WorldWideScience

Sample records for model phase diagrams

  1. Phase diagram of a truncated tetrahedral model

    Science.gov (United States)

    Krcmar, Roman; Gendiar, Andrej; Nishino, Tomotoshi

    2016-08-01

    Phase diagram of a discrete counterpart of the classical Heisenberg model, the truncated tetrahedral model, is analyzed on the square lattice, when the interaction is ferromagnetic. Each spin is represented by a unit vector that can point to one of the 12 vertices of the truncated tetrahedron, which is a continuous interpolation between the tetrahedron and the octahedron. Phase diagram of the model is determined by means of the statistical analog of the entanglement entropy, which is numerically calculated by the corner transfer matrix renormalization group method. The obtained phase diagram consists of four different phases, which are separated by five transition lines. In the parameter region, where the octahedral anisotropy is dominant, a weak first-order phase transition is observed.

  2. Phase Diagram of the Frustrated Hubbard Model

    Science.gov (United States)

    Zitzler, R.; Tong, N.-H.; Pruschke, Th.; Bulla, R.

    2004-07-01

    The Mott-Hubbard metal-insulator transition in the paramagnetic phase of the one-band Hubbard model has long been used to describe similar features in real materials like V2O3. In this Letter we investigate the antiferromagnetic phase of this model with frustration. At T=0 we find a first-order transition from a paramagnetic metal to an antiferromagnetic insulator. We show that even in the presence of strong magnetic frustration, the paramagnetic metal-insulator transition is hidden inside an extended antiferromagnetic region. This raises the question of whether the one-band Hubbard model with frustration is sufficient to describe the phase diagram of V2O3 or similar transition metal oxides even qualitatively.

  3. Phase diagram of a Schelling segregation model

    Science.gov (United States)

    Gauvin, L.; Vannimenus, J.; Nadal, J.-P.

    2009-07-01

    The collective behavior in a variant of Schelling’s segregation model is characterized with methods borrowed from statistical physics, in a context where their relevance was not conspicuous. A measure of segregation based on cluster geometry is defined and several quantities analogous to those used to describe physical lattice models at equilibrium are introduced. This physical approach allows to distinguish quantitatively several regimes and to characterize the transitions between them, leading to the building of a phase diagram. Some of the transitions evoke empirical sudden ethnic turnovers. We also establish links with ‘spin-1’ models in physics. Our approach provides generic tools to analyze the dynamics of other socio-economic systems.

  4. Modeling the phase diagram of carbon

    NARCIS (Netherlands)

    Ghiringhelli, L.M.; Los, J.H.; Meijer, E.J.; Fasolino, A.; Frenkel, D.

    2005-01-01

    We determined the phase diagram involving diamond, graphite, and liquid carbon using a recently developed semiempirical potential. Using accurate free-energy calculations, we computed the solid-solid and solid-liquid phase boundaries for pressures and temperatures up to 400 GPa and 12 000 K, respect

  5. Phase Diagram Modelling: Nickel - Aluminum - Chromium System

    Science.gov (United States)

    1998-04-01

    conducted by Kaufman and co-workers and their lattice stabilities have formed the basis of phase diagram calculations to the present day.1 In...mol ( 0.74827 Ni + 0.73305E-01 Cr + 0.83609E-02 Al ( 1200.00 C, 1.0000 <—s -.Molten alloy <—s <—s) atm, L- NiCrAl , a=0.82994 ) 0.00000

  6. Phase Diagram for Ashkin-Teller Model on Bethe Lattice

    Institute of Scientific and Technical Information of China (English)

    LE Jian-Xin; YANG Zhan-Ru

    2005-01-01

    Using the recursion method, we study the phase transitions of the Ashkin-Teller model on the Bethe lattice,restricting ourselves to the case of ferromagnetic interactions. The isotropic Ashkin-Teller model and the anisotropic one are respectively investigated, and exact expressions for the free energy and the magnetization are obtained. It can be found that each of the three varieties of phase diagrams, for the anisotropic Ashkin-Teller model, consists of four phases, I.e., the fully disordered paramagnetic phase Para, the fully ordered ferromagnetic phase Ferro, and two partially ordered ferromagnetic phases and , while the phase diagram, for the isotropic Ashkin-Teller model,contains three phases, I.e., the fully disordered paramagnetic phase Para, the fully ordered ferromagnetic phase Baxter Phase, and the partially ordered ferromagnetic phase .

  7. Revised Phase Diagram of the Gross-Neveu Model

    CERN Document Server

    Thies, M; Thies, Michael; Urlichs, Konrad

    2003-01-01

    We confirm earlier hints that the conventional phase diagram of the discrete chiral Gross-Neveu model in the large N limit is deficient at non-zero chemical potential. We present the corrected phase diagram constructed in mean field theory. It has three different phases, including a kink-antikink crystal phase. All transitions are second order. The driving mechanism for the new structure of baryonic matter in the Gross-Neveu model is an Overhauser type instability with gap formation at the Fermi surface.

  8. Phase diagram of anisotropic boson t-J model

    OpenAIRE

    Boninsegni, M.; Prokof'ev, N. V.

    2007-01-01

    We have studied by Quantum Monte Carlo simulations the low temperature phase diagram of a mixture of isotopic, hard core bosons, described by the t-Jz-Jperp model, with Jperp=a Jz. Coexistence of superfluid hole-rich and insulating, antiferromagnetically ordered hole-free phases is observed at sufficiently low hole density, for any a < 1. A two-component checkerboard supersolid phase is not observed. The experimental relevance and possible broader implications of these findings are discussed.

  9. Phase diagram of a model of the protein amelogenin

    Science.gov (United States)

    Haaga, Jason; Pemberton, Elizabeth; Gunton, J. D.; Rickman, J. M.

    2016-08-01

    There has been considerable recent interest in the self-assembly and phase behavior of models of colloidal and protein particles with anisotropic interactions. One example of particular interest is amelogenin, an important protein involved in the formation of dental enamel. Amelogenin is primarily hydrophobic with a 25-residue charged C-terminus tail. This protein undergoes a hierarchical assembly process that is crucial to mineral deposition, and experimental work has demonstrated that the deletion of the C-terminus tail prevents this self-assembly. A simplified model of amelogenin has been proposed in which the protein is treated as a hydrophobic sphere, interacting via the Asakura-Oosawa (AO) potential, with a tethered point charge on its surface. In this paper, we examine the effect of the Coulomb interaction between the point charges in altering the phase diagram of the AO model. For the parameter case specific to amelogenin, we find that the previous in vitro experimental and model conditions correspond to the system being near the low-density edge of the metastable region of the phase diagram. Our study illustrates more generally the importance of understanding the phase diagram for proteins, in that the kinetic pathway for self-assembly and the resulting aggregate morphology depends on the location of the initial state in the phase diagram.

  10. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  11. Microcanonical Phase Diagram of the BEG and Ising Models

    Institute of Scientific and Technical Information of China (English)

    李粮生; 郑宁; 史庆藩

    2012-01-01

    The density of states of long-range Blume-Emery-Criffiths (BEG) and short-range lsing models are obtained by using Wang-Landau sampling with adaptive windows in energy and magnetization space. With accurate density of states, we are able to calculate the mierocanonical specific heat of fixed magnetization introduced by Kastner et al. in the regions of positive and negative temperature. The microcanonical phase diagram of the Ising model shows a continuous phase transition at a negative temperature in energy and magnetization plane. However the phase diagram of the long-range model constructed by peaks of the microeanonieal specific heat looks obviously different from the Ising chart.

  12. Phase diagram of model anisotropic particles with octahedral symmetry

    OpenAIRE

    Noya, E. G.; Vega, C.; Doye, J. P. K.; Louis, A. A.

    2007-01-01

    We computed the phase diagram for a system of model anisotropic particles with six attractive patches in an octahedral arrangement. We chose to study this model for a relatively narrow value of the patch width where the lowest-energy configuration of the system is a simple cubic crystal. At this value of the patch width, there is no stable vapour-liquid phase separation, and there are three other crystalline phases in addition to the simple cubic crystal that is most stable at low pressure. F...

  13. Full Phase Diagram of the Massive Gross-Neveu Model

    CERN Document Server

    Schnetz, O; Urlichs, K; Schnetz, Oliver; Thies, Michael; Urlichs, Konrad

    2006-01-01

    The massive Gross-Neveu model is solved in the large N limit at finite temperature and chemical potential. The scalar potential is given in terms of Jacobi elliptic functions. It contains three parameters which are determined by transcendental equations. Self-consistency of the scalar potential is proved. The phase diagram for non-zero bare quark mass is found to contain a kink-antikink crystal phase as well as a massive fermion gas phase featuring a cross-over from light to heavy effective fermion mass. For zero bare quark mass we recover the three known phases kink-antikink crystal, massless fermion gas, and massive fermion gas. All phase transitions are shown to be of second order. Equations for the phase boundaries are given and solved numerically. Implications on condensed matter physics are indicated where our results generalize the bipolaron lattice in non-degenerate conducting polymers to finite temperature.

  14. Thermal fluctuations and phase diagrams of the phase-field crystal model with pinning.

    Science.gov (United States)

    Ramos, J A P; Granato, E; Achim, C V; Ying, S C; Elder, K R; Ala-Nissila, T

    2008-09-01

    We study the influence of thermal fluctuations in the phase diagram of a recently introduced two-dimensional phase field crystal model with an external pinning potential. The model provides a continuum description of pinned lattice systems allowing for both elastic deformations and topological defects. We introduce a nonconserved version of the model and determine the ground-state phase diagram as a function of lattice mismatch and strength of the pinning potential. Monte Carlo simulations are used to determine the phase diagram as a function of temperature near commensurate phases. The results show a rich phase diagram with commensurate, incommensurate, and liquidlike phases with a topology strongly dependent on the type of ordered structure. A finite-size scaling analysis of the melting transition for the c(2x2) commensurate phase shows that the thermal correlation length exponent nu and specific heat behavior are consistent with the Ising universality class as expected from analytical arguments.

  15. Simple thermodynamic model for the hydrogen phase diagram

    Science.gov (United States)

    Magdǎu, Ioan B.; Marqués, Miriam; Borgulya, Balint; Ackland, Graeme J.

    2017-03-01

    We describe a classical thermodynamic model that reproduces the main features of the solid hydrogen phase diagram. In particular, we show how the general structure types, which are found by electronic structure calculations and the quantum nature of the protons, can also be understood from a classical viewpoint. The model provides a picture not only of crystal structure, but also for the anomalous melting curve and insights into isotope effects, liquid metallisation, and infrared activity. The existence of a classical picture for this most quantum of condensed matter systems provides a surprising extension of the correspondence principle of quantum mechanics, in particular the equivalent effects of classical and quantum uncertainty.

  16. Collins Model and Phase Diagram of 2D Ternary System

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; CHEN Li-Rong

    2004-01-01

    The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.

  17. Phase diagram of the half-filled ionic Hubbard model

    Science.gov (United States)

    Bag, Soumen; Garg, Arti; Krishnamurthy, H. R.

    2015-06-01

    We study the phase diagram of the ionic Hubbard model (IHM) at half filling on a Bethe lattice of infinite connectivity using dynamical mean-field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered ionic potential Δ and the on-site Hubbard U . We find that for a finite Δ and at zero temperature, long-range antiferromagnetic (AFM) order sets in beyond a threshold U =UA F via a first-order phase transition. For U smaller than UA F the system is a correlated band insulator. Both methods show a clear evidence for a quantum transition to a half-metal (HM) phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U . We show that the results obtained within both methods have good qualitative and quantitative consistency in the intermediate-to-strong-coupling regime at zero temperature as well as at finite temperature. On increasing the temperature, the AFM order is lost via a first-order phase transition at a transition temperature TA F(U ,Δ ) [or, equivalently, on decreasing U below UA F(T ,Δ ) ], within both methods, for weak to intermediate values of U /t . In the strongly correlated regime, where the effective low-energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. At a finite temperature T , DMFT +CTQMC shows a second phase transition (not seen within DMFT +IPT ) on increasing U beyond UA F. At UN>UA F , when the Neel temperature TN for the effective Heisenberg model becomes lower than T , the AFM order is lost via a second-order transition. For U ≫Δ , TN˜t2/U (1 -x2) , where x =2 Δ /U and thus TN increases with increase in Δ /U . In the three-dimensional parameter space of (U /t ,T /t ,andΔ /t ) , as T increases, the surface of first

  18. Global phase diagram of a doped Kitaev-Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Satoshi [ORNL

    2013-01-01

    The global phase diagram of a doped Kitaev-Heisenberg model is studied using an $SU(2)$ slave-boson mean-field method. Near the Kitaev limit, $p$-wave superconducting states which break the time-reversal symmetry are stabilized as reported by You {\\it et al.} [Phys. Rev. B {\\bf 86}, 085145 (2012)] irrespective of the sign of the Kitaev interaction. By further doping, a $d$-wave superconducting state appears when the Kitaev interaction is antiferromagnetic, while another $p$-wave superconducting state appears when the Kitaev interaction is ferromagnetic. This $p$-wave superconducting state does not break the time-reversal symmetry as reported by Hyart {\\it et al.} [Phys. Rev. B {\\bf 85}, 140510 (2012)], and such a superconducting state also appears when the antiferromagnetic Kitaev interaction and the ferromagnetic Heisenberg interaction compete. This work, thus, demonstrates the clear difference between the antiferromagnetic Kitaev model and the ferromagnetic Kitaev model when carriers are doped while these models are equivalent in the undoped limit, and how novel superconducting states emerge when the Kitaev interaction and the Heisenberg interaction compete.

  19. Phase Equilibria Diagrams Database

    Science.gov (United States)

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  20. Modelling of phase diagrams of nanoalloys with complex metallic phases: application to Ni-Sn.

    Science.gov (United States)

    Kroupa, A; Káňa, T; Buršík, J; Zemanová, A; Šob, M

    2015-11-14

    A method for modelling of size-dependent phase diagrams was developed by combining the semiempirical CALPHAD method and ab initio calculations of surface stresses for intermetallic phases. A novel approach was devised for the calculation of surface energy, free of systematic errors from the selection of different parameters of the software (e.g. number of the k-points) and for handling layered structures and off-stoichiometric slabs. Our approach allows the determination of complex size-dependent phase diagrams of systems with intermetallic phases, which was not possible up to now. The method was verified for the modelling of the phase diagram of the Ni-Sn system and basic comparison with rare experimental results was shown. There is reasonable agreement between the calculated and experimental results. The modelling of size-dependent phase diagrams of real systems allows the prediction of phase equilibria existing in nanosystems and possible changes in material properties. There is a need for such knowledge and the existence of reliable data for simpler systems is crucial for further application of this approach. This should motivate future experimental work.

  1. The Collins Model and the Eutectic-Type and the Peritectic-Type Phase Diagrams

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; CHEN Li-Rong

    2003-01-01

    From the Gibbs free energy and the equations of two-phase equilibrium curves of the two-dimensionalbinary system which has the Lennard-Jones potential, using the Collins model, the eutectic-type phase diagram and theperitectic-type phase diagram of the binary system are obtained, whose results are quite similar to the behavior of thethree-dimensional (3D) substances.

  2. Matrix model approximations of fuzzy scalar field theories and their phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)

    2015-12-29

    We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.

  3. Exact ground-state phase diagrams for the spin-3/2 Blume Emery Griffiths model

    Science.gov (United States)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa

    2008-05-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and Jnon-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  4. Energy spectrum and phase diagrams of two-sublattice hard-core boson model

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2013-06-01

    Full Text Available The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the change of temperature, chemical potential and energy difference between local positions in sublattices is studied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-insulator (MI or charge-density (CDW phase diagrams as well as the phase with the Bose-Einstein condensate (SF phase are built.

  5. Engineering holographic phase diagrams

    Science.gov (United States)

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long

    2016-10-01

    By introducing interacting scalar fields, we tried to engineer physically motivated holographic phase diagrams which may be interesting in the context of various known condensed matter systems. We introduce an additional scalar field in the bulk which provides a tunable parameter in the boundary theory. By exploiting the way the tuning parameter changes the effective masses of the bulk interacting scalar fields, desired phase diagrams can be engineered for the boundary order parameters dual to those scalar fields. We give a few examples of generating phase diagrams with phase boundaries which are strikingly similar to the known quantum phases at low temperature such as the superconducting phases. However, the important difference is that all the phases we have discussed are characterized by neutral order parameters. At the end, we discuss if there exists any emerging scaling symmetry associated with a quantum critical point hidden under the dome in this phase diagram.

  6. Phase Diagram of the Gross-Neveu Model: Exact Results and Condensed Matter Precursors

    CERN Document Server

    Schnetz, O; Urlichs, K; Schnetz, Oliver; Thies, Michael; Urlichs, Konrad

    2004-01-01

    Recently the revised phase diagram of the (large N) Gross-Neveu model in 1+1 dimensions with discrete chiral symmetry has been determined numerically. It features three phases, a massless and a massive Fermi gas and a kink-antikink crystal. Here we investigate the phase diagram by analytical means, mapping the Dirac-Hartree-Fock equation onto the non-relativistic Schroedinger equation with the (single gap) Lame potential. It is pointed out that mathematically identical phase diagrams appeared in the condensed matter literature some time ago in the context of the Peierls-Froehlich model and ferromagnetic superconductors.

  7. Algorithmic phase diagrams

    Science.gov (United States)

    Hockney, Roger

    1987-01-01

    Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.

  8. Phase Diagrams and Tricritical Behaviour of the Spin-2 Ising Model in a Longitudinal Random Field

    Institute of Scientific and Technical Information of China (English)

    LIANG Ya-Qiu; WEI Guo-Zhu; ZHANG Qi; SONG Guo-Li

    2004-01-01

    @@ Within the framework of the effective-field theory with correlations, we study the ferromagnetic spin-2 randomfield Ising model (RFIM) in the presence of a crystal field on honeycomb (z = 3), square (z = 4) and simple cubic (z = 6) lattices. The effects of the crystal field and the longitudinal random field on the phase diagrams are investigated. Some characteristic features of the phase diagrams, such as the tricritical phenomena, reentrant phenomena and existence of two tricritical points, are found.

  9. Odd q-state clock spin-glass models in three dimensions, asymmetric phase diagrams, and multiple algebraically ordered phases.

    Science.gov (United States)

    Ilker, Efe; Berker, A Nihat

    2014-12-01

    Distinctive orderings and phase diagram structures are found, from renormalization-group theory, for odd q-state clock spin-glass models in d=3 dimensions. These models exhibit asymmetric phase diagrams, as is also the case for quantum Heisenberg spin-glass models. No finite-temperature spin-glass phase occurs. For all odd q≥5, algebraically ordered antiferromagnetic phases occur. One such phase is dominant and occurs for all q≥5. Other such phases occupy small low-temperature portions of the phase diagrams and occur for 5≤q≤15. All algebraically ordered phases have the same structure, determined by an attractive finite-temperature sink fixed point where a dominant and a subdominant pair states have the only nonzero Boltzmann weights. The phase transition critical exponents quickly saturate to the high q value.

  10. Dynamic phase transitions and dynamic phase diagrams of the Ising model on the Shastry-Sutherland lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Şeyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr [Department of Science Education, Education Faculty, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey); Deviren, Bayram [Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevsehir (Turkey)

    2016-03-15

    The dynamic phase transitions and dynamic phase diagrams are studied, within a mean-field approach, in the kinetic Ising model on the Shastry-Sutherland lattice under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The time-dependence behavior of order parameters and the behavior of average order parameters in a period, which is also called the dynamic order parameters, as a function of temperature, are investigated. Temperature dependence of the dynamic magnetizations, hysteresis loop areas and correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions as well as to obtain the dynamic phase transition temperatures. We present the dynamic phase diagrams in the magnetic field amplitude and temperature plane. The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena. The phase diagrams also contain paramagnetic (P), Néel (N), Collinear (C) phases, two coexistence or mixed regions, (N+C) and (N+P), which strongly depend on interaction parameters. - Highlights: • Dynamic magnetization properties of spin-1/2 Ising model on SSL are investigated. • Dynamic magnetization, hysteresis loop area, and correlation have been calculated. • The dynamic phase diagrams are constructed in (T/|J|, h/|J|) plane. • The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena.

  11. The phase diagram of the massive Gross-Neveu model, revisited

    CERN Document Server

    Schnetz, O; Urlichs, K; Schnetz, Oliver; Thies, Michael; Urlichs, Konrad

    2005-01-01

    The massive Gross-Neveu model is solved in the large N limit at finite temperature and chemical potential. The phase diagram features a kink-antikink crystal phase which was missed in previous works. Translated into the framework of condensed matter physics our results generalize the bipolaron lattice in non-degenerate conducting polymers to finite temperature.

  12. Phase diagram of the bosonic Kondo-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Foss-Feig, Michael; Rey, Ana Maria [JILA, National Institute of Standards and Technology, and University of Colorado, Boulder, Colorado 80309 (United States)

    2011-11-15

    We study a bosonic version of the Kondo lattice model with an onsite repulsion in the conduction band, implemented with alkali-metal atoms in two bands of an optical lattice. Using both weak- and strong-coupling perturbation theory, we find that at unit filling of the conduction bosons the superfluid-to-Mott-insulator transition should be accompanied by a magnetic transition from a ferromagnet (in the superfluid) to a paramagnet (in the Mott insulator). Furthermore, an analytic treatment of Gutzwiller mean-field theory reveals that quantum spin fluctuations induced by the Kondo exchange cause the otherwise continuous superfluid-to-Mott-insulator phase transition to be first order. We show that lattice separability imposes a serious constraint on proposals to exploit excited bands for quantum simulations, and discuss a way to overcome this constraint in the context of our model by using an experimentally realized nonseparable lattice. A method to probe the first-order nature of the transition based on collapses and revivals of the matter-wave field is also discussed.

  13. Phase Diagram of the Two-Dimensional Ising Model with Dipolar Interaction

    Institute of Scientific and Technical Information of China (English)

    SUN Gang; CHU Qian-Jin

    2001-01-01

    We treat the two-dimensional Ising model with the dipolar interaction by the numerical calculation under the restriction that the spin configurations are distributed with a 4 × 4 period. The phase diagram with respect to temperature and dipolar interaction strength is constructed. Most characters of the phase diagram are consistent with those obtained in the references by the Monte Carlo simulation, except that we find a new rectangle phase, which is ordered in the spin structure with the 1 × 2 rectangle.

  14. Complex-Temperature Phase Diagrams of 1D Spin Models with Next-Nearest-Neighbor Couplings

    OpenAIRE

    1997-01-01

    We study the dependence of complex-temperature phase diagrams on details of the Hamiltonian, focusing on the effect of non-nearest-neighbor spin-spin couplings. For this purpose, we consider a simple exactly solvable model, the 1D Ising model with nearest-neighbor (NN) and next-to-nearest-neighbor (NNN) couplings. We work out the exact phase diagrams for various values of $J_{nnn}/J_{nn}$ and compare these with the case of pure nearest-neighbor (NN) couplings. We also give some similar result...

  15. State-of-the-art models for the phase diagram of carbon and diamond nucleation

    NARCIS (Netherlands)

    Ghiringhelli, L.M.; Valeriani, C.; Los, J.H.; Meijer, E.J.; Fasolino, A.; Frenkel, D.

    2008-01-01

    We review recent developments in the modelling of the phase diagram and the kinetics of crystallization of carbon. In particular, we show that a particular class of bond-order potentials (the so-called LCBOP models) account well for many of the known structural and thermodynamic properties of carbon

  16. Towards Complete Phase Diagrams of a Holographic P-wave Superconductor Model

    CERN Document Server

    Cai, Rong-Gen; Li, Li-Fang; Yang, Run-Qiu

    2014-01-01

    We study in detail the phase structure of a holographic p-wave superconductor model in a five dimensional Einstein-Maxwell-complex vector field theory with a negative cosmological constant. To construct complete phase diagrams of the model, we consider both the soliton and black hole backgrounds. In both two cases, there exist second order, first order and zeroth order phase transitions, and the so-called "retrograde condensation" also happens. In particular, in the soliton case with the mass of the vector field being beyond a certain critical value, we find a series of phase transitions happen such as "insulator/superconductor/insulator/superconductor", as the chemical potential continuously increases. We construct complete phase diagrams in terms of temperature and chemical potential and find some new phase boundaries.

  17. Finite size effects on the phase diagram of the thermodynamical cluster model

    CERN Document Server

    Mallik, S; Chaudhuri, G

    2016-01-01

    The thermodynamical cluster model is known to present a first-order liquid-gas phase transition in the idealized case of an uncharged, infinitely extended medium. However, in most practical applications of this model, the system is finite and charged. In this paper we study how the phase diagram is modified by finite size and Coulomb effects. We show that the thermodynamic anomalies which are associated to the finite system counterpart of first order phase transitions, are correctly reproduced by this effective model. However, approximations in the calculation of the grandcanonical partition sum prevent obtaining the exact mapping between statistical ensembles which should be associated to finite systems. The ensemble inequivalence associated to the transition persists in the presence of Coulomb, but the phase diagram is deeply modified with respect to the simple liquid-gas phase transition characteristic of the neutral system.

  18. Phase diagram and criticality of the two-dimensional prisoner's dilemma model

    Science.gov (United States)

    Santos, M.; Ferreira, A. L.; Figueiredo, W.

    2017-07-01

    The stationary states of the prisoner's dilemma model are studied on a square lattice taking into account the role of a noise parameter in the decision-making process. Only first neighboring players—defectors and cooperators—are considered in each step of the game. Through Monte Carlo simulations we determined the phase diagrams of the model in the plane noise versus the temptation to defect for a large range of values of the noise parameter. We observed three phases: cooperators and defectors absorbing phases, and a coexistence phase between them. The phase transitions as well as the critical exponents associated with them were determined using both static and dynamical scaling laws.

  19. On the critical end point of the QCD and the NJL model phase diagrams

    CERN Document Server

    Ruggieri, Marco

    2009-01-01

    In this talk I compare the knowledge on the critical end point of the QCD phase diagram grasped from lattice calculations, with that obtained from Nambu--Jona-Lasinio (NJL) model computations. The original publication is available at http://www.sif.it/SIF/en/portal/journals

  20. Extended soft-wall model for the QCD phase diagram

    CERN Document Server

    Zöllner, Rico; Kampfer, Burkhard

    2016-01-01

    The soft-wall model, emerging as bottom-up holographic scenario anchored in the AdS/CFT correspondence, displays the disappearance of normalisable modes referring to vector mesons at a temperature $T_{\\dis}$ depending on the chemical potential $\\mu$, $T_{\\dis}(\\mu)$. We explore options for making $T_{\\dis}(\\mu)$ consistent with the freeze-out curve $T_{\\rm f.o.}(\\mu)$ from relativistic heavy-ion collisions and the cross-over curve $T_{\\rm c}(\\mu)$ from QCD at small values of $\\mu$.

  1. Collective neurodynamics: Phase diagram

    OpenAIRE

    Ovchinnikov, Igor V.; Li, Wenyuan; Schwartz, Robert N.; Hudson, Andrew E.; Meier, Karlheinz; Wang, Kang L.

    2016-01-01

    Here, we conceptualize the phase diagram of collective short-term bio-chemo-electric component of neurodynamics (S-ND) on the parameter space of externally, e.g., pharmacologically, controllable single-neuron parameters such as the resting potential and/or firing threshold, repolarization time, etc. This concept may become a useful tool for the systematization of knowledge in anesthesiology and provide a fruitful venue for future studies of the high-level S-ND functionalities such as short-te...

  2. Universal limiting pressure for a three-flavor color superconducting PNJL model phase diagram

    CERN Document Server

    Ayriyan, A; Blaschke, D; Lastowiecki, R

    2016-01-01

    The phase diagram of a three-flavor Polyakov-loop Nambu-Jona-Lasinio model is analyzed for the case of isospin symmetric matter with color superconducting phases. The coexistence of chiral symmetry breaking and two-flavor color superconductivity (2SC phase) and a thermodynamic instability due to the implementation of a color neutrality constraint is observed. It is suggested to use a universal hadronization pressure to estimate the phase border between hadronic and quark-gluon plasma phases. Trajectories of constant entropy per baryon are analyzed for conditions appropriate for heavy-ion collisions in the NICA-FAIR energy range.

  3. Considerations Concerning Matrix Diagram Transformations Associated with Mathematical Model Study of a Three-phase Transformer

    Directory of Open Access Journals (Sweden)

    Mihaela Poienar

    2014-09-01

    Full Text Available The clock hour figure mathematical model of a threephase transformer can be expressed, in the most plain form, through a 3X3 square matrix, called code matrix. The lines position reflect the modification in the high voltage windings terminal and the columns position reflect the modification in the low voltage winding terminal. The main changes on the transformer winding terminal are: the circular permutation of connection between windings; terminal supply reversal; reverse direction for the phase winding wrapping; reversal the beginning with the end for a phase winding; the connection conversion from N in Z between phase winding or inverse. The analytical form of these changes actually affect the configuration of the mathematical model expressed through a transformations diagram proposed and analyzed in two ways: bipolar version and unipolar version (fanwise. In the end of the paper are presented about the practical exploitation of the transformations diagram.

  4. Exact thermodynamics and phase diagram of integrable t-J model with chiral interaction

    Science.gov (United States)

    Tavares, T. S.; Ribeiro, G. A. P.

    2016-09-01

    We study the phase diagram and finite temperature properties of an integrable generalization of the one-dimensional super-symmetric t-J model containing interactions explicitly breaking parity-time reversal (PT) symmetries. To this purpose, we apply the quantum transfer matrix method which results in a finite set of non-linear integral equations. We obtain numerical solutions to these equations leading to results for thermodynamic quantities as a function of temperature, magnetic field, particle density and staggering parameter. Studying the maxima lines of entropy at low but non zero temperature reveals the phase diagram of the model. There are ten different phases which we may classify in terms of the qualitative behaviour of auxiliary functions, closely related to the dressed energy functions.

  5. Ground-State Phase Diagram of Transverse Spin-2 Ising Model with Longitudinal Crystal-Field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/z J-longitudinal crystal D/zJ field plane. We find that there are the first order-order phase transitions in a very smallrange of D/zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions.

  6. Pseudo-critical point in anomalous phase diagrams of simple plasma models

    Science.gov (United States)

    Chigvintsev, A. Yu; Iosilevskiy, I. L.; Noginova, L. Yu

    2016-11-01

    Anomalous phase diagrams in subclass of simplified (“non-associative”) Coulomb models is under discussion. The common feature of this subclass is absence on definition of individual correlations for charges of opposite sign. It is e.g. modified OCP of ions on uniformly compressible background of ideal Fermi-gas of electrons OCP(∼), or a superposition of two non-ideal OCP(∼) models of ions and electrons etc. In contrast to the ordinary OCP model on non-compressible (“rigid”) background OCP(#) two new phase transitions with upper critical point, boiling and sublimation, appear in OCP(∼) phase diagram in addition to the well-known Wigner crystallization. The point is that the topology of phase diagram in OCP(∼) becomes anomalous at high enough value of ionic charge number Z. Namely, the only one unified crystal- fluid phase transition without critical point exists as continuous superposition of melting and sublimation in OCP(∼) at the interval (Z 1 equation of state provided by Chabrier and Potekhin (1998 Phys. Rev. E 58 4941).

  7. Atomic density functional and diagram of structures in the phase field crystal model

    Science.gov (United States)

    Ankudinov, V. E.; Galenko, P. K.; Kropotin, N. V.; Krivilyov, M. D.

    2016-02-01

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.

  8. Phase diagram and reentrance for the 3D Edwards–Anderson model using information theory

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, V. [Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avenida Diagonal las Torres 2640, Peñalolén, Santiago (Chile); Saravia, G.; Vogel, E.E. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile)

    2014-12-15

    Data compressor techniques are used to study the phase diagram of the generalized Edwards–Anderson model in three dimensions covering the full range of mixture between ferromagnetic (concentration 1−x) and antiferromagnetic interactions (concentration x). The recently proposed data compressor wlzip is used to recognize criticality by the maximum information content in the files storing the simulation processes. The method allows not only the characterization of the ferromagnetic to paramagnetic (FP) transition (x<0.22, or x>0.78) but also it equally well yields the spin-glass to paramagnetic (SP) transition (0.22phase into the spin-glass phase is found in the vicinity of the multicritical point. The differences in the ways to apply the new method to FP and SP transitions are reported. A phase diagram for the entire range of x based entirely on the use of compression techniques is obtained and discussed. The advantages and disadvantages of the method of data compression as compared to other methods to deal with magnetic phase transitions are brought out and explained. - Highlights: • Information theory is used to give the phase diagram for the Edwards–Anderson model. • Ferromagnetic to paramagnetic and spin-glass to paramagnetic transitions are found. • A reentrant behavior is reported near the triple point. • Data compressor wlzip can operate for the full range of the phase diagram. • Results are robust with respect to equilibration and lattices size effects are small.

  9. Regularization dependence on phase diagram in Nambu-Jona-Lasinio model

    CERN Document Server

    Inagaki, T; Kohyama, H

    2015-01-01

    We study the regularization dependence on meson properties and the phase diagram of quark matter by using the two flavor Nambu-Jona-Lasinio model. We find that the meson properties and the phase structure do not show drastically difference depending the regularization procedures. We also find that the location or the existence of the critical end point highly depends on the regularization methods and the model parameters. Then we think that regularization and parameters are carefully considered when one investigates the QCD critical end point in the effective model studies.

  10. Phase diagram of the two-fluid Lipkin model: A "butterfly" catastrophe

    Science.gov (United States)

    García-Ramos, J. E.; Pérez-Fernández, P.; Arias, J. M.; Freire, E.

    2016-03-01

    Background: In the past few decades quantum phase transitions have been of great interest in nuclear physics. In this context, two-fluid algebraic models are ideal systems to study how the concept of quantum phase transition evolves when moving into more complex systems, but the number of publications along this line has been scarce up to now. Purpose: We intend to determine the phase diagram of a two-fluid Lipkin model that resembles the nuclear proton-neutron interacting boson model Hamiltonian using both numerical results and analytic tools, i.e., catastrophe theory, and compare the mean-field results with exact diagonalizations for large systems. Method: The mean-field energy surface of a consistent-Q -like two-fluid Lipkin Hamiltonian is studied and compared with exact results coming from a direct diagonalization. The mean-field results are analyzed using the framework of catastrophe theory. Results: The phase diagram of the model is obtained and the order of the different phase-transition lines and surfaces is determined using a catastrophe theory analysis. Conclusions: There are two first-order surfaces in the phase diagram, one separating the spherical and the deformed shapes, while the other separates two different deformed phases. A second-order line, where the later surfaces merge, is found. This line finishes in a transition point with a divergence in the second-order derivative of the energy that corresponds to a tricritical point in the language of the Ginzburg-Landau theory for phase transitions.

  11. Hysteresis Loops and Phase Diagrams of the Spin-1 Ising Model in a Transverse Crystal Field

    Institute of Scientific and Technical Information of China (English)

    S. Bouhou; I. Essaoudi; A. Ainane; M. Saber; J. J. de Miguel; M. Kerouad1

    2012-01-01

    Within the framework of the effective-Geld theory with a probability distribution technique, which accounts for the self-spin correlation functions, the ferromagnetic spin-l Ising model with a transverse crystal field on honeycomb, square and simple cubic lattices is studied. We have investigated the effect of the transverse crystal field on the phase diagrams, magnetization, hysteresis loops and χz,h of the system. A number of interesting phenomena of the system are discussed.%Within the framework of the effective-field theory with a probability distribution technique,which accounts for the self-spin correlation functions,the ferromagnetic spin-1 Ising model with a transverse crystal field on honeycomb,square and simple cubic lattices is studied.We have investigated the effect of the transverse crystal field on the phase diagrams,magnetization,hysteresis loops and xz,h of the system.A number of interesting phenomena of the system are discussed.

  12. Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices

    OpenAIRE

    Akagi, Yutaka; Motome, Yukitoshi

    2012-01-01

    We investigate the ground-state phase diagram of the Kondo lattice model with classical localized spins on triangular-to-kagome lattices by using a variational calculation. We identify the parameter regions where a four-sublattice noncoplanar order is stable with a finite spin scalar chirality while changing the lattice structure from triangular to kagome continuously. Although the noncoplanar spin states appear in a wide range of parameters, the spin configurations on the kagome network beco...

  13. Ground state phase diagram of the half-filled bilayer Hubbard model

    OpenAIRE

    Golor, Michael; Reckling, Timo; Classen, Laura; Scherer, Michael M.; Wessel, Stefan

    2014-01-01

    Employing a combination of functional renormalization group calculations and projective determinantal quantum Monte Carlo simulations, we examine the Hubbard model on the square lattice bilayer at half filling. From this combined analysis, we obtain a comprehensive account on the ground state phase diagram with respect to the extent of the system's metallic and (antiferromagnetically ordered) Mott-insulating as well as band-insulating regions. By means of an unbiased functional renormalizatio...

  14. Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Science.gov (United States)

    Li, Huan; Song, Hai-Feng; Liu, Yu

    2016-11-01

    We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.

  15. Phase diagram and criticality of the random anisotropy model in the large-N limit

    Science.gov (United States)

    Mouhanna, Dominique; Tarjus, Gilles

    2016-12-01

    We revisit the thermodynamic behavior of the random-anisotropy O(N ) model by investigating its large-N limit. We focus on the system at zero temperature where the mean-field-like artifacts of the large-N limit are less severe. We analyze the connection between the description in terms of self-consistent Schwinger-Dyson equations and the functional renormalization group. We provide a unified description of the phase diagram and critical behavior of the model and clarify the nature of the possible "glassy" phases. Finally we discuss the implications of our findings for the finite-N and finite-temperature systems.

  16. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M., E-mail: mrivera@fisica.unam.m [Imperial College London, Department of Chemistry, South Kensington Campus, London SW7 2AZ (United Kingdom); Rios-Reyes, C.H. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, Mexico D.F. (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico); Mendoza-Huizar, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico)

    2011-04-15

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: > Electrodeposition of cobalt clusters. > Mono to multidomain magnetic transition. > Magnetic phase diagram.

  17. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    Science.gov (United States)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  18. Vector interaction strength in Polyakov-Nambu-Jona-Lasinio models from hadron-quark phase diagrams

    CERN Document Server

    Lourenço, O; Frederico, T; Delfino, A; Malheiro, M

    2012-01-01

    We estimate the vector interaction strength of the Polyakov-Nambu-Jona-Lasinio (PNJL) parametrizations, assuming that its transition curves should be as close as possible of the recently studied RMF-PNJL hadron-quark phase diagrams. Such diagrams are obtained matching relativistic mean-field hadronic models, and the PNJL quark ones. By using this method we found for the magnitude of the vector interaction, often treated as a free parameter, a range of 7.66 GeV$^{-2}\\lesssim G_V \\lesssim 16.13$ GeV$^{-2}$, or equivalently, $1.52 \\lesssim G_V/G_s \\lesssim 3.2$, with $G_s$ being the scalar coupling constant of the model. These values are compatible but restricts the range of 4 GeV$^{-2}\\lesssim G_V \\lesssim 19$ GeV$^{-2}$, recently obtained from lattice QCD data through a different mean-field model approach.

  19. The fluctuational region on the phase diagram of lattice Weinberg - Salam model

    CERN Document Server

    Zubkov, M A

    2009-01-01

    The lattice Weinberg - Salam model without fermions is investigated numerically for the realistic choice of bare coupling constants correspondent to the value of the Weinberg angle $\\theta_W \\sim 30^o$, and the fine structure constant $\\alpha \\sim {1/100}$. On the phase diagram there exists the vicinity of the phase transition between the physical Higgs phase and the unphysical symmetric phase, where the fluctuations of the scalar field become strong. The classical Nambu monopole can be considered as an embryo of the unphysical symmetric phase within the physical phase. In the fluctuational region quantum Nambu monopoles are dense and, therefore, the perturbation expansion around trivial vacuum cannot be applied. The maximal value of the cutoff at the given values of coupling constants calculated using the lattices of sizes $8^3\\times 16$ and $12^3\\times 16$ is $\\Lambda_c \\sim 1.4 \\pm 0.2$ Tev.

  20. Phase diagram determination and thermodynamic modeling of the Cu-Mg-Si system

    Directory of Open Access Journals (Sweden)

    Zhao J.

    2016-01-01

    Full Text Available 13 ternary Cu-Mg-Si alloys were prepared by means of the powder metallurgy method. Phase equilibria at 500 and 700 oC of the Cu-Mg-Si system were determined using X-ray diffraction analysis (XRD. The existence of 3 ternary compounds in this system was verified: CuMgSi_Sigma (Cu16Mg6Si7, Tau (Cu3Mg2Si, and Laves ((Cu0.8Si0.22(Mg0.88Cu0.12. A thermodynamic modeling for the Cu-Mg-Si system was then conducted on the basis of the experimental data obtained in this work and those critically reviewed from the literature. The complex phase relationship between Laves phase and other phases has been successfully modeled in this work. Comparisons between the calculated and the measured phase diagrams show that most of the experimental data can be reproduced by the presently obtained thermodynamic parameters.

  1. Phase Diagram of the Frustrated Square-Lattice Hubbard Model: Variational Cluster Approach

    Science.gov (United States)

    Misumi, Kazuma; Kaneko, Tatsuya; Ohta, Yukinori

    2016-06-01

    The variational cluster approximation is used to study the frustrated Hubbard model at half filling defined on the two-dimensional square lattice with anisotropic next-nearest-neighbor hopping parameters. We calculate the ground-state phase diagrams of the model in a wide parameter space for a variety of lattice geometries, including square, crossed-square, and triangular lattices. We examine the Mott metal-insulator transition and show that, in the Mott insulating phase, magnetic phases with Néel, collinear, and spiral orders appear in relevant parameter regions, and in an intermediate region between these phases, a nonmagnetic insulating phase caused by the quantum fluctuations in the geometrically frustrated spin degrees of freedom emerges.

  2. Phase diagram of the two-fluid Lipkin model: a butterfly catastrophe

    CERN Document Server

    García-Ramos, J E; Arias, J M; Freire, E

    2016-01-01

    Background: In the last few decades quantum phase transitions have been of great interest in Nuclear Physics. In this context, two-fluid algebraic models are ideal systems to study how the concept of quantum phase transition evolves when moving into more complex systems, but the number of publications along this line has been scarce up to now. Purpose: We intend to determine the phase diagram of a two-fluid Lipkin model, that resembles the nuclear proton-neutron interacting boson model Hamiltonian, using both numerical results and analytic tools, i.e., catastrophe theory, and to compare the mean-field results with exact diagonalizations for large systems. Method: The mean-field energy surface of a consistent-Q-like two-fluid Lipkin Hamiltonian is studied and compared with exact results coming from a direct diagonalization. The mean-field results are analyzed using the framework of catastrophe theory. Results: The phase diagram of the model is obtained and the order of the different phase-transition lines and ...

  3. Phase diagram and spin correlations of the Kitaev-Heisenberg model: Importance of quantum effects

    Science.gov (United States)

    Gotfryd, Dorota; Rusnačko, Juraj; Wohlfeld, Krzysztof; Jackeli, George; Chaloupka, Jiří; Oleś, Andrzej M.

    2017-01-01

    We explore the phase diagram of the Kitaev-Heisenberg model with nearest neighbor interactions on the honeycomb lattice using the exact diagonalization of finite systems combined with the cluster mean field approximation, and supplemented by the insights from analytic approaches: the linear spin-wave and second-order perturbation theories. This study confirms that by varying the balance between the Heisenberg and Kitaev term, frustrated exchange interactions stabilize in this model either one of four phases with magnetic long range order: Néel phase, ferromagnetic phase, and two other phases with coexisting antiferromagnetic and ferromagnetic bonds, zigzag and stripy phase, or one of two distinct spin-liquid phases. Out of these latter disordered phases, the one with ferromagnetic Kitaev interactions has a substantially broader range of stability as the neighboring competing ordered phases, ferromagnetic and stripy, have very weak quantum fluctuations. Focusing on the quantum spin-liquid phases, we study spatial spin correlations and dynamic spin structure factor of the model by the exact diagonalization technique, and discuss the evolution of gapped low-energy spin response across the quantum phase transitions between the disordered spin liquid and phases with long range magnetic order.

  4. Phase diagram of crushed powders

    Science.gov (United States)

    Bodard, Sébastien; Jalbaud, Olivier; Saurel, Richard; Burtschell, Yves; Lapebie, Emmanuel

    2016-12-01

    Compression of monodisperse powder samples in quasistatic conditions is addressed in a pressure range such that particles fragmentation occurs while the solid remains incompressible (typical pressure range of 1-300 MPa for glass powders). For a granular bed made of particles of given size, the existence of three stages is observed during compression and crush up. First, classical compression occurs and the pressure of the granular bed increases along a characteristic curve as the volume decreases. Then, a critical pressure is reached for which fragmentation begins. During the fragmentation process, the granular pressure stays constant in a given volume range. At the end of this second stage, 20%-50% of initial grains are reduced to finer particles, depending on the initial size. Then the compression undergoes the third stage and the pressure increases along another characteristic curve, in the absence of extra fragmentation. The present paper analyses the analogies between the phase transition in liquid-vapour systems and powder compression with crush-up. Fragmentation diagram for a soda lime glass is determined by experimental means. The analogues of the saturation pressure and latent heat of phase change are determined. Two thermodynamic models are then examined to represent the crush-up diagram. The first one uses piecewise functions while the second one is of van der Waals type. Both equations of state relate granular pressure, solid volume fraction, and initial particle diameter. The piecewise functions approach provides reasonable representations of the phase diagram while the van der Waals one fails.

  5. Phase diagrams and dynamics of a computationally efficient map-based neuron model

    Science.gov (United States)

    Gonsalves, Jheniffer J.; Tragtenberg, Marcelo H. R.

    2017-01-01

    We introduce a new map-based neuron model derived from the dynamical perceptron family that has the best compromise between computational efficiency, analytical tractability, reduced parameter space and many dynamical behaviors. We calculate bifurcation and phase diagrams analytically and computationally that underpins a rich repertoire of autonomous and excitable dynamical behaviors. We report the existence of a new regime of cardiac spikes corresponding to nonchaotic aperiodic behavior. We compare the features of our model to standard neuron models currently available in the literature. PMID:28358843

  6. Phase Diagrams of Nuclear Pasta

    Science.gov (United States)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2016-03-01

    In the inner crust of neutrons stars, where matter is near the saturation density, protons and neutrons arrange themselves into complex structures called nuclear pasta. Early theoretical work predicted a simple graduated hierarchy of pasta phases, consisting of spheres, cylinders, slabs, and uniform matter with voids. Previous work has simulated these phases with a simple classical model and has shown that the formation of these structures is dependent on the temperature, density, and proton fraction. However, previous work only studied a limited range of these parameters due to computational limitations. Thanks to recent advances in computing it is now possible to survey the structure of nuclear pasta for a larger range of parameters. By simulating nuclear pasta with constant temperature and proton fraction in an expanding simulation volume we are able to study the phase transitions in nuclear pasta, and thus produce a set of phase diagrams. We report on these phase diagrams as well as newly identified phases of nuclear pasta and discuss their implications for neutron star observables.

  7. Finite-Temperature Phase Diagram of the d=3 tJ Model with Quenched Disorder

    Science.gov (United States)

    Berker, A. Nihat; Hinczewski, Michael

    2008-03-01

    We study a quenched disordered d=3 tJ Hamiltonian with static vacancies as a model of nonmagnetic impurities in high-Tc materials.[1,2] Using a position-space renormalization-group approach, we calculate the evolution of the finite-temperature phase diagram with impurity concentration p, and find several features with close experimental parallels: away from half-filling we see the rapid destruction of a spin-singlet liquid phase (analogous to the superconducting phase in cuprates) which is eliminated for p >=0.05; in the same region for these dilute impurity concentrations we observe an enhancement of antiferromagnetism. The antiferromagnetic phase near half-filling is robust against impurity addition, and disappears only for p >=0.40. [1] M. Hinczewski and A.N. Berker, Eur. Phys. J. B 51, 461 (2006). [2] M. Hinczewski and A.N. Berker, arXiv:cond-mat/0607171v1 [cond-mat.str-el].

  8. Ion mixing and phase diagrams

    Science.gov (United States)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  9. Coarse-grained models of stripe forming systems: phase diagrams, anomalies, and scaling hypothesis.

    Science.gov (United States)

    Mendoza-Coto, Alejandro; Stariolo, Daniel A

    2012-11-01

    Two coarse-grained models which capture some universal characteristics of stripe forming systems are studied. At high temperatures, the structure factors of both models attain their maxima on a circle in reciprocal space, as a consequence of generic isotropic competing interactions. Although this is known to lead to some universal properties, we show that the phase diagrams have important differences, which are a consequence of the particular k dependence of the fluctuation spectrum in each model. The phase diagrams are computed in a mean field approximation and also after inclusion of small fluctuations, which are shown to modify drastically the mean field behavior. Observables like the modulation length and magnetization profiles are computed for the whole temperature range accessible to both models and some important differences in behavior are observed. A stripe compression modulus is computed, showing an anomalous behavior with temperature as recently reported in related models. Also, a recently proposed scaling hypothesis for modulated systems is tested and found to be valid for both models studied.

  10. Phase diagram of the one-dimensional anisotropic Kondo-necklace model

    Science.gov (United States)

    Mahmoudian, S.; Langari, A.

    2008-01-01

    The one-dimensional anisotropic Kondo-necklace model has been studied by several methods. It is shown that a mean field approach fails to gain the correct phase diagram for the Ising-type anisotropy. We then applied the spin wave theory which is justified for the anisotropic case. We have derived the phase diagram between the antiferromagnetic long range order and the Kondo singlet phases. We have found that the exchange interaction (J) between the itinerant spins and local ones enhances the quantum fluctuations around the classical long range antiferromagnetic order and finally destroy the ordered phase at the critical value Jc . Moreover, our results show that the onset of anisotropy in the XY term of the itinerant interactions develops the antiferromagnetic order for J

  11. Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in a Random Field

    Institute of Scientific and Technical Information of China (English)

    LIANG Ya-Qiu; WEI Guo-Zhu; SONG Li-Li; SONG Guo-Li; ZANG Shu-Liang

    2004-01-01

    The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.

  12. Mapping the QCD Phase Diagram with Susceptibilities of Conserved Charges within Nambu-Jonna-Lasinio Model

    CERN Document Server

    Fan, Wenkai; Zong, Hong-Shi

    2016-01-01

    Under the chemical equilibrium and electric charge neutrality conditions, we evaluate the $2$nd to $4$th order baryon, charge and strangeness susceptibilities near a chiral critical point using the Nambu--Jona--Lasinio model. Because of the considerati on of electron chemical potential, up and down quarks are no longer degenerate, but have a chemical potential difference. This isospin chemical potential does not bring new qualitative features in the QCD phase diagram. Furthermore, baryon number susce ptibilities are found to be of the greatest magnitude, offering the strongest signal. Whereas the strangeness susceptibilities have the smallest divergence dominating area, owing to the large strange quark mass.

  13. Phase diagram of a two-dimensional large- Q Potts model in an external field

    Science.gov (United States)

    Tsai, Shan-Ho; Landau, D. P.

    2009-04-01

    We use a two-dimensional Wang-Landau sampling algorithm to map out the phase diagram of a Q-state Potts model with Q⩽10 in an external field H that couples to one state. Finite-size scaling analyses show that for large Q the first-order phase transition point at H=0 is in fact a triple point at which three first-order phase transition lines meet. One such line is restricted to H=0; another line has H⩽0. The third line, which starts at the H=0 triple point, ends at a critical point (T,H) which needs to be located in a two-dimensional parameter space. The critical field H(Q) is positive and decreases with decreasing Q, which is in qualitative agreement with previous predictions.

  14. Multicritical phase diagrams of the Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases

    Science.gov (United States)

    Ekiz, Cesur; Keskin, Mustafa

    2002-08-01

    We investigate the thermal variations of the spin-1 Blume-Emergy-Griffiths model with the repulsive biquadratic interaction by using the lowest approximation of the cluster-variation method. Besides the stable branches of the order parameters, we obtain the metastable and unstable parts of these curves and also find phase transitions of the metastable branches of the order parameters. The classification of the stable, metastable, and unstable states is made by comparing the free-energy values of these states. We also study the dynamics of the model by the path probability method in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. This is done by studying the relaxation of the order parameters and as well as expressing the solution of the dynamic equations by means of the flow diagrams. Finally, we present the metastable phase diagrams in addition to the equilibrium phase diagrams in (kT/J,D/J) and (kT/J,K/J) planes.

  15. Phase diagram of the t U2 Hamiltonian of the weak coupling Hubbard model

    Science.gov (United States)

    Yanagisawa, Takashi

    2008-02-01

    We determine the symmetry of Cooper pairs, on the basis of the perturbation theory in terms of the Coulomb interaction U, for the two-dimensional Hubbard model on the square lattice. The phase diagram is investigated in detail. The Hubbard model for small U is mapped on to an effective Hamiltonian with the attractive interaction using the canonical transformation: Heff = eSHe-S. The gap equation of the weak coupling formulation is solved without numerical ambiguity to determine the symmetry of Cooper pairs. The superconducting gap crucially depends on the position of the van Hove singularity. We show the phase diagram in the plane of the electron filling ne and the next nearest-neighbor transfer t'. The d-wave pairing is dominant for the square lattice in a wide range of ne and t'. The d-wave pairing is also stable for the square lattice with anisotropic t'. The three-band d-p model is also investigated, for which the d-wave pairing is stable in a wide range of ne and tpp (the transfer between neighboring oxygen atoms). In the weak coupling analysis, the second-neighbor transfer parameter -t' could not be so large so that the optimum doping rate is in the range of 0.8 < ne < 0.85.

  16. Exotic phase diagram of a cluster charging model of bosons on the kagome lattice

    Science.gov (United States)

    Isakov, Sergei V.; Paramekanti, Arun; Kim, Yong Baek

    2007-12-01

    We study a model of hard-core bosons on the kagome lattice with short-range hopping (t) and repulsive interactions (V) . This model directly maps onto an easy-axis S=1/2 XXZ model on the kagome lattice and is also related, at large V/t , to a quantum dimer model on the triangular lattice. Using quantum Monte Carlo numerics, we map out the phase diagram of this model at half-filling. At T=0 , we show that this model exhibits a superfluid phase at small V/t and an insulating phase at large V/t , separated by a continuous quantum phase transition at Vc/t≈19.8 . The insulating phase at T=0 appears to have no conventional broken symmetries, and is thus a uniform Mott insulator (a “spin liquid” in magnetic language). We characterize this insulating phase as a uniform Z2 fractionalized insulator from the topological order in the ground state and estimate its vison gap. Consistent with this identification, there is no apparent thermal phase transition upon heating the insulator. The insulating phase instead smoothly crosses over into the high temperature paramagnet via an intermediate cooperative paramagnetic regime. We also study the superfluid-to-normal thermal transition for V

  17. Phase Diagrams of One-Dimensional Commensurate-Incommensurate TransitionModel with Triple-Well Interactions

    Institute of Scientific and Technical Information of China (English)

    XU Hai-Bo; XU Ai-Guo; WANG Guang-Rui; CHEN Shi-Gang

    2000-01-01

    We generalize the Frenkel-Kontorov model to the Frenkel-Kontorova-Devonshire model in which the interaction is the triple-well potential. By use of the effective potential method, numerical solutions of eigenvalue problem are used to work out the exact phase diagrams of a triple-well potential W and a piecewise parabolic potential V.According to the winding number ω and the rotation number Ω, we analyze the periodicity of the phase diagram and find some complex but regular phase structures. The properties of the phase structures are closely related to the period of the external potential

  18. Structural phase diagrams of supported oxide nanowires from extended Frenkel-Kontorova models of diatomic chains.

    Science.gov (United States)

    Noguera, C; Goniakowski, J

    2013-08-28

    Relying on Frenkel Kontorova (FK) models of diatomic chains of increasing levels of complexity, this study presents an overall view of the diversity of structural effects that a compound (oxide) chain supported on a metal may display and helps assigning them to precise microscopic mechanisms. At each stage, the models are solved numerically, in order to provide phase diagrams as a function of chain-substrate interaction and misfit. Analytic derivations of transition lines are also provided within the continuum approximation. Their predictions are shown to quantitatively account for the numerical results, thus showing the validity of the continuum approximation in the misfit range under consideration. The present study thus extends our knowledge of the FK model by specifically focusing on diatomic chains and brings new information on a potentially interesting system which experimentalists just start being able to synthesize--oxide chains on metal substrates.

  19. Quantum phase diagram of the half filled Hubbard model with bond-charge interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dobry, A.O., E-mail: dobry@ifir-conicet.gov.a [Facultad de Ciencias Exactas Ingenieria y Agrimensura, Universidad Nacional de Rosario and Instituto de Fisica Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Aligia, A.A. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 Bariloche (Argentina)

    2011-02-21

    Using quantum field theory and bosonization, we determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U at half-filling, for small values of the interactions. We show that it is essential to take into account formally irrelevant terms of order X. They generate relevant terms proportional to X{sup 2} in the flow of the renormalization group (RG). These terms are calculated using operator product expansions. The model shows three phases separated by a charge transition at U=U{sub c} and a spin transition at U=U{sub s}>U{sub c}. For UU{sub s}, the system is in the spin-density wave phase as in the usual Hubbard model. For intermediate values U{sub c}phase, which is absent in the ordinary Hubbard model with X=0. We obtain that the charge transition remains at U{sub c}=0 for X{ne}0. Solving the RG equations for the spin sector, we provide an analytical expression for U{sub s}(X). The results, with only one adjustable parameter, are in excellent agreement with numerical ones for X

  20. Expanding the thermodynamical potential and analysis of the possible phase diagram of deconfinement in the FL model

    Institute of Scientific and Technical Information of China (English)

    SHU Song; LI Jia-Rong

    2012-01-01

    Deconfinement phase transition is studied in the FL model at finite temperature and chemical potential.At MFT approximation,phase transition can only be first order in the whole μ-T phase plane.Using a Landau expansion,we further study the phase transition order and the possible phase diagram of deconfinement. We discuss the possibilities of second order phase transitions in the FL model. From our analysis,if the cubic term in the Landau expansion could be cancelled by the higher order fluctuations,second order phase transition may occur.By an ansatz of the Landau parameters,we obtain a possible phase diagram with both the first and second order phase transitions,including the tri-critical point which is similar to that of the chiral phase transition.

  1. Study of Monte Carlo Simulation Method for Methane Phase Diagram Prediction using Two Different Potential Models

    KAUST Repository

    Kadoura, Ahmad

    2011-06-06

    Lennard‐Jones (L‐J) and Buckingham exponential‐6 (exp‐6) potential models were used to produce isotherms for methane at temperatures below and above critical one. Molecular simulation approach, particularly Monte Carlo simulations, were employed to create these isotherms working with both canonical and Gibbs ensembles. Experiments in canonical ensemble with each model were conducted to estimate pressures at a range of temperatures above methane critical temperature. Results were collected and compared to experimental data existing in literature; both models showed an elegant agreement with the experimental data. In parallel, experiments below critical temperature were run in Gibbs ensemble using L‐J model only. Upon comparing results with experimental ones, a good fit was obtained with small deviations. The work was further developed by adding some statistical studies in order to achieve better understanding and interpretation to the estimated quantities by the simulation. Methane phase diagrams were successfully reproduced by an efficient molecular simulation technique with different potential models. This relatively simple demonstration shows how powerful molecular simulation methods could be, hence further applications on more complicated systems are considered. Prediction of phase behavior of elemental sulfur in sour natural gases has been an interesting and challenging field in oil and gas industry. Determination of elemental sulfur solubility conditions helps avoiding all kinds of problems caused by its dissolution in gas production and transportation processes. For this purpose, further enhancement to the methods used is to be considered in order to successfully simulate elemental sulfur phase behavior in sour natural gases mixtures.

  2. Isomorphs in the phase diagram of a model liquid without inverse power law repulsion

    DEFF Research Database (Denmark)

    Veldhorst, Arnold Adriaan; Bøhling, Lasse; Dyre, J. C.;

    2012-01-01

    It is demonstrated by molecular dynamics simulations that liquids interacting via the Buckingham potential are strongly correlating, i.e., have regions of their phase diagram where constant-volume equilibrium fluctuations in the virial and potential energy are strongly correlated. A binary...... Buckingham liquid is cooled to a viscous phase and shown to have isomorphs, which are curves in the phase diagram along which structure and dynamics in appropriate units are invariant to a good approximation. To test this, the radial distribution function, and both the incoherent and coherent intermediate...

  3. Expanding the thermodynamical potential and the analysis of the possible phase diagram of deconfinement in FL model

    CERN Document Server

    Shu, Song

    2011-01-01

    The deconfinement phase transition is studied in the FL model at finite temperature and chemical potential. At MFT approximation, the phase transition can only be the first order in the whole $\\mu-T$ phase plane. By a Landau expansion we further study the phase transition order and the possible phase diagram of deconfinement. We discuss the possibilities of second order phase transitions in FL model. By our analysis the cubic term in the Landau expansion could be cancelled by the high order fluctuations. By an ansatz of the Landau parameters, we obtain the possible phase diagram with both first and second order phase transition including the tricritical point which is similar to that of the chiral phase transition.

  4. Phase diagram of elastic spheres.

    Science.gov (United States)

    Athanasopoulou, L; Ziherl, P

    2017-02-15

    Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.

  5. Phase diagram of the classical Heisenberg model in a trimodal random field distribution

    Science.gov (United States)

    Santos-Filho, A.; Albuquerque, D. F. de; Santos-Filho, J. B.; Batista, T. S. Araujo

    2016-11-01

    The classical spin 1 / 2 Heisenberg model on a simple cubic lattice, with fluctuating bond interactions between nearest neighbors and in the presence of a random magnetic field, is investigated by effective field theory based on two-spin cluster. The random field is drawn from the asymmetric and anisotropic trimodal probability distribution. The fluctuating bond is extracted from the symmetric and anisotropic bimodal probability. We estimate the transition temperatures, and the phase diagram in the Tc- h, Tc- p and Tc - α planes. We observe that the temperature of the tricritical point decreases with the increase of disorder in exchange interactions until the system ceases to display tricritical behavior. The disorder of the interactions and reentrant phenomena depends on the trimodal distribution of the random field.

  6. Modified lattice-gas model for the gas-liquid-solid phase diagram

    Science.gov (United States)

    Imry, Yoseph; Schwartz, Moshe

    1980-04-01

    Crystalline order parameters related to the localization of the particles within the cells are introduced into the usual lattice-gas model. The coupling of these order parameters to the usual liquid-gas transition is shown to produce, in the simplest approximation, phase diagrams of qualitatively correct shapes. The Goldstone modes of the solid are retained in this picture. The Landau theory of melting is reviewed and shown to always lead to a first-order solid-fluid transition. The question of the possibility of the transition becoming second order due to fluctuations is discussed qualitatively. This possibility is shown to depend on the relative sizes of the first-order transition and the critical region of the fluctuations.

  7. Thermodynamic database development-modeling and phase diagram calculations in oxide systems

    Institute of Scientific and Technical Information of China (English)

    Arthur D. Pelton

    2006-01-01

    The databases of the FactSage thermodynamic computer system have been under development for 30 years. These databases contain critically evaluated and optimized data for thousands of compounds and hundreds of multicomponent solutions of solid and liquid metals, oxides, salts, sulfides, etc. The databases are automatically accessed by user-friendly software that calculates complex multiphase equilibria in large multicomponent systems for a wide variety of possible input/output constraints. The databases for solutions have been developed by critical evaluation/optimization of all available phase equilibrium and thermodynamic data. The databases contain parameters of models specifically developed for different types of solutions involving sublattices, ordering, etc. Through the optimization process, model parameters are found which reproduce all thermodynamic and phase equilibrium data within experimental error limits and permit extrapolation into regions of temperature and composition where data are unavailable. The present article focuses on the databases for solid and liquid oxide phases involving 25 elements. A short review of the available databases is presented along with the models used for the molten slag and the solid solutions such as spinel, pyroxene, olivine, monoxide, corundum, etc. The critical evaluation/optimization procedure is outlined using examples from the A12O3-SiO2-CaO-FeO-Fe2O3 system. Sample calculations are presented in which the oxide databases are used in conjunction with the FactSage databases for metallic and other phases. In particular, the use of the FactSage module for the calculation of multicomponent phase diagrams is illustrated.

  8. Phase diagram of Hertzian spheres

    NARCIS (Netherlands)

    Pàmies, J.C.; Cacciuto, A.; Frenkel, D.

    2009-01-01

    We report the phase diagram of interpenetrating Hertzian spheres. The Hertz potential is purely repulsive, bounded at zero separation, and decreases monotonically as a power law with exponent 5/2, vanishing at the overlapping threshold. This simple functional describes the elastic interaction of wea

  9. Phase diagrams modified by interfacial penalties

    Directory of Open Access Journals (Sweden)

    Atanacković T.M.

    2007-01-01

    Full Text Available The conventional forms of phase diagrams are constructed without consideration of interfacial energies and they represent an impor­tant tool for chemical engineers and metallurgists. If interfacial energies are taken into consideration, it is intuitively obvious that the regions of phase equilibria must become smaller, because there is a penalty on the formation of interfaces. We investigate this phe­nomenon qualitatively for a one-dimensional model, in which the phases occur as layers rather than droplets or bubbles. The modified phase diagrams are shown in Chapters 3 and 4.

  10. Phase diagrams of the spin-2 Ising model in the presence of a quenched diluted crystal field distribution

    Institute of Scientific and Technical Information of China (English)

    Ali Yigit; Erhan Albayrak

    2012-01-01

    We have investigated the random crystal field effects on the phase diagrams of the spin-2 Blume-Capel model for a honeycomb lattice using the effective-field theory with correlations.To do so,the thermal variations of magnetization are studied via calculating the phase diagrams of the model.We have found that the model displays both second-order and first-order phase transitions in addition to the tricritical and isolated points.Reentrant behavior is also observed for some appropriate values of certain system parameters.Besides the usual ground state phases of the spin-2 model including ±2,±1,and 0,we have also observed the phases ±3/2 and ±1/2,which are unusual for the spin-2 case.

  11. Mapping the QCD phase diagram

    CERN Document Server

    Rajagopal, K

    1999-01-01

    The QCD vacuum in which we live, which has the familiar hadrons as its excitations, is but one phase of QCD, and far from the simplest one at that. One way to better understand this phase and the nonperturbative dynamics of QCD more generally is to study other phases and the transitions between phases. We are engaged in a voyage of exploration, mapping the QCD phase diagram as a function of temperature T and baryon number chemical potential mu . Because of asymptotic freedom, the high temperature and high baryon density phases of QCD are more simply and more appropriately described in terms of quarks and gluons as degrees of freedom, rather than hadrons. The chiral symmetry breaking condensate which characterizes the vacuum phase melts away. At high densities, quarks form Cooper pairs and new condensates develop. The formation of such superconducting phases requires only weak attractive interactions; these phases may nevertheless break chiral symmetry and have excitations which are indistinguishable from thos...

  12. Multi-scale modeling of the phase diagram of Human Immunoglobulin

    Science.gov (United States)

    Tuchman, Mark; Buldyrev, Sergey; Wang, Ying; Lomakin, Aleksey; Benedek, George B.

    2014-03-01

    Human Immunoglobulin antibodies IGg is a Y-shape trimer consisting of three folded protein globules, connected by two polypeptide hinges in random conformations linked by disulfide bonds. The solubility and crystallization phase diagrams of immunoglobulin are crucial in understanding various pathological conditions. It is experimentally known that the critical volume fraction of immunoglobulin is three times smaller than for typical globular proteins. In order to explain this phenomenon, we perform a multi-scale molecular dynamic (MD) simulations. First we produce all atom simulations of the hinges and compute the distribution of their end-to-end distances. Using these results we construct a simple effective bond potential and study a phase diagram of a system of three sticky hard-spheres linked by these bonds by discrete MD simulations. The results are in good agreement with the experiment.

  13. Origin and use of crystallization phase diagrams.

    Science.gov (United States)

    Rupp, Bernhard

    2015-03-01

    Crystallization phase diagrams are frequently used to conceptualize the phase relations and also the processes taking place during the crystallization of macromolecules. While a great deal of freedom is given in crystallization phase diagrams owing to a lack of specific knowledge about the actual phase boundaries and phase equilibria, crucial fundamental features of phase diagrams can be derived from thermodynamic first principles. Consequently, there are limits to what can be reasonably displayed in a phase diagram, and imagination may start to conflict with thermodynamic realities. Here, the commonly used `crystallization phase diagrams' are derived from thermodynamic excess properties and their limitations and appropriate use is discussed.

  14. Phase diagram and critical behavior of a forest-fire model in a gradient of immunity

    Science.gov (United States)

    Guisoni, Nara; Loscar, Ernesto S.; Albano, Ezequiel V.

    2011-01-01

    The forest-fire model with immune trees (FFMIT) is a cellular automaton early proposed by Drossel and Schwabl [Physica APHYADX0378-437110.1016/0378-4371(93)90001-K 199, 183 (1993)], in which each site of a lattice can be in three possible states: occupied by a tree, empty, or occupied by a burning tree (fire). The trees grow at empty sites with probability p, healthy trees catch fire from adjacent burning trees with probability (1-g), where g is the immunity, and a burning tree becomes an empty site spontaneously. In this paper we study the FFMIT by means of the recently proposed gradient method (GM), considering the immunity as a uniform gradient along the horizontal axis of the lattice. The GM allows the simultaneous treatment of both the active and the inactive phases of the model in the same simulation. In this way, the study of a single-valued interface gives the critical point of the active-absorbing transition, whereas the study of a multivalued interface brings the percolation threshold into the active phase. Therefore we present a complete phase diagram for the FFMIT, for all range of p, where, besides the usual active-absorbing transition of the model, we locate a transition between the active percolating and the active nonpercolating phases. The average location and the width of both interfaces, as well as the absorbing and percolating cluster densities, obey a scaling behavior that is governed by the exponent α=1/(1+ν), where ν is the suitable correlation length exponent (ν⊥ for the directed percolation transition and ν for the standard percolation transition). We also show that the GM allows us to calculate the critical exponents associated with both the order parameter of the absorbing transition and the number of particles in the multivalued interface. Besides, we show that by using the gradient method, the collapse in a single curve of cluster densities obtained for samples of different side is a very sensitive method in order to obtain the

  15. Phase diagram of a single lane roundabout

    Science.gov (United States)

    Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-03-01

    Using the cellular automata model, we numerically study the traffic dynamic in a single lane roundabout system of four entry/exit points. The boundaries are controlled by the injecting rates α1, α2 and the extracting rate β. Both the system with and without Splitter Islands of width Lsp are considered. The phase diagram in the (α1 , β) space and its variation with the roundabout size, Pagg (i.e. the probability of aggressive entry), and Pexit (i.e. the probability of preferential exit) are constructed. The results show that the phase diagram in both cases consists of three phases: free flow, congested and jammed. However, as Lsp increases the free flow phase enlarges while the congested and jammed ones shrink. On the other hand, the short sized roundabout shows better performance in the free flow phase while the large one is more optimal in the congested phase. The density profiles are also investigated.

  16. Phase Diagrams of Strongly Interacting Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We summarize the phase diagrams of SU, SO and Sp gauge theories as function of the number of flavors, colors, and matter representation as well as the ones of phenomenologically relevant chiral gauge theories such as the Bars-Yankielowicz and the generalized Georgi-Glashow models. We finally repo...

  17. Liquid-liquid phase separation in solutions of ionic liquids: phase diagrams, corresponding state analysis and comparison with simulations of the primitive model

    Energy Technology Data Exchange (ETDEWEB)

    Schroeer, W; Vale, V R, E-mail: schroer@uni-bremen.d [Institut fuer Anorganische und Physikalische Chemie, Fachbereich Biologie-Chemie, Universitaet Bremen, D-28359 Bremen (Germany)

    2009-10-21

    Phase diagrams of ionic solutions of the ionic liquid C{sub 18}mim{sup +}NTF{sub 2}{sup -} (1-n-octadecyl-3-methyl imidazolium bistrifluormethylsulfonylimide) in decalin, cyclohexane and methylcyclohexane are reported and compared with that of solutions of other imidazolium ionic liquids with the anions NTF{sub 2}{sup -}, Cl{sup -} and BF4{sup -} in arenes, CCl{sub 4}, alcohols and water. The phase diagrams are analysed presuming Ising criticality and taking into account the asymmetry of the phase diagrams. The resulting parameters are compared with simulation results for equal-sized charged hard spheres in a dielectric continuum, the restricted primitive model (RPM) and the primitive model (PM) that allows for ions of different size. In the RPM temperature scale the critical temperatures vary almost linearly with the dielectric permittivity of the solvent. The RPM critical temperatures of the solutions in non-polar solvents are very similar, somewhat below the RPM value. Correlations with the boiling temperatures of the solvents and a dependence on the length of the side chain of the imidazolium cations show that dispersion interactions modify the phase transition, which is mainly determined by Coulomb forces. Critical concentrations, widths of the phase diagrams and the slopes of the diameter are different for the solutions in protic and aprotic solvents. The phase diagrams of the solutions in alcohols and water get a lower critical solution point when represented in RPM variables.

  18. Liquid-liquid phase separation in solutions of ionic liquids: phase diagrams, corresponding state analysis and comparison with simulations of the primitive model.

    Science.gov (United States)

    Schröer, W; Vale, V R

    2009-10-21

    Phase diagrams of ionic solutions of the ionic liquid C(18)mim(+)NTF(2)(-) (1-n-octadecyl-3-methyl imidazolium bistrifluormethylsulfonylimide) in decalin, cyclohexane and methylcyclohexane are reported and compared with that of solutions of other imidazolium ionic liquids with the anions NTF(2)(-), Cl(-) and BF4(-) in arenes, CCl(4), alcohols and water. The phase diagrams are analysed presuming Ising criticality and taking into account the asymmetry of the phase diagrams. The resulting parameters are compared with simulation results for equal-sized charged hard spheres in a dielectric continuum, the restricted primitive model (RPM) and the primitive model (PM) that allows for ions of different size. In the RPM temperature scale the critical temperatures vary almost linearly with the dielectric permittivity of the solvent. The RPM critical temperatures of the solutions in non-polar solvents are very similar, somewhat below the RPM value. Correlations with the boiling temperatures of the solvents and a dependence on the length of the side chain of the imidazolium cations show that dispersion interactions modify the phase transition, which is mainly determined by Coulomb forces. Critical concentrations, widths of the phase diagrams and the slopes of the diameter are different for the solutions in protic and aprotic solvents. The phase diagrams of the solutions in alcohols and water get a lower critical solution point when represented in RPM variables.

  19. Phase diagram of ammonium nitrate

    Science.gov (United States)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  20. Prediction of boron carbon nitrogen phase diagram

    Science.gov (United States)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  1. Phase diagram of a non-Abelian Aubry-André-Harper model with p -wave superfluidity

    Science.gov (United States)

    Wang, Jun; Liu, Xia-Ji; Xianlong, Gao; Hu, Hui

    2016-03-01

    We study theoretically a one-dimensional quasiperiodic Fermi system with topological p -wave superfluidity, which can be deduced from a topologically nontrivial tight-binding model on the square lattice in a uniform magnetic field and subject to a non-Abelian gauge field. The system may be regarded as a non-Abelian generalization of the well-known Aubry-André-Harper model. We investigate its phase diagram as a function of the strength of the quasidisorder and the amplitude of the p -wave order parameter through a number of numerical investigations, including a multifractal analysis. There are four distinct phases separated by three critical lines, i.e., two phases with all extended wave functions [(I) and (IV)], a topologically trivial phase (II) with all localized wave functions, and a critical phase (III) with all multifractal wave functions. Phase (I) is related to phase (IV) by duality. It also seems to be related to phase (II) by duality. Our proposed phase diagram may be observable in current cold-atom experiments, in view of simulating non-Abelian gauge fields and topological insulators/superfluids with ultracold atoms.

  2. Effects of Bond Alternation on the Ground-State Phase Diagram of One-Dimensional XXZ Model

    Institute of Scientific and Technical Information of China (English)

    QIANG Ling; LIU Guang-Hua; TIAN Guang-Shan

    2013-01-01

    The ground-state properties and quantum phase transitions (QPTs) of the one-dimensional bond-alternative XXZ model are investigated by the infinite time-evolving block decimation (iTEBD) method.The bond-alternative effects on its ground-state phase diagram are discussed in detail.Once the bond alternation is taken into account,the antiferromagnetic phase (△ > 1) will be destroyed at a given critical point and change into a disordered phase without nonlocal string order.The QPT is shown to be second-order,and the whole phase diagram is provided.For the ferromagnetic phase region (△ <-1),the critical point rc always equals 1 (independent of △),and the QPT for this case is shown to be first-order.The dimerized Heisenberg model is also discussed,and two disordered phases can be distinguished by with or without nonlocal string orders.Both the bipartite entanglement and the fidelity per site,as two kinds of model-independent measures,are capable of describing all the QPTs in such a quantum model.

  3. Hydrodynamics of bacterial colonies: Phase diagrams

    Science.gov (United States)

    Lega, J.; Passot, T.

    2004-09-01

    We present numerical simulations of a recent hydrodynamic model describing the growth of bacterial colonies on agar plates. We show that this model is able to qualitatively reproduce experimentally observed phase diagrams, which relate a colony shape to the initial quantity of nutrients on the plate and the initial wetness of the agar. We also discuss the principal features resulting from the interplay between hydrodynamic motions and colony growth, as described by our model.

  4. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  5. The effect of four-spin exchanges on the honeycomb lattice diagram phase of S=3/2 J1-J2 Antiferromagnetic Heisenberg model

    Directory of Open Access Journals (Sweden)

    F Keshavarz

    2017-02-01

    Full Text Available In this study, the effect of four-spin exchanges between the nearest and next nearest neighbor spins of honeycomb lattice on the phase diagram of S=3/2 antiferomagnetic Heisenberg model is considered with two-spin exchanges between the nearest and next nearest neighbor spins. Firstly, the method is investigated with classical phase diagram. In classical phase diagram, in addition to Neel order, classical degeneracy is also seen. The existance of this phase in diagram phase is important because of the probability of the existence of quantum spin liquid in this region for such amount of interaction. To investigate the effect of quantum fluctuation on the stability of the obtained classical phase diagram, linear spin wave theory has been used. Obtained results show that in classical degeneracy regime, the quantum fluctuations cause the order by disorder in the spin system and the ground state is ordered

  6. Behaviors of Phase Diagrams of an Ising Model on a Cayley Tree-Like Lattice: Rectangular Chandelier

    Science.gov (United States)

    Akin, Hasan; Uǧuz, Selman; Temir, Seyit

    2010-09-01

    In this work, we study an Ising model on a new lattice type which we called Rectangular Chandelier, with competing nearest-neighbor interactions J1, prolonged ternary interactions Jt and one-level next-nearest-neighbor quinary interactions Jl1(5). We obtain the phase diagrams of the Ising model related to Hamiltonian system give above on a Rectangular Chandelier. The phase diagrams are presented in the Hamiltonian 3-parameter space. To perform this study, an iterative scheme similar to that appearing in real space renormalization group frameworks is established. At vanishing temperature, the phase diagram is fully determined for all values and signs of J1, Jt and Jl1(5). At finite temperatures several interesting features are exhibited for typical values of -Jt/J1. For some values of -Jt/J1 and Jl1(5)/J1/J1, we determine the existince of multicritical Lifshitz points that are at non zero temperature, while it was stuck at zero temperature T for all systems with competing interactions, studied on the Cayley tree in the previous works.

  7. On the phase diagram of the extended Hubbard model with intersite density-density interactions in the atomic limit

    Science.gov (United States)

    Kapcia, Konrad Jerzy; Robaszkiewicz, Stanisław

    2016-11-01

    The charge ordering is a phenomenon associated with inhomogeneous distribution of electron density occurring mostly in strongly correlated materials such as transition metal oxides or organic conductors. The extended Hubbard model (EHM) is one of the simplest model for description of this phenomenon. The full phase diagram of the EHM with intersite density-density interactions W1 and W2 (nearest- and next-nearest-neighbour, respectively) in the atomic limit as a function of the chemical potential has been derived in the variational approach, which treats the on-site interaction exactly and the intersite interactions within mean-field approximation. The results for arbitrary values of model parameters (in the two-sublattice assumption) reveal that the diagram has very complex structure including various (multi-)critical points. A variety of the transitions between different phases, in particular with long-range charge-order, has been found to occur on the diagram. The results presented are rigorous ones in the high-dimension limit for any W1 and W2 ≤ 0.

  8. Stereo 3D spatial phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jinwu, E-mail: kangjw@tsinghua.edu.cn; Liu, Baicheng, E-mail: liubc@tsinghua.edu.cn

    2016-07-15

    Phase diagrams serve as the fundamental guidance in materials science and engineering. Binary P-T-X (pressure–temperature–composition) and multi-component phase diagrams are of complex spatial geometry, which brings difficulty for understanding. The authors constructed 3D stereo binary P-T-X, typical ternary and some quaternary phase diagrams. A phase diagram construction algorithm based on the calculated phase reaction data in PandaT was developed. And the 3D stereo phase diagram of Al-Cu-Mg ternary system is presented. These phase diagrams can be illustrated by wireframe, surface, solid or their mixture, isotherms and isopleths can be generated. All of these can be displayed by the three typical display ways: electronic shutter, polarization and anaglyph (for example red-cyan glasses). Especially, they can be printed out with 3D stereo effect on paper, and watched by the aid of anaglyph glasses, which makes 3D stereo book of phase diagrams come to reality. Compared with the traditional illustration way, the front of phase diagrams protrude from the screen and the back stretches far behind of the screen under 3D stereo display, the spatial structure can be clearly and immediately perceived. These 3D stereo phase diagrams are useful in teaching and research. - Highlights: • Stereo 3D phase diagram database was constructed, including binary P-T-X, ternary, some quaternary and real ternary systems. • The phase diagrams can be watched by active shutter or polarized or anaglyph glasses. • The print phase diagrams retains 3D stereo effect which can be achieved by the aid of anaglyph glasses.

  9. Antiferromagnetic phase diagram of the cuprate superconductors

    Science.gov (United States)

    Nunes, L. H. C. M.; Teixeira, A. W.; Marino, E. C.

    2017-02-01

    Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spin-wave velocity as a function of the chemical potential. For appropriate values of the parameters we determine the antiferromagnetic phase diagram for the YBa2Cu3O6+x compound as a function of the dopant concentration in good agreement with the experimental data. Furthermore, our approach provides a unified description for the phase diagrams of the hole-doped and the electron doped compounds, which is consistent with the remarkable similarity between the phase diagrams of these compounds, since we have obtained the suppression of the antiferromagnetic phase as the modulus of the chemical potential increases. The aforementioned result then follows by considering positive values of the chemical potential related to the addition of holes to the system, while negative values correspond to the addition of electrons.

  10. Locally self-similar phase diagram of the disordered Potts model on the hierarchical lattice.

    Science.gov (United States)

    Anglès d'Auriac, J-Ch; Iglói, Ferenc

    2013-02-01

    We study the critical behavior of the random q-state Potts model in the large-q limit on the diamond hierarchical lattice with an effective dimensionality d(eff)>2. By varying the temperature and the strength of the frustration the system has a phase transition line between the paramagnetic and the ferromagnetic phases which is controlled by four different fixed points. According to our renormalization group study the phase boundary in the vicinity of the multicritical point is self-similar; it is well represented by a logarithmic spiral. We expect an infinite number of reentrances in the thermodynamic limit; consequently one cannot define standard thermodynamic phases in this region.

  11. Ferroelectric phase diagram of PVDF:PMMA

    NARCIS (Netherlands)

    Li, M.; Stingelin, N.; Michels, J.J.; Spijkman, M.-J.; Asadi, K.; Feldman, K.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of α- and β-phase PVDF was identified. Ferroelectric β-PVDF:PMMA blend films were made b

  12. Ferroelectric Phase Diagram of PVDF : PMMA

    NARCIS (Netherlands)

    Li, Mengyuan; Stingelin, Natalie; Michels, Jasper J.; Spijkman, Mark-Jan; Asadi, Kamal; Feldman, Kirill; Blom, Paul W. M.; de Leeuw, Dago M.

    2012-01-01

    We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of alpha- and beta-phase PVDF was identified. Ferroelectric beta-PVDF:PMMA blend films w

  13. Quantum phase diagrams of the Jaynes–Cummings Hubbard models in non-rectangular lattices

    Science.gov (United States)

    Zhang, Jun; Jiang, Ying

    2017-03-01

    In this paper, we investigate systematically the quantum phase transition between the Mott-insulator and superfluid states of the Jaynes–Cummings Hubbard model in triangular, square, honeycomb and kagomé lattices. With the help of Green’s function method, by treating the hopping term in the Jaynes–Cummings Hubbard model as perturbation, we calculate the phase boundaries of Jaynes–Cummings Hubbard models on different geometrical lattices analytically up to second order for both detuning Δ =0 and Δ \

  14. Simulation of Few Bifurcation Phase Diagrams of Belousov-Zhabotinsky Reaction with Eleven Variable Chaotic Model in CSTR

    Directory of Open Access Journals (Sweden)

    B. Swathi

    2009-01-01

    Full Text Available Simulation of the Gyorgyi, Rempe and Field eleven variable chaotic model in CSTR [Continuously Stirred Tank Reactor] is performed with respect to the concentrations of malonic acid and [Ce(III]. These simulation studies show steady state, periodic and non-periodic regions. These studies have been presented as two variable bifurcation phase diagrams. We also have observed the bursting phenomenon under different set of constraints. We have given much importance on computer simulation work but not included the experimental methods in this paper.

  15. Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in aRandom Field

    Institute of Scientific and Technical Information of China (English)

    LIANGYa-Qiu; WEIGuo-Zhu; SONGLi-Li; SONGGuo-Li; ZANGShu-Liang

    2004-01-01

    The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.

  16. Magnetization plateaus and ground-state phase diagrams of the S=1 Ising model on the Shastry Sutherland lattice

    Science.gov (United States)

    Deviren, Seyma Akkaya

    2017-02-01

    In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.

  17. Interface-roughening phase diagram of the three-dimensional Ising model for all interaction anisotropies from hard-spin mean-field theory.

    Science.gov (United States)

    Cağlar, Tolga; Berker, A Nihat

    2011-11-01

    The roughening phase diagram of the d=3 Ising model with uniaxially anisotropic interactions is calculated for the entire range of anisotropy, from decoupled planes to the isotropic model to the solid-on-solid model, using hard-spin mean-field theory. The phase diagram contains the line of ordering phase transitions and, at lower temperatures, the line of roughening phase transitions, where the interface between ordered domains roughens. Upon increasing the anisotropy, roughening transition temperatures settle after the isotropic case, whereas the ordering transition temperature increases to infinity. The calculation is repeated for the d=2 Ising model for the full range of anisotropy, yielding no roughening transition.

  18. Phase Diagram of a Holographic Superconductor Model with s-wave and d-wave

    CERN Document Server

    Nishida, Mitsuhiro

    2014-01-01

    We consider a holographic model with a scalar field, a tensor field and a direct coupling between them as a superconductor with an s-wave and a d-wave. We find a rich phase structure in our model. Depending on the direct coupling, the model exhibits coexistence of the s-wave and the d-wave, and/or order competition, and has a triple point.

  19. QCD Phase Diagram with Imaginary Chemical Potential

    Directory of Open Access Journals (Sweden)

    Nakamura Atsushi

    2012-02-01

    Full Text Available We report our recent results on the QCD phase diagram obtained from the lattice QCD simulation. The location of the phase boundary between hadronic and QGP phases in the two-flavor QCD phase diagram is investigated. The imaginary chemical potential approach is employed, which is based on Monte Carlo simulations of the QCD with imaginary chemical potential and analytic continuation to the real chemical potential region.

  20. T-\\mu phase diagram of the chiral quark model from a large flavor number expansion

    CERN Document Server

    Jakovác, A; Szép, Z; Szépfalusy, P; Szep, Zs.

    2004-01-01

    The chiral phase boundary of strong matter is determined in the T-\\mu plane from the chiral quark model, applying a non-perturbatively renormalised treatment, involving chains of pion-bubbles and 1-loop fermion contributions. In the absence of explicit symmetry breaking the second order portion of the phase boundary and the location of the tricritical point (TCP) are determined analytically. Sensitivity of the results to the renormalisation scale is carefully investigated. The softening of the sigma-pole near the second order transitions is confirmed.

  1. Numerical modeling of HgCdTe solidification: effects of phase diagram double-diffusion convection and microgravity level

    Science.gov (United States)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1997-07-01

    A numerical model of HgCdTe solidification was implemented using finite the element code FIDAP. Model verification was done using both experimental data and numerical test problems. The model was used to eluate possible effects of double- diffusion convection in molten material, and microgravity level on concentration distribution in the solidified HgCdTe. Particular attention was paid to incorporation of HgCdTe phase diagram. It was found, that below a critical microgravity amplitude, the maximum convective velocity in the melt appears virtually independent on the microgravity vector orientation. Good agreement between predicted interface shape and an interface obtained experimentally by quenching was achieved. The results of numerical modeling are presented in the form of video film.

  2. Shock dynamics of phase diagrams

    CERN Document Server

    Moro, Antonio

    2014-01-01

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gas-liquid phase transition. Nevertheless, below the critical temperature, theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts.

  3. Phase diagram to design passive nanostructures

    CERN Document Server

    Lee, Jeng Yi

    2015-01-01

    A phase diagram, defined by the amplitude square and phase of scattering coefficients for absorption cross-section in each individual channel, is introduced as a universal map on the electromagnetic properties for passive scatterers. General physical bounds are naturally revealed based on the intrinsic power conservation in a passive scattering system, entailing power competitions among scattering, absorption, and extinction. Exotic scattering and absorption phenomena, from resonant scattering, invisible cloaking, coherent perfect absorber, and subwavelength superscattering can all be illustrated in this phase diagram. With electrically small core-shell scatterers as an example, we demonstrate a systematic method to design field-controllable structures based on the allowed trajectories in the phase diagram. The proposed phase diagram not only provides a simple tool to design optical devices but also promotes a deep understanding on Mie's scattering theory.

  4. Phase diagram of quantum square ice

    Science.gov (United States)

    Henry, Louis-Paul; Holdsworth, Peter; Mila, Frederic; Roscilde, Tommaso

    2013-03-01

    We have investigated the ground-state and finite-temperature phase diagram of quantum square ice - realized by the transverse-field Ising model on a checkerboard lattice - using both linear spin-wave (LSW) theory and quantum Monte Carlo (QMC). We generalize the model with different couplings between nearest (J1) and next-to-nearest (J2) neighbors on the checkerboard lattice. Our QMC approach generalizes the loop algorithm - very efficient in the study of constrained classical systems - to a ``brane algorithm'' for quantum systems. At the LSW level the vast degeneracy of the ground-state for J1 =J2 and J2 >J1 remains intact; moreover LSW theory breaks down in extended regions of the phase diagram, pointing at non-classical states. Our QMC study goes beyond perturbative schemes and addresses directly the nature of the low-temperature phases. We have critically examined the possibility of a resonating-plaquette state for J1 =J2 , suggested by degenerate perturbation theory on the ice-rule manifold for weak fields. Our QMC results for finite fields confirm the absence of Néel or collinear order, but they do not confirm the presence of resonating-plaquette order, pointing at a possibly more complex non-classical state.

  5. The magnetized effective QCD phase diagram

    CERN Document Server

    Ayala, Alejandro; Hernandez, L A; Loewe, M; Zamora, R

    2015-01-01

    The QCD phase diagram in the temperature versus quark chemical potential plane is studied in the presence of a magnetic field, using the linear sigma model coupled to quarks. It is shown that the decrease of the couplings with increasing field strength obtained in this model leads to the critical temperature for the phase transition to decrease with increasing field intensity (inverse magnetic catalysis). This happens provided that plasma screening is properly accounted for. It is also found that with increasing field strength the location of the critical end point (CEP) in the phase diagram moves toward lower values of the critical quark chemical potential and larger values of the critical temperature. In addition, the CEP approaches the temperature axis for large values of the magnetic field. We argue that a similar behavior is to be expected in QCD, since the physical impact of the magnetic field, regardless of strength, is to produce a spatial dimension reduction, whereby virtual quark-antiquark pairs are...

  6. Kosterlitz-Thouless transitions and phase diagrams of the interacting monomer-dimer model on a checkerboard lattice.

    Science.gov (United States)

    Li, Sazi; Li, Wei; Chen, Ziyu

    2014-11-01

    Using the tensor network approach, we investigate the monomer-dimer models on a checkerboard lattice, in which there are interactions (with strength v) between the parallel dimers on half of the plaquettes. For the fully packed interacting dimer model, we observe a Kosterlitz-Thouless (KT) transition between the low-temperature symmetry breaking and the high-temperature critical phases; for the doped monomer-dimer case with finite chemical potential μ, we also find an order-disorder phase transition which is of second order instead. We use the boundary matrix product state approach to detect the KT and second-order phase transitions and obtain the phase diagrams v-T and μ-T. Moreover, for the noninteracting monomer-dimer model (setting μ=ν=0), we get an extraordinarily accurate determination of the free energy per site (negative of the monomer-dimer constant h_{2}) as f=-0.662798972833746 with the dimer density n=0.638123109228547, both of 15 correct digits.

  7. Phase diagram and correlation functions of the two-dimensional dissipative quantum XY model

    Science.gov (United States)

    Hou, Changtao; Varma, Chandra M.

    2016-11-01

    The two-dimensional quantum XY model, with a Caldeira-Leggett form of dissipation, is applicable to the quantum-critical properties of diverse experimental systems, ranging from superconductor to insulator transitions, ferromagnetic and antiferromagnetic transitions in metals, to the loop-current order transition in cuprates. We solve the reexpression of this model in terms of orthogonal topological excitations, vortices, and a variety of instantons, by renormalization group methods. The calculations explain the extraordinary properties of the model discovered in Monte Carlo calculations: the product form of the quantum-critical fluctuations in space and time, a spatial correlation length proportional to the logarithm of the temporal correlation length near the transition from a disordered to a fully ordered state, and the occurrence of a phase with spatial order without temporal order. They are intimately related to the flow of the metric of time in relation to the metric of space, i.e., of the dynamical critical exponent z . These properties appear to be essential in understanding the strange metallic phase found in a variety of quantum-critical transitions as well as the accompanying high-temperature superconductivity.

  8. Phase diagram of the two-dimensional O(3) model from dual lattice simulations

    CERN Document Server

    Bruckmann, Falk; Kloiber, Thomas; Sulejmanpasic, Tin

    2016-01-01

    We have simulated the asymptotically free two-dimensional O(3) model at nonzero chemical potential using the model's dual representation. We first demonstrate how the latter solves the sign (complex action) problem. The system displays a crossover at nonzero temperature, while at zero temperature it undergoes a quantum phase transition when mu reaches the particle mass (generated dynamically similar to QCD). The density follows a square root behavior universal for repulsive bosons in one spatial dimension. We have also measured the spin stiffness, known to be sensitive to the spatial correlation length, using different scaling trajectories to zero temperature and infinite size. It points to a dynamical critical exponent z=2. Comparisons to thermodynamic Bethe ansaetze are shown as well.

  9. From ergodicity to extended phase diagrams.

    Science.gov (United States)

    Woodley, Scott M; Sokol, Alexey A

    2012-04-16

    Structure prediction of stable and metastable phases is put on equal footing for the first time, with a solid thermodynamical background. How to estimate the lifetime of metastable phases is demonstrated by recent groundbreaking work of Jansen, Pentin, and Schön. At the heart lies the exploration of the Gibbs free-energy landscapes and the extended phase diagrams for complex systems.

  10. Phase diagram and two-particle structure of the $Z_3$-chiral Potts model

    CERN Document Server

    Von Gehlen, G

    1992-01-01

    We calculate the low-lying part of the spectrum of the $Z_3$-symmetrical chiral Potts quantum chain in its self-dual and integrable versions, using numerical diagonalisation of the hamiltonian for $N \\leq 12$ sites and extrapolation $N \\ra \\infty$. From the sequences of levels crossing we show that the massive phases have oscillatory correlation functions. We calculate the wave vector scaling exponent. In the high-temperature massive phase the pattern of the low-lying levels can be explained assuming the existence of two particles, with $Z_3$-charge $Q\\!=\\!1$ and $Q\\!=\\!2$, and their scattering states. In the superintegrable case the $Q\\!=\\!2$-particle has twice the mass of the $Q\\!=\\!1$-particle. Exponential convergence in $N$ is observed for the single particle gaps, while power convergence is seen for the scattering levels. In the high temperature limit of the self-dual model the parity violation in the particle dispersion relation is equivalent to the presence of a macroscopic momentum $P_m = \\pm \\vph/3$,...

  11. Phase diagram of the restricted primitive model: charge-ordering instability

    Directory of Open Access Journals (Sweden)

    O.V.Patsahan

    2004-01-01

    Full Text Available We study the phase behaviour of the restricted primitive model (RPM using a microscopic approach based on the method of collective variables with a reference system. Starting from the Hamiltonian of the RPM we derive the functional of the grand partition function given in terms of the two collective variables: the collective variables ρk and ck describing fluctuations of the total number density and charge density, respectively. Within the framework of the Gaussian approximation we found the boundary of stability with respect to fluctuations of the charge density. It is shown that due to the approximated character of the theory the boundary of stability is very sensitive to the particular choice of the long-range part of potential inside the hard core. This point is discussed in more detail.

  12. Error and repair catastrophes: A two-dimensional phase diagram in the quasispecies model

    Science.gov (United States)

    Tannenbaum, Emmanuel; Shakhnovich, Eugene I.

    2004-01-01

    This paper develops a two-gene, single fitness peak model for determining the equilibrium distribution of genotypes in a unicellular population which is capable of genetic damage repair. The first gene, denoted by σvia, yields a viable organism with first-order growth rate constant k>1 if it is equal to some target “master” sequence σvia,0. The second gene, denoted by σrep, yields an organism capable of genetic repair if it is equal to some target “master” sequence σrep,0. This model is analytically solvable in the limit of infinite sequence length, and gives an equilibrium distribution which depends on μ≡Lɛ, the product of sequence length and per base pair replication error probability, and ɛr, the probability of repair failure per base pair. The equilibrium distribution is shown to exist in one of the three possible “phases.” In the first phase, the population is localized about the viability and repairing master sequences. As ɛr exceeds the fraction of deleterious mutations, the population undergoes a “repair” catastrophe, in which the equilibrium distribution is still localized about the viability master sequence, but is spread ergodically over the sequence subspace defined by the repair gene. Below the repair catastrophe, the distribution undergoes the error catastrophe when μ exceeds ln k/ɛr, while above the repair catastrophe, the distribution undergoes the error catastrophe when μ exceeds ln k/fdel, where fdel denotes the fraction of deleterious mutations.

  13. Phase diagrams of the corner cubic Heisenberg model and its site-diluted version on a triangular lattice: Renormalization-group treatment

    Science.gov (United States)

    Nagai, Kiyoshi

    1985-02-01

    The global phase diagrams of the corner cubic anisotropic discrete-spin Heisenberg (CH) model and its site-diluted version (dCH) on a triangular lattice are investigated through the position-space renormalization-group method of the simple Migdal-Kadanoff type. The two models include many simpler models as their subspaces, and the interrelations among these models are elucidated. The five-dimensional (5D) phase diagram of the dCH model is generated from the 3D one of the CH model by introducing 2D site-dilution operation. The structure of the 5D phase diagram and the effect of site dilution on the CH model are conveniently visualized by introducing the concept of paths in the 3D subspace. The path describes the temperature variation provided that the ratios between the interaction parameters in the original CH model are fixed. The resulting phase diagrams of the dCH model exhibit the typical three-phase coexistence of solid, liquid, and gas, and their qualitative interpretations are summarized.

  14. Phase Diagrams for Systems Containing Hyperbranched Polymers

    Directory of Open Access Journals (Sweden)

    Tim Zeiner

    2012-01-01

    Full Text Available Hyperbranched polymers show an outstanding potential for applications ranging from chemistry over nanotechnology to pharmacy. In order to take advantage of this potential, the underlying phase behaviour must be known. From the thermodynamic point of view, the modelling of these phase diagrams is quite challenging, because the thermodynamic properties depend on the architecture of the hyperbranched polymer as well as on the number and kind of present functional end groups. The influence of architecture can be taken into account via the lattice cluster theory (LCT as an extension of the well-known Flory–Huggins theory. Whereas the Flory–Huggins theory is limited to linear polymer chains, the LCT can be applied to an arbitrary chain architecture. The number and the kind of functional groups can be handled via the Wertheim perturbation theory, applicable for directed forces between the functional groups and the surrounding solvent molecules. The combination of the LCT and the Wertheim theory can be established for the modelling or even prediction of the liquid-liquid equilibria (LLE of polymer solutions in a single solvent or in a solvent mixture or polymer blends, where the polymer can have an arbitrary structure. The applied theory predicts large demixing regions for mixtures of linear polymers and hyperbranched polymers, as well as for mixtures made from two hyperbranched polymers. The introduction of empty lattice sites permits the theoretical investigation of pressure effects on phase behaviour. The calculated phase diagrams were compared with own experimental data or to experimental data taken from literature.

  15. Exact Phase Diagram of a Quasispecies Model with a Mutation Rate Modifier

    Science.gov (United States)

    Nagar, Apoorva; Jain, Kavita

    2009-01-01

    We consider an infinite asexual population with a mutator allele which can elevate mutation rates. With probability f, a transition from nonmutator to mutator state occurs but the reverse transition is forbidden. We find that at f=0, the population is in the state with minimum mutation rate, and at f=fc, a phase transition occurs between a mixed phase with both nonmutators and mutators and a pure mutator phase. We calculate the critical probability fc and the total mutator fraction Q in the mixed phase exactly. Our predictions for Q are in agreement with those seen in microbial populations in static environments.

  16. Causal diagrams for physical models

    CERN Document Server

    Kinsler, Paul

    2015-01-01

    I present a scheme of drawing causal diagrams based on physically motivated mathematical models expressed in terms of temporal differential equations. They provide a means of better understanding the processes and causal relationships contained within such systems.

  17. Materials Research Society Symposia Proceedings, Volume 19. Alloy Phase Diagrams Held November 1982 in Boston, Massachusetts.

    Science.gov (United States)

    Alloys, * Phase diagrams , *Symposia, Stability, Thermodynamic properties, Models, Solidification, Chemical equilibrium, Microstructure, Metallurgy, Structural analysis, Research management, Materials

  18. Stepwise positional-orientational order and the multicritical-multistructural global phase diagram of the s=3/2 Ising model from renormalization-group theory.

    Science.gov (United States)

    Yunus, Çağın; Renklioğlu, Başak; Keskin, Mustafa; Berker, A Nihat

    2016-06-01

    The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than 14 different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical end points, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The four-state Potts permutation-symmetric subspace is contained in this model.

  19. Phase diagram distortion from traffic parameter averaging.

    NARCIS (Netherlands)

    Stipdonk, H. Toorenburg, J. van & Postema, M.

    2010-01-01

    Motorway traffic congestion is a major bottleneck for economic growth. Therefore, research of traffic behaviour is carried out in many countries. Although well describing the undersaturated free flow phase as an almost straight line in a (k,q)-phase diagram, congested traffic observations and

  20. Phase diagram distortion from traffic parameter averaging.

    NARCIS (Netherlands)

    Stipdonk, H. Toorenburg, J. van & Postema, M.

    2010-01-01

    Motorway traffic congestion is a major bottleneck for economic growth. Therefore, research of traffic behaviour is carried out in many countries. Although well describing the undersaturated free flow phase as an almost straight line in a (k,q)-phase diagram, congested traffic observations and theori

  1. Frustrated classical Heisenberg model with biquadratic interactions in a rhombic lattice: exact ground-state phase diagram

    Science.gov (United States)

    Hayden, L. X.; Kaplan, T. A.; Mahanti, S. D.

    2010-03-01

    The model cited has nearest-neighbor (nn) ferromagnetic and nnn Heisenberg interactions plus nn biquadratic interactions. The rhombic symmetry comes from assuming the nnn interaction only between sites on a square lattice connected by (1,1) (not (1,-1)) diagonals, as done for various multiferroic manganitesfootnotetextT. Kimura et al., Phys. Rev. B 68, 060403(R) (2003)^,footnotetextM. Mochizuki and N. Furukawa, J. Phys. Soc. Japan 78, 053704 (2009). The biquadratic interactions replace the much smaller anisotropic terms usually used^2. The ground state problem in the thermodynamic limit is reduced, exactly, to a 3-spin problem, enabled by the LK cluster methodfootnotetextD. H. Lyons and T. A. Kaplan, J. Phys. Chem. Solids 25, 645 (1964), leading to the phase diagram. We find 4 phases: (1) ferromagnetic, (2) general-wave-vector (Q) spiral, (3) up-up-down- down or ``E-type", degenerate with Q=(,), and (4) disordered. The uudd- (,) degeneracy is removed in favor of uudd by a small ferromagnetic nnn interaction connecting sites along the (1,-1) diagonal (such an interaction was in fact found in ref. 1, where the observed uudd state was discussed). It is argued that the present model is probably realistic for these materials.

  2. Phase diagrams of diluted transverse Ising nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Bouhou, S.; Essaoudi, I. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Ainane, A., E-mail: ainane@pks.mpg.de [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Saber, M. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Ahuja, R. [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Dujardin, F. [Laboratoire de Chimie et Physique des Milieux Complexes (LCPMC), Institut de Chimie, Physique et Matériaux (ICPM), 1 Bd. Arago, 57070 Metz (France)

    2013-06-15

    In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J{sub cs} exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given.

  3. A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices

    Institute of Scientific and Technical Information of China (English)

    HUANG Bei-Bing; WAN Shao-Long

    2011-01-01

    A finite temperature phase diagram of the rotating Bose-Hubbard model, including the crossover between Mott insulator and the normal state, is derived on the frame of the Gutzwiller mean-field theory. In addition, we calculate the critical temperature of superBuid-normal phase transition.%@@ A finite temperature phase diagram of the rotating Bose-Hubbard model, including the crossover between Mort insulator and the normal state, is derived on the frame of the Gutzwiller mean-field theory.In addition, we calculate the critical temperature of superfluid-normal phase transition.

  4. Phase diagram of the Fermi Hubbard model with spin-dependent external potentials:A DMRG study

    Institute of Scientific and Technical Information of China (English)

    魏兴波; 孟烨铭; 吴哲明; 高先龙

    2015-01-01

    We investigate a one-dimensional two-component system in an optical lattice of attractive interactions under a spin-dependent external potential. Based on the density-matrix renormalization group methods, we obtain its phase diagram as a function of the external potential imbalance and the strength of the attractive interaction through the analysis on the density profiles and the momentum pair correlation functions. We find that there are three different phases in the system, a coexisted fully polarized and Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase, a normal polarized phase, and a Bardeen–Cooper–Schrieffer (BCS) phase. Different from the systems of spin-independent external potential, where the FFLO phase is normally favored by the attractive interactions, in the present situation, the FFLO phases are easily destroyed by the attractive interactions, leading to the normal polarized or the BCS phase.

  5. Plaquette ordered phase and quantum phase diagram in the spin-1/2 J(1)-J(2) square Heisenberg model.

    Science.gov (United States)

    Gong, Shou-Shu; Zhu, Wei; Sheng, D N; Motrunich, Olexei I; Fisher, Matthew P A

    2014-07-11

    We study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J(1) and J(2), which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z(2) spin liquid. We use the density matrix renormalization group approach with explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders with different boundary conditions. With increasing J(2), we find a Néel phase and a plaquette valence-bond (PVB) phase with a finite spin gap. From the finite-size scaling of the magnetic order parameter, we estimate that the Néel order vanishes at J(2)/J(1)≃0.44. For 0.5

  6. Ternary phase diagram calculations of pentaerythritol-pentaglycerine-neopentylglycol system

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A.; Talekar, A. [Chemical and Materials Engineering Department (MS388), University of Nevada, Reno, NV 89557 (United States); Chandra, D., E-mail: dchandra@unr.edu [Chemical and Materials Engineering Department (MS388), University of Nevada, Reno, NV 89557 (United States); Chien, W.-M. [Chemical and Materials Engineering Department (MS388), University of Nevada, Reno, NV 89557 (United States)

    2012-05-10

    Highlights: Black-Right-Pointing-Pointer Ternary phase diagrams of polyalcohols are developed using the CALPHAD method. Black-Right-Pointing-Pointer These ternary phase diagrams are thermodynamically calculated for the first time. Black-Right-Pointing-Pointer Orientational disorder is observed in the high temperature (energy storage) phase. Black-Right-Pointing-Pointer Polyalcohols are potential thermal energy storage materials. - Abstract: The pentaerythritol (PE)-pentaglycerine (PG)-neopentylglycol (NPG) ternary system has been thermodynamically assessed using the CALPHAD method and Thermo-Calc software. The PE-PG, PG-NPG, PE-NPG binary systems have also been calculated using CALPHAD on the basis of reported binary experimental data. The solution phases are modeled as substitutional solutions, in which the excess Gibbs energies are expressed by the Redlich-Kister-Muggianu polynomial. The PE-NPG binary phase diagram was modeled using Henrian solution model, and the liquid phase was assumed ideal. The PG-NPG system was optimized using regular and sub-regular solution models and show invariant equilibria at 298 K. The PE-NPG binary system was calculated from room temperature to the liquid phase temperatures. The modeled phase diagrams and the experimental data are in good agreement. A set of self consistent thermodynamic parameters formulating the Gibbs energies of various phases in the PE-PG-NPG ternary system are obtained in the present work. Thermodynamic properties, several vertical and isopleth sections have been calculated and are in good agreement with experimental data.

  7. Calculation of Ceramic Phase Diagrams

    Science.gov (United States)

    1979-11-30

    i.e. LDOCO=LCODO=O). Figure 3 displays the computed CaO-MgO system which is obtained with assymetric excess free energies (LDOMO LMODO) but ideal...3O cases are approximated by regular models (i.e. the latter as an ideal liquid) while the CaO-FeO case is assymetric (LDOWO9LWODO) with ideal...Figure 80 of reference S and is computed with assymetric so. tion models A: -31- QUASIBINARY AND QUASITERNARY OXIDE SYSTEMS -II TABLE 5 SUMMARY OF

  8. Magnetic phase diagram of Ho-Ag

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Boncour, V [Chimie Metallurgique des Terres Rares, ICMPE, CNRS, 2 rue H Dunant, 94320 Thiais (France); Hoser, A; Stuesser, N [Hahn-Meitner Institut, Glienicker Strasse 100, 14109, Berlin (Germany); Hense, K; Gratz, E [Institute for Experimental Physics, Technical University Vienna, Wiedner Hauptstrasse 8-10, A-1040 (Austria); Rotter, M [Institut fuer Physikalische Chemie, Universitaet Wien, Waehringerstrasse 42, 1090 Wien (Austria)], E-mail: paulbon@glvt-cnrs.fr

    2008-03-12

    The magnetic phase diagram of Ho-Ag has been established using magnetoresistance, magnetostriction and neutron diffraction experiments versus applied field and temperature. Three different magnetic phases were observed: an incommensurate antiferromagnetic phase (IC) below T{sub N} = 33 K, a commensurate antiferromagnetic phase (C) above 5 T and below T{sub 1} (5-8 K) and a ferromagnetic component above 3 T. The IC phase undergoes spin reorientations around 5 T (IC') and 13 T (IC'')

  9. Phase Diagram in Quantum Chromodynamics

    CERN Document Server

    Apostol, M

    2013-01-01

    It is suggested that the hadronization of the quark-gluon plasma is a first-order phase transition described by a critical curve in the temperature-(quark) density plane which terminates in a critical point. Such a critical curve is derived from the van der Waals equation and its parameters are estimated by using the theoretical approach given in M. Apostol, Roum. Reps. Phys. 59 249 (2007); Mod. Phys. Lett. B21 893 (2007). The main assumption is that quark-gluon plasma created by high-energy nucleus-nucleus collisions is a gas of ultrarelativistic quarks in equilibrium with gluons (vanishing chemical potential, indefinite number of quarks). This plasma expands, gets cool and dilute and hadronizes at a certain transition temperature and transition density. The transition density is very close to the saturation density of the nuclear matter and, it is suggested that both these points are very close to the critical point n~1fm^{-3} (quark density) and T~200MeV (temperature).

  10. Phase Diagram of Vertically Shaken Granular Matter

    CERN Document Server

    Eshuis, P; Lohse, D; Van der Meer, D; Van der Weele, K; Bos, Robert; Eshuis, Peter; Lohse, Detlef; Meer, Devaraj van der; Weele, Ko van der

    2006-01-01

    A shallow, vertically shaken granular bed in a quasi 2-D container is studied experimentally yielding a wider variety of phenomena than in any previous study: (1) bouncing bed, (2) undulations, (3) granular Leidenfrost effect, (4) convection rolls, and (5) granular gas. These phenomena and the transitions between them are characterized by dimensionless control parameters and combined in a full experimental phase diagram.

  11. Complexities of One-Component Phase Diagrams

    Science.gov (United States)

    Ciccioli, Andrea; Glasser, Leslie

    2011-01-01

    For most materials, the solid at and near the triple-point temperature is denser than the liquid with which it is in equilibrium. However, for water and certain other materials, the densities of the phases are reversed, with the solid being less dense. The profound consequences for the appearance of the "pVT" diagram of one-component materials…

  12. Fog Machines, Vapors, and Phase Diagrams

    Science.gov (United States)

    Vitz, Ed

    2008-01-01

    A series of demonstrations is described that elucidate the operation of commercial fog machines by using common laboratory equipment and supplies. The formation of fogs, or "mixing clouds", is discussed in terms of the phase diagram for water and other chemical principles. The demonstrations can be adapted for presentation suitable for elementary…

  13. Phase diagram of UCoGe

    Science.gov (United States)

    Mineev, V. P.

    2017-03-01

    The temperature-pressure phase diagram of ferromagnetic superconductor UCoGe includes four phase transitions. They are between the paramagnetic and the ferromagnetic states with the subsequent transition in the superconducting ferromagnetic state and between the normal and the superconducting states after which the transition to the superconducting ferromagnetic state has to occur. Here we have developed the Landau theory description of the phase diagram and established the specific ordering arising at each type of transition. The phase transitions to the ferromagnetic superconducting state are inevitably accompanied by the emergence of screening currents. The corresponding magnetostatics considerations allow for establishing the significant difference between the transition from the ferromagnetic to the ferromagnetic superconducting state and the transition from the superconducting to the ferromagnetic superconducting state.

  14. Infrared thermography method for fast estimation of phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Palomo Del Barrio, Elena [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Cadoret, Régis [Centre National de la Recherche Scientifique, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Daranlot, Julien [Solvay, Laboratoire du Futur, 178 Av du Dr Schweitzer, 33608 Pessac (France); Achchaq, Fouzia, E-mail: fouzia.achchaq@u-bordeaux.fr [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France)

    2016-02-10

    Highlights: • Infrared thermography is proposed to determine phase diagrams in record time. • Phase boundaries are detected by means of emissivity changes during heating. • Transition lines are identified by using Singular Value Decomposition techniques. • Different binary systems have been used for validation purposes. - Abstract: Phase change materials (PCM) are widely used today in thermal energy storage applications. Pure PCMs are rarely used because of non adapted melting points. Instead of them, mixtures are preferred. The search of suitable mixtures, preferably eutectics, is often a tedious and time consuming task which requires the determination of phase diagrams. In order to accelerate this screening step, a new method for estimating phase diagrams in record time (1–3 h) has been established and validated. A sample composed by small droplets of mixtures with different compositions (as many as necessary to have a good coverage of the phase diagram) deposited on a flat substrate is first prepared and cooled down to ambient temperature so that all droplets crystallize. The plate is then heated at constant heating rate up to a sufficiently high temperature for melting all the small crystals. The heating process is imaged by using an infrared camera. An appropriate method based on singular values decomposition technique has been developed to analyze the recorded images and to determine the transition lines of the phase diagram. The method has been applied to determine several simple eutectic phase diagrams and the reached results have been validated by comparison with the phase diagrams obtained by Differential Scanning Calorimeter measurements and by thermodynamic modelling.

  15. Phase diagram of epidemic spreading - unimodal vs. bimodal probability distributions

    CERN Document Server

    Lancic, Alen; Sikic, Mile; Stefancic, Hrvoje

    2009-01-01

    The disease spreading on complex networks is studied in SIR model. Simulations on empirical complex networks reveal two specific regimes of disease spreading: local containment and epidemic outbreak. The variables measuring the extent of disease spreading are in general characterized by a bimodal probability distribution. Phase diagrams of disease spreading for empirical complex networks are introduced. A theoretical model of disease spreading on m-ary tree is investigated both analytically and in simulations. It is shown that the model reproduces qualitative features of phase diagrams of disease spreading observed in empirical complex networks. The role of tree-like structure of complex networks in disease spreading is discussed.

  16. Fluctuations and the QCD Phase Diagram

    CERN Document Server

    Koch, Volker

    2016-01-01

    In this contribution we will discuss how the study of various fluctuation observables may be used to explore the phase diagram of the strong interaction. We will briefly summarize the present study of experimental and theoretical research in this area. We will then discuss various corrections and issues which need to be understood and applied for a meaningful comparison of experimental measurements with theoretical predictions. This contribution is dedicated to Andrzej Bialas on the occasion of his $80^{\\mathrm{th}}$ birthday.

  17. Metastable phases and "metastable" phase diagrams

    OpenAIRE

    Brazhkin, V. V.

    2006-01-01

    The work discusses specifics of phase transitions for metastable states of substances. The objects of condensed media physics are primarily equilibrium states of substances with metastable phases viewed as an exception, while the overwhelming majority of organic substances investigated in chemistry are metastable. It turns out that at normal pressure many of simple molecular compounds based on light elements (these include: most hydrocarbons; nitrogen oxides, hydrates, and carbides; carbon ox...

  18. Improving modeling with layered UML diagrams

    DEFF Research Database (Denmark)

    Störrle, Harald

    2013-01-01

    Layered diagrams are diagrams whose elements are organized into sets of layers. Layered diagrams are routinely used in many branches of engineering, except Software Engineering. In this paper, we propose to add layered diagrams to UML modeling tools, and elaborate the concept by exploring usage...

  19. Monte-Carlo study of Dirac semimetals phase diagram

    CERN Document Server

    Braguta, V V; Kotov, A Yu; Nikolaev, A A

    2016-01-01

    In this paper the phase diagram of Dirac semimetals is studied within lattice Monte-Carlo simulation. In particular, we concentrate on the dynamical chiral symmetry breaking which results in semimetal/insulator transition. Using numerical simulation we determined the values of the critical coupling constant of the semimetal/insulator transition for different values of the anisotropy of the Fermi velocity. This measurement allowed us to draw tentative phase diagram for Dirac semimetals. It turns out that within the Dirac model with Coulomb interaction both Na$_3$Bi and Cd$_3$As$_2$ known experimentally to be Dirac semimetals would lie deeply in the insulating region of the phase diagram. It probably shows a decisive role of screening of the interelectron interaction in real materials, similar to the situation in graphene.

  20. Monte Carlo study of Dirac semimetals phase diagram

    Science.gov (United States)

    Braguta, V. V.; Katsnelson, M. I.; Kotov, A. Yu.; Nikolaev, A. A.

    2016-11-01

    In this paper the phase diagram of Dirac semimetals is studied within a lattice Monte Carlo simulation. In particular, we concentrate on the dynamical chiral symmetry breaking which results in a semimetal-insulator transition. Using numerical simulation, we determine the values of the critical coupling constant of the semimetal-insulator transition for different values of the anisotropy of the Fermi velocity. This measurement allows us to draw a tentative phase diagram for Dirac semimetals. It turns out that within the Dirac model with Coulomb interaction both Na3Bi and Cd3As2 , known experimentally to be Dirac semimetals, would lie deep in the insulating region of the phase diagram. This result probably shows a decisive role of screening of the interelectron interaction in real materials, similar to the situation in graphene.

  1. Ab initio phase diagram of iridium

    Science.gov (United States)

    Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.

    2016-09-01

    The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.

  2. CALPHAD (calculation of phase diagrams) a comprehensive guide

    CERN Document Server

    Saunders, N

    1998-01-01

    This monograph acts as a benchmark to current achievements in the field of Computer Coupling of Phase Diagrams and Thermochemistry, often called CALPHAD which is an acronym for Computer CALculation of PHAse Diagrams. It also acts as a guide to both the basic background of the subject area and the cutting edge of the topic, combining comprehensive discussions of the underlying physical principles of the CALPHAD method with detailed descriptions of their application to real complex multi-component materials. Approaches which combine both thermodynamic and kinetic models to interpret non-equilibr

  3. Temperature-pressure phase diagram of a heterogeneous anionic model biomembrane system: results from a combined calorimetry, spectroscopy and microscopy study.

    Science.gov (United States)

    Kapoor, Shobhna; Werkmüller, Alexander; Denter, Christian; Zhai, Yong; Markgraf, Jonas; Weise, Katrin; Opitz, Norbert; Winter, Roland

    2011-04-01

    By using Fourier transform infrared (FT-IR) spectroscopy in combination with differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), ultrasound velocimetry, Laurdan fluorescence spectroscopy, fluorescence microscopy and atomic force microscopy (AFM), the temperature and pressure dependent phase behavior of the five-component anionic model raft lipid mixture DOPC/DOPG/DPPC/DPPG/cholesterol (20:5:45:5:25 mol%) was investigated. A temperature range from 5 to 65 °C and a pressure range up to 16 kbar were covered to establish the temperature-pressure phase diagram of this heterogeneous model biomembrane system. Incorporation of 10-20 mol% PG still leads to liquid-ordered (l(o))-liquid-disordered (l(d)) phase coexistence regions over a wide range of temperatures and pressures. Compared to the corresponding neutral model raft mixture (DOPC/DPPC/Chol 25:50:25 mol%), the p,T-phase diagram is - as expected and in accordance with the Gibbs phase rule - more complex, the phase sequence as a function of temperature and pressure is largely similar, however. This anionic heterogeneous model membrane system will serve as a more realistic model biomembrane system to study protein interactions with anionic lipid bilayers displaying liquid-disordered/liquid-ordered domain coexistence over a wide range of the temperature-pressure plane, thus allowing also studies of biologically relevant systems encountered under extreme environmental conditions.

  4. Phase diagram of twisted mass lattice QCD

    Science.gov (United States)

    Sharpe, Stephen R.; Wu, Jackson M.

    2004-11-01

    We use the effective chiral Lagrangian to analyze the phase diagram of two-flavor twisted mass lattice QCD as a function of the normal and twisted masses, generalizing previous work for the untwisted theory. We first determine the chiral Lagrangian including discretization effects up to next-to-leading order (NLO) in a combined expansion in which m2π/(4πfπ)2˜aΛ (a being the lattice spacing, and Λ=ΛQCD). We then focus on the region where m2π/(4πfπ)2˜(aΛ)2, in which case competition between leading and NLO terms can lead to phase transitions. As for untwisted Wilson fermions, we find two possible phase diagrams, depending on the sign of a coefficient in the chiral Lagrangian. For one sign, there is an Aoki phase for pure Wilson fermions, with flavor and parity broken, but this is washed out into a crossover if the twisted mass is nonvanishing. For the other sign, there is a first order transition for pure Wilson fermions, and we find that this transition extends into the twisted mass plane, ending with two symmetrical second order points at which the mass of the neutral pion vanishes. We provide graphs of the condensate and pion masses for both scenarios, and note a simple mathematical relation between them. These results may be of importance to numerical simulations.

  5. QCD phase diagram with isospin chemical potential

    CERN Document Server

    Brandt, Bastian B

    2016-01-01

    In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of the massive Dirac operator, a leading-order reweighting and a spline Monte-Carlo fit. Our main results concern the phase transition boundary between the normal and the pion condensation phases and the chiral/deconfinement transition temperature as a function of the chemical potential. In addition, we perform a quantitative comparison between our direct results and a Taylor-expansion obtained at zero chemical potential to assess the applicability range of the latter.

  6. Understanding starch gelatinization: The phase diagram approach.

    Science.gov (United States)

    Carlstedt, Jonas; Wojtasz, Joanna; Fyhr, Peter; Kocherbitov, Vitaly

    2015-09-20

    By constructing a detailed phase diagram for the potato starch-water system based on data from optical microscopy, synchrotron X-ray scattering and differential scanning calorimetry, we show that gelatinization can be interpreted in analogy with a eutectic transition. The phase rule explains why the temperature of the gelatinization transition (G) is independent on water content. Furthermore, the melting (M1) endotherm observed in DSC represents a liquidus line; the temperature for this event increases with increasing starch concentration. Both the lamellar spacing and the inter-helix distance were observed to decrease with increasing starch content for starch concentrations between approximately 65 wt% and 75 wt%, while the inter-helix distance continued decreasing upon further dehydration. Understanding starch gelatinization has been a longstanding challenge. The novel approach presented here shows interpretation of this phenomenon from a phase equilibria perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Nonequilibrium phase diagram of the driven-dissipative photonic lattice

    CERN Document Server

    Biondi, M; Türeci, H E; Schmidt, S

    2016-01-01

    We study the nonequilibrium steady state of a driven-dissipative Bose-Hubbard model with Kerr nonlinearity. Employing a mean-field decoupling for the intercavity hopping $J$, we find that the crossover between low and high photon-number states inherited from the single cavity transforms into a gas--liquid bistability at large $J$. We determine the boundary separating smooth and sharp gas--liquid transitions in the $\\Delta$--$J$ diagram, where the detuning $\\Delta$ relates to the liquid-phase photon density, and find that it exhibits a lobe structure strikingly reminiscent of the phase boundary in the equilibrium phase diagram of the Bose-Hubbard model. Going beyond mean-field, we characterize the bulk phases and the transition region by their compressibility and pair-correlations.

  8. Phase diagram of colloid-rod system

    Science.gov (United States)

    Lai, S. K.; Xiao, Xuhui

    2010-01-01

    The semigrand ensemble theory [H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A. Stroobants, and P. B. Warren, Europhys. Lett. 20, 559 (1992)] in conjunction with the fundamental measure density functional theory [V. B. Warshavsky and X. Song, Phys. Rev. E 69, 061113 (2004)] are used to construct the Helmholtz free energy densities of a mixture of uncharged colloidal hard spheres and colloidal rods in its solid and liquid phases. Given these free energy density functions, we apply the free energy density minimization method [G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004)] to crosshatch the system's regions of phases in coexistence. The calculated results show that the triangular area bounded by gas-liquid, gas-solid, and liquid-solid coexisting two phases which has been called the coexistence region of gas-liquid-solid corresponds in fact to sets of two phases in coexistence. The phase boundaries which define our calculated coexistence domains compare very well with previous theoretical calculations. The relevance of the phase-diagram domains to three phases in coexistence will be discussed.

  9. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  10. The baryonic phase in holographic descriptions of the QCD phase diagram

    NARCIS (Netherlands)

    Evans, N.; Kim, K.-Y.; Magou, M.; Seo, Y.; Sin, S.J.

    2012-01-01

    We study holographic models of the QCD temperature-chemical potential phase diagram based on the D3/D7 system with chiral symmetry breaking. The baryonic phase may be included through linked D5-D7 systems. In a previous analysis of a model with a running gauge coupling a baryonic phase was shown to

  11. The Phase Diagram of Superionic Ice

    Science.gov (United States)

    Sun, Jiming; Clark, Bryan; Car, Roberto

    2014-03-01

    Using the variable cell Car-Parrinello molecular dynamics method, we study the phase diagram of superionic ice from 200GPa to 2.5TPa. We present evidence that at very high pressure the FCC structure of the oxygen sublattice may become unstable allowing for a new superionic ice phase, in which the oxygen sublattice takes the P21 structure found in zero-temperature total energy calculations. We also report on how the melting temperature of the hydrogen sublattice is affected by this new crystalline structure of the oxygen sublattice. This work was supported by the NSF under grant DMS-1065894(J.S. and R.C.) and PHY11-25915(B.C.).

  12. Phase diagram of a spin-1 magnetic bilayer by cluster variational theory: Exact results for a BEG model on a Bethe lattice with five-fold coordination

    Science.gov (United States)

    Tucker, J. W.; Balcerzak, T.; Gzik, M.; Sukiennicki, A.

    1998-09-01

    The complete global phase diagram for a magnetic spin-1 bilayer, whose interactions are described by the Blume Emery Griffiths model (BEG), is studied by cluster variational theory within the pair approximation. The results obtained, are also the exact results pertaining to the BEG model on a Bethe lattice having coordination number, z=5. Useful analytic expressions are derived for trajectories in phase space containing the second-order (continuous) phase boundaries. The physical existence of these second-order boundaries, together with the location of the first-order phase boundaries, are determined from a Gibbs free energy analysis. Detailed comparison of the results with those of other workers on this, and closely related systems, is made.

  13. Magnetic phase diagrams of classical triangular and kagome antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdikova, M V [Department of Physics, Kharkov National University, 61077 Kharkov (Ukraine); Melchy, P-E; Zhitomirsky, M E, E-mail: mike.zhitomirsky@cea.fr [Service de Physique Statistique, Magnetisme et Supraconductivite, UMR-E9001 CEA-INAC/UJF, 17 rue des Martyrs, 38054 Grenoble (France)

    2011-04-27

    We investigate the effect of geometrical frustration on the H-T phase diagrams of the classical Heisenberg antiferromagnets on triangular and kagome lattices. The phase diagrams for the two models are obtained from large-scale Monte Carlo simulations. For the kagome antiferromagnet, thermal fluctuations are unable to lift degeneracy completely and stabilize translationally disordered multipolar phases. We find a substantial difference in the temperature scales of the order by disorder effect related to different degeneracy of the low- and the high-field classical ground states in the kagome antiferromagnet. In the low-field regime, the Kosterlitz-Thouless transition into a spin-nematic phase is produced by unbinding of half-quantum vortices.

  14. Magnetic phase diagrams of classical triangular and kagome antiferromagnets.

    Science.gov (United States)

    Gvozdikova, M V; Melchy, P-E; Zhitomirsky, M E

    2011-04-27

    We investigate the effect of geometrical frustration on the H-T phase diagrams of the classical Heisenberg antiferromagnets on triangular and kagome lattices. The phase diagrams for the two models are obtained from large-scale Monte Carlo simulations. For the kagome antiferromagnet, thermal fluctuations are unable to lift degeneracy completely and stabilize translationally disordered multipolar phases. We find a substantial difference in the temperature scales of the order by disorder effect related to different degeneracy of the low- and the high-field classical ground states in the kagome antiferromagnet. In the low-field regime, the Kosterlitz-Thouless transition into a spin-nematic phase is produced by unbinding of half-quantum vortices.

  15. Phase diagram of a bulk 1d lattice Coulomb gas

    Science.gov (United States)

    Démery, V.; Monsarrat, R.; Dean, D. S.; Podgornik, R.

    2016-01-01

    The exact solution, via transfer matrix, of the simple one-dimensional lattice Coulomb gas (1d LCG) model can reproduce peculiar features of ionic liquid capacitors, such as overscreening, layering, and camel- and bell-shaped capacitance curves. Using the same transfer matrix method, we now compute the bulk properties of the 1d LCG in the constant voltage ensemble. We unveil a phase diagram with rich structure exhibiting low-density disordered and high-density ordered phases, separated by a first-order phase transition at low temperature; the solid state at full packing can be ordered or not, depending on the temperature. This phase diagram, which is strikingly similar to its three-dimensional counterpart, also sheds light on the behaviour of the confined system.

  16. Phase Diagrams of Silicate Systems: Handbook; Third Issue; Ternary Systems

    Science.gov (United States)

    In the third issue of the handbook Phase Diagrams of Silicate Systems, information is included on the phase relationships in systems containing...radioelectronics, nuclear engineering, etc. Not only are equilibrium phase diagrams presented in the handbook, but the phases existing in the

  17. Existence domains for invariant reactions in binary regular solution phase diagrams exhibiting two phases

    Indian Academy of Sciences (India)

    B Nageswara Sarma; S Srinivas Prasad; S Vijayvergiya; V Bharath Kumar; S Lele

    2003-06-01

    The thermodynamic origin of various types of phase diagrams in simple binary systems exhibiting two phases (e.g. a liquid and a solid phase) has been examined using the regular solution model. The necessary conditions for the occurrence of each of these types are identified in terms of the appropriate intersections of the miscibility gap boundaries (in solid/liquid phases) and the liquidus/solidus/iso- curves. Thus, the regions of occurrence of the different types of possible phase diagrams in the space of the regular solution interchange energy parameters (, ) are clearly delineated. This analysis makes it easier to make intelligent initial selections of model (energy) parameters for their optimization in the calculation of phase diagrams using thermodynamic models such as CALPHAD/CVM.

  18. The phase diagram of water at negative pressures: virtual ices.

    Science.gov (United States)

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  19. Phase diagram of hot QCD in an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo; Mizher, Ana Julia [Instituto de Fisica, Universidade Federal do Rio de Janeiro, CP 68528, Rio de Janeiro, 21945-970 RJ (Brazil); Chernodub, Maxim [Laboratoire de Mathematiques et Physique Theorique - LMPT, CNRS UMR 6083 Tours, Federation Denis Poisson, Faculte des Sciences et Techniques, Universite Francois Rabelais, Parc de Grandmont, 37200 Tours (France)

    2010-07-01

    The structure of the phase diagram for strong interactions becomes richer in the presence of a magnetic background, which enters as a new control parameter for the thermodynamics, and can exhibit new phases and interesting features. Motivated by the relevance of this physical setting for current and future high-energy heavy ion collision experiments and for the cosmological QCD transitions, we use the linear sigma model coupled to quarks and to Polyakov loops as an effective theory to investigate how the chiral and the deconfining transitions are affected, and present a general picture for the temperature-magnetic field phase diagram. We compute and discuss each contribution to the effective potential for the approximate order parameters, and uncover new phenomena such as the para-magnetically-induced breaking of Z(3). (authors)

  20. Phase diagram of Mo at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M

    2008-10-01

    We report values of the Poisson Ratios for shock compressed Mo, calculated from the sound speed measurements, which provide evidence that the 210 GPa ({approx}4100K) transition cannot be a bcc-hcp transition, as originally proposed. Instead, we find the transition is from the bcc to a noncrystalline phase. For pressures above 210 GPa, the Poisson Ratio increases steadily with increasing temperature, approaching the liquid value of 0.5 at 390 GPa({approx}10,000K), suggesting the presence of a noncrystalline solid-liquid mixture. Free energy model calculations were used to show that the low melting slope of Mo, and the phase diagram, can be explained by the presence of local liquid structures. A new phase diagram is proposed for Mo that is constrained by the experimental evidence.

  1. Si-Ge-metal ternary phase diagram calculations

    Science.gov (United States)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  2. Mapping Isobaric Aging onto the Equilibrium Phase Diagram

    Science.gov (United States)

    Niss, Kristine

    2017-09-01

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case—challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.

  3. Phase diagrams of nanoalloys: influence of size and morphology.

    Science.gov (United States)

    Berthier, F; Maras, E; Legrand, B

    2015-11-14

    The size dependence of the phase diagram of nanoalloys with a tendency to phase separate is investigated. As the critical temperature may depend on both the size and the morphology of the nanoparticles, we consider nanowires with different cross-sections and also nanotubes with different circumferences. The variation of the critical temperature with the length of all these nanoparticles is systematically studied using Monte Carlo simulations based on an Ising model. A non-monotonic variation of the critical temperature is observed as a function of the length. The maximal value of the critical temperature is reached when the length and the circumference of the nanoparticles are similar. The phase diagrams obtained within two thermodynamic ensembles (the canonical ensemble and the pseudo grand canonical ensemble) are compared and discussed in terms of the behaviour of a single particle or an assembly of nanoparticles in mutual equilibrium with each other.

  4. Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics.

    Science.gov (United States)

    Choukroun, Mathieu; Grasset, Olivier

    2010-10-14

    We present new experimental data on the liquidus of ice polymorphs in the H(2)O-NH(3) system under pressure, and use all available data to develop a new thermodynamic model predicting the phase behavior in this system in the ranges (0-2.2 GPa; 175-360 K; 0-33 wt % NH(3)). Liquidus data have been obtained with a cryogenic optical sapphire-anvil cell coupled to a Raman spectrometer. We improve upon pre-existing thermodynamic formulations for the specific volumes and heat capacities of the solid and liquid phase in the pure H(2)O phase diagram to ensure applicability of the model in the low-temperature metastable domain down to 175 K. We compute the phase equilibria in the pure H(2)O system with this new model. Then we develop a pressure-temperature dependent activity model to describe the effect of ammonia on phase transitions. We show that aqueous ammonia solutions behave as regular solutions at low pressures, and as close-to-ideal solutions at pressure above 600 MPa. The computation of phase equilibria in the H(2)O-NH(3) system shows that ice III cannot exist at concentrations above 5-10 wt % NH(3) (depending on pressure), and ice V is not expected to form above 25%-27% NH(3). We eventually address the applications of this new model for thermal and evolution models of icy satellites.

  5. Helicity, anisotropies, and their competition in a multiferroic magnet: Insight from the phase diagram

    Science.gov (United States)

    Gvozdikova, M. V.; Ziman, T.; Zhitomirsky, M. E.

    2016-07-01

    Motivated by the complex phase diagram of MnWO4, we investigate the competition between anisotropy, magnetic field, and helicity for the anisotropic next-nearest-neighbor Heisenberg model. Apart from two competing exchanges, which favor a spiral magnetic structure, the model features the biaxial single-ion anisotropy. The model is treated in the real-space mean-field approximation and the phase diagram containing various incommensurate and commensurate states is obtained for different field orientations. We discuss the similarities and differences of the theoretical phase diagram and the experimental diagram of MnWO4.

  6. Exploring the QCD phase diagram through relativistic heavy ion collisions

    CERN Document Server

    Mohanty, Bedangadas

    2013-01-01

    We present a review of the studies related to establishing the QCD phase diagram through high energy nucleus-nucleus collisions. We particularly focus on the experimental results related to the formation of a quark-gluon phase, crossover transition and search for a critical point in the QCD phase diagram.

  7. Water, Water Everywhere: Phase Diagrams of Ordinary Water Substance

    Science.gov (United States)

    Glasser, L.

    2004-01-01

    The full phase diagram of water in the form of a graphical representation of the three-dimensional (3D) PVT diagram using authentic data is presented. An interesting controversy regarding the phase behavior of water was the much-touted proposal of a solid phase of water, polywater, supposedly stable under atmospheric conditions.

  8. Phase diagram of strong interactions in an external magnetic field

    CERN Document Server

    Mizher, Ana Julia; Chernodub, M N

    2011-01-01

    We obtain the phase diagram of strong interactions in the presence of a magnetic field within the linear sigma model coupled to quarks and to the Polyakov loop, and show that the chiral and deconfinement lines can split. We also study the behavior of the chiral condensate in this magnetic environment and find an approximately linear dependence on the external field, in accordance with lattice data.

  9. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process

  10. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process improv

  11. The Dy-Zn phase diagram

    Science.gov (United States)

    Saccone, A.; Cardinale, A. M.; Delfino, S.; Ferro, R.

    2003-03-01

    The dysprosium-zinc phase diagram has been investigated over its entire composition range by using differential thermal analysis, (DTA) metallographic analysis, X-ray powder diffraction, and electron probe microanalysis (EPMA). Seven intermetallic phases have been found and their structures confirmed. DyZn, DyZn2, Dy13Zn58, and Dy2Zn17 melt congruently at 1095 °C, 1050 °C, 930 °C, and 930 °C, respectively. DyZn3, Dy3Zn11, and DyZn12 form through peritectic reactions at 895 °C, about 900 °C and 685 °C, respectively. Four eutectic reactions occur at 850 °C and 30.0 at pct Zn (between (Dy) and DyZn), 990 °C and 60.0 at pct Zn (between DyZn and DyZn2), 885 °C and 76.0 at pct Zn (between DyZn3 and Dy3Zn11), and 875 °C and 85.0 at pct Zn (involving Dy13Zn58 and Dy2Zn17). The Dy-rich end presents a catatectic equilibrium; a degenerate invariant effect has been found in the Zn-rich region. The phase equilibria of the Dy-Zn alloys are discussed and compared with those of the other known RE-Zn systems (RE=rare earth metal) in view of the regular change in the relative stabilities of the phases across the lanthanide series

  12. Enantiomeric 3-chloromandelic acid system: binary melting point phase diagram, ternary solubility phase diagrams and polymorphism.

    Science.gov (United States)

    Le Minh, Tam; von Langermann, Jan; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2010-09-01

    A systematic study of binary melting point and ternary solubility phase diagrams of the enantiomeric 3-chloromandelic acid (3-ClMA) system was performed under consideration of polymorphism. The melting point phase diagram was measured by means of thermal analysis, that is, using heat-flux differential scanning calorimetry (DSC). The results reveal that 3-ClMA belongs to the racemic compound-forming systems. Polymorphism was found for both the enantiomer and the racemate as confirmed by X-ray powder diffraction analysis. The ternary solubility phase diagram of 3-ClMA in water was determined between 5 and 50 degrees C by the classical isothermal technique. The solubilities of the pure enantiomers are extremely temperature-dependent. The solid-liquid equilibria of racemic 3-ClMA are not trivial due to the existence of polymorphism. The eutectic composition in the chiral system changes as a function of temperature. Further, solubility data in the alternative solvent toluene are also presented.

  13. Collapsing cycloidal structures in the magnetic phase diagram of erbium

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Simpson, J.A.;

    1994-01-01

    how it distorts as the field is increased. In low fields, there is a spin reorientation, so that the plane of the cycloid becomes perpendicular to the applied field, while in larger fields, the cycloid collapses through a series of fanlike structures. At lower temperatures, as the field is increased......The magnetic structure of Er with a magnetic field applied in the hexagonal basal plane has been studied using a combination of experimental techniques and mean-field modeling. From neutron-scattering and magnetization measurements, phase diagrams are constructed. At temperatures above...... approximately 20 K, the application of a field is found to favor cycloidal structures with modulation wave vectors of q(c) = (6/23)c*, (4/15)c*, and (2/7)c*. For fields above almost-equal-to 40 kOe, the (2/7) structure dominates the phase diagram. From a detailed study of this most stable cycloid, we determine...

  14. Size Dependent Phase Diagrams of Nickel-Carbon Nanoparticles.

    Science.gov (United States)

    Magnin, Y; Zappelli, A; Amara, H; Ducastelle, F; Bichara, C

    2015-11-13

    The carbon rich phase diagrams of nickel-carbon nanoparticles, relevant to catalysis and catalytic chemical vapor deposition synthesis of carbon nanotubes, are calculated for system sizes up to about 3 nm (807 Ni atoms). A tight binding model for interatomic interactions drives the grand canonical Monte Carlo simulations used to locate solid, core shell and liquid stability domains, as a function of size, temperature, and carbon chemical potential or concentration. Melting is favored by carbon incorporation from the nanoparticle surface, resulting in a strong relative lowering of the eutectic temperature and a phase diagram topology different from the bulk one. This should lead to a better understanding of the nanotube growth mechanisms.

  15. Confinement in Polyakov gauge and the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Marc Florian

    2009-10-14

    We investigate Quantum Chromodynamics (QCD) in the framework of the functional renormalisation group (fRG). Thereby describing the phase transition from the phase with confined quarks into the quark-gluon-plasma phase. We focus on a physical gauge in which the mechanism driving the phase transition is discernible. We find results compatible with lattice QCD data, as well as with functional methods applied in different gauges. The phase transition is of the expected order and we computed critical exponents. Extensions of the model are discussed. When investigating the QCD phase diagram, we compute the effects of dynamical quarks at finite density on the running of the gauge coupling. Additionally, we calculate how these affect the deconfinement phase transition, also, dynamical quarks allow for the inclusion of a finite chemical potential. Concluding the investigation of the phase diagram, we establish a relation between confinement and chiral symmetry breaking, which is tied to the dynamical generation of hadron masses. In the investigations, we often encounter scale dependent fields. We investigate a footing on which these can be dealt with in a uniform way. (orig.)

  16. THE SYSTEM NEODYMIUM - MANGANESE (STRUCTURES, MAGNETIC PROPERTIES, PHASE DIAGRAM), THE PHASE DIAGRAMS YB-HG AND TB-HG,

    Science.gov (United States)

    ALLOYS, YTTERBIUM, TERBIUM, MANGANESE ALLOYS, MERCURY ALLOYS, X RAY DIFFRACTION, X RAY SPECTROSCOPY, DIFFERENTIAL THERMAL ANALYSIS, PHASE DIAGRAMS , MAGNETIC PROPERTIES, CRYSTAL STRUCTURE, METALLOGRAPHY, AUSTRIA

  17. Phase diagram of the triangular-lattice Potts antiferromagnet

    Science.gov (United States)

    Lykke Jacobsen, Jesper; Salas, Jesús; Scullard, Christian R.

    2017-08-01

    We study the phase diagram of the triangular-lattice Q-state Potts model in the real (Q, v) -plane, where v=e^J-1 is the temperature variable. Our first goal is to provide an obviously missing feature of this diagram: the position of the antiferromagnetic critical curve. This curve turns out to possess a bifurcation point with two branches emerging from it, entailing important consequences for the global phase diagram. We have obtained accurate numerical estimates for the position of this curve by combining the transfer-matrix approach for strip graphs with toroidal boundary conditions and the recent method of critical polynomials. The second goal of this work is to study the corresponding Ap-1 RSOS model on the torus, for integer p=4, 5, \\ldots, 8 . We clarify its relation to the corresponding Potts model, in particular concerning the role of boundary conditions. For certain values of p, we identify several new critical points and regimes for the RSOS model and we initiate the study of the flows between the corresponding field theories.

  18. Lattice dynamics and phase diagram of aluminum at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kudasov, Yu. B., E-mail: yu_kudasov@yahoo.com; Surdin, O. M.; Korshunov, A. S.; Pavlov, V. N. [National Research Nuclear University ' MEPhI,' , Sarov State Institute of Physics and Technology (Russian Federation); Frolova, N. V.; Kuzin, R. S. [Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics (Russian Federation)

    2013-10-15

    The dispersion of phonons in the fcc, hcp, and bcc phases of aluminum is calculated at ultrahigh pressures by the method of small displacements in a supercell. The stability of the phonon subsystem is studied. The thermodynamic characteristics are calculated in the quasi-harmonic approximation, and a phase diagram of aluminum is plotted. As compared to the Debye model, the use of a phonon spectrum calculated in the quasi-harmonic approximation significantly broadens the hcp phase field and strongly shifts the phase boundary between the fcc and bcc phases. The normal isentrope is calculated at megabar pressures. It is shown to intersect the fcc-hcp and hcp-bcc phase boundaries. The sound velocity along the normal isentrope is calculated. It is shown to have a nonmonotonic character.

  19. The dysprosium-tin phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Eremenko, V.N.; Bulanova, M.V.; Martsenjuk, P.S. (I.N. Frantsevich Inst. for Problems of Materials Science, Kiev (Ukraine))

    1992-12-07

    The dysprosium-tin phase diagram was established by means of differential thermal, X-ray and microscopic analyses of 22 alloys. Seven intermetallic compounds were found to exist in the system. Dy[sub 5]Sn[sub 3] melts congruently at 1870 degC, and undergoes a polymorphous transformation at 1823 [+-] 6 degC. The intermetallics Dy[sub 5]Sn[sub 4], Dy[sub 11]Sn[sub 10], DySn, Dy[sub 4]Sn[sub 5], DySn[sub 2], DySn[sub 3] are formed peritectically at 1712 [+-]11, 1605 [+-]12, 1208 [+-]3, 1166 [+-]7, 1138 [+-]3 and 747 [+-]6 degC respectively. DySn[sub 3] exists in a narrow temperature range, in two polymorphous modifications. The transformation [beta]-DySn[sub 3] [yields] [alpha]-DySn[sub 3] occurs at 608 [+-] 12 degC, and at 499 [+-]2 degC [alpha]-DySn[sub 3] decomposes to DySn[sub 2] and the tin-rich melt. The dysprosium-rich eutectic crystallizes at 1204 [+-]10 degC and contains 13 at.% tin. The solid-state solubility of tin in dysprosium is about 3 at.%, and that of dysprosium in tin is negligible.

  20. An Introductory Idea for Teaching Two-Component Phase Diagrams

    Science.gov (United States)

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…

  1. Calculation of Gallium-metal-Arsenic phase diagrams

    Science.gov (United States)

    Scofield, J. D.; Davison, J. E.; Ray, A. E.; Smith, S. R.

    1991-01-01

    Electrical contacts and metallization to GaAs solar cells must survive at high temperatures for several minutes under specific mission scenarios. The determination of which metallizations or alloy systems that are able to withstand extreme thermal excursions with minimum degradation to solar cell performance can be predicted by properly calculated temperature constitution phase diagrams. A method for calculating a ternary diagram and its three constituent binary phase diagrams is briefly outlined and ternary phase diagrams for three Ga-As-X alloy systems are presented. Free energy functions of the liquid and solid phase are approximated by the regular solution theory. Phase diagrams calculated using this method are presented for the Ga-As-Ge and Ga-As-Ag systems.

  2. Phase diagram and entanglement of two interacting topological Kitaev chains

    Science.gov (United States)

    Herviou, Loïc; Mora, Christophe; Le Hur, Karyn

    2016-04-01

    A superconducting wire described by a p -wave pairing and a Kitaev Hamiltonian exhibits Majorana fermions at its edges and is topologically protected by symmetry. We consider two Kitaev wires (chains) coupled by a Coulomb-type interaction and study the complete phase diagram using analytical and numerical techniques. A topological superconducting phase with four Majorana fermions occurs until moderate interactions between chains. For large interactions, both repulsive and attractive, by analogy with the Hubbard model, we identify Mott phases with Ising-type magnetic order. For repulsive interactions, the Ising antiferromagnetic order favors the occurrence of orbital currents spontaneously breaking time-reversal symmetry. By strongly varying the chemical potentials of the two chains, quantum phase transitions towards fully polarized (empty or full) fermionic chains occur. In the Kitaev model, the quantum critical point separating the topological superconducting phase and the polarized phase belongs to the universality class of the critical Ising model in two dimensions. When increasing the Coulomb interaction between chains, then we identify an additional phase corresponding to two critical Ising theories (or two chains of Majorana fermions). We confirm the existence of such a phase from exact mappings and from the concept of bipartite fluctuations. We show the existence of negative logarithmic corrections in the bipartite fluctuations, as a reminiscence of the quantum critical point in the Kitaev model. Other entanglement probes such as bipartite entropy and entanglement spectrum are also used to characterize the phase diagram. The limit of large interactions can be reached in an equivalent setup of ultracold atoms and Josephson junctions.

  3. Phase Diagrams, Criticality, and Local Properties of Spin Glasses and Random-Field Ising Models from Renormalization - Calculations.

    Science.gov (United States)

    Hartford, Edward John

    This position-space renormalization-group study focuses on two systems with quenched disorder: the Ising spin glass and the asymmetric random-field Ising model. We have employed the Migdal-Kadanoff approach to determine local recursion relations and have retained the full correlated probability distribution of interactions and fields at each iteration in a series of histograms. We find an equilibrium spin-glass phase in three dimensions, but not in two. The spin glass is characterized by a distribution of effective interactions that broadens under iteration, signaling both the long-range order of the phase and the importance of competing interactions on all length scales. We have introduced a method to calculate the distribution of local properties by differentiating the free energy with respect to a particular magnetic field or interaction. Within the spin-glass phase, the nearest neighbor correlation ranges from negative one to one, showing the strong correlations and the local variation within the phase. The spin-glass-to-paramagnet phase transition is second order, with a smooth specific heat indicated by a negative critical exponent alpha. The multicritical point separating the spin-glass, paramagnetic, and ferromagnetic phases lies along the Nishimori line and also has a nondivergent specific heat. When the system undergoes quenched dilution, the resulting critical and multicritical behaviors are identical to those of the undiluted system. Even the addition of an infinitesimal magnetic field destroys the long-range spin-glass order; however, the characteristic broadening of the distribution continues for several iterations for small fields and low temperatures, suggesting the persistence of sizable spin-glass domains. Our study of the asymmetric random-field Ising model is motivated by recent experiments on phase transitions in porous media and mean-field treatments, which suggest that new critical behavior could occur when the distribution of fields is

  4. Ferrian Ilmenites: Investigating the Magnetic Phase Diagram

    Science.gov (United States)

    Lagroix, F.

    2007-12-01

    The main objective of this study is to investigate the magnetic phase changes within the hematite-ilmenite solid solution, yFeTiO3·(1-y)·Fe2O3. Two sets of synthetic ferrian ilmenites of y-values equal to 0.7, 0.8, 0.9, and 1.0 were available for this study. As currently drawn, the magnetic phase diagram, proposed by Ishikawa et al. [1985, J. Phys. Soc. Jpn. v.54, 312-325], predicts for increasing y values (0.5phase changes for the different compositions investigated. The y=1.0 sample, pure ilmenite, is antiferromagnetic below 57K, the measured Néel temperature. The y=0.9 sample magnetically orders at about 100K in a superparamagnetic state. Hysteresis loops remain effectively closed down to 60K below which an antiferromagnetic order prior to reaching the spin glass state is ambiguous. The y=0.8 sample magnetically orders at about 270K in an initially superparamagnetic states before entering a ferrimagnetic state below about 250K. Lastly, as previously demonstrated in Lagroix et al. [2004, JGR-B, v.109, doi:10.1029/2004JB003076], the y=0.7 samples order ferrimagnetically at 380K. However, like the y=0.7 samples which also demonstrated an antiferromagnetic state at temperature above the Curie temperature, hysteresis loops for y=0.9 and y=0.8 only achieve perfect linearity at 190K and 340K respectively. All samples (except y=1.0) show a frequency dependent amplitude non

  5. Modeling Workflow Using UML Activity Diagram

    Institute of Scientific and Technical Information of China (English)

    Wei Yinxing(韦银星); Zhang Shensheng

    2004-01-01

    An enterprise can improve its adaptability in the changing market by means of workflow technologies. In the build time, the main function of Workflow Management System (WFMS) is to model business process. Workflow model is an abstract representation of the real-world business process. The Unified Modeling Language (UML) activity diagram is an important visual process modeling language proposed by the Object Management Group (OMG). The novelty of this paper is representing workflow model by means of UML activity diagram. A translation from UML activity diagram to π-calculus is established. Using π-calculus, the deadlock property of workflow is analyzed.

  6. Misfit strain phase diagrams of epitaxial PMN–PT films

    Energy Technology Data Exchange (ETDEWEB)

    Khakpash, N.; Khassaf, H.; Rossetti, G. A. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2015-02-23

    Misfit strain–temperature phase diagrams of three compositions of (001) pseudocubic (1 − x)·Pb (Mg{sub l/3}Nb{sub 2/3})O{sub 3} − x·PbTiO{sub 3} (PMN–PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN–PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN–PT compared to barium strontium titanate and lead zirconate titanate films.

  7. Misfit strain phase diagrams of epitaxial PMN-PT films

    Science.gov (United States)

    Khakpash, N.; Khassaf, H.; Rossetti, G. A.; Alpay, S. P.

    2015-02-01

    Misfit strain-temperature phase diagrams of three compositions of (001) pseudocubic (1 - x).Pb (Mgl/3Nb2/3)O3 - x.PbTiO3 (PMN-PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN-PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN-PT compared to barium strontium titanate and lead zirconate titanate films.

  8. Phase diagram of the Shastry-Sutherland Kondo lattice model with classical localized spins: a variational calculation study

    Science.gov (United States)

    Shahzad, Munir; Sengupta, Pinaki

    2017-08-01

    We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.

  9. Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: Phase diagram

    Science.gov (United States)

    Monasson, R.; Rosay, S.

    2013-06-01

    We study the stable phases of an attractor neural network model, with binary units, for hippocampal place cells encoding one-dimensional (1D) or 2D spatial maps or environments. Different maps correspond to random allocations (permutations) of the place fields. Based on replica calculations we show that, below critical levels for the noise in the neural response and for the number of environments, the network activity is spatially localized in one environment. For high noise and loads the network activity extends over space, either uniformly or with spatial heterogeneities due to the crosstalk between the maps, and memory of environments is lost. Remarkably the spatially localized regime is very robust against the neural noise until it reaches its critical level. Numerical simulations are in excellent quantitative agreement with our theoretical predictions.

  10. Using a Spreadsheet To Explore Melting, Dissolving and Phase Diagrams.

    Science.gov (United States)

    Goodwin, Alan

    2002-01-01

    Compares phase diagrams relating to the solubilities and melting points of various substances in textbooks with those generated by a spreadsheet using data from the literature. Argues that differences between the diagrams give rise to new chemical insights. (Author/MM)

  11. Quarks and gluons in the phase diagram of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Welzbacher, Christian Andreas

    2016-07-14

    that a dynamical charm quark has no influence on the phase structure. An open question about the phase diagram of quantum chromodynamics is the importance of hadronic degrees of freedom. These are subject to an exploratory study in Ch. 5, where we perform a two flavour calculation and include the nucleon as a degree of freedom in the well-known quark-diquark approximation. Due to the lack of explicit knowledge of in-medium properties of the nucleon, we refer to vacuum results and test their influence by variation. The results show that in this truncation baryons have only very little influence on the phase diagram. This is followed by an approach for a systematic investigation of the quark-gluon vertex Dyson-Schwinger equation at finite temperature. The presented work features an internal model vertex. Calculations taking an unquenched gluon as input are presented, where we compare the quark mass function to results from lattice calculations. We give details about the regularised condensate and study the impact of the different quark flavours and the dependence of the calculation on the chosen internal properties. In the last chapter we perform an investigation of the analytical properties of the quark. The Schwinger function, as the Fourier transform of the Euclidean quark propagator with respect to (imaginary) time, is studied in the vacuum as well as the medium. The spectral function, obtained from correlator data by solving an ill-defined inverse problem, is introduced together with the Rothkopf-Burnier Bayesian reconstruction algorithm, which returns the Bayesian answer to the given inverse problem. The status of the reconstruction for test data is presented and an outline given.

  12. Phase Diagram of Antiferromagnetically Exchange-Coupled Bilayer

    Institute of Scientific and Technical Information of China (English)

    GUO Guang-Hua; ZHANG Guang-Fu; SUN Li-Yuan; Peter A. J. de Groot

    2008-01-01

    Magnetic hysteresis properties of antiferromagnetically exchange-coupled bilayer structures, in which the two magnetic layers have different magnetic parameters and thicknesses, are studied within the framework of the Stoner-Wohifarth model. Analytical expressions for the switching fields corresponding to the linear magnetic states are obtained. By adjusting the magnetic parameters or thicknesses of layers, nine different types of easyaxis hysteresis loops may exist. The phase diagram of easy-axis hysteresis loops is mapped in the k,1 and k,2 plane, where k,1 and k,2 are the ratios of magnetic anisotropy to the interlayer exchange coupling of the two magnetic layers, respectively.

  13. Phase diagrams and kinetics of phase transitions in protein solutions.

    Science.gov (United States)

    Vekilov, Peter G

    2012-05-16

    The phase behavior of proteins is of interest for fundamental and practical reasons. The nucleation of new phases is one of the last major unresolved problems of nature. The formation of protein condensed phases (crystals, polymers, and other solid aggregates, as well as dense liquids and gels) underlies pathological conditions, plays a crucial role in the biological function of the respective protein, or is an essential part of laboratory and industrial processes. In this review, we focus on phase transitions of proteins in their properly folded state. We first summarize the recently acquired understanding of physical processes underlying the phase diagrams of the protein solutions and the thermodynamics of protein phase transitions. Then we review recent findings on the kinetics of nucleation of dense liquid droplets and crystals. We explore the transition from nucleation to spinodal decomposition for liquid-liquid separation and introduce the new concept of solution-to-crystal spinodal. We review the two-step mechanism of protein crystal nucleation, in which mesoscopic metastable protein clusters serve as precursors to the ordered crystal nuclei. The concepts and mechanisms reviewed here provide powerful tools for control of the nucleation process by varying the solution thermodynamic parameters.

  14. Equations of State and Phase Diagrams of Ammonia

    Science.gov (United States)

    Glasser, Leslie

    2009-01-01

    We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…

  15. Inhomogeneous hard-core bosonic mixture with checkerboard supersolid phase: Quantum and thermal phase diagram

    Science.gov (United States)

    Heydarinasab, F.; Abouie, J.

    2017-09-01

    We introduce an inhomogeneous bosonic mixture composed of two kinds of hard-core and semi-hard-core bosons with different nilpotency conditions and demonstrate that in contrast with the standard hard-core Bose-Hubbard model, our bosonic mixture with nearest- and next-nearest-neighbor interactions on a square lattice develops the checkerboard supersolid phase characterized by the simultaneous superfluid and checkerboard solid orders. Our bosonic mixture is created from a two-orbital Bose-Hubbard model including two kinds of bosons: a single-orbital boson and a two-orbital boson. By mapping the bosonic mixture to an anisotropic inhomogeneous spin model in the presence of a magnetic field, we study the ground-state phase diagram of the model by means of cluster mean field theory and linear spin-wave theory and show that various phases such as solid, superfluid, supersolid, and Mott insulator appear in the phase diagram of the mixture. Competition between the interactions and magnetic field causes the mixture to undergo different kinds of first- and second-order phase transitions. By studying the behavior of the spin-wave excitations, we find the reasons of all first- and second-order phase transitions. We also obtain the temperature phase diagram of the system using cluster mean field theory. We show that the checkerboard supersolid phase persists at finite temperature comparable with the interaction energies of bosons.

  16. Closed-loop phase diagrams, vaporization, and multicriticality in binary liquid mixtures

    Science.gov (United States)

    Caflisch, Robert G.; Walker, James S.

    1983-09-01

    The coupled Potts-Ising models of Walker and Vause, which successfully describe closed-loop phase diagrams in hydrogen-bonding mixtures, are generalized to encompass the vapor phase, and are studied using position-space renormalization-group techniques. Global phase diagrams are generated, exhibiting such features as miscibility-immiscibility criticality, liquid-vapor critical points, critical end points, and bicritical and tricritical points. In addition, new types of phase diagrams are found, involving upper and lower azeotropes, for example, which are expected to be physically realizable in experimental systems.

  17. Phase diagrams of binary mixtures of oppositely charged colloids.

    Science.gov (United States)

    Bier, Markus; van Roij, René; Dijkstra, Marjolein

    2010-09-28

    Phase diagrams of binary mixtures of oppositely charged colloids are calculated theoretically. The proposed mean-field-like formalism interpolates between the limits of a hard-sphere system at high temperatures and the colloidal crystals which minimize Madelung-like energy sums at low temperatures. Comparison with computer simulations of an equimolar mixture of oppositely charged, equally sized spheres indicate semiquantitative accuracy of the proposed formalism. We calculate global phase diagrams of binary mixtures of equally sized spheres with opposite charges and equal charge magnitude in terms of temperature, pressure, and composition. The influence of the screening of the Coulomb interaction upon the topology of the phase diagram is discussed. Insight into the topology of the global phase diagram as a function of the system parameters leads to predictions on the preparation conditions for specific binary colloidal crystals.

  18. Phase diagrams of binary crystalline-crystalline polymer blends.

    Science.gov (United States)

    Matkar, Rushikesh A; Kyu, Thein

    2006-08-17

    A thermodynamically self-consistent theory has been developed to establish binary phase diagrams for two-crystalline polymer blends by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The present theory basically involves combination of the Flory-Huggins free energy for amorphous-amorphous isotropic mixing and the Landau free energy of polymer solidification (e.g., crystallization) of the crystalline constituents. The self-consistent solution via minimization of the free energy of the mixture affords determination of eutectic, peritectic, and azeotrope phase diagrams involving various coexistence regions such as liquid-liquid, liquid-solid, and solid-solid coexistence regions bound by liquidus and solidus lines. To validate the present theory, the predicted eutectic phase diagrams have been compared with the reported experimental binary phase diagrams of blends such as polyethylene fractions as well as polycaprolactone/trioxane mixtures.

  19. A dialogue about protein crystallization and phase diagrams.

    Science.gov (United States)

    Asherie, Neer

    2012-07-01

    A lighthearted researcher and a disheartened student discuss the challenges of protein crystallization and how phase diagrams can be used to address these challenges. The student feels a little better afterwards, but many proteins remain uncrystallized.

  20. Phase diagrams properties of the mixed traffic flow on a crossroad

    Science.gov (United States)

    Li, Qi-Lang; Wang, Bing-Hong; Liu, Mu-Ren

    2010-11-01

    Based on the Ishibashi and Fukui crossroad traffic flow model [Y. Ishibashi and M. Fukui. J. Phys. Soc. Japan. 70 (2001) 2793], mixed traffic flow (i.e., the fast and slow vehicles with different maximum velocities are mixed) is investigated in this work. According to the numerical simulation results and the principle for constructing the phase diagram, phase diagrams for mixed traffic flow are constructed. It is noted that the topology of these phase diagrams is similar to that of phase diagrams for homogeneous vehicles (which refers to slow vehicles only). From the phase diagrams, it is evident that mixed traffic flow is influenced by the mixing rate f (fraction of slow and fast vehicles) in regions II and V, but not in other regions. Although a mixture of fast and slow vehicles is introduced in the crossroad traffic flow model, the separation between phases in the phase diagrams remains linear. For a given q (the vehicle density on the northbound road), one flow plateau appears in regions IIx or IVy, while two maximum flow plateaus appear in region V in each of the phase diagrams. The maximum flow values in region V reflect the maximum traffic capacity for the traffic system as defined in this work. Since mixed traffic flow is a common phenomenon in real traffic, this work may offer help in real traffic simulations and traffic management.

  1. Phase Diagram of Inhomogeneous Percolation with a Defect Plane

    Science.gov (United States)

    Iliev, G. K.; Janse van Rensburg, E. J.; Madras, N.

    2015-01-01

    Let be the -dimensional hypercubic lattice and let be an -dimensional sublattice, with . We consider a model of inhomogeneous bond percolation on at densities and , in which edges in are open with probability , and edges in open with probability . We generalize several classical results of (homogeneous) bond percolation to this inhomogeneous model. The phase diagram of the model is presented, and it is shown that there is a subcritical regime for and (where is the critical probability for homogeneous percolation in ), a bulk supercritical regime for , and a surface supercritical regime for and . We show that is a strictly decreasing function for , with a jump discontinuity at . We extend the Aizenman-Barsky differential inequalities for homogeneous percolation to the inhomogeneous model and use them to prove that the susceptibility is finite inside the subcritical phase. We prove that the cluster size distribution decays exponentially in the subcritical phase, and sub-exponentially in the supercritical phases. For a model of lattice animals with a defect plane, the free energy is related to functions of the inhomogeneous percolation model, and we show how the percolation transition implies a non-analyticity in the free energy of the animal model. Finally, we present simulation estimates of the critical curve.

  2. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    Science.gov (United States)

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  3. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    Science.gov (United States)

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  4. Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data

    Directory of Open Access Journals (Sweden)

    Mohammad Mezbahul-Islam

    2014-01-01

    Full Text Available Magnesium-based alloys are becoming a major industrial material for structural applications because of their potential weight saving characteristics. All the commercial Mg alloys like AZ, AM, AE, EZ, ZK, and so forth series are multicomponent and hence it is important to understand the phase relations of the alloying elements with Mg. In this work, eleven essential Mg-based binary systems including Mg-Al/Zn/Mn/Ca/Sr/Y/Ni/Ce/Nd/Cu/Sn have been reviewed. Each of these systems has been discussed critically on the aspects of phase diagram and thermodynamic properties. All the available experimental data has been summarized and critically assessed to provide detailed understanding of the systems. The phase diagrams are calculated based on the most up-to-date optimized parameters. The thermodynamic model parameters for all the systems except Mg-Nd have been summarized in tables. The crystallographic information of the intermetallic compounds of different binary systems is provided. Also, the heat of formation of the intermetallic compounds obtained from experimental, first principle calculations and CALPHAD optimizations are provided. In addition, reoptimization of the Mg-Y system has been done in this work since new experimental data showed wider solubility of the intermetallic compounds.

  5. Magnetic phase diagrams of α-MnMoO 4

    Science.gov (United States)

    Ehrenberg, H.; Schwarz, B.; Weitzel, H.

    2006-10-01

    Field-induced spin-flop transitions in α-MnMoO 4 are summarized in magnetic H-T phase diagrams for different directions of the applied magnetic field up to 12 T. The antiferromagnetic arrangement in the spin-flop phase is preserved at least up to this field for a field parallel to the easy direction. This high transition field is in contrast to the low one of α-NiMoO 4 and favours a model, based on dominant antiferromagnetic supersuperexchange couplings in α-MnMoO 4 over a ferromagnetic Mn 4 "cluster" model. The Néel temperature of 9.8(1) K was determined from the corresponding specific-heat anomaly, measured on a single crystal of α-MnMoO 4.

  6. C.A.D. representation of ternary and quaternary phase diagrams

    Science.gov (United States)

    Delao, James D.

    1986-01-01

    This work is concerned with the utilization of C.A.D. solid-modeling software for the computer representation of three-dimensional phase diagrams. The work was undertaken in two parts. First, the C.A.D. software (I-DEAS, by Structural Dynamics Research Corp.) was integrated with a variety of auxiliary Fortran 77 and I-DEAS language programs which were written specifically for the purpose of phase diagram representation. The capabilities of the resulting suite of software for three-dimensional phase diagram representation were developed and illustrated by the construction, display and manipulation of solid-model phase diagrams for a hypothetical quaternary eutectic system. The results of this work are discussed in some detail in the attached publication ('Solid-modeling: a C.A.D. Alternative for Three-dimensional Phase Diagram Representation'). Such a technique is of general applicability, having utility in both research and education. Secondly, using the C.A.D. technique, data from the literature (gleaned from some 70 separate publications), which represent experimentally determined phase boundaries, were combined to form solid-model representations of the CMS2-M2S-S ternary space diagram and the CMS2-CAS2-M2S-S quaternary liquidus projection (where C=CaO, M=MgO, A=Al2O3, and S=SiO2). These diagrams were utilized in a concurrent study of solidification in the CMAS system.

  7. Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows: The calculation of the model parameters, λ11, λ12, λ21 and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems.In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the.calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.

  8. HTSC cuprate phase diagram using a modified Boson-Fermion-Gossamer model describing competing orders, a quantum critical point and possible resonance complex

    Science.gov (United States)

    Squire, Richard H.; March, Norman H.; Booth, Michael L.

    There has been considerable effort expended toward understanding high temperature superconductors (HTSC), and more specifically the cuprate phase diagram as a function of doping level. Yet, the only agreement seems to be that HTSC is an example of a strongly correlated material where Coulomb repulsion plays a major role. This manuscript proposes a model based on a Feshbach resonance pairing mechanism and competing orders. An initial BCS-type superconductivity at high doping is suppressed in the two particle channel by a localized preformed pair (PP) (Nozieres and Schmitt-Rink, J Low Temp Phys, 1985, 59, 980) (circular density wave) creating a quantum critical point. As doping continues to diminish, the PP then participates in a Feshbach resonance complex that creates a new electron (hole) pair that delocalizes and constitutes HTSC and the characteristic dome (Squire and March, Int J Quantum Chem, 2007, 107, 3013; 2008, 108, 2819). The resonant nature of the new pair contributes to its short coherence length. The model we propose also suggests an explanation (and necessity) for an experimentally observed correlated lattice that could restrict energy dissipation to enable the resonant Cooper pair to move over several correlation lengths, or essentially free. The PP density wave is responsible for the pseudogap as it appears as a "localized superconductor" since its density of states and quasiparticle spectrum are similar to those of a superconductor (Peierls-Fröhlich theory), but with no phase coherence between the PP.

  9. Phase diagrams and kinetics of solid-liquid phase transitions in crystalline polymer blends

    Science.gov (United States)

    Matkar, Rushikesh A.

    A free energy functional has been formulated based on an order parameter approach to describe the competition between liquid-liquid phase separation and solid-liquid phase separation. In the free energy description, the assumption of complete solvent rejection from the crystalline phase that is inherent in the Flory diluent theory was removed as solvent has been found to reside in the crystalline phase in the form of intercalates. Using this approach, we have calculated various phase diagrams in binary blends of crystalline and amorphous polymers that show upper or lower critical solution temperature. Also, the discrepancy in the chi values obtained from different experimental methods reported in the literature for the polymer blend of poly(vinylidenefluoride) and poly(methylmethacrylate) has been discussed in the context of the present model. Experimental phase diagram for the polymer blend of poly(caprolactone) and polystyrene has also been calculated. Of particular importance is that the crystalline phase concentration as a function of temperature has been calculated using free energy minimization methods instead of assuming it to be pure. In the limit of complete immiscibility of the solvent in the crystalline phase, the Flory diluent theory is recovered. The model is extended to binary crystalline blends and the formation of eutectic, peritectic and azeotrope phase diagrams has been explained on the basis of departure from ideal solid solution behavior. Experimental eutectic phase diagram from literature of a binary blend of crystalline polymer poly(caprolactone) and trioxane were recalculated using the aforementioned approach. Furthermore, simulations on the spatio temporal dynamics of crystallization in blends of crystalline and amorphous polymers were carried out using the Ginzburg-Landau approach. These simulations have provided insight into the distribution of the amorphous polymer in the blends during the crystallization process. The simulated results

  10. Phase diagram for a nano-yttria-stabilized zirconia system

    DEFF Research Database (Denmark)

    Asadikiya, Mohammad; Sabarou, Hooman; Chen, Ming;

    2016-01-01

    Due to the attractive properties of nanoparticles because of their effective surface area, they have been studied widely. Nano-yttria-stabilized zirconia (n-YSZ) is a ceramic which has been scrutinized extensively in past years. Because of the different stability behavior of n-YSZ in comparison...... with bulk YSZ, a new phase diagram is needed for the n-YSZ system in order to identify stable phases under various conditions. In this study, a phase diagram for the n-YSZ system was provided to determine phase stability ranges at room temperature with respect to particle size and composition....... By applying the CALPHAD approach, a 3-D phase diagram for the n-YSZ system was established in which the stability range of each individual phase can be predicted based on the particle size, composition, and temperature....

  11. Influence of coupling with calculation of phase diagrams on microsegregation forming simulation of Al-4.5%Cu alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-gang; CHEN Guang; SUN Guo-xiong

    2006-01-01

    The effect of coupling with calculation of phase diagrams on microsegregation forming simulation was investigated. The traditional simplified phase diagram and calculated phase diagram were introduced into the numerical models respectively and simulation on microsegregation forming of the Al-4.5%Cu alloy ingot was also presented. The simulation results were both compared with the experiment results. The results show that the calculated sencondary arm spacing with these two kinds of phase diagram are almost the same because relationship between the coarsening model and the information of phase diagram is not close. The calculated eutectic phase volume fractions of different locations in the ingot coupled with different phase diagrams are discrepant. The calculated volume fractions are consistent with the experiment results when calculated phase diagram couples, but are far from the experiment results and obviously inacceptable when traditional simplified phase diagram couples. So, coupling with accurate calculated phase diagrams is very significant for microsegregation forming simulation since much information of the phase diagram is used in the models and it can improve the precision of simulation results.

  12. Interacting Weyl fermions: Phases, phase transitions, and global phase diagram

    Science.gov (United States)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2017-05-01

    We study the effects of short-range interactions on a generalized three-dimensional Weyl semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curvature of strength n . We show that any local interaction has a negative scaling dimension -2 /n . Consequently, all Weyl semimetals are stable against weak short-range interactions. For sufficiently strong interactions, we demonstrate that the Weyl semimetal either undergoes a first-order transition into a band insulator or a continuous transition into a symmetry breaking phase. A translational symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two prominent candidates for the broken symmetry phase. At the one-loop order, the correlation length exponent for continuous transitions is ν =n /2 , indicating their non-Gaussian nature for any n >1 . We also discuss the scaling of the thermodynamic and transport quantities in general Weyl semimetals as well as inside broken symmetry phases.

  13. Phase diagram studies on the Na-Mo-O system

    Science.gov (United States)

    Gnanasekaran, T.; Mahendran, K. H.; Kutty, K. V. G.; Mathews, C. K.

    1989-06-01

    The phase diagram of the Na-Mo-O ternary system is of interest in interpreting the behaviour of structural materials in the sodium circuits of fast breeder reactors and sodium-filled heat pipes. Experiments involving heating of sodium oxide with molybdenum metal under vacuum, selective removal of oxygen from polymolybdates by reducing them under hydrogen and confirmation of the coexistence of various phase mixtures were conducted in the temperature range of 673 to 923 K. Phase fields involving molybdenum metal, dioxide of molybdenum and ternary compounds were derived from these results. The ternary phase diagram of the Na-Mo-O system was constructed and isothermal cross sections of the phase diagram are presented.

  14. MDM: A Mode Diagram Modeling Framework

    DEFF Research Database (Denmark)

    Wang, Zheng; Pu, Geguang; Li, Jianwen

    2012-01-01

    systems are widely used in the above-mentioned safety-critical embedded domains, there is lack of domain-specific formal modelling languages for such systems in the relevant industry. To address this problem, we propose a formal visual modeling framework called mode diagram as a concise and precise way...... checking technique can then be used to verify the mode diagram models against desired properties. To demonstrate the viability of our approach, we have applied our modelling framework to some real life case studies from industry and helped detect two design defects for some spacecraft control systems....

  15. Interacting Weyl fermions: Phases, phase transitions and global phase diagram

    CERN Document Server

    Roy, Bitan; Juricic, Vladimir

    2016-01-01

    We study the effects of short-range interactions on a generalized three-dimensional Weyl semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curvature of strength $n$. We show that any local interaction has a \\emph{negative} scaling dimension $-2/n$. Consequently all Weyl semimetals are stable against weak short-range interactions. For sufficiently strong interactions, we demonstrate that the Weyl semimetal either undergoes a first order transition into a band insulator or a continuous transition into a symmetry breaking phase. A translational symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two prominent candidates for the broken symmetry phase. At one loop level, the correlation length exponent for continuous transitions is $\

  16. A study of the Al–Pt–Ir phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Grushko, B., E-mail: b.grushko@fz-juelich.de [MaTecK, 52428 Jülich (Germany); PGI-5, Forschungszentrum Jülich, 52425 Jülich (Germany); Samuha, S. [Dept. Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer-Sheva (Israel); NRCN, P.O. Box 9001, 84190 Beer-Sheva (Israel); Meshi, L. [Dept. Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer-Sheva (Israel)

    2015-10-15

    Phase equilibria in Al–Pt–Ir were studied up to 50 at.% Al at 1100 °C, up to 70 at.% Al at 900 °C and up to 75 at.% Al at 810 °C. At elevated temperatures the isostructural AlIr and high-temperature AlPt β-phases probably form a continuous compositional region. The ternary extensions of the phases Al{sub 4}Pt, Al{sub 21}Pt{sub 8}, Al{sub 3}Pt{sub 2} and low-temperature AlPt were revealed along approximately constant Al concentrations up to 15, 11, 20 and 10 at.% Ir, respectively. The Al–Ir C-phase dissolved up to 12 at.% Pt, and the χ-phase propagated up to almost Al{sub 3}Pt. A new ternary B-phase (I4{sub 1}/acd, a = 0.86250, c = 2.18409 nm) was revealed around Al{sub 69}Pt{sub 7}Ir{sub 24}. Its structural model was derived from the electron diffraction data. - Highlights: • The Al–Pt–Ir phase diagram was studied at 810, 900 and 1100 °C. • The majority of binaries extend widely along about constant Al. • The new ternary B-phase of the Ga{sub 4}Ir{sub 8}B type was revealed at Al{sub 69}Pt{sub 7}Ir{sub 24}. • The structural model of the B-phase was derived from electron diffraction.

  17. Phase diagram of matrix compressed sensing

    Science.gov (United States)

    Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka

    2016-12-01

    In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.

  18. Metastable Al-Sc phase diagram in aluminium rich region

    Energy Technology Data Exchange (ETDEWEB)

    Drits, M.E.; Toropova, L.S.; Bykov, Yu.G.; Gushchina, F.L.; Elagin, V.I.; Filatov, Yu.A.

    1982-12-01

    An aluminium rich part of binary metastable phase diagram Al-Sc for 100 deg/s alloy cooling rate under crystallization is studied. Eutectic horizontal in the metastable diagram is 4 deg lower as compared to the equilibrium one, scandium concentration in the eutectic point makes up approximately 0.8%, the maximum solubility is 0.6%. Maximum cast grain refining in aluminium under crystallization at the rate of 100 deg/s is attained at 0.6% scandium content.

  19. Monte Carlo study of half-magnetization plateau and magnetic phase diagram in pyrochlore antiferromagnetic Heisenberg model

    OpenAIRE

    Motome, Yukitoshi; Penc, Karlo; Shannon, Nic

    2005-01-01

    The antiferromagnetic Heisenberg model on a pyrochlore lattice under external magnetic field is studied by classical Monte Carlo simulation. The model includes bilinear and biquadratic interactions; the latter effectively describes the coupling to lattice distortions. The magnetization process shows a half-magnetization plateau at low temperatures, accompanied with strong suppression of the magnetic susceptibility. Temperature dependence of the plateau behavior is clarified. Finite-temperatur...

  20. Phase diagrams and magnetic properties of tri-layer superlattices: Mean field study

    Science.gov (United States)

    Naji, S.; Belhaj, A.; Labrim, H.; Bahmad, L.; Benyoussef, A.; El Kenz, A.

    2014-04-01

    Motivated by spintronic device applications, we engineer a superlattice model based on periodic tri-layers consisting of spins σ={1}/{2}, S=1 and q={3}/{2} residing on the sites of a square lattice, interacting with an external magnetic field. We study its phase diagrams and magnetic properties. We determine the corresponding ground state phase diagrams. Then, we show that this Ising lattice model exhibits a ferromagnetic phase F1, two ferrimagnetic phases F2, F3 and an antiferromagnetic phase F4. It is found that the magnetic behaviors depend on the moduli space controlled by the exchange interaction couplings. More precisely, the hysteresis loops have been established.

  1. Induced smectic phases in phase diagrams of binary nematic liquid crystal mixtures.

    Science.gov (United States)

    Huang, Tsang-Min; McCreary, Kathleen; Garg, Shila; Kyu, Thein

    2011-03-28

    To elucidate induced smectic A and smectic B phases in binary nematic liquid crystal mixtures, a generalized thermodynamic model has been developed in the framework of a combined Flory-Huggins free energy for isotropic mixing, Maier-Saupe free energy for orientational ordering, McMillan free energy for smectic ordering, Chandrasekhar-Clark free energy for hexagonal ordering, and phase field free energy for crystal solidification. Although nematic constituents have no smectic phase, the complexation between these constituent liquid crystal molecules in their mixture resulted in a more stable ordered phase such as smectic A or B phases. Various phase transitions of crystal-smectic, smectic-nematic, and nematic-isotropic phases have been determined by minimizing the above combined free energies with respect to each order parameter of these mesophases. By changing the strengths of anisotropic interaction and hexagonal interaction parameters, the present model captures the induced smectic A or smectic B phases of the binary nematic mixtures. Of particular importance is the fact that the calculated phase diagrams show remarkable agreement with the experimental phase diagrams of binary nematic liquid crystal mixtures involving induced smectic A or induced smectic B phase.

  2. Phase stability in nanoscale material systems: extension from bulk phase diagrams.

    Science.gov (United States)

    Bajaj, Saurabh; Haverty, Michael G; Arróyave, Raymundo; Goddard, William A; Shankar, Sadasivan

    2015-06-07

    Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed "nano-CALPHAD") is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions.

  3. Partial chord diagrams and matrix models

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Manabe, Masahide

    spectrum. Furthermore, we consider the boundary length and point spectrum that unifies the last two types of spectra. We introduce matrix models that encode generating functions of partial chord diagrams filtered by each of these spectra. Using these matrix models, we derive partial differential equations......In this article, the enumeration of partial chord diagrams is discussed via matrix model techniques. In addition to the basic data such as the number of backbones and chords, we also consider the Euler characteristic, the backbone spectrum, the boundary point spectrum, and the boundary length...... – obtained independently by cut-and-join arguments in an earlier work – for the corresponding generating functions....

  4. Phase diagram of hopping conduction mechanisms in polymer nanofiber network

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jeng-Ting; Lu, Yu-Cheng; Jiang, Shiau-Bin; Zhong, Yuan-Liang, E-mail: ylzhong@cycu.edu.tw [Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yeh, Jui-Ming [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China)

    2015-12-07

    Network formation by nanofiber crosslinking is usually in polymer materials as application in organic semiconductor devices. Electron hopping transport mechanisms depend on polymer morphology in network. Conducting polymers morphology in a random network structure is modeled by a quasi-one-dimensional system coupled of chains or fibers. We observe the varying hopping conduction mechanisms in the polyaniline nanofibers of the random network structure. The average diameter d of the nanofibers is varied from approximately 10 to 100 nm. The different dominant hopping mechanisms including Efros-Shklovskii variable-range hopping (VRH), Mott VRH, and nearest-neighbor hopping are dependent on temperature range and d in crossover changes. The result of this study is first presented in a phase diagram of hopping conduction mechanisms based on the theories of the random network model. The hopping conduction mechanism is unlike in normal semiconductor materials.

  5. Phase diagrams for geoscientists an atlas of the Earth's interior

    CERN Document Server

    Gasparik, Tibor

    2014-01-01

    Presented in this new, full-color edition, with the first polychrome phase diagrams to be published, this geoscientific atlas is backed by the author's unrivalled dataset, and amounts to the most complete survey yet of phase relations in Earth's chemistry.

  6. Calculated Phase Diagram for the γ⇌α Transition in Ce

    DEFF Research Database (Denmark)

    Johansson, Børje; Abrikosov, I. A.; Aldén, Magnus

    1995-01-01

    We have calculated the pressure-temperature phase diagram of the γ⇌α isostructural transition in Ce on the basis of the Mott transition model. The theory correctly describes the linear variation of the transition temperature with pressure and the existence of a critical point. The quantitative...... agreement with the experimental diagram is good. The influence of different free energy contributions (configurational, magnetic, and vibrational) on the phase transition in Ce is discussed....

  7. The 2D Alternative Binary L—J System:Solid—Liquid Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhi; CHENLi-Rong

    2002-01-01

    The Lennard-Jones potential is introduced into the Collins model and is generalized to the two-dimensional alternative binary system.The Gibbs free energy of the binary system is calculated.According to the thermodynamic conditions of solid-liquid equilibrium,the “cigar-type ” phase diagram and the phase diagram with a minimum are obtained.The results are quite analogous to the behavior of three-dimensional substances.

  8. The 2D Alternative Binary L-J System: Solid-Liquid Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi; CHEN Li-Rong

    2002-01-01

    The Lennard-Jones potential is introduced into the Collins model and is generalized to the two-dimensionalalternative binary system. The Gibbs free energy of the binary system is calculated. According to the thermodynamicconditions of solid-liquid equilibrium, the "cigar-type" phase diagram and the phase diagram with a minimum areobtained. The results are quite analogous to the behavior of three-dimensional substances.

  9. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model; Einfluss schwerer hadronischer Zustaende auf das QCD-Phasendiagramm und die Ausfrierbedingungen in einem hadronischen chiralen Modell

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, G.

    2006-07-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the

  10. Pressure-temperature Phase Diagram of the Earth

    CERN Document Server

    Jones, Eriita

    2010-01-01

    Based on a pressure-temperature (P-T) phase diagram model of the Earth, Jones & Lineweaver (2010) described uninhabited terrestrial liquid water. Our model represents the atmosphere, surface, oceans and interior of the Earth - allowing the range of P-T conditions in terrestrial environments to be compared to the phase regime of liquid water. Here we present an overview and additional results from the Earth model on the location of the deepest liquid water on Earth and the maximum possible extent of the terrestrial biosphere. The intersection of liquid water and terrestrial phase space indicates that the deepest liquid water environments in the lithosphere occur at a depth of ~ 75 km. 3.5 % of the volume of the Earth is above 75 km depth. Considering the 3.5 % of the volume of the Earth where liquid water exists, ~ 12% of this volume is inhabited by life while the remaining ~ 88% is uninhabited. This is distinct from the fraction of the volume of liquid water occupied by life. We find that at least 1% of t...

  11. Invariants in the Yukawa system’s thermodynamic phase diagram

    DEFF Research Database (Denmark)

    Veldhorst, Arno; Schrøder, Thomas; Dyre, Jeppe C.

    2015-01-01

    phase diagram deriving from the fact that they have curves (isomorphs) along which structure and dynamics in reduced units are invariant to a good approximation. We show that the Yukawa system has strong virial potential-energy correlations and identify its isomorphs by two different methods. One method...... of a known approximate analytical expression for this line in the temperature-density phase diagram. The paper's results give the first demonstration that the isomorph theory can be applied to systems like dense colloidal suspensions and strongly coupled dusty plasmas...

  12. Global phase diagram of a dirty Weyl semimetal

    CERN Document Server

    Roy, Bitan; Juricic, Vladimir

    2016-01-01

    We here theoretically study the global phase diagram of a three-dimensional dirty Weyl system. The generalized Harris criterion, augmented by a perturbative renormalization-group (RG) analysis shows that weak disorder is an irrelevant perturbation at the Weyl semimetal(WSM)-insulator quantum critical point (QCP). But, a metallic phase sets in through a quantum phase transition (QPT) at strong disorder across a multicritical point, characterized by the correlation length exponent $\

  13. Phase shifts of the paired wings of butterfly diagrams

    Institute of Scientific and Technical Information of China (English)

    Ke-Jun Li; Hong-Fei Liang; Wen Feng

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities.Latitudinal migration of sunspot groups(or filaments)does asynchronously occur in the northern and southern hemispheres,and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle,making the paired wings spatially asymmetrical on the solar equator.It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle,demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths,as well as a relative phase shift between the paired wings of a butterfly diagram,which should bring about almost the same relative phase shift of hemispheric solar activity strength.

  14. The Phase Shifts of the Paired Wings of Butterfly Diagrams

    CERN Document Server

    Li, Kejun; Feng, Wen

    2010-01-01

    Sunspot groups observed by Royal Greenwich Observatory/US Air Force/NOAA from May 1874 to November 2008 and the Carte Synoptique solar filaments from March 1919 to December 1989 are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, making the paired wings just and only keep the phase relationship between the northern and southern hemispherical solar activity strengths, but a relative phase shift between the paired wings of a butterfly diagram should bring about an almost same relative phase shift of hemis...

  15. The QCD phase diagram from analytic continuation

    Directory of Open Access Journals (Sweden)

    R. Bellwied

    2015-12-01

    Full Text Available We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to μB≈300 MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on Nt=10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value κ=0.0149±0.0021.

  16. The QCD phase diagram from analytic continuation

    CERN Document Server

    Bellwied, R; Fodor, Z; Günther, J; Katz, S D; Ratti, C; Szabo, K K

    2015-01-01

    We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to $\\mu_B\\approx 300$ MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on $N_t=$ 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value $\\kappa = 0.0149 \\pm 0.0021$.

  17. Enriched model categories and diagram categories

    CERN Document Server

    Guillou, Bertrand

    2011-01-01

    We collect in one place a variety of known and folklore results in enriched model category theory and add a few new twists. One twist is a new perspective on equivariant model categories. A central theme is a general procedure for constructing a Quillen adjunction, often a Quillen equivalence, between a given V-model category and a category of diagrams in V, where V is any good enriching category. From this perspective, we rederive the result of Schwede and Shipley that reasonable stable model categories are Quillen equivalent to diagram categories of spectra (alias categories of module spectra). The general theory will be applied to G-spectra in a sequel, and for that we need quite a few technical improvements and modifications of general model categorical results. We collect those here. They are bound to have applications in a variety of other contexts.

  18. Phase diagrams of exceptional and supersymmetric lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Wellegehausen, Bjoern-Hendrik

    2012-07-10

    In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.

  19. Phase diagram for ortho-para-hydrogen monolayers

    CERN Document Server

    Sullivan, N S

    2003-01-01

    The phase diagram for orientational ordering of hydrogen monolayers on graphite and boron nitride is revised in view of current theory and experimental observations from nuclear magnetic resonance (NMR) studies recently reported for ortho-H sub 2 concentrations 0.35 <= c <= 0.92 and temperatures 0.14 <= T <= 1.80 K. The characteristic interaction coupling GAMMA sub 0 = 0.50 +- 0.03 K and the crystalline field amplitude V sub 0 = 0.70 +- 0.10 K are derived from experimental data, and distinct types of the local orientationally ordered structures are analysed using a proposed model for site-diluted uniaxial quadrupoles on a triangular plane lattice of hexagonal symmetry. The long-range periodic pinwheel structure and the short-range quadrupolar glass (QG) phase are stable above the 2D site-percolation limit, c sub p = 0.72, and for 0.48 < c < c sub p , respectively, where quadrupolar-order effects dominate. At very low T, the QG phase shows instability with respect to local dipole-like polariz...

  20. Phase diagram and thermal properties of strong-interaction matter

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Chen, Jing; Liu, Yu-Xin; Qin, Si-Xue; Roberts, Craig D.; Schmidt, Sebastian M.

    2016-05-20

    We introduce a novel method for computing the (μ, T)-dependent pressure in continuum QCD, from which we obtain a complex phase diagram and predictions for thermal properties of the dressed-quark component of the system, providing the in-medium behavior of the related trace anomaly, speed of sound, latent heat, and heat capacity.

  1. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  2. Phase diagram of a system of hard ellipsoids

    NARCIS (Netherlands)

    Frenkel, D.; Mulder, B.M.; McTaque, J.P.

    1984-01-01

    The phase diagram of a system of hard ellipsoids of revolution was investigated by means of constant-pressure Monte Carlo simulation. Prolate as well as oblate ellipsoids were considered. The results for the isotherms of the system at several different values of the length-to-breadth ratio are prese

  3. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    Science.gov (United States)

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  4. Investigating the QCD phase diagram with hadron multiplicities at NICA

    CERN Document Server

    Becattini, F

    2016-01-01

    We discuss the potential of the experimental programme at NICA to investigate the QCD phase diagram and particularly the position of the critical line at large baryon-chemical potential with accurate measurements of particle multiplicities. We briefly review the present status and we outline the tasks to be accomplished both theoretically and the experimentally to make hadronic abundances a sensitive probe.

  5. Computer-Generated Phase Diagrams for Binary Mixtures.

    Science.gov (United States)

    Jolls, Kenneth R.; And Others

    1983-01-01

    Computer programs that generate projections of thermodynamic phase surfaces through computer graphics were used to produce diagrams representing properties of water and steam and the pressure-volume-temperature behavior of most of the common equations of state. The program, program options emphasizing thermodynamic features of interest, and…

  6. Investigating the QCD phase diagram with hadron multiplicities at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Becattini, F. [Universita di Firenze (Italy); INFN, Firenze (Italy); Stock, R. [Goethe University, Frankfurt am Main (Germany)

    2016-08-15

    We discuss the potential of the experimental programme at NICA to investigate the QCD phase diagram and particularly the position of the critical line at large baryon-chemical potential with accurate measurements of particle multiplicities. We briefly review the present status and we outline the tasks to be accomplished both theoretically and the experimentally to make hadronic abundances a sensitive probe. (orig.)

  7. Influence of finite volume and magnetic field effects on the QCD phase diagram

    CERN Document Server

    Magdy, Niseem; Lacey, Roy A

    2015-01-01

    The Polyakov linear sigma model (PLSM) is used to investigate the respective influence of a finite volume and a magnetic field on the quark-hadron phase boundary in the plane of baryon chemical potential ($\\mu_{B}$) vs. temperature ($T$) of the QCD phase diagram. The calculated results indicate sizable shifts of the quark-hadron phase boundary to lower values of $(\\mu_{B}~\\text{and}~T)$ for increasing magnetic field strength, and an opposite shift to higher values of $(\\mu_{B}~\\text{and}~T)$ for decreasing system volume. Such shifts could have important implications for extraction of the thermodynamic properties of the QCD phase diagram from heavy ion data.

  8. Thermodynamic Optimization of TmCl3-ACl (A=Na, K, Rb, Cs) Phase Diagrams

    Institute of Scientific and Technical Information of China (English)

    Ye Xinyu; Zhang Jing; Sun Yimin; Wang Yu; Tan Junjun

    2005-01-01

    From the measured phase equilibria data and experimental thermochemical properties, the TmCl3-ACl (A=Na, K, Rb, Cs) phase diagrams were optimized and calculated using the CALPHAD technique. For describing the Gibbs energies of the liquid phase in these systems, the new modified quasichemical model in the pair-approximation for short-range ordering was used. A set of thermodynamic functions was optimized and gotten based on an interactive computer-assisted analysis. The calculated phase diagrams and thermodynamic data are self-consistent.

  9. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    Energy Technology Data Exchange (ETDEWEB)

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  10. "Phase diagrams of Lecithin-based microemulsions containing Sodium Salicylate "

    Directory of Open Access Journals (Sweden)

    "Aboofazeli R

    2000-08-01

    Full Text Available Partial phase diagrams were constructed at 25°C to investigate the phase behaviour of systems composed of soybean lecithin, water, sodium salicylate, alcohol and isopropyl myristate. The lecithins used were the commercially available soy bean lecithins, namely E200 and E170 (phosphatidyl choline purities greater than 95% and 68-72% respectively. The cosurfactants employed were n-propanol, 2-propanol and n-butanol and these were used at lecithin/alcohol weight ratios (Km of 1:1 and 1.5:1. At a given Km, the aqueous phase consisted of a 2% w/w sodium salicylate solution. Phase diagrams showed the area of existence of a stable isotropic region along the surfactant/oil axis (i.e., reverse microemulsion area. The extension of the microemulsion domain was influenced by the purity of surfactant, the lecithin/alcohol weight ratios and the kind of the alcohol.

  11. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    Science.gov (United States)

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  12. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    Science.gov (United States)

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB.

  13. Phase Diagrams of Quasispecies Theory with Recombination and Horizontal Gene Transfer

    Science.gov (United States)

    Park, J.-M.; Deem, M. W.

    2007-02-01

    We consider how transfer of genetic information between individuals influences the phase diagram and mean fitness of both the Eigen and the parallel, or Crow-Kimura, models of evolution. In the absence of genetic transfer, these physical models of evolution consider the replication and point mutation of the genomes of independent individuals in a large population. A phase transition occurs, such that below a critical mutation rate an identifiable quasispecies forms. We show how transfer of genetic information changes the phase diagram and mean fitness and introduces metastability in quasispecies theory, via an analytic field theoretic mapping.

  14. 'Phase diagram' of a mean field game

    CERN Document Server

    Swiecicki, Igor; Ullmo, Denis

    2015-01-01

    Mean field games were introduced by J-M.Lasry and P-L. Lions in the mathematical community, and independently by M. Huang and co-workers in the engineering community, to deal with optimization problems when the number of agents becomes very large. In this article we study in detail a particular example called the 'seminar problem' introduced by O.Gu\\'eant, J-M Lasry, and P-L. Lions in 2010. This model contains the main ingredients of any mean field game but has the particular feature that all agent are coupled only through a simple random event (the seminar starting time) that they all contribute to form. In the mean field limit, this event becomes deterministic and its value can be fixed through a self consistent procedure. This allows for a rather thorough understanding of the solutions of the problem, through both exact results and a detailed analysis of various limiting regimes. For a sensible class of initial configurations, distinct behaviors can be associated to different domains in the parameter space...

  15. Experimental determination of the Ta–Ge phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Araújo Pinto da Silva, Antonio Augusto, E-mail: aaaps@ppgem.eel.usp.br [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Coelho, Gilberto Carvalho [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); UniFoa – Centro Universitário de Volta Redonda, Núcleo de Pesquisa, Campus Três Poços, Avenida Paulo Erlei Alves Abrantes, 1325, Bairro Três Poços, 27240-560 Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Suzuki, Paulo Atsushi [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Fiorani, Jean Marc; David, Nicolas; Vilasi, Michel [Université de Lorraine, Institut Jean Lamour, Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy (France)

    2013-11-05

    Highlights: •Ta–Ge phase diagram propose for the first time. •The phase αTa{sub 5}Ge{sub 3} was not observed in samples investigated in this work. •Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. -- Abstract: In the present work, the Ta–Ge phase diagram has been experimentally studied, considering the inexistence of a Ta–Ge phase diagram in the literature. The samples were prepared via arc melting and characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD). The intermetallics phases βTa{sub 3}Ge, αTa{sub 3}Ge, βTa{sub 5}Ge{sub 3} and TaGe{sub 2} where confirmed in this system. Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. The phases βTa{sub 3}Ge and βTa{sub 5}Ge{sub 3} solidifies congruently while TaGe{sub 2} is formed through a peritectic transformation. The temperature of the Ta-rich eutectic (L ↔ Ta{sub ss} + βTa{sub 3}Ge) was measured by the Pirani-Alterthum method at 2440 °C and the Ge-rich eutectic (L ↔ TaGe{sub 2} + Ge{sub ss}) by DTA at 937 °C.

  16. Dynamical phase diagram of Gaussian wave packets in optical lattices

    Science.gov (United States)

    Hennig, H.; Neff, T.; Fleischmann, R.

    2016-03-01

    We study the dynamics of self-trapping in Bose-Einstein condensates (BECs) loaded in deep optical lattices with Gaussian initial conditions, when the dynamics is well described by the discrete nonlinear Schrödinger equation (DNLSE). In the literature an approximate dynamical phase diagram based on a variational approach was introduced to distinguish different dynamical regimes: diffusion, self-trapping, and moving breathers. However, we find that the actual DNLSE dynamics shows a completely different diagram than the variational prediction. We calculate numerically a detailed dynamical phase diagram accurately describing the different dynamical regimes. It exhibits a complex structure that can readily be tested in current experiments in BECs in optical lattices and in optical waveguide arrays. Moreover, we derive an explicit theoretical estimate for the transition to self-trapping in excellent agreement with our numerical findings, which may be a valuable guide as well for future studies on a quantum dynamical phase diagram based on the Bose-Hubbard Hamiltonian.

  17. MDM: A Mode Diagram Modeling Framework

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2012-12-01

    Full Text Available Periodic control systems used in spacecrafts and automotives are usually period-driven and can be decomposed into different modes with each mode representing a system state observed from outside. Such systems may also involve intensive computing in their modes. Despite the fact that such control systems are widely used in the above-mentioned safety-critical embedded domains, there is lack of domain-specific formal modelling languages for such systems in the relevant industry. To address this problem, we propose a formal visual modeling framework called mode diagram as a concise and precise way to specify and analyze such systems. To capture the temporal properties of periodic control systems, we provide, along with mode diagram, a property specification language based on interval logic for the description of concrete temporal requirements the engineers are concerned with. The statistical model checking technique can then be used to verify the mode diagram models against desired properties. To demonstrate the viability of our approach, we have applied our modelling framework to some real life case studies from industry and helped detect two design defects for some spacecraft control systems.

  18. Phase diagram of the B-B2O3 system at pressures to 24 GPa

    OpenAIRE

    Turkevich, Vladimir Z.; Turkevich, Dmitry V.; Solozhenko, Vladimir L.

    2016-01-01

    The evolution of topology of the B-B2O3 phase diagram has been studied at pressures up to 24 GPa using models of phenomenological thermodynamics with interaction parameters derived from experimental data on phase equilibria at high pressures and high temperatures.

  19. Complete Phase Diagrams for a Holographic Superconductor/Insulator System

    CERN Document Server

    Horowitz, Gary T

    2010-01-01

    The gravitational dual of an insulator/superconductor transition driven by increasing the chemical potential has recently been constructed. However, the system was studied in a probe limit and only a part of the phase diagram was obtained. We include the backreaction and construct the complete phase diagram for this system. For fixed chemical potential there are typically two phase transitions as the temperature is lowered. Surprisingly, for a certain range of parameters, the system first becomes a superconductor and then becomes an insulator as the temperature approaches zero. As a byproduct of our analysis, we also construct the gravitational dual of a Bose-Einstein condensate of glueballs in a confining gauge theory.

  20. Evaluation of self-interaction parameters from binary phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, T. L.

    1977-10-01

    The feasibility of calculating Wagner self-interaction parameters from binary phase diagrams was examined. The self-interaction parameters of 22 non-ferrous liquid solutions were calculated utilizing an equation based on the equality of the chemical potentials of a component in two equilibrium phases. Utilization of the equation requires the evaluation of the first and second derivatives of various liquidus and solidus data at infinite dilution of the solute component. Several numerical methods for evaluating the derivatives of tabular data were examined. A method involving power series curve fitting and subsequent differentiation of the power series was found to be the most suitable for the interaction parameter calculations. Comparison of the calculated self-interaction parameters with values obtained from thermodynamic measurements indicates that the Wagner self-interaction parameter can be successfully calculated from binary phase diagrams.

  1. Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research.

    Science.gov (United States)

    Halperin, Avraham; Kröger, Martin; Winnik, Françoise M

    2015-12-14

    In 1968, Heskins and Guillet published the first systematic study of the phase diagram of poly(N-isopropylacrylamide) (PNIPAM), at the time a "young polymer" first synthesized in 1956. Since then, PNIPAM became the leading member of the growing families of thermoresponsive polymers and of stimuli-responsive, "smart" polymers in general. Its thermal response is unanimously attributed to its phase behavior. Yet, in spite of 50 years of research, a coherent quantitative picture remains elusive. In this Review we survey the reported phase diagrams, discuss the differences and comment on theoretical ideas regarding their possible origins. We aim to alert the PNIPAM community to open questions in this reputably mature domain.

  2. Phase Diagrams of Electric-Fduced Aggregation in Conducting Colloids

    Science.gov (United States)

    Khusid, B.; Acrivos, A.

    1999-01-01

    Under the application of a sufficiently strong electric field, a suspension may undergo reversible phase transitions from a homogeneous random arrangement of particles into a variety of ordered aggregation patterns. The surprising fact about electric-field driven phase transitions is that the aggregation patterns, that are observed in very diverse systems of colloids, display a number of common structural features and modes of evolution thereby implying that a universal mechanism may exist to account for these phenomena. It is now generally believed that this mechanism emanates from the presence of the long-range anisotropic interactions between colloidal particles due to their polarization in an applied field. But, in spite of numerous applications of the electric-field-driven phenomena in biotechnology, separation, materials engineering, chemical analysis, etc. our understanding of these phenomena is far from complete. Thus, it is the purpose of the proposed research to develop a theory and then test experimentally, under normal- and low-gravity conditions, the accuracy of the theoretical predictions regarding the effect of the synergism of the interparticle electric and hydrodynamic interactions on the phase diagram of a suspension. The main results from our theoretical studies performed to-date enable one to trace how the variations of the electrical properties of the constituent materials influence the topology of the suspension phase diagram and then, by using an appropriate phase diagram, to evaluate how the electric-field-induced transformations will depend on the frequency and the strength of the applied field.

  3. Polyakov-Nambu-Jona-Lasinio phase diagrams and quarkyonic phase from order parameters

    CERN Document Server

    Dutra, M; Delfino, A; Frederico, T; Malheiro, M

    2013-01-01

    We show that the magnitude of the order parameters in Polyakov-Nambu-Jona-Lasinio (PNJL) model, given by the quark condensate and the Polyakov loop, can be used as a criterium to clearly identify, without ambiguities, phases and boundaries of the strongly interacting matter, namely, the broken/restored chiral symmetry, and confinement/deconfinement regions. This structure is represented by the projection of the order parameters in the temperature-chemical potential plane, which allows a clear identification of pattern changes in the phase diagram. Such a criterium also enables the emergence of a quarkyonic phase even in the two-flavor system. We still show that this new phase diminishes due to the influence of an additional vector-type interaction in the PNJL phase diagrams, and is quite sensitive to the effect of the change of the $T_0$ parameter in the Polyakov potential. Finally, we show that the phases and boundaries constructed by our method indicate that the order parameters should be more strongly corr...

  4. Global phase diagram of disordered type-II Weyl semimetals

    Science.gov (United States)

    Wu, Yijia; Liu, Haiwen; Jiang, Hua; Xie, X. C.

    2017-07-01

    With electron and hole pockets touching at the Weyl node, type-II Weyl semimetal is a newly proposed topological state distinct from its type-I cousin. We numerically study the localization effect for tilted type-I as well as type-II Weyl semimetals and give the global phase diagram. For disordered type-I Weyl semimetal, an intermediate three-dimensional quantum anomalous Hall phase is confirmed between Weyl semimetal phase and diffusive metal phase. However, this intermediate phase is absent for disordered type-II Weyl semimetal. Besides, along the direction of tilt, comparing to its type-I cousin, type-II Weyl semimetal typically possesses longer normalized localization length and therefore it is more robust against disorder. Near the phase boundary between the type-I and the type-II Weyl semimetals, infinitesimal disorder will induce an insulating phase so that, in this region, the concept of Weyl semimetal is meaningless for real materials.

  5. BLOCK DIAGRAM MODELS FOR CORRELATED STRUCTURES

    Directory of Open Access Journals (Sweden)

    Adrian Stere PARIS

    2016-05-01

    Full Text Available The copula function offers new opportunities for advanced engineering design and can model correlated structures between random variables in reliability; in other words the dependence can describe time varying and nonlinear features of statistical links of marginal distributions. The paper proposes the study of reliability block diagrams by the analysis of the bridge model with links like serial-parallel, parallel-serial, based on total probability formula. The proposed reliability model built by copula functions is a new possible variant for statistical approach in the quality practice.

  6. Determination of the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system and a comparison between two theoretical methods for synthetic phase diagrams.

    Science.gov (United States)

    Han, Xu; Liu, Yang; Critser, John K

    2010-08-01

    Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a "mass-redemption" method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system.

  7. New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution

    CERN Document Server

    Althaus, Leandro G; Isern, Jordi; Córsico, Alejandro H; Bertolami, Marcelo M Miller

    2011-01-01

    Cool white dwarfs are reliable and independent stellar chronometers. The most common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling ages of very cool white dwarfs sensitively depend on the adopted phase diagram of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen mixtures appropriate for white dwarf interiors has been recently obtained using direct molecular dynamics simulations. In this paper, we explore the consequences of this phase diagram in the evolution of cool white dwarfs. To do this we employ a detailed stellar evolutionary code and accurate initial white dwarf configurations, derived from the full evolution of progenitor stars. We use two different phase diagrams, that of Horowitz et al. (2010), which presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993), which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun white dwarf models during the crystallization phase, and we found that the energy released...

  8. Exploring the conformational space of chromatin fibers and their stability by numerical dynamic phase diagrams.

    Science.gov (United States)

    Stehr, René; Schöpflin, Robert; Ettig, Ramona; Kepper, Nick; Rippe, Karsten; Wedemann, Gero

    2010-03-17

    The three-dimensional structure of chromatin affects DNA accessibility and is therefore a key regulator of gene expression. However, the path of the DNA between consecutive nucleosomes, and the resulting chromatin fiber organization remain controversial. The conformational space available for the folding of the nucleosome chain has been analytically described by phase diagrams with a two-angle model, which describes the chain trajectory by a DNA entry-exit angle at the nucleosome and a torsion angle between consecutive nucleosomes. Here, a novel type of numerical phase diagrams is introduced that relates the geometric phase space to the energy associated with a given chromatin conformation. The resulting phase diagrams revealed differences in the energy landscape that reflect the probability of a given conformation to form in thermal equilibrium. Furthermore, we investigated the effects of entropy and additional degrees of freedom in the dynamic phase diagrams by performing Monte Carlo simulations of the initial chain trajectories. Using our approach, we were able to demonstrate that conformations that initially were geometrically impossible could evolve into energetically favorable states in thermal equilibrium due to DNA bending and torsion. In addition, dynamic phase diagrams were applied to identify chromatin fibers that reflect certain experimentally determined features.

  9. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors

    Science.gov (United States)

    Meng, Qingyou; Varney, Christopher N.; Fangohr, Hans; Babaev, Egor

    2017-01-01

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  10. Multiple nonergodic disordered states in Laponite suspensions: A phase diagram

    Science.gov (United States)

    Jabbari-Farouji, S.; Tanaka, Hajime; Wegdam, G. H.; Bonn, Daniel

    2008-12-01

    We study the time evolution of different Laponite suspensions from a low-viscosity ergodic state to a viscoelastic nonergodic state over a wide range of volume fractions and salt contents. We find that the evolution of nonergodicity parameter (Debye-Waller factor) splits into two branches for all the samples, which correspond to two distinct dynamically arrested states. At moderately high salt concentrations, on the other hand, a third nonergodic state appears that is different from the above two nonergodic states. Measurement of the conductivity of Laponite solutions in pure water shows that the contribution of counterions in the ionic strength is considerable and their role should be taken into account in interpretations of aging dynamics and the phase diagram. Based on these data and available data in the literature, we propose a (nonequilibrium) phase diagram for Laponite suspensions.

  11. Phase Diagrams for the PEO-LiX Electrolyte System.

    Science.gov (United States)

    1987-01-01

    rather flat, in sharp contrast to previous results. 3.2c PEO- LiBF4 System Pure PEO forms complexes with LiBF , and the subsequent phase diagram for...study; 0 ----NMR(15); 0 -DSC or DTA(7, 10,12); A ---a.c.conductivity(6,10,12); 4- optical microscopy(6). is 350 - (PEO) n- LiBF4 300 (PEO) n-LiCF 3SO 3...the PEO- LiBF4 system IS" , " ATOM RATIO O/Li 50 25 8 4 2 1 250 200 150 1 00 -50I 0 0 0.1 0.2 0.3 0.4 0.5 XLiPF6 -’+’ Figure 6. Phase diagram of the

  12. Phase diagram of hydrogen adsorbed on Ni(111)

    Science.gov (United States)

    Nagai, Kiyoshi; Ohno, Yuichi; Nakamura, Takashi

    1984-08-01

    The phase diagram for the H/Ni(111) system is calculated by treating a lattice gas on a honeycomb lattice through the position-space renormalization-group theory with prefacing transformation. The following interparticle interactions are considered: (A) nearest-neighbor exclusion, second-neighbor repulsion, and third-neighbor attraction, which was previously proposed by Domany et al.; (B) nearest-neighbor exclusion, second- and third-neighbor repulsions, and further-neighbor interactions up to the sixth-neighbor one. When the interaction parameters involved are suitably adjusted, both the interactions (A) and (B) lead to the phase diagrams in good agreement with the experimental one by Christmann et al. The change of the isosteric heat of hydrogen adsorption with the adsorbed amount is also calculated. The result obtained from interaction (B) is consistent with experiment, whereas that from interaction (A) is not.

  13. Sign-posting the phase diagram of quantum chromodynamics

    Indian Academy of Sciences (India)

    Sourendu Gupta

    2012-10-01

    The good agreement between lattice predictions and data for the shape of the distribution of event-by-event fluctuations of the baryon number is discussed. Such comparisons can give fine probes of thermalization, and can be used to provide a direct determination of the cross-over temperature c QCD. The logic of these comparisons and the systematics involved are discussed. The same methods can be used to further explore the phase diagram.

  14. COED Transactions, Vol. 8, No. 10, October 1976. The Computer Generation of Thermodynamic Phase Diagrams.

    Science.gov (United States)

    Jolls, Kenneth R.; And Others

    A technique is described for the generation of perspective views of three-dimensional models using computer graphics. The technique is applied to models of familiar thermodynamic phase diagrams and the results are presented for the ideal gas and van der Waals equations of state as well as the properties of liquid water and steam from the Steam…

  15. Optimization and Calculation of TbCl3-ACl (A=Li, Na, K, Rb, Cs) Phase Diagrams

    Institute of Scientific and Technical Information of China (English)

    Sun Yimin; Zhang Jing; Guan Mingyun; Qiao Zhiyu

    2005-01-01

    By using CALPHAD (Calculation of Phase Diagram) technique the optimization and calculation of the binary systems of TbCl3-ACl (A= Li, Na, K, Rb, Cs) were carried out. For describing the Gibbs free energy of liquid phase in these systems the new modified quasichemical model in the pair-approximation for short-range ordering was used. From measured phase equilibria data and experimental integral properties the TbCl3-ACl phase diagrams were optimized and calculated. A set of thermodynamic functions was optimized based on an interactive computer-assisted analysis. The calculated phase diagrams and thermodynamic data are self-consistent.

  16. A phase diagram for fluid-driven sediment trasport

    Science.gov (United States)

    Clark, Abe

    When a fluid flows laterally over a granular bed, grains may be transported with the flow. This process shapes much of the natural world. The boundary between states with and without grain motion has been studied for decades. However, this boundary is not well understood, since the process whereby grains are transported involves the coupling of several complex phenomena: turbulent fluid flow near a rough boundary, Darcy flow through the pore structure of the granular bed, the yield strength of granular beds comprised of frictional grains with irregular shape, and inertial effects of grains that become entrained in the flow. In order to clarify the essential physics that governs the onset of granular motion, we study this process computationally by including only the minimal features and then adding complexities one by one. We start with a simple numerical model that includes only gravity, grain-grain interactions that are repulsive and frictionless, and a purely horizontal viscous fluid flow. By varying the fluid flow rate and the effective viscosity, we find behavior that is qualitatively consistent with a large collection of experimental data known as the Shields curve. Thus, our results suggest that the main features of this curve result from a competition between grain inertia and viscous damping. We find this phase diagram to be qualitatively insensitive to secondary effects, such as friction, irregular grain shape, and restitution losses. Funded by U.S. Army Research Office under Grant No. W911NF-14-1-0005.

  17. Coformer screening using thermal analysis based on binary phase diagrams.

    Science.gov (United States)

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Terada, Katsuhide

    2014-08-01

    The advent of cocrystals has demonstrated a growing need for efficient and comprehensive coformer screening in search of better development forms, including salt forms. Here, we investigated a coformer screening system for salts and cocrystals based on binary phase diagrams using thermal analysis and examined the effectiveness of the method. Indomethacin and tenoxicam were used as models of active pharmaceutical ingredients (APIs). Physical mixtures of an API and 42 kinds of coformers were analyzed using Differential Scanning Calorimetry (DSC) and X-ray DSC. We also conducted coformer screening using a conventional slurry method and compared these results with those from the thermal analysis method and previous studies. Compared with the slurry method, the thermal analysis method was a high-performance screening system, particularly for APIs with low solubility and/or propensity to form solvates. However, this method faced hurdles for screening coformers combined with an API in the presence of kinetic hindrance for salt or cocrystal formation during heating or if there is degradation near the metastable eutectic temperature. The thermal analysis and slurry methods are considered complementary to each other for coformer screening. Feasibility of the thermal analysis method in drug discovery practice is ensured given its small scale and high throughput.

  18. Calculation of Al-Zn diagram from central atoms model

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the param eter of energy in the central atoms model in proportion to the number of other atoms i (referred with the central atom). A parameter Pα is proposed in this model, which equals to reciprocal of activity coefficient of a component, therefore, the new model can be understood easily. By this model, the Al-Zn phase diagram and its thermodynamic properties were calculated, the results coincide with the experimental data.

  19. Phase diagram of one-patch colloids forming tubes and lamellae.

    Science.gov (United States)

    Preisler, Zdenek; Vissers, Teun; Smallenburg, Frank; Munaò, Gianmarco; Sciortino, Francesco

    2013-08-15

    We numerically calculate the equilibrium phase diagram of one-patch particles with 30% patch coverage. It has been previously shown that in the fluid phase these particles organize into extremely long tubelike aggregates (G. Munaò et al. Soft Matter 2013, 9, 2652). Here, we demonstrate by means of free-energy calculations that such a disordered tube phase, despite forming spontaneously from the fluid phase below a density-dependent temperature, is always metastable against a lamellar crystal. We also show that a crystal of infinitely long packed tubes is thermodynamically stable, but only at high pressure. The full phase diagram of the model, beside the fluid phase, displays four different stable crystals. A gas-liquid critical point, and hence a liquid phase, is not detected.

  20. Ground-State Phase Diagram of S = 1 Diamond Chains

    Science.gov (United States)

    Hida, Kazuo; Takano, Ken'ichi

    2017-03-01

    We investigate the ground-state phase diagram of a spin-1 diamond chain. Owing to a series of conservation laws, any eigenstate of this system can be expressed using the eigenstates of finite odd-length chains or infinite chains with spins 1 and 2. The ground state undergoes quantum phase transitions with varying λ, a parameter that controls frustration. Exact upper and lower bounds for the phase boundaries between these phases are obtained. The phase boundaries are determined numerically in the region not explored in a previous work [Takano et al., https://doi.org/10.1088/0953-8984/8/35/009" xlink:type="simple">J. Phys.: Condens. Matter 8, 6405 (1996)].

  1. Phase diagram of hard snowman-shaped particles.

    Science.gov (United States)

    Dennison, Matthew; Milinković, Kristina; Dijkstra, Marjolein

    2012-07-28

    We present the phase diagram of hard snowman-shaped particles calculated using Monte Carlo simulations and free energy calculations. The snowman particles consist of two hard spheres rigidly attached at their surfaces. We find a rich phase behavior with isotropic, plastic crystal, and aperiodic crystal phases. The crystalline phases found to be stable for a given sphere diameter ratio correspond mostly to the close packed structures predicted for equimolar binary hard-sphere mixtures of the same diameter ratio. However, our results also show several crystal-crystal phase transitions, with structures with a higher degree of degeneracy found to be stable at lower densities, while those with the best packing are found to be stable at higher densities.

  2. Phase diagram and critical end point for strongly interacting quarks.

    Science.gov (United States)

    Qin, Si-xue; Chang, Lei; Chen, Huan; Liu, Yu-xin; Roberts, Craig D

    2011-04-29

    We introduce a method based on chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential-temperature plane for strongly interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical end point at (μ(E),T(E))∼(1.0,0.9)T(c), where T(c) is the critical temperature for chiral-symmetry restoration at μ=0, and find that a domain of phase coexistence opens at the critical end point whose area increases as a confinement length scale grows.

  3. The Phase Diagram of QC2D from Functional Methods

    CERN Document Server

    Khan, Naseemuddin; Rennecke, Fabian; Scherer, Michael M

    2015-01-01

    We study the phase diagram of two-color Quantum Chromodynamics at finite temperature and chemical potential. This is done within an effective low-energy description in terms of quarks, mesons and diquarks. Quantum, thermal and density fluctuations are taken into account with the functional renormalisation group approach. In particular, we establish the phenomenon of pre-condensation, affecting the location of the phase boundary to Bose-Einstein condensation. We also discuss the Silver Blaze property in the context of the functional renormalisation group.

  4. Pitfalls and feedback when constructing topological pressure-temperature phase diagrams

    Science.gov (United States)

    Ceolin, R.; Toscani, S.; Rietveld, Ivo B.; Barrio, M.; Tamarit, J. Ll.

    2017-04-01

    The stability hierarchy between different phases of a chemical compound can be accurately reproduced in a topological phase diagram. This type of phase diagrams may appear to be the result of simple extrapolations, however, experimental complications quickly increase in the case of crystalline trimorphism (and higher order polymorphism). To ensure the accurate positioning of stable phase domains, a topological phase diagram needs to be consistent. This paper gives an example of how thermodynamic feedback can be used in the topological construction of phase diagrams to ensure overall consistency in a phase diagram based on the case of piracetam crystalline trimorphism.

  5. Tensor renormalization group: Local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness

    Science.gov (United States)

    Güven, Can; Hinczewski, Michael; Berker, A. Nihat

    2011-03-01

    The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.

  6. Tensor renormalization group: local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness.

    Science.gov (United States)

    Güven, Can; Hinczewski, Michael; Berker, A Nihat

    2010-11-01

    The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.

  7. Understanding the H -T phase diagram of the monoaxial helimagnet

    Science.gov (United States)

    Laliena, Victor; Campo, Javier; Kousaka, Yusuke

    2016-09-01

    Some unexpected features of the phase diagram of the monoaxial helimagnet in presence of an applied magnetic field perpendicular to the chiral axis are theoretically predicted. A rather general Hamiltonian with long-range Heisenberg exchange and Dzyaloshinskii-Moriya interactions is considered. The continuum limit simplifies the free energy, which contains only a few parameters which in principle are determined by the many parameters of the Hamiltonian, although in practice they may be tuned to fit the experiments. The phase diagram contains a chiral soliton lattice phase and a forced ferromagnetic phase separated by a line of phase transitions, which are of second order at low T and of first order in the vicinity of the zero-field ordering temperature, and are separated by a tricritical point. A highly nonlinear chiral soliton lattice, in which many harmonics contribute appreciably to the spatial modulation of the local magnetic moment, develops only below the tricritical temperature, and in this case, the scaling shows a logarithmic behavior similar to that at T =0 , which is a universal feature of the chiral soliton lattice. Below the tricritical temperature, the normalized soliton density curves are found to be independent of T , in agreement with the experimental results of magnetorresistance curves, while above the tricritical temperature they show a noticeable temperature dependence. The implications in the interpretation of experimental results of CrNb3S6 are discussed.

  8. Ternary Phase Diagrams that Relate to the Plutonium Immobilization Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B b; Krikorian, O H; Vance, E R; Stewart, M W

    2001-01-01

    The plutonium immobilization ceramic consists primarily of a pyrochlore titanate phase of the approximate composition Ca{sub 0.97}Hf{sub 0.17}Pu{sub 0.22}U{sub 0.39}Gd{sub 0.24} Ti{sub 2}O{sub 7}. In this study, a series of ternary phase diagrams was constructed to evaluate the relationship of various titanate phases (e.g., brannerite, zirconolite-2M, zirconolite-4M, and perovskite) to pyrochlore titanates, usually in the presence of excess TiO{sub 2} (rutile), and at temperatures in the vicinity of 1350 C. To facilitate the studies, U, Th, and Ce were used as surrogates for Pu in a number of the phase diagrams in addition to the use of Pu itself. The effects of impurity oxides, Al{sub 2}O{sub 3} and MgO, were also studied on pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}) and zirconolite (CaHfTi{sub 2}O{sub 7}) mixtures. Either electron microprobe (at Lawrence Livermore National Laboratory) or quantitative SEM-EDS (at Australian Nuclear Science and Technology Organization) were used to evaluate the compositions of the phases.

  9. UPS Delivers Optimal Phase Diagram in High Dimensional Variable Selection

    CERN Document Server

    Ji, Pengsheng

    2010-01-01

    Consider linear regression in the so-called regime of p much larger than n. We propose the UPS as a new variable selection method. This is a Screen and Clean procedure [Wasserman and Roeder (2009)], in which we screen with the Univariate thresholding, and clean with the Penalized MLE. In many situations, the UPS possesses two important properties: Sure Screening and Separable After Screening (SAS). These properties enable us to reduce the original regression problem to many small-size regression problems that can be fitted separately. We measure the performance of variable selection procedure by the Hamming distance. In many situations, we find that the UPS achieves the optimal rate of convergence, and also yields an optimal partition of the so-called phase diagram. In the two-dimensional phase space calibrated by the signal sparsity and signal strength, there is a three-phase diagram shared by many choices of design matrices. In the first phase, it is possible to recover all signals. In the second phase, exa...

  10. Research data supporting "Determining pressure-temperature phase diagrams of materials"

    OpenAIRE

    Baldock, Robert J.N.; Partay, Livia B.; Bartok, Albert P.; Payne, Michael C.; Csanyi, Gabor

    2016-01-01

    Pressure-temperature phase diagrams of the Lennard-Jones system, aluminium and nickel titanium as reported in the paper "Determining pressure-temperature phase diagrams of materials", together with example nested sampling output for aluminium and nickel titanium calculations. This research data supports “Determining pressure-temperature phase diagrams of materials” which has been published in “Physical Review B”. Research data supporting “Determining pressure-temperature phase diagrams...

  11. Reliability block diagrams to model disease management.

    Science.gov (United States)

    Sonnenberg, A; Inadomi, J M; Bauerfeind, P

    1999-01-01

    Studies of diagnostic or therapeutic procedures in the management of any given disease tend to focus on one particular aspect of the disease and ignore the interaction between the multitude of factors that determine its final outcome. The present article introduces a mathematical model that accounts for the joint contribution of various medical and non-medical components to the overall disease outcome. A reliability block diagram is used to model patient compliance, endoscopic screening, and surgical therapy for dysplasia in Barrett's esophagus. The overall probability of a patient with a Barrett's esophagus to comply with a screening program, be correctly diagnosed with dysplasia, and undergo successful therapy is 37%. The reduction in the overall success rate, despite the fact that the majority of components are assumed to function with reliability rates of 80% or more, is a reflection of the multitude of serial subsystems involved in disease management. Each serial component influences the overall success rate in a linear fashion. Building multiple parallel pathways into the screening program raises its overall success rate to 91%. Parallel arrangements render systems less sensitive to diagnostic or therapeutic failures. A reliability block diagram provides the means to model the contributions of many heterogeneous factors to disease outcome. Since no medical system functions perfectly, redundancy provided by parallel subsystems assures a greater overall reliability.

  12. Phase diagrams and heterogeneous equilibria a practical introduction

    CERN Document Server

    Predel, Bruno; Pool, Monte

    2004-01-01

    This graduate-level textbook provides an introduction to the practical application of phase diagrams. It is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. Heterogeneous equilibria are described by a minimum of theory illustrated by practical examples and realistic case discussions from the different fields of application. The treatment of the physical and energetic background of phase equilibria leads to the discussion of the thermodynamics of mixtures and the correlation between energetics and composition. Thus, tools for the prediction of energetic, structural, and physical quantities are provided. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Furthermore, the text also concisely presents the thermodynamics and composition of polymer systems.

  13. Moving through three-dimensional phase diagrams of monoclonal antibodies.

    Science.gov (United States)

    Rakel, Natalie; Baum, Miriam; Hubbuch, Jürgen

    2014-01-01

    Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three-dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however.

  14. Ground-state diagrams for lattice-gas models of catalytic CO oxidation

    Directory of Open Access Journals (Sweden)

    I.S.Bzovska

    2007-01-01

    Full Text Available Based on simple lattice models of catalytic carbon dioxide synthesis from oxygen and carbon monoxide, phase diagrams are investigated at temperature T=0 by incorporating the nearest-neighbor interactions on a catalyst surface. The main types of ground-state phase diagrams of two lattice models are classified describing the cases of clean surface and surface containing impurities. Nonuniform phases are obtained and the conditions of their existence dependent on the interaction parameters are established.

  15. Properties of high-temperature phase diagram and critical point parameters in silica

    CERN Document Server

    Iosilevskiy, Igor; Solov'ev, Alexander

    2013-01-01

    Some uncertainties are discussed on the high-temperature phase boundaries and critical point parameters for gas-liquid phase transition in silica (SiO2). The thermal and caloric phase diagrams are compared and examined as being predicted by various theoretical approaches, such as the quasi-chemical representation, the wide-range semi-empirical equation of state and the ionic model under direct molecular dynamic simulation. The theoretical predictions are confronted with handbook recommendations and scanty experimental data on the equilibrium vapor composition over SiO2 boiling. Validity of conventional semi-empirical rules is tested for the theoretically predicted SiO2-phase diagrams. The non-congruence of gas-liquid phase transition in SiO2 is considered for this matter to be used as a modeling body to study the non-congruent evaporation in uranium dioxide and other uranium-bearing fuels at both existing and perspective nuclear reactors.

  16. The phase diagram of twisted mass lattice QCD

    CERN Document Server

    Sharpe, S R; Sharpe, Stephen R.; Wu, Jackson M. S.

    2004-01-01

    We use the effective chiral Lagrangian to analyze the phase diagram of two-flavor twisted mass lattice QCD as a function of the normal and twisted masses, generalizing previous work for the untwisted theory. We first determine the chiral Lagrangian including discretization effects up to next-to-leading order (NLO) in a combined expansion in which m_\\pi^2/(4\\pi f_\\pi)^2 ~ a \\Lambda (a being the lattice spacing, and \\Lambda = \\Lambda_{QCD}). We then focus on the region where m_\\pi^2/(4\\pi f_\\pi)^2 ~ (a \\Lambda)^2, in which case competition between leading and NLO terms can lead to phase transitions. As for untwisted Wilson fermions, we find two possible phase diagrams, depending on the sign of a coefficient in the chiral Lagrangian. For one sign, there is an Aoki phase for pure Wilson fermions, with flavor and parity broken, but this is washed out into a crossover if the twisted mass is non-vanishing. For the other sign, there is a first order transition for pure Wilson fermions, and we find that this transitio...

  17. Phase diagram prediction of systems Mn(NO3)2-M(NO3)n-H2O(M=Ca,Mg and Li) with modified BET-model

    Institute of Scientific and Technical Information of China (English)

    曾德文; 樊栓狮; 陈四海

    2004-01-01

    BET-model parameters for the binary system Mn(NO3 )2-H2 O were obtained by fitting experimental water activities at 298.15 K. The values obtained in this work were compared to those fitted previously for the systems Ca(NO3)2-H2O and Zn(NO3)2-H2O, showing reasonable agreement. With the model parameters fitted at 298 K,the vapor pressure of the saturated solution for the phases Mn(NO3 )2 · 6 H2 O and Mn(NO3 )2 · 4 H2 O were predicted and shows quite good agreement with the experimental values. The phase diagram of the Mn(NO2 )2-H2O system reproduced by the BET model shows smaller deviation from the experimental data than that by the extended UNIQUAC model. The ternary phase diagrams of the systems Me(NO3)n-Mn(NO3)2-H2O (Me= Mg, Ca and Li) are predicted with the binary model parameter and compared with available experimental data. The predicted eutectic compositions were given as possible heat storage materials.

  18. Phase Diagram and Effective Shape of Semiflexible Colloidal Rods and Biopolymers

    NARCIS (Netherlands)

    Dennison, M; Dijkstra, M.; van Roij, R.H.H.G.

    2011-01-01

    We study suspensions of semiflexible colloidal rods and biopolymers using an Onsager-type second-virial functional for a segmented-chain model. For mixtures of thin and thick fd virus particles, we calculate full phase diagrams, finding quantitative agreement with experimental observations. We show

  19. Comparison of actual vs synthesized ternary phase diagrams for solutes of cryobiological interest☆

    OpenAIRE

    F W Kleinhans; Mazur, Peter

    2007-01-01

    Phase diagrams are of great utility in cryobiology, especially those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPA's. We wanted to determine whether accurate ternary phase diagrams could be synthe...

  20. ({alpha},{eta}) phase diagrams in tilted chiral smectics

    Energy Technology Data Exchange (ETDEWEB)

    Rjili, M., E-mail: medrjili@yahoo.fr [Laboratoire de Physique de la Matiere Molle et de la Modelisation Electromagnetique, Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar Tunis (Tunisia); Marcerou, J.P., E-mail: marcerou@crpp-bordeaux.cnrs.fr [Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France); Gharbi, A.; Othman, T. [Laboratoire de Physique de la Matiere Molle et de la Modelisation Electromagnetique, Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar Tunis (Tunisia)

    2013-02-01

    The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmC{sub A}{sup Low-Asterisk }; SmC{sub Fi1}{sup Low-Asterisk }; SmC{sub Fi2}{sup Low-Asterisk }; SmC{sup Low-Asterisk }; SmC{sub {alpha}}{sup Low-Asterisk }. The continuum theory established by Marcerou (2010) is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the ({alpha},{eta}) plane where {alpha} is local angular parameter and {eta} describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC{sub 5}{sup Low-Asterisk} and the SmC{sub 6}{sup Low-Asterisk} ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.

  1. The QCD phase diagram from Schwinger-Dyson Equations

    CERN Document Server

    Gutierrez, Enif; Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo

    2013-01-01

    We study the phase diagram of quantum chromodynamics (QCD). For this purpose we employ the Schwinger-Dyson equations (SDEs) technique and construct a truncation of the infinite tower of equations by demanding a matching with the lattice results for the quark-anti-quark condensate at finite temperature (T), for zero quark chemical potential (mu), that is, the region where lattice calculations are expected to provide reliable results. We compute the evolution of the phase diagram away from T=0 for increasing values of the chemical potential by following the evolution of the heat capacity as a function of T and mu. The behavior of this thermodynamic variable clearly demonstrates the existence of a cross-over for mu less than a critical value. However, the heat capacity develops a singularity near mu approx 0.22 GeV marking the onslaught of a first order phase transition characterized by the existence of a critical point. The critical line continues until mu approx 0.53 GeV where Tc=0 and thus chiral symmetry is ...

  2. Phase Diagrams of Instabilities in Compressed Film-Substrate Systems.

    Science.gov (United States)

    Wang, Qiming; Zhao, Xuanhe

    2014-05-01

    Subject to a compressive membrane stress, an elastic film bonded on a substrate can become unstable, forming wrinkles, creases or delaminated buckles. Further increasing the compressive stress can induce advanced modes of instabilities including period-doubles, folds, localized ridges, delamination, and coexistent instabilities. While various instabilities in film-substrate systems under compression have been analyzed separately, a systematic and quantitative understanding of these instabilities is still elusive. Here we present a joint experimental and theoretical study to systematically explore the instabilities in elastic film-substrate systems under uniaxial compression. We use the Maxwell stability criterion to analyze the occurrence and evolution of instabilities analogous to phase transitions in thermodynamic systems. We show that the moduli of the film and the substrate, the film-substrate adhesion strength, the film thickness, and the prestretch in the substrate determine various modes of instabilities. Defects in the film-substrate system can facilitate it to overcome energy barriers during occurrence and evolution of instabilities. We provide a set of phase diagrams to predict both initial and advanced modes of instabilities in compressed film-substrate systems. The phase diagrams can be used to guide the design of film-substrate systems to achieve desired modes of instabilities.

  3. Edge states and phase diagram for graphene under polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Li, Fuxiang [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  4. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.

    Science.gov (United States)

    Wang, Yin; Gkeka, Paraskevi; Fuchs, Julian E; Liedl, Klaus R; Cournia, Zoe

    2016-11-01

    Cholesterol-phospholipid bilayers continue to be the current state of the art in membrane models and serve as representative systems for studying the effect of cholesterol on the cell membrane. As the mixing of different lipid species requires long spatio-temporal scales, coarse-grained models have gained increasing popularity in modeling such membrane systems. In this paper, a systematic study of the MARTINI coarse-grained model for the DPPC-cholesterol binary system has been performed. We construct the phase diagram of DPPC lipid bilayers in the presence of different cholesterol concentrations and at different temperatures using coarse-grained Molecular Dynamics (MD) simulations with the MARTINI force field. The phase diagram based on the condensation effect is directly comparable to available experimental data and demonstrates qualitative agreement over all cholesterol concentrations. Self-assembled bilayers quantitatively reproduce experimental observables, such as lateral diffusion of lipids, electron density, area per lipid and lipid order parameters. The phase diagram of the DPPC-cholesterol binary system also reveals the profound effect of cholesterol on the physical properties of phospholipid bilayers such lipid order, diffusion, and fluidity. Cholesterol induces the liquid-ordered phase, which increases the fluidity of the phospholipid hydrocarbon chains above the gel to liquid-crystalline phase transition temperature and decreases it below the phase transition. The present study suggests that the MARTINI force field can be successfully used to obtain molecular level insights into cholesterol-DPPC model membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Cu-Li-Sn Phase Diagram: Isopleths, Liquidus Projection and Reaction Scheme.

    Science.gov (United States)

    Fürtauer, Siegfried; Flandorfer, Hans

    2016-01-01

    The Cu-Li-Sn phase diagram was constructed based on XRD and DTA data of 60 different alloy compositions. Eight ternary phases and 14 binary solid phases form 44 invariant ternary reactions, which are illustrated by a Scheil-Schulz reaction scheme and a liquidus projection. Phase equilibria as a function of concentration and temperature are shown along nine isopleths. This report together with an earlier publication of our group provides for the first time comprehensive investigations of phase equilibria and respective phase diagrams. Most of the phase equilibria could be established based on our experimental results. Only in the Li-rich part where many binary and ternary compounds are present estimations had to be done which are all indicated by dashed lines. A stable ternary miscibility gap could be found which was predicted by modelling the liquid ternary phase in a recent work. The phase diagrams are a crucial input for material databases and thermodynamic optimizations regarding new anode materials for high-power Li-ion batteries.

  6. The Cu-Li-Sn Phase Diagram: Isopleths, Liquidus Projection and Reaction Scheme

    Science.gov (United States)

    Flandorfer, Hans

    2016-01-01

    The Cu-Li-Sn phase diagram was constructed based on XRD and DTA data of 60 different alloy compositions. Eight ternary phases and 14 binary solid phases form 44 invariant ternary reactions, which are illustrated by a Scheil-Schulz reaction scheme and a liquidus projection. Phase equilibria as a function of concentration and temperature are shown along nine isopleths. This report together with an earlier publication of our group provides for the first time comprehensive investigations of phase equilibria and respective phase diagrams. Most of the phase equilibria could be established based on our experimental results. Only in the Li-rich part where many binary and ternary compounds are present estimations had to be done which are all indicated by dashed lines. A stable ternary miscibility gap could be found which was predicted by modelling the liquid ternary phase in a recent work. The phase diagrams are a crucial input for material databases and thermodynamic optimizations regarding new anode materials for high-power Li-ion batteries. PMID:27788175

  7. Phase diagrams of a spin-1 Ising system with competing short- and long-range interactions.

    Science.gov (United States)

    Salmon, Octavio D Rodriguez; de Sousa, J Ricardo; Neto, Minos A

    2015-09-01

    We have studied the phase diagrams of the one-dimensional spin-1 Blume-Capel model with anisotropy constant D, in which equivalent-neighbor ferromagnetic interactions of strength -J are superimposed on nearest-neighbor antiferromagnetic interactions of strength K. A rich critical behavior is found due to the competing interactions. At zero temperature two ordered phases exist in the D/J-K/J plane, namely the ferromagnetic (F) and the antiferromagnetic one (AF). For lower values of D/J(D/J0.5, only phases AF and F exist and are separated by a line given by D/J=K/J. At finite temperatures, we found that the ferromagnetic region of the phase diagram in the k_{B}T/J-D/J plane is enriched by another ferromagnetic phase F^{^{'}} above a first-order line for 0.195phases F and F^{^{'}}, begins at a coexistence point, where phases F,F^{^{'}}, and P coexist, and ends at an ordered critical point. Similarly, we found that the phase F^{^{'}} is present in the phase diagram in the k_{B}T/J-K/J plane for 0.228

  8. Studies on Phase Behavior of Alkyl Polyglucoside Based on Microemulsions with Modified Fishlike Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    Jin Ling CHAI; Gan Zuo LI; Zhao Yu DIAO; Gao Yong ZHANG

    2004-01-01

    The three-phase behavior in the quaternary system of an alkyl (C8/10- or C12/14-) polyglucoside / 1-butanol / n-octane / water has been studied at 40 ℃ with the modified fishlike phase diagram, which is presented by us for the first time. The mass fraction of 1-butanol in the hydrophile-lipophile balanced interfacial layer, AS, the coordinates of the start point B and the end point E of the phase diagram, and the solubilities of alkyl polyglucoside and 1-butanol in n-octane phase were calculated. The solubilization of the microemulsion was also discussed.

  9. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    Science.gov (United States)

    Long, Gary J.; Leighly, H. P., Jr.

    1982-01-01

    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  10. QCD phase diagram from finite energy sum rules

    CERN Document Server

    Ayala, Alejandro; Dominguez, C A; Gutierrez, Enif; Loewe, M; Raya, Alfredo

    2011-01-01

    We study the QCD phase diagram at finite temperature and baryon chemical potential by relating the behavior of the light-quark condensate to the threshold energy for the onset of perturbative QCD. These parameters are connected to the chiral symmetry restoration and the deconfinement phase transition, respectively. This relation is obtained in the framework of finite energy QCD sum rules at finite temperature and density, with input from Schwinger-Dyson methods to determine the light-quark condensate. Results indicate that both critical temperatures are basically the same within some 3% accuracy. We also obtain bounds for the position of the critical end point, mu_{B c} >~ 300 MeV and T_c <~ 185 MeV.

  11. Constraints for the QCD phase diagram from imaginary chemical potential

    CERN Document Server

    Philipsen, Owe

    2010-01-01

    We present unambiguous evidence from lattice simulations of N_f=3 QCD for two tricritical points in the (T,m) phase diagram at fixed imaginary \\mu/T=i\\pi/3 mod. 2\\pi/3, one in the light and one in the heavy quark regime. Together with similar results in the literature for N_f=2 this implies the existence of a chiral and of a deconfinement tricritical line at those values of imaginary chemical potentials. These tricritical lines represent the boundaries of the analytically continued chiral and deconfinement critical surfaces, respectively, which delimit the parameter space with first order phase transitions. It is demonstrated that the shape of the deconfinement critical surface is dictated by tricritical scaling and implies the weakening of the deconfinement transition with real chemical potential. A qualitatively similar effect holds for the chiral critical surface.

  12. First-Principles Phase Diagram for Ce-Th System

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Soderlind, P; Ruban, A; Vitos, L; Pourovskii, L

    2004-05-11

    Ab initio total energy calculations based on the exact muffin-tin orbitals (EMTO) theory are used to determine the high pressure and low temperature phase diagram of Ce and Th metals as well as the Ce{sub 43}Th{sub 57} disordered alloy. The compositional disorder for the alloy is treated in the framework of the coherent potential approximation (CPA). Equation of state for Ce, Th and Ce{sub 43}Th{sub 57} has been calculated up to 1 Mbar in good comparison with experimental data: upon compression the Ce-Th system undergoes crystallographic phase transformation from an fcc to a bct structure and the transition pressure increases with Th content in the alloy.

  13. Detection of an intermediate biaxial phase in the phase diagram of biaxial liquid crystals: Entropic sampling study

    Science.gov (United States)

    Kamala Latha, B.; Jose, Regina; Murthy, K. P. N.; Sastry, V. S. S.

    2014-05-01

    We investigate the phase sequence of biaxial liquid crystals, based on a general quadratic model Hamiltonian over the relevant parameter space, with a Monte Carlo simulation which constructs equilibrium ensembles of microstates, overcoming possible (free) energy barriers (combining entropic and frontier sampling techniques). The resulting phase diagram qualitatively differs from the universal phase diagram predicted earlier from mean-field theory (MFT), as well as the Monte Carlo simulations with the Metropolis algorithm. The direct isotropic-to-biaxial transition predicted by the MFT is replaced in certain regions of the space by the onset of an additional intermediate biaxial phase of very low order, leading to the sequence NB-NB1-I. This is due to inherent barriers to fluctuations of the components comprising the total energy, and may explain the difficulties in the experimental realization of these phases.

  14. Influence of finite volume and magnetic field effects on the QCD phase diagram

    Science.gov (United States)

    Magdy, Niseem; Csanád, M.; Lacey, Roy A.

    2017-02-01

    The 2 + 1 SU(3) Polyakov linear sigma model is used to investigate the respective influence of a finite volume and a magnetic field on the quark-hadron phase boundary in the plane of baryon chemical potential ({μ }B) versus temperature (T) of the quantum chromodynamics (QCD) phase diagram. The calculated results indicate sizable shifts of the quark-hadron phase boundary to lower values of ({μ }B {and} T) for increasing magnetic field strength, and an opposite shift to higher values of ({μ }B {and} T) for decreasing system volume. Such shifts could have important implications for the extraction of the thermodynamic properties of the QCD phase diagram from heavy ion data.

  15. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    Science.gov (United States)

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems.

  16. Experimental investigation of the Cd-Pr phase diagram.

    Directory of Open Access Journals (Sweden)

    Thomas L Reichmann

    Full Text Available The complete Cd-Pr equilibrium phase diagram was investigated with a combination of powder-XRD, SEM and DTA. All intermetallic compounds within this system, already reported in literature, could be confirmed: CdPr, Cd2Pr, Cd3Pr, Cd45Pr11, Cd58Pr13, Cd6Pr and Cd11Pr. The corresponding phase boundaries were determined at distinct temperatures. The homogeneity range of the high-temperature allotropic modification of Pr could be determined precisely and a limited solubility of 22.1 at.% Cd was derived. Additionally, single-crystal X-ray diffraction was employed to investigate structural details of Cd2Pr; it is isotypic to the AlB2-type structure with a z value of the Cd site of 0.5. DTA results of alloys located in the adjacent two-phase fields of Cd2Pr suggested a phase transformation between 893 and 930°C. For the phase Cd3Pr it was found that the lattice parameter a changes linearly with increasing Cd content, following Vegard's rule. The corresponding defect mechanism could be evaluated from structural data collected with single-crystal XRD. Introduction of a significant amount of vacancies on the Pr site and the reduction in symmetry of one Cd position (8c to 32f resulted in a noticeable decrease of all R-values.

  17. Experimental investigation of the Cd-Pr phase diagram.

    Science.gov (United States)

    Reichmann, Thomas L; Effenberger, Herta S; Ipser, Herbert

    2014-01-01

    The complete Cd-Pr equilibrium phase diagram was investigated with a combination of powder-XRD, SEM and DTA. All intermetallic compounds within this system, already reported in literature, could be confirmed: CdPr, Cd2Pr, Cd3Pr, Cd45Pr11, Cd58Pr13, Cd6Pr and Cd11Pr. The corresponding phase boundaries were determined at distinct temperatures. The homogeneity range of the high-temperature allotropic modification of Pr could be determined precisely and a limited solubility of 22.1 at.% Cd was derived. Additionally, single-crystal X-ray diffraction was employed to investigate structural details of Cd2Pr; it is isotypic to the AlB2-type structure with a z value of the Cd site of 0.5. DTA results of alloys located in the adjacent two-phase fields of Cd2Pr suggested a phase transformation between 893 and 930°C. For the phase Cd3Pr it was found that the lattice parameter a changes linearly with increasing Cd content, following Vegard's rule. The corresponding defect mechanism could be evaluated from structural data collected with single-crystal XRD. Introduction of a significant amount of vacancies on the Pr site and the reduction in symmetry of one Cd position (8c to 32f) resulted in a noticeable decrease of all R-values.

  18. Phase diagram and critical behavior of the square-lattice Ising model with competing nearest- and next-nearest-neighbor interactions

    Science.gov (United States)

    Yin, Junqi; Landau, David

    2010-03-01

    Using the parallel tempering algorithm and GPU accelerated techniques, we have performed large-scale Monte Carlo simulations of the Ising (lattice gas) model on a square lattice with antiferromagnetic (repulsive) nearest-neighbor and next-nearest-neighbor interactions of the same strength and subject to a uniform magnetic field. Possibility of the XY-like transition is examined and both transitions from the (2x1) and row-shifted (2x2) ordered phases to the paramagnetic phase turn out to be continuous. From our data analysis, reentrance behavior of the (2x1) critical line and a bicritical point which separates the two ordered phases at T=0 are confirmed. Based on the non-universal critical exponents we obtained along the phase boundary, Suzuki's weak universality seems to hold.

  19. Conductivity, calorimetry and phase diagram of the NaHSO4–KHSO4 system

    DEFF Research Database (Denmark)

    Hind, Hamma-Cugny; Rasmussen, Søren Birk; Rogez, J.

    2006-01-01

    Physico-chemical properties of the binary system NaHSO4-KHSO4 were studied by calorimetry and conductivity, The enthalpy of mixing has been measured at 505 K in the full composition range and the phase diagram calculated. The phase diagram has also been constructed from phase transition temperatu......Physico-chemical properties of the binary system NaHSO4-KHSO4 were studied by calorimetry and conductivity, The enthalpy of mixing has been measured at 505 K in the full composition range and the phase diagram calculated. The phase diagram has also been constructed from phase transition...

  20. Hadron yields, the chemical freeze-out and the QCD phase diagram

    CERN Document Server

    Andronic, A; Redlich, K; Stachel, J

    2016-01-01

    We present the status of the chemical freeze-out, determined from fits of hadron yields with the statistical hadronization (thermal) model, with focus on the data at the LHC. A description of the yields of hadrons containing light quarks as well as the application of the model for the production of the J/$\\psi$ meson is presented. The implications for the QCD phase diagram are discussed.

  1. Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams.

    Science.gov (United States)

    Marsh, Derek

    2010-03-01

    Mixtures of phospholipids with cholesterol are able to form liquid-ordered phases that are characterised by short-range orientational order and long-range translational disorder. These L(o)-phases are distinct from the liquid-disordered, fluid L(alpha)-phases and the solid-ordered, gel L(beta)-phases that are assumed by the phospholipids alone. The liquid-ordered phase can produce spatially separated in-plane fluid domains, which, in the form of lipid rafts, are thought to act as platforms for signalling and membrane sorting in cells. The areas of domain formation are defined by the regions of phase coexistence in the phase diagrams for the binary mixtures of lipid with cholesterol. In this paper, the available binary phase diagrams of lipid-cholesterol mixtures are all collected together. It is found that there is not complete agreement between different determinations of the phase diagrams for the same binary mixture. This can be attributed to the indirect methods largely used to establish the phase boundaries. Intercomparison of the various data sets allows critical assessment of which phase boundaries are rigorously established from direct evidence for phase coexistence.

  2. Analytical phase diagrams for colloids and non-adsorbing polymer.

    Science.gov (United States)

    Fleer, Gerard J; Tuinier, Remco

    2008-11-04

    introduce the size ratio q=delta/a, where the depletion thickness delta is no longer of order R. In the protein limit the binodal concentrations are above overlap. In such semidilute solutions delta approximately xi, where the De Gennes blob size (correlation length) xi scales as xi approximately phi(-gamma), with gamma=0.77 for good solvents and gamma=1 for a theta solvent. In this limit Pi=Pi(sd) approximately phi(3gamma). We now apply the following additional modifications: With these latter two modifications we obtain again a fully analytical model with simple equations for critical and triple points as a function of q(R). In the protein limit the binodal polymer concentrations scale as q(R)(1/gamma), and phase diagrams phiq(R)(-1/gamma) versus the colloid concentration eta become universal (i.e., independent of the size ratio q(R)). The predictions of this generalized free-volume theory (GFVT) are in excellent agreement with experiment and with computer simulations, not only for the colloid limit but also for the protein limit (and the crossover between these limits). The q(R)(1/gamma) scaling is accurately reproduced by both simulations and other theoretical models. The liquid window is the region between phi(c) (critical point) and phi(t) (triple point). In terms of the ratio phi(t)/phi(c) the liquid window extends from 1 in the cep (here phi(t)-phi(c)=0) to 2.2 in the protein limit. Hence, the liquid window is narrow: it covers at most a factor 2.2 in (external) polymer concentration.

  3. Bifurcation Diagrams and Generalized Bifurcation Diagrams for a rotational model of an oblate satellite

    CERN Document Server

    Tarnopolski, Mariusz

    2013-01-01

    This paper presents bifurcation and generalized bifurcation diagrams for a rotational model of an oblate satellite. Special attention is paid to parameter values describing one of Saturn's moons, Hyperion. For various oblateness the largest Lyapunov Characteristic Exponent (LCE) is plotted. The largest LCE in the initial condition as well as in the mixed parameter-initial condition space exhibits a fractal structure, for which the fractal dimension was calculated. It results from the bifurcation diagrams of which most of the parameter values for preselected initial conditions lead to chaotic rotation. The First Recurrence Time (FRT) diagram provides an explanation of the birth of chaos and the existence of quasi-periodic windows occuring in the bifurcation diagrams.

  4. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    Science.gov (United States)

    Lanatà, Nicola; Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming; Kotliar, Gabriel

    2015-01-01

    We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4 f and 5 f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.

  5. Cumulants and Correlation Functions vs the QCD phase diagram

    CERN Document Server

    Bzdak, Adam; Strodthoff, Nils

    2016-01-01

    In this note we discuss the relation of particle number cumulants and correlation functions related to them. It is argued that measuring couplings of the genuine correlation functions could provide cleaner information on possible non-trivial dynamics in heavy-ion collisions. We extract integrated multi-particle correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-particle correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long-ranged in rapidity. Finally based on the signs of genuine correlation functions we provide exclusion plots for the QCD phase diagram.

  6. Magnetic phase diagrams based on static and dynamic magnetic behaviour in Ru-based superconducting ferromagnets.

    Science.gov (United States)

    Nigam, R; Pan, A V; Dou, S X

    2011-11-02

    In this work, we present magnetic phase diagrams of a RuSr(2)Eu(1.5)Ce(0.5)Cu(2)O(10-δ) (Ru-1222) superconducting ferromagnet derived from its static and dynamic magnetic responses, measured by temperature and field dependences of dc magnetization and nonlinear ac susceptibility in both low and high magnetic fields. Comparison of magnetic phase diagrams of phase pure and impure samples singles out the intrinsic and extrinsic magnetic features, naturally proposing a unified model of Ru-1222 magnetic behaviour. The results considered within the proposed interpretation indicate full agreement between static and dynamic properties which, if measured in combination, effectively complement each other, uncovering existing ambiguities.

  7. Phase Diagram and Phase Separation of a Trapped Interacting Bose-Fermi Gas Mixture

    Institute of Scientific and Technical Information of China (English)

    MA Yong-Li

    2004-01-01

    @@ In six different regimes for a spatial phase diagram of a trapped interacting Bose-Fermi gas mixture at low temperatures, we present the conditions for the spatial demixing and separation of bosons and fermions. Starting from a semiclassically thermodynamic model for the local density functional of thermal bosons and fermions,the explicit analytical expressions for the fugacities of bosons and fermions are derived in different regimes by means of a first-order perturbation method in a local-density approximation. The critical values of the fermionboson interaction strength as a function of the fractional composition of fermions have a general feature: increase,extreme and decrease with increasing the fermionic composition slightly above Bose-Einstein critical temperature.

  8. Phase Diagram of Continuous Binary Nanoalloys: Size, Shape, and Segregation Effects

    Science.gov (United States)

    Cui, Mingjin; Lu, Haiming; Jiang, Haiping; Cao, Zhenhua; Meng, Xiangkang

    2017-02-01

    The phase diagrams of continuous binary nanoalloys are important in providing guidance for material designs and industrial applications. However, experimental determination of the nano-phase diagram is scarce since calorimetric measurements remain quite challenging at the nanoscale. Based on the size-dependent cohesive energy model, we developed a unified nano-thermodynamic model to investigate the effects of the size, shape, and segregation on the phase diagrams of continuous binary nanoalloys. The liquidus/solidus dropped in temperature, two-phase zone was narrowed, and the degree of surface segregation decreased with decrease in the size or increase in the shape factor. The congruent melting point of Cu-Au nanoalloys with and without segregation is linearly shifted to higher Au component and lower temperature with decreasing size or increasing shape factor. By reviewing surface segregated element of different binary nanoalloys, two segregation rules based on the solid surface energy and atomic size have been identified. Moreover, the established model can be employed to describe other physicochemical properties of nanoalloys, e.g. the cohesive energy, catalytic activation energy, and order-disorder transition temperature, and the validity is supported by available other theoretical prediction, experimental data and molecular dynamic simulations results. This will help the experimentalists by guiding them in their attempts to design bimetallic nanocrystals with the desired properties.

  9. Determining scaling in known phase diagrams of nonionic microemulsions to aid constructing unknown.

    Science.gov (United States)

    Balogh, Joakim

    2010-08-11

    Microemulsions based on nonionic surfactants of the ethylene oxide alkyl ether type C(m)E(n), have been studied thoroughly for around 30 years. Thanks to the considerable amount of published data available on these systems, it is possible to observe trends to make predictions of phase diagrams not yet determined. Strey and Kahlweit, and subsequently Sottmann and Strey, with coworkers have studied and published phase diagrams for systems with a fixed ratio of oil to water, varying the surfactant, the so-called Kahlweit fish-cut diagrams. Some properties of the phase diagrams can be scaled to become general and not system dependent. Here are shown two examples of scaling data from phase diagrams and the use of trends to determine phase diagrams, both inside and outside a dataset. The trends of microemulsions with fixed ratio of surfactant to oil, the so-called Lund-cut diagrams, are also investigated. The trends are used to determine a new phase diagram and this is compared with previously unpublished experimental data on C(12)E(5)-Octadecane-Water system. The scalings and trends make it possible to get good estimations of many of the important properties of the phase diagrams, both temperatures and surfactant concentrations of interest, by investigating one sample in the 3-phase region of the balanced fish-cut diagram.

  10. Predicted phase diagram of boron-carbon-nitrogen

    Science.gov (United States)

    Zhang, Hantao; Yao, Sanxi; Widom, Michael

    2016-04-01

    Noting the structural relationships between phases of carbon and boron carbide with phases of boron nitride and boron subnitride, we investigate their mutual solubilities using a combination of first-principles total energies supplemented with statistical mechanics to address finite temperatures. Thus we predict the solid-state phase diagram of boron-carbon-nitrogen (B-C-N). Owing to the large energy costs of substitution, we find that the mutual solubilities of the ultrahard materials diamond and cubic boron nitride are negligible, and the same for the quasi-two-dimensional materials graphite and hexagonal boron nitride. In contrast, we find a continuous range of solubility connecting boron carbide to boron subnitride at elevated temperatures. An electron-precise ternary compound B13CN consisting of B12 icosahedra with NBC chains is found to be stable at all temperatures up to melting. It exhibits an order-disorder transition in the orientation of NBC chains at approximately T =500 K. We also propose that the recently discovered binary B13N2 actually has composition B12.67N2 .

  11. Dynamical charge density waves rule the phase diagram of cuprates

    Science.gov (United States)

    Caprara, S.; Di Castro, C.; Seibold, G.; Grilli, M.

    2017-06-01

    In the last few years, charge density waves (CDWs) have been ubiquitously observed in high-temperature superconducting cuprates and are now the most investigated among the competing orders in the still hot debate on these systems. A wealth of new experimental data raises several fundamental issues that challenge the various theoretical proposals. We here relate our mean-field instability line TCDW0 of a strongly correlated Fermi liquid to the pseudogap T*(p ) line, marking in this way the onset of CDW-fluctuations. These fluctuations reduce strongly the mean-field critical line. Controlling this reduction via an infrared frequency cutoff related to the characteristic time of the probes, we account for the complex experimental temperature versus doping phase diagram. We provide a coherent scenario explaining why different CDW onset curves are observed by different experimental probes and seem to extrapolate at zero temperature into seemingly different quantum critical points (QCPs) in the intermediate and overdoped region. The nearly singular anisotropic scattering mediated by these fluctuations also accounts for the rapid changes of the Hall number seen in experiments and provides the first necessary step for a possible Fermi surface reconstruction fully establishing at lower doping. Finally, we show that phase fluctuations of the CDWs, which are enhanced in the presence of strong correlations near the Mott insulating phase, naturally account for the disappearance of the CDWs at low doping with yet another QCP as seen by the experiments.

  12. Sedimentation stacking diagram of binary colloidal mixtures and bulk phases in the plane of chemical potentials.

    Science.gov (United States)

    de las Heras, Daniel; Schmidt, Matthias

    2015-05-20

    We give a full account of a recently proposed theory that explicitly relates the bulk phase diagram of a binary colloidal mixture to its phase stacking phenomenology under gravity (de las Heras and Schmidt 2013 Soft Matter 9 8636). As we demonstrate, the full set of possible phase stacking sequences in sedimentation-diffusion equilibrium originates from straight lines (sedimentation paths) in the chemical potential representation of the bulk phase diagram. From the analysis of various standard topologies of bulk phase diagrams, we conclude that the corresponding sedimentation stacking diagrams can be very rich, even more so when finite sample height is taken into account. We apply the theory to obtain the stacking diagram of a mixture of nonadsorbing polymers and colloids. We also present a catalog of generic phase diagrams in the plane of chemical potentials in order to facilitate the practical application of our concept, which also generalizes to multi-component mixtures.

  13. Evaluation of the Current Status of the Combinatorial Approach for the Study of Phase Diagrams.

    Science.gov (United States)

    Wong-Ng, W

    2012-01-01

    This paper provides an evaluation of the effectiveness of using the high throughput combinatorial approach for preparing phase diagrams of thin film and bulk materials. Our evaluation is based primarily on examples of combinatorial phase diagrams that have been reported in the literature as well as based on our own laboratory experiments. Various factors that affect the construction of these phase diagrams are examined. Instrumentation and analytical approaches needed to improve data acquisition and data analysis are summarized.

  14. On the theory of ternary melt crystallization with a non-linear phase diagram

    Science.gov (United States)

    Toropova, L. V.; Dubovoi, G. Yu; Alexandrov, D. V.

    2017-04-01

    The present study is concerned with a theoretical analysis of unidirectional solidification process of ternary melts in the presence of a phase transition (mushy) layer. A new analytical solution of heat and mass transfer equations describing the steady-state crystallization scenario is found with allowance for a non-linear liquidus equation. The model under consideration takes into account the presence of two phase transition layers, namely, the primary and cotectic mushy regions. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.

  15. A Closer Look at Phase Diagrams for the General Chemistry Course.

    Science.gov (United States)

    Gramsch, Stephen A.

    2000-01-01

    Information concerning structural chemistry and phase equilibria contained in the full phase diagrams of common substances is a great deal richer than the general chemistry students are given to believe. Discusses ways of enriching the traditional presentation of phase diagrams in general chemistry courses. (Contains over 20 references.) (WRM)

  16. Shifting Phases for Patchy Particles - Effect of mutagenesis and chemical modification on the phase diagram of human gamma D crystallin

    Science.gov (United States)

    McManus, Jennifer J.; James, Susan; McNamara, Ruth; Quinn, Michelle

    2014-03-01

    Single mutations in human gamma D crystallin (HGD), a protein found in the eye lens are associated with several childhood cataracts. Phase diagrams for several of these protein mutants have been measured and reveal that phase boundaries are shifted compared with the native protein, leading to condensation of protein in a physiologically relevant regime. Using HGD as a model protein, we have constructed phase diagrams for double mutants of the protein, incorporating two single amino acid substitutions for which phase diagrams are already known. In doing so, the characteristics of each of the single mutations are maintained but both are now present in the same protein particle. While these proteins are not of interest physiologically, this strategy allows the controlled synthesis of nano-scale patchy particles in which features associated with a known phase behavior can be included. It can also provide a strategy for the controlled crystallisation of proteins. Phase boundaries also change after the chemical modification of the protein, through the covalent attachment of fluorescent labels, for example, and this will also be discussed. The authors acknowledge Science Foundation Ireland Stokes Lectureship and Grant 11/RFP.1/PHY/3165. The authors also acknowledge the Irish Research Council and the John and Pat Hume Scholarship.

  17. Temperature-pressure phase diagram of cubic Laves phase Au2Pb

    Science.gov (United States)

    Chen, K. W.; Graf, D.; Besara, T.; Gallagher, A.; Kikugawa, N.; Balicas, L.; Siegrist, T.; Shekhter, A.; Baumbach, R. E.

    2016-01-01

    The temperature (T ) as a function of pressure (P ) phase diagram is reported for the cubic Laves phase compound Au2Pb, which was recently proposed to support linearly dispersing topological bands, together with conventional quadratic bands. At ambient pressure, Au2Pb exhibits several structural phase transitions at T1=97 K , T2=51 K , and T3=40 K with superconductivity below Tc=1.2 K . Applied pressure results in a rich phase diagram where T1,T2, and T3 evolve strongly with P and a possible new phase is stabilized for P >0.64 GPa that also supports superconductivity below 1.1 K. These observations suggest that Au2Pb is an ideal system in which to investigate the relationship between structural degrees of freedom, band topology, and resulting anomalous behaviors.

  18. Reinvestigation of the Cd–Gd phase diagram

    Science.gov (United States)

    Reichmann, Thomas L.; Ipser, Herbert

    2014-01-01

    The complete Cd–Gd equilibrium phase diagram was investigated by a combination of powder-XRD, SEM and DTA. All previously reported phases, i.e., CdGd, Cd2Gd, Cd3Gd, Cd45Gd11, Cd58Gd13, and Cd6Gd, could be confirmed. In addition, a new intermetallic compound with a stoichiometric composition corresponding to “Cd8Gd” was found to exist. It was obtained that “Cd8Gd” decomposes peritectically at 465 °C. Homogeneity ranges of all intermetallic compounds were determined at distinct temperatures. In addition, the maximum solubilities of Cd in the low- and high-temperature modifications of Gd were determined precisely as 4.6 and 22.6 at.%, respectively. All invariant reaction temperatures (with the exception of the formation of Cd58Gd13) as well as liquidus temperatures were determined, most probably, Cd58Gd13 is formed in a peritectoid reaction from Cd45Gd11 and Cd6Gd at a temperature below 700 °C. PMID:25544803

  19. Reinvestigation of the Cd-Gd phase diagram.

    Science.gov (United States)

    Reichmann, Thomas L; Ipser, Herbert

    2014-12-25

    The complete Cd-Gd equilibrium phase diagram was investigated by a combination of powder-XRD, SEM and DTA. All previously reported phases, i.e., CdGd, Cd2Gd, Cd3Gd, Cd45Gd11, Cd58Gd13, and Cd6Gd, could be confirmed. In addition, a new intermetallic compound with a stoichiometric composition corresponding to "Cd8Gd" was found to exist. It was obtained that "Cd8Gd" decomposes peritectically at 465 °C. Homogeneity ranges of all intermetallic compounds were determined at distinct temperatures. In addition, the maximum solubilities of Cd in the low- and high-temperature modifications of Gd were determined precisely as 4.6 and 22.6 at.%, respectively. All invariant reaction temperatures (with the exception of the formation of Cd58Gd13) as well as liquidus temperatures were determined, most probably, Cd58Gd13 is formed in a peritectoid reaction from Cd45Gd11 and Cd6Gd at a temperature below 700 °C.

  20. Phase diagram and spectral properties of a new exactly integrable spin-1 quantum chain

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Francisco C; Nakamura, Gilberto M [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, CP 369, 13560-970, Sao Carlos, Sao Paulo (Brazil)], E-mail: alcaraz@if.sc.usp.br

    2010-04-16

    The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t{sub p}. We show that at the special point t{sub p} = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp (i2{pi}/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.

  1. Color superconductivity. Phase diagrams and Goldstone bosons in the color-flavor locked phase

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhaus, Verena

    2009-04-29

    The phase diagram of strongly interacting matter is studied with great experimental and theoretical effort and is one of the most fascinating research areas in modern particle physics. It is believed that color superconducting phases, in which quarks form Cooper pairs, appear at very high densities and low temperatures. Such phases could appear in the cores of neutron stars. In this work color superconducting phases are studied within the Nambu-Jona-Lasinio model. First of all, the phase diagram of neutral matter in beta equilibrium is calculated for two different diquark couplings. To this end, we determine the dynamical quark masses self-consistently together with the order parameters of color superconductivity. The interplay between neutrality and quark masses results in an interesting phase structure, in particular for the smaller diquark coupling. In the following, we additionally include a conserved lepton number to map the situation in the first few seconds of the evolution of a protoneutron star when neutrinos are trapped. This has a huge influence on the phase structure and favors the 2SC phase compared to the CFL phase. In the second part of this work we concentrate on the CFL phase which is characterized by a special symmetry breaking pattern. The properties of the resulting nine pseudoscalar Goldstone bosons (GB) are studied by solving the Bethe-Salpeter equation for quark-quark scattering. The GB are the lowest-lying excitations in the CFL phase and therefore play an important role for the thermodynamics of the system. The properties of the GB can also be described by the low-energy effective theory (LEET) for the CFL phase. There the respective low-energy constants are derived for asymptotically high densities where the strong force is weak and can be treated perturbatively. Our aim is the comparison of our results with these predictions, on the one hand to check our model in the weak-coupling limit and on the other hand to derive information about

  2. Solid-liquid phase diagram of disubstituted benzene systems

    Institute of Scientific and Technical Information of China (English)

    黑恩成; 刘国杰

    1995-01-01

    The cooling curves of different compositions of the systems of ortho-chlorotoluene/para-chlorotoluene and ortho-nitrochlorobenzene/para-nitrochlorobenzene are carefully determined by the thermal analysis method. The crystals obtained are also tested. The conclusion that both systems are of simple eutectic diagram but not the solid solution diagram with a minimum melting point is confirmed. The characteristics of the diagram are explained according to the physical and thermodynarmc properties of the components.

  3. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol/Sodium Polyacrylate/Salts

    Directory of Open Access Journals (Sweden)

    Adalberto Pessoa Junior

    2011-03-01

    Full Text Available Aqueous two-phase systems consisting of polyethylene glycol (PEG, sodium polyacrylate (NaPAA, and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory-Huggins theory of polymer solutions are presented. Due to strong enthalpic and entropic balancing forces, the hydrophobicity of the added salt has a strong influence on the position of the binodal, which could be reproduced by model calculations.

  4. Thermochemistry and phase diagram studies in the copper(indium,gallium)selenium system

    Science.gov (United States)

    Ider, Muhsin

    Polycrystalline Cu(In,Ga)Se2 and related semiconductors show great potential as alternative materials in production of high efficiency solar cells. This dissertation reports the experimental determination of Gibbs energy changes and phase diagram calculations for selected sections of the Cu-Ga-In-Se system. The Gibbs energy changes were measured with solid-state electrochemical cells and this data along with selected literature data were assessed and model parameters suggested. The homogeneity range of beta-Cu2-xSe was measured by coulometric titration and the thermodynamic properties for defect species estimated. The composition difference between the Se-rich and the Cu-rich boundaries was measured at 900K. A defect model was developed based on vacancy formation on the Cu sublattice. The gas phase equilibrium data for Cu-Se system and the results of a recent assessment of selenium unary system were used to predict defect concentrations. A thermodynamic description of the Cu2Se-In2Se 3 was obtained by optimization of the available phase equilibrium and thermodynamic information along with the direct results of EMF experiments. The Gibbs energy of formation of alpha-CuInSe2 was directly measured by a solid oxide galvanic cell experiment. The transformation enthalpy and Gibbs energy data for CuIn3Se5 and CuIn5Se 8 were estimated. The Redlich-Kister model with a 3-coefficient expression was employed to define the Gibbs energy of the liquid phase. The intermediate beta-CuIn 3Se5 and gamma-CuIn5Se8 phases were modeled with a 2-coefficient expansion of the Redlich-Kister model. The alpha and delta modifications of CuInSe2 phases were modeled with a specific sublattice model. A reasonable agreement between the model calculated values and the thermodynamic phase equilibrium data was achieved. The thermochemistry and phase diagram of GaSe system was critically studied. The activity of Ga was measured along the liquidus between 800--1000K. Selected invariant phase transition

  5. Phase diagram of the extended Hubbard chain with charge-dipole interactions

    OpenAIRE

    Torio, M. E.; Aligia, A. A.; Hallberg, K.; Ceccatto, H. A.

    2000-01-01

    We consider a modified extended Hubbard model (EHM) which, in addition to the on-site repulsion U and nearest-neighbor repulsion V, includes polarization effects in second-order perturbation theory. The model is equivalent to an EHM with renormalized U plus a next-nearest-neighbor repulsion term. Using a method based on topological quantum numbers (charge and spin Berry phases), we generalize to finite hopping t the quantum phase diagram in one dimension constructed by van den Brink et al. (P...

  6. Analysis of Sequence Diagram Layout in Advanced UML Modelling Tools

    Directory of Open Access Journals (Sweden)

    Ņikiforova Oksana

    2016-05-01

    Full Text Available System modelling using Unified Modelling Language (UML is the task that should be solved for software development. The more complex software becomes the higher requirements are stated to demonstrate the system to be developed, especially in its dynamic aspect, which in UML is offered by a sequence diagram. To solve this task, the main attention is devoted to the graphical presentation of the system, where diagram layout plays the central role in information perception. The UML sequence diagram due to its specific structure is selected for a deeper analysis on the elements’ layout. The authors research represents the abilities of modern UML modelling tools to offer automatic layout of the UML sequence diagram and analyse them according to criteria required for the diagram perception.

  7. Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis

    Science.gov (United States)

    Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K

    2011-01-01

    Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator–effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway. PMID:22108795

  8. Rapid and Accurate Estimates of Alloy Phase Diagrams for Design and Assessment

    Science.gov (United States)

    Tan, Teck; Johnson, Duane

    2009-03-01

    Based on first-principles cluster expansion (CE), we obtain rapid but accurate assessments of alloy T vs c phase diagrams from a mean-field theory that conserves sum rules over pair correlations. Such conserving mean-field theories are less complicated than the popular cluster variation method, and better reproduce the Monte Carlo (MC) phase boundaries and Tc for the nearest-neighbor Ising model [1]. The free-energy f(T,c) is a simple analytic expression and its value at fixed T or c is obtained by solving a set of n non-linear coupled equations, where n is determined by the number of sublattices in the groundstate structure and the range of pair correlations included. While MC is ``exact,'' conserving mean-field theories are 10 to 10^3 faster, allowing for rapid phase diagram construction, dramatically saving computation time. We have generalized the method to account for multibody interactions to enable phase diagram calculations via first-principles CE, and its accuracy is showed vis-à-vis exact MC for several alloy systems. The method is included in our Thermodynamic ToolKit (TTK), available for general use in 2009. [1] V. I. Tokar, Comput. Mater. Sci. 8 (1997), p.8

  9. A three-dimensional phase diagram of growth-induced surface instabilities

    Science.gov (United States)

    Wang, Qiming; Zhao, Xuanhe

    2015-01-01

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities. PMID:25748825

  10. Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis.

    Science.gov (United States)

    Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K

    2011-11-22

    Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator-effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway.

  11. Bilayer Ising system designed with half-integer spins: Magnetic hysteresis, compensation behaviors and phase diagrams

    Science.gov (United States)

    Kantar, Ersin

    2016-08-01

    In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.

  12. One-dimensional transport of interacting particles: currents, density profiles, phase diagrams, and symmetries.

    Science.gov (United States)

    Dierl, Marcel; Einax, Mario; Maass, Philipp

    2013-06-01

    Driven lattice gases serve as canonical models for investigating collective transport phenomena and properties of nonequilibrium steady states. Here we study one-dimensional transport with nearest-neighbor interactions both in closed bulk systems and in open channels coupled to two particle reservoirs at the ends of the channel. For the widely employed Glauber rates we derive an exact current-density relation in the bulk for unidirectional hopping. An approach based on time-dependent density functional theory provides a good description of the kinetics. For open systems, the system-reservoir couplings are shown to have a striking influence on boundary-induced phase diagrams. The role of particle-hole symmetry is discussed, and its consequence for the topology of the phase diagrams. It is furthermore demonstrated that systems with weak bias can be mapped onto systems with unidirectional hopping.

  13. High-field phase-diagram of Fe arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Y.J.; Jaroszynski, J.; Yamamoto, A.; Gurevich, A.; Riggs, S.C.; Boebinger, G.S.; Larbalestier, D. [National High Magnetic Field Laboratory, Florida State University, Tallahassee-FL 32310 (United States); Wen, H.H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhigadlo, N.D.; Katrych, S.; Bukowski, Z.; Karpinski, J. [Laboratory for Solid State Physics, ETH Zuerich, CH-8093 Zuerich (Switzerland); Liu, R.H.; Chen, H.; Chen, X.H. [Hefei National Laboratory for Physical Science a Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Balicas, L., E-mail: balicas@magnet.fsu.ed [National High Magnetic Field Laboratory, Florida State University, Tallahassee-FL 32310 (United States)

    2009-05-01

    Here, we report an overview of the phase-diagram of single-layered and double-layered Fe arsenide superconductors at high magnetic fields. Our systematic magneto-transport measurements of polycrystalline SmFeAsO{sub 1-x}F{sub x} at different doping levels confirm the upward curvature of the upper critical magnetic field H{sub c2}(T) as a function of temperature T defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single-crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single- and double-layered compounds. In all compounds explored by us the zero temperature upper critical field H{sub c2}(0), estimated either through the Ginzburg-Landau or the Werthamer-Helfand-Hohenberg single gap theories, strongly surpasses the weak-coupling Pauli paramagnetic limiting field. This clearly indicates the strong-coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses gamma = (m{sub c}/m{sub ab}){sup 1/2} for carriers moving along the c-axis and the ab-planes, respectively, is relatively modest as compared to the high-T{sub c} cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field H{sub m}(T), separating the vortex-solid from the vortex-liquid phase in the single-layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.

  14. Dynamical Stabilization of the Fermi Scale: Phase Diagram of Strongly Coupled Theories for (Minimal) Walking Technicolor and Unparticles

    CERN Document Server

    Sannino, Francesco

    2008-01-01

    We summarize basic features associated to dynamical breaking of the electroweak symmetry. The knowledge of the phase diagram of strongly coupled theories as function of the number of colors, flavors and matter representation plays a fundamental role when trying to construct viable extensions of the standard model (SM). Therefore we will report on the status of the phase diagram for SU(N) gauge theories with fermionic matter transforming according to arbitrary representations of the underlying gauge group. We will discuss how the phase diagram can be used to construct unparticle models. We will then review Minimal Walking Technicolor (MWT) and other extensions, such as partially gauged and split technicolor. MWT is a sufficiently general, symmetry wise, model to be considered as a benchmark for any model aiming at breaking the electroweak symmetry dynamically. The unification of the standard model gauge couplings will be revisited within technicolor extensions of the SM. A number of appendices are added to rev...

  15. Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid.

    Science.gov (United States)

    Nyholm, Thomas K M; Lindroos, Daniel; Westerlund, Bodil; Slotte, J Peter

    2011-07-05

    Cell membranes have a nonhomogenous lateral organization. Most information about such nonhomogenous mixing has been obtained from model membrane studies where defined lipid mixtures have been characterized. Various experimental approaches have been used to determine binary and ternary phase diagrams for systems under equilibrium conditions. Such phase diagrams are the most useful tools for understanding the lateral organization in cellular membranes. Here we have used the fluorescence properties of trans-parinaric acid (tPA) for phase diagram determination. The fluorescence intensity, anisotropy, and fluorescence lifetimes of tPA were measured in bilayers composed of one to three lipid components. All of these parameters could be used to determine the presence of liquid-ordered and gel phases in the samples. However, the clearest information about the phase state of the lipid bilayers was obtained from the fluorescence lifetimes of tPA. This is due to the fact that an intermediate-length lifetime was found in samples that contain a liquid-ordered phase and a long lifetime was found in samples that contained a gel phase, whereas tPA in the liquid-disordered phase has a markedly shorter fluorescence lifetime. On the basis of the measured fluorescence parameters, a phase diagram for the 1,2-dioleoyl-sn-glycero-3-phosphocholine/N-palmitoyl sphingomyelin/cholesterol system at 23 °C was prepared with a 5 mol % resolution. We conclude that tPA is a good fluorophore for probing the phase behavior of complex lipid mixtures, especially because multilamellar vesicles can be used. The determined phase diagram shows a clear resemblance to the microscopically determined phase diagram for the same system. However, there are also significant differences that likely are due to tPA's sensitivity to the presence of submicroscopic liquid-ordered and gel phase domains.

  16. Interdependent binary choices under social influence: phase diagram for homogeneous unbiased populations

    CERN Document Server

    del Río, Ana Fernández; de la Rubia, Javier

    2012-01-01

    Coupled Ising models are studied in a discrete choice theory framework, where they can be understood to represent interdependent choice making processes for homogeneous populations under social influence. Two different coupling schemes are considered. The nonlocal or group interdependence model is used to study two interrelated groups making the same binary choice. The local or individual interdependence model represents a single group where agents make two binary choices which depend on each other. For both models, phase diagrams, and their implications in socioeconomic contexts, are described and compared in the absence of private deterministic utilities (zero opinion fields).

  17. Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models

    KAUST Repository

    Seibold, Benjamin

    2013-09-01

    Fundamental diagrams of vehicular traiic ow are generally multivalued in the congested ow regime. We show that such set-valued fundamental diagrams can be constructed systematically from simple second order macroscopic traiic models, such as the classical Payne-Whitham model or the inhomogeneous Aw-Rascle-Zhang model. These second order models possess nonlinear traveling wave solutions, called jamitons, and the multi-valued parts in the fundamental diagram correspond precisely to jamiton-dominated solutions. This study shows that transitions from function-valued to set-valued parts in a fundamental diagram arise naturally in well-known second order models. As a particular consequence, these models intrinsically reproduce traiic phases. © American Institute of Mathematical Sciences.

  18. Phase diagram of highly asymmetric binary hard-sphere mixtures.

    Science.gov (United States)

    Dijkstra, M; van Roij, R; Evans, R

    1999-05-01

    We study the phase behavior and structure of highly asymmetric binary hard-sphere mixtures. By first integrating out the degrees of freedom of the small spheres in the partition function we derive a formal expression for the effective Hamiltonian of the large spheres. Then using an explicit pairwise (depletion) potential approximation to this effective Hamiltonian in computer simulations, we determine fluid-solid coexistence for size ratios q=0.033, 0.05, 0.1, 0.2, and 1.0. The resulting two-phase region becomes very broad in packing fractions of the large spheres as q becomes very small. We find a stable, isostructural solid-solid transition for q0 the phase diagram mimics that of the sticky-sphere system. As expected, the radial distribution function g(r) and the structure factor S(k) of the effective one-component system show no sharp signature of the onset of the freezing transition and we find that at most points on the fluid-solid boundary the value of S(k) at its first peak is much lower than the value given by the Hansen-Verlet freezing criterion. Direct simulations of the true binary mixture of hard spheres were performed for q > or =0.05 in order to test the predictions from the effective Hamiltonian. For those packing fractions of the small spheres where direct simulations are possible, we find remarkably good agreement between the phase boundaries calculated from the two approaches-even up to the symmetric limit q=1 and for very high packings of the large spheres, where the solid-solid transition occurs. In both limits one might expect that an approximation which neglects higher-body terms should fail, but our results support the notion that the main features of the phase equilibria of asymmetric binary hard-sphere mixtures are accounted for by the effective pairwise depletion potential description. We also compare our results with those of other theoretical treatments and experiments on colloidal hard-sphere mixtures.

  19. Phase Diagram and Electronic Structure of Praseodymium and Plutonium systems

    Science.gov (United States)

    Yao, Yong-Xin; Nicola, Lanata; Wang, Cai-Zhuang; Kotliar, Gabriel; Ho, Kai-Ming

    2015-03-01

    We apply a new implementation of LDA +Gutzwiller to calculate the zero-temperature phase diagram and electronic structure of Pr and Pu. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure -- contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction. However, the proper treatment of electron correlation effects is crucial to reach good agreement with experiment. A similar interplay between correlation effects and bands structure is also displayed in Pr, and might emerge in even greater generality. N.L. and G.K. supported by U.S. DOE BES under Grant No. DE-FG02- 99ER45761. Research at Ames Lab supported by the U.S. DOE, Office of BES, DMSE, Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358.

  20. Condensation phase diagrams for lipid-coated perfluorobutane microbubbles.

    Science.gov (United States)

    Mountford, Paul A; Sirsi, Shashank R; Borden, Mark A

    2014-06-03

    The goal of this study was to explore the thermodynamic conditions necessary to condense aqueous suspensions of lipid-coated gas-filled microbubbles into metastable liquid-filled nanodrops as well as the physicochemical mechanisms involved with this process. Individual perfluorobutane microbubbles and their lipid shells were observed as they were pressurized at 34.5 kPa s(-1) in a microscopic viewing chamber maintained at temperatures ranging from 5 to 75 °C. The microbubbles contracted under pressure, ultimately leading to either full dissolution or microbubble-to-nanodrop condensation. Temperature-pressure phase diagrams conveying condensation and stability transitions were constructed for microbubbles coated with saturated diacylphosphatidylcholine lipids of varying acyl chain length (C16 to C24). The onset of full dissolution was shifted to higher temperatures with the use of longer acyl chain lipids or supersaturated media. Longer chain lipid shells resisted both dissolution of the gas core and mechanical compression through a pronounced wrinkle-to-fold collapse transition. Interestingly, the lipid shell also provided a mechanical resistance to condensation, shifting the vapor-to-liquid transition to higher pressures than for bulk perfluorobutane. This result indicated that the lipid shell can provide a negative apparent surface tension under compression. Overall, the results of this study will aid in the design and formulation of vaporizable fluorocarbon nanodrops for various applications, such as diagnostic ultrasound imaging, targeted drug delivery, and thermal ablation.

  1. Phase diagram for rotating compact stars with two high density phases

    CERN Document Server

    Blaschke, David B; Poghosyan, G

    2002-01-01

    For the classification of rotating compact stars with two high density phases a phase diagram in the angular velocity (Omega) - baryon number (N) plane is investigated. The dividing line N_crit(Omega) between configurations with one and two phases is correlated to a local maximum of the moment of inertia and can thus be subject to experimental verification by observation of the rotational behavior of accreting compact stars. Another characteristic line, which also can be measured is the transition line to black holes that of the maximum mass configurations. The positions and the shape of these lines are sensitive to changes in the equation of state (EoS) of stellar matter. A comparison of the regional structure of phase diagrams is performed for polytropic and relativistic mean field type EoS and correlations between the topology of the transition lines and the properties of two-phase EoS are obtained. Different scenarios of compact star evolution are discussed as trajectories in the phase diagram. It is show...

  2. Anisotropic Phase diagram of the Frustrated spin chain β-TeVO4

    Science.gov (United States)

    Weickert, F.; Jaime, M.; Harrison, N.; Scott, B. L.; Leitmae, A.; Heinmaa, L.; Stern, R.; Janson, O.; Berger, H.; Rosner, H.; Tsirlin, A. A.

    We will present experimental as well as theoretical data on β-TeVO4 a candidate for the J1-J2 chain model with ferromagnetic J1 ~-18 K and antiferrromagnetic J2 ~48 K coupling constants. The T - H magnetic phase diagram is revealed by measurements of the magnetization, specific heat, magnetostriction, and thermal expansion on oriented single crystals at temperatures between 0.5 K and 50 K and in magnetic fields up to 50 T. The high field data were taken in a capacitor bank-driven pulsed magnet at NHMFL - LANL and complemented with measurements in a superconducting magnet. Our comprehensive study allows for the first time a detailed mapping of the phase diagram in both directions, H ll ab and H ll c. We find clear evidence for 5 different phases including full polarization of the magnetic moments above 23 T that is only weakly dependent on the crystal orientation. Surprisingly, the phase boundary at the saturation field splits into two distinct lines below 5 K. The magnetic phases occurring at fields below 10 T show significant magnetic anisotropy between H ll ab and H ll c. The nature of the different phases and regions in β-TeVO4 is still far from being understood, but our results will stimulate further research on this interesting model compound.

  3. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    Science.gov (United States)

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  4. MesoDyn Simulation Study on Phase Diagram of Aerosol OT/isooctane/water System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A simple model, i.e. sodium di(2-ethylhexyl) sulfosuccinate (AOT) represented by one-head and two-tail beads tied together by a harmonic spring and water or isooctane by one bead, was put forward via Dissipative Particles Dynamics (DPD) simulation method. Using the changes of interfacial tension between water and oil phase, a ternary phase diagram of AOT/water/isooctane system was drawn. From the simulation, one conclusion is shown that DPD simulation can be considered as an adjunct to experiments.

  5. Analytical Determining Of The Steinmetz Equivalent Diagram Elements Of Single-Phase Transformer

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available This article presents to an analytical calculation methodology of the Steinmetz Equivalent Diagram Elements applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active and reactive powers consumed by the core are expressed analytically in function of the electromagnetic parameters as resistivity permeability and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The equivalent diagram elements empirically determined by Steinmetz are analytically expressed using the expressions of the no loaded transformer consumptions. To verify the relevance of the model validations both by simulations with different powers and measurements were carried out to determine the resistance and reactance of the core. The obtained results are in good agreement with the theoretical approach and the practical results.

  6. Quantum phase diagram of the integrable px+ipy fermionic superfluid

    DEFF Research Database (Denmark)

    Rombouts, Stefan; Dukelsky, Jorge; Ortiz, Gerardo

    2010-01-01

    We determine the zero-temperature quantum phase diagram of a px+ipy pairing model based on the exactly solvable hyperbolic Richardson-Gaudin model. We present analytical and large-scale numerical results for this model. In the continuum limit, the exact solution exhibits a third-order quantum pha...

  7. Magnetic phase diagram simulation of La{sub 1-x}Ca{sub x}MnO{sub 3} system by using Monte Carlo, Metropolis algorithm and Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.c [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Salazar-Enriquez, C.D.; Londono-Navarro, J.; Jurado, J.F. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulacion, Instituto de Fisica. Universidad de Antioquia, A.A. 1226, Medellin (Colombia)

    2011-06-15

    This work presents a critical temperature study of La{sub 1-x}Ca{sub x}MnO{sub 3} manganites in bulk by means of Monte Carlo method thermal activated magnetic properties. The analysis was carried out for stoichiometries in the range of 0{<=}x{<=}1. The model is based on a three-dimensional classical Heisenberg-Hamiltonian involving the presence of Mn{sup 3+eg}, Mn{sup 3+eg'} and Mn{sup 4+} ions, and their nearest neighbor interaction. For this modeling, simple cubic lattice samples of size L{sup 3}, with L=6, 15 and 30 were used. The values of exchange parameters were determined by using LaMnO{sub 3} (x=0), La{sub 0.5}Ca{sub 0.5}MnO{sub 3} and CaMnO{sub 3} (x=1) phases. Relationships between exchange parameters and anisotropy constants for different hole densities were found. Results of transition temperatures for each phase showed good agreement with experimental reports, especially for L=30 and L{yields}{infinity}. - Research highlights: Stoichiometry influences the exchange interaction between magnetic ions. Charge and orbital ordering depend on the stoichiometry. LCMO magnetic phase diagram has a great variety of magnetic states.

  8. Constructing multicomponent phase diagrams by overlapping ZPF lines. [Zero Phase Fraction Line for improved mechanical and corrosion properties

    Science.gov (United States)

    Gupta, H.; Morral, J. E.; Nowotny, H.

    1986-01-01

    A procedure is introduced which can be used to draw isothermal sections from a multicomponent phase diagram in a matter of minutes, regardless of the diagram complexity. In the proposed method, the zero phase fraction (ZPF) lines are drawn separately for all phases existing in the system; by overlapping these ZPF lines, the desired section is obtained. Two examples - with five components and eight components - are given to illustrate the method. Regarding the second example, it is noted that although the final diagram may be altered to create discontinuities in slope at intersection points, the diagram remains unchanged from a topological standpoint. Thus, the overlapping ZPF lines supply all the information needed to construct complex diagrams. Even if many more phases and components are involved, the final diagram can be drawn with equal facility.

  9. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  10. Thermodynamic optimization and calculation of phase diagrams of YbCl3-MCl (M=Na, K, Rb, Cs)

    Institute of Scientific and Technical Information of China (English)

    SUN Yimin; YAO Yongxiang; HU Juan; MENG Xiangzhen; GAO Tianyi; QIAO Zhiyu

    2008-01-01

    YbCl3-MCl (M = Na, K, Rb, Cs) systems were optimized and calculated using the CALPHAD (CALculation of PHAse Diagram) technique. The modified quasi-chemical model in the pair-approximation for short-range ordering was used to describe the Gibbs energies of liquid phase in the systems. On the basis of the measured phase diagram data and experimental thermodynamic properties, a series of thermodynamic functions were optimized and calculated through an interactive computer-assisted analysis. Furthermore, some reasonable discussions on the thermodynamic parameters for these strong interaction binary systems were carried out. The results showed that the optimized parameters and experimental data are thermodynamically self-consistent.

  11. On Locating the Critical End Point in QCD Phase Diagram

    CERN Document Server

    Srivastava, P K; Singh, C P

    2011-01-01

    We use the available two different self-consistent formulations of quasiparticle models and extend their applications for the description of quark gluon plasma (QGP) at non-vanishing baryon chemical potentials. The thermodynamical quantities calculated from these models are compared with the values obtained from lattice simulations and a good agreement between theoretical calculations and lattice QCD data suggests that the values of the parameters used in the paper are consistent. A new equation of state (EOS) for a gas of extended baryons and pointlike mesons is presented here which incorporates the repulsive hard-core interactions arising due to geometrical size of baryons. A first order deconfining phase transition is constructed using Gibb's equilibrium criteria between the hadron gas EOS and quasiparticle model EOS for the weakly interacting quark matter. This leads to an interesting finding that the phase transition line ends at a critical end point beyond which a crossover region exists in the phase di...

  12. Magnetic Phase Diagram of Dense Holographic Multiquarks in the Quark-gluon Plasma

    CERN Document Server

    Burikham, Piyabut

    2011-01-01

    We study phase diagram of the dense holographic gauge matter in the Sakai-Sugimoto model in the presence of the magnetic field above the deconfinement temperature. Even above the deconfinement, quarks could form colour bound states through the remaining strong interaction if the density is large. We demonstrate that in the presence of the magnetic field for a sufficiently large baryon density, the multiquark-pion gradient (MQ-$\\mathcal{5}\\phi$) phase is more thermodynamically preferred than the chiral-symmetric quark-gluon plasma. The phase diagrams between the holographic multiquark and the chiral-symmetric quark-gluon plasma phase are obtained at finite temperature and magnetic field. In the mixed MQ-$\\mathcal{5}\\phi$ phase, the pion gradient induced by the external magnetic field is found to be a linear response for small and moderate field strengths. Its population ratio decreases as the density is raised and thus the multiquarks dominate the phase. Temperature dependence of the baryon chemical potential,...

  13. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Directory of Open Access Journals (Sweden)

    Jiasen Jin

    2016-07-01

    Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  14. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Science.gov (United States)

    Jin, Jiasen; Biella, Alberto; Viyuela, Oscar; Mazza, Leonardo; Keeling, Jonathan; Fazio, Rosario; Rossini, Davide

    2016-07-01

    We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free) energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1 /2 on a lattice interacting through an X Y Z Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  15. The contribution of solid-state chemistry in the determination of multicomponent phase diagrams

    Institute of Scientific and Technical Information of China (English)

    Jean Claude Tedenac; Franck Gascoin; Didier Ravot

    2006-01-01

    For a long period of time, the determination of phase diagrams was only supported by experiments related to thermal effects or thermodynamic measurements: thermal analysis, calorimetric measurements, vapor pressures, and EMF measurements. As a matter of fact, solid-solid transformations were not so accurately determined and could not be taken into account in the system's analysis. First, X-ray diffraction methods were used as a support for the thermal analysis. Sec ond, the implementation of novel tools in structural analysis (for example, the Rietveld method) has permitted to increase the knowledge of phase stability. Finally, modeling the phases using a Calphad method needed increasingly more structural results to determine and better understand the phase diagrams. On the other hand, the Calphad method has been widely developed for metallic systems, for oxide systems, and in the past 10 years, for some semi-conductor systems, for example,gallium arsenide, cadmium telluride, and lead telluride systems. In such applications, it is very important to bring point defects in the modeling of the phases to map the defects as a function of the chemical composition. Owing to its complexity,this characteristic, the knowledge of which is crucial for the understanding and the control of potential physical applications, was ignored in the previous assessment of semi-conductor systems.

  16. Ontological Modeling of Transformation in Heart Defect Diagrams

    OpenAIRE

    Viswanath, Venkatesh; Tong, Tuanjie; Dinakarpandian, Deendayal; Lee, Yugyung

    2006-01-01

    The accurate portrayal of a large volume data of variable heart defects is crucial to providing good patient care in pediatric cardiology. Our research aims to span the universe of congenital heart defects by generating illustrative diagrams that enhance data interpretation. To accommodate the range and severity of defects to be represented, we base our diagrams on transformation models applied to a normal heart rather than a static set of defects. These models are based on a domain-specific ...

  17. Vapour-liquid phase diagram for an ionic fluid in a random porous medium.

    Science.gov (United States)

    Holovko, M F; Patsahan, O; Patsahan, T

    2016-10-19

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  18. Vapour-liquid phase diagram for an ionic fluid in a random porous medium

    Science.gov (United States)

    Holovko, M. F.; Patsahan, O.; Patsahan, T.

    2016-10-01

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  19. PHASE DIAGRAMS OF SODIUM SULFATE AND SODIUM CHROMATE TO 45 KBAR.

    Science.gov (United States)

    The phase diagrams of NaSO4 and Na2CrO4 were determined to 45 kbar. Two new high-pressure phases were found for Na2SO4. Eight different solid... phase diagrams of Na2SO4 and Na2CrO4 are strikingly similar, and there are reasons for believing that every known polymorph of Na2CrO4 has an isostructural counterpart in the phase diagram of Na2SO4. (Author)

  20. Solidification of ternary systems with a nonlinear phase diagram

    Science.gov (United States)

    Alexandrov, D. V.; Dubovoi, G. Yu.; Malygin, A. P.; Nizovtseva, I. G.; Toropova, L. V.

    2017-02-01

    The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquidus line equation. A deviation of the liquidus equation from a linear function is shown to result in a substantial change in the solidification parameters.

  1. Phase diagram of QCD in a magnetic field: A review

    CERN Document Server

    Andersen, Jens O; Tranberg, Anders

    2014-01-01

    We review in detail recent advances in our understanding of the phase structure and the phase transitions of hadronic matter in strong magnetic fields $B$ and zero quark chemical potentials $\\mu_f$. Many aspects of QCD are described using low-energy effective theories and models such as the MIT bag model, the hadron resonance gas model, chiral perturbation theory, the Nambu-Jona-Lasinio (NJL) model, the quark-meson (QM) model and Polyakov-loop extended versions of the NJL and QM models. We critically examine their properties and applications. This includes mean-field calculations as well as approaches beyond the mean-field approximation such as the functional renormalization group (FRG). Renormalization issues are discussed and the influence of the vacuum fluctuations on the chiral phase transition is pointed out. Magnetic catalysis at $T=0$ is covered as well. We discuss recent lattice results for the thermodynamics of nonabelian gauge theories with emphasis on $SU(2)_c$ and $SU(3)_c$. In particular, we focu...

  2. Modulated systems in external fields: Conditions for the presence of reentrant phase diagrams

    Science.gov (United States)

    Mendoza-Coto, Alejandro; Billoni, Orlando V.; Cannas, Sergio A.; Stariolo, Daniel A.

    2016-08-01

    We introduce a coarse-grained model capable of describing the phase behavior of two-dimensional ferromagnetic systems with competing exchange and dipolar interactions, as well as an external magnetic field. An improved expression for the mean-field entropic contribution allows us to compute the phase diagram in the whole temperature versus external field plane. We find that the topology of the phase diagram may be qualitatively different depending on the ratio between the strength of the competing interactions. In the regime relevant for ultrathin ferromagnetic films with perpendicular anisotropy we confirm the presence of inverse-symmetry breaking from a modulated phase to a homogeneous one as the temperature is lowered at constant magnetic field, as reported in experiments. For other values of the competing interactions we show that reentrance may be absent. Comparing thermodynamic quantities in both cases, as well as the evolution of magnetization profiles in the modulated phases, we conclude that the reentrant behavior is a consequence of the suppression of domain wall degrees of freedom at low temperatures at constant fields.

  3. Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I

    Science.gov (United States)

    Someya, Yoshiko

    1981-12-01

    The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.

  4. Phase diagram of rod-coil diblock copolymer melts by self-consistent field theory

    Science.gov (United States)

    Yan, Dadong; Tang, Jiuzhou; Jiang, Ying; Zhang, Xinghua; Chen, Jeff

    A unified phase diagram is presented for rod-coil diblock copolymer melts in the isotropic phase regime as a function of the asymmetric parameter. The study is based on free-energy calculation, which incorporates three-dimensional spatial variations of the volume fraction with angular dependence. The wormlike-chain model is used in a self-consistent field treatment. Body-centered cubic, A15, hexagonal, gyroid, and lamellar structures where the rod segments are packed inside the convex rod-coil interface are found stable. As the conformational asymmetric parameter increases, the A15 phase region expands and the gyroid phase region reduces. The stability of the structures is analyzed by concepts such as packing frustration, spinodal limit, and interfacial curvature.

  5. Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram

    Directory of Open Access Journals (Sweden)

    E. Dendy Sloan

    2010-12-01

    Full Text Available The phase diagram for methane + water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for “Round Robin” hydrate sample preparation protocols and testing.

  6. Phase diagrams and capillarity condensation of methane confined in single- and multi-layer nanotubes

    Science.gov (United States)

    Ortiz, V.; López-Álvarez, Y. M.; López, G. E.

    Using a newly developed algorithm in the Gibbs ensemble, the liquid-vapour phase diagram of methane adsorbed in single and multilayer nanotubes was considered. The method was based on improving statistical sampling by combining the cavity-bias and the parallel tempering formalisms in Gibbs ensemble Monte Carlo simulations (PTCBGMC). Two models were constructed in order to describe the liquid-vapour equilibrium of methane in nanotubes. The first model consisted of two simulated nanotube-shaped boxes, one containing the vapour and the other containing the liquid. The vapour and liquid were kept in thermodynamic equilibrium using the PTCBGMC algorithm. Cailletet-Mathias phase diagrams showed that upon adsorption of methane in the nanotubes, the critical temperature and density of methane decreased upon confinement. However, the behaviour of the liquid and vapour phases differed depending on whether the nanotube was single- or multi-layered. A second computational model was used to consider in detail the capillarity condensation of methane in the nanotubes. The results obtained were explained in terms of the difference in the strength of the intermolecular forces.

  7. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Tobias; Klaehn, Thomas [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Hempel, Matthias [University of Basel, Department of Physics, Basel (Switzerland)

    2016-08-15

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D χ SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klaehn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D χ SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium. (orig.)

  8. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    CERN Document Server

    Fischer, Tobias; Hempel, Matthias

    2016-01-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Kl\\"ahn and Fischer (2015) (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D$\\chi$SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  9. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    Science.gov (United States)

    Fischer, Tobias; Klähn, Thomas; Hempel, Matthias

    2016-08-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D χ SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klähn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D χ SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  10. From relativistic quantum fields to condensed matter and back again: Updating the Gross-Neveu phase diagram

    CERN Document Server

    Thies, M

    2006-01-01

    During the last few years, the phase diagram of the large N Gross-Neveu model in 1+1 dimensions at finite temperature and chemical potential has undergone a major revision. Here we present a streamlined account of this development, collecting the most important results. Quasi-one-dimensional condensed matter systems like conducting polymers provide real physical systems which can be approximately described by the Gross-Neveu model and have played some role in establishing its phase structure. The kink-antikink phase found at low temperatures is closely related to inhomogeneous superconductors in the Larkin-Ovchinnikov-Fulde-Ferrell phase. With the complete phase diagram at hand, the Gross-Neveu model can now serve as a firm testing ground for new algorithms and theoretical ideas.

  11. Phase diagram of interacting spinless fermions on the honeycomb lattice

    Science.gov (United States)

    Capponi, Sylvain

    2017-02-01

    Fermions hopping on a hexagonal lattice represent one of the most active research fields in condensed matter since the discovery of graphene in 2004 and its numerous applications. Another exciting aspect of the interplay between geometry and quantum mechanical effects is given by the Haldane model (Haldane 1988 Phys. Rev. Lett. 61 2015), where spinless fermions experiencing a certain flux pattern on the honeycomb lattice leads to the stabilization of a topological phase of matter, distinct from a Mott insulator and nowadays dubbed Chern insulator. In this context, it is crucial to understand the role of interactions and this review will describe recent results that have been obtained for a minimal model, namely spinless fermions with nearest and next-nearest neighbour density-density interactions on the honeycomb lattice at half-filling. Topics addressed include an introduction of the minimal model and a discussion of the possible instabilities of the Dirac semimetal, a presentation of various theoretical and numerical approaches, and a summary of the results with a particular emphasis on the stability or not of some exotic quantum phases such as charge ordered ones (similar to Wigner crystals) and spontaneous Chern insulator phases.

  12. Phase diagram of a non-signalized T-shaped intersection

    Science.gov (United States)

    Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-11-01

    In this paper, we investigated a non-signalized T-shaped intersection using the cellular automata model under the open boundary condition. Two different priority rules at intersection are introduced (Rule 1, Rule 2) to eliminate the jam-packed state. Phase diagram and its variation with the ratios of right and/or left turning vehicles are investigated. The space-time and the density profiles are also studied. The simulation results indicate that the system does not show the same performance under different priority rules, where Rule 1 (resp. Rule 2) can be better than Rule 2 (resp. Rule 1) according to the ratios of turning vehicles.

  13. The two-dimensional alternative binary L-J system: liquid-gas phase diagram

    Institute of Scientific and Technical Information of China (English)

    张陟; 陈立溁

    2003-01-01

    A two-dimensional (2D) binary system without considering the Lennard-Jones (L-J) potential has been studied by using the Collins model. In this paper, we introduce the L-J potential into the 2D binary system and consider the existence of the holes that are called the "molecular fraction". The liquid-gas phase diagram of the 2D alternative binary L-J system is obtained. The results are quite analogous to the behaviour of 3D substances.

  14. Global phase diagram and quantum spin liquids in a spin-1/2 triangular antiferromagnet

    Science.gov (United States)

    Gong, Shou-Shu; Zhu, W.; Zhu, J.-X.; Sheng, D. N.; Yang, Kun

    2017-08-01

    We study the spin-1 /2 Heisenberg model on the triangular lattice with the nearest-neighbor J1>0 , the next-nearest-neighobr J2>0 Heisenberg interactions, and the additional scalar chiral interaction Jχ(S⃗i×S⃗j) .S⃗k for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder geometry. With increasing J2 (J2/J1≤0.3 ) and Jχ (Jχ/J1≤1.0 ) interactions, we establish a quantum phase diagram with the magnetically ordered 120∘, stripe, and noncoplanar tetrahedral phase. In between these magnetic order phases, we find a chiral spin liquid (CSL) phase, which is identified as a ν =1 /2 bosonic fractional quantum Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we find that the previously identified spin liquid in the J1-J2 triangular model (0.08 ≲J2/J1≲0.15 ) shows a phase transition to the CSL phase at very small Jχ. We also compute the spin triplet gap in both spin liquid phases, and our finite-size results suggest a large gap in the odd topological sector but a small or vanishing gap in the even sector. We discuss the implications of our results on the nature of the spin liquid phases.

  15. Phase diagram of the extended Hubbard chain with charge-dipole interactions

    Science.gov (United States)

    Torio, M. E.; Aligia, A. A.; Hallberg, K.; Ceccatto, H. A.

    2000-09-01

    We consider a modified extended Hubbard model (EHM) which, in addition to the on-site repulsion U and nearest-neighbor repulsion V, includes polarization effects in second-order perturbation theory. The model is equivalent to an EHM with renormalized U plus a next-nearest-neighbor repulsion term. Using a method based on topological quantum numbers (charge and spin Berry phases), we generalize to finite hopping t the quantum phase diagram in one dimension constructed by van den Brink et al. [Phys. Rev. Lett. 75, 4658 (1995)]. At hopping t=0 there are two charge density-wave phases, one spin density-wave phase, and one intermediate phase with charge and spin ordering, depending on the parameter values. At t≠0 the nature of each phase is confirmed by studying correlation functions. However, in addition to the strong-coupling phases, a small region with bond ordering appears. The region occupied by the intermediate phase first increases and then decreases with increasing t, until it finally disappears for t of the order but larger than U. For small t, the topological transitions agree with the results of second-order perturbation theory.

  16. A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach

    Science.gov (United States)

    Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.

    1996-01-01

    A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.

  17. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene.

    Science.gov (United States)

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-09-09

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

  18. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Science.gov (United States)

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  19. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Science.gov (United States)

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  20. Complex kinetics of fluctuating enzymes: phase diagram characterization of a minimal kinetic scheme.

    Science.gov (United States)

    Min, Wei; Jiang, Liang; Xie, X Sunney

    2010-05-03

    Enzyme molecules are dynamic entities with stochastic fluctuation in both protein conformation and enzymatic activity. However, such a notion of fluctuating enzymes, best characterized by recent single-molecule experiments, was not considered in the classic Michaelis-Menten (MM) kinetic scheme. Here we incorporate the fluctuation concept into the reversible MM scheme, and solve analytically all the possible kinetics (i.e., substrate concentration dependent enzymatic velocity) for a minimal model of fluctuating enzymes. Such a minimal model is found to display a variety of distinct kinetic behaviors (phases) in addition to the classic MM kinetics; excess substrate inhibition, sigmoidal kinetics, and concave biphasic kinetics. We find that all these kinetic phases are interrelated and unified under the framework of fluctuating enzymes and can be adequately described by a phase diagram that consists of two master parameters. Functionally, substrate inhibition, sigmoidal kinetics, and convex biphasic phases exhibit positive cooperativity, whereas concave biphasic phases display negative cooperativity. Remarkably, all these complex kinetics are produced by fluctuating enzymes with single substrate binding site, but the two conformations are, therefore, fundamentally different from the classic MWC and KNF models that require multiple subunit or binding sites. This model also suggests that, for a given enzyme/substrate pair, the non-MM behaviors could undergo transitions among different kinetic phases induced by varying product concentrations, owing to the fundamental Haldane symmetry in the reversible MM scheme.

  1. The phase diagram of molybdenum at extreme conditions and the role of local liquid structures

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M

    2008-08-15

    Recent DAC measurements made of the Mo melting curve by the x-ray diffraction studies confirms that, up to at least 110 GPa (3300K) melting is directly from bcc to liquid, evidence that there is no basis for a speculated bcc-hcp or fcc transition. An examination of the Poisson Ratio, obtained from shock sound speed measurements, provides evidence that the 210 GPa (4100K) transition detected from shock experiments is a continuation of the bcc-liquid melting, but is from a bcc-to a solid-like mixed phase rather than to liquid. Calculations, modeled to include the free energy of liquid local structures, predict that the transition from the liquid to the mixed phase is near 150 GPa(3500K). The presence of local structures provides the simplest and most direct explanation for the Mo phase diagram, and the low melting slopes.

  2. Theoretical Prediction of Melting Relations in the Deep Mantle: the Phase Diagram Approach

    Science.gov (United States)

    Belmonte, D.; Ottonello, G. A.; Vetuschi Zuccolini, M.; Attene, M.

    2016-12-01

    Despite the outstanding progress in computer technology and experimental facilities, understanding melting phase relations in the deep mantle is still an open challenge. In this work a novel computational scheme to predict melting relations at HP-HT by a combination of first principles DFT calculations, polymer chemistry and equilibrium thermodynamics is presented and discussed. The adopted theoretical framework is physically-consistent and allows to compute multi-component phase diagrams relevant to Earth's deep interior in a broad range of P-T conditions by a convex-hull algorithm for Gibbs free energy minimisation purposely developed for high-rank simplexes. The calculated phase diagrams are in turn used as a source of information to gain new insights on the P-T-X evolution of magmas in the deep mantle, providing some thermodynamic constraints to both present-day and early Earth melting processes. High-pressure melting curves of mantle silicates are also obtained as by-product of phase diagram calculation. Application of the above method to the MgO-Al2O3-SiO2 (MAS) ternary system highlights as pressure effects are not only able to change the nature of melting of some minerals (like olivine and pyroxene) from eutectic to peritectic (and vice versa), but also simplify melting relations by drastically reducing the number of phases with a primary phase field at HP-HT conditions. It turns out that mineral phases like Majorite-Pyrope garnet and Anhydrous Phase B (Mg14Si5O24), which are often disregarded in modelling melting processes of mantle assemblages, are stable phases at solidus or liquidus conditions in a P-T range compatible with the mantle transition zone (i.e. P = 16 - 23 GPa and T = 2200 - 2700 °C) when their thermodynamic and thermophysical properties are properly assessed. Financial support to the Senior Author (D.B.) during his stay as Invited Scientist at the Institut de Physique du Globe de Paris (IPGP, Paris) is warmly acknowledged.

  3. Force-Field Based Quasi-Chemical Method for Rapid Evaluation of Binary Phase Diagrams.

    Science.gov (United States)

    Sweere, Augustinus J M; Fraaije, Johannes G E M

    2015-11-05

    We present the Pair Configurations to Molecular Activity Coefficients (PAC-MAC) method. The method is based on the pair sampling technique of Blanco (Fan, C. F.; Olafson, B. D.; Blanco, M.; Hsu, S. L. Application of Molecular Simulation to Derive Phase Diagrams of Binary Mixtures. Macromolecules 1992, 25, 3667-3676) with an extension that takes the packing of the molecules into account by a free energy model. The intermolecular energy is calculated using classical force fields. PAC-MAC is able to predict activity coefficients and corresponding vapor-liquid equilibrium diagrams at least 4 orders of magnitude faster than molecular simulations. The accuracy of the PAC-MAC method is tested by comparing the results with experimental data and with the results of the COSMO-SAC model (Lin, S.-T.; Sandler, S. I. A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Ind. Eng. Chem. Res. 2002, 41, 899-913). PAC-MAC (using the OPLS-aa force field) is shown to be comparable in accuracy to COSMO-SAC, at the considerable advantage that PAC-MAC in principle does not require quantum calculation, provided proper force fields to be available.

  4. PHASE DIAGRAM OF GELATINE-POLYURONATE COLLOIDS: ITS APPLICATION FOR MICROENCAPSULATION AND NOT ONLY

    Directory of Open Access Journals (Sweden)

    Alexei Baerle

    2016-06-01

    Full Text Available Phase state and the charge of colloidal particles in the gelatine-polyuronate system were studied. A method for comparative evaluation of molecular weight of colloids by means of viscosimetric measurements and electrophoresis was developed. It is shown that the Diagram {Phase state = f (composition, pH} contains six well-defined regions. The diagram explains and predicts the behaviour of protein-polysaccharide colloids, which are included in beverages or forms the shells of oil-containing microcapsules.

  5. Reinvestigation of superconducting phase diagram of UGe{sub 2} by AC magnetic susceptibility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ban, S. [Deptartment of Physics, University of Nagoya, Nagoya, 464-8602 (Japan)]. E-mail: f060214d@mbox.nagoya-u.ac.jp; Deguchi, K. [Deptartment of Physics, University of Nagoya, Nagoya, 464-8602 (Japan); Aso, N. [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan); Homma, Y. [Oarai Branch, Inst. for Mater. Research, University of Tohoku, Ibaraki 311-1313 (Japan); Shiokawa, Y. [Oarai Branch, Inst. for Mater. Research, University of Tohoku, Ibaraki 311-1313 (Japan); Sato, N.K. [Deptartment of Physics, University of Nagoya, Nagoya, 464-8602 (Japan)

    2007-03-15

    We report a superconducting phase diagram of the ferromagnetic superconductor UGe{sub 2} investigated by AC magnetic susceptibility measurements. In contrast to previous phase diagrams, we found that the superconducting transition temperature and volume fraction show a 'M-shaped' structure as a function of pressure. From this observation, we suggest that both of two critical points will play a crucial role in the occurrence of superconductivity in UGe{sub 2}.

  6. Phase Diagram of Wilson and Twisted Mass Fermions at finite isospin chemical potential

    CERN Document Server

    Kieburg, M; Verbaarschot, J J M; Zafeiropoulos, S

    2014-01-01

    Wilson Fermions with untwisted and twisted mass are widely used in lattice simulations. Therefore one important question is whether the twist angle and the lattice spacing affect the phase diagram. We briefly report on the study of the phase diagram of QCD in the parameter space of the degenerate quark masses, isospin chemical potential, lattice spacing, and twist angle by employing chiral perturbation theory. Moreover we calculate the pion masses and their dependence on these four parameters.

  7. PHASE DIAGRAM OF GELATINE-POLYURONATE COLLOIDS: ITS APPLICATION FOR MICROENCAPSULATION AND NOT ONLY

    OpenAIRE

    Alexei Baerle; Olga Dimova; Irina Urumoglova; Pavel Tatarov; Larisa Zadorojnai

    2016-01-01

    Phase state and the charge of colloidal particles in the gelatine-polyuronate system were studied. A method for comparative evaluation of molecular weight of colloids by means of viscosimetric measurements and electrophoresis was developed. It is shown that the Diagram {Phase state = f (composition, pH)} contains six well-defined regions. The diagram explains and predicts the behaviour of protein-polysaccharide colloids, which are included in beverages or forms the shells of oil-containing mi...

  8. Towards the heavy dense QCD phase diagram using Complex Langevin simulations

    CERN Document Server

    Aarts, Gert; Jäger, Benjamin; Seiler, Erhard; Sexty, Dénes; Stamatescu, Ion-Olimpiu

    2015-01-01

    Monte Carlo methods cannot probe far into the QCD phase diagram with a real chemical potential, due to the famous sign problem. Complex Langevin simulations, using adaptive step-size scaling and gauge cooling, are suited for sampling path integrals with complex weights. We report here on tests of the deconfinement transition in pure Yang-Mills SU(3) simulations and present an update on the QCD phase diagram in the limit of heavy and dense quarks.

  9. Thermodynamic database of the phase diagrams in the Mg-Al-Zn-Y-Ce system

    Institute of Scientific and Technical Information of China (English)

    LIU Xingjun; WANG Cuiping; WEN Mingzhong; CHEN Xing; PAN Fusheng

    2006-01-01

    The Mg-Al-Zn-Y-Ce system is one of the key systems for designing high-strength Mg alloys. The purpose of the present article is to develop a thermodynamic database for the Mg-Al-Zn-Y-Ce multicomponent system to design Mg alloys using the calculation of phase diagrams (CALPHAD) method, where the Gibbs energies of solution phases such as liquid,fcc, bcc, and hcp phases were described by the subregular solution model, whereas those of all the compounds were described by the sublattice model. The thermodynamic parameters describing Gibbs energies of the different phases in this database were evaluated by fitting the experimental data for phase equilibria and thermodynamic properties. On the basis of this database, a lot of information concerning stable and metastable phase equilibria of isothermal and vertical sections, mo lar fractions of constituent phases, the liquidus projection, etc., can be predicted. This database is expected to play an important role in the design of Mg alloys.

  10. Simultaneous chiral symmetry restoration and deconfinement - Consequences for the QCD phase diagram

    CERN Document Server

    Klahn, Thomas; Hempel, Matthias

    2016-01-01

    For studies of quark matter in astrophysical scenarios the thermodynamic bag model (tdBag) is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Kl\\"ahn & Fischer (2015) we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant $B_{\\rm dc}$ from a given hadronic equation of state (EoS) in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction and the phase diagram.

  11. Simultaneous Chiral Symmetry Restoration and Deconfinement Consequences for the QCD Phase Diagram

    Science.gov (United States)

    Klähn, Thomas; Fischer, Tobias; Hempel, Matthias

    2017-02-01

    For studies of quark matter in astrophysical scenarios, the thermodynamic bag model is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Klähn & Fischer we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant {B}{dc} from a given hadronic equation of state in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction, the phase diagram, and implications for protoneutron stars.

  12. Magnetic phase diagrams of {alpha}-MnMoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ehrenberg, H. [Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt, Petersenstr. 23 (Germany)]. E-mail: ehrenberg@tu-darmstadt.de; Schwarz, B. [Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt, Petersenstr. 23 (Germany); Weitzel, H. [Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt, Petersenstr. 23 (Germany)

    2006-10-15

    Field-induced spin-flop transitions in {alpha}-MnMoO{sub 4} are summarized in magnetic H-T phase diagrams for different directions of the applied magnetic field up to 12T. The antiferromagnetic arrangement in the spin-flop phase is preserved at least up to this field for a field parallel to the easy direction. This high transition field is in contrast to the low one of {alpha}-NiMoO{sub 4} and favours a model, based on dominant antiferromagnetic supersuperexchange couplings in {alpha}-MnMoO{sub 4} over a ferromagnetic Mn{sub 4} ''cluster'' model. The Neel temperature of 9.8(1)K was determined from the corresponding specific-heat anomaly, measured on a single crystal of {alpha}-MnMoO{sub 4}.

  13. A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR

    Science.gov (United States)

    Han, Pu; Deem, Michael

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.

  14. Isothermal section (500  ℃) of phase diagram of Nd-Al-Si ternary system

    Institute of Scientific and Technical Information of China (English)

    龙志林; 周益春; 庄应烘; 陈荣贞; 刘敬旗

    2001-01-01

    The isothermal section of the phase diagram of the ternary system Nd-Al-Si at 500  ℃ (Nd≤50%, mole fraction) has been constructed on the basis of the data obtained by X-ray diffraction analysis, differential thermal analysis, metallographic examination, chemical analysis and electron micro-probe analysis. The obtained diagram consists of 11 single-phase regions, 21 two-phase regions and 11 three-phase regions. There exist two limit solid solutions. The intermetallic compound NdAl1.5Si0.5 has not been found in this section. No evidence of new phase has been observed in this work.

  15. The topological phase diagram of cimetidine: A case of overall monotropy.

    Science.gov (United States)

    Céolin, R; Rietveld, I B

    2017-03-01

    Cimetidine is a histamine H2-receptor antagonist used against peptic ulcers. It is known to exhibit crystalline polymorphism. Forms A and D melt within 0.35 degrees from each other and the enthalpies of fusion are similar as well. The present paper demonstrates how to construct a pressure-temperature phase diagram with only calorimetric and volumetric data available. The phase diagram provides the stability domains and the phase equilibria for the phases A, D, the liquid and the vapor. Cimetidine is overall monotropic with form D the only stable solid phase.

  16. Evidence of a new crystalline phase in U–Gd–O phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, Darío [CEA, DEN, DEC, SESC – Laboratoire des Lois de Comportement des Combustibles (France); Desgranges, Lionel, E-mail: lionel.desgranges@cea.fr [CEA, DEN, DEC, SESC – Laboratoire des Lois de Comportement des Combustibles (France); Matheron, Pierre [CEA, DEN, DEC, SPUA – Laboratoire Combustibles Uranium (France); Palancher, Hervé [CEA, DEN, DEC, SESC – Laboratoire des Lois de Comportement des Combustibles (France)

    2015-06-15

    The U–Gd–O phase diagram was investigated in its high Gd content part. Several samples with the general (U{sub 1−y}, Gd{sub y})O{sub 2±x} composition were prepared by sintering under Ar H{sub 2} 5% atmosphere. The samples were characterized by SEM–EDS and X-ray diffraction. A new cubic crystalline phase was evidenced at high a Gd content that was not expected from previous literature. Rietveld refinements showed that its crystalline structure is related to C-Gd{sub 2}O{sub 3} phase. The existence of this compound has to be taken into account in the sintering of (U,Gd)O{sub 2} nuclear fuel.

  17. PHASE EQUILIBRIA INVESTIGATION OF BINARY, TERNARY, AND HIGHER ORDER SYSTEMS. PART 9. CALCULATION OF THERMODYNAMIC QUANTITIES FROM PHASE DIAGRAMS

    Science.gov (United States)

    The thermodynamic fundamentals relating phase equilibria in binary and ternary systems to the thermodynamic properties of the phases are reviewed and...system demonstrate the application of the equations for extracting thermodynamic data from phase diagrams and also for the prediction of phase equilibria .

  18. Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest.

    Science.gov (United States)

    Kleinhans, F W; Mazur, Peter

    2007-04-01

    Phase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA+salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt% concentrations exceeded 30% for DMSO and 55% for glycerol, and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue.

  19. Penguin-like Diagrams from the Standard Model

    CERN Document Server

    Chia, Swee-Ping

    2015-01-01

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagra...

  20. Morphological phase diagrams of C60 and C70 films on graphite

    Science.gov (United States)

    Sato, Kazuma; Tanaka, Tomoyasu; Akaike, Kouki; Kanai, Kaname

    2017-10-01

    The morphologies of C60 and C70 fullerene films vacuum-deposited onto graphite at various deposition rates and grown at several temperatures were investigated using atomic force microscopy. These fullerene films on graphite are model systems of physisorption of organic molecules that likely exhibit little chemical interaction with the graphite's surface. The morphologies of C60 and C70 films grown on graphite can be understood well from growth models previously reported. Comparison of the morphological phase diagrams obtained for C60 and C70 indicate that the diffusion properties of the adsorbed molecule are key in determining the morphology of the obtained film. The low diffusion rate of C70 resulted in various film morphologies for all deposition conditions tested. Also, the obtained phase diagrams can be understood by the results of fractal dimension analysis on the C60 and C70 islands. The fundamental understanding of film growth obtained using these ideal physisorption systems will aid in understanding film growth by other molecular adsorption systems.

  1. Dynamic molecular structure and phase diagram of DPPC-cholesterol binary mixtures: a 2D-ELDOR study.

    Science.gov (United States)

    Chiang, Yun-Wei; Costa-Filho, Antonio J; Freed, Jack H

    2007-09-27

    This paper is an application of 2D electron-electron double resonance (2D-ELDOR) with the "full Sc- method" to study model membranes. We obtain and confirm the phase diagram of 1,2-dipalmitoyl-sn-glycerophosphatidylcholine (DPPC)-cholesterol binary mixtures versus temperature and provide quantitative descriptions for its dynamic molecular structure using 2D-ELDOR at the Ku band. The spectra from the end-chain 16-PC spin label in multilamellar phospholipid vesicles are obtained for cholesterol molar concentrations ranging from 0 to 50% and from 25 to 60 degrees C. This phase diagram consists of liquid-ordered, liquid-disordered, and gel phases and phase coexistence regions. The phase diagram is carefully examined according to the spectroscopic evidence, and the rigorous interpretation for the line shape changes. We show that the 2D-ELDOR spectra differ markedly with variation in the composition. The extensive line shape changes in the 2D-plus-mixing-time representation provide useful information to define and characterize the membrane phases with respect to their dynamic molecular structures and to determine the phase boundaries. The homogeneous T2's are extracted from the pure absorption spectra and are used to further distinguish the membrane phases. These results show 2D-ELDOR to be naturally suitable for probing and reporting the dynamic structures of microdomains in model membrane systems and, moreover, providing a very detailed picture of their molecular dynamic structure, especially with the aid of the "full Sc- method".

  2. Low pressure phase diagram of CeCoGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mizoo, Masakazu; Nishioka, Takashi; Kato, Harukazu; Matsumura, Masahiro, E-mail: nisioka@kochi-u.ac.jp [Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520 (Japan)

    2011-01-01

    We have performed measurements of the Hall magnetization and electrical resistivity on a pressure-induced antiferromagnetic heavy fermion superconductor CeCoGe{sub 3} at pressures up to {approx}1.7 GPa, which crystallizes in the tetragonal BaNiSn{sub 3}-type structure without inversion symmetry. We have clarified that five successive phase transitions appear at ambient pressure. As pressure is applied, these transitions approach one another until {approx}1.2 GPa, and then separate again. We have also found another phase transition emerges above {approx}0.5 GPa, which is consistent with a recent Co-NQR study. From these results, we propose a low pressure P-T phase diagram, which contains at least eight ordered phases below {approx}2 GPa. This phase diagram is consistent with a recent reported high pressure phase diagram.

  3. Phase diagram of electron systems near the superconductor-insulator transition.

    Science.gov (United States)

    Pokrovsky, V L; Falco, G M; Nattermann, T

    2010-12-31

    The zero temperature phase diagram of Cooper pairs exposed to disorder and a magnetic field is determined theoretically from a variational approach. Four distinct phases are found: a Bose and a Fermi insulating, a metallic, and a superconducting phase, respectively. The results explain the giant negative magnetoresistance found experimentally in In-O, TiN, Be and high-T(c) materials.

  4. Phase diagram of a three-sublattice mixed ferro-ferrimagnetic Heisenberg system

    Science.gov (United States)

    Mert, H. Şevki; Mert, Gülistan

    2013-10-01

    We present a numerical study of a three-sublattice mixed ferro-ferrimagnetic Heisenberg system. Green's function technique is used to calculate the magnetization as a function of temperature. The technique involves the random phase approximation and Anderson-Callen's decoupling. We obtain phase diagram and the first-order phase transition.

  5. Nanostructures and phase diagrams of ABC star triblock copolymers in pore geometries.

    Science.gov (United States)

    Li, Shiben; Qiu, Wenjuan; Zhang, Linxi; Liang, Haojun

    2012-03-28

    The nanostructures and phase diagrams of ABC star triblock copolymers in pore geometries are investigated using the real-space self-consistent field theory in two-dimensional space. Two types of pores with neutral surfaces, namely, pores with small and large diameters, are considered. A rich variety of nanostructures are exhibited by the ABC star triblock copolymers in these two types of pores, which differ from those observed in bulk and in other confinements. These structures include perpendicular undulating lamellae, concentric core-shell cylinders, polygonal tiling with cylindrical arrangements, and other complex structures. Triangular phase diagrams for the ABC star triblock copolymers are constructed. The small pores clearly affect the corner and central space of the phase diagrams by distorting the bulk structures into concentric arrangements. Meanwhile, the large pores induce the transformation of bulk structures into concentric structures in most of the phase space, but slightly affect the structures at the center of the phase diagrams. Furthermore, the order-order and order-disorder phase transitions, as well as the stable and metastable phases, in the triangular phase diagrams are examined by analyzing their free energies. These observations on the ABC star triblock copolymers in the pore geometries provide a deeper insight into the behavior of macromolecules in a confined system.

  6. Phase diagram of boron carbide with variable carbon composition

    Science.gov (United States)

    Yao, Sanxi; Gao, Qin; Widom, Michael

    2017-02-01

    Boron carbide exhibits intrinsic substitutional disorder over a broad composition range. The structure consists of 12-atom icosahedra placed at the vertices of a rhombohedral lattice, together with a 3-atom chain along the threefold axis. In the high-carbon limit, one or two carbon atoms can replace boron atoms on the icosahedra while the chains are primarily of type C-B-C. We fit an interatomic pair interaction model to density-functional-theory total energies to investigate the substitutional carbon disorder. Monte Carlo simulations with sampling improved by replica exchange and augmented by two-dimensional multiple histogram analysis predict three phases. The low-temperature, high-carbon-composition monoclinic C m structure disorders through a pair of phase transitions, first via an Ising-like transition to a monoclinic centrosymmetric state with space group C 2 /m , then via a first-order three-state Potts-like transition to the experimentally observed rhombohedral R 3 ¯m symmetry.

  7. Phase diagram of dilute nuclear matter: Unconventional pairing and the BCS-BEC crossover

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Martin; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2013-07-01

    We report on a comprehensive study of the phase structure of cold, dilute nuclear matter featuring a {sup 3}S{sub 1}-{sup 3}D{sub 1} condensate at non-zero isospin asymmetry, within wide ranges of temperatures and densities. We find a rich phase diagram comprising three superfluid phases, namely a LOFF phase, the ordinary BCS phase, and a heterogeneous, phase-separated BCS phase, with associated crossovers from the latter two phases to a homogeneous or phase-separated Bose-Einstein condensate of deuterons. The phase diagram contains two tri-critical points (one a Lifshitz point), which may degenerate into a single tetra-critical point for some degree of isospin asymmetry.

  8. Continuum study on QCD phase diagram through an OPE-modified gluon propagator

    CERN Document Server

    Shi, Chao; Xu, Shu-Sheng; Liu, Xiao-Jun; Zong, Hong-Shi

    2016-01-01

    Within the Dyson-Schwinger equations (DSEs) framework, a gluon propagator model incorporating quark's feedback through operator product expansion (OPE) is introduced to investigate the QCD phase diagram in the temperature--chemical-potential ($T-\\mu$) plane. Partial restoration of chiral symmetry at zero temperature and finite temperature are both studied, suggesting a first order phase transition point on the $\\mu$ axis and a critical end point at $(T_E,\\mu_E)/T_c = (0.85,1.11)$, where $T_c$ is the pseudo-critical temperature. In addition, we find the pseudo-critical line can be well parameterized with the curvature parameter $\\kappa$ and a consistent decrease in $\\kappa$ with more of gluon propagator distributed to quark's feedback.

  9. Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks

    CERN Document Server

    Catterall, Simon; Sannino, Francesco; Schneible, Joe

    2008-01-01

    We report on numerical simulations of SU(2) lattice gauge theory with two flavors of light dynamical quarks in the adjoint of the gauge group. The dynamics of this theory is thought to be very different from QCD -- the theory exhibiting conformal or near conformal behavior in the infrared. We make a high resolution survey of the phase diagram of this model in the plane of the bare coupling and quark mass on lattices of size 8^3 \\times 16. Our simulations reveal a line of first order phase transitions extending from beta=0 to beta=beta_c \\sim 2.0. For beta > beta_c the line is no longer first order but continues as the locus of minimum meson mass. For beta > 2.0 we observe the critical pion and rho masses to be light, independent of bare coupling and approximately degenerate. We discuss possible interpretations of these observations and corresponding continuum limits.

  10. Phase diagram of a graphene bilayer in the zero-energy Landau level

    Science.gov (United States)

    Knothe, Angelika; Jolicoeur, Thierry

    2016-12-01

    Bilayer graphene under a magnetic field has an octet of quasidegenerate levels due to spin, valley, and orbital degeneracies. This zero-energy Landau level is resolved into several incompressible states whose nature is still elusive. We use a Hartree-Fock treatment of a realistic tight-binding four-band model to understand the quantum ferromagnetism phenomena expected for integer fillings of the octet levels. We include the exchange interaction with filled Landau levels below the octet states. This Lamb-shift-like effect contributes to the orbital splitting of the octet. We give phase diagrams as a function of applied bias and magnetic field. Some of our findings are in agreement with experiments. We discuss the possible appearance of phases with orbital coherence.

  11. The Cu-Li-Sn Phase Diagram: Isopleths, Liquidus Projection and Reaction Scheme

    OpenAIRE

    Fürtauer, Siegfried; Flandorfer, Hans

    2016-01-01

    The Cu-Li-Sn phase diagram was constructed based on XRD and DTA data of 60 different alloy compositions. Eight ternary phases and 14 binary solid phases form 44 invariant ternary reactions, which are illustrated by a Scheil-Schulz reaction scheme and a liquidus projection. Phase equilibria as a function of concentration and temperature are shown along nine isopleths. This report together with an earlier publication of our group provides for the first time comprehensive investigations of phase...

  12. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    Science.gov (United States)

    Azadi, Sam; Cohen, R. E.

    2016-08-01

    We studied the low-pressure (0-10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P21/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P21/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.

  13. The phase diagram and transport properties of MgO from theory and experiment

    Science.gov (United States)

    Shulenburger, Luke

    2013-06-01

    Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng

    2007-01-01

    Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...

  15. Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng

    2007-01-01

    Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models of th....... We discuss the error bound of the approximation technique and demonstrate its empirical performance....

  16. The fundamental diagram : a macroscopic traffic flow model.

    NARCIS (Netherlands)

    Botma, H.

    1976-01-01

    In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara

  17. Modelling the Spoon IRS diagnostic diagram

    CERN Document Server

    Rowan-Robinson, Michael

    2009-01-01

    We explore whether our models for starbursts, quiescent star-forming galaxies and for AGN dust tori are able to model the full range of IRS spectra measured with Spitzer. The diagnostic plot of 9.7 mu silicate optical depth versus 6.2 mu PAH equivalent width, introduced by Spoon and coworkers in 2007, gives a good indication of the age and optical depth of a starburst, and of the contribution of an AGN dust torus. However there is aliasing between age and optical depth at later times in the evolution of a starburst, and between age and the presence of an AGN dust torus. Modeling the full IRS spectra and using broad-band 25-850 mu fluxes can help to resolve these aliases. The observed spectral energy distributions require starbursts of a range of ages with initial dust optical depth ranging from 50-200, optically thin dust emission ('cirrus') illuminated by a range of surface brightnesses of the interstellar radiation field, and AGN dust tori with a range of viewing angles.

  18. Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics.

    Science.gov (United States)

    Cao, Xiaoxiao; Huang, Yingying; Li, Wenbo; Zheng, Zhaoyang; Jiang, Xue; Su, Yan; Zhao, Jijun; Liu, Changling

    2016-01-28

    Natural gas hydrates are inclusion compounds composed of major light hydrocarbon gaseous molecules (CH4, C2H6, and C3H8) and a water clathrate framework. Understanding the phase stability and formation conditions of natural gas hydrates is crucial for their future exploitation and applications and requires an accurate description of intermolecular interactions. Previous ab initio calculations on gas hydrates were mainly limited by the cluster models, whereas the phase diagram and equilibrium conditions of hydrate formation were usually investigated using the thermodynamic models or empirical molecular simulations. For the first time, we construct the chemical potential phase diagrams of type II clathrate hydrates encapsulated with methane/ethane/propane guest molecules using first-principles thermodynamics. We find that the partially occupied structures (136H2O·1CH4, 136H2O·16CH4, 136H2O·20CH4, 136H2O·1C2H6, and 136H2O·1C3H8) and fully occupied structures (136H2O·24CH4, 136H2O·8C2H6, and 136H2O·8C3H8) are thermodynamically favorable under given pressure-temperature (p-T) conditions. The theoretically predicted equilibrium pressures for pure CH4, C2H6 and C3H8 hydrates at the phase transition point are consistent with the experimental data. These results provide valuable guidance for establishing the relationship between the accurate description of intermolecular noncovalent interactions and the p-T equilibrium conditions of clathrate hydrates and other molecular crystals.

  19. Phase diagram of Fe{sub 1-x}Co{sub x} ultrathin film

    Energy Technology Data Exchange (ETDEWEB)

    Fridman, Yu.A. [V.I. Vernadskiy Taurida National University, Vernadskiy Avenue 4, Simferopol, Crimea 95007 (Ukraine)], E-mail: frid@tnu.crimea.ua; Klevets, Ph.N.; Voytenko, A.P. [V.I. Vernadskiy Taurida National University, Vernadskiy Avenue 4, Simferopol, Crimea 95007 (Ukraine)

    2008-12-15

    Concentration-driven reorientation phase transitions in ultrathin magnetic films of FeCo alloy have been studied. It is established that, in addition to the easy-axis and easy-plane phases, a spatially inhomogeneous phase (domain structure), a canted phase, and also an 'in-plane easy-axis' phase can exist in the system. The realization of the last phase is associated with the competition between the single-ion anisotropy and the magnetoelastic interaction. The critical values of Co concentration corresponding to the phase transitions are evaluated, the types of phase transitions are determined, and the phase diagrams are constructed.

  20. Analytic calculation of phase diagrams for solutions containingcolloids or globular proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Frederico W.; Prausnitz, John M.

    2003-12-31

    Molecular thermodynamics is used to calculate phase diagrams for aqueous charged dipolar colloids or globular proteins. Because normal pressures are not important for condensed systems, here a phase diagram is a plot of temperature versus colloid concentration. Properties of the fluid phase are obtained from the random-phase approximation, whereas those for the solid phase correspond to a perfect crystal. Crystal structures considered are face-centered and body-centered cubic. For each phase, the Helmholtz energy is determined by the sum of a hard-sphere reference term and a perturbation term that uses a potential of mean force for pairs of charged, dipolar colloids that also interact through dispersion forces. In view of different screening effects on charge-charge repulsion and dipolar attraction, the net electrostatic term features an extremum at intermediate inic strengths leading to a non-monotonic dependence of the phase behavior on salt concentration. Illustrative phase diagrams are shown as a function of colloid charge, dipole momeng, and ionic strength of the aqueous medium. Calculated results show that the phase diagram is sensitive to the structure assumed for the solid phase.

  1. Deriving binary phase diagrams for chromonic materials in water mixtures via fluorescence spectroscopy: cromolyn and water.

    Science.gov (United States)

    Van Hecke, Gerald R; Karukstis, Kerry K; Rayermann, Scott

    2015-01-14

    We report here the first example of a new and novel method of determining the binary temperature-composition phase diagram of a chromonic material in water using its intrinsic fluorescence. Disodium cromoglycate, or cromolyn, is an anti-allergy medicine representative of a class of compounds known as the chromonics. We have discovered that cromolyn's fluorescence is very sensitive to the polarity, hence structure, of the phase it exhibits. The fluorescence signal shifts its wavelength maximum and its shape depending on whether the cromolyn is a single phase or in coexisting phases. Since the signal due to individual phases can be identified, the fluorescence signal can reveal the temperature-induced transitions between single phase and phase coexistence regions. By studying such fluorescence data for different compositions, an isobaric temperature-composition phase diagram may be constructed. We present here a phase diagram derived from fluorescence studies that is in agreement with previous determinations using other techniques. Our results suggest that the binary phase diagrams of other intrinsically fluorescent chromonic materials, such as perylene monoimide and bisimide derivatives used in organic optoelectronic devices, solar cells, and light-emitting diodes, can be studied in water using an analogous fluorescence approach.

  2. Phase diagrams of diblock copolymers in electric fields: a self-consistent field theory study.

    Science.gov (United States)

    Wu, Ji; Wang, Xianghong; Ji, Yongyun; He, Linli; Li, Shiben

    2016-04-21

    We investigated the phase diagrams of diblock copolymers in external electrostatic fields by using real-space self-consistent field theory. The lamella, cylinder, sphere, and ellipsoid structures were observed and analyzed by their segment distributions, which were arranged to two types of phase diagrams to examine the phase behavior in weak and strong electric fields. One type was constructed on the basis of Flory-Huggins interaction parameter and volume fraction. We identified an ellipsoid structure with a body-centered cuboid arrangement as a stable phase and discussed the shift of phase boundaries in the electric fields. The other type of phase diagrams was established on the basis of the dielectric constants of two blocks in the electric fields. We then determined the regions of ellipsoid phase in the phase diagrams to examine the influence of dielectric constants on the phase transition between ellipsoidal and hexagonally packed cylinder phases. A general agreement was obtained by comparing our results with those described in previous experimental and theoretical studies.

  3. The phase diagram of high-pressure superionic ice

    Science.gov (United States)

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; Car, Roberto

    2015-08-01

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P21/c symmetry. We also discover that higher pressure phases have lower transition temperatures. The diffusive hydrogen in the P21/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P21/c superionic phase transition.

  4. Cold hydrogen EOS/phase diagram from DAC experiments to 300 GPa

    Science.gov (United States)

    Eremets, Mikhail

    2013-06-01

    Two new phases of hydrogen have been discovered at room temperature: phase IV above 220 GPa and phase V above 280 GPa. In the present work we studied these phases in a wide temperature range with the aid of Raman, infrared absorption, and electrical measurements at pressures up to 340 GPa. Also, we revised the I-III phase boundary and thus have built a new phase diagram of hydrogen. In particular, we established a new triple point at the phase diagram at 208 GPa and T = 308 K. Our new data further support the previous work that hydrogen is semiconductor in phase IV and most likely semimetal in phase V. M. I. Eremets, I. A. Troyan, A. Drozdov, Ph. Lerch, P. Naumov, Paul Scherrer, Institute, CH 5232 VILLIGEN-PSI, Switzerland.

  5. Two types of phase diagrams for two-species Bose-Einstein condensates

    CERN Document Server

    Li, Z B; Yao, D X; Bao, C G

    2016-01-01

    Under the Thomas-Fermi approximation, a relatively much simpler analytical solutions of the coupled Gross-Pitaevskii equations for the two-species BEC have been derived. Additionally, a model for the asymmetric states has been proposed, and the competition between the symmetric and asymmetric states has been evaluated. The whole parameter-space is divided into zones, each supports a specific phase, namely, the symmetric miscible phase, the symmetric immiscible phase, or the asymmetric phase. Based on the division the phase-diagrams against any set of parameters can be plotted. Thereby, the effects of these parameters can be visualized. There are three critical values in the inter-species interaction $% V_{AB} $ and one in the ratio of particle numbers $N_{A}/N_{B}$. They govern the transitions between the phases. Two cases, (i) the repulsive $V_{AB}$ matches the repulsive $% V_{A}+V_{B}$, and (ii) the attractive $V_{AB}$ nearly cancels the effect of the repulsive $V_{A}+V_{B}$ have been particularly taken int...

  6. Phase diagram of binary system C12Zn-C18Zn

    Institute of Scientific and Technical Information of China (English)

    Kezhong Wu; Xindong Wang; Xiaodi Liu

    2003-01-01

    The solid-solid phase transitions in the perovskite type layer materials (n-C12H25NH3)2ZnCl4 (C12Zn) and (n-C18H37NH3)2ZnCl4 (C18Zn) that are one kind of potential thermal storage material, were synthesized and, at the same time, a series of their mixtures C12Zn/C18Zn were prepared. The experimental binary phase diagram of C12Zn/C18Zn was established by means of differential scanning calorimetry (DSC) and X-ray diffraction. In the phase diagram a stable solid compound (n-C12H25NH3)(n-C18H37NH3)ZnCl4 (C12C18Zn) and two eutectoid invariants were observed. It is noticeable that the phase diagram contains solid solution ranges.

  7. Experimental evaluation and thermodynamic assessment of the LiF-LuF{sub 3} phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Santos, I.A. dos [Instituto de Pesquisas Energeticas e Nucleares, CP 11049, Butanta 05422-970, Sao Paulo, SP (Brazil); Klimm, D. [Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, 12489 Berlin (Germany); Baldochi, S.L.; Ranieri, I.M. [Instituto de Pesquisas Energeticas e Nucleares, CP 11049, Butanta 05422-970, Sao Paulo, SP (Brazil)

    2013-01-20

    The phase diagram of the system LiF-LuF{sub 3} has been revised using thermal analysis. Specific heat capacity and enthalpy of phase transition and fusion were measured by differential scanning calorimetry for all compounds belonging to the system. A thermodynamic optimization of the LiF-LuF{sub 3} phase diagram was performed by fitting the Gibbs energy functions to the experimental data that were taken from the literature or measured in this work. Excess energy terms, which describe the effect of interaction between the two fluoride compounds in the liquid solution, were expressed by the Redlich-Kister polynomial function. The assessed phase diagram was in suitable agreement with the re-evaluated experimental data.

  8. Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Yves [Mines-ParisTech., CEMEF, UMR CNRS 7635, 1 rue Claude Daunesse 06904 Sophia Antipolis cedex (France); Mija, Alice [University of Nice-Sophia Antipolis, Thermokinetic Group, Laboratory of Chemistry of Organic and Metallic Materials C.M.O.M., 06108 Nice Cedex 2 (France); Burr, Alain; Darque-Ceretti, Evelyne; Felder, Eric [Mines-ParisTech., CEMEF, UMR CNRS 7635, 1 rue Claude Daunesse 06904 Sophia Antipolis cedex (France); Sbirrazzuoli, Nicolas, E-mail: sbirrazz@unice.fr [University of Nice-Sophia Antipolis, Thermokinetic Group, Laboratory of Chemistry of Organic and Metallic Materials C.M.O.M., 06108 Nice Cedex 2 (France)

    2011-07-10

    Highlights: {yields} Blends of Rosin and beeswax are studied by DSC, XRD, and optical microscopy. {yields} The first phase diagram beeswax/rosin is established. {yields} Polymorphic transitions are identified and appear to be highly related to rosin content. - Abstract: Rosin and beeswax are two complex natural materials presenting numerous applications in paints, adhesives, varnishes or inks. Melted, they are particularly interesting for their adhesion properties. This paper establishes the first phase diagram beeswax/rosin blends. A systematic approach using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and polarised optical microscopy (POM) has been performed in order to describe the crystallographic structure and the thermal properties of two materials, beeswax and rosin, and their blends. Indeed, melting, softening and crystallisation temperatures, polymorphic transitions but also crystalline index has been investigated. The resulting phase diagram reveals a complex behaviour in terms of phase transformation and time-dependent phenomenon mainly representative of the complex composition of beeswax.

  9. The topological pressure-temperature phase diagram of fluoxetine nitrate: monotropy unexpectedly turning into enantiotropy

    Science.gov (United States)

    Céolin, René; Rietveld, Ivo B.

    2017-04-01

    The phase behavior of pharmaceuticals is important for regulatory requirements and dosage form development. Racemic fluoxetine nitrate possesses two crystalline forms for which initial measurements indicated that they have a monotropic relationship with form I the only stable form. By constructing the topological pressure-temperature phase diagram, it has been shown that unexpectedly form II has a stable domain in the phase diagram and can be easily obtained by heating and grinding. The pressure necessary to obtain form II is only 11 MPa, which is much lower than most pressure used for tableting in the pharmaceutical industry.

  10. Phase diagram and thermodynamic calculations of alkali and alkaline earth metal zirconates

    Energy Technology Data Exchange (ETDEWEB)

    Dash, S. [Bhabha Atomic Res. Centre, Bombay (India). Fuel Chem. Div.; Sood, D.D. [Bhabha Atomic Res. Centre, Bombay (India). Fuel Chem. Div.; Prasad, R. [Bhabha Atomic Res. Centre, Bombay (India). Fuel Chem. Div.

    1996-02-01

    The ternary phase diagrams and partial pressures of various gaseous species over the equilibrium phase fields have been calculated for the M-Zr-O (M=Li, Na, K, Rb, Cs, Sr and Ba) systems by using the SOLGASMIX-PV program, which computes equilibrium composition by direct minimization of the Gibbs energy of a system. The available experimental Gibbs energy data reported in the literature for binary and ternary compounds were used for these calculations. Where no data exist, values were estimated. These ternary phase diagrams are being reported for the first time, except for the lithium system. (orig.).

  11. Phase diagram and thermodynamic calculations of alkali and alkaline earth metal zirconates

    Science.gov (United States)

    Dash, Smruti; Sood, D. D.; Prasad, R.

    1996-02-01

    The ternary phase diagrams and partial pressures of various gaseous species over the equilibrium phase fields have been calculated for the MZrO (M = Li, Na, K, Rb, Cs, Sr and Ba) systems by using the SOLGASMIX-PV program, which computes equilibrium composition by direct minimization of the Gibbs energy of a system. The available experimental Gibbs energy data reported in the literature for binary and ternary compounds were used for these calculations. Where no data exist, values were estimated. These ternary phase diagrams are being reported for the first time, except for the lithium system.

  12. The phase diagram of scalar field theory on the fuzzy disc

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Simone; Sämann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics,Heriot-Watt University,Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)

    2015-11-17

    Using a recently developed bootstrapping method, we compute the phase diagram of scalar field theory on the fuzzy disc with quartic even potential. We find three distinct phases with second and third order phase transitions between them. In particular, we find that the second order phase transition happens approximately at a fixed ratio of the two coupling constants defining the potential. We compute this ratio analytically in the limit of large coupling constants. Our results qualitatively agree with previously obtained numerical results.

  13. Morphology and phase diagram of comb block copolymer Am+1(BC)m.

    Science.gov (United States)

    Jiang, Zhibin; Wang, Rong; Xue, Gi

    2009-05-28

    The morphologies and the phase diagram of comb copolymer Am+1(BC)m are investigated by the self-consistent field theory. By changing the volume fractions of the blocks, the interaction parameters between the different blocks, and the side chain number, nine phases are found, including the two-colored lamellar phase, three-colored lamellar phase, hexagonal lattice phase, core shell hexagonal lattice phase, two interpenetrating tetragonal lattice, core shell tetragonal lattice, lamellar phase with beads inside, lamellar phase with alternating beads, and disordered phase. The phase diagrams are constructed for Am+1(BC)m with different side chain numbers of m=1, 2, 3, and 5. Due to the asymmetric topology of comb copolymer Am+1(BC)m, the phases and the diagrams are very different from linear ABC triblock copolymer or star ABC triblock copolymer. When the volume fraction of one of the blocks is the domination, the (core shell) hexagonal phase or two interpenetrating tetragonal lattice can form, depending on which block dominates and the interaction between the blocks. The (core shell) hexagonal phase easily forms at the corner of the block A (fA>or=0.5). The side chain number m affects the phase diagram largely due to the fact that the architecture of a comb copolymer is not invariant under the interchange between the three different monomers. Due to the connectivity of the blocks B and the inner blocks A, Am+1(BC)m comb copolymers with the longer main chain A or longer side chain with short block C, i.e., longer block B, are difficult to phase separate. The results are helpful to design nano- or biomaterials with complex architecture or tailor the phase behavior of comb copolymers.

  14. Phase diagram for a mixture of colloids and polymers with equal size

    NARCIS (Netherlands)

    Tuinier, R.; Smith, P.A.; Poon, W.C.K.; Egelhaaf, S.U.; Aarts, D.G.A.L.; Lekkerkerker, H.N.W.; Fleer, G.J.

    2008-01-01

    We present the phase diagram of a colloid-polymer mixture in which the radius a of the colloidal spheres is approximately the same as the radius R of a polymer coil (q=R/a1). A three-phase coexistence region is experimentally observed, previously only reported for colloid-polymer mixtures with small

  15. The phase diagram of nuclear and quark matter at high baryon density

    CERN Document Server

    Fukushima, Kenji

    2013-01-01

    We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third reg...

  16. The Use of Computer Graphics to Teach Thermodynamic Phase Diagrams.

    Science.gov (United States)

    Naik, Chandrashekhar D.; And Others

    1985-01-01

    Describes an interactive graphics package which illustrates the phase behavior of binary mixtures. The package has been successfully used with graduate and undergraduate students in the chemical engineering curriculum at Cornell University. Features contributing to this success are noted. (JN)

  17. Phase diagram of power law and Lennard-Jones systems: Crystal phases

    Energy Technology Data Exchange (ETDEWEB)

    Travesset, Alex [Ames Laboratory

    2014-10-28

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed.

  18. Phase diagrams and microscopic structures of (Hg,Cd)Te, (Hg,Zn)Te, and (Cd,Zn)Te alloys

    Science.gov (United States)

    Patrick, R. S.; Chen, A.-B.; Sher, A.; Berding, M. A.

    1988-01-01

    A cluster theory based on the quasi-chemical approximation has been applied to study the local correlation bond-length distribution, and phase diagrams of the II-VI pseudobinary alloys Hg(1 - x)Cd(x)Te, Hg(1 - x)Zn(x)Te, and Cd(1 - x)Zn(x)Te. The cluster energy is calculated by letting it relax in some effective alloy medium and then considering the contributions from the strain and chemical energies. Two different models are presented to simulate the alloy medium. While both models show that all three alloys have nearly random distributions, the signs of the local correlation prove to be sensitive to the alloy medium chosen for the energy calculation. Good agreement is found between experiment and the bond lengths and phase diagrams in both models.

  19. Enhanced electrical transport and phase diagram of LiBr-NaBr mixed crystal system

    Energy Technology Data Exchange (ETDEWEB)

    Manoravi, P.; Shahi, K. (Dept. of Physics, Indian Inst. of Tech., Kanpur (India))

    1992-12-01

    The ionic conductivity and the phase diagram of LiBr-NaBr system has been studied. Maximum conductivity enhancement by factors of 2.8 and 2.3x10[sup 4] with respect to pure LiBr and NaBr, respectively are obtained at 400degC for Li[sub 0.7]Na[sub 0.3]Br solid solution. The demixing curve of the phase diagram which was constructed from the conductivity versus temperature studies, suggest that the LiBr-NaBr system forms complete solid solution only above 215degC. The conductivity enhancements and the activation energies are consistent with the melting curve of the phase diagram. (orig.).

  20. QCD phase diagram at small densities from simulations with imaginary mu

    CERN Document Server

    de Forcrand, P.; Forcrand, Ph. de

    2003-01-01

    We review our results for the QCD phase diagram at baryonic chemical potential mu_B \\leq pi T. Our simulations are performed with an imaginary chemical potential mu_I for which the fermion determinant is positive. For 2 flavors of staggered quarks, we map out the phase diagram and identify the pseudo-critical temperature T_c(mu_I). For mu_I/T \\leq pi/3, this is an analytic function, whose Taylor expansion is found to converge rapidly, with truncation errors far smaller than statistical ones. The truncated series may then be continued to real mu, yielding the corresponding phase diagram for mu_B \\lsim 500 MeV. This approach provides control over systematics and avoids reweighting. We outline our strategy to find the (2+1)-flavor critical point.

  1. Phase Diagram of Dynamical Twisted Mass Wilson Fermions at Finite Isospin Chemical Potential

    CERN Document Server

    Janssen, Oliver; Splittorff, K; Verbaarschot, Jacobus J M; Zafeiropoulos, Savvas

    2015-01-01

    We consider the phase diagram of twisted mass Wilson fermions of two-flavor QCD in the parameter space of the quark mass, the isospin chemical potential, the twist angle and the lattice spacing. This work extends earlier studies in the continuum and those at zero chemical potential. We evaluate the phase diagram as well as the spectrum of the (pseudo-)Goldstone bosons using the chiral Lagrangian for twisted mass Wilson fermions at non-zero isospin chemical potential. The phases are obtained from a mean field analysis. At zero twist angle we find that already an infinitesimal isospin chemical potential destroys the Aoki phase. The reason is that in this phase we have massless Goldstone bosons with a non-zero isospin charge. At finite twist angle only two different phases are present, one phase which is continuously connected to the Bose condensed phase at non-zero chemical potential and another phase which is continuously connected to the normal phase. For either zero or maximal twist the phase diagram is more...

  2. Subsolidus binary phase diagram of C10Zn-C18Zn of thermotropic phase transitions materials

    Institute of Scientific and Technical Information of China (English)

    武克忠; 王新东; 刘晓地; 左萍

    2004-01-01

    The thermotropic phase transitions layer compound in the perovskite type (n-C10 H21 NH3 )2 ZnCl4 and (nC18 H37 NH3 )2 ZnCl4 were synthesized and, at the same time, a series of rnixtures C10 Zn/C18 Zn were prepared. The experimental binary phase diagram of C10 Zn/C18 Zn was established by means of differential scanning calorimetry (DSC) and X-ray diffraction. In the phase diagram, compound (n-C10 H21 NH3 ) (n-C21 H37 NH3 )ZnCl4 and two eutectoid invariants were observed; two eutectoid temperatures are about 53 ℃ and 58 ℃. Contrasting with other similar systems, there are three noticeable solid solution ranges at the left and right boundary and middle of the phase diagram.

  3. Devil's Staircase Phase Diagram of the Fractional Quantum Hall Effect in the Thin-Torus Limit

    Science.gov (United States)

    Rotondo, Pietro; Molinari, Luca Guido; Ratti, Piergiorgio; Gherardi, Marco

    2016-06-01

    After more than three decades, the fractional quantum Hall effect still poses challenges to contemporary physics. Recent experiments point toward a fractal scenario for the Hall resistivity as a function of the magnetic field. Here, we consider the so-called thin-torus limit of the Hamiltonian describing interacting electrons in a strong magnetic field, restricted to the lowest Landau level, and we show that it can be mapped onto a one-dimensional lattice gas with repulsive interactions, with the magnetic field playing the role of the chemical potential. The statistical mechanics of such models leads us to interpret the sequence of Hall plateaux as a fractal phase diagram whose landscape shows a qualitative agreement with experiments.

  4. Symmetry phase diagrams of the superconducting ground states induced by correlated hoppings interactions

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Millan, J. [Facultad de Ingenieria, Universidad Autonoma del Carmen, Cd. del Carmen, C.P. 24180, Campeche (Mexico); Perez, Luis A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 20-364, C.P. 01000, Mexico D.F. (Mexico)], E-mail: lperez@fisica.unam.mx; Shelomov, Evgen [Facultad de Ingenieria, Universidad Autonoma del Carmen, Cd. del Carmen, C.P. 24180, Campeche (Mexico); Wang, Chumin [Instituto de Investigaciones en Materiales, UNAM, A.P. 70-360, C.P. 04510, Mexico D.F. (Mexico)

    2007-09-01

    The formation of p- and d-wave superconducting ground states on a square lattice is studied within the BCS formalism and a generalized Hubbard model, in which a second-neighbor correlated hopping ({delta}t{sub 3}) is included in addition to the on site and nearest neighbor repulsions. The triplet superconductivity is obtained when a small distortion of the right angles in the square lattice is introduced. This distortion can be characterized by the difference between the values of {delta}t{sub 3}{sup {+-}} in the x {+-} y directions, i.e., {delta}{sub 3}=({delta}t{sub 3}{sup +}-{delta}t{sub 3}{sup -})/2. The phase diagram is analyzed in the space of the electron density (n) and {delta}{sub 3}. The results show that the p- and d-channel superconductivities are respectively enhanced in the low and high electron density regions.

  5. Magnetic phase diagram of ErNi2B2C

    DEFF Research Database (Denmark)

    Jensen, A.; Toft, K.N.; Abrahamsen, A.B.;

    2004-01-01

    an analysis of bulk magnetization and zero-field neutron diffraction data. The model accounts for most of the observed features but fails to explain the occurrence of a small component Qdelta approximate to -0.005b* observed close to H-c2 when the field is applied along [110]. (C) 2004 Elsevier B.V. All......The magnetic phase diagram of the superconductor ErNi2B2C (T-c = 11 K and T-N = 6 K) has been studied by neutron diffraction as a function of temperature and magnetic field applied along the symmetry directions [010], [110] and [001] of the tetragonal crystal structure. A series of commensurate...... magnetic structures, consistent with a transversely polarized spin-density wave with modulation vectors Q = n/ma* (0.55 less than or equal to n/m

  6. QCD in magnetic fields: from Hofstadter's butterfly to the phase diagram

    CERN Document Server

    Endrodi, G

    2014-01-01

    I revisit the problem of a charged particle on a two-dimensional lattice immersed in a constant (electro)magnetic field, and discuss the energy spectrum - Hofstadter's butterfly - from a new, quantum field theoretical perspective. In particular, I point out that there is an intricate interplay between a) the structure of the butterfly at low magnetic flux, b) the absence of asymptotic freedom in QED and c) the enhancement of the quark condensate by a magnetic field at zero temperature. I proceed to discuss the response of the QCD condensate to the magnetic field at nonzero temperatures in four space-time dimensions, present the resulting phase diagram and compare it to low-energy model predictions.

  7. Phase diagram kinetics for shape memory alloys: a robust finite element implementation

    Science.gov (United States)

    Gao, Xiujie; Qiao, Rui; Brinson, L. Catherine

    2007-12-01

    A physically based one-dimensional shape memory alloy (SMA) model is implemented into the finite element software ABAQUS via a user interface. Linearization of the SMA constitutive law together with complete transformation kinetics is performed and tabulated for implementation. Robust rules for transformation zones of the phase diagram are implemented and a new strategy for overlapping transformation zones is developed. The iteration algorithm, switching point updates and solution strategies are developed and are presented in detail. The code is validated via baseline simulations including the shape memory effect and pseudoelasticity and then further tested with complex loading paths. A hybrid composite with self-healing function is then simulated using the developed code. The example demonstrates the usefulness of the methods for the design and simulation of materials or structures actuated by SMA wires or ribbons.

  8. Probing the QCD phase diagram with dileptons - a study using coarse-grained transport dynamics

    CERN Document Server

    Endres, Stephan; Bleicher, Marcus

    2016-01-01

    Dilepton production in heavy-ion collisions at various energies is studied using coarse-grained transport simulations. Microscopic output from the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model is hereby put on a grid of space-time cells which allows to extract the local temperature and chemical potential in each cell via an equation of state. The dilepton emission is then calculated applying in-medium spectral functions from hadronic many-body theory and partonic production rates based on lattice calculations. The comparison of the resulting spectra with experimental data shows that the dilepton excess beyond the decay contributions from a hadronic cocktail reflects the trajectory of the fireball in the $T-\\mu_{\\mathrm{B}}$ plane of the QCD phase diagram.

  9. Electron Spin Pairing and the Phase Diagram of High-Tc Superconductors

    Institute of Scientific and Technical Information of China (English)

    GUO Wei; HAN Ru-Shan

    2001-01-01

    The origin of the instability of the normal state of electrons in the superconducting copper oxides is shown by the K-J model, in which the superexchange (K) between local moments and the Kondo exchange ( J) between electron and local moment are considered. The suppression of superexchange via impurity doping may induce effective spin coupling between electrons and triplet pairing (S = 1, Sz = 0). The spin pairing theory explains the phase diagram of high-To superconductors, especially the superconducting transition temperature Tc, the pseudogap temperature T* and the magnetic crossover temperature Tn as a function of the doped hole concentration. The universal expression for the empirical law of the superconducting transition temperature is derived from the theory.

  10. Magnetic phase diagram of the antiferromagnetic pyrochlore Gd2 Ti2 O7

    Science.gov (United States)

    Petrenko, O. A.; Lees, M. R.; Balakrishnan, G.; Paul, D. Mck

    2004-07-01

    Gd2Ti2O7 is a highly frustrated antiferromagnet on a pyrochlore lattice, where apart from the Heisenberg exchange the spins also interact via dipole-dipole forces. We report on low-temperature specific heat measurements performed on single crystals of Gd2Ti2O7 for three different directions of an applied magnetic field. The measurements reveal the strongly anisotropic behavior of Gd2Ti2O7 in a magnetic field despite the apparent absence of a significant single-ion anisotropy for Gd3+ . The H-T phase diagrams are constructed for H∥[111] , H∥[110] , and H∥[112] . The results indicate that further theoretical work beyond a simple mean-field model is required.

  11. Phase diagrams and synthesis of cubic boron nitride

    CERN Document Server

    Turkevich, V Z

    2002-01-01

    On the basis of phase equilibria, the lowest temperatures, T sub m sub i sub n , above which at high pressures cubic boron nitride crystallization from melt solution is allowable in terms of thermodynamics have been found for a number of systems that include boron nitride.

  12. Phase diagram of coacervate complexes containing reversible coordination

    NARCIS (Netherlands)

    Wang, J.; Cohen Stuart, M.A.; Gucht, van der J.

    2012-01-01

    Phase separation of coacervate complexes from cationic PDMAEMA [poly(N,N-dimethylaminoethyl methacrylate)] and anionic reversible coordination polymers are studied in the present work. The coordination polymers are formed from zinc and a bis-ligand L2EO4 [1,11-bis(2,6-dicarboxypyridin-4-yloxy)-3,6,9

  13. Analytical phase diagrams for colloids and non-adsorbing polymer

    NARCIS (Netherlands)

    Fleer, G.J.; Tuinier, R.

    2008-01-01

    We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 5591 for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the natur

  14. Phase diagram of highly asymmetric binary hardsphere mixtures

    NARCIS (Netherlands)

    Dijkstra, M.|info:eu-repo/dai/nl/123538807; van Roij, R.H.H.G.|info:eu-repo/dai/nl/152978984; Evans, R.

    We study the phase behavior and structure of highly asymmetric binary hard-sphere mixtures. By first integrating out the degrees of freedom of the small spheres in the partition function we derive a formal expression for the effective Hamiltonian of the large spheres. Then using an explicit pairwise

  15. Wetting phase diagrams of polyacid brush with a triple point.

    NARCIS (Netherlands)

    Mercurieva, A.A.; Iakovlev, P.A.; Zhulina, E.B.; Birshtein, T.M.; Leermakers, F.A.M.

    2006-01-01

    The (pre)wetting behavior of an annealed polyelectrolyte (PE) brush by an electrolyte solution that is strongly segregated from an apolar phase is analyzed. In this complex interface, there are interactions on various length scales. There are short-range interactions with the (uncharged) surface, an

  16. The phase diagram of annealed Ge(111)/Ga

    DEFF Research Database (Denmark)

    Molinàs-Mata, P.; Böhringer, M.; Artacho, E.;

    1995-01-01

    A study of the annealed phases of Ge(111)/Ga for coverages above 0.05 ML is presented. The surfaces are investigated by low-energy electron diffraction, scanning tunneling microscopy, and partly by photoemission and surface X-ray diffraction using synchrotron radiation. For Ga coverages beyond 0....

  17. T-p phase diagrams and the barocaloric effect in materials with successive phase transitions

    Science.gov (United States)

    Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.

    2017-09-01

    An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .

  18. Model Checking with Edge-Valued Decision Diagrams

    Science.gov (United States)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster

  19. Phase diagram with an enhanced spin-glass region of the mixed Ising-XY magnet LiHoxEr1-xF4

    DEFF Research Database (Denmark)

    Piatek, J. O.; Dalla Piazza, B.; Nikseresht, N.

    2013-01-01

    We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagn...

  20. METHODOLOGICAL NOTES: Metastable phases, phase transformations, and phase diagrams in physics and chemistry

    Science.gov (United States)

    Brazhkin, Vadim V.

    2006-07-01

    Concepts of a 'phase' and a 'phase transition' are discussed for stable and metastable states of matter. While condensed matter physics primarily considers equilibrium states and treats metastable phases as exceptions, organic chemistry overwhelmingly deals with metastable states. It is emphasized that many simple light-element compounds — including most hydrocarbons; nitrogen oxides, hydrides, and carbides; carbon monoxide CO; alcohols and glycerin — are also metastable at normal pressure in the sense that they do not correspond to a minimum Gibbs free energy for a given chemical composition. At moderate temperatures and pressures, the phase transformations for these metastable phases are reversible with the fulfilment of all laws of equilibrium thermodynamics over the entire range of experimentally accessible times. At sufficiently high pressures (> 1-10 GPa), most of the metastable molecular phases irreversibly transform to lower-energy polymer phases, stable or metastable. These transitions do not correspond to the equality of the Gibbs free energy for the involved phases before and after the transition and so they are not first-order in the 'classical' sense. At normal pressure, the resulting polymer phases can exist at temperatures above the melting point of the original metastable molecular phase, as the examples of polyethylene and polymerized CO dramatically illustrate. As pressure is increased further to 20-50 GPa, the PV contribution to Gibbs free energy gives rise to stable high-density atomic phases. Many of the intermediate-energy polymer phases can likely be synthesized by methods of 'classical' chemistry at normal pressure.