

    There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.

  19. Merging spatially variant physical process models under an optimized systems dynamics framework.

    Energy Technology Data Exchange (ETDEWEB)

    Cain, William O. (University of Texas at Austin, Austin, TX); Lowry, Thomas Stephen; Pierce, Suzanne A.; Tidwell, Vincent Carroll

    2007-10-01

    The complexity of water resource issues, its interconnectedness to other systems, and the involvement of competing stakeholders often overwhelm decision-makers and inhibit the creation of clear management strategies. While a range of modeling tools and procedures exist to address these problems, they tend to be case specific and generally emphasize either a quantitative and overly analytic approach or present a qualitative dialogue-based approach lacking the ability to fully explore consequences of different policy decisions. The integration of these two approaches is needed to drive toward final decisions and engender effective outcomes. Given these limitations, the Computer Assisted Dispute Resolution system (CADRe) was developed to aid in stakeholder inclusive resource planning. This modeling and negotiation system uniquely addresses resource concerns by developing a spatially varying system dynamics model as well as innovative global optimization search techniques to maximize outcomes from participatory dialogues. Ultimately, the core system architecture of CADRe also serves as the cornerstone upon which key scientific innovation and challenges can be addressed.

  20. Topos models for physics and topos theory

    International Nuclear Information System (INIS)

    Wolters, Sander

    2014-01-01

    What is the role of topos theory in the topos models for quantum theory as used by Isham, Butterfield, Döring, Heunen, Landsman, Spitters, and others? In other words, what is the interplay between physical motivation for the models and the mathematical framework used in these models? Concretely, we show that the presheaf topos model of Butterfield, Isham, and Döring resembles classical physics when viewed from the internal language of the presheaf topos, similar to the copresheaf topos model of Heunen, Landsman, and Spitters. Both the presheaf and copresheaf models provide a “quantum logic” in the form of a complete Heyting algebra. Although these algebras are natural from a topos theoretic stance, we seek a physical interpretation for the logical operations. Finally, we investigate dynamics. In particular, we describe how an automorphism on the operator algebra induces a homeomorphism (or isomorphism of locales) on the associated state spaces of the topos models, and how elementary propositions and truth values transform under the action of this homeomorphism. Also with dynamics the focus is on the internal perspective of the topos

  1. Residential Demand Response Behaviour Modeling applied to Cyber-physical Intrusion Detection

    DEFF Research Database (Denmark)

    Heussen, Kai; Tyge, Emil; Kosek, Anna Magdalena

    2017-01-01

    by a mix of physical system parameters, exogenous influences, user behaviour and preferences, which can be characterized by unstructured models such as a time-varying finite impulse response. In this study, which is based on field data, it is shown how this characteristic response behaviours can...

  2. A distributed atomic physics database and modeling system for plasma spectroscopy

    International Nuclear Information System (INIS)

    Nash, J.K.; Liedahl, D.; Chen, M.H.; Iglesias, C.A.; Lee, R.W.; Salter, J.M.

    1995-08-01

    We are undertaking to develop a set of computational capabilities which will facilitate the access, manipulation, and understanding of atomic data in calculations of x-ray spectral modeling. In this present limited description we will emphasize the objectives for this work, the design philosophy, and aspects of the atomic database, as a more complete description of this work is available. The project is referred to as the Plasma Spectroscopy Initiative; the computing environment is called PSI, or the ''PSI shell'' since the primary interface resembles a UNIX shell window. The working group consists of researchers in the fields of x-ray plasma spectroscopy, atomic physics, plasma diagnostics, line shape theory, astrophysics, and computer science. To date, our focus has been to develop the software foundations, including the atomic physics database, and to apply the existing capabilities to a range of working problems. These problems have been chosen in part to exercise the overall design and implementation of the shell. For successful implementation the final design must have great flexibility since our goal is not simply to satisfy our interests but to vide a tool of general use to the community

  3. Metrological Array of Cyber-Physical Systems. Part 3. Smart Energy-Efficient House

    Directory of Open Access Journals (Sweden)

    Ihor HNES

    2015-04-01

    Full Text Available Smart energy-efficient houses as the components of Cyber-Physical Systems are developed intensively. The main stream of progress consists in the research of Smart houses’ energy supply. By this option the mentioned objects are advancing from passive houses through net-zero energy houses to active houses that are capable of sharing their own accumulated energy with other components of Cyber-Physical Systems. We consider the problems of studying the metrology models and measuring the heat dissipation in such houses trying to apply network and software achievements as well as the new types of devices with improved characteristics.

  4. Security analysis of socio-technical physical systems

    NARCIS (Netherlands)

    Lenzini, Gabriele; Mauw, Sjouke; Ouchani, Samir

    2015-01-01

    Recent initiatives that evaluate the security of physical systems with objects as assets and people as agents – here called socio-technical physical systems – have limitations: their agent behavior is too simple, they just estimate feasibility and not the likelihood of attacks, or they do estimate

  5. Physical and numerical modelling of low mach number compressible flows

    International Nuclear Information System (INIS)

    Paillerre, H.; Clerc, S.; Dabbene, F.; Cueto, O.

    1999-01-01

    This article reviews various physical models that may be used to describe compressible flow at low Mach numbers, as well as the numerical methods developed at DRN to discretize the different systems of equations. A selection of thermal-hydraulic applications illustrate the need to take into account compressibility and multidimensional effects as well as variable flow properties. (authors)

  6. Predictive sensor based x-ray calibration using a physical model

    International Nuclear Information System (INIS)

    Fuente, Matias de la; Lutz, Peter; Wirtz, Dieter C.; Radermacher, Klaus

    2007-01-01

    Many computer assisted surgery systems are based on intraoperative x-ray images. To achieve reliable and accurate results these images have to be calibrated concerning geometric distortions, which can be distinguished between constant distortions and distortions caused by magnetic fields. Instead of using an intraoperative calibration phantom that has to be visible within each image resulting in overlaying markers, the presented approach directly takes advantage of the physical background of the distortions. Based on a computed physical model of an image intensifier and a magnetic field sensor, an online compensation of distortions can be achieved without the need of an intraoperative calibration phantom. The model has to be adapted once to each specific image intensifier through calibration, which is based on an optimization algorithm systematically altering the physical model parameters, until a minimal error is reached. Once calibrated, the model is able to predict the distortions caused by the measured magnetic field vector and build an appropriate dewarping function. The time needed for model calibration is not yet optimized and takes up to 4 h on a 3 GHz CPU. In contrast, the time needed for distortion correction is less than 1 s and therefore absolutely acceptable for intraoperative use. First evaluations showed that by using the model based dewarping algorithm the distortions of an XRII with a 21 cm FOV could be significantly reduced. The model was able to predict and compensate distortions by approximately 80% to a remaining error of 0.45 mm (max) (0.19 mm rms)

  7. Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System

    Science.gov (United States)

    Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.

    2017-12-01

    The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS

  8. Physics of Coupled CME and Flare Systems

    Science.gov (United States)

    2016-12-21

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0162 TR-2016-0162 PHYSICS OF COUPLED CME AND FLARE SYSTEMS K. S. Balasubramaniam, et al. 21 December 2016 Final...30 Sep 2016 4. TITLE AND SUBTITLE Physics of Coupled CME and Flare Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F...objectives for this task were: (i) derive measureable physical properties and discernible structural circumstances in solar active regions that

  9. Modeling Supermarket Refrigeration Systems for Supervisory Control in Smart Grid

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    A modular modeling approach of supermarket refrigeration systems (SRS) which is appropriate for smart grid control purposes is presented in this paper. Modeling and identification are performed by just knowing the system configuration and measured data disregarding the physical details. So...

  10. The optical model in atomic physics

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1978-01-01

    The optical model for electron scattering on atoms has quite a short history in comparison with nuclear physics. The main reason for this is that there were insufficient data. Angular distribution for elastic and some inelastic scattering have now been measured for the atoms which exist in gaseous form at reasonable temperatures, inert gases, hydrogen, alkalies and mercury being the main ones out in. The author shows that the optical model makes sense in atomic physics by considering its theory and recent history. (orig./AH) [de

  11. Users guide for evaluating alternative fixed-site physical protection systems using ''FESEM''

    International Nuclear Information System (INIS)

    Chapman, L.D.; Kinemond, G.A.; Sasser, D.W.

    1977-11-01

    The objective of this manual is to provide a guide for evaluating physical protection systems using the Forcible Entry Safeguards Effectiveness Model (FESEM). It is intended for use by personnel involved in evaluating fixed-site security systems, or managers involved in making decisions related to the modification of existing protection systems or the implementation of new systems. This users' guide has been written for an audience which has some previous computer experience

  12. A hierarchy for modeling high speed propulsion systems

    Science.gov (United States)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  13. The physics of living systems

    CERN Document Server

    Cleri, Fabrizio

    2016-01-01

    In this book, physics in its many aspects (thermodynamics, mechanics, electricity, fluid dynamics) is the guiding light on a fascinating journey through biological systems, providing ideas, examples and stimulating reflections for undergraduate physics, chemistry and life-science students, as well as for anyone interested in the frontiers between physics and biology. Rather than introducing a lot of new information, it encourages young students to use their recently acquired knowledge to start seeing the physics behind the biology. As an undergraduate textbook in introductory biophysics, it includes the necessary background and tools, including exercises and appendices, to form a progressive course. In this case, the chapters can be used in the order proposed, possibly split between two semesters. The book is also an absorbing read for researchers in the life sciences who wish to refresh or go deeper into the physics concepts gleaned in their early years of scientific training. Less physics-oriented readers m...

  14. Working group report: Flavor physics and model building

    Indian Academy of Sciences (India)

    cO Indian Academy of Sciences. Vol. ... This is the report of flavor physics and model building working group at ... those in model building have been primarily devoted to neutrino physics. ..... [12] Andrei Gritsan, ICHEP 2004, Beijing, China.

  15. Hamiltonian Noether theorem for gauge systems and two time physics

    International Nuclear Information System (INIS)

    Villanueva, V M; Nieto, J A; Ruiz, L; Silvas, J

    2005-01-01

    The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al model and, with special emphasis, to two time physics

  16. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    Energy Technology Data Exchange (ETDEWEB)

    Zabaras, Nicolas J. [Cornell Univ., Ithaca, NY (United States)

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  17. Development of CANDU prototype fuel handling simulator - concept and some simulation results with physical network modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.P. [Candu Energy Inc, Mississauga, Ontario (Canada)

    2012-07-01

    This paper reviewed the need for a fuel handling(FH) simulator in training operators and maintenance personnel, in FH design enhancement based on operating experience (OPEX), and the potential application of Virtual Reality (VR) based simulation technology. Modeling and simulation of the fuelling machine (FM) magazine drive plant (one of the CANDU FH sub-systems) was described. The work established the feasibility of modeling and simulating a physical FH drive system using the physical network approach and computer software tools. The concept and approach can be applied similarly to create the other FH subsystem plant models, which are expected to be integrated with control modules to develop a master FH control model and further to create a virtual FH system. (author)

  18. Development of CANDU prototype fuel handling simulator - concept and some simulation results with physical network modeling approach

    International Nuclear Information System (INIS)

    Xu, X.P.

    2012-01-01

    This paper reviewed the need for a fuel handling(FH) simulator in training operators and maintenance personnel, in FH design enhancement based on operating experience (OPEX), and the potential application of Virtual Reality (VR) based simulation technology. Modeling and simulation of the fuelling machine (FM) magazine drive plant (one of the CANDU FH sub-systems) was described. The work established the feasibility of modeling and simulating a physical FH drive system using the physical network approach and computer software tools. The concept and approach can be applied similarly to create the other FH subsystem plant models, which are expected to be integrated with control modules to develop a master FH control model and further to create a virtual FH system. (author)

  19. REPFLO model evaluation, physical and numerical consistency

    International Nuclear Information System (INIS)

    Wilson, R.N.; Holland, D.H.

    1978-11-01

    This report contains a description of some suggested changes and an evaluation of the REPFLO computer code, which models ground-water flow and nuclear-waste migration in and about a nuclear-waste repository. The discussion contained in the main body of the report is supplemented by a flow chart, presented in the Appendix of this report. The suggested changes are of four kinds: (1) technical changes to make the code compatible with a wider variety of digital computer systems; (2) changes to fill gaps in the computer code, due to missing proprietary subroutines; (3) changes to (a) correct programming errors, (b) correct logical flaws, and (c) remove unnecessary complexity; and (4) changes in the computer code logical structure to make REPFLO a more viable model from the physical point of view

  20. Optimizing a physical security configuration using a highly detailed simulation model

    NARCIS (Netherlands)

    Marechal, T.M.A.; Smith, A.E.; Ustun, V.; Smith, J.S.; Lefeber, A.A.J.; Badiru, A.B.; Thomas, M.U.

    2009-01-01

    This research is focused on using a highly detailed simulation model to create a physical security system to prevent intrusions in a building. Security consists of guards and security cameras. The problem is represented as a binary optimization problem. A new heuristic is proposed to do the security

  1. Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation of periodic solutions

    OpenAIRE

    Karkar , Sami; Vergez , Christophe; Cochelin , Bruno

    2012-01-01

    International audience; We propose a new approach based on numerical continuation and bifurcation analysis for the study of physical models of instruments that produce self- sustained oscillation. Numerical continuation consists in following how a given solution of a set of equations is modified when one (or several) parameter of these equations are allowed to vary. Several physical models (clarinet, saxophone, and violin) are formulated as nonlinear dynamical systems, whose periodic solution...

  2. Morphodynamic Modeling Using The SToRM Computational System

    Science.gov (United States)

    Simoes, F.

    2016-12-01

    The framework of the work presented here is the open source SToRM (System for Transport and River Modeling) eco-hydraulics modeling system, which is one of the models released with the iRIC hydraulic modeling graphical software package (http://i-ric.org/). SToRM has been applied to the simulation of various complex environmental problems, including natural waterways, steep channels with regime transition, and rapidly varying flood flows with wetting and drying fronts. In its previous version, however, channel bed was treated as static and the ability of simulating sediment transport rates or bed deformation was not included. The work presented here reports SToRM's newly developed extensions to expand the system's capability to calculate morphological changes in alluvial river systems. The sediment transport module of SToRM has been developed based on the general recognition that meaningful advances depend on physically solid formulations and robust and accurate numerical solution methods. The basic concepts of mass and momentum conservation are used, where the feedback mechanisms between the flow of water, the sediment in transport, and the bed changes are directly incorporated in the governing equations used in the mathematical model. This is accomplished via a non-capacity transport formulation based on the work of Cao et al. [Z. Cao et al., "Non-capacity or capacity model for fluvial sediment transport," Water Management, 165(WM4):193-211, 2012], where the governing equations are augmented with source/sink terms due to water-sediment interaction. The same unsteady, shock-capturing numerical schemes originally used in SToRM were adapted to the new physics, using a control volume formulation over unstructured computational grids. The presentation will include a brief overview of these methodologies, and the result of applications of the model to a number of relevant physical test cases with movable bed, where computational results are compared to experimental data.

  3. Security Games for Cyber-Physical Systems

    DEFF Research Database (Denmark)

    Vigo, Roberto; Bruni, Alessandro; Yuksel, Ender

    2013-01-01

    The development of quantitative security analyses that consider both active attackers and reactive defenders is a main challenge in the design of trustworthy Cyber-Physical Systems. We propose a game-theoretic approach where it is natural to model attacker’s and defender’s actions explicitly......, associating costs to attacks and countermeasures. Cost considerations enable to contrast different strategies on the basis of their effectiveness and efficiency, paving the way to a multi-objective notion of optimality. Moreover, the framework allows expressing the probabilistic nature of the environment...... and of the attack detection process. Finally, a solver is presented to compute strategies and their costs, resorting to a recent combination of strategy iteration with linear programming....

  4. PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters

    International Nuclear Information System (INIS)

    Abdin, Z.; Webb, C.J.; Gray, E.MacA.

    2016-01-01

    An advanced PEM fuel cell mathematical model is described and realised in four ancillaries in the Matlab–Simulink environment. Where possible, the model is based on parameters with direct physical meaning, with the aim of going beyond empirically describing the characteristics of the fuel cell. The model can therefore be used to predict enhanced performance owing to, for instance, improved electrode materials, and to relate changes in the measured performance to internal changes affecting influential physical parameters. Some simplifying assumptions make the model fairly light in computational demand and therefore amenable to extension to simulate an entire fuel-cell stack as part of an energy system. Despite these assumptions, the model emulates experimental data well, especially at high current density. The influences of pressure, temperature, humidification and reactant partial pressure on cell performance are explored. The dominating effect of membrane hydration is clearly revealed. - Highlights: • Model based on physical parameters where possible. • Effective binary diffusion modelled in detail on an atomistic basis. • The dominating effect of membrane hydration is clearly revealed. • Documented Simulink model so others can use it. • Conceived as a research tool for exploring enhanced fuel cell performance and diagnosing problems.

  5. Using Virtual Pets to Promote Physical Activity in Children: An Application of the Youth Physical Activity Promotion Model.

    Science.gov (United States)

    Ahn, Sun Joo Grace; Johnsen, Kyle; Robertson, Tom; Moore, James; Brown, Scott; Marable, Amanda; Basu, Aryabrata

    2015-01-01

    A virtual pet was developed based on the framework of the youth physical activity promotion model and tested as a vehicle for promoting physical activity in children. Children in the treatment group interacted with the virtual pet for three days, setting physical activity goals and teaching tricks to the virtual pet when their goals were met. The virtual pet became more fit and learned more sophisticated tricks as the children achieved activity goals. Children in the control group interacted with a computer system presenting equivalent features but without the virtual pet. Physical activity and goal attainment were evaluated using activity monitors. Results indicated that children in the treatment group engaged in 1.09 more hours of daily physical activity (156% more) than did those in the control group. Physical activity self-efficacy and beliefs served as mediators driving this increase in activity. Children that interacted with the virtual pet also expressed higher intentions than children in the control group to continue physical activity in the future. Theoretical and practical potentials of using a virtual pet to systematically promote physical activity in children are discussed.

  6. New models in VERONA 7.0 system

    Energy Technology Data Exchange (ETDEWEB)

    Pos, Istvan; Kalya, Zoltan; Parko, Tamas [Paks Nuclear Power Plant Ltd, Paks (Hungary); Patai-Szabo, Sandor [TS Enercon Ltd., Budapest (Hungary)

    2016-09-15

    Nowadays the installation of a new modernized VERONA core monitoring system (version V7.0) is in process at the NPP Paks. The most important steps of the current improvements are as follows: complete replacement of the hardware and the local area network; application of a new operating system and ''virtual machine'' (VM) technology; implementation of a new human-system interface; and last but not least, introduction of improved reactor physics calculations. Basic novelty of the modernized core analysis is the application of general purpose graphical processing units (GPGPU) in the on-line core-follow module. This new technology has allowed of performing the real-time node-wise core analysis by standard Paks NPP core design codes HELIOS/C-PORCA. The present paper gives a brief overview of the system version (V7.0), focusing to the models of reactor physics and results of validation. Main characteristics of new approaches of the modified on-line reactor physics calculations are also described.

  7. The Community WRF-Hydro Modeling System Version 4 Updates: Merging Toward Capabilities of the National Water Model

    Science.gov (United States)

    McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.

    2017-12-01

    The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.

  8. A deterministic combination of numerical and physical models for coastal waves

    DEFF Research Database (Denmark)

    Zhang, Haiwen

    2006-01-01

    of numerical and physical modelling hence provides an attractive alternative to the use of either tool on it's own. The goal of this project has been to develop a deterministically combined numerical/physical model where the physical wave tank is enclosed in a much larger computational domain, and the two......Numerical and physical modelling are the two main tools available for predicting the influence of water waves on coastlines and structures placed in the near-shore environment. Numerical models can cover large areas at the correct scale, but are limited in their ability to capture strong...... nonlinearities, wave breaking, splash, mixing, and other such complicated physics. Physical models naturally include the real physics (at the model scale), but are limited by the physical size of the facility and must contend with the fact that different physical effects scale differently. An integrated use...

  9. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  10. Physical model of the contact resistivity of metal-graphene junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jiménez, David [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-04-28

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

  11. Physical model of the contact resistivity of metal-graphene junctions

    International Nuclear Information System (INIS)

    Chaves, Ferney A.; Jiménez, David; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems

  12. Robust Building Energy Load Forecasting Using Physically-Based Kernel Models

    Directory of Open Access Journals (Sweden)

    Anand Krishnan Prakash

    2018-04-01

    Full Text Available Robust and accurate building energy load forecasting is important for helping building managers and utilities to plan, budget, and strategize energy resources in advance. With recent prevalent adoption of smart-meters in buildings, a significant amount of building energy consumption data became available. Many studies have developed physics-based white box models and data-driven black box models to predict building energy consumption; however, they require extensive prior knowledge about building system, need a large set of training data, or lack robustness to different forecasting scenarios. In this paper, we introduce a new building energy forecasting method based on Gaussian Process Regression (GPR that incorporates physical insights about load data characteristics to improve accuracy while reducing training requirements. The GPR is a non-parametric regression method that models the data as a joint Gaussian distribution with mean and covariance functions and forecast using the Bayesian updating. We model the covariance function of the GPR to reflect the data patterns in different forecasting horizon scenarios, as prior knowledge. Our method takes advantage of the modeling flexibility and computational efficiency of the GPR while benefiting from the physical insights to further improve the training efficiency and accuracy. We evaluate our method with three field datasets from two university campuses (Carnegie Mellon University and Stanford University for both short- and long-term load forecasting. The results show that our method performs more accurately, especially when the training dataset is small, compared to other state-of-the-art forecasting models (up to 2.95 times smaller prediction error.

  13. A New Physical Protection System Design and Evaluation Process

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Kim, Myungsu; Bae, Yeongkyoung; Na, Janghwan [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    International Atomic Energy Agency(IAEA) had established security-related department and has been strengthening security measures against possible sabotage. IAEA enforces the recommendations for the physical protection of NPPs in the INFCIRC/ 225/Rev.5 to the member states and U.S. NRC also enforces the similar requirements in 10 CFR 73.55. Thus, in order to let Korean NPPs meet the new requirements in INFCIRC/225/Rev.5 or U.S. NRC requirements, Korea nuclear licensee should develop or establish appropriate physical protection system (PPS) design methods for the physical protection of the operating NPPs and new NPPs. KHNP is doing the project of 'Development of APR1400 Physical Protection System Design (2012- 2015, KHNP/KAERI /KEPCO E-C)'. This paper describes overview of a physical protection system (PPS) design and evaluation for an advanced nuclear power plant. It found that a new physical protection system (PPS)design and evaluation. KHNP is doing the project of Physical Protection System design according to U.S. NRC requirements and IAEA requirements in INFCIRC /225 /Rev.5 and will complete by 7.31, 2015 for development of APR1400 Physical Protection System. After completing this project, the results of project are expected to apply new NPPs.

  14. Cyber physical system based on resilient ICT

    Science.gov (United States)

    Iwatsuki, Katsumi

    2016-02-01

    While development of science and technology has built up the sophisticated civilized society, it has also resulted in quite a few disadvantages in global environment and human society. The common recognition has been increasingly shared worldwide on sustainable development society attaching greater importance to the symbiotic relationship with nature and social ethics. After the East Japan Great Earthquake, it is indispensable for sustainable social development to enhance capacity of resistance and restoration of society against natural disaster, so called "resilient society". Our society consists of various Cyber Physical Systems (CPSs) that make up the physical systems by fusing with an Information Communication Technology (ICT). We describe the proposed structure of CPS in order to realize resilient society. The configuration of resilient CPS consisting of ICT and physical system is discussed to introduce "autonomous, distributed, and cooperative" structure, where subsystems of ICT and physical system are simultaneously coordinated and cooperated with Business Continuity Planning (BCP) engine, respectively. We show the disaster response information system and energy network as examples of BCP engine and resilient CPS, respectively. We also propose the structure and key technology of resilient ICT.

  15. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L. [Princeton Univ., NJ (United States); Dufour, Carolina [Princeton Univ., NJ (United States); Rodgers, Keith B. [Princeton Univ., NJ (United States)

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  16. PREFACE: 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015)

    Science.gov (United States)

    Vlachos, Dimitrios; Vagenas, Elias C.

    2015-09-01

    The 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place in Mykonos, Greece, from Friday 5th June to Monday 8th June 2015. The Conference was attended by more than 150 participants and hosted about 200 oral, poster, and virtual presentations. There were more than 600 pre-registered authors. The 4th IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather intense as after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with a high quality of talks creating an innovative and productive scientific environment for all attendees. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  17. HSP v2: Haptic Signal Processing with Extensions for Physical Modeling

    DEFF Research Database (Denmark)

    Overholt, Daniel; Kontogeorgakopoulos, Alexandros; Berdahl, Edgar

    2010-01-01

    The Haptic Signal Processing (HSP) platform aims to enable musicians to easily design and perform with digital haptic musical instruments [1]. In this paper, we present some new objects introduced in version v2 for modeling of musical dynamical systems such as resonators and vibrating strings. To....... To our knowledge, this is the first time that these diverse physical modeling elements have all been made available for a modular, real-time haptics platform....

  18. Physical and numerical modeling of Joule-heated melters

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.

  19. Physical and numerical modeling of Joule-heated melters

    International Nuclear Information System (INIS)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs

  20. Data-driven modelling of LTI systems using symbolic regression

    NARCIS (Netherlands)

    Khandelwal, D.; Toth, R.; Van den Hof, P.M.J.

    2017-01-01

    The aim of this project is to automate the task of data-driven identification of dynamical systems. The underlying goal is to develop an identification tool that models a physical system without distinguishing between classes of systems such as linear, nonlinear or possibly even hybrid systems. Such

  1. Modelling Mathematical Reasoning in Physics Education

    Science.gov (United States)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche

    2012-04-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

  2. A Structural Equation Model of Expertise in College Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Carr, Martha

    2009-01-01

    A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…

  3. A Structural Equation Model of Conceptual Change in Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  4. Teaching Einsteinian Physics at Schools: Part 2, Models and Analogies for Quantum Physics

    Science.gov (United States)

    Kaur, Tejinder; Blair, David; Moschilla, John; Zadnik, Marjan

    2017-01-01

    The Einstein-First project approaches the teaching of Einsteinian physics through the use of physical models and analogies. This paper presents an approach to the teaching of quantum physics which begins by emphasising the particle-nature of light through the use of toy projectiles to represent photons. This allows key concepts including the…

  5. The Physics of transmutation systems : system capabilities and performances

    International Nuclear Information System (INIS)

    Finck, P. J.

    2002-01-01

    This document is complementary to a document produced by Prof. Salvatores on ''The Physics of Transmutation in Critical or Subcritical Reactors and the Impact on the Fuel Cycle''. In that document, Salvatores describes the fundamental of transmutation, through basic physics properties and general parametric studies. In the present document we try to go one step further towards practical implementation (while recognizing that the practical issues such as technology development and demonstration, and economics, can only be mentioned in a very superficial manner). Section 1 briefly overviews the possible objectives of transmutation systems, and links these different objectives to possible technological paths. It also describes the overall constraints which have to be considered when developing and implementing transmutation systems. In section 2 we briefly overview the technological constraints which need to be accounted for when designing transmutation systems. In section 3 we attempt to provide a simplified classification of transmutation systems in order to clarify later comparisons. It compares heterogeneous and homogeneous recycle strategies, and single and multi-tier systems. Section 4 presents case analyses for assessing the transmutation performance of various individual systems, starting with LWR's ((1) generic results; (2) multirecycle of plutonium; (3) an alternative: transmutation based on a Thorium fuel cycle), followed by Gas-Cooled Reactors (with an emphasis on the ''deep burn'' approach), and followed by Fast Reactors and Accelerator Driven systems ((1) generic results; (2) homogeneous recycle of transuranics; (3) practical limit between Fast Reactors and Accelerator Driven Systems) Section 5 summarizes recent results on integrated system performances. It focuses first on interface effects between the two elements of a dual tier system, and then summarizes the major lessons learned from recent global physics studies

  6. Energy and enthalpy distribution functions for a few physical systems.

    Science.gov (United States)

    Wu, K L; Wei, J H; Lai, S K; Okabe, Y

    2007-08-02

    The present work is devoted to extracting the energy or enthalpy distribution function of a physical system from the moments of the distribution using the maximum entropy method. This distribution theory has the salient traits that it utilizes only the experimental thermodynamic data. The calculated distribution functions provide invaluable insight into the state or phase behavior of the physical systems under study. As concrete evidence, we demonstrate the elegance of the distribution theory by studying first a test case of a two-dimensional six-state Potts model for which simulation results are available for comparison, then the biphasic behavior of the binary alloy Na-K whose excess heat capacity, experimentally observed to fall in a narrow temperature range, has yet to be clarified theoretically, and finally, the thermally induced state behavior of a collection of 16 proteins.

  7. Challenges in Modeling the Sun-Earth System

    Science.gov (United States)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects

  8. Accumulation of Domain-Specific Physical Inactivity and Presence of Hypertension in Brazilian Public Healthcare System.

    Science.gov (United States)

    Turi, Bruna Camilo; Codogno, Jamile S; Fernandes, Romulo A; Sui, Xuemei; Lavie, Carl J; Blair, Steven N; Monteiro, Henrique Luiz

    2015-11-01

    Hypertension is one of the most common noncommunicable diseases worldwide, and physical inactivity is a risk factor predisposing to its occurrence and complications. However, it is still unclear the association between physical inactivity domains and hypertension, especially in public healthcare systems. Thus, this study aimed to investigate the association between physical inactivity aggregation in different domains and prevalence of hypertension among users of Brazilian public health system. 963 participants composed the sample. Subjects were divided into quartiles groups according to 3 different domains of physical activity (occupational; physical exercises; and leisure-time and transportation). Hypertension was based on physician diagnosis. Physical inactivity in occupational domain was significantly associated with higher prevalence of hypertension (OR = 1.52 [1.05 to 2.21]). The same pattern occurred for physical inactivity in leisure-time (OR = 1.63 [1.11 to 2.39]) and aggregation of physical inactivity in 3 domains (OR = 2.46 [1.14 to 5.32]). However, the multivariate-adjusted model showed significant association between hypertension and physical inactivity in 3 domains (OR = 2.57 [1.14 to 5.79]). The results suggest an unequal prevalence of hypertension according to physical inactivity across different domains and increasing the promotion of physical activity in the healthcare system is needed.

  9. Physical models for high burnup fuel

    International Nuclear Information System (INIS)

    Kanyukova, V.; Khoruzhii, O.; Likhanskii, V.; Solodovnikov, G.; Sorokin, A.

    2003-01-01

    In this paper some models of processes in high burnup fuel developed in Src of Russia Troitsk Institute for Innovation and Fusion Research are presented. The emphasis is on the description of the degradation of the fuel heat conductivity, radial profiles of the burnup and the plutonium accumulation, restructuring of the pellet rim, mechanical pellet-cladding interaction. The results demonstrate the possibility of rather accurate description of the behaviour of the fuel of high burnup on the base of simplified models in frame of the fuel performance code if the models are physically ground. The development of such models requires the performance of the detailed physical analysis to serve as a test for a correct choice of allowable simplifications. This approach was applied in the SRC of Russia TRINITI to develop a set of models for the WWER fuel resulting in high reliability of predictions in simulation of the high burnup fuel

  10. Technological sequence of creating components of the training system of the future officers to the management of physical training

    Directory of Open Access Journals (Sweden)

    Olkhovy O.M.

    2012-09-01

    Full Text Available The goal is to determine constructive ways of sequence of constructing components of the training system of the future officers to carry out official questions of managing the physical training in the process of the further military career. The structural logic circuit of the interconnections stages of optimum cycle management and technological sequence of constructing the components of the training system of the future officers to the management of physical training, which provides: definition of requirements to the typical problems of professional activities on the issues of the leadership, organization and conducting of physical training, the creation of the phased system model cadets training, training of the curriculum discipline ″Physical education, special physical training and sport″; model creation and definition of criteria of the integral evaluation of the readiness of the future officers to the management of physical training was determined through the analysis more than thirty documentary and scientific literature.

  11. Physically Inspired Models for the Synthesis of Stiff Strings with Dispersive Waveguides

    Directory of Open Access Journals (Sweden)

    Testa I

    2004-01-01

    Full Text Available We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices, the eigenfrequencies are determined and their dependency is discussed for the clamped, hinged, and intermediate cases. On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Knowing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dispersive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fundamental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evaluated.

  12. An Integrated Simulation Module for Cyber-Physical Automation Systems

    Directory of Open Access Journals (Sweden)

    Francesco Ferracuti

    2016-05-01

    Full Text Available The integration of Wireless Sensors Networks (WSNs into Cyber Physical Systems (CPSs is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA, a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called “GILOO” (Graphical Integration of Labview and cOOja. It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA, etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new “Advanced Sky GUI” have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been

  13. An Integrated Simulation Module for Cyber-Physical Automation Systems.

    Science.gov (United States)

    Ferracuti, Francesco; Freddi, Alessandro; Monteriù, Andrea; Prist, Mariorosario

    2016-05-05

    The integration of Wireless Sensors Networks (WSNs) into Cyber Physical Systems (CPSs) is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA), a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called "GILOO" (Graphical Integration of Labview and cOOja). It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA), etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new "Advanced Sky GUI" have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been applied to a smart home

  14. Modelling and Verifying Communication Failure of Hybrid Systems in HCSP

    DEFF Research Database (Denmark)

    Wang, Shuling; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    Hybrid systems are dynamic systems with interacting discrete computation and continuous physical processes. They have become ubiquitous in our daily life, e.g. automotive, aerospace and medical systems, and in particular, many of them are safety-critical. For a safety-critical hybrid system......, in the presence of communication failure, the expected control from the controller will get lost and as a consequence the physical process cannot behave as expected. In this paper, we mainly consider the communication failure caused by the non-engagement of one party in communication action, i.......e. the communication itself fails to occur. To address this issue, this paper proposes a formal framework by extending HCSP, a formal modeling language for hybrid systems, for modeling and verifying hybrid systems in the absence of receiving messages due to communication failure. We present two inference systems...

  15. State vector reduction - 2: Elements of physical reality, nonlocality and stochasticity in relativistic dynamical reduction models

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Pearle, P.

    1991-02-01

    The problem of getting a relativistic generalization of the CSL dynamical reduction model, which has been presented in part I, is discussed. In so doing we have the opportunity to introduce the idea of a stochastically invariant theory. The theoretical model we present, that satisfies this kind of invariance requirement, offers us the possibility to reconsider, from a new point of view, some conceptually relevant issues such as nonlocality, the legitimacy of attributing elements of physical reality to physical systems and the problem of establishing causal relations between physical events. (author). Refs, 3 figs

  16. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  17. Demonstrating the value of larger ensembles in forecasting physical systems

    Directory of Open Access Journals (Sweden)

    Reason L. Machete

    2016-12-01

    Full Text Available Ensemble simulation propagates a collection of initial states forward in time in a Monte Carlo fashion. Depending on the fidelity of the model and the properties of the initial ensemble, the goal of ensemble simulation can range from merely quantifying variations in the sensitivity of the model all the way to providing actionable probability forecasts of the future. Whatever the goal is, success depends on the properties of the ensemble, and there is a longstanding discussion in meteorology as to the size of initial condition ensemble most appropriate for Numerical Weather Prediction. In terms of resource allocation: how is one to divide finite computing resources between model complexity, ensemble size, data assimilation and other components of the forecast system. One wishes to avoid undersampling information available from the model's dynamics, yet one also wishes to use the highest fidelity model available. Arguably, a higher fidelity model can better exploit a larger ensemble; nevertheless it is often suggested that a relatively small ensemble, say ~16 members, is sufficient and that larger ensembles are not an effective investment of resources. This claim is shown to be dubious when the goal is probabilistic forecasting, even in settings where the forecast model is informative but imperfect. Probability forecasts for a ‘simple’ physical system are evaluated at different lead times; ensembles of up to 256 members are considered. The pure density estimation context (where ensemble members are drawn from the same underlying distribution as the target differs from the forecasting context, where one is given a high fidelity (but imperfect model. In the forecasting context, the information provided by additional members depends also on the fidelity of the model, the ensemble formation scheme (data assimilation, the ensemble interpretation and the nature of the observational noise. The effect of increasing the ensemble size is quantified by

  18. Physical and mathematical modeling of antimicrobial photodynamic therapy

    Science.gov (United States)

    Bürgermeister, Lisa; López, Fernando Romero; Schulz, Wolfgang

    2014-07-01

    Antimicrobial photodynamic therapy (aPDT) is a promising method to treat local bacterial infections. The therapy is painless and does not cause bacterial resistances. However, there are gaps in understanding the dynamics of the processes, especially in periodontal treatment. This work describes the advances in fundamental physical and mathematical modeling of aPDT used for interpretation of experimental evidence. The result is a two-dimensional model of aPDT in a dental pocket phantom model. In this model, the propagation of laser light and the kinetics of the chemical reactions are described as coupled processes. The laser light induces the chemical processes depending on its intensity. As a consequence of the chemical processes, the local optical properties and distribution of laser light change as well as the reaction rates. The mathematical description of these coupled processes will help to develop treatment protocols and is the first step toward an inline feedback system for aPDT users.

  19. Vulnerability of water supply systems to cyber-physical attacks

    Science.gov (United States)

    Galelli, Stefano; Taormina, Riccardo; Tippenhauer, Nils; Salomons, Elad; Ostfeld, Avi

    2016-04-01

    The adoption of smart meters, distributed sensor networks and industrial control systems has largely improved the level of service provided by modern water supply systems. Yet, the progressive computerization exposes these critical infrastructures to cyber-physical attacks, which are generally aimed at stealing critical information (cyber-espionage) or causing service disruption (denial-of-service). Recent statistics show that water and power utilities are undergoing frequent attacks - such as the December power outage in Ukraine - , attracting the interest of operators and security agencies. Taking the security of Water Distribution Networks (WDNs) as domain of study, our work seeks to characterize the vulnerability of WDNs to cyber-physical attacks, so as to conceive adequate defense mechanisms. We extend the functionality of EPANET, which models hydraulic and water quality processes in pressurized pipe networks, to include a cyber layer vulnerable to repeated attacks. Simulation results on a medium-scale network show that several hydraulic actuators (valves and pumps, for example) can be easily attacked, causing both service disruption - i.e., water spillage and loss of pressure - and structural damages - e.g., pipes burst. Our work highlights the need for adequate countermeasures, such as attacks detection and reactive control systems.

  20. Engaging students in the study of physics: an investigation of physics teachers’ belief systems about teaching and learning physics

    OpenAIRE

    Belo, Neeltje Annigje Hendrika

    2013-01-01

    This doctoral thesis comprises two questionnaire studies and two small-scale interview studies on the content and structure of physics teachers’ belief systems. The studies focused on teachers’ beliefs about the goals and pedagogy of teaching and learning physics, and the nature of science. The samples consisted of physics teachers working at secondary schools in the Netherlands (students aged 12-18). The questionnaire studies showed that, on average, teachers’ belief systems about teaching a...

  1. Medical cyber-physical systems: A survey.

    Science.gov (United States)

    Dey, Nilanjan; Ashour, Amira S; Shi, Fuqian; Fong, Simon James; Tavares, João Manuel R S

    2018-03-10

    Medical cyber-physical systems (MCPS) are healthcare critical integration of a network of medical devices. These systems are progressively used in hospitals to achieve a continuous high-quality healthcare. The MCPS design faces numerous challenges, including inoperability, security/privacy, and high assurance in the system software. In the current work, the infrastructure of the cyber-physical systems (CPS) are reviewed and discussed. This article enriched the researches of the networked Medical Device (MD) systems to increase the efficiency and safety of the healthcare. It also can assist the specialists of medical device to overcome crucial issues related to medical devices, and the challenges facing the design of the medical device's network. The concept of the social networking and its security along with the concept of the wireless sensor networks (WSNs) are addressed. Afterward, the CPS systems and platforms have been established, where more focus was directed toward CPS-based healthcare. The big data framework of CPSs is also included.

  2. Ladder physics in the spin fermion model

    Science.gov (United States)

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  3. Ladder physics in the spin fermion model

    International Nuclear Information System (INIS)

    Tsvelik, A. M.

    2017-01-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. Here, it is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  4. Coupled modelling (transport-reaction) of the fluid-clay interactions and their feed back on the physical properties of the bentonite engineered clay barrier system

    International Nuclear Information System (INIS)

    Marty, N.

    2006-11-01

    The originality of this work is to process feed back effects of mineralogical and chemical modifications of clays, in storage conditions, on their physical properties and therefore on their transport characteristics (porosity, molecular diffusion, permeability). These feed back effects are modelled using the KIRMAT code (Kinetic of Reaction and MAss Transfer) developed from the kinetic code KINDIS by adding the effect of water renewal in the mineral-solution reactive cells. KIRMAT resolves mass balance equations associated with mass transport together with the geochemical reactions in a 1D approach. After 100 000 years of simulated interaction at 100 C, with the fluid of the Callovo-Oxfordian geological level (COX) and with iron provided by the steel overpack corrosion, the montmorillonite of the clay barrier is only partially transformed (into illite, chlorite, saponite...). Only outer parts of the modelled profile seem to be significantly affected by smectite dissolution processes, mainly at the interface with the geological environment. The modifications of physical properties show a closure of the porosity at the boundaries of the barrier, by creating a decrease of mass transport by molecular diffusion, essentially at the interface with the iron. Permeability laws applied to this system show a decrease of the hydraulic conductivity correlated with the porosity evolution. Near the COX, the swelling pressure of the clays from the barrier decreases. In the major part of the modelled profile, the engineered clay barrier system seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure) and functionalities. (author)

  5. Data-Driven Cyber-Physical Systems via Real-Time Stream Analytics and Machine Learning

    OpenAIRE

    Akkaya, Ilge

    2016-01-01

    Emerging distributed cyber-physical systems (CPSs) integrate a wide range of heterogeneous components that need to be orchestrated in a dynamic environment. While model-based techniques are commonly used in CPS design, they be- come inadequate in capturing the complexity as systems become larger and extremely dynamic. The adaptive nature of the systems makes data-driven approaches highly desirable, if not necessary.Traditionally, data-driven systems utilize large volumes of static data sets t...

  6. Europhysics conference on control systems for experimental physics

    International Nuclear Information System (INIS)

    Kuiper, B.

    1990-01-01

    This volume contains the proceedings of a conference dealing with computer control of particle accelerators and other larger experimental-physics installations. This conference in Villars was the second in a now-established biennial series starting in 1985 in Los Alamos and continuing in 1989 in Vancouver. It included 9 invited papers, presented orally, 61 contributed papers displayed as posters, 6 topical workshops, and 7 tutorials. With few exceptions, all papers appear in the proceedings. Topics include functioning or proposed control systems of several large accelerators (LEP, SSC, GSI, INP, IHEP) and the UA1 experiment at CERN, overviews and current status of control systems for other accelerators and associated equipment, software, modelling, use of expert systems, maintenance, interfaces, network procedures and communications, and timing. Transcripts of the workshops have been reproduced in full, each followed by a summary. (orig.)

  7. Brief history of agricultural systems modeling.

    Science.gov (United States)

    Jones, James W; Antle, John M; Basso, Bruno; Boote, Kenneth J; Conant, Richard T; Foster, Ian; Godfray, H Charles J; Herrero, Mario; Howitt, Richard E; Janssen, Sander; Keating, Brian A; Munoz-Carpena, Rafael; Porter, Cheryl H; Rosenzweig, Cynthia; Wheeler, Tim R

    2017-07-01

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be

  8. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  9. Physical models for classroom teaching in hydrology

    Directory of Open Access Journals (Sweden)

    A. Rodhe

    2012-09-01

    Full Text Available Hydrology teaching benefits from the fact that many important processes can be illustrated and explained with simple physical models. A set of mobile physical models has been developed and used during many years of lecturing at basic university level teaching in hydrology. One model, with which many phenomena can be demonstrated, consists of a 1.0-m-long plexiglass container containing an about 0.25-m-deep open sand aquifer through which water is circulated. The model can be used for showing the groundwater table and its influence on the water content in the unsaturated zone and for quantitative determination of hydraulic properties such as the storage coefficient and the saturated hydraulic conductivity. It is also well suited for discussions on the runoff process and the significance of recharge and discharge areas for groundwater. The flow paths of water and contaminant dispersion can be illustrated in tracer experiments using fluorescent or colour dye. This and a few other physical models, with suggested demonstrations and experiments, are described in this article. The finding from using models in classroom teaching is that it creates curiosity among the students, promotes discussions and most likely deepens the understanding of the basic processes.

  10. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  11. Simulation and modeling of data acquisition systems for future high energy physics experiments

    International Nuclear Information System (INIS)

    Booth, A.; Black, D.; Walsh, D.; Bowden, M.; Barsotti, E.

    1991-01-01

    With the ever-increasing complexity of detectors and their associated data acquisition (DAQ) systems, it is important to bring together a set of tools to enable system designers, both hardware and software, to understand the behavioral aspects of the system was a whole, as well as the interaction between different functional units within the system. For complex systems, human intuition is inadequate since there are simply too many variables for system designers to begin to predict how varying any subset of them affects the total system. On the other hand, exact analysis, even to the extent of investing in disposable hardware prototypes, is much too time consuming and costly. Simulation bridges the gap between physical intuition and exact analysis by providing a learning vehicle in which the effects of varying many parameters can be analyzed and understood. Simulation techniques are being used in the development of the Scalable Parallel Open Architecture Data Acquisition System at Fermilab in which several sophisticated tools have been brought together to provide an integrated systems engineering environment specifically aimed at designing, DAQ systems. Also presented are results of simulation experiments in which the effects of varying trigger rates, event sizes and event distribution over processors, are clearly seen in terms of throughput and buffer usage in an event-building switch

  12. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  13. Method of modelization assistance with bond graphs and application to qualitative diagnosis of physical systems; Methode d'aide a la modelisation par graphes de liaison et utilisation pour le diagnostic qualitatif de systemes physiques

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, B.

    1994-05-15

    After having recalled the usual diagnosis techniques (failure index, decision tree) and those based on an artificial intelligence approach, the author reports a research aimed at exploring the knowledge and model generation technique. He focuses on the design of an aid to model generation tool and aid-to-diagnosis tool. The bond graph technique is shown to be adapted to the aid to model generation, and is then adapted to the aid to diagnosis. The developed tool is applied to three projects: DIADEME (a diagnosis system based on physical model), the improvement of the SEXTANT diagnosis system (an expert system for transient analysis), and the investigation on an Ariane 5 launcher component. Notably, the author uses the Reiter and Greiner algorithm

  14. Pore Type Classification on Carbonate Reservoir in Offshore Sarawak using Rock Physics Model and Rock Digital Images

    International Nuclear Information System (INIS)

    Lubis, L A; Harith, Z Z T

    2014-01-01

    It has been recognized that carbonate reservoirs are one of the biggest sources of hydrocarbon. Clearly, the evaluation of these reservoirs is important and critical. For rigorous reservoir characterization and performance prediction from geophysical measurements, the exact interpretation of geophysical response of different carbonate pore types is crucial. Yet, the characterization of carbonate reservoir rocks is difficult due to their complex pore systems. The significant diagenesis process and complex depositional environment makes pore systems in carbonates far more complicated than in clastics. Therefore, it is difficult to establish rock physics model for carbonate rock type. In this paper, we evaluate the possible rock physics model of 20 core plugs of a Miocene carbonate platform in Central Luconia, Sarawak. The published laboratory data of this area were used as an input to create the carbonate rock physics models. The elastic properties were analyzed to examine the validity of an existing analytical carbonate rock physics model. We integrate the Xu-Payne Differential Effective Medium (DEM) Model and the elastic modulus which was simulated from a digital carbonate rock image using Finite Element Modeling. The results of this integration matched well for the separation of carbonate pore types and sonic P-wave velocity obtained from laboratory measurement. Thus, the results of this study show that the integration of rock digital image and theoretical rock physics might improve the elastic properties prediction and useful for more advance geophysical techniques (e.g. Seismic Inversion) of carbonate reservoir in Sarawak

  15. Simplified Models for LHC New Physics Searches

    International Nuclear Information System (INIS)

    Alves, Daniele; Arkani-Hamed, Nima; Arora, Sanjay; Bai, Yang; Baumgart, Matthew; Berger, Joshua; Butler, Bart; Chang, Spencer; Cheng, Hsin-Chia; Cheung, Clifford; Chivukula, R. Sekhar; Cho, Won Sang; Cotta, Randy; D'Alfonso, Mariarosaria; El Hedri, Sonia; Essig, Rouven; Fitzpatrick, Liam; Fox, Patrick; Franceschini, Roberto

    2012-01-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ∼ 50-500 pb -1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  16. Simplified Models for LHC New Physics Searches

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele; /SLAC; Arkani-Hamed, Nima; /Princeton, Inst. Advanced Study; Arora, Sanjay; /Rutgers U., Piscataway; Bai, Yang; /SLAC; Baumgart, Matthew; /Johns Hopkins U.; Berger, Joshua; /Cornell U., Phys. Dept.; Buckley, Matthew; /Fermilab; Butler, Bart; /SLAC; Chang, Spencer; /Oregon U. /UC, Davis; Cheng, Hsin-Chia; /UC, Davis; Cheung, Clifford; /UC, Berkeley; Chivukula, R.Sekhar; /Michigan State U.; Cho, Won Sang; /Tokyo U.; Cotta, Randy; /SLAC; D' Alfonso, Mariarosaria; /UC, Santa Barbara; El Hedri, Sonia; /SLAC; Essig, Rouven, (ed.); /SLAC; Evans, Jared A.; /UC, Davis; Fitzpatrick, Liam; /Boston U.; Fox, Patrick; /Fermilab; Franceschini, Roberto; /LPHE, Lausanne /Pittsburgh U. /Argonne /Northwestern U. /Rutgers U., Piscataway /Rutgers U., Piscataway /Carleton U. /CERN /UC, Davis /Wisconsin U., Madison /SLAC /SLAC /SLAC /Rutgers U., Piscataway /Syracuse U. /SLAC /SLAC /Boston U. /Rutgers U., Piscataway /Seoul Natl. U. /Tohoku U. /UC, Santa Barbara /Korea Inst. Advanced Study, Seoul /Harvard U., Phys. Dept. /Michigan U. /Wisconsin U., Madison /Princeton U. /UC, Santa Barbara /Wisconsin U., Madison /Michigan U. /UC, Davis /SUNY, Stony Brook /TRIUMF; /more authors..

    2012-06-01

    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first {approx} 50-500 pb{sup -1} of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

  17. Development of Intelligent Auxiliary System for Customized Physical Fitness and Healthcare

    Directory of Open Access Journals (Sweden)

    Huang Chung-Chi

    2016-01-01

    Full Text Available With the advent of global high-tech industry and commerce era, the sedentary reduces opportunities of physical activity. And physical fitness and health of people is getting worse and worse. At present, the shortage of physical fitness instructors greatly affected the effectiveness of health promotion. Therefore, it is necessary to develop an auxiliary system which can reduce the workload of instructors and enhance physical fitness and health for people. But current general physical fitness and healthcare system is hard to meet individualized needs. The main purpose of this research is to develop an intelligent auxiliary system for customized physical fitness and healthcare. It records all processes of physical fitness and healthcare system by wireless sensors network. The results of intelligent auxiliary systems for customized physical fitness and healthcare will be generated by fuzzy logic Inference. It will improve individualized physical fitness and healthcare. Finally, we will demonstrate the advantages of the intelligent auxiliary system for customized physical fitness and healthcare.

  18. Software Engineering Issues for Cyber-Physical Systems

    DEFF Research Database (Denmark)

    Al-Jaroodi, Jameela; Mohamed, Nader; Jawhar, Imad

    2016-01-01

    step; however, designing and implementing the right software to integrate and use them effectively is essential. The software facilitates better interfaces, more control and adds smart services, high flexibility and many other added values and features to the CPS. However, software development for CPS......Cyber-Physical Systems (CPS) provide many smart features for enhancing physical processes. These systems are designed with a set of distributed hardware, software, and network components that are embedded in physical systems and environments or attached to humans. Together they function seamlessly...... to offer specific functionalities or features that help enhance human lives, operations or environments. While different CPS components play important roles in a successful CPS development, the software plays the most important role among them. Acquiring and using high quality CPS components is the first...

  19. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    Science.gov (United States)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  20. Physics of low-dimensional systems

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas

  1. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  2. Comparison Study on Low Energy Physics Model of GEANT4

    International Nuclear Information System (INIS)

    Park, So Hyun; Jung, Won Gyun; Suh, Tae Suk

    2010-01-01

    The Geant4 simulation toolkit provides improved or renewed physics model according to the version. The latest Geant4.9.3 which has been recoded by developers applies inserted Livermore data and renewed physics model to the low energy electromagnetic physics model. And also, Geant4.9.3 improved the physics factors by modified code. In this study, the stopping power and CSDA(Continuously Slowing Down Approximation) range data of electron or particles were acquired in various material and then, these data were compared with NIST(National Institute of Standards and Technology) data. Through comparison between data of Geant4 simulation and NIST, the improvement of physics model on low energy electromagnetic of Geant4.9.3 was evaluated by comparing the Geant4.9.2

  3. PREFACE: 2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013)

    Science.gov (United States)

    2014-03-01

    The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013. The Conference was attended by more than 280 participants and hosted about 400 oral, poster, and virtual presentations while counted more than 600 pre-registered authors. The second IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel sessions were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. Further information on the editors, speakers and committees is available in the attached pdf.

  4. Quantum Processes and Dynamic Networks in Physical and Biological Systems.

    Science.gov (United States)

    Dudziak, Martin Joseph

    , by virtue of mathematical and computational models that may be transferred from the macroscopic domain to the microscopic. A consequence of this multi-faceted thesis is that there may be mature analytical tools and techniques that have heretofore not been adequately recognized for their value to quantum physics. These may include adaptations of neural networks, cellular automata, chaotic attractors, and parallel processing systems. Conceptual and practical architectures are presented for the development of software and hardware environments to employ massively parallel computing for the modeling of large populations of dynamic processes.

  5. Modelling the physics in iterative reconstruction for transmission computed tomography

    Science.gov (United States)

    Nuyts, Johan; De Man, Bruno; Fessler, Jeffrey A.; Zbijewski, Wojciech; Beekman, Freek J.

    2013-01-01

    There is an increasing interest in iterative reconstruction (IR) as a key tool to improve quality and increase applicability of X-ray CT imaging. IR has the ability to significantly reduce patient dose, it provides the flexibility to reconstruct images from arbitrary X-ray system geometries and it allows to include detailed models of photon transport and detection physics, to accurately correct for a wide variety of image degrading effects. This paper reviews discretisation issues and modelling of finite spatial resolution, Compton scatter in the scanned object, data noise and the energy spectrum. Widespread implementation of IR with highly accurate model-based correction, however, still requires significant effort. In addition, new hardware will provide new opportunities and challenges to improve CT with new modelling. PMID:23739261

  6. The importance of recording physical and chemical variables simultaneously with remote radiological surveillance of aquatic systems: a perspective for environmental modelling

    International Nuclear Information System (INIS)

    Abril, J.M.; El-Mrabet, R.; Barros, H.

    2004-01-01

    Modern nuclear metrological tools allow the remote surveillance of the radiological status of the aquatic systems, providing an important advance in the protection of the environment. Nevertheless, the significance of the radiological data could be highly improved through simultaneous recording of physical and chemical variables that govern the behaviour and bioavailability of radionuclides in these aquatic systems. This work reviews some of these variables from the point of view of the environmental modelling. The amount, nature and dynamics of the suspended loads and bottom sediments strongly influence the behaviour of particle-reactive radionuclides. The kinetics of this process has a very fast component, as it is shown from our recent studies with 241 Am, 239 Pu and 133 Ba in several aquatic systems from southern Spain. Changes in pH, temperature and in the electrical conductivity are influencing the uptake kinetics and the final partitioning of the radioactivity. Water currents govern the radionuclide transport and dispersion. These points are illustrated with modelling exercises in the scenarios of the Suez Canal (Egypt) and the Haersvatten Lake (Sweden)

  7. Physical approach to complex systems

    Science.gov (United States)

    Kwapień, Jarosław; Drożdż, Stanisław

    2012-06-01

    Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but

  8. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  9. Cooling problems of thermal power plants. Physical model studies

    International Nuclear Information System (INIS)

    Neale, L.C.

    1975-01-01

    The Alden Research Laboratories of Worcester Polytechnic Institute has for many years conducted physical model studies, which are normally classified as river or structural hydraulic studies. Since 1952 one aspect of these studies has involved the heated discharge from steam power plants. The early studies on such problems concentrated on improving the thermal efficiency of the system. This was accomplished by minimizing recirculation and by assuring full use of available cold water supplies. With the growing awareness of the impact of thermal power generation on the environment attention has been redirected to reducing the effect of heated discharges on the biology of the receiving body of water. More specifically the efforts of designers and operators of power plants are aimed at meeting or complying with standards established by various governmental agencies. Thus the studies involve developing means of minimizing surface temperatures at an outfall or establishing a local area of higher temperature with limits specified in terms of areas or distances. The physical models used for these studies have varied widely in scope, size, and operating features. These models have covered large areas with both distorted geometric scales and uniform dimensions. Instrumentations has also varied from simple mercury thermometers to computer control and processing of hundreds of thermocouple indicators

  10. PHYSICAL BASES OF SYSTEMS CREATION FOR MAGNETIC-IMPULSIVE ATTRACTION OF THIN-WALLED SHEET METALS

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2009-01-01

    Full Text Available The work is dedicated to the physical base of systems creating for the thin-walled sheet metals magnetic pulse attraction. Some practical realization models of the author’s suggestions are represented.

  11. The continuum limit of causal fermion systems from Planck scale structures to macroscopic physics

    CERN Document Server

    Finster, Felix

    2016-01-01

    This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries". The dynamics is described by a novel variational principle, called the causal action principle. In addition to the basics, the book provides all the necessary mathematical background and explains how the causal action principle gives rise to the interactions of the standard model plus gravity on the level of second-quantized fermionic fields coupled to classical bosonic fields. The focus is on getting a mathematically sound connection between causal fermion systems and physical systems in Minkowski space. The book is intended for graduate students e...

  12. New physics beyond the standard model of particle physics and parallel universes

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R. [Franzstr. 40, 53111 Bonn (Germany)]. E-mail: rainer.plaga@gmx.de

    2006-03-09

    It is shown that if-and only if-'parallel universes' exist, an electroweak vacuum that is expected to have decayed since the big bang with a high probability might exist. It would neither necessarily render our existence unlikely nor could it be observed. In this special case the observation of certain combinations of Higgs-boson and top-quark masses-for which the standard model predicts such a decay-cannot be interpreted as evidence for new physics at low energy scales. The question of whether parallel universes exist is of interest to our understanding of the standard model of particle physics.

  13. A Distributed Snow Evolution Modeling System (SnowModel)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.

  14. Testing methodologies for quantifying physical models uncertainties. A comparative exercise using CIRCE and IPREM (FFTBM)

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, Jordi, E-mail: jordi.freixa-terradas@upc.edu; Alfonso, Elsa de, E-mail: elsa.de.alfonso@upc.edu; Reventós, Francesc, E-mail: francesc.reventos@upc.edu

    2016-08-15

    Highlights: • Uncertainty of physical models are a key issue in Best estimate plus uncertainty analysis. • Estimation of uncertainties of physical models of thermal hydraulics system codes. • Comparison of CIRCÉ and FFTBM methodologies. • Simulation of reflood experiments in order to evaluate uncertainty of physical models related to the reflood scenario. - Abstract: The increasing importance of Best-Estimate Plus Uncertainty (BEPU) analyses in nuclear safety and licensing processes have lead to several international activities. The latest findings highlighted the uncertainties of physical models as one of the most controversial aspects of BEPU. This type of uncertainties is an important contributor to the total uncertainty of NPP BE calculations. Due to the complexity of estimating this uncertainty, it is often assessed solely by engineering judgment. The present study comprises a comparison of two different state-of-the-art methodologies CIRCÉ and IPREM (FFTBM) capable of quantifying the uncertainty of physical models. Similarities and differences of their results are discussed through the observation of probability distribution functions and envelope calculations. In particular, the analyzed scenario is core reflood. Experimental data from the FEBA and PERICLES test facilities is employed while the thermal hydraulic simulations are carried out with RELAP5/mod3.3. This work is undertaken under the framework of PREMIUM (Post-BEMUSE Reflood Model Input Uncertainty Methods) benchmark.

  15. B physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hewett, J.A.L.

    1997-12-01

    The ability of present and future experiments to test the Standard Model in the B meson sector is described. The authors examine the loop effects of new interactions in flavor changing neutral current B decays and in Z → b anti b, concentrating on supersymmetry and the left-right symmetric model as specific examples of new physics scenarios. The procedure for performing a global fit to the Wilson coefficients which describe b → s transitions is outlined, and the results of such a fit from Monte Carlo generated data is compared to the predictions of the two sample new physics scenarios. A fit to the Zb anti b couplings from present data is also given

  16. Site suitability for riverbed filtration system in Tanah Merah, Kelantan-A physical model study for turbidity removal

    Science.gov (United States)

    Ghani, Mastura; Adlan, Mohd Nordin; Kamal, Nurul Hana Mokhtar; Aziz, Hamidi Abdul

    2017-10-01

    A laboratory physical model study on riverbed filtration (RBeF) was conducted to investigate site suitability of soil from Tanah Merah, Kelantan for RBeF. Soil samples were collected and transported to the Geotechnical Engineering Laboratory, Universiti Sains Malaysia for sieve analysis and hydraulic conductivity tests. A physical model was fabricated with gravel packs laid at the bottom of it to cover the screen and then soil sample were placed above gravel pack for 30 cm depth. River water samples from Lubok Buntar, Kedah were used to simulate the effectiveness of RBeF for turbidity removal. Turbidity readings were tested at the inlet and outlet of the filter with specified flow rate. Results from soil characterization show that the soil samples were classified as poorly graded sand with hydraulic conductivity ranged from 7.95 x 10-3 to 6.61 x 10-2 cm/s. Turbidity removal ranged from 44.91% - 92.75% based on the turbidity of water samples before filtration in the range of 33.1-161 NTU. The turbidity of water samples after RBeF could be enhanced up to 2.53 NTU. River water samples with higher turbidity of more than 160 NTU could only reach 50% or less removal by the physical model. Flow rates of the RBeF were in the range of 0.11-1.61 L/min while flow rates at the inlet were set up between 2-4 L/min. Based on the result of soil classification, Tanah Merah site is suitable for RBeF whereas result from physical model study suggested that 30 cm depth of filter media is not sufficient to be used if river water turbidity is higher.

  17. Simulation and modeling of data acquisition systems for future high energy physics experiments

    International Nuclear Information System (INIS)

    Booth, A.; Black, D.; Walsh, D.; Bowden, M.; Barsotti, E.

    1990-01-01

    With the ever-increasing complexity of detectors and their associated data acquisition (DAQ) systems, it is important to bring together a set of tools to enable system designers, both hardware and software, to understand the behavorial aspects of the system as a whole, as well as the interaction between different functional units within the system. For complex systems, human intuition is inadequate since there are simply too many variables for system designers to begin to predict how varying any subset of them affects the total system. On the other hand, exact analysis, even to the extent of investing in disposable hardware prototypes, is much too time consuming and costly. Simulation bridges the gap between physical intuition and exact analysis by providing a learning vehicle in which the effects of varying many parameters can be analyzed and understood. Simulation techniques are being used in the development of the Scalable Parallel Open Architecture Data Acquisition System at Fermilab. This paper describes the work undertaken at Fermilab in which several sophisticated tools have been brought together to provide an integrated systems engineering environment specifically aimed at designing DAQ systems. Also presented are results of simulation experiments in which the effects of varying trigger rates, event sizes and event distribution over processors, are clearly seen in terms of throughput and buffer usage in an event-building switch

  18. Use of a graphical user interface approach for digital and physical simulation in power systems control education

    International Nuclear Information System (INIS)

    Shoults, R.R.; Barrera-Cardiel, E.

    1992-01-01

    This paper presents the design of a laboratory with software and hardware structures for digital and physical simulation in the area of Power Systems Control Education. The hardware structure includes a special man-machine interface designed with a graphical user interface approach. This interface allows the user full control over the simulation and provides facilities for the study of the response of the simulated system. This approach is illustrated with the design of a control system for a physically based HVDC transmission system model

  19. Multi-views storage model and access methods of conversation history in converged IP messaging system

    Science.gov (United States)

    Lu, Meilian; Yang, Dong; Zhou, Xing

    2013-03-01

    Based on the analysis of the requirements of conversation history storage in CPM (Converged IP Messaging) system, a Multi-views storage model and access methods of conversation history are proposed. The storage model separates logical views from physical storage and divides the storage into system managed region and user managed region. It simultaneously supports conversation view, system pre-defined view and user-defined view of storage. The rationality and feasibility of multi-view presentation, the physical storage model and access methods are validated through the implemented prototype. It proves that, this proposal has good scalability, which will help to optimize the physical data storage structure and improve storage performance.

  20. Slush Fund: Modeling the Multiphase Physics of Oceanic Ices

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.

    2016-12-01

    The prevalence of ice interacting with an ocean, both on Earth and throughout the solar system, and its crucial role as the mediator of exchange between the hydrosphere below and atmosphere above, have made quantifying the thermodynamic, chemical, and physical properties of the ice highly desirable. While direct observations of these quantities exist, their scarcity increases with the difficulty of obtainment; the basal surfaces of terrestrial ice shelves remain largely unexplored and the icy interiors of moons like Europa and Enceladus have never been directly observed. Our understanding of these entities thus relies on numerical simulation, and the efficacy of their incorporation into larger systems models is dependent on the accuracy of these initial simulations. One characteristic of seawater, likely shared by the oceans of icy moons, is that it is a solution. As such, when it is frozen a majority of the solute is rejected from the forming ice, concentrating in interstitial pockets and channels, producing a two-component reactive porous media known as a mushy layer. The multiphase nature of this layer affects the evolution and dynamics of the overlying ice mass. Additionally ice can form in the water column and accrete onto the basal surface of these ice masses via buoyancy driven sedimentation as frazil or platelet ice. Numerical models hoping to accurately represent ice-ocean interactions should include the multiphase behavior of these two phenomena. While models of sea ice have begun to incorporate multiphase physics into their capabilities, no models of ice shelves/shells explicitly account for the two-phase behavior of the ice-ocean interface. Here we present a 1D multiphase model of floating oceanic ice that includes parameterizations of both density driven advection within the `mushy layer' and buoyancy driven sedimentation. The model is validated against contemporary sea ice models and observational data. Environmental stresses such as supercooling and

  1. Service Learning In Physics: The Consultant Model

    Science.gov (United States)

    Guerra, David

    2005-04-01

    Each year thousands of students across the country and across the academic disciplines participate in service learning. Unfortunately, with no clear model for integrating community service into the physics curriculum, there are very few physics students engaged in service learning. To overcome this shortfall, a consultant based service-learning program has been developed and successfully implemented at Saint Anselm College (SAC). As consultants, students in upper level physics courses apply their problem solving skills in the service of others. Most recently, SAC students provided technical and managerial support to a group from Girl's Inc., a national empowerment program for girls in high-risk, underserved areas, who were participating in the national FIRST Lego League Robotics competition. In their role as consultants the SAC students provided technical information through brainstorming sessions and helped the girls stay on task with project management techniques, like milestone charting. This consultant model of service-learning, provides technical support to groups that may not have a great deal of resources and gives physics students a way to improve their interpersonal skills, test their technical expertise, and better define the marketable skill set they are developing through the physics curriculum.

  2. The Experimental Physics and Industrial Control System architecture: Past, present, and future

    International Nuclear Information System (INIS)

    Dalesio, L.R.; Hill, J.O.; Kraimer, M.; Lewis, S.; Murray, D.; Hunt, S.; Claussen, M.; Watson, W.

    1993-01-01

    The Experimental Physics and Industrial Control System (EPICS), has been used at a number of sites for performing data acquisition, supervisory control, closed-loop control, sequential control, and operational optimization. The EPICS architecture was originally developed by a group with diverse backgrounds in physics and industrial control. The current architecture represents one instance of the ''standard model.'' It provides distributed processing and communication from any LAN device to the front end controllers. This paper will present the genealogy, current architecture, performance envelope, current installations, and planned extensions for requirements not met by the current architecture

  3. Analytic study for physical protection system (PPS) in nuclear power plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho, E-mail: thw@snu.ac.kr

    2013-12-15

    Highlights: • The physical protection system (PPS) is investigated. • General NPPs are modeled in the study. • Possible terror cases, likelihood, and consequence are studied. • PPS is constructed by analytical methods. - Abstract: The nuclear safeguard is analyzed in the aspect of the physical protection system (PPS) in nuclear power plants (NPPs). The PPS is reviewed and its related terror scenarios are investigated. The PPS is developed using analytical methods. In the terror scenarios, there are 8 possible cases for the terror attacks to the NPPs. Then, the likelihood of terror is classified by the general terror incidents. The consequence of terror is classified by Design Basis Threat (DBT) of the International Atomic Energy Agency (IAEA) scale. The physical protection method is suggested by defense-in-depth constraints and severe accident countermeasures. Finally, the advanced PPS is constructed, which could be used for the preparation for the possible terror attacks in the NPPs.

  4. Analytic study for physical protection system (PPS) in nuclear power plants (NPPs)

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2013-01-01

    Highlights: • The physical protection system (PPS) is investigated. • General NPPs are modeled in the study. • Possible terror cases, likelihood, and consequence are studied. • PPS is constructed by analytical methods. - Abstract: The nuclear safeguard is analyzed in the aspect of the physical protection system (PPS) in nuclear power plants (NPPs). The PPS is reviewed and its related terror scenarios are investigated. The PPS is developed using analytical methods. In the terror scenarios, there are 8 possible cases for the terror attacks to the NPPs. Then, the likelihood of terror is classified by the general terror incidents. The consequence of terror is classified by Design Basis Threat (DBT) of the International Atomic Energy Agency (IAEA) scale. The physical protection method is suggested by defense-in-depth constraints and severe accident countermeasures. Finally, the advanced PPS is constructed, which could be used for the preparation for the possible terror attacks in the NPPs

  5. Design of a physical model of the PBMR with the aid of Flownet

    International Nuclear Information System (INIS)

    Greyvenstein, G.P.; Rousseau, P.G.

    2002-01-01

    The design of a physical model of the PBMR with the aid of the code Flownet is discussed in this paper. The purpose of the physical model is to test the control strategies and operating procedures of the PBMR and also to demonstrate the accuracy of Flownet. Flownet is first used to do component matching and to determine the detail steady-state performance of the system. It is then demonstrated how the code was used to simulate the start-up procedure as well as a load following and a load rejection scenario. The study demonstrates how a micro model of the PBMR can be designed with the aid of a powerful simulation tool in a relatively short period of time and at low cost using commercially available turbochargers. (author)

  6. Multi-physics modeling in electrical engineering. Application to a magneto-thermo-mechanical model

    International Nuclear Information System (INIS)

    Journeaux, Antoine

    2013-01-01

    The modeling of multi-physics problems in electrical engineering is presented, with an application to the numerical computation of vibrations within the end windings of large turbo-generators. This study is divided into four parts: the impositions of current density, the computation of local forces, the transfer of data between disconnected meshes, and the computation of multi-physics problems using weak coupling, Firstly, the representation of current density within numerical models is presented. The process is decomposed into two stages: the construction of the initial current density, and the determination of a divergence-free field. The representation of complex geometries makes the use of analytical methods impossible. A method based on an electrokinetic problem is used and a fully geometrical method are tested. The geometrical method produces results closer to the real current density than the electrokinetic problem. Methods to compute forces are numerous, and this study focuses on the virtual work principle and the Laplace force considering the recommendations of the literature. Laplace force is highly accurate but is applicable only if the permeability is uniform. The virtual work principle is finally preferred as it appears as the most general way to compute local forces. Mesh-to-mesh data transfer methods are developed to compute multi-physics models using multiples meshes adapted to the subproblems and multiple computational software. The interpolation method, a locally conservative projection, and an orthogonal projection are compared. Interpolation method is said to be fast but highly diffusive, and the orthogonal projections are highly accurate. The locally conservative method produces results similar to the orthogonal projection but avoid the assembly of linear systems. The numerical computation of multi-physical problems using multiple meshes and projections is then presented. However for a given class of problems, there is not an unique coupling

  7. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.

    Science.gov (United States)

    Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y

    2016-04-01

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. © 2015 Society for Risk Analysis.

  8. Intelligent scheduling of execution for customized physical fitness and healthcare system.

    Science.gov (United States)

    Huang, Chung-Chi; Liu, Hsiao-Man; Huang, Chung-Lin

    2015-01-01

    Physical fitness and health of white collar business person is getting worse and worse in recent years. Therefore, it is necessary to develop a system which can enhance physical fitness and health for people. Although the exercise prescription can be generated after diagnosing for customized physical fitness and healthcare. It is hard to meet individual execution needs for general scheduling of physical fitness and healthcare system. So the main purpose of this research is to develop an intelligent scheduling of execution for customized physical fitness and healthcare system. The results of diagnosis and prescription for customized physical fitness and healthcare system will be generated by fuzzy logic Inference. Then the results of diagnosis and prescription for customized physical fitness and healthcare system will be scheduled and executed by intelligent computing. The scheduling of execution is generated by using genetic algorithm method. It will improve traditional scheduling of exercise prescription for physical fitness and healthcare. Finally, we will demonstrate the advantages of the intelligent scheduling of execution for customized physical fitness and healthcare system.

  9. B physics in the standard model

    International Nuclear Information System (INIS)

    Takasugi, Eiichi

    1985-01-01

    Before discussing the beauty physics, the present status of the quark mixing is reviewed. Then the CP violation in the K meson physics is discussed. As for the quark mixing, it is concluded that the theroretical analysis of CP violation involves various uncertainties and it seems difficult to obtain the definite information of the quark mixing. As for the B physics, B 0 - anti B 0 mixing and some hopeful methods to detect the CP violation in the B system are discussed along with the two typical ways to measure it. In summary, it is concluded that the B 0 - anti B 0 mixing should be observed, but some luck is needed to observe the CP violation in the B physics. (Aoki, K.)

  10. Are Physical Education Majors Models for Fitness?

    Science.gov (United States)

    Kamla, James; Snyder, Ben; Tanner, Lori; Wash, Pamela

    2012-01-01

    The National Association of Sport and Physical Education (NASPE) (2002) has taken a firm stance on the importance of adequate fitness levels of physical education teachers stating that they have the responsibility to model an active lifestyle and to promote fitness behaviors. Since the NASPE declaration, national initiatives like Let's Move…

  11. Physics-based Entry, Descent and Landing Risk Model

    Science.gov (United States)

    Gee, Ken; Huynh, Loc C.; Manning, Ted

    2014-01-01

    A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.

  12. System identification and the modeling of sailing yachts

    Science.gov (United States)

    Legursky, Katrina

    This research represents an exploration of sailing yacht dynamics with full-scale sailing motion data, physics-based models, and system identification techniques. The goal is to provide a method of obtaining and validating suitable physics-based dynamics models for use in control system design on autonomous sailing platforms, which have the capacity to serve as mobile, long range, high endurance autonomous ocean sensing platforms. The primary contributions of this study to the state-of-the-art are the formulation of a five degree-of-freedom (DOF) linear multi-input multi-output (MIMO) state space model of sailing yacht dynamics, the process for identification of this model from full-scale data, a description of the maneuvers performed during on-water tests, and an analysis method to validate estimated models. The techniques and results described herein can be directly applied to and tested on existing autonomous sailing platforms. A full-scale experiment on a 23ft monohull sailing yacht is developed to collect motion data for physics-based model identification. Measurements include 3 axes of accelerations, velocities, angular rates, and attitude angles in addition to apparent wind speed and direction. The sailing yacht herein is treated as a dynamic system with two control inputs, the rudder angle, deltaR, and the mainsail angle, delta B, which are also measured. Over 20 hours of full scale sailing motion data is collected, representing three sail configurations corresponding to a range of wind speeds: the Full Main and Genoa (abbrev. Genoa) for lower wind speeds, the Full Main and Jib (abbrev. Jib) for mid-range wind speeds, and the Reefed Main and Jib (abbrev. Reef) for the highest wind speeds. The data also covers true wind angles from upwind through a beam reach. A physics-based non-linear model to describe sailing yacht motion is outlined, including descriptions of methods to model the aerodynamics and hydrodynamics of a sailing yacht in surge, sway, roll, and

  13. Particle physics data system at IHEP

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Grudtsin, S.N.; Demidov, N.G.; Ezhela, V.V.

    1981-01-01

    This note presents the description of information search and retrieval facilities supplied by the Berkeley Database Management System - BDMS V2.2 implemented for ICL-1906A computers at IHEP. The system is used for creation and maintenance of archieve Particle Physics Data Bases [ru

  14. Visiting Power Laws in Cyber-Physical Networking Systems

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available Cyber-physical networking systems (CPNSs are made up of various physical systems that are heterogeneous in nature. Therefore, exploring universalities in CPNSs for either data or systems is desired in its fundamental theory. This paper is in the aspect of data, aiming at addressing that power laws may yet be a universality of data in CPNSs. The contributions of this paper are in triple folds. First, we provide a short tutorial about power laws. Then, we address the power laws related to some physical systems. Finally, we discuss that power-law-type data may be governed by stochastically differential equations of fractional order. As a side product, we present the point of view that the upper bound of data flow at large-time scaling and the small one also follows power laws.

  15. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  16. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  17. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  18. Physical Modelling of Geotechnical Structures in Ports and Offshore

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2017-04-01

    Full Text Available The physical modelling of subsoil behaviour and soil-structure interaction is essential for the proper design of offshore structures and port infrastructure. A brief introduction to such modelling of geoengineering problems is presented and some methods and experimental devices are described. The relationships between modelling scales are given. Some examples of penetration testing results in centrifuge and calibration chamber are presented. Prospects for physical modelling in geotechnics are also described.

  19. The theory of dissipative structures of the kinetic system for defects of nonlinear physical system 'metal+loading+irradiation'. Part 3

    International Nuclear Information System (INIS)

    Tarasov, V.A.; Borikov, T.L.; Kryzhanovskaya, T.V.; Chernezhenko, S.A.; Rusov, V.D.

    2007-01-01

    The kinetic system for defects of physical nonlinear system 'metal + load + irradiation' is specified [1, 2, 3]. Developing the approaches offered in [4], where distinctions of mechanisms of radiating creep and areas of their applicability are formalized (depending on external parameters) for fuel and constructional metals, division of kinetic systems for defects of constructional and fuel metals is carrying out. Thus the accent on the autocatalytic features of kinetic system for defects of reactor fuel metals, resulting from the exoenergic autocatalytic character of nuclear fission reactions being the main point defect source is done. In this part of the article the basic attention is given to the kinetic of sink drains for point defects. For kinetic systems of sinks-sources new approaches for the task of boundary conditions are offered. The possible structure of the computer program modelling kinetic system for defects of nonlinear physical system 'metal + load + irradiation' is considered

  20. Modeling of luminance distribution in CAVE-type virtual reality systems

    Science.gov (United States)

    Meironke, Michał; Mazikowski, Adam

    2017-08-01

    At present, one of the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems are usually consisted of four, five or six projection screens and in case of six screens arranged in form of a cube. Providing the user with a high level of immersion feeling in such systems is largely dependent of optical properties of the system. The modeling of physical phenomena plays nowadays a huge role in the most fields of science and technology. It allows to simulate work of device without a need to make any changes in the physical constructions. In this paper distribution of luminance in CAVE-type virtual reality systems were modelled. Calculations were performed for the model of 6-walled CAVE-type installation, based on Immersive 3D Visualization Laboratory, situated at the Faculty of Electronics, Telecommunications and Informatics at the Gdańsk University of Technology. Tests have been carried out for two different scattering distribution of the screen material in order to check how these characteristicinfluence on the luminance distribution of the whole CAVE. The basis assumption and simplification of modeled CAVE-type installation and results were presented. The brief discussion about the results and usefulness of developed model were also carried out.

  1. Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm

    Science.gov (United States)

    Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara

    2014-01-01

    We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.

  2. Wave Generation in Physical Models

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...

  3. Accelerator physics and modeling: Proceedings

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings

  4. Hidden physics models: Machine learning of nonlinear partial differential equations

    Science.gov (United States)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  5. Opacity calculations for extreme physical systems: code RACHEL

    Science.gov (United States)

    Drska, Ladislav; Sinor, Milan

    1996-08-01

    Computer simulations of physical systems under extreme conditions (high density, temperature, etc.) require the availability of extensive sets of atomic data. This paper presents basic information on a self-consistent approach to calculations of radiative opacity, one of the key characteristics of such systems. After a short explanation of general concepts of the atomic physics of extreme systems, the structure of the opacity code RACHEL is discussed and some of its applications are presented.

  6. Implementing a modeling software for animated protein-complex interactions using a physics simulation library.

    Science.gov (United States)

    Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko

    2014-12-01

    To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.

  7. Using Indexed and Synchronous Events to Model and Validate Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Chen-Wei Wang

    2015-06-01

    Full Text Available Timed Transition Models (TTMs are event-based descriptions for modelling, specifying, and verifying discrete real-time systems. An event can be spontaneous, fair, or timed with specified bounds. TTMs have a textual syntax, an operational semantics, and an automated tool supporting linear-time temporal logic. We extend TTMs and its tool with two novel modelling features for writing high-level specifications: indexed events and synchronous events. Indexed events allow for concise description of behaviour common to a set of actors. The indexing construct allows us to select a specific actor and to specify a temporal property for that actor. We use indexed events to validate the requirements of a train control system. Synchronous events allow developers to decompose simultaneous state updates into actions of separate events. To specify the intended data flow among synchronized actions, we use primed variables to reference the post-state (i.e., one resulted from taking the synchronized actions. The TTM tool automatically infers the data flow from synchronous events, and reports errors on inconsistencies due to circular data flow. We use synchronous events to validate part of the requirements of a nuclear shutdown system. In both case studies, we show how the new notation facilitates the formal validation of system requirements, and use the TTM tool to verify safety, liveness, and real-time properties.

  8. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors

    Directory of Open Access Journals (Sweden)

    Minglin Wu

    2016-10-01

    Full Text Available In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects.

  9. Dynamic Modeling and Simulation of an Underactuated System

    International Nuclear Information System (INIS)

    Duarte Madrid, Juan Libardo; Querubín, E González; Henao, P A Ospina

    2017-01-01

    In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system. (paper)

  10. A glacier runoff extension to the Precipitation Runoff Modeling System

    Science.gov (United States)

    A. E. Van Beusekom; R. J. Viger

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while...

  11. A dependability modeling of software under hardware faults digitized system in nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Jong Gyun

    1996-02-01

    An analytic approach to the dependability evaluation of software in the operational phase is suggested in this work with special attention to the physical fault effects on the software dependability : The physical faults considered are memory faults and the dependability measure in question is the reliability. The model is based on the simple reliability theory and the graph theory with the path decomposition micro model. The model represents an application software with a graph consisting of nodes and arcs that probabilistic ally determine the flow from node to node. Through proper transformation of nodes and arcs, the graph can be reduced to a simple two-node graph and the software failure probability is derived from this graph. This model can be extended to the software system which consists of several complete modules without modification. The derived model is validated by the computer simulation, where the software is transformed to a probabilistic control flow graph. Simulation also shows a different viewpoint of software failure behavior. Using this model, we predict the reliability of an application software and a software system in a digitized system(ILS system) in the nuclear power plant and show the sensitivity of the software reliability to the major physical parameters which affect the software failure in the normal operation phase. The derived model is validated by the computer simulation, where the software is transformed to a probabilistic control flow graph. Simulation also shows a different viewpoint of software failure behavior. Using this model, we predict the reliability of an application software and a software system in a digitized system (ILS system) is the nuclear power plant and show the sensitivity of the software reliability to the major physical parameters which affect the software failure in the normal operation phase. This modeling method is particularly attractive for medium size programs such as software used in digitized systems of

  12. A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale

    Science.gov (United States)

    Zhang, Shaojie; Zhao, Luqiang; Delgado-Tellez, Ricardo; Bao, Hongjun

    2018-03-01

    Conventional outputs of physics-based landslide forecasting models are presented as deterministic warnings by calculating the safety factor (Fs) of potentially dangerous slopes. However, these models are highly dependent on variables such as cohesion force and internal friction angle which are affected by a high degree of uncertainty especially at a regional scale, resulting in unacceptable uncertainties of Fs. Under such circumstances, the outputs of physical models are more suitable if presented in the form of landslide probability values. In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probability is devised. This paper proposes the use of Monte Carlo methods to quantitatively express uncertainty by assigning random values to physical variables inside a defined interval. The inequality Fs soil mechanical parameters and is used to create a physics-based probabilistic forecasting model for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which simulated forecasting of landslide disasters associated with heavy rainfalls on 9 July 2013 in the Wenchuan earthquake region of Sichuan province, China, was performed. The proposed model successfully forecasted landslides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan province. Such testing results indicate that the new model can be operated in a highly efficient way and show more reliable results, attributable to its high prediction accuracy. Accordingly, the new model can be potentially packaged into a forecasting system for shallow landslides providing technological support for the mitigation of these disasters at regional scale.

  13. Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks

    Science.gov (United States)

    Rozdeba, Paul J.

    The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.

  14. Nordic congestion's arrangement as a model for Europe? Physical constraints vs. economic incentives

    International Nuclear Information System (INIS)

    Glachant, J.-M.; Pignon, V.

    2005-01-01

    Congestion on power grids seems a physical reality, a 'hard' fact easy to check. Our paper models a different idea: congestion signal may be distorted by transmission system operators (TSOs). Indeed, congestion signals are not physical data but 'home made' conventions directly set by the TSOs in charge of the security of the system. These security norms are not stable and invariable because lines capacity limits are not constant. TSOs, therefore, define the congestion signal on a variable, complex and non-transparent constraint and may manipulate it for monetary purposes or for other personal agenda. In Nordic countries the coexistence of two congestion management methods in a 'Light Handed Regulation' framework makes this opportunistic behaviour even more likely. (author)

  15. Physical models on discrete space and time

    International Nuclear Information System (INIS)

    Lorente, M.

    1986-01-01

    The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references

  16. Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives

    International Nuclear Information System (INIS)

    Modarres, Mohammad; Cheon, Se Woo

    1999-01-01

    Most of the complex systems are formed through some hierarchical evolution. Therefore, those systems can be best described through hierarchical frameworks. This paper describes some fundamental attributes of complex physical systems and several hierarchies such as functional, behavioral, goal/condition, and event hierarchies, then presents a function-centered approach to system modeling. Based on the function-centered concept, this paper describes the joint goal tree-success tree (GTST) and the master logic diagram (MLD) as a framework for developing models of complex physical systems. A function-based lexicon for classifying the most common elements of engineering systems for use in the GTST-MLD framework has been proposed. The classification is based on the physical conservation laws that govern the engineering systems. Functional descriptions based on conservation laws provide a simple and rich vocabulary for modeling complex engineering systems

  17. Physical database design using Oracle

    CERN Document Server

    Burleson, Donald K

    2004-01-01

    INTRODUCTION TO ORACLE PHYSICAL DESIGNPrefaceRelational Databases and Physical DesignSystems Analysis and Physical Database DesignIntroduction to Logical Database DesignEntity/Relation ModelingBridging between Logical and Physical ModelsPhysical Design Requirements Validation PHYSICAL ENTITY DESIGN FOR ORACLEData Relationships and Physical DesignMassive De-Normalization: STAR Schema DesignDesigning Class HierarchiesMaterialized Views and De-NormalizationReferential IntegrityConclusionORACLE HARDWARE DESIGNPlanning the Server EnvironmentDesigning the Network Infrastructure for OracleOracle Netw

  18. LHC Higgs physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Spannowsky, M.

    2007-01-01

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan β in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  19. LHC Higgs physics beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Spannowsky, M.

    2007-09-22

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan {beta} in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  20. Cyber physical systems role in manufacturing technologies

    Science.gov (United States)

    Al-Ali, A. R.; Gupta, Ragini; Nabulsi, Ahmad Al

    2018-04-01

    Empowered by the recent development in single System-on-Chip, Internet of Things, and cloud computing technologies, cyber physical systems are evolving as a major controller during and post the manufacturing products process. In additional to their real physical space, cyber products nowadays have a virtual space. A product virtual space is a digital twin that is attached to it to enable manufacturers and their clients to better manufacture, monitor, maintain and operate it throughout its life time cycles, i.e. from the product manufacturing date, through operation and to the end of its lifespan. Each product is equipped with a tiny microcontroller that has a unique identification number, access code and WiFi conductivity to access it anytime and anywhere during its life cycle. This paper presents the cyber physical systems architecture and its role in manufacturing. Also, it highlights the role of Internet of Things and cloud computing in industrial manufacturing and factory automation.

  1. Systems Thinking and Simulation Modeling to Inform Childhood Obesity Policy and Practice.

    Science.gov (United States)

    Powell, Kenneth E; Kibbe, Debra L; Ferencik, Rachel; Soderquist, Chris; Phillips, Mary Ann; Vall, Emily Anne; Minyard, Karen J

    In 2007, 31.7% of Georgia adolescents in grades 9-12 were overweight or obese. Understanding the impact of policies and interventions on obesity prevalence among young people can help determine statewide public health and policy strategies. This article describes a systems model, originally launched in 2008 and updated in 2014, that simulates the impact of policy interventions on the prevalence of childhood obesity in Georgia through 2034. In 2008, using information from peer-reviewed reports and quantitative estimates by experts in childhood obesity, physical activity, nutrition, and health economics and policy, a group of legislators, legislative staff members, and experts trained in systems thinking and system dynamics modeling constructed a model simulating the impact of policy interventions on the prevalence of childhood obesity in Georgia through 2034. Use of the 2008 model contributed to passage of a bill requiring annual fitness testing of schoolchildren and stricter enforcement of physical education requirements. We updated the model in 2014. With no policy change, the updated model projects that the prevalence of obesity among children and adolescents aged ≤18 in Georgia would hold at 18% from 2014 through 2034. Mandating daily school physical education (which would reduce prevalence to 12%) and integrating moderate to vigorous physical activity into elementary classrooms (which would reduce prevalence to 10%) would have the largest projected impact. Enacting all policies simultaneously would lower the prevalence of childhood obesity from 18% to 3%. Systems thinking, especially with simulation models, facilitates understanding of complex health policy problems. Using a simulation model to educate legislators, educators, and health experts about the policies that have the greatest short- and long-term impact should encourage strategic investment in low-cost, high-return policies.

  2. Physical plausibility of cold star models satisfying Karmarkar conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fuloria, Pratibha [Kumaun University, Physics Dept., Almora (India); Pant, Neeraj [N.D.A., Maths Dept., Khadakwasla, Pune (India)

    2017-11-15

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9. The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models. (orig.)

  3. Physical plausibility of cold star models satisfying Karmarkar conditions

    International Nuclear Information System (INIS)

    Fuloria, Pratibha; Pant, Neeraj

    2017-01-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9. The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models. (orig.)

  4. Physical plausibility of cold star models satisfying Karmarkar conditions

    Science.gov (United States)

    Fuloria, Pratibha; Pant, Neeraj

    2017-11-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9 . The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models.

  5. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Ihekwaba, Adoha

    2007-01-01

    A. Ihekwaba, R. Mardare. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems. Case study: NFkB system. In Proc. of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2...

  6. The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, M., E-mail: mabelloni@davidson.edu [Physics Department, Davidson College, Davidson, NC 28035 (United States); Robinett, R.W., E-mail: rick@phys.psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-07-01

    The infinite square well and the attractive Dirac delta function potentials are arguably two of the most widely used models of one-dimensional bound-state systems in quantum mechanics. These models frequently appear in the research literature and are staples in the teaching of quantum theory on all levels. We review the history, mathematical properties, and visualization of these models, their many variations, and their applications to physical systems.

  7. Organizational re-engineering using systems modelling: rediscovering the physics of the health service.

    Science.gov (United States)

    Wolstenholme, E

    1995-01-01

    This paper explores the general role of systems modelling and its specific use in the UK National Health Service for providing a balanced overview of change management which links organizational structure, strategy, and process. The maps and modelling tools of the method are described, together with an outline of how they can be used to simulate and test alternative interventions in complex organizations and to create a management focus on generic insights, accelerated business learning, and improved financial performance. A case study involving the use of systems modelling at the interface between the health service and community care is presented as a specific example of the method in action.

  8. Exotic smoothness and physics differential topology and spacetime models

    CERN Document Server

    Asselmeyer-Maluga, T

    2007-01-01

    The recent revolution in differential topology related to the discovery of non-standard ("exotic") smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit - but now shown to be incorrect - assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further app...

  9. Physical and numerical modelling of heat treatment the precipitation-hardening complex-phase steel (CP

    Directory of Open Access Journals (Sweden)

    B. Koczurkiewicz

    2013-01-01

    Full Text Available The article presents the results of physical and numerical modeling of the processes of thermo- plastic treatment of an experimental complex-phase (CP steel. Numerical tests were carried out using a commercial software program, ThermoCalc. Based on the obtained test results, the austenitization temperature was established. Physical modeling was performed using a DIL 805A/D dilatometer and the Gleeble 3800 system. The characteristic temperatures of the steel and the primary austenite grain size were determined. The test pieces were also subjected to metallographic examinations and Vickers hardness tests. The obtained results served for building an actual CCT diagram for the steel tested.

  10. Choreographing Cyber-Physical Distributed Control Systems for the Energy Sector

    DEFF Research Database (Denmark)

    López-Acosta, Hugo-Andrés; Heussen, Kai

    2017-01-01

    Energy Systems are facing a significant change in the way their management and control is conceived. With the introduction of distributed and renewable energy based resources, a shift to a more distributed operation paradigm is emerging, overturning the conventional top-down design and operation...... principles. This shift creates a demand for distributed control systems (DCS) to facilitate a more adaptive and efficient operation of power networks. One key challenge here is to ensure the required reliability of distributed control systems. Whereas proven strategies exist for reliable control...... for coordination of physical actions, with increasing distribution of such control, the reliability and degradation properties in response to communications issues become more important. We build on the notion of Quality Choreographies, a formal model for the development of failure-aware distributed systems...

  11. PHYSICAL EDUCATION - PHYSICAL CULTURE. TWO MODELS, TWO DIDACTIC

    Directory of Open Access Journals (Sweden)

    Manuel Vizuete Carrizosa

    2014-10-01

    Full Text Available Physical Education is currently facing a number of problems that are rooted in the identity crisis prompted by the spread of the professional group, the confrontation of ideas from the scientific community and the competing interests of different political and social areas, compared to which physical education has failed, or unable, to react in time. The political and ideological confrontation that characterized the twentieth century gave us two forms, each with a consistent ideological position, in which the body as a subject of education was understood from two different positions: one set from the left and communism and another, from Western democratic societies.The survival of these conflicting positions and their interests and different views on education, in a lengthy space of time, as a consequence threw two teaching approaches and two different educational models, in which the objectives and content of education differ , and with them the forms and methods of teaching. The need to define the cultural and educational approach, in every time and place, is now a pressing need and challenge the processes of teacher training, as responsible for shaping an advanced physical education, adjusted to the time and place, the interests and needs of citizens and the democratic values of modern society.

  12. Cost and performance analysis of physical security systems

    International Nuclear Information System (INIS)

    Hicks, M.J.; Yates, D.; Jago, W.H.; Phillips, A.W.

    1998-04-01

    Analysis of cost and performance of physical security systems can be a complex, multi-dimensional problem. There are a number of point tools that address various aspects of cost and performance analysis. Increased interest in cost tradeoffs of physical security alternatives has motivated development of an architecture called Cost and Performance Analysis (CPA), which takes a top-down approach to aligning cost and performance metrics. CPA incorporates results generated by existing physical security system performance analysis tools, and utilizes an existing cost analysis tool. The objective of this architecture is to offer comprehensive visualization of complex data to security analysts and decision-makers

  13. Settings for Physical Activity – Developing a Site-specific Physical Activity Behavior Model based on Multi-level Intervention Studies

    DEFF Research Database (Denmark)

    Troelsen, Jens; Klinker, Charlotte Demant; Breum, Lars

    Settings for Physical Activity – Developing a Site-specific Physical Activity Behavior Model based on Multi-level Intervention Studies Introduction: Ecological models of health behavior have potential as theoretical framework to comprehend the multiple levels of factors influencing physical...... to be taken into consideration. A theoretical implication of this finding is to develop a site-specific physical activity behavior model adding a layered structure to the ecological model representing the determinants related to the specific site. Support: This study was supported by TrygFonden, Realdania...... activity (PA). The potential is shown by the fact that there has been a dramatic increase in application of ecological models in research and practice. One proposed core principle is that an ecological model is most powerful if the model is behavior-specific. However, based on multi-level interventions...

  14. Modeling and simulation for cyber-physical system security research, development and applications.

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Guylaine M.; Atkins, William Dee; Schwartz, Moses Daniel; Chavez, Adrian R.; Urrea, Jorge Mario; Pattengale, Nicholas; McDonald, Michael James; Cassidy, Regis H.; Halbgewachs, Ronald D.; Richardson, Bryan T.; Mulder, John C.

    2010-02-01

    This paper describes a new hybrid modeling and simulation architecture developed at Sandia for understanding and developing protections against and mitigations for cyber threats upon control systems. It first outlines the challenges to PCS security that can be addressed using these technologies. The paper then describes Virtual Control System Environments (VCSE) that use this approach and briefly discusses security research that Sandia has performed using VCSE. It closes with recommendations to the control systems security community for applying this valuable technology.

  15. Modelling of the structure and physical properties of simple disordered systems

    International Nuclear Information System (INIS)

    Zagorodnij, A.G.; Gerasimov, O.I.

    1993-01-01

    The statistical modelling of a set of Bogolyubov distribution functions and self-consistent(within the Bogolyubov theory) interatomic potentials are proposed for the appraisals and calculations of many-particle contributions to structural, thermodynamic and polarisation al properties of the disordered systems. (author). 17 refs., 1 tab., 2 figs

  16. Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.

    Science.gov (United States)

    Housh, Mashor; Ohar, Ziv

    2017-03-01

    The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A PetriNet-Based Approach for Supporting Traceability in Cyber-Physical Manufacturing Systems.

    Science.gov (United States)

    Huang, Jiwei; Zhu, Yeping; Cheng, Bo; Lin, Chuang; Chen, Junliang

    2016-03-17

    With the growing popularity of complex dynamic activities in manufacturing processes, traceability of the entire life of every product has drawn significant attention especially for food, clinical materials, and similar items. This paper studies the traceability issue in cyber-physical manufacturing systems from a theoretical viewpoint. Petri net models are generalized for formulating dynamic manufacturing processes, based on which a detailed approach for enabling traceability analysis is presented. Models as well as algorithms are carefully designed, which can trace back the lifecycle of a possibly contaminated item. A practical prototype system for supporting traceability is designed, and a real-life case study of a quality control system for bee products is presented to validate the effectiveness of the approach.

  18. Supervisor synthesis in model-based automotive systems engineering

    NARCIS (Netherlands)

    van de Mortel - Fronczak, J.M.; van der Heijden, M.H.R.; Huisman, R.G.M.; Reniers, M.A.

    2014-01-01

    It is recognized by various engineering disciplines that models support and speed up the development of systems consisting of numerous closely related computational and physical elements, since they enable extensive and early functional and performance analysis of the designs and allow for control

  19. NOAA’s Physical Oceanographic Real-Time Systems (PORTS(Registered))

    Science.gov (United States)

    2010-06-01

    1 NOAA’s Physical Oceanographic Real - Time Systems (PORTS®) Darren Wright and Robert Bassett National Oceanic and Atmospheric Administration...operation of several Physical Oceanographic Real - Time Systems (PORTS®). 0-933957-38-1 ©2009 MTS Report Documentation Page Form ApprovedOMB No. 0704-0188...TITLE AND SUBTITLE NOAAs Physical Oceanographic Real - Time Systems (PORTS®) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  20. A Physical Analog Model of Strike-Slip Faulting for Model-Based Inquiry in the Classroom

    Science.gov (United States)

    Curren, I. S.; Glesener, G.

    2013-12-01

    Geoscience educators often use qualitative physical analog models to demonstrate natural processes; while these are effective teaching tools, they often neglect the fundamental scientific practices that make up the core of scientific work. Physical analog models with dynamic properties that can be manipulated and measured quantitatively in real-time, on the other hand, can give students the opportunity to explore, observe and empirically test their own ideas and hypotheses about the relevant target concepts within a classroom setting. Providing classroom content for inquiry, such as a hands-on physical analog model, which fosters students' production and refinement of their mental models in participatory and discursive activities have been argued by many education researchers to help students build a deeper understanding of science and scientific reasoning. We present a physical analog model that was originally developed by UCLA's Modeling and Educational Demonstrations Laboratory (MEDL) for the purpose of engaging students in the study of elastic rebound on a strike-slip fault; it was later modified to accommodate research of complex tectonic processes associated with strike-slip faulting, which are currently debated by scientists in both the geology and geophysics disciplines. During experimentation, it became clear that this new design could be used as a relevant resource for inquiry from which students would be able to make and discuss real-time empirical measurements and observations to help them infer causal accounts of theoretical and/or unobservable dynamic processes within the Earth's crust. In our poster session, we will: 1) demonstrate the physical analog model; 2) describe various real-time data collection tools, as well as quantitative methods students can use to process their data; and 3) describe the surficial, structural and relational similarities between the physical analog model and the target concepts intended for students to explore in the