WorldWideScience

Sample records for model phase diagrams

  1. Phase diagram of an extended Agassi model

    Science.gov (United States)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  2. Random matrix models for phase diagrams

    International Nuclear Information System (INIS)

    Vanderheyden, B; Jackson, A D

    2011-01-01

    We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from quantum chromodynamics to high-T c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the 'minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issues Review, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.

  3. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  4. Phase diagram of the disordered Bose-Hubbard model

    International Nuclear Information System (INIS)

    Gurarie, V.; Pollet, L.; Prokof'ev, N. V.; Svistunov, B. V.; Troyer, M.

    2009-01-01

    We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet et al. [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.

  5. Phase diagram of the ABC model with nonconserving processes

    International Nuclear Information System (INIS)

    Lederhendler, A; Cohen, O; Mukamel, D

    2010-01-01

    The three species ABC model of driven particles on a ring is generalized to include vacancies and particle-nonconserving processes. The model exhibits phase separation at high densities. For equal average densities of the three species, it is shown that although the dynamics is local, it obeys detailed balance with respect to a Hamiltonian with long-range interactions, yielding a nonadditive free energy. The phase diagrams of the conserving and nonconserving models, corresponding to the canonical and grand-canonical ensembles, respectively, are calculated in the thermodynamic limit. Both models exhibit a transition from a homogeneous to a phase-separated state, although the phase diagrams are shown to differ from each other. This conforms with the expected inequivalence of ensembles in equilibrium systems with long-range interactions. These results are based on a stability analysis of the homogeneous phase and exact solution of the continuum equations of the models. They are supported by Monte Carlo simulations. This study may serve as a useful starting point for analyzing the phase diagram for unequal densities, where detailed balance is not satisfied and thus a Hamiltonian cannot be defined

  6. CERPHASE: Computer-generated phase diagrams

    International Nuclear Information System (INIS)

    Ruys, A.J.; Sorrell, C.C.; Scott, F.H.

    1990-01-01

    CERPHASE is a collection of computer programs written in the programming language basic and developed for the purpose of teaching the principles of phase diagram generation from the ideal solution model of thermodynamics. Two approaches are used in the generation of the phase diagrams: freezing point depression and minimization of the free energy of mixing. Binary and ternary phase diagrams can be generated as can diagrams containing the ideal solution parameters used to generate the actual phase diagrams. Since the diagrams generated utilize the ideal solution model, data input required from the operator is minimal: only the heat of fusion and melting point of each component. CERPHASE is menu-driven and user-friendly, containing simple instructions in the form of screen prompts as well as a HELP file to guide the operator. A second purpose of CERPHASE is in the prediction of phase diagrams in systems for which no experimentally determined phase diagrams are available, enabling the estimation of suitable firing or sintering temperatures for otherwise unknown systems. Since CERPHASE utilizes ideal solution theory, there are certain limitations imposed on the types of systems that can be predicted reliably. 6 refs., 13 refs

  7. Regularization dependence on phase diagram in Nambu–Jona-Lasinio model

    International Nuclear Information System (INIS)

    Kohyama, H.; Kimura, D.; Inagaki, T.

    2015-01-01

    We study the regularization dependence on meson properties and the phase diagram of quark matter by using the two flavor Nambu–Jona-Lasinio model. The model also has the parameter dependence in each regularization, so we explicitly give the model parameters for some sets of the input observables, then investigate its effect on the phase diagram. We find that the location or the existence of the critical end point highly depends on the regularization methods and the model parameters. Then we think that regularization and parameters are carefully considered when one investigates the QCD critical end point in the effective model studies

  8. Dynamic phase transitions and dynamic phase diagrams of the Ising model on the Shastry-Sutherland lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Şeyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr [Department of Science Education, Education Faculty, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey); Deviren, Bayram [Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevsehir (Turkey)

    2016-03-15

    The dynamic phase transitions and dynamic phase diagrams are studied, within a mean-field approach, in the kinetic Ising model on the Shastry-Sutherland lattice under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The time-dependence behavior of order parameters and the behavior of average order parameters in a period, which is also called the dynamic order parameters, as a function of temperature, are investigated. Temperature dependence of the dynamic magnetizations, hysteresis loop areas and correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions as well as to obtain the dynamic phase transition temperatures. We present the dynamic phase diagrams in the magnetic field amplitude and temperature plane. The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena. The phase diagrams also contain paramagnetic (P), Néel (N), Collinear (C) phases, two coexistence or mixed regions, (N+C) and (N+P), which strongly depend on interaction parameters. - Highlights: • Dynamic magnetization properties of spin-1/2 Ising model on SSL are investigated. • Dynamic magnetization, hysteresis loop area, and correlation have been calculated. • The dynamic phase diagrams are constructed in (T/|J|, h/|J|) plane. • The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena.

  9. Matrix model approximations of fuzzy scalar field theories and their phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)

    2015-12-29

    We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.

  10. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    Energy Technology Data Exchange (ETDEWEB)

    Canko, Osman; Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-05-15

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J<0, respectively, on the diatomic lattice and have found the conditions for the existence of uniform and intermediate or non-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  11. Phase diagram of the mean field model of simplicial gravity

    International Nuclear Information System (INIS)

    Bialas, P.; Burda, Z.; Johnston, D.

    1999-01-01

    We discuss the phase diagram of the balls in boxes model, with a varying number of boxes. The model can be regarded as a mean-field model of simplicial gravity. We analyse in detail the case of weights of the form p(q) = q -β , which correspond to the measure term introduced in the simplicial quantum gravity simulations. The system has two phases: elongated (fluid) and crumpled. For β ε (2, ∞) the transition between these two phases is first-order, while for β ε (1, 2) it is continuous. The transition becomes softer when β approaches unity and eventually disappears at β = 1. We then generalise the discussion to an arbitrary set of weights. Finally, we show that if one introduces an additional kinematic bound on the average density of balls per box then a new condensed phase appears in the phase diagram. It bears some similarity to the crinkled phase of simplicial gravity discussed recently in models of gravity interacting with matter fields

  12. HgTe-CdTe phase diagrams calculation by RAS model

    International Nuclear Information System (INIS)

    Hady, A.A.A.

    1986-11-01

    The model of Regular Associated Solutions (RAS) for binary solution, which extended onto the ternary solution was used for Mercury-Cadnium-Tellurim phase diagrams calculations. The function of dissociation parameters is used here as a function of temperature and it is independent of composition. The ratio of mole fractions has a weak dependence on temperature and is not neglected. The calculated liquidus binary temperature and the experimental one are so fitted to give the best values of parameters used to calculate the HgTe-CdTe phase diagrams. (author)

  13. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa; Deviren, Bayram

    2008-01-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J 0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found

  14. Pseudo-critical point in anomalous phase diagrams of simple plasma models

    Science.gov (United States)

    Chigvintsev, A. Yu; Iosilevskiy, I. L.; Noginova, L. Yu

    2016-11-01

    Anomalous phase diagrams in subclass of simplified (“non-associative”) Coulomb models is under discussion. The common feature of this subclass is absence on definition of individual correlations for charges of opposite sign. It is e.g. modified OCP of ions on uniformly compressible background of ideal Fermi-gas of electrons OCP(∼), or a superposition of two non-ideal OCP(∼) models of ions and electrons etc. In contrast to the ordinary OCP model on non-compressible (“rigid”) background OCP(#) two new phase transitions with upper critical point, boiling and sublimation, appear in OCP(∼) phase diagram in addition to the well-known Wigner crystallization. The point is that the topology of phase diagram in OCP(∼) becomes anomalous at high enough value of ionic charge number Z. Namely, the only one unified crystal- fluid phase transition without critical point exists as continuous superposition of melting and sublimation in OCP(∼) at the interval (Z 1 points at both boundary values Z = Z 1 ≈ 35.5 and Z = Z 2 ≈ 40.0. It should be stressed that critical isotherm is exactly cubic in both these pseudo-critical points. In this study we have improved our previous calculations and utilized more complicated model components equation of state provided by Chabrier and Potekhin (1998 Phys. Rev. E 58 4941).

  15. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    Science.gov (United States)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  16. Para-equilibrium phase diagrams

    International Nuclear Information System (INIS)

    Pelton, Arthur D.; Koukkari, Pertti; Pajarre, Risto; Eriksson, Gunnar

    2014-01-01

    Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase

  17. Pseudo-critical point in anomalous phase diagrams of simple plasma models

    International Nuclear Information System (INIS)

    Chigvintsev, A Yu; Iosilevskiy, I L; Noginova, L Yu

    2016-01-01

    Anomalous phase diagrams in subclass of simplified (“non-associative”) Coulomb models is under discussion. The common feature of this subclass is absence on definition of individual correlations for charges of opposite sign. It is e.g. modified OCP of ions on uniformly compressible background of ideal Fermi-gas of electrons OCP(∼), or a superposition of two non-ideal OCP(∼) models of ions and electrons etc. In contrast to the ordinary OCP model on non-compressible (“rigid”) background OCP(#) two new phase transitions with upper critical point, boiling and sublimation, appear in OCP(∼) phase diagram in addition to the well-known Wigner crystallization. The point is that the topology of phase diagram in OCP(∼) becomes anomalous at high enough value of ionic charge number Z . Namely, the only one unified crystal- fluid phase transition without critical point exists as continuous superposition of melting and sublimation in OCP(∼) at the interval ( Z 1 < Z < Z 2 ). The most remarkable is appearance of pseudo-critical points at both boundary values Z = Z 1 ≈ 35.5 and Z = Z 2 ≈ 40.0. It should be stressed that critical isotherm is exactly cubic in both these pseudo-critical points. In this study we have improved our previous calculations and utilized more complicated model components equation of state provided by Chabrier and Potekhin (1998 Phys. Rev. E 58 4941). (paper)

  18. Monte Carlo study of the phase diagram for the two-dimensional Z(4) model

    International Nuclear Information System (INIS)

    Carneiro, G.M.; Pol, M.E.; Zagury, N.

    1982-05-01

    The phase diagram of the two-dimensional Z(4) model on a square lattice is determined using a Monte Carlo method. The results of this simulation confirm the general features of the phase diagram predicted theoretically for the ferromagnetic case, and show the existence of a new phase with perpendicular order. (Author) [pt

  19. Lattice and Phase Diagram in QCD

    International Nuclear Information System (INIS)

    Lombardo, Maria Paola

    2008-01-01

    Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.

  20. Multicritical phase diagrams of the antiferromagnetic spin-3/2 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Ali Pinar, M. [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Erdinc, Ahmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2006-04-24

    The antiferromagnetic spin-3/2 Blume-Capel model in an external magnetic field is investigated, and the phase diagrams are obtained in detail by using the cluster variation method. The model exhibits distinct critical regions, including the first-order, second-order and special points: two double critical points, a critical end point, a tricritical point and a zero-temperature critical point. The new phase diagram topology is also found that was not obtained previously. Comparison of the results with those of other studies on this, and closely related systems, is made.

  1. Multicritical phase diagrams of the antiferromagnetic spin-3/2 Blume-Capel model

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Ali Pinar, M.; Erdinc, Ahmet; Canko, Osman

    2006-01-01

    The antiferromagnetic spin-3/2 Blume-Capel model in an external magnetic field is investigated, and the phase diagrams are obtained in detail by using the cluster variation method. The model exhibits distinct critical regions, including the first-order, second-order and special points: two double critical points, a critical end point, a tricritical point and a zero-temperature critical point. The new phase diagram topology is also found that was not obtained previously. Comparison of the results with those of other studies on this, and closely related systems, is made

  2. Stereo 3D spatial phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jinwu, E-mail: kangjw@tsinghua.edu.cn; Liu, Baicheng, E-mail: liubc@tsinghua.edu.cn

    2016-07-15

    Phase diagrams serve as the fundamental guidance in materials science and engineering. Binary P-T-X (pressure–temperature–composition) and multi-component phase diagrams are of complex spatial geometry, which brings difficulty for understanding. The authors constructed 3D stereo binary P-T-X, typical ternary and some quaternary phase diagrams. A phase diagram construction algorithm based on the calculated phase reaction data in PandaT was developed. And the 3D stereo phase diagram of Al-Cu-Mg ternary system is presented. These phase diagrams can be illustrated by wireframe, surface, solid or their mixture, isotherms and isopleths can be generated. All of these can be displayed by the three typical display ways: electronic shutter, polarization and anaglyph (for example red-cyan glasses). Especially, they can be printed out with 3D stereo effect on paper, and watched by the aid of anaglyph glasses, which makes 3D stereo book of phase diagrams come to reality. Compared with the traditional illustration way, the front of phase diagrams protrude from the screen and the back stretches far behind of the screen under 3D stereo display, the spatial structure can be clearly and immediately perceived. These 3D stereo phase diagrams are useful in teaching and research. - Highlights: • Stereo 3D phase diagram database was constructed, including binary P-T-X, ternary, some quaternary and real ternary systems. • The phase diagrams can be watched by active shutter or polarized or anaglyph glasses. • The print phase diagrams retains 3D stereo effect which can be achieved by the aid of anaglyph glasses.

  3. Ground state phase diagram of extended attractive Hubbard model

    International Nuclear Information System (INIS)

    Robaszkiewicz, S.; Chao, K.A.; Micnas, R.

    1980-08-01

    The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)

  4. Calculation of Fe–B–V ternary phase diagram

    International Nuclear Information System (INIS)

    Homolová, Viera; Kroupa, Aleš; Výrostková, Anna

    2012-01-01

    Highlights: ► Phase diagram of Fe–B–V system was modelled by CALPHAD method. ► Database for thermodynamic calculations for Fe–B–V system was created. ► The new ternary phase was found in 67Fe–18B–15V [in at.%] alloy. - Abstract: The phase equilibria of the Fe–B–V ternary system are studied experimentally and theoretically in this paper. Phase diagram of the system was modelled by CALPHAD method. Boron was modelled as an interstitial element in the FCC and BCC solid solutions. The calculations of isothermal sections of phase diagram are compared with our experimental results at 903 and 1353 K and with available literature experimental data. New ternary phase (with chemical composition 28Fe32V40B in at.%) was found in 67Fe–18B–15V alloy [in at.%]. Further experimental studies for the determination of exact nature of the ternary phase including crystallographic information are necessary.

  5. Modeling of metastable phase formation diagrams for sputtered thin films.

    Science.gov (United States)

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  6. P-T phase diagram of a holographic s+p model from Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Nie, Zhang-Yu; Zeng, Hui

    2015-01-01

    In this paper, we study the holographic s+p model in 5-dimensional bulk gravity with the Gauss-Bonnet term. We work in the probe limit and give the Δ-T phase diagrams at three different values of the Gauss-Bonnet coefficient to show the effect of the Gauss-Bonnet term. We also construct the P-T phase diagrams for the holographic system using two different definitions of the pressure and compare the results.

  7. Canonical phase diagrams of the 1D Falicov-Kimball model at T = O

    Science.gov (United States)

    Gajek, Z.; Jȩdrzejewski, J.; Lemański, R.

    1996-02-01

    The Falicov-Kimball model of spinless quantum electrons hopping on a 1-dimensional lattice and of immobile classical ions occupying some lattice sites, with only intrasite coupling between those particles, have been studied at zero temperature by means of well-controlled numerical procedures. For selected values of the unique coupling parameter U the restricted phase diagrams (based on all the periodic configurations of localized particles (ions) with period not greater than 16 lattice constants, typically) have been constructed in the grand-canonical ensemble. Then these diagrams have been translated into the canonical ensemble. Compared to the diagrams obtained in other studies our ones contain more details, in particular they give better insight into the way the mixtures of periodic phases are formed. Our study has revealed several families of new characteristic phases like the generalized most homogeneous and the generalized crenel phases, a first example of a structural phase transition and a tendency to build up an additional symmetry - the hole-particle symmetry with respect to the ions (electrons) only, as U decreases.

  8. Magnetization plateaus and phase diagrams of the Ising model on the Shastry–Sutherland lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Seyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr

    2015-11-01

    The magnetization properties of a two-dimensional spin-1/2 Ising model on the Shastry–Sutherland lattice are studied within the effective-field theory (EFT) with correlations. The thermal behavior of the magnetizations is investigated in order to characterize the nature (the first- or second-order) of the phase transitions as well as to obtain the phase diagrams of the model. The internal energy, specific heat, entropy and free energy of the system are also examined numerically as a function of the temperature in order to confirm the stability of the phase transitions. The applied field dependence of the magnetizations is also examined to find the existence of the magnetization plateaus. For strong enough magnetic fields, several magnetization plateaus are observed, e.g., at 1/9, 1/8, 1/3 and 1/2 of the saturation. The phase diagrams of the model are constructed in two different planes, namely (h/|J|, |J′|/|J|) and (h/|J|, T/|J|) planes. It was found that the model exhibits first- and second-order phase transitions; hence tricitical point is also observed in additional to the zero-temperature critical point. Moreover the Néel order (N), collinear order (C) and ferromagnetic (F) phases are also found with appropriate values of the system parameters. The reentrant behavior is also obtained whenever model displays two Néel temperatures. These results are compared with some theoretical and experimental works and a good overall agreement has been obtained. - Highlights: • Magnetization properties of spin-1/2 Ising model on SS lattice are investigated. • The magnetization plateaus of the 1/9, 1/8, 1/3 and 1/2 are observed. • The phase diagrams of the model are constructed in two different planes. • The model exhibits the tricitical and zero-temperature critical points. • The reentrant behavior is obtained whenever model displays two Neel temperatures.

  9. Phase diagram of spiking neural networks.

    Science.gov (United States)

    Seyed-Allaei, Hamed

    2015-01-01

    In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.

  10. Algorithmic phase diagrams

    Science.gov (United States)

    Hockney, Roger

    1987-01-01

    Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.

  11. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Deviren, Bayram

    2007-01-01

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 0 5.06

  12. Modelling the continuous cooling transformation diagram of engineering steels using neural networks. Part I. Phase regions

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, P.J. van der; Wang, J. [Delft Univ. of Technology (Netherlands); Sietsma, J.; Zwaag, S. van der [Delft Univ. of Technology, Lab. for Materials Science (Netherlands)

    2002-12-01

    A neural network model for the calculation of the phase regions of the continuous cooling transformation (CCT) diagram of engineering steels has been developed. The model is based on experimental CCT diagrams of 459 low-alloy steels, and calculates the CCT diagram as a function of composition and austenitisation temperature. In considering the composition, 9 alloying elements are taken into account. The model reproduces the original diagrams rather accurately, with deviations that are not larger than the average experimental inaccuracy of the experimental diagrams. Therefore, it can be considered an adequate alternative to the experimental determination of the CCT diagram of a certain steel within the composition range used. The effects of alloying elements can be quantified, either individually or in combination, with the model. Nonlinear composition dependencies are observed. (orig.)

  13. Phase diagram of nuclear 'pasta' and its uncertainties in supernova cores

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2008-01-01

    We examine the model dependence of the phase diagram of inhomogeneous nulcear matter in supernova cores using the quantum molecular dynamics (QMD). Inhomogeneous matter includes crystallized matter with nonspherical nuclei--''pasta'' phases--and the liquid-gas phase-separating nuclear matter. Major differences between the phase diagrams of the QMD models can be explained by the energy of pure neutron matter at low densities and the saturation density of asymmetric nuclear matter. We show the density dependence of the symmetry energy is also useful to understand uncertainties of the phase diagram. We point out that, for typical nuclear models, the mass fraction of the pasta phases in the later stage of the collapsing cores is higher than 10-20%

  14. Phase diagrams of the elements

    International Nuclear Information System (INIS)

    Young, D.A.

    1975-01-01

    A summary of the pressure-temperature phase diagrams of the elements is presented, with graphs of the experimentally determined solid-solid phase boundaries and melting curves. Comments, including theoretical discussion, are provided for each diagram. The crystal structure of each solid phase is identified and discussed. This work is aimed at encouraging further experimental and theoretical research on phase transitions in the elements

  15. Phase diagram for the Kuramoto model with van Hemmen interactions.

    Science.gov (United States)

    Kloumann, Isabel M; Lizarraga, Ian M; Strogatz, Steven H

    2014-01-01

    We consider a Kuramoto model of coupled oscillators that includes quenched random interactions of the type used by van Hemmen in his model of spin glasses. The phase diagram is obtained analytically for the case of zero noise and a Lorentzian distribution of the oscillators' natural frequencies. Depending on the size of the attractive and random coupling terms, the system displays four states: complete incoherence, partial synchronization, partial antiphase synchronization, and a mix of antiphase and ordinary synchronization.

  16. Phase diagram of the Hubbard model with arbitrary band filling: renormalization group approach

    International Nuclear Information System (INIS)

    Cannas, Sergio A.; Cordoba Univ. Nacional; Tsallis, Constantino.

    1991-01-01

    The finite temperature phase diagram of the Hubbard model in d = 2 and d = 3 is calculated for arbitrary values of the parameter U/t and chemical potential μ using a quantum real space renormalization group. Evidence for a ferromagnetic phase at low temperatures is presented. (author). 15 refs., 5 figs

  17. Infrared thermography method for fast estimation of phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Palomo Del Barrio, Elena [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Cadoret, Régis [Centre National de la Recherche Scientifique, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Daranlot, Julien [Solvay, Laboratoire du Futur, 178 Av du Dr Schweitzer, 33608 Pessac (France); Achchaq, Fouzia, E-mail: fouzia.achchaq@u-bordeaux.fr [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France)

    2016-02-10

    Highlights: • Infrared thermography is proposed to determine phase diagrams in record time. • Phase boundaries are detected by means of emissivity changes during heating. • Transition lines are identified by using Singular Value Decomposition techniques. • Different binary systems have been used for validation purposes. - Abstract: Phase change materials (PCM) are widely used today in thermal energy storage applications. Pure PCMs are rarely used because of non adapted melting points. Instead of them, mixtures are preferred. The search of suitable mixtures, preferably eutectics, is often a tedious and time consuming task which requires the determination of phase diagrams. In order to accelerate this screening step, a new method for estimating phase diagrams in record time (1–3 h) has been established and validated. A sample composed by small droplets of mixtures with different compositions (as many as necessary to have a good coverage of the phase diagram) deposited on a flat substrate is first prepared and cooled down to ambient temperature so that all droplets crystallize. The plate is then heated at constant heating rate up to a sufficiently high temperature for melting all the small crystals. The heating process is imaged by using an infrared camera. An appropriate method based on singular values decomposition technique has been developed to analyze the recorded images and to determine the transition lines of the phase diagram. The method has been applied to determine several simple eutectic phase diagrams and the reached results have been validated by comparison with the phase diagrams obtained by Differential Scanning Calorimeter measurements and by thermodynamic modelling.

  18. Phase Diagram of a Simple Model for Fractional Topological Insulator

    Science.gov (United States)

    Chen, Hua; Yang, Kun

    2012-02-01

    We study a simple model of two species of (or spin-1/2) fermions with short-range intra-species repulsion in the presence of opposite (effetive) magnetic field, each at filling factor 1/3. In the absence of inter-species interaction, the ground state is simply two copies of the 1/3 Laughlin state, with opposite chirality. Due to the overall time-reversal symmetry, this is a fractional topological insulator. We show this phase is stable against moderate inter-species interactions. However strong enough inter-species repulsion leads to phase separation, while strong enough inter-species attraction drives the system into a superfluid phase. We obtain the phase diagram through exact diagonalization caluclations. Nature of the fractional topological insluator-superfluid phase transition is discussed using an appropriate Chern-Simons-Ginsburg-Landau effective field theory.

  19. T- P Phase Diagram of Nitrogen at High Pressures

    Science.gov (United States)

    Algul, G.; Enginer, Y.; Yurtseven, H.

    2018-05-01

    By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

  20. Ring diagrams and phase transitions

    International Nuclear Information System (INIS)

    Takahashi, K.

    1986-01-01

    Ring diagrams at finite temperatures carry most infrared-singular parts among Feynman diagrams. Their effect to effective potentials are in general so significant that one must incorporate them as well as 1-loop diagrams. The author expresses these circumstances in some examples of supercooled phase transitions

  1. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2007-06-15

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 05.06.

  2. The effective QCD phase diagram and the critical end point

    Directory of Open Access Journals (Sweden)

    Alejandro Ayala

    2015-08-01

    Full Text Available We study the QCD phase diagram on the temperature T and quark chemical potential μ plane, modeling the strong interactions with the linear sigma model coupled to quarks. The phase transition line is found from the effective potential at finite T and μ taking into account the plasma screening effects. We find the location of the critical end point (CEP to be (μCEP/Tc,TCEP/Tc∼(1.2,0.8, where Tc is the (pseudocritical temperature for the crossover phase transition at vanishing μ. This location lies within the region found by lattice inspired calculations. The results show that in the linear sigma model, the CEP's location in the phase diagram is expectedly determined solely through chiral symmetry breaking. The same is likely to be true for all other models which do not exhibit confinement, provided the proper treatment of the plasma infrared properties for the description of chiral symmetry restoration is implemented. Similarly, we also expect these corrections to be substantially relevant in the QCD phase diagram.

  3. Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Science.gov (United States)

    Li, Huan; Song, Hai-Feng; Liu, Yu

    2016-11-01

    We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.

  4. CALPHAD calculation of phase diagrams : a comprehensive guide

    CERN Document Server

    Saunders, N; Miodownik, A P

    1998-01-01

    This monograph acts as a benchmark to current achievements in the field of Computer Coupling of Phase Diagrams and Thermochemistry, often called CALPHAD which is an acronym for Computer CALculation of PHAse Diagrams. It also acts as a guide to both the basic background of the subject area and the cutting edge of the topic, combining comprehensive discussions of the underlying physical principles of the CALPHAD method with detailed descriptions of their application to real complex multi-component materials. Approaches which combine both thermodynamic and kinetic models to interpret non-equilibrium phase transformations are also reviewed.

  5. Magnetic phase diagram of a nanocone

    International Nuclear Information System (INIS)

    Suarez, O; Vargas, P; Escrig, J; Landeros, P; Albir, D; Laroze, D

    2008-01-01

    In this work we analyze the magnetic properties of truncated conical nanoparticles. Based on the continuous magnetic model we find expressions for the total energy in three different magnetic configurations. Finally, we calculate the magnetic phase diagram as function of the geometrical parameters.

  6. Magnetic phase diagram of a nanocone

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, O; Vargas, P [Departamento de Fisica, Universidad Tecnica Federico Santa MarIa, P. O. Box 110-V, Valparaiso (Chile); Escrig, J; Landeros, P; Albir, D [Universidad de Santiago de Chile, Depatamento de Fisica, Casilla 307, Correo 2, Santiago (Chile); Laroze, D [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, P. O. Box 4059, Valparaiso (Chile)], E-mail: omar.suarez@postgrado.usm.cl

    2008-11-01

    In this work we analyze the magnetic properties of truncated conical nanoparticles. Based on the continuous magnetic model we find expressions for the total energy in three different magnetic configurations. Finally, we calculate the magnetic phase diagram as function of the geometrical parameters.

  7. Common phase diagram for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Michalak, Rudi

    2003-01-01

    A phenomenological phase diagram which has been derived for high-temperature superconductors from NMR Knight-shift measurements of the pseudogap is compared to the phase diagram that is obtained for organic superconductors and spin-ladder superconductors, both low-dimensional systems. This is contrasted to the phase diagram of some Heavy Fermion superconductors, i.e. superconductors not constrained to a low dimensionality

  8. Thermodynamic modeling of the CeO{sub 2}–CoO nano-phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung S., E-mail: sungkim@wow.hongik.ac.kr

    2014-03-05

    Highlights: • The CeO{sub 2}–CoO nano-phase diagram was modeled thermodynamically. • The surface energies of the solution phases were modeled with Butler’s equation. • The present work agreed with the experimental work on the nanoparticle sintering. -- Abstract: A nano-phase diagram of the CeO{sub 2}–CoO system was modeled thermodynamically with experimental data available in the literatures. The surface energies of CeO{sub 2} and CoO unavailable in the literatures were estimated reasonably on the thermodynamic basis. Butler’s model was used to describe the surface energy and the surface composition of the solution phases and then the nano interaction parameters on the particle radius were assessed through the multiple linear regression method. A consistent set of optimized interaction parameters in the present system was derived for describing the Gibbs energy of liquid, fluorite, and halite solution phases as a function of particle radius. The eutectic temperatures calculated in the present work interpreted well the experimental data for the unusual low sintering temperature of the nanoparticles with the tri-modal particle size distribution. Furthermore, with the aid of the present result, the microstructure evolution in the CGO–CoO system during the nanoparticle sintering was described reasonably. It is concluded that the present modeling will be a good guide for the condition of the liquid phase sintering to obtain the rapid densification of the nanoparticles at lower temperatures.

  9. Dynamic phase transitions and dynamic phase diagrams of the spin-2 Blume-Capel model under an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.

  10. Refined phase diagram of boron nitride

    International Nuclear Information System (INIS)

    Solozhenko, V.; Turkevich, V.Z.

    1999-01-01

    The equilibrium phase diagram of boron nitride thermodynamically calculated by Solozhenko in 1988 has been now refined on the basis of new experimental data on BN melting and extrapolation of heat capacities of BN polymorphs into high-temperature region using the adapted pseudo-Debye model. As compared with the above diagram, the hBN left-reversible cBN equilibrium line is displaced by 60 K toward higher temperatures. The hBN-cBN-L triple point has been calculated to be at 3480 ± 10 K and 5.9 ± 0.1 GPa, while the hBN-L-V triple point is at T = 3400 ± 20 K and p = 400 ± 20 Pa, which indicates that the region of thermodynamic stability of vapor in the BN phase diagram is extremely small. It has been found that the slope of the cBN melting curve is positive whereas the slope of hBN melting curve varies from positive between ambient pressure and 3.4 GPa to negative at higher pressures

  11. Phase Diagrams of Strongly Interacting Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We summarize the phase diagrams of SU, SO and Sp gauge theories as function of the number of flavors, colors, and matter representation as well as the ones of phenomenologically relevant chiral gauge theories such as the Bars-Yankielowicz and the generalized Georgi-Glashow models. We finally report...

  12. Phase diagram of classical electronic bilayers

    International Nuclear Information System (INIS)

    Ranganathan, S; Johnson, R E

    2006-01-01

    Extensive molecular dynamics calculations have been performed on classical, symmetric electronic bilayers at various values of the coupling strength Γ and interlayer separation d to delineate its phase diagram in the Γ-d plane. We studied the diffusion, the amplitude of the main peak of the intralayer static structure factor and the peak positions of the intralayer pair correlation function with the aim of defining equivalent signatures of freezing and constructing the resulting phase diagram. It is found that for Γ greater than 75, crystalline structures exist for a certain range of interlayer separations, while liquid phases are favoured at smaller and larger d. It is seen that there is good agreement between our phase diagram and previously published ones

  13. Phase diagram of classical electronic bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S [Department of Physics, Royal Military College of Canada, Kingston, Ontario K7K 7B4 (Canada); Johnson, R E [Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, Ontario K7K 7B4 (Canada)

    2006-04-28

    Extensive molecular dynamics calculations have been performed on classical, symmetric electronic bilayers at various values of the coupling strength {gamma} and interlayer separation d to delineate its phase diagram in the {gamma}-d plane. We studied the diffusion, the amplitude of the main peak of the intralayer static structure factor and the peak positions of the intralayer pair correlation function with the aim of defining equivalent signatures of freezing and constructing the resulting phase diagram. It is found that for {gamma} greater than 75, crystalline structures exist for a certain range of interlayer separations, while liquid phases are favoured at smaller and larger d. It is seen that there is good agreement between our phase diagram and previously published ones.

  14. The phase diagram of KNO3-KClO3

    International Nuclear Information System (INIS)

    Zhang Xuejun; Tian Jun; Xu Kangcheng; Gao Yici

    2004-01-01

    The binary phase diagram of KNO 3 -KClO 3 is studied by means of differential scanning calorimetry (DSC) and high-temperature X-ray diffraction. The limited solid solutions, K(NO 3 ) 1-x (ClO 3 ) x (0 3 ) 1-x (ClO 3 ) x (0.90 3 -based solid solutions and KClO 3 -based solid solutions phase, respectively. For KNO 3 -based solid solutions, KNO 3 ferroelectric phase can be stable from 423 to 223 K as a result of substituting of NO 3 by ClO 3 -radicals. The temperatures for solidus and liquidus have been determined based on limited solid solutions. Two models, Henrian solution and regular solution theory for KNO 3 -based (α) phase and KClO 3 -based (β) phase, respectively, are employed to reproduce solidus and liquidus of the phase diagram. The results are in good agreement with the DSC data. The thermodynamic properties for α and β solid solutions have been derived from an optimization procedure using the experimental data. The calculated phase diagram and optimized thermodynamic parameters are thermodynamically self-consistent

  15. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kocakaplan, Yusuf [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2013-12-15

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior.

  16. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Kocakaplan, Yusuf; Keskin, Mustafa

    2013-01-01

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior

  17. Considerations Concerning Matrix Diagram Transformations Associated with Mathematical Model Study of a Three-phase Transformer

    Directory of Open Access Journals (Sweden)

    Mihaela Poienar

    2014-09-01

    Full Text Available The clock hour figure mathematical model of a threephase transformer can be expressed, in the most plain form, through a 3X3 square matrix, called code matrix. The lines position reflect the modification in the high voltage windings terminal and the columns position reflect the modification in the low voltage winding terminal. The main changes on the transformer winding terminal are: the circular permutation of connection between windings; terminal supply reversal; reverse direction for the phase winding wrapping; reversal the beginning with the end for a phase winding; the connection conversion from N in Z between phase winding or inverse. The analytical form of these changes actually affect the configuration of the mathematical model expressed through a transformations diagram proposed and analyzed in two ways: bipolar version and unipolar version (fanwise. In the end of the paper are presented about the practical exploitation of the transformations diagram.

  18. Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Temizer, U.

    2007-01-01

    Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point

  19. Multicritical phase diagrams of the Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: the pair approximation and the path probability method with pair distribution

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Erdinc, Ahmet

    2004-01-01

    As a continuation of the previously published work, the pair approximation of the cluster variation method is applied to study the temperature dependences of the order parameters of the Blume-Emery-Griffiths model with repulsive biquadratic coupling on a body centered cubic lattice. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. We study the dynamics of the model by the path probability method with pair distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagram in addition to the equilibrium phase diagram and also the first-order phase transition line for the unstable branches of the quadrupole order parameter is superimposed on the phase diagrams. It is found that the metastable phase diagram and the first-order phase boundary for the unstable quadrupole order parameter always exist at the low temperatures which are consistent with experimental and theoretical works

  20. New mean-field calculations for the phase diagram of the Annni model

    International Nuclear Information System (INIS)

    Tome, T.; Salinas, S.R.A.

    1987-01-01

    A variational procedure, with the inclusion of some spin fluctuations, to go beyond the standard layer-by-layer mean-field calculations for the T-p phase diagram of the ANNNI model is used. The high temperature region is studied analytically. The transition lines meet smoothly at the Lifshitz point, which is an inflection point of the second-order paramagnetic border. At low temperature, these numerical resuls confirm the stability of the main commensurate phases and show a quantitative trend towards the preductions f the Monte Carlo analyses. (author) [pt

  1. Models with short- and long-range interactions: the phase diagram and the reentrant phase

    International Nuclear Information System (INIS)

    Dauxois, Thierry; Lori, Leonardo; Ruffo, Stefano; De Buyl, Pierre

    2010-01-01

    We study the phase diagram of two different Hamiltonians with competing local, nearest-neighbour, and mean-field couplings. The first example corresponds to the HMF Hamiltonian with an additional short-range interaction. The second example is a reduced Hamiltonian for dipolar layered spin structures, with a new feature with respect to the first example: the presence of anisotropies. The two examples are solved in both the canonical and the microcanonical ensemble using a combination of the min–max method with the transfer operator method. The phase diagrams present typical features of systems with long-range interactions: ensemble inequivalence, negative specific heat and temperature jumps. Moreover, for a given range of parameters, we report the signature of phase reentrance. This can also be interpreted as the presence of azeotropy with the creation of two first-order phase transitions with ensemble inequivalence, as one parameter is varied continuously

  2. Understanding agent-based models of financial markets: A bottom-up approach based on order parameters and phase diagrams

    Science.gov (United States)

    Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann

    2012-11-01

    We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.

  3. Magnetic phase diagram of HoxTm1-x alloys

    DEFF Research Database (Denmark)

    Sarthour, R.S.; Cowley, R.A.; Ward, R.C.C.

    2000-01-01

    The magnetic phase diagram of the competing anisotropy system, Ho/Tm, has been determined by neutron-scattering techniques and the results compared with calculations based on a mean-field model. The crystal-field interactions in Ho favor alignment of the magnetic moments in the basal plane whereas......, with long-range order, were identified and the magnetic phase diagram, including a pentacritical point, determined. A mean-field model was used to explain the results and the results are in good agreement with the experimental results....... in Tm they favor alignment along the c axis. Single-crystal alloys were grown with molecular-beam epitaxy techniques in Oxford. The components of the magnetic moment alone the c direction and in the basal plane were determined from the neutron-scattering measurements. Five distinct magnetic phases...

  4. Pitfalls and feedback when constructing topological pressure-temperature phase diagrams

    Science.gov (United States)

    Ceolin, R.; Toscani, S.; Rietveld, Ivo B.; Barrio, M.; Tamarit, J. Ll.

    2017-04-01

    The stability hierarchy between different phases of a chemical compound can be accurately reproduced in a topological phase diagram. This type of phase diagrams may appear to be the result of simple extrapolations, however, experimental complications quickly increase in the case of crystalline trimorphism (and higher order polymorphism). To ensure the accurate positioning of stable phase domains, a topological phase diagram needs to be consistent. This paper gives an example of how thermodynamic feedback can be used in the topological construction of phase diagrams to ensure overall consistency in a phase diagram based on the case of piracetam crystalline trimorphism.

  5. Estimated D2--DT--T2 phase diagram in the three-phase region

    International Nuclear Information System (INIS)

    Souers, P.C.; Hickman, R.G.; Tsugawa, R.T.

    1976-01-01

    A composite of experimental eH 2 -D 2 phase-diagram data at the three-phase line is assembled from the literature. The phase diagram is a smooth cigar shape without a eutectic point, indicating complete miscibility of liquid and solid phases. Additional data is used to estimate the D 2 -T 2 , D 2 DT, and DT-T 2 binary phase diagrams. These are assembled into the ternary D 2 -DT-T 2 phase diagram. A surface representing the chemical equilibrium of the three species is added to the phase diagram. At chemical equilibrium, it is estimated that 50-50 liquid D-T at 19.7 0 K is in equilibrium with 42 mole percent T vapor and 54 percent T solid. Infrared spectroscopy is suggested as a means of component analysis of liquid and solid mixtures

  6. A re-examination of thermodynamic modelling of U-Ru binary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.C.; Kaye, M.H., E-mail: matthew.kaye@uoit.ca [University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2015-07-01

    Ruthenium (Ru) is one of the more abundant fission products (FPs) both in fast breeder reactors and thermal reactors. Post irradiation examinations (PIE) show that both 'the white metallic phase' (MoTc-Ru-Rh-Pd) and 'the other metallic phase' (U(Pd-Rh-Ru)3) are present in spent nuclear fuels. To describe this quaternary system, binary subsystems of uranium (U) with Pd, Rh, and Ru are necessary. Presently, only the U-Ru system has been thermodynamically described but with some problems. As part of research on U-Ru-Rh-Pd quaternary system, an improved consistent thermodynamic model describing the U-Ru binary phase diagram has been obtained. (author)

  7. Ferroelectric Phase Diagram of PVDF:PMMA

    OpenAIRE

    Li, Mengyuan; Stingelin, Natalie; Michels, Jasper J.; Spijkman, Mark-Jan; Asadi, Kamal; Feldman, Kirill; Blom, Paul W. M.; de Leeuw, Dago M.

    2012-01-01

    We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of alpha- and beta-phase PVDF was identified. Ferroelectric beta-PVDF:PMMA blend films were made by melting, ice quenching, and subsequent annealing above the glass transition temperature of PMMA, close to the melting temperature of PVDF. Addition of PMMA suppresses the crystallizatio...

  8. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network

    Science.gov (United States)

    Mano, Tomohiro; Ohtsuki, Tomi

    2017-11-01

    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  9. Phase diagram and quench dynamics of the cluster-XY spin chain.

    Science.gov (United States)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  10. Modelling of phase diagrams and thermodynamic properties using Calphad method – Development of thermodynamic databases

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš

    2013-01-01

    Roč. 66, JAN (2013), s. 3-13 ISSN 0927-0256 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Calphad method * phase diagram modelling * thermodynamic database development Subject RIV: BJ - Thermodynamics Impact factor: 1.879, year: 2013

  11. Phase diagrams of laser-processed nanoparticles of brass

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, P.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences 38, Vavilov Street, 119991 Moscow (Russian Federation); Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences 38, Vavilov Street, 119991 Moscow (Russian Federation); Monteverde, F. [Electron Microscopy Unit, Materia Nova, Avenue Copernic 1, B-7000 Mons (Belgium); Wautelet, M. [Condensed Matter Physics, University of Mons-Hainaut, 23, Avenue Maistriau, B-7000 Mons (Belgium)]. E-mail: michel.wautelet@umh.ac.be

    2007-07-31

    Nanoparticles of brass are prepared by ablation of a brass target in ethanol using radiation of a copper-vapor laser at various laser fluences. The nanoparticles are characterized by TEM and optical spectroscopy. The multipulse laser irradiation leads to formation both the nanoparticles in liquid and well-ordered micro-structures on a surface of a target. It is revealed that both the morphology and absorption spectra of brass nanoparticles depend on presence of the micro-structures. Nanoparticles with the various phase diagrams are formed from a flat brass surface and from the same surface with micro-structures. The results are compared with a model of phase diagrams, in which size and composition effects are taken into account.

  12. The phase diagram of water at negative pressures: virtual ices.

    Science.gov (United States)

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  13. Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model

    Science.gov (United States)

    Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira

    2018-02-01

    We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.

  14. Calculation of Fe-B-V ternary phase diagram

    Czech Academy of Sciences Publication Activity Database

    Homolová, V.; Kroupa, Aleš; Výrostková, A.

    2012-01-01

    Roč. 520, APR (2012), s. 30-35 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/10/1908 Institutional support: RVO:68081723 Keywords : phase diagram * thermodynamic modelling Subject RIV: BJ - Thermodynamics Impact factor: 2.390, year: 2012

  15. Determination of the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system and a comparison between two theoretical methods for synthetic phase diagrams.

    Science.gov (United States)

    Han, Xu; Liu, Yang; Critser, John K

    2010-08-01

    Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a "mass-redemption" method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system. (c) 2010 Elsevier Inc. All rights reserved.

  16. Mapping Isobaric Aging onto the Equilibrium Phase Diagram

    DEFF Research Database (Denmark)

    Niss, Kristine

    2017-01-01

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts...... of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case—challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium...... states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single...

  17. Cu–Ni nanoalloy phase diagram – Prediction and experiment

    Czech Academy of Sciences Publication Activity Database

    Sopoušek, J.; Vřešťál, J.; Pinkas, J.; Brož, P.; Buršík, Jiří; Stýskalík, A.; Škoda, D.; Zobač, O.; Lee, J.

    2014-01-01

    Roč. 45, June (2014), s. 33-39 ISSN 0364-5916 Institutional support: RVO:68081723 Keywords : nanoalloy * phase diagram * thermodynamic modeling Subject RIV: BJ - Thermodynamics Impact factor: 1.370, year: 2014

  18. Mapping Isobaric Aging onto the Equilibrium Phase Diagram.

    Science.gov (United States)

    Niss, Kristine

    2017-09-15

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.

  19. Multicritical phase diagrams of the spin-((3)/(2)) Blume-Emery-Griffiths model on the Bethe lattice using the recursion method

    International Nuclear Information System (INIS)

    Ekiz, Cesur; Albayrak, Erhan; Keskin, Mustafa.

    2003-01-01

    The multicritical behaviour of the spin-((3)/(2)) Blume-Emery-Griffiths model with bilinear and biquadratic exchange interactions and single-ion crystal field is studied on the Bethe lattice by introducing two-sublattices A and B within the exact recursion equations. Exact expressions for the free energy, the Curie or second-order phase transition temperatures, as well as for the magnetization and quadrupolar moment order parameters are obtained. The general procedure of investigation of critical properties is discussed and phase diagrams are obtained, in particular, for negative biquadratic couplings. The phase diagram of the model exhibits a rich variety of behaviours. Results are compared with other approximate methods

  20. Confinement in Polyakov gauge and the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Marc Florian

    2009-10-14

    We investigate Quantum Chromodynamics (QCD) in the framework of the functional renormalisation group (fRG). Thereby describing the phase transition from the phase with confined quarks into the quark-gluon-plasma phase. We focus on a physical gauge in which the mechanism driving the phase transition is discernible. We find results compatible with lattice QCD data, as well as with functional methods applied in different gauges. The phase transition is of the expected order and we computed critical exponents. Extensions of the model are discussed. When investigating the QCD phase diagram, we compute the effects of dynamical quarks at finite density on the running of the gauge coupling. Additionally, we calculate how these affect the deconfinement phase transition, also, dynamical quarks allow for the inclusion of a finite chemical potential. Concluding the investigation of the phase diagram, we establish a relation between confinement and chiral symmetry breaking, which is tied to the dynamical generation of hadron masses. In the investigations, we often encounter scale dependent fields. We investigate a footing on which these can be dealt with in a uniform way. (orig.)

  1. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M., E-mail: mrivera@fisica.unam.m [Imperial College London, Department of Chemistry, South Kensington Campus, London SW7 2AZ (United Kingdom); Rios-Reyes, C.H. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, Mexico D.F. (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico); Mendoza-Huizar, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico)

    2011-04-15

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: > Electrodeposition of cobalt clusters. > Mono to multidomain magnetic transition. > Magnetic phase diagram.

  2. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2011-01-01

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: → Electrodeposition of cobalt clusters. →Mono to multidomain magnetic transition. → Magnetic phase diagram.

  3. Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata

    Science.gov (United States)

    Astaraki, M.; Ghaemi, M.; Afzali, K.

    2018-05-01

    Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.

  4. Phase diagrams of diluted transverse Ising nanowire

    International Nuclear Information System (INIS)

    Bouhou, S.; Essaoudi, I.; Ainane, A.; Saber, M.; Ahuja, R.; Dujardin, F.

    2013-01-01

    In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J cs exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given

  5. The ground-state phase diagrams of the spin-3/2 Ising model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2003-01-01

    The ground-state spin configurations are obtained for the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic exchange interactions and a single-ion crystal field. The interactions are assumed to be only between nearest-neighbors. The calculated ground-state phase diagrams are presented on diatomic lattices, such as the square, honeycomb and sc lattices, and triangular lattice in the (Δ/z vertical bar J vertical bar ,K/ vertical bar J vertical bar) and (H/z vertical bar J vertical bar, K/ vertical bar J vertical bar) planes

  6. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    Energy Technology Data Exchange (ETDEWEB)

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  7. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  8. Magnetic Phase Diagram of α-RuCl3

    Science.gov (United States)

    Sears, Jennifer; Kim, Young-June; Zhao, Yang; Lynn, Jeffrey

    The layered honeycomb material α-RuCl3 is thought to possess unusual magnetic interactions including a strong bond-dependent Kitaev term, offering a potential opportunity to study a material near a well understood spin liquid phase. Although this material orders magnetically at low temperatures and is thus not a realization of a Kitaev spin liquid, it does show a broad continuum of magnetic excitations reminiscent of that expected for the spin liquid phase. It has also been proposed that a magnetic field could destabilize the magnetic order in this material and induce a transition into a spin liquid phase. Low temperature magnetization and specific heat measurements in this material have suggested a complex magnetic phase diagram with multiple unidentified magnetic phases present at low temperature. This has provided motivation for our work characterizing the magnetic transitions and phase diagram in α-RuCl3. I will present detailed bulk measurements combined with magnetic neutron diffraction measurements to map out the phase diagram and identify the various phases present.

  9. Multicritical dynamical phase diagrams of the kinetic Blume-Emery-Griffiths model with repulsive biquadratic coupling in an oscillating field

    Energy Technology Data Exchange (ETDEWEB)

    Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2008-06-15

    We study, within a mean-field approach, the stationary states of the kinetic Blume-Emery-Griffiths model with repulsive biquadratic coupling under the presence of a time-varying (sinusoidal) magnetic field. We employ the Glauber-type stochastic dynamics to construct set of dynamic equations of motion. The behavior of the time dependence of the order parameters and the behavior of the average order parameters in a period, which is also called the dynamic order parameters, as functions of the reduced temperature are investigated. The dynamic phase transition points are calculated and phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The dynamical transition from one regime to the other can be of first- or second order depending on the region in the phase diagram. According to the values of the crystal field interaction or single-ion anisotropy constant and biquadratic exchange constant, we find 20 fundamental types of phase diagrams which exhibit many dynamic critical points, such as tricritical points, zero-temperature critical points, double critical end points, critical end point, triple point and multicritical point. Moreover, besides a disordered and ordered phases, seven coexistence phase regions exist in the system.

  10. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  11. Phase diagrams of diluted transverse Ising nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Bouhou, S.; Essaoudi, I. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Ainane, A., E-mail: ainane@pks.mpg.de [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Saber, M. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Ahuja, R. [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Dujardin, F. [Laboratoire de Chimie et Physique des Milieux Complexes (LCPMC), Institut de Chimie, Physique et Matériaux (ICPM), 1 Bd. Arago, 57070 Metz (France)

    2013-06-15

    In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J{sub cs} exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given.

  12. Phase diagram of the Blume-Emery-Griffiths model on the simple cubic lattice calculated by the linear chain approximation

    International Nuclear Information System (INIS)

    Albayrak, Erhan; Keskin, Mustafa

    2000-01-01

    The linear chain approximation is used to study the temperature dependence of the order parameters and the phase diagrams of the Blume-Emery-Griffiths model on the simple cubic lattice with dipole-dipole, quadrupole-quadrupole coupling strengths and a crystal-field interaction. The problem is approached introducing first a trial one-dimensional Hamiltonian whose free energy can be calculated exactly by the transfer matrix method. Then using the Bogoliubov variational principle, the free energy of the model is determined. It is assumed that the dipolar and quadrupolar intrachain coupling constants are much stronger than the corresponding interchain constants and confined the attention to the case of nearest-neighbor interactions. The phase transitions are examined and the phase diagrams are obtained for several values of the coupling strengths in the three different planes. A comparison with other approximate techniques is also made

  13. Phase diagram of the Blume-Emery-Griffiths model on the simple cubic lattice calculated by the linear chain approximation

    CERN Document Server

    Albayrak, E

    2000-01-01

    The linear chain approximation is used to study the temperature dependence of the order parameters and the phase diagrams of the Blume-Emery-Griffiths model on the simple cubic lattice with dipole-dipole, quadrupole-quadrupole coupling strengths and a crystal-field interaction. The problem is approached introducing first a trial one-dimensional Hamiltonian whose free energy can be calculated exactly by the transfer matrix method. Then using the Bogoliubov variational principle, the free energy of the model is determined. It is assumed that the dipolar and quadrupolar intrachain coupling constants are much stronger than the corresponding interchain constants and confined the attention to the case of nearest-neighbor interactions. The phase transitions are examined and the phase diagrams are obtained for several values of the coupling strengths in the three different planes. A comparison with other approximate techniques is also made.

  14. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  15. Glass and liquid phase diagram of a polyamorphic monatomic system

    Science.gov (United States)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the

  16. Unified Phase Diagram for Iron-Based Superconductors.

    Science.gov (United States)

    Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang

    2017-10-13

    High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.

  17. Unified Phase Diagram for Iron-Based Superconductors

    Science.gov (United States)

    Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-feng; Luo, Huiqian; Li, Shiliang

    2017-10-01

    High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.

  18. From MIPS to Vicsek: A comprehensive phase diagram for self-propelled rods

    Science.gov (United States)

    Shi, Xiaqing

    Self-propelled rods interacting by volume exclusion is one of the simplest active matter systems. Despite years of effort, no comprehensive picture of their phase diagram is available. Furthermore, results on explicit rods are so far largely disconnected from those obtained on the relatively better understood cases of motility induced phase separation (MIPS) of (usually) isotropic active particles, and from our current knowledge of Vicsek-style aligning point particles. In this talk, I will present a complete phase diagram of a generic model of self-propelled rods and show how it is connected to both MIPS and Vicsek worlds.

  19. Phase shifts of the paired wings of butterfly diagrams

    International Nuclear Information System (INIS)

    Li Kejun; Liang Hongfei; Feng Wen

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)

  20. Magnetic phase diagrams of UNiGe

    International Nuclear Information System (INIS)

    Nakotte, H.; Hagmusa, I.H.; Klaasse, J.C.P.; Hagmusa, I.H.; Klaasse, J.C.P.

    1997-01-01

    UNiGe undergoes two magnetic transitions in zero field. Here, the magnetic diagrams of UNiGe for B parallel b and B parallel c are reported. We performed temperatures scans of the magnetization in static magnetic fields up to 19.5T applied along the b and c axes. For both orientations 3 magnetic phases have been identified in the B-T diagrams. We confirmed the previously reported phase boundaries for B parallel c, and in addition we determined the location of the phase boundaries for B parallel b. We discuss a possible relationship of the two zero-field antiferromagnetic phases (commensurate: T<42K; incommensurate: 42K< T<50K) and the field-induced phase, which, at low temperatures, occurs between 18 and 25T or 4 and 10T for B parallel b or B parallel c, respectively. Finally, we discuss the field dependence of the electronic contribution γ to the specific heat for B parallel c up to 17.5T, and we find that its field dependence is similar to the one found in more itinerant uranium compounds

  1. Phase diagram and tricritical behavior of an metamagnet in uniform and random fields

    International Nuclear Information System (INIS)

    Liang Yaqiu; Wei Guozhu; Xu Xiaojuan; Song Guoli

    2010-01-01

    A two-sublattice Ising metamagnet in both uniform and random fields is studied within the mean-field approach based on Bogoliubov's inequality for the Gibbs free energy. We show that the qualitative features of the phase diagrams are dependent on the parameters of the model and the uniform field values. The tricritical point and reentrant phenomenon can be observed on the phase diagram. The reentrance is due to the competition between uniform and random interactions.

  2. On the phase diagram of non-spherical nanoparticles

    CERN Document Server

    Wautelet, M; Hecq, M

    2003-01-01

    The phase diagram of nanoparticles is known to be a function of their size. In the literature, this is generally demonstrated for cases where their shape is spherical. Here, it is shown theoretically that the phase diagram of non-spherical particles may be calculated from the spherical case, at the same surface area/volume ratio, both with and without surface segregation, provided the surface tension is considered to be isotropic.

  3. Phase diagram of the Ge-rich of the Ba–Ge system and characterisation of single-phase BaGe4

    International Nuclear Information System (INIS)

    Prokofieva, Violetta K.; Pavlova, Lydia M.

    2014-01-01

    Highlights: • The Ba-Ge phase diagram for the range 50–100 at.% Ge was constructed. • Single-phase BaGe 4 grown by the Czochralski method was characterised. • A phenomenological model for a liquid-liquid phase transition is proposed. - Abstract: The Ba–Ge binary system has been investigated by several authors, but some uncertainties remain regarding phases with Ba/Ge ⩽ 2. The goal of this work was to resolve the uncertainty about the current phase diagram of Ba–Ge by performing DTA, X-ray powder diffraction, metallographic and chemical analyses, and measurements of the electrical conductivity and viscosity. The experimental Ba–Ge phase diagram over the composition range of 50–100 at.% Ge was constructed from the cooling curves and single-phase BaGe 4 grown by the Czochralski crystal pulling method was characterised. Semiconducting BaGe 4 crystallised peritectically from the liquid phase near the eutectic. In the liquid state, the caloric effects were observed in the DTA curves at 1050 °C where there are no definite phase lines in the Ba–Ge phase diagram. These effects are confirmed by significant changes in the viscosity and electrical conductivity of a Ba–Ge alloy with eutectic composition at this temperature. A phenomenological model based on two different approaches, a phase approach and a chemical approach, is proposed to explain the isothermal liquid–liquid phase transition observed in the Ba–Ge system from the Ge side. Our results suggest that this transition is due to the peritectic reactions in the liquid phase. This reversible phase transition results in the formation of precursors of various metastable clathrate phases and is associated with sudden changes in the structure of Ba–Ge liquid alloys. Characteristics of both first- and second-order phase transitions are observed. Charge transfer appears to play an important role in this transition

  4. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram

    International Nuclear Information System (INIS)

    Zeng, K.J.; Haemaelaeinen, M.; Lilius, K.

    1995-01-01

    In the available experimental information on the Cu-Cr-Zr ternary system, there exist different opinions concerning the phase relationships in the Cu-rich corner of Cu-Cr-Zr phase diagram. Glazov et al. and Zakharov et al. investigated the Cu-rich corner of the Cu-Cr-Zr phase diagram within the composition range up to 3.5 Cr and 3.5 Zr (wt. %). A quasi-eutectic reaction L → (Cu) + αCr 2 Zr was observed to occur at 1,020 C and several isothermal sections were constructed within the temperature range from 600 to 1,000 C to show the (Cu)-αCr 2 Zr two phase equilibrium. Therefore, a pseudobinary Cu-Cr 2 Zr system was supposed. Afterwards, Dawakatsu et al, Fedorov et al, and Kuznetsov et al studied the cu-rich corner of the phase diagram in a wider composition range up to 5 Cr and 20 Zr (at.%). Contrary to Glazov et al. and Zakharov et al., they found no Cr 2 Zr phase in their samples. Hence, the pseudobinary Cu-Cr 2 Zr system does not exist. In this study an experimental investigation is presented on the phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram at 940 C in order to clear up the confusion

  5. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol/Sodium Polyacrylate/Salts

    Directory of Open Access Journals (Sweden)

    Adalberto Pessoa Junior

    2011-03-01

    Full Text Available Aqueous two-phase systems consisting of polyethylene glycol (PEG, sodium polyacrylate (NaPAA, and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory-Huggins theory of polymer solutions are presented. Due to strong enthalpic and entropic balancing forces, the hydrophobicity of the added salt has a strong influence on the position of the binodal, which could be reproduced by model calculations.

  6. Exploring the QCD phase diagram through relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Mohanty Bedangadas

    2014-03-01

    Full Text Available We present a review of the studies related to establishing the QCD phase diagram through high energy nucleus-nucleus collisions. We particularly focus on the experimental results related to the formation of a quark-gluon phase, crossover transition and search for a critical point in the QCD phase diagram.

  7. Magnetization plateaus and ground-state phase diagrams of the S=1 Ising model on the Shastry Sutherland lattice

    Science.gov (United States)

    Deviren, Seyma Akkaya

    2017-02-01

    In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.

  8. Phase diagrams of the ternary alloy with a single-ion anisotropy in the mean-field approximation

    International Nuclear Information System (INIS)

    Dely, J.; Bobak, A.

    2006-01-01

    The phase diagram of the AB p C 1-p ternary alloy consisting of Ising spins S A =32, S B =2, and S C =52 is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. The effect of the single-ion anisotropy on the phase diagrams is discussed by changing values of the parameters in the model Hamiltonian and comparison is made with the recently reported finite-temperature phase diagrams for the ternary alloy having spin S B =1

  9. Quantum phase diagram of the integrable px+ipy fermionic superfluid

    DEFF Research Database (Denmark)

    Rombouts, Stefan; Dukelsky, Jorge; Ortiz, Gerardo

    2010-01-01

    transition, separating a strong-pairing from a weak-pairing phase. The mean-field solution allows to connect these results to other models with px+ipy pairing order. We define an experimentally accessible characteristic length scale, associated with the size of the Cooper pairs, that diverges......We determine the zero-temperature quantum phase diagram of a px+ipy pairing model based on the exactly solvable hyperbolic Richardson-Gaudin model. We present analytical and large-scale numerical results for this model. In the continuum limit, the exact solution exhibits a third-order quantum phase...... at the transition point, indicating that the phase transition is of a confinement-deconfinement type without local order parameter. We propose an experimental measurement to detect the transition. We show that this phase transition is not limited to the px+ipy pairing model but can be found in any representation...

  10. Re-determination of succinonitrile (SCN) camphor phase diagram

    Science.gov (United States)

    Teng, Jing; Liu, Shan

    2006-04-01

    Low-melting temperature transparent organic materials have been extensively used to study the pattern formation and microstructure evolution. It proves to be very challenging to accurately determine the phase diagram since there is no viable way to measure the composition microscopically. In this paper, we presented the detailed experimental characterization of the phase diagram of succinonitrile (SCN)-camphor binary system. Differential scanning calorimetry, a ring-heater, and the directional solidification technique have been combined to determine the details of the phase diagram by using the purified materials. The advantages and disadvantages have been discussed for the different experimental techniques. SCN and camphor constitute a simple binary eutectic system with the eutectic composition at 23.6 wt% camphor and eutectic temperature at 37.65 °C. The solidus and the solubility of the SCN base solid solution have been precisely determined for the first time in this binary system.

  11. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Beutl, Alexander; Flanorfer, Hans; Henriques, David; Giel, Hans; Markus, Thorsten

    2017-01-01

    This article reports on two consecutive joint projects titled ''Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries'', which were performed in the framework of the WenDeLIB 1473 priority program ''Materials with new Design for Lithium Ion Batteries''. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu-Li, Li-Sn, Li-Sb, Cu-Li-Sn, Cu-Li-Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.

  12. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Beutl, Alexander; Flanorfer, Hans [Vienna Univ. (Austria). Dept. of Inorganic Chemistry - Functional Materials; Li, Dajian; Cupid, Damian [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Henriques, David; Giel, Hans; Markus, Thorsten [Mannheim Univ. of Applied Sciences (Germany). Inst. for Thermo- and Fluiddynamics

    2017-11-15

    This article reports on two consecutive joint projects titled ''Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries'', which were performed in the framework of the WenDeLIB 1473 priority program ''Materials with new Design for Lithium Ion Batteries''. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu-Li, Li-Sn, Li-Sb, Cu-Li-Sn, Cu-Li-Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.

  13. Conformational properties of rigid-chain amphiphilic macromolecules : The phase diagram

    NARCIS (Netherlands)

    Markov, V. A.; Vasilevskaya, V. V.; Khalatur, P. G.; ten Brinke, G.; Khokhlov, A. R.

    The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial

  14. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model

    International Nuclear Information System (INIS)

    Zeeb, G.

    2006-01-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized σ-ω model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the resulting freeze

  15. Temperature-dependent pitch and phase diagram for incommensurate XY spins in a slab geometry

    International Nuclear Information System (INIS)

    Collins, M.; Saslow, W.M.

    1996-01-01

    Strain-engineered Heisenberg antiferromagnets recently have been produced by controlling the layer thickness of MnSe/ZnTe superlattices. Neutron-scattering studies reveal a spiral that tends to untwist with increasing temperature. To simulate this system, we employ an XY model with nearest- and second-nearest neighbor antiferromagnetic interactions. The bulk mean-field phase diagram has four possible phases, for the full range of the exchange constants. Monte Carlo calculations are performed for a slab geometry, using an algorithm that allows the system to choose incommensurate boundary conditions. The phase diagram is constructed by monitoring the spiral pitch as a function of temperature for a range of exchange constants. For appropriate exchange constants, good agreement is obtained with experiment. From the mean-field phase diagram it appears that strain engineering an NaCl structure in a superlattice configuration might produce a type of spiral phase, and an associated antiferromagnetic-to-spiral phase transition. copyright 1996 The American Physical Society

  16. Phase diagrams of a spin-1/2 transverse Ising model with three-peak random field distribution

    International Nuclear Information System (INIS)

    Bassir, A.; Bassir, C.E.; Benyoussef, A.; Ez-Zahraouy, H.

    1996-07-01

    The effect of the transverse magnetic field on the phase diagrams structures of the Ising model in a random longitudinal magnetic field with a trimodal symmetric distribution is investigated within a finite cluster approximation. We find that a small magnetizations ordered phase (small ordered phase) disappears completely for a sufficiently large value of the transverse field or/and large value of the concentration of the disorder of the magnetic field. Multicritical behaviour and reentrant phenomena are discussed. The regions where the tricritical, reentrant phenomena and the small ordered phase persist are delimited as a function of the transverse field and the concentration p. Longitudinal magnetizations are also presented. (author). 33 refs, 6 figs

  17. Dynamic phase transition and multicritical dynamic phase diagrams of the kinetic spin-3/2 Blume Emery Griffiths model with repulsive biquadratic coupling under a time-dependent oscillating external field

    Science.gov (United States)

    Deviren, Bayram; Keskin, Mustafa; Canko, Osman

    2008-03-01

    We extend our recent paper [O. Canko, B. Deviren, M. Keskin, J. Phys.: Condens. Mater 118 (2006) 6635] to present a study, within a mean-field approach, the stationary states of the kinetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic interaction under the presence of a time varying (sinusoidal) magnetic field. We found that the dynamic phase diagrams of the present work exhibit more complex, richer and more topological different types of phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the ferrimagnetic ( i) phase in addition to the ferromagnetic ±3/2 ( f), ferromagnetic ±1/2 ( f), antiquadrupolar or staggered ( a) and disordered ( d) phases, and the f+i, f+d, i+d, f+i+d, a+d and/or f+i+a coexistence regions in addition to the f+f, f+d, f+a, f+d and/or f+a+d coexistence regions, depending on interaction parameters. Moreover, the phase diagrams exhibit dynamic zero-temperature critical, critical end, double critical end, multicritical, and/or pentacritical special points in addition to the dynamic tricritical, double critical end point, triple, quadruple and/or tetracritical special points that depending on the interaction parameters.

  18. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    International Nuclear Information System (INIS)

    Kagan, M. Yu.; Val’kov, V. V.; Mitskan, V. A.; Korovuskin, M. M.

    2013-01-01

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d xy , p, s, and d x 2 -y 2 symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d x 2 -y 2 symmetry and high critical temperatures T c ∼ 100 K near the half-filling are determined

  19. Analyzing phase diagrams and phase transitions in networked competing populations

    Science.gov (United States)

    Ni, Y.-C.; Yin, H. P.; Xu, C.; Hui, P. M.

    2011-03-01

    Phase diagrams exhibiting the extent of cooperation in an evolutionary snowdrift game implemented in different networks are studied in detail. We invoke two independent payoff parameters, unlike a single payoff often used in most previous works that restricts the two payoffs to vary in a correlated way. In addition to the phase transition points when a single payoff parameter is used, phase boundaries separating homogeneous phases consisting of agents using the same strategy and a mixed phase consisting of agents using different strategies are found. Analytic expressions of the phase boundaries are obtained by invoking the ideas of the last surviving patterns and the relative alignments of the spectra of payoff values to agents using different strategies. In a Watts-Strogatz regular network, there exists a re-entrant phenomenon in which the system goes from a homogeneous phase into a mixed phase and re-enters the homogeneous phase as one of the two payoff parameters is varied. The non-trivial phase diagram accompanying this re-entrant phenomenon is quantitatively analyzed. The effects of noise and cooperation in randomly rewired Watts-Strogatz networks are also studied. The transition between a mixed phase and a homogeneous phase is identify to belong to the directed percolation universality class. The methods used in the present work are applicable to a wide range of problems in competing populations of networked agents.

  20. Phase diagram of supercooled water confined to hydrophilic nanopores

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2012-07-01

    We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.

  1. Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins

    International Nuclear Information System (INIS)

    Vega, C; Sanz, E; Abascal, J L F; Noya, E G

    2008-01-01

    In this review we focus on the determination of phase diagrams by computer simulation, with particular attention to the fluid-solid and solid-solid equilibria. The methodology to compute the free energy of solid phases will be discussed. In particular, the Einstein crystal and Einstein molecule methodologies are described in a comprehensive way. It is shown that both methodologies yield the same free energies and that free energies of solid phases present noticeable finite size effects. In fact, this is the case for hard spheres in the solid phase. Finite size corrections can be introduced, although in an approximate way, to correct for the dependence of the free energy on the size of the system. The computation of free energies of solid phases can be extended to molecular fluids. The procedure to compute free energies of solid phases of water (ices) will be described in detail. The free energies of ices Ih, II, III, IV, V, VI, VII, VIII, IX, XI and XII will be presented for the SPC/E and TIP4P models of water. Initial coexistence points leading to the determination of the phase diagram of water for these two models will be provided. Other methods to estimate the melting point of a solid, such as the direct fluid-solid coexistence or simulations of the free surface of the solid, will be discussed. It will be shown that the melting points of ice Ih for several water models, obtained from free energy calculations, direct coexistence simulations and free surface simulations agree within their statistical uncertainty. Phase diagram calculations can indeed help to improve potential models of molecular fluids. For instance, for water, the potential model TIP4P/2005 can be regarded as an improved version of TIP4P. Here we will review some recent work on the phase diagram of the simplest ionic model, the restricted primitive model. Although originally devised to describe ionic liquids, the model is becoming quite popular to describe the behavior of charged colloids

  2. Phase diagram distortion from traffic parameter averaging.

    NARCIS (Netherlands)

    Stipdonk, H. Toorenburg, J. van & Postema, M.

    2010-01-01

    Motorway traffic congestion is a major bottleneck for economic growth. Therefore, research of traffic behaviour is carried out in many countries. Although well describing the undersaturated free flow phase as an almost straight line in a (k,q)-phase diagram, congested traffic observations and

  3. Optimization and calculation of the MCl-ZnCl2 (M = Li, Na, K) phase diagrams

    International Nuclear Information System (INIS)

    Romero-Serrano, Antonio; Hernandez-Ramirez, Aurelio; Cruz-Ramirez, Alejandro; Hallen-Lopez, Manuel; Zeifert, Beatriz

    2010-01-01

    An earlier structural model for binary silicate melts and glasses is extended to zinc chloride-alkali metal chloride systems. The evaluation of the available thermodynamic and phase diagrams data for the MCl-ZnCl 2 (M = Li, Na, K) binary systems have been carried out using the structural model for the liquid phase. This thermodynamic model is based on the assumption that each alkali chloride produces the depolymerization of ZnCl 2 network with a characteristic free-energy change. A least-squares optimization program permits all available thermodynamic and phase diagram data to be optimized simultaneously. In this manner, data for these binary systems have been analysed and represented with a small number of parameters.

  4. Phase diagram and transport properties for hydrogen-helium fluid planets

    International Nuclear Information System (INIS)

    Stevenson, D.J.; Salpeter, E.E.

    1977-01-01

    Hydrogen and helium are the major constituents of Jupiter and Saturn, and phase transitions can have important effects on the planetary structure. In this paper, the relevant phase diagrams and microscopic transport properties are analyzed in detail. The following paper (Paper II) applies these results to the evolution and present dynamic structure of the Jovian planets.Pure hydrogen is first discussed, especially the nature of the molecular-metallic transition and the melting curves for the two phases. It is concluded that at the temperatures and pressures of interest (Tapprox. =10 4 K, Papprox. =1--10 Mbar), both phases are fluid, but the transition between them might nevertheless be first-order. The insulator-metal transition in helium occurs at a much higher pressure (approx.70 Mbars) and is not of interest.The phase diagrams for both molecular and metallic hydrogen-helium mixtures are discussed. In the metallic mixture, calculations indicate a miscibility gap for T9 or approx. =10 4 K. Immiscibility in the molecular mixture is more difficult to predict but almost certainly occurs at much lower temperatures. A fluid-state model is constructed which predicts the likely topology of the three-dimensional phase diagram. The greater solubility of helium in the molecular phase leads to the prediction that the He/H mass ratio is typically twice as large in the molecular phase as in the coexisting metallic phase. Under these circumstances a ''density inversion'' is possible in which the molecular phase becomes more dense than the metallic phase.The partitioning of minor constituents is also considered: The deuterium/hydrogen mass ratio is essentially the same for all coexisting hydrogen-helium phases, at least for T> or approx. =5000 K. The partitioning of H 2 O, CH 4 , and NH 3 probably favors the molecular (or helium-rich) phase. Substances with high conduction electron density (e.g., Al) may partition into the metallic phase

  5. Groundstate fidelity phase diagram of the fully anisotropic two-leg spin-½ XXZ ladder

    Science.gov (United States)

    Li, Sheng-Hao; Shi, Qian-Qian; Batchelor, Murray T.; Zhou, Huan-Qiang

    2017-11-01

    The fully anisotropic two-leg spin-\\tfrac{1}{2} XXZ ladder model is studied in terms of an algorithm based on the tensor network (TN) representation of quantum many-body states as an adaptation of projected entangled pair states to the geometry of translationally invariant infinite-size quantum spin ladders. The TN algorithm provides an effective method to generate the groundstate wave function, which allows computation of the groundstate fidelity per lattice site, a universal marker to detect phase transitions in quantum many-body systems. The groundstate fidelity is used in conjunction with local order and string order parameters to systematically map out the groundstate phase diagram of the ladder model. The phase diagram exhibits a rich diversity of quantum phases. These are the ferromagnetic, stripe ferromagnetic, rung singlet, rung triplet, Néel, stripe Néel and Haldane phases, along with the two XY phases XY1 and XY2.

  6. Experimental determination of the Ta–Ge phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Araújo Pinto da Silva, Antonio Augusto, E-mail: aaaps@ppgem.eel.usp.br [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Coelho, Gilberto Carvalho [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); UniFoa – Centro Universitário de Volta Redonda, Núcleo de Pesquisa, Campus Três Poços, Avenida Paulo Erlei Alves Abrantes, 1325, Bairro Três Poços, 27240-560 Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Suzuki, Paulo Atsushi [EEL/USP – Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Fiorani, Jean Marc; David, Nicolas; Vilasi, Michel [Université de Lorraine, Institut Jean Lamour, Faculté des Sciences et Technologies, BP 70239, F-54506 Vandoeuvre-lès-Nancy (France)

    2013-11-05

    Highlights: •Ta–Ge phase diagram propose for the first time. •The phase αTa{sub 5}Ge{sub 3} was not observed in samples investigated in this work. •Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. -- Abstract: In the present work, the Ta–Ge phase diagram has been experimentally studied, considering the inexistence of a Ta–Ge phase diagram in the literature. The samples were prepared via arc melting and characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD). The intermetallics phases βTa{sub 3}Ge, αTa{sub 3}Ge, βTa{sub 5}Ge{sub 3} and TaGe{sub 2} where confirmed in this system. Three eutectics reactions where determined with the liquid compositions at 20.5; 28.0; 97.0 at.% Ge. The phases βTa{sub 3}Ge and βTa{sub 5}Ge{sub 3} solidifies congruently while TaGe{sub 2} is formed through a peritectic transformation. The temperature of the Ta-rich eutectic (L ↔ Ta{sub ss} + βTa{sub 3}Ge) was measured by the Pirani-Alterthum method at 2440 °C and the Ge-rich eutectic (L ↔ TaGe{sub 2} + Ge{sub ss}) by DTA at 937 °C.

  7. Neutron-diffraction studies of the nuclear magnetic phase diagram of copper

    DEFF Research Database (Denmark)

    Annila, A.J.; Clausen, Kurt Nørgaard; Oja, A.S.

    1992-01-01

    We have studied the spontaneous antiferromagnetic (AF) order in the nuclear spin system of copper by use of neutron-diffraction experiments at nanokelvin temperatures. Copper is an ideal model system as a nearest-neighbor-dominated spin-3/2 fcc antiferromagnet. The phase diagram has been investig......We have studied the spontaneous antiferromagnetic (AF) order in the nuclear spin system of copper by use of neutron-diffraction experiments at nanokelvin temperatures. Copper is an ideal model system as a nearest-neighbor-dominated spin-3/2 fcc antiferromagnet. The phase diagram has been...... investigated by measuring the magnetic-field dependence of the (100) reflection, characteristic of a type-I AF structure, and of a Bragg peak at (0 2/3 2/3). The results suggest the presence of high-field (100) phases at 0.12 less-than-or-equal-to B less-than-or-equal-to B(c) almost-equal-to 0.26 mT, for B...... compared with results of earlier susceptibility measurements in order to identify the translational periods of the three previously found antiferromagnetic phases for B parallel-to [100]. Recent theoretical work has yielded results in agreement with our experimental data....

  8. Phase stabilities at a glance: Stability diagrams of nickel dipnictides

    International Nuclear Information System (INIS)

    Bachhuber, F.; Rothballer, J.; Weihrich, R.; Söhnel, T.

    2013-01-01

    In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn 2 (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb 2 , and the NiAs 2 types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB 2 structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases

  9. Equations of State and Phase Diagrams of Ammonia

    Science.gov (United States)

    Glasser, Leslie

    2009-01-01

    We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…

  10. The Prognosis of the Phase Equilibrium Diagram of the System Al-Cu-Si

    Directory of Open Access Journals (Sweden)

    Florentina Cziple

    2007-10-01

    Full Text Available The paper presents a model for establishing the mathematical functions of the liquidus and solidus curves, from the binary diagrams Al-Si, Si-Cu, Cu-Al and their use in the prognosis of the phase equilibrium diagram from the ternary system Al-Cu-Si. We have studied the model of the non-ideal liquid solution of the regular type. The calculus and graphic plotting of the equations for the binary systems has been performed on the computer

  11. Phase diagrams for surface alloys

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Stoltze, Per

    1997-01-01

    We discuss surface alloy phases and their stability based on surface phase diagrams constructed from the surface energy as a function of the surface composition. We show that in the simplest cases of pseudomorphic overlayers there are four generic classes of systems, characterized by the sign...... is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss...

  12. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, M. Yu., E-mail: kagan@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute for Physical Problems (Russian Federation); Val' kov, V. V.; Mitskan, V. A.; Korovuskin, M. M. [Russian Academy of Sciences, Kirenskii Physics Institute, Siberian Branch (Russian Federation)

    2013-10-15

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d{sub xy}, p, s, and d{sub x{sup 2}-y{sup 2}} symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d{sub x{sup 2}-y{sup 2}} symmetry and high critical temperatures T{sub c} {approx} 100 K near the half-filling are determined.

  13. On the question of calculation methods of phase diagrams

    International Nuclear Information System (INIS)

    Vasil'ev, M.V.

    1983-01-01

    The technique of determining interaction parameters of components of binary alloys is suggested. U-Mo and Cu-Al systems are used as example with the aid of experimental state diagrams. It is shown that the search for new regularities is necessary with the aim of analytical description of state diagrams and forecast of the shape of phase equilibria curves in real systems. Optimum combinations of experimental investigations with the aim of reliable determination of supporting points and forecasting possibilities of typical equations can considerably decrease the volume of experimental work when preparing state diagrams, in cases of repeated state diagrams of more reliable state diagrams with the application of more advanced methods of investigation. The translation of state diagrams from geometric to analytical language with the use of typical equations opens up new possibilities for establishing a compact information bank for state diagrams

  14. Applications of phase diagrams in metallurgy and ceramics

    International Nuclear Information System (INIS)

    Carter, G.C.

    1978-03-01

    The workshop represents an effort to coordinate and reinforce the current efforts on compilation of phase diagrams of alloys and ceramics. Many research groups and individual scientists throughout the world are concerned with phase equilibrium data. Specialized expertise exists in small institutions as well as large laboratories. If this talent can be effecively utilized through a cooperative effort, the needs for such data can be met. The Office of Standard Reference Data, which serves as the program management office for the National Standard Reference Data System, is eager to work with all groups concerned with this problem. Through a cooperative international effort we can carry out a task which has become too large for an individual. Volume 2 presents computational techniques for phase diagram construction

  15. Phase Diagram of the Ethylene Glycol-Dimethylsulfoxide System

    Science.gov (United States)

    Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.; Shirokova, E. V.

    2018-05-01

    The phase diagram of ethylene glycol (EG)-dimethylsulfoxide (DMSO) system is studied in the temperature range of +25 to -140°C via differential scanning calorimetry. It is established that the EG-DMSO system is characterized by strong overcooling of the liquid phase, a glass transition at -125°C, and the formation of a compound with the composition of DMSO · 2EG. This composition has a melting temperature of -60°C, which is close to those of neighboring eutectics (-75 and -70°C). A drop in the baseline was observed in the temperature range of 8 to -5°C at DMSO concentrations of 5-50 mol %, indicating the existence of a phase separation area in the investigated system. The obtained data is compared to the literature data on the H2O-DMSO phase diagram.

  16. Optimization and calculation of the MCl-ZnCl{sub 2} (M = Li, Na, K) phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Serrano, Antonio, E-mail: romeroipn@hotmail.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico, D.F. (Mexico); Hernandez-Ramirez, Aurelio, E-mail: aurelioh@hotmail.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico, D.F. (Mexico); Cruz-Ramirez, Alejandro, E-mail: alcruzr@ipn.mx [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico, D.F. (Mexico); Hallen-Lopez, Manuel, E-mail: j_hallen@yahoo.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico, D.F. (Mexico); Zeifert, Beatriz, E-mail: bzeifert@yahoo.com [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico, D.F. (Mexico)

    2010-10-20

    An earlier structural model for binary silicate melts and glasses is extended to zinc chloride-alkali metal chloride systems. The evaluation of the available thermodynamic and phase diagrams data for the MCl-ZnCl{sub 2} (M = Li, Na, K) binary systems have been carried out using the structural model for the liquid phase. This thermodynamic model is based on the assumption that each alkali chloride produces the depolymerization of ZnCl{sub 2} network with a characteristic free-energy change. A least-squares optimization program permits all available thermodynamic and phase diagram data to be optimized simultaneously. In this manner, data for these binary systems have been analysed and represented with a small number of parameters.

  17. Phase diagram of a Lennard-Jones solid

    International Nuclear Information System (INIS)

    Choi, Y.; Ree, T.; Ree, F.H.

    1993-01-01

    A phase diagram of a Lennard-Jones solid at kT/ε≥0.8 is constructed by our recent perturbation theory. It shows the stability of the face-centered-cubic phase except within a small pressure and temperature domain, where the hexagonal-close packed phase may occur. The theory predicts anharmonic contributions to the Helmholtz free energy (important to the crystal stability) in good agreement with Monte Carlo data

  18. Collapsing cycloidal structures in the magnetic phase diagram of erbium

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Simpson, J.A.

    1994-01-01

    The magnetic structure of Er with a magnetic field applied in the hexagonal basal plane has been studied using a combination of experimental techniques and mean-field modeling. From neutron-scattering and magnetization measurements, phase diagrams are constructed. At temperatures above...... approximately 20 K, the application of a field is found to favor cycloidal structures with modulation wave vectors of q(c) = (6/23)c*, (4/15)c*, and (2/7)c*. For fields above almost-equal-to 40 kOe, the (2/7) structure dominates the phase diagram. From a detailed study of this most stable cycloid, we determine...... how it distorts as the field is increased. In low fields, there is a spin reorientation, so that the plane of the cycloid becomes perpendicular to the applied field, while in larger fields, the cycloid collapses through a series of fanlike structures. At lower temperatures, as the field is increased...

  19. Automated discovery and construction of surface phase diagrams using machine learning

    International Nuclear Information System (INIS)

    Ulissi, Zachary W.; Singh, Aayush R.; Tsai, Charlie

    2016-01-01

    Surface phase diagrams are necessary for understanding surface chemistry in electrochemical catalysis, where a range of adsorbates and coverages exist at varying applied potentials. These diagrams are typically constructed using intuition, which risks missing complex coverages and configurations at potentials of interest. More accurate cluster expansion methods are often difficult to implement quickly for new surfaces. We adopt a machine learning approach to rectify both issues. Using a Gaussian process regression model, the free energy of all possible adsorbate coverages for surfaces is predicted for a finite number of adsorption sites. Our result demonstrates a rational, simple, and systematic approach for generating accurate free-energy diagrams with reduced computational resources. Finally, the Pourbaix diagram for the IrO_2(110) surface (with nine coverages from fully hydrogenated to fully oxygenated surfaces) is reconstructed using just 20 electronic structure relaxations, compared to approximately 90 using typical search methods. Similar efficiency is demonstrated for the MoS_2 surface.

  20. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume–Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2012-01-01

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume–Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h 0 /zJ) and (T/zJ, D/zJ), where T absolute temperature, h 0 , the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: ► The effective-field theory is used to study the kinetic spin-5/2 Ising Blume–Capel model. ► Time variations of average order parameter have been studied to find phases in the system. ► The dynamic magnetization, hysteresis loop area and correlation have been calculated. ► The dynamic phase boundaries of the system depend on D/zJ. ► The dynamic phase diagrams are presented in the (T/zJ, h 0 /zJ) and (D/zJ, T/zJ) planes.

  1. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume-Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey)

    2012-04-15

    Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h{sub 0}/zJ) and (T/zJ, D/zJ), where T absolute temperature, h{sub 0}, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: Black-Right-Pointing-Pointer The effective-field theory is used to study the kinetic spin-5/2 Ising Blume-Capel model. Black-Right-Pointing-Pointer Time variations of average order parameter have been studied to find phases in the system. Black-Right-Pointing-Pointer The dynamic magnetization, hysteresis loop area and correlation have been calculated. Black-Right-Pointing-Pointer The dynamic phase boundaries of the system depend on D/zJ. Black-Right-Pointing-Pointer The dynamic phase diagrams are presented in the (T/zJ, h{sub 0}/zJ) and (D/zJ, T/zJ) planes.

  2. Phase diagram Fe-Sn-Sr. New experimental results

    International Nuclear Information System (INIS)

    Nieva, N; Jimenez, M.J; Gomez, A; Corvalan Moya, C; Arias, D

    2012-01-01

    Zr-based alloys are widely used in nuclear industry due to their specific characteristics. The information of the phase diagrams of the ternary system Fe-Zr-Sn is scarce. In this work we investigate, in a experimental way, the central and the Fe-Sn binary adjacent regions of the Fe-Sn-Zr Gibbs triangle at the temperature of 800 o C. For the experimental work, a set of seven ternary alloys was designed, produced and examined by different complementary techniques. There were performed two types of heat treatments: one of medium and another of long duration. We present a new proposal for the 800 o C isothermal section. The boundaries of the identified phases and the fields of one, two and three phases are indicated in the diagram

  3. Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models

    KAUST Repository

    Seibold, Benjamin

    2013-09-01

    Fundamental diagrams of vehicular traiic ow are generally multivalued in the congested ow regime. We show that such set-valued fundamental diagrams can be constructed systematically from simple second order macroscopic traiic models, such as the classical Payne-Whitham model or the inhomogeneous Aw-Rascle-Zhang model. These second order models possess nonlinear traveling wave solutions, called jamitons, and the multi-valued parts in the fundamental diagram correspond precisely to jamiton-dominated solutions. This study shows that transitions from function-valued to set-valued parts in a fundamental diagram arise naturally in well-known second order models. As a particular consequence, these models intrinsically reproduce traiic phases. © American Institute of Mathematical Sciences.

  4. Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models

    KAUST Repository

    Seibold, Benjamin; Flynn, Morris R.; Kasimov, Aslan R.; Rosales, Rodolfo Rubé n

    2013-01-01

    Fundamental diagrams of vehicular traiic ow are generally multivalued in the congested ow regime. We show that such set-valued fundamental diagrams can be constructed systematically from simple second order macroscopic traiic models, such as the classical Payne-Whitham model or the inhomogeneous Aw-Rascle-Zhang model. These second order models possess nonlinear traveling wave solutions, called jamitons, and the multi-valued parts in the fundamental diagram correspond precisely to jamiton-dominated solutions. This study shows that transitions from function-valued to set-valued parts in a fundamental diagram arise naturally in well-known second order models. As a particular consequence, these models intrinsically reproduce traiic phases. © American Institute of Mathematical Sciences.

  5. Phase diagram as a function of temperature and magnetic field for magnetic semiconductors

    OpenAIRE

    Gonzalez, I.; Castro, J.; Baldomir, D.

    2002-01-01

    Using an extension of the Nagaev model of phase separation (E.L. Nagaev, and A.I. Podel'shchikov, Sov. Phys. JETP, 71 (1990) 1108), we calculate the phase diagram for degenerate antiferromagnetic semiconductors in the T-H plane for different current carrier densities. Both, wide-band semiconductors and 'double-exchange' materials, are investigated.

  6. Phase diagram as a function of temperature and magnetic field for magnetic semiconductors

    Science.gov (United States)

    González, I.; Castro, J.; Baldomir, D.

    2002-10-01

    Using an extension of the Nagaev model of phase separation [E. L. Nagaev and A. I. Podel'shchikov, Sov. Phys. JETP, 71, 1108 (1990)] we calculate the phase diagram for degenerate antiferromagnetic semiconductors in the T-H plane for different current carrier densities. Both wide-band semiconductors and double-exchange materials are investigated.

  7. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    Science.gov (United States)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-08-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.

  8. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering.

    Science.gov (United States)

    Jin, Dongliang; Coasne, Benoit

    2017-10-24

    Different molecular simulation strategies are used to assess the stability of methane hydrate under various temperature and pressure conditions. First, using two water molecular models, free energy calculations consisting of the Einstein molecule approach in combination with semigrand Monte Carlo simulations are used to determine the pressure-temperature phase diagram of methane hydrate. With these calculations, we also estimate the chemical potentials of water and methane and methane occupancy at coexistence. Second, we also consider two other advanced molecular simulation techniques that allow probing the phase diagram of methane hydrate: the direct coexistence method in the Grand Canonical ensemble and the hyperparallel tempering Monte Carlo method. These two direct techniques are found to provide stability conditions that are consistent with the pressure-temperature phase diagram obtained using rigorous free energy calculations. The phase diagram obtained in this work, which is found to be consistent with previous simulation studies, is close to its experimental counterpart provided the TIP4P/Ice model is used to describe the water molecule.

  9. A general analytical equation for phase diagrams of an N-layer ferroelectric thin film with two surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z X; Teng, B H; Rong, Y H; Lu, X H; Yang, X [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: phytbh@163.com

    2010-03-15

    Within the framework of effective-field theory with correlations, the phase diagrams of an N-layer ferroelectric thin film with two surface layers are studied by the differential operator technique based on the spin-1/2 transverse Ising model. A general analytical equation for the phase diagram of a ferroelectric thin film with arbitrary layer number as well as exchange interactions and transverse fields is derived, and then the effects of exchange interactions and transverse fields on phase diagrams are discussed for an arbitrary layer number N. Meanwhile, the crossover features, from the ferroelectric-dominant phase diagram (FPD) to the paraelectric-dominant phase diagram (PPD), for various parameters of an N-layer ferroelectric thin film with two surface layers are investigated. As a result, an N-independent common intersection point equation is obtained, and the three-dimensional curved surfaces for the crossover values are constructed. In comparison with the usual mean-field approximation, the differential operator technique with correlations reduces to some extent the ferroelectric features of a ferroelectric thin film.

  10. Phase diagram of the Fe-Sn-Zr system at 800 °C

    International Nuclear Information System (INIS)

    Nieva, N.; Corvalán, C.; Jiménez, M.J.; Gómez, A.; Arreguez, C.; Joubert, J.-M.; Arias, D.

    2017-01-01

    New experimental results on the Fe-Sn-Zr phase diagram at 800 °C are presented, particularly in the central, Fe rich and Sn rich regions of the Gibbs triangle. Seven ternary alloys were designed, produced and examined by different techniques: optical and scanning electron microscopy, semi-quantitative microanalysis, quantitative microanalysis and X-ray diffraction. The results of this work and previous experimental data were used to determine the phase diagram section at 800 °C which contains at least five ternary compounds: Fe 6 Sn 6 Zr, Y, X′, θ and C36. - Highlights: •A phase diagram of Fe-Sn-Zr system at 800 °C is proposed. •The isothermal section of Fe-Sn-Zr system at 800 °C and that at 900 °C determined previously allow reliable extrapolations at low temperatures. •The study at different temperatures (900 °C and 800 °C in this case) is highly desirable because it allows the separation between enthalpic and entropic effects in a future Calphad modelling.

  11. Phase diagram of the Fe-Sn-Zr system at 800 °C

    Energy Technology Data Exchange (ETDEWEB)

    Nieva, N. [Laboratorio de Física del Sólido, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán (Argentina); Corvalán, C., E-mail: corvalan@cnea.gov.ar [Gerencia de Materiales, Comisión Nacional de Energía Atómica Argentina (CNEA), Universidad Nacional de Tres de Febrero, Argentina, CONICET, Consejo Nacional de Ciencia y Técnica (Argentina); Jiménez, M.J. [IFISUR, CONICET, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca (Argentina); Gómez, A. [Grupo LMFAE – PPFAE, Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (Argentina); Arreguez, C. [Laboratorio de Física del Sólido, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán (Argentina); Joubert, J.-M. [Chimie Métallurgique des Terres Rares (CMTR), Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, Université Paris-Est Créteil, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Arias, D. [Instituto de Tecnología J. Sabato, Universidad Nacional de San Martín-CNEA (Argentina)

    2017-04-15

    New experimental results on the Fe-Sn-Zr phase diagram at 800 °C are presented, particularly in the central, Fe rich and Sn rich regions of the Gibbs triangle. Seven ternary alloys were designed, produced and examined by different techniques: optical and scanning electron microscopy, semi-quantitative microanalysis, quantitative microanalysis and X-ray diffraction. The results of this work and previous experimental data were used to determine the phase diagram section at 800 °C which contains at least five ternary compounds: Fe{sub 6}Sn{sub 6}Zr, Y, X′, θ and C36. - Highlights: •A phase diagram of Fe-Sn-Zr system at 800 °C is proposed. •The isothermal section of Fe-Sn-Zr system at 800 °C and that at 900 °C determined previously allow reliable extrapolations at low temperatures. •The study at different temperatures (900 °C and 800 °C in this case) is highly desirable because it allows the separation between enthalpic and entropic effects in a future Calphad modelling.

  12. Multicritical phase diagrams of the ferromagnetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: The cluster variation method and the path probability method with the point distribution

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2008-01-15

    We study the thermal variations of the ferromagnetic spin-3/2 Blume-Emery-Griffiths (BEG) model with repulsive biquadratic coupling by using the lowest approximation of the cluster variation method (LACVM) in the absence and presence of the external magnetic field. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. The classification of the stable, metastable and unstable states is made by comparing the free energy values of these states. We also study the dynamics of the model by using the path probability method (PPM) with the point distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagrams in addition to the equilibrium phase diagrams in the (kT/J, K/J) and (kT/J, D/J) planes. It is found that the metastable phase diagrams always exist at the low temperatures, which are consistent with experimental and theoretical works.

  13. Multicritical phase diagrams of the ferromagnetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic coupling including metastable phases: The cluster variation method and the path probability method with the point distribution

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2008-01-01

    We study the thermal variations of the ferromagnetic spin-3/2 Blume-Emery-Griffiths (BEG) model with repulsive biquadratic coupling by using the lowest approximation of the cluster variation method (LACVM) in the absence and presence of the external magnetic field. We obtain metastable and unstable branches of the order parameters besides the stable branches and phase transitions of these branches are investigated extensively. The classification of the stable, metastable and unstable states is made by comparing the free energy values of these states. We also study the dynamics of the model by using the path probability method (PPM) with the point distribution in order to make sure that we find and define the metastable and unstable branches of the order parameters completely and correctly. We present the metastable phase diagrams in addition to the equilibrium phase diagrams in the (kT/J, K/J) and (kT/J, D/J) planes. It is found that the metastable phase diagrams always exist at the low temperatures, which are consistent with experimental and theoretical works

  14. Misfit strain phase diagrams of epitaxial PMN–PT films

    Energy Technology Data Exchange (ETDEWEB)

    Khakpash, N.; Khassaf, H.; Rossetti, G. A. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2015-02-23

    Misfit strain–temperature phase diagrams of three compositions of (001) pseudocubic (1 − x)·Pb (Mg{sub l/3}Nb{sub 2/3})O{sub 3} − x·PbTiO{sub 3} (PMN–PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN–PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN–PT compared to barium strontium titanate and lead zirconate titanate films.

  15. Critical point analysis of phase envelope diagram

    International Nuclear Information System (INIS)

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Soewono, Edy; Gunawan, Agus Y.

    2014-01-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab

  16. Critical point analysis of phase envelope diagram

    Energy Technology Data Exchange (ETDEWEB)

    Soetikno, Darmadi; Siagian, Ucok W. R. [Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id; Puspita, Dila, E-mail: rkusdiantara@s.itb.ac.id; Sidarto, Kuntjoro A., E-mail: rkusdiantara@s.itb.ac.id; Soewono, Edy; Gunawan, Agus Y. [Department of Mathematics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  17. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Departments of Physics and Astronomy, University College London, Thomas Young Center, London Centre for Nanotechnology, London WC1E 6BT (United Kingdom); Cohen, R. E. [Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015 (United States); Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333 (Germany); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-08-14

    We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.

  18. Na-Si binary phase diagram and solution growth of silicon crystals

    International Nuclear Information System (INIS)

    Morito, H.; Yamada, T.; Ikeda, T.; Yamane, H.

    2009-01-01

    In the present study, a Na-Si binary phase diagram was first presented from the results of differential thermal analysis and X-ray diffraction. Based on the phase diagram, we performed low-temperature formation of single crystals, film and porous bulk of Si by vaporizing Na from a Na-Si melt at 800 or 900 deg. C.

  19. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  20. Quarks and gluons in the phase diagram of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Welzbacher, Christian Andreas

    2016-07-14

    that a dynamical charm quark has no influence on the phase structure. An open question about the phase diagram of quantum chromodynamics is the importance of hadronic degrees of freedom. These are subject to an exploratory study in Ch. 5, where we perform a two flavour calculation and include the nucleon as a degree of freedom in the well-known quark-diquark approximation. Due to the lack of explicit knowledge of in-medium properties of the nucleon, we refer to vacuum results and test their influence by variation. The results show that in this truncation baryons have only very little influence on the phase diagram. This is followed by an approach for a systematic investigation of the quark-gluon vertex Dyson-Schwinger equation at finite temperature. The presented work features an internal model vertex. Calculations taking an unquenched gluon as input are presented, where we compare the quark mass function to results from lattice calculations. We give details about the regularised condensate and study the impact of the different quark flavours and the dependence of the calculation on the chosen internal properties. In the last chapter we perform an investigation of the analytical properties of the quark. The Schwinger function, as the Fourier transform of the Euclidean quark propagator with respect to (imaginary) time, is studied in the vacuum as well as the medium. The spectral function, obtained from correlator data by solving an ill-defined inverse problem, is introduced together with the Rothkopf-Burnier Bayesian reconstruction algorithm, which returns the Bayesian answer to the given inverse problem. The status of the reconstruction for test data is presented and an outline given.

  1. Phase diagrams of superconducting materials: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Flukiger, R.

    1981-01-01

    Because a large number of investigations on superconducting material have been made on insufficiently characterized samples, and with temperature phase diagrams which contained serious errors, phase diagrams are studied. It is seen that the variation of critical temperature as a function of chemical composition for a given compound can be used as a supplementary tool in determining composition with greater accuracy. The consequent search for higher critical temperature value in specified materials has led to a new concept in determining high temperature phase diagrams. Most of this paper is devoted to the study of bulk binary, pseudobinary, or ternary superconductors at their equilibrium state. As will be shown in several cases, these data serve as standard values and are of great help in understanding the superconducting behavior in materials produced by non-equilibrium methods, i.e., splat-cooling, thin film preparation by either sputtering, co-evaporation, or CVD, and diffusion processes in multifilamentary composite wires. An example for the departure from thermal equilibrium is the retention of metastable composition by a fast quenching rate

  2. The Zr-Pt system. Experimental determination of the phase equilibrium conditions, and obtention of the diagram by thermodynamical modeling

    International Nuclear Information System (INIS)

    Alonso, Regina P.

    1997-01-01

    Two regions in the zirconium-platinum system (Zr-Pt) were investigated, namely, the zirconium rich and the platinum rich regions. With this purpose, five alloys were obtained. The performed experiences consisted on heat treatments and electrical resistivity variations with temperature measurements. The appearing phases were analyzed by optical and scanning electron microscopy (SEM), quantitative microanalysis and X-ray diffraction techniques. Besides that, the existing phases in the rich zirconium region between 0 and 50 % at. Pt were thermodynamically modelled and the resulting diagram was calculated by means of the Thermocalc computational program. Several proposals were formulated: a) A change in the eutectoid transformation temperature βZr ↔ αZr + pp (800 C degrees according to this work); b) The existence of the phase Zr 3 Pt in the equilibrium diagram; c) The existence of the peritectic transformation Liquid + Zr 5 Pt 3 ↔ Zr 3 Pt; d) The occurrence of the two - phases region ZrPt 3 + ZrPt 8 between 1050 and 1320 C degrees, and finally; e) The occurrence of the peritectic transformation ZrPt 3 + Liquid ↔ γPt was verified. (author)

  3. Phase diagram of the Ising model on a Cayley tree in the presence of competing interactions and magnetic field

    International Nuclear Information System (INIS)

    Mariz, A.M.; Tsallis, C.; Albuquerque, E.L. de.

    1984-01-01

    The phae diagram for the Ising Model on a Cayley tree with competing nearest-neighbour interactions J 1 and next-nearest-neighbour interactions J 2 and J 3 in the presence of an external magnetic field is studied. To perform this study, an iterative scheme similar to that appearing in real space renormalization group frameworks is established; it recovers, as particular cases, previous works by Vannimenus and by Inawashiro et al. At vanishing temperature, the phase diagram is fully determined, for all values and signs of J 2 /J 1 and J 3 /J 2 ; in particular, it is verified that values of J 3 /J 2 high enough favour the paramagnetic phase. At finite temperatures, several interesting features (evolution of re-entrances, separation of the modulated region in two disconnected pieces, etc.) are exhibited for typical values of J 2 /J 1 and J 3 /J 2 . (Author) [pt

  4. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    International Nuclear Information System (INIS)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-01-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase. (c) 2000 The American Physical Society

  5. Quantum corrections for the phase diagram of systems with competing order

    Science.gov (United States)

    Silva, N. L., Jr.; Continentino, Mucio A.; Barci, Daniel G.

    2018-06-01

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu2Si2. Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  6. Quantum corrections for the phase diagram of systems with competing order.

    Science.gov (United States)

    Silva, N L; Continentino, Mucio A; Barci, Daniel G

    2018-06-06

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu 2 Si 2 . Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  7. Phase diagram of the ternary Zr-Ti-Sn system

    International Nuclear Information System (INIS)

    Arias, D.; Gonzalez Camus, M.

    1987-01-01

    It is well known that Ti stabilizes the high temperature cubic phase of Zr and that Sn stabilizes the low temperature hexagonal phase of Zr. The effect of Sn on the Zr-Ti diagram has been studied in the present paper. Using high purity metals, nine different alloys have been prepared, with 4-32 at % Ti, 0.7-2.2 at % Sn and Zr till 100%. Resistivity and optical and SEM metallography techniques have been employed. Effect of some impurities have been analyzed. The results are discussed and different isothermic sections of the ternary Zr-Ti-Sn diagram are presented. (Author) [es

  8. Nonequilibrium phase diagram of a one-dimensional quasiperiodic system with a single-particle mobility edge

    Science.gov (United States)

    Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas

    2017-11-01

    We investigate and map out the nonequilibrium phase diagram of a generalization of the well known Aubry-André-Harper (AAH) model. This generalized AAH (GAAH) model is known to have a single-particle mobility edge which also has an additional self-dual property akin to that of the critical point of the AAH model. By calculating the population imbalance, we get hints of a rich phase diagram. We also find a fascinating connection between single particle wave functions near the mobility edge of the GAAH model and the wave functions of the critical AAH model. By placing this model far from equilibrium with the aid of two baths, we investigate the open system transport via system size scaling of nonequilibrium steady state (NESS) current, calculated by fully exact nonequilibrium Green's function (NEGF) formalism. The critical point of the AAH model now generalizes to a `critical' line separating regions of ballistic and localized transport. Like the critical point of the AAH model, current scales subdiffusively with system size on the `critical' line (I ˜N-2 ±0.1 ). However, remarkably, the scaling exponent on this line is distinctly different from that obtained for the critical AAH model (where I ˜N-1.4 ±0.05 ). All these results can be understood from the above-mentioned connection between states near the mobility edge of the GAAH model and those of the critical AAH model. A very interesting high temperature nonequilibrium phase diagram of the GAAH model emerges from our calculations.

  9. The phase diagrams and compensation behaviors of mixed spin Blume-Capel model in a trimodal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F. [Department of Physics, Suzhou University, Suzhou 215006 (China); Yan, S.L. [Department of Physics, Suzhou University, Suzhou 215006 (China); Jiangsu Key Loboratory of Film Materials, Suzhou University, Suzhou 215006 (China); CCAST (World Laboratory), PO Box 8730, Beijing 100080 (China)], E-mail: slyan@suda.edu.cn

    2008-04-07

    The phase diagrams and compensation behaviors of mixed spin-1/2 and spin-1 Blume-Capel model in a trimodal magnetic field are investigated in the framework of the effective field theory on simple cubic lattice. The change of negative crystal field and trimodal concentration can affect the TCP, the second-order phase and the magnetic field degeneration at ground state in T-H space. In T-D space, the trajectory of the TCP takes on the acre curve and there exist the two TCPs under certain condition. In addition to giving one or two compensation temperature points in M-T space, the mixed spin Blume-Capel model also provides one or two novel compensation magnetic field points in M-H space. Some results are not revealed in previous works.

  10. Magnetic structures, phase diagram and spin waves of magneto-electric LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius

    2007-01-01

    LiNiPO4 is a magneto-electric material, having co-existing antiferromagnetic and ferroelectric phases when suitable magnetic fields are applied at low temperatures. Such systems have received growing interest in recent years, but the nature of the magneticelectric couplings is yet to be fully...... through the last three years, it is not the primary subject of this thesis. The objective of the phD project has been to provide groundwork that may be beneficiary to future studies of LiNiPO4. More specifically, we have mapped out the magnetic HT phase diagram with magnetic fields below 14.7 T applied...... along the crystallographic c-axis, determined the magnetic structures for the phases in the phase diagram, and have set up a spin model Hamiltonian describing the spin wave dynamics and estimating the relevant magnetic interactions....

  11. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  12. (α,η) phase diagrams in tilted chiral smectics

    International Nuclear Information System (INIS)

    Rjili, M.; Marcerou, J.P.; Gharbi, A.; Othman, T.

    2013-01-01

    The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmC A ⁎ ; SmC Fi1 ⁎ ; SmC Fi2 ⁎ ; SmC ⁎ ; SmC α ⁎ . The continuum theory established by Marcerou (2010) is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC 5 ⁎ and the SmC 6 ⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.

  13. Phase diagrams from ab-initio calculations: Re-W and Fe-B

    Energy Technology Data Exchange (ETDEWEB)

    Hammerschmidt, Thomas; Bialon, Arthur; Palumbo, Mauro; Fries, Suzana G.; Drautz, Ralf [ICAMS, Ruhr-Universitaet Bochum (Germany)

    2011-07-01

    The CALPHAD (CaLculation of Phase Diagrams) method relies on Gibbs energy databases and is of limited predictive power in cases where only limited experimental data is available for constructing the Gibbs energy databases. This is problematic for, e.g., the calculation of the phase transformation kinetics within phase field simulations that not only require the thermodynamic equilibrium data but also information on metastable phases. Such information is difficult to obtain directly from experiment but ab-initio calculations may supplement experimental databases as they comprise metastable phases and arbitrary chemical compositions. We present simulations for two prototypical systems: Re-W and Fe-B. For both systems we calculate the heat of formation for an extensive set of structures using ab-initio calculations and employ the total energies in CALPHAD in order to determine the corresponding phase diagrams. We account for the configurational entropy within the Bragg-Williams approximation and neglect the phenomenological excess-term that is commonly used in CALPHAD as well as the contribution of phonons and electronic excitations to the free energy. According to our calculations the complex intermetallic phases in Re-W are stabilized by the configurational entropy. For Fe-B, we calculate metastable and stable phase diagrams including recently predicted new stable phases.

  14. "Phase diagrams of Lecithin-based microemulsions containing Sodium Salicylate "

    Directory of Open Access Journals (Sweden)

    "Aboofazeli R

    2000-08-01

    Full Text Available Partial phase diagrams were constructed at 25°C to investigate the phase behaviour of systems composed of soybean lecithin, water, sodium salicylate, alcohol and isopropyl myristate. The lecithins used were the commercially available soy bean lecithins, namely E200 and E170 (phosphatidyl choline purities greater than 95% and 68-72% respectively. The cosurfactants employed were n-propanol, 2-propanol and n-butanol and these were used at lecithin/alcohol weight ratios (Km of 1:1 and 1.5:1. At a given Km, the aqueous phase consisted of a 2% w/w sodium salicylate solution. Phase diagrams showed the area of existence of a stable isotropic region along the surfactant/oil axis (i.e., reverse microemulsion area. The extension of the microemulsion domain was influenced by the purity of surfactant, the lecithin/alcohol weight ratios and the kind of the alcohol.

  15. Thermodynamic study of CVD-ZrO2 phase diagrams

    International Nuclear Information System (INIS)

    Torres-Huerta, A.M.; Vargas-Garcia, J.R.; Dominguez-Crespo, M.A.; Romero-Serrano, J.A.

    2009-01-01

    Chemical vapor deposition (CVD) of zirconium oxide (ZrO 2 ) from zirconium acetylacetonate Zr(acac) 4 has been thermodynamically investigated using the Gibbs' free energy minimization method and the FACTSAGE program. Thermodynamic data Cp o , ΔH o and S o for Zr(acac) 4 have been estimated using the Meghreblian-Crawford-Parr and Benson methods because they are not available in the literature. The effect of deposition parameters, such as temperature and pressure, on the extension of the region where pure ZrO 2 can be deposited was analyzed. The results are presented as calculated CVD stability diagrams. The phase diagrams showed two zones, one of them corresponds to pure monoclinic phase of ZrO 2 and the other one corresponds to a mix of monoclinic phase of ZrO 2 and graphite carbon.

  16. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    International Nuclear Information System (INIS)

    Horvat, Stephen

    2017-01-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS. (paper)

  17. Thermodynamic analysis of 6xxx series Al alloys: Phase fraction diagrams

    Directory of Open Access Journals (Sweden)

    Cui S.

    2018-01-01

    Full Text Available Microstructural evolution of 6xxx Al alloys during various metallurgical processes was analyzed using accurate thermodynamic database. Phase fractions of all the possible precipitate phases which can form in the as-cast and equilibrium states of the Al-Mg-Si-Cu-Fe-Mn-Cr alloys were calculated over the technically useful composition range. The influence of minor elements such as Cu, Fe, Mn, and Cr on the amount of each type of precipitate in the as-cast and equilibrium conditions were analyzed. Phase fraction diagrams at 500 °C were mapped in the composition range of 0-1.1 wt.% Mg and 0-0.7 wt.% Si to investigate the as-homogenized microstructure. In addition, phase fraction diagram of Mg2Si at 177 °C was mapped to understand the microstructure after final annealing of 6xxx Al alloy. Based on the calculated diagrams, the design strategy of 6xxx Al alloy to produce highest strength due to Mg2Si is discussed.

  18. Phase diagram of incoherently driven strongly correlated photonic lattices

    Science.gov (United States)

    Biella, Alberto; Storme, Florent; Lebreuilly, José; Rossini, Davide; Fazio, Rosario; Carusotto, Iacopo; Ciuti, Cristiano

    2017-08-01

    We explore theoretically the nonequilibrium photonic phases of an array of coupled cavities in presence of incoherent driving and dissipation. In particular, we consider a Hubbard model system where each site is a Kerr nonlinear resonator coupled to a two-level emitter, which is pumped incoherently. Within a Gutzwiller mean-field approach, we determine the steady-state phase diagram of such a system. We find that, at a critical value of the intercavity photon hopping rate, a second-order nonequilibrium phase transition associated with the spontaneous breaking of the U(1 ) symmetry occurs. The transition from an incompressible Mott-like photon fluid to a coherent delocalized phase is driven by commensurability effects and not by the competition between photon hopping and optical nonlinearity. The essence of the mean-field predictions is corroborated by finite-size simulations obtained with matrix product operators and corner-space renormalization methods.

  19. Evaluated phase diagrams of binary metal-tellurium systems of the D-block transition elements

    International Nuclear Information System (INIS)

    Chattopadhyay, G.; Bharadwaj, S.R.

    1989-01-01

    The binary phase diagrams of metal-tellurium systems for twenty seven d-block transition elements have been critically evaluated. Complete phase diagrams are presented for the elements, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, palladium, silver, lanthanum, platinum and gold, whereas, for scandium, titanium, vanadium, yttrium, zirconium, niobium, technitium, ruthenium, rhodium, hafnium, tantalum, tungsten , rhenium, osmium and iridium, the phase diagrams are incomplete and tentative. (author). 20 refs., 27 tabs., 27 figs

  20. Assessment of the thermodynamic properties and phase diagram of the Bi–Pd system

    Czech Academy of Sciences Publication Activity Database

    Vřešťál, J.; Pinkas, J.; Watson, A.; Scott, A.; Houserová, Jana; Kroupa, Aleš

    2006-01-01

    Roč. 30, č. 1 (2006), s. 14-17 ISSN 0364-5916 R&D Projects: GA MŠk(CZ) OC 531.002 Institutional research plan: CEZ:AV0Z2041904 Keywords : phase diagram * thermodynamic modelling Subject RIV: BJ - Thermodynamics Impact factor: 1.432, year: 2006

  1. Magnetic phase diagram of UNi.sub.2./sub.Si.sub.2./sub. under pressure

    Czech Academy of Sciences Publication Activity Database

    Syshchenko, O.; Khmelevski, S.; Diviš, M.; Sechovský, V.; Honda, F.; Oomi, G.; Andreev, Alexander V.; Kamarád, Jiří; Šebek, Josef; Menovsky, A. A.

    2001-01-01

    Roč. 304, - (2001), s. 477-482 ISSN 0921-4526 R&D Projects: GA ČR GA106/99/0183 Institutional research plan: CEZ:AV0Z1010914 Keywords : U intermetallics * antiferromagnetism * magnetic phase diagram * electrical resistivity * pressure effects on magnetic phases * axial Ising model Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.663, year: 2001

  2. Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data

    Directory of Open Access Journals (Sweden)

    Mohammad Mezbahul-Islam

    2014-01-01

    Full Text Available Magnesium-based alloys are becoming a major industrial material for structural applications because of their potential weight saving characteristics. All the commercial Mg alloys like AZ, AM, AE, EZ, ZK, and so forth series are multicomponent and hence it is important to understand the phase relations of the alloying elements with Mg. In this work, eleven essential Mg-based binary systems including Mg-Al/Zn/Mn/Ca/Sr/Y/Ni/Ce/Nd/Cu/Sn have been reviewed. Each of these systems has been discussed critically on the aspects of phase diagram and thermodynamic properties. All the available experimental data has been summarized and critically assessed to provide detailed understanding of the systems. The phase diagrams are calculated based on the most up-to-date optimized parameters. The thermodynamic model parameters for all the systems except Mg-Nd have been summarized in tables. The crystallographic information of the intermetallic compounds of different binary systems is provided. Also, the heat of formation of the intermetallic compounds obtained from experimental, first principle calculations and CALPHAD optimizations are provided. In addition, reoptimization of the Mg-Y system has been done in this work since new experimental data showed wider solubility of the intermetallic compounds.

  3. Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I

    Science.gov (United States)

    Someya, Yoshiko

    1981-12-01

    The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.

  4. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer; Sidky, E. Y.

    2015-01-01

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study...... and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers...... measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means...

  5. Sedimentation stacking diagram of binary colloidal mixtures and bulk phases in the plane of chemical potentials

    International Nuclear Information System (INIS)

    Heras, Daniel de las; Schmidt, Matthias

    2015-01-01

    We give a full account of a recently proposed theory that explicitly relates the bulk phase diagram of a binary colloidal mixture to its phase stacking phenomenology under gravity (de las Heras and Schmidt 2013 Soft Matter 9 8636). As we demonstrate, the full set of possible phase stacking sequences in sedimentation-diffusion equilibrium originates from straight lines (sedimentation paths) in the chemical potential representation of the bulk phase diagram. From the analysis of various standard topologies of bulk phase diagrams, we conclude that the corresponding sedimentation stacking diagrams can be very rich, even more so when finite sample height is taken into account. We apply the theory to obtain the stacking diagram of a mixture of nonadsorbing polymers and colloids. We also present a catalog of generic phase diagrams in the plane of chemical potentials in order to facilitate the practical application of our concept, which also generalizes to multi-component mixtures. (paper)

  6. Evaluation of self-interaction parameters from binary phase diagrams

    International Nuclear Information System (INIS)

    Ellison, T.L.

    1977-10-01

    The feasibility of calculating Wagner self-interaction parameters from binary phase diagrams was examined. The self-interaction parameters of 22 non-ferrous liquid solutions were calculated utilizing an equation based on the equality of the chemical potentials of a component in two equilibrium phases. Utilization of the equation requires the evaluation of the first and second derivatives of various liquidus and solidus data at infinite dilution of the solute component. Several numerical methods for evaluating the derivatives of tabular data were examined. A method involving power series curve fitting and subsequent differentiation of the power series was found to be the most suitable for the interaction parameter calculations. Comparison of the calculated self-interaction parameters with values obtained from thermodynamic measurements indicates that the Wagner self-interaction parameter can be successfully calculated from binary phase diagrams

  7. Simulation of Few Bifurcation Phase Diagrams of Belousov-Zhabotinsky Reaction with Eleven Variable Chaotic Model in CSTR

    Directory of Open Access Journals (Sweden)

    B. Swathi

    2009-01-01

    Full Text Available Simulation of the Gyorgyi, Rempe and Field eleven variable chaotic model in CSTR [Continuously Stirred Tank Reactor] is performed with respect to the concentrations of malonic acid and [Ce(III]. These simulation studies show steady state, periodic and non-periodic regions. These studies have been presented as two variable bifurcation phase diagrams. We also have observed the bursting phenomenon under different set of constraints. We have given much importance on computer simulation work but not included the experimental methods in this paper.

  8. The equilibrium phase diagram of the magnesium-copper-yttrium system

    International Nuclear Information System (INIS)

    Mezbahul-Islam, Mohammad; Kevorkov, Dmytro; Medraj, Mamoun

    2008-01-01

    Thermodynamic modelling of the Mg-Cu-Y system is carried out as a part of thermodynamic database construction for Mg alloys. This system is being modelled for the first time using the modified quasichemical model which considers the presence of short range ordering in the liquid. A self-consistent thermodynamic database for the Mg-Cu-Y system was constructed by combining the thermodynamic descriptions of the constituent binaries, Mg-Cu, Cu-Y, and Mg-Y. All the three binaries have been re-optimized based on the experimental phase equilibrium and thermodynamic data available in the literature. The constructed database is used to calculate and predict thermodynamic properties, the binary phase diagrams and liquidus projections of the ternary Mg-Cu-Y system. The current calculation results are in good agreement with the experimental data reported in the literature

  9. Phase diagram of ammonium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Dunuwille, Mihindra; Yoo, Choong-Shik, E-mail: csyoo@wsu.edu [Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164 (United States)

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  10. Phase diagram of ammonium nitrate

    International Nuclear Information System (INIS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-01-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N 2 , N 2 O, and H 2 O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV ′ transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C

  11. Phase diagram of two-component bosons on an optical lattice

    International Nuclear Information System (INIS)

    Altman, Ehud; Hofstetter, Walter; Demler, Eugene; Lukin, Mikhail D

    2003-01-01

    We present a theoretical analysis of the phase diagram of two-component bosons on an optical lattice. A new formalism is developed which treats the effective spin interactions in the Mott and superfluid phases on the same footing. Using this new approach we chart the phase boundaries of the broken spin symmetry states up to the Mott to superfluid transition and beyond. Near the transition point, the magnitude of spin exchange can be very large, which facilitates the experimental realization of spin-ordered states. We find that spin and quantum fluctuations have a dramatic effect on the transition, making it first order in extended regions of the phase diagram. When each species is at integer filling, an additional phase transition may occur, from a spin-ordered insulator to a Mott insulator with no broken symmetries. We determine the phase boundaries in this regime and show that this is essentially a Mott transition in the spin sector

  12. ({alpha},{eta}) phase diagrams in tilted chiral smectics

    Energy Technology Data Exchange (ETDEWEB)

    Rjili, M., E-mail: medrjili@yahoo.fr [Laboratoire de Physique de la Matiere Molle et de la Modelisation Electromagnetique, Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar Tunis (Tunisia); Marcerou, J.P., E-mail: marcerou@crpp-bordeaux.cnrs.fr [Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France); Gharbi, A.; Othman, T. [Laboratoire de Physique de la Matiere Molle et de la Modelisation Electromagnetique, Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar Tunis (Tunisia)

    2013-02-01

    The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmC{sub A}{sup Low-Asterisk }; SmC{sub Fi1}{sup Low-Asterisk }; SmC{sub Fi2}{sup Low-Asterisk }; SmC{sup Low-Asterisk }; SmC{sub {alpha}}{sup Low-Asterisk }. The continuum theory established by Marcerou (2010) is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the ({alpha},{eta}) plane where {alpha} is local angular parameter and {eta} describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC{sub 5}{sup Low-Asterisk} and the SmC{sub 6}{sup Low-Asterisk} ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.

  13. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    International Nuclear Information System (INIS)

    Selle, J.E.

    1992-01-01

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented

  14. Temperature-field phase diagram of extreme magnetoresistance.

    Science.gov (United States)

    Fallah Tafti, Fazel; Gibson, Quinn; Kushwaha, Satya; Krizan, Jason W; Haldolaarachchige, Neel; Cava, Robert Joseph

    2016-06-21

    The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.

  15. Electron Number-Based Phase Diagram of Pr1 -xLaCex CuO4 -δ and Possible Absence of Disparity between Electron- and Hole-Doped Cuprate Phase Diagrams

    Science.gov (United States)

    Song, Dongjoon; Han, Garam; Kyung, Wonshik; Seo, Jeongjin; Cho, Soohyun; Kim, Beom Seo; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Yoshida, Y.; Eisaki, H.; Park, Seung Ryong; Kim, C.

    2017-03-01

    We performed annealing and angle resolved photoemission spectroscopy studies on electron-doped cuprate Pr1 -xLaCex CuO4 -δ (PLCCO). It is found that the optimal annealing condition is dependent on the Ce content x . The electron number (n ) is estimated from the experimentally obtained Fermi surface volume for x =0.10 , 0.15 and 0.18 samples. It clearly shows a significant and annealing dependent deviation from the nominal x . In addition, we observe that the pseudo-gap at hot spots is also closely correlated with n ; the pseudogap gradually closes as n increases. We established a new phase diagram of PLCCO as a function of n . Different from the x -based one, the new phase diagram shows similar antiferromagnetic and superconducting phases to those of hole doped ones. Our results raise a possibility for absence of disparity between the phase diagrams of electron- and hole-doped cuprates

  16. Phase diagram of dilute nuclear matter: Unconventional pairing and the BCS-BEC crossover

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Martin; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2013-07-01

    We report on a comprehensive study of the phase structure of cold, dilute nuclear matter featuring a {sup 3}S{sub 1}-{sup 3}D{sub 1} condensate at non-zero isospin asymmetry, within wide ranges of temperatures and densities. We find a rich phase diagram comprising three superfluid phases, namely a LOFF phase, the ordinary BCS phase, and a heterogeneous, phase-separated BCS phase, with associated crossovers from the latter two phases to a homogeneous or phase-separated Bose-Einstein condensate of deuterons. The phase diagram contains two tri-critical points (one a Lifshitz point), which may degenerate into a single tetra-critical point for some degree of isospin asymmetry.

  17. Use of isoconcentrational phase diagrams for prediction of amorphization of binary systems

    International Nuclear Information System (INIS)

    Lazarev, A.I.; Belashchenko, D.K.

    1992-01-01

    Based on the application of isoconcentrational diagrams of phase equilibria of liquid with solid solutions of various crystal structures the thermodynamic method was considered for prediction of concentration ranges of amorphization in binary systems.To confirm the applicability of the thermodynamic criterion in practice caclulations of phase diagrams were accomplished for complex binary eutectic systems (Hf-Be, Zr-Be) with the known concentration ranges of amorphization

  18. Comparison of forcefields for molecular dynamics simulations of hydrocarbon phase diagrams

    Science.gov (United States)

    Pisarev, V. V.; Zakharov, S. A.

    2018-01-01

    Molecular dynamics calculations of vapor-liquid equilibrium of methane-n-butane mixture are performed. Three force-field models are tested: the TraPPE-UA united-atom forcefield, LOPLS-AA all-atom forcefield and a fully flexible version of the TraPPE-EH all-atom forcefield. All those forcefields reproduce well the composition of liquid phase in the mixture as a function of pressure at the 300 K isotherm, while significant discrepancies from experimental data are observed in the saturated vapor compositions with OPLS-AA and TraPPE-UA forcefields. The best agreement with the experimental phase diagram is found with TraPPE-EH forcefield which accurately reproduces compositions of both liquid and vapor phase. This forcefield can be recommended for simulation of two-phase hydrocarbon systems.

  19. Phase diagram for interacting Bose gases

    International Nuclear Information System (INIS)

    Morawetz, K.; Maennel, M.; Schreiber, M.

    2007-01-01

    We propose a modified form of the inversion method in terms of a self-energy expansion to access the phase diagram of the Bose-Einstein transition. The dependence of the critical temperature on the interaction parameter is calculated. This is discussed with the help of a condition for Bose-Einstein condensation in interacting systems which follows from the pole of the T matrix in the same way as from the divergence of the medium-dependent scattering length. A many-body approximation consisting of screened ladder diagrams is proposed, which describes the Monte Carlo data more appropriately. The specific results are that a non-self-consistent T matrix leads to a linear coefficient in leading order of 4.7, the screened ladder approximation to 2.3, and the self-consistent T matrix due to the effective mass to a coefficient of 1.3 close to the Monte Carlo data

  20. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    Science.gov (United States)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  1. Phase diagram of Fe1-xCox ultrathin film

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Klevets, Ph.N.; Voytenko, A.P.

    2008-01-01

    Concentration-driven reorientation phase transitions in ultrathin magnetic films of FeCo alloy have been studied. It is established that, in addition to the easy-axis and easy-plane phases, a spatially inhomogeneous phase (domain structure), a canted phase, and also an 'in-plane easy-axis' phase can exist in the system. The realization of the last phase is associated with the competition between the single-ion anisotropy and the magnetoelastic interaction. The critical values of Co concentration corresponding to the phase transitions are evaluated, the types of phase transitions are determined, and the phase diagrams are constructed

  2. ± J D-vector spin glass phase diagram and critical behaviour

    International Nuclear Information System (INIS)

    Coutinho, S.; Lyra, M.L.

    1988-01-01

    The phase diagram and the correlation length exponents of the ± J D-Vector Spin-Glass model are studied in the framework of the real space mean field renormalization group method. The boundary between the spin-glass (SG) and the ferromagnetic (F) phases is obtained from the renormalization flow equations and shows a reentrant behaviour over the SG region. This re-entrance increases smoothly with the coordination number. Analytical expressions for the thermal and the correlation length exponents are calculated straight forwardly for all fixed points and figures are presented and compared with availables results from other methods and data. (author) [pt

  3. Phase diagram of the quantum Ising model with long-range interactions on an infinite-cylinder triangular lattice

    Science.gov (United States)

    Saadatmand, S. N.; Bartlett, S. D.; McCulloch, I. P.

    2018-04-01

    Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can be efficiently obtained using state-of-the-art translation-invariant variants of matrix product states and density-matrix renormalization-group algorithms. We use these methods to calculate the fully-quantitative ground-state phase diagram of the long-range interacting triangular Ising model with a transverse field on six-leg infinite-length cylinders and scrutinize the properties of the detected phases. We compare these results with those of the corresponding nearest neighbor model. Our results suggest that, for such long-range Hamiltonians, the long-range quantum fluctuations always lead to long-range correlations, where correlators exhibit power-law decays instead of the conventional exponential drops observed for short-range correlated gapped phases. Our results are relevant for comparisons with recent ion-trap quantum simulator experiments that demonstrate highly-controllable long-range spin couplings for several hundred ions.

  4. The QCD Phase Diagram: Large Nc, Quarkyonic Matter and the Triple Point

    International Nuclear Information System (INIS)

    McLerran, L.

    2010-01-01

    I discuss the phase diagram of QCD in the large N c limit. Qarkyonic Matter is described. The properties of QCD matter as measured in the abundance of produced particles are shown to be consistent with this phase diagram. A possible triple point of Hadronic Matter, Deconfined Matter and Quarkyonic Matter is shown to explain various behaviors of ratios of particle abundances seen in CERN fixed target experiments. (author)

  5. Pseudo-ternary phase diagram in the Na2O-Na2O2-NaOH system

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Tendo, Masayuki; Aoto, Kazumi

    1997-10-01

    Generally, the phase diagrams are always used to understand the present state of compounds at certain temperature. In order to understand the corrosion behavior of structural material for FBR by main sodium compounds (Na 2 O, Na 2 O 2 and NaOH), it is very important to comprehend the phase diagrams of their compounds. However, only Na 2 O-NaOH pseudo-binary phase diagram had been investigated previously in this system. There is no study of other pseudo-binary or ternary phase diagrams in the Na 2 O-Na 2 O 2 -NaOH system. In this study, in order to clarify the present states of their compounds at certain temperatures, the pseudo-binary and ternary phase diagrams in the Na 2 O-Na 2 O 2 -NaOH system were prepared. A series of thermal analyses with binary and ternary component system has been carried out using the differential scanning calorimetry (DSC). The liquidus temperature and ternary eutectic temperatures were confirmed by these measurements. The beneficial indications for constructing phase diagrams were obtained from these experiments. On the basis of these results, the interaction parameters between compounds which were utilized for the Thermo-Calc calculation were optimized. Thermo-Calc is one of thermodynamic calculation software. Consequently the accurate pseudo-binary and ternary phase diagrams were indicated using the optimized parameters. (author)

  6. Analytical Determining Of The Steinmetz Equivalent Diagram Elements Of Single-Phase Transformer

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available This article presents to an analytical calculation methodology of the Steinmetz Equivalent Diagram Elements applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active and reactive powers consumed by the core are expressed analytically in function of the electromagnetic parameters as resistivity permeability and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The equivalent diagram elements empirically determined by Steinmetz are analytically expressed using the expressions of the no loaded transformer consumptions. To verify the relevance of the model validations both by simulations with different powers and measurements were carried out to determine the resistance and reactance of the core. The obtained results are in good agreement with the theoretical approach and the practical results.

  7. The phase diagram of ammonium nitrate

    Science.gov (United States)

    Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen

    2012-08-01

    The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.

  8. Swarming, schooling, milling: phase diagram of a data-driven fish school model

    Science.gov (United States)

    Calovi, Daniel S.; Lopez, Ugo; Ngo, Sandrine; Sire, Clément; Chaté, Hugues; Theraulaz, Guy

    2014-01-01

    We determine the basic phase diagram of the fish school model derived from data by Gautrais et al (2012 PLoS Comput. Biol. 8 e1002678), exploring its parameter space beyond the parameter values determined experimentally on groups of barred flagtails (Kuhlia mugil) swimming in a shallow tank. A modified model is studied alongside the original one, in which an additional frontal preference is introduced in the stimulus/response function to account for the angular weighting of interactions. Our study, mostly limited to groups of moderate size (in the order of 100 individuals), focused not only on the transition to schooling induced by increasing the swimming speed, but also on the conditions under which a school can exhibit milling dynamics and the corresponding behavioural transitions. We show the existence of a transition region between milling and schooling, in which the school exhibits multistability and intermittence between schooling and milling for the same combination of individual parameters. We also show that milling does not occur for arbitrarily large groups, mainly due to a distance dependence interaction of the model and information propagation delays in the school, which cause conflicting reactions for large groups. We finally discuss the biological significance of our findings, especially the dependence of behavioural transitions on social interactions, which were reported by Gautrais et al to be adaptive in the experimental conditions.

  9. Swarming, schooling, milling: phase diagram of a data-driven fish school model

    International Nuclear Information System (INIS)

    Calovi, Daniel S; Lopez, Ugo; Theraulaz, Guy; Ngo, Sandrine; Chaté, Hugues; Sire, Clément

    2014-01-01

    We determine the basic phase diagram of the fish school model derived from data by Gautrais et al (2012 PLoS Comput. Biol. 8 e1002678), exploring its parameter space beyond the parameter values determined experimentally on groups of barred flagtails (Kuhlia mugil) swimming in a shallow tank. A modified model is studied alongside the original one, in which an additional frontal preference is introduced in the stimulus/response function to account for the angular weighting of interactions. Our study, mostly limited to groups of moderate size (in the order of 100 individuals), focused not only on the transition to schooling induced by increasing the swimming speed, but also on the conditions under which a school can exhibit milling dynamics and the corresponding behavioural transitions. We show the existence of a transition region between milling and schooling, in which the school exhibits multistability and intermittence between schooling and milling for the same combination of individual parameters. We also show that milling does not occur for arbitrarily large groups, mainly due to a distance dependence interaction of the model and information propagation delays in the school, which cause conflicting reactions for large groups. We finally discuss the biological significance of our findings, especially the dependence of behavioural transitions on social interactions, which were reported by Gautrais et al to be adaptive in the experimental conditions. (paper)

  10. Another dimension to metamorphic phase equilibria: the power of interactive movies for understanding complex phase diagram sections

    Science.gov (United States)

    Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.

    2012-04-01

    The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde

  11. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Directory of Open Access Journals (Sweden)

    Jiasen Jin

    2016-07-01

    Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  12. Influence of the inter-ion interaction on the phase diagrams of the 1D Falicov-Kimball system

    Science.gov (United States)

    Gajek, Z.; Lemański, R.

    2004-05-01

    A model of itinerant, spinless electrons interacting with ions via the on-site Coulomb potential U, modified by the inter-ionic nearest-neighbour interaction V, is studied on the one-dimensional infinite lattice. Only periodical configurations of the ions with a limited number of lattice sites in a unit cell and their mixtures are taken into account. Phases whose energies reach minimum values for given electron and ion chemical potentials are selected and depicted for a set of model parameters. Then the results are translated into the ion density-electron density canonical phase diagrams and summarized in the electrondensity-U plane. The diagrams clearly show how various kinds of charge ordering evolve with V, starting from V=0 case, that represents the standard Falicov-Kimball model discussed previously.

  13. Influence of the inter-ion interaction on the phase diagrams of the 1D Falicov-Kimball system

    International Nuclear Information System (INIS)

    Gajek, Z.; Lemanski, R.

    2004-01-01

    A model of itinerant, spinless electrons interacting with ions via the on-site Coulomb potential U, modified by the inter-ionic nearest-neighbour interaction V, is studied on the one-dimensional infinite lattice. Only periodical configurations of the ions with a limited number of lattice sites in a unit cell and their mixtures are taken into account. Phases whose energies reach minimum values for given electron and ion chemical potentials are selected and depicted for a set of model parameters. Then the results are translated into the ion density-electron density canonical phase diagrams and summarized in the electron density-U plane. The diagrams clearly show how various kinds of charge ordering evolve with V, starting from V=0 case, that represents the standard Falicov-Kimball model discussed previously

  14. Influence of the inter-ion interaction on the phase diagrams of the 1D Falicov-Kimball system

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. E-mail: gajek@int.pan.wroc.pl; Lemanski, R

    2004-05-01

    A model of itinerant, spinless electrons interacting with ions via the on-site Coulomb potential U, modified by the inter-ionic nearest-neighbour interaction V, is studied on the one-dimensional infinite lattice. Only periodical configurations of the ions with a limited number of lattice sites in a unit cell and their mixtures are taken into account. Phases whose energies reach minimum values for given electron and ion chemical potentials are selected and depicted for a set of model parameters. Then the results are translated into the ion density-electron density canonical phase diagrams and summarized in the electron density-U plane. The diagrams clearly show how various kinds of charge ordering evolve with V, starting from V=0 case, that represents the standard Falicov-Kimball model discussed previously.

  15. Diagram of state of stiff amphiphilic macromolecules

    NARCIS (Netherlands)

    Markov, Vladimir A.; Vasilevskaya, Valentina V.; Khalatur, Pavel G.; ten Brinke, Gerrit; Khokhlov, Alexei R.

    2007-01-01

    We studied coil-globule transitions in stiff-chain amphiphilic macromolecules via computer modeling and constructed phase diagrams for such molecules in terms of solvent quality and persistence length. We showed that the shape of the phase diagram essentially depends on the macromolecule degree of

  16. Numerical insights into the phase diagram of p-atic membranes with spherical topology

    DEFF Research Database (Denmark)

    Hansen, Allan Grønhøj; Ramakrishnan, N.; Sunil Kumar, P. B.

    2017-01-01

    Abstract.: The properties of self-avoiding p-atic membranes restricted to spherical topology have been studied by Monte Carlo simulations of a triangulated random surface model. Spherically shaped p-atic membranes undergo a Kosterlitz-Thouless transition as expected with topology induced mutually...... of disclinations. We confirm the proposed buckling of disclinations in the p-atic ordered phase, while the expected associated disordering (crumpling) transition at low bending rigidities is absent in the phase diagram. Graphical abstract: [Figure not available: see fulltext.]...

  17. Color superconductivity. Phase diagrams and Goldstone bosons in the color-flavor locked phase

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhaus, Verena

    2009-04-29

    The phase diagram of strongly interacting matter is studied with great experimental and theoretical effort and is one of the most fascinating research areas in modern particle physics. It is believed that color superconducting phases, in which quarks form Cooper pairs, appear at very high densities and low temperatures. Such phases could appear in the cores of neutron stars. In this work color superconducting phases are studied within the Nambu-Jona-Lasinio model. First of all, the phase diagram of neutral matter in beta equilibrium is calculated for two different diquark couplings. To this end, we determine the dynamical quark masses self-consistently together with the order parameters of color superconductivity. The interplay between neutrality and quark masses results in an interesting phase structure, in particular for the smaller diquark coupling. In the following, we additionally include a conserved lepton number to map the situation in the first few seconds of the evolution of a protoneutron star when neutrinos are trapped. This has a huge influence on the phase structure and favors the 2SC phase compared to the CFL phase. In the second part of this work we concentrate on the CFL phase which is characterized by a special symmetry breaking pattern. The properties of the resulting nine pseudoscalar Goldstone bosons (GB) are studied by solving the Bethe-Salpeter equation for quark-quark scattering. The GB are the lowest-lying excitations in the CFL phase and therefore play an important role for the thermodynamics of the system. The properties of the GB can also be described by the low-energy effective theory (LEET) for the CFL phase. There the respective low-energy constants are derived for asymptotically high densities where the strong force is weak and can be treated perturbatively. Our aim is the comparison of our results with these predictions, on the one hand to check our model in the weak-coupling limit and on the other hand to derive information about

  18. Color superconductivity: Phase diagrams and Goldstone bosons in the color-flavor locked phase

    International Nuclear Information System (INIS)

    Kleinhaus, Verena

    2009-01-01

    The phase diagram of strongly interacting matter is studied with great experimental and theoretical effort and is one of the most fascinating research areas in modern particle physics. It is believed that color superconducting phases, in which quarks form Cooper pairs, appear at very high densities and low temperatures. Such phases could appear in the cores of neutron stars. In this work color superconducting phases are studied within the Nambu-Jona-Lasinio model. First of all, the phase diagram of neutral matter in beta equilibrium is calculated for two different diquark couplings. To this end, we determine the dynamical quark masses self-consistently together with the order parameters of color superconductivity. The interplay between neutrality and quark masses results in an interesting phase structure, in particular for the smaller diquark coupling. In the following, we additionally include a conserved lepton number to map the situation in the first few seconds of the evolution of a protoneutron star when neutrinos are trapped. This has a huge influence on the phase structure and favors the 2SC phase compared to the CFL phase. In the second part of this work we concentrate on the CFL phase which is characterized by a special symmetry breaking pattern. The properties of the resulting nine pseudoscalar Goldstone bosons (GB) are studied by solving the Bethe-Salpeter equation for quark-quark scattering. The GB are the lowest-lying excitations in the CFL phase and therefore play an important role for the thermodynamics of the system. The properties of the GB can also be described by the low-energy effective theory (LEET) for the CFL phase. There the respective low-energy constants are derived for asymptotically high densities where the strong force is weak and can be treated perturbatively. Our aim is the comparison of our results with these predictions, on the one hand to check our model in the weak-coupling limit and on the other hand to derive information about

  19. Low-frequency phase diagram of irradiated graphene and a periodically driven spin-1/2 X Y chain

    Science.gov (United States)

    Mukherjee, Bhaskar; Mohan, Priyanka; Sen, Diptiman; Sengupta, K.

    2018-05-01

    We study the Floquet phase diagram of two-dimensional Dirac materials such as graphene and the one-dimensional (1D) spin-1/2 X Y model in a transverse field in the presence of periodic time-varying terms in their Hamiltonians in the low drive frequency (ω ) regime where standard 1 /ω perturbative expansions fail. For graphene, such periodic time-dependent terms are generated via the application of external radiation of amplitude A0 and time period T =2 π /ω , while for the 1D X Y model, they result from a two-rate drive protocol with a time-dependent magnetic field and nearest-neighbor couplings between the spins. Using the adiabatic-impulse method, whose predictions agree almost exactly with the corresponding numerical results in the low-frequency regime, we provide several semianalytic criteria for the occurrence of changes in the topology of the phase bands (eigenstates of the evolution operator U ) of such systems. For irradiated graphene, we point out the role of the symmetries of the instantaneous Hamiltonian H (t ) and the evolution operator U behind such topology changes. Our analysis reveals that at low frequencies, topology changes of irradiated graphene phase bands may also happen at t =T /3 and2 T /3 (apart from t =T ) showing the necessity of analyzing the phase bands of the system for obtaining its phase diagrams. We chart out the phase diagrams at t =T /3 ,2 T /3 ,and T , where such topology changes occur, as a function of A0 and T using exact numerics, and compare them with the prediction of the adiabatic-impulse method. We show that several characteristics of these phase diagrams can be analytically understood from results obtained using the adiabatic-impulse method and point out the crucial contribution of the high-symmetry points in the graphene Brillouin zone to these diagrams. We study the modes that can appear at the edges of a finite-width strip of graphene and show that the change in the number of such modes agrees with the change in the

  20. Phase diagram study of a dimerized spin-S zig–zag ladder

    International Nuclear Information System (INIS)

    Matera, J M; Lamas, C A

    2014-01-01

    The phase diagram of a frustrated spin-S zig–zag ladder is studied through different numerical and analytical methods. We show that for arbitrary S, there is a family of Hamiltonians for which a fully-dimerized state is an exact ground state, being the Majumdar–Ghosh point for a particular member of the family. We show that the system presents a transition between a dimerized phase to a Néel-like phase for S = 1/2, and spiral phases can appear for large S. The phase diagram is characterized by means of a generalization of the usual mean field approximation. The novelty in the present implementation is to consider the strongest coupled sites as the unit cell. The gap and the excitation spectrum is analyzed through the random phase approximation. Also, a perturbative treatment to obtain the critical points is discussed. Comparisons of the results with numerical methods like the Density Matrix Renormalization Group are also presented. (paper)

  1. Theoretical Prediction of Melting Relations in the Deep Mantle: the Phase Diagram Approach

    Science.gov (United States)

    Belmonte, D.; Ottonello, G. A.; Vetuschi Zuccolini, M.; Attene, M.

    2016-12-01

    Despite the outstanding progress in computer technology and experimental facilities, understanding melting phase relations in the deep mantle is still an open challenge. In this work a novel computational scheme to predict melting relations at HP-HT by a combination of first principles DFT calculations, polymer chemistry and equilibrium thermodynamics is presented and discussed. The adopted theoretical framework is physically-consistent and allows to compute multi-component phase diagrams relevant to Earth's deep interior in a broad range of P-T conditions by a convex-hull algorithm for Gibbs free energy minimisation purposely developed for high-rank simplexes. The calculated phase diagrams are in turn used as a source of information to gain new insights on the P-T-X evolution of magmas in the deep mantle, providing some thermodynamic constraints to both present-day and early Earth melting processes. High-pressure melting curves of mantle silicates are also obtained as by-product of phase diagram calculation. Application of the above method to the MgO-Al2O3-SiO2 (MAS) ternary system highlights as pressure effects are not only able to change the nature of melting of some minerals (like olivine and pyroxene) from eutectic to peritectic (and vice versa), but also simplify melting relations by drastically reducing the number of phases with a primary phase field at HP-HT conditions. It turns out that mineral phases like Majorite-Pyrope garnet and Anhydrous Phase B (Mg14Si5O24), which are often disregarded in modelling melting processes of mantle assemblages, are stable phases at solidus or liquidus conditions in a P-T range compatible with the mantle transition zone (i.e. P = 16 - 23 GPa and T = 2200 - 2700 °C) when their thermodynamic and thermophysical properties are properly assessed. Financial support to the Senior Author (D.B.) during his stay as Invited Scientist at the Institut de Physique du Globe de Paris (IPGP, Paris) is warmly acknowledged.

  2. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography.

    Science.gov (United States)

    Jørgensen, J S; Sidky, E Y

    2015-06-13

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.

  3. P-T-x phase diagrams of MeF-UF4(Me=Li-Cs) systems

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Rykov, A.N.; Varkov, M.V.; Novoselova, A.V.

    1988-01-01

    Vapor composition and general pressure at three-phase equilibria in the MeF-UF 4 (Me=Li-Cs) systems are calculated using the values of independent component activities obtained earlier together with the data on fusibility diagrams. P-T and T-x projections of phase diagrams of these systems are constructed

  4. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    Science.gov (United States)

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  5. Phase-field model of eutectic growth

    International Nuclear Information System (INIS)

    Karma, A.

    1994-01-01

    A phase-field model which describes the solidification of a binary eutectic alloy with a simple symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both analytically and numerically

  6. Phase diagram of Pr-P system

    International Nuclear Information System (INIS)

    Mironov, K.E.

    1981-01-01

    An area of the Pr-P system, adjoining to the Pr ordinate, is plotted up by the DTA method. Presence of P solid solution in Pr is established. Data on thermal stability of PrP, PrP 2 , PrP 5 and PrP 7 are generalized. The diagram of phase transformations in Pr-P system is plotted up proceeding from the whole complex of the data, presented. A supposition is made on a possible formation of solid solutions between the highest polyphosphide and phosphorus [ru

  7. First-Order Transitions and the Magnetic Phase Diagram of CeSb

    DEFF Research Database (Denmark)

    Lebech, Bente; Clausen, Kurt Nørgaard; Vogt, O.

    1980-01-01

    might exist in the magnetic phase diagram of CeSb at 16K for a field of approximately 0.3 T. The present study concludes that the transitions from the paramagnetic to the magnetically ordered states are of first order for fields below 0.8 T. Within the experimental accuracy no change has been observed......The high-temperature (14-17K) low-magnetic field (0-0.8 T) region of the phase diagram of the anomalous antiferromagnet CeSb has been reinvestigated by neutron diffraction in an attempt to locate a possible tricritical point. Previous neutron diffraction studies indicated that a tricritical point...

  8. Transport properties and phase diagram of UNi2Si2

    International Nuclear Information System (INIS)

    Ning, Y.B.; Garrett, J.D.; Datars, W.R.; McMaster Univ., Hamilton, ON

    1992-01-01

    The resistivity and Hall coefficient of single-crystal UNi 2 Si 2 have been studied in detail for the temperature range 4.2-300 K. The resistivity of UNi 2 Si 2 is largely due to magnetic scattering and the phonon scattering contribution is estimated to be about 14% at room temperature. At low temperatures, the resistivity can be described by a gapped spin-wave model plus a T 2 term. The temperature dependence of the Hall coefficient is accounted for by a theoretical model invoking skew scattering of conduction electrons by localized magnetic moments. Among the three magnetic phase transition temperatures, the two lower ones are found to be magnetic field dependent and shift with the field applied along the tetragonal c axis. Using the resistivity measurement in an applied magnetic field, a field-temperature phase diagram of UNi 2 Si 2 is presented. (author)

  9. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    Science.gov (United States)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  10. Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe3

    Science.gov (United States)

    Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.

    2018-05-01

    Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our recent studies on the compound LaCrGe3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change of order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.

  11. Highly Accurate Calculations of the Phase Diagram of Cold Lithium

    Science.gov (United States)

    Shulenburger, Luke; Baczewski, Andrew

    The phase diagram of lithium is particularly complicated, exhibiting many different solid phases under the modest application of pressure. Experimental efforts to identify these phases using diamond anvil cells have been complemented by ab initio theory, primarily using density functional theory (DFT). Due to the multiplicity of crystal structures whose enthalpy is nearly degenerate and the uncertainty introduced by density functional approximations, we apply the highly accurate many-body diffusion Monte Carlo (DMC) method to the study of the solid phases at low temperature. These calculations span many different phases, including several with low symmetry, demonstrating the viability of DMC as a method for calculating phase diagrams for complex solids. Our results can be used as a benchmark to test the accuracy of various density functionals. This can strengthen confidence in DFT based predictions of more complex phenomena such as the anomalous melting behavior predicted for lithium at high pressures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Phase diagram of Rydberg atoms with repulsive van der Waals interaction

    International Nuclear Information System (INIS)

    Osychenko, O. N.; Astrakharchik, G. E.; Boronat, J.; Lutsyshyn, Y.; Lozovik, Yu. E.

    2011-01-01

    We report a quantum Monte Carlo calculation of the phase diagram of bosons interacting with a repulsive inverse sixth power pair potential, a model for assemblies of Rydberg atoms in the local van der Waals blockade regime. The model can be parametrized in terms of just two parameters, the reduced density and temperature. Solidification happens to the fcc phase. At zero temperature, the transition density is found with the diffusion Monte Carlo method at density ρ=3.9 ((ℎ/2π) 2 /mC 6 ) 3/4 , where C 6 is the strength of the interaction. The solidification curve at nonzero temperature is studied with the path-integral Monte Carlo approach and is compared with transitions in corresponding harmonic and classical crystals. Relaxation mechanisms are considered in relation to present experiments.

  13. Phase diagrams of a nonequilibrium mixed spin-3/2 and spin-2 Ising system in an oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Polat, Yasin

    2009-01-01

    The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins σ=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature T abs and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i 1 , i 2 , i 3 ) phases, and three coexistence or mixed phase regions, namely i 1 +p, i 2 +p and i 3 +p mixed phases that strongly depend on interaction parameters.

  14. Phase diagrams of a nonequilibrium mixed spin-3/2 and spin-2 Ising system in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Polat, Yasin [Institutes of Science, Erciyes University, 38039 Kayseri (Turkey)

    2009-12-15

    The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins {sigma}=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature T{sub abs} and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i{sub 1}, i{sub 2}, i{sub 3}) phases, and three coexistence or mixed phase regions, namely i{sub 1}+p, i{sub 2}+p and i{sub 3}+p mixed phases that strongly depend on interaction parameters.

  15. Interdependent binary choices under social influence: Phase diagram for homogeneous unbiased populations

    Science.gov (United States)

    Fernández del Río, Ana; Korutcheva, Elka; de la Rubia, Javier

    2012-07-01

    Coupled Ising models are studied in a discrete choice theory framework, where they can be understood to represent interdependent choice making processes for homogeneous populations under social influence. Two different coupling schemes are considered. The nonlocal or group interdependence model is used to study two interrelated groups making the same binary choice. The local or individual interdependence model represents a single group where agents make two binary choices which depend on each other. For both models, phase diagrams, and their implications in socioeconomic contexts, are described and compared in the absence of private deterministic utilities (zero opinion fields).

  16. Optimization of the thermodynamic properties and phase diagrams of P2O5-containing systems

    Science.gov (United States)

    Hudon, Pierre; Jung, In-Ho

    2014-05-01

    P2O5 is an important oxide component in the late stage products of numerous igneous rocks such as granites and pegmatites. Typically, P2O5 combines with CaO and crystallizes in the form of apatite, while in volatile-free conditions, Ca-whitlockite is formed. In spite of their interest, the thermodynamic properties and phase diagrams of P2O5-containg systems are not well known yet. In the case of the pure P2O5 for example, no experimental thermodynamic data are available for the liquid and the O and O' solid phases. As a result, we re-evaluated all the thermodynamic and phase diagram data of the P2O5 unary system [1]. Optimization of the thermodynamic properties and phase diagrams of the binary P2O5 systems was then performed including the Li2O-, Na2O-, MgO-, CaO-, BaO-, MnO-, FeO-, Fe2O3-, ZnO-, Al2O3-, and SiO2-P2O5 [2] systems. All available thermodynamic and phase equilibrium data were simultaneously reproduced in order to obtain a set of model equations for the Gibbs energies of all phases as functions of temperature and composition. In particular, the Gibbs energy of the liquid solution was described using the Modified Quasichemical Model [3-5] implemented in the FactSage software [6]. Thermodynamic modeling of the Li2O-Na2O-K2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2 system, which include many granite-forming minerals such as nepheline, leucite, pyroxene, melilite, feldspar and spinel is currently in progress. [1] Jung, I.-H., Hudon, P. (2012) Thermodynamic assessment of P2O5. J. Am. Ceram. Soc., 95 (11), 3665-3672. [2] Rahman, M., Hudon, P. and Jung, I.-H. (2013) A coupled experimental study and thermodynamic modeling of the SiO2-P2O5 system. Metall. Mater. Trans. B, 44 (4), 837-852. [3] Pelton, A.D. and Blander, M. (1984) Computer-assisted analysis of the thermodynamic properties and phase diagrams of slags. Proc. AIME Symp. Metall. Slags Fluxes, TMS-AIME, 281-294. [4] Pelton, A.D. and Blander, M. (1986) Thermodynamic analysis of ordered liquid solutions by a modified

  17. Construction of the Al-Ni-Si phase diagram over the whole composition and temperature ranges: thermodynamic modeling supported by key experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Wei; Du Yong; Wang Jiong; Zhang Wei-Wei [State Key Lab. of Powder Metallurgy, Central South Univ., Changsha (China); Hu Rong-Xiang; Nash, P. [Thermal Processing Technology Center, Illinois Inst. of Tech., Chicago (United States); Lu Xiao-Gang [Thermo-Calc AB, Stockholm Technology Park, Stockholm (Sweden)

    2008-06-15

    An extensive thermodynamic investigation of the Al-Ni-Si system is carried out via an integrated approach of calculation of phase diagrams, first-principles calculations, and key experiments. Eighteen decisive alloys are prepared in order to verify the existence of the previously reported ternary compounds and to provide new phase equilibrium data. Phase compositions, microstructure, and phase transition temperatures are determined using the combined techniques of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and differential thermal analysis. The order/disorder transition between disordered bccA2 and ordered bccB2 phases as well as that between disordered fccA1 and ordered L1{sub 2} phase are described using a two-sublattice model. A self-consistent parameter set is finally obtained by considering the huge amount of experimental data including 13 vertical sections and 5 isothermal sections from both the literature and the present experiments. Almost all of the reliable phase diagram data can be well described by the present modeling. The reliability of the calculated thermodynamic properties for ternary phases is verified through enthalpy measurement employing drop calorimetry and first-principles calculations. The thermodynamic parameters obtained can also successfully predict most of the thermodynamic properties and describe the solidification path for the selected as-cast alloy Al{sub 6}Ni{sub 55}Si{sub 39}. (orig.)

  18. Thermodynamic study of CVD-ZrO{sub 2} phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.m [Research Center for Applied Science and Advanced Technology, Altamira-IPN, Altamira C.P.89600 Tamaulipas (Mexico); Vargas-Garcia, J.R. [Dept of Metallurgical Eng., ESIQIE-IPN, Mexico 07300 D.F. (Mexico); Dominguez-Crespo, M.A. [Research Center for Applied Science and Advanced Technology, Altamira-IPN, Altamira C.P.89600 Tamaulipas (Mexico); Romero-Serrano, J.A. [Dept of Metallurgical Eng., ESIQIE-IPN, Mexico 07300 D.F. (Mexico)

    2009-08-26

    Chemical vapor deposition (CVD) of zirconium oxide (ZrO{sub 2}) from zirconium acetylacetonate Zr(acac){sub 4} has been thermodynamically investigated using the Gibbs' free energy minimization method and the FACTSAGE program. Thermodynamic data Cp{sup o}, DELTAH{sup o} and S{sup o} for Zr(acac){sub 4} have been estimated using the Meghreblian-Crawford-Parr and Benson methods because they are not available in the literature. The effect of deposition parameters, such as temperature and pressure, on the extension of the region where pure ZrO{sub 2} can be deposited was analyzed. The results are presented as calculated CVD stability diagrams. The phase diagrams showed two zones, one of them corresponds to pure monoclinic phase of ZrO{sub 2} and the other one corresponds to a mix of monoclinic phase of ZrO{sub 2} and graphite carbon.

  19. Study of Monte Carlo Simulation Method for Methane Phase Diagram Prediction using Two Different Potential Models

    KAUST Repository

    Kadoura, Ahmad

    2011-06-06

    Lennard‐Jones (L‐J) and Buckingham exponential‐6 (exp‐6) potential models were used to produce isotherms for methane at temperatures below and above critical one. Molecular simulation approach, particularly Monte Carlo simulations, were employed to create these isotherms working with both canonical and Gibbs ensembles. Experiments in canonical ensemble with each model were conducted to estimate pressures at a range of temperatures above methane critical temperature. Results were collected and compared to experimental data existing in literature; both models showed an elegant agreement with the experimental data. In parallel, experiments below critical temperature were run in Gibbs ensemble using L‐J model only. Upon comparing results with experimental ones, a good fit was obtained with small deviations. The work was further developed by adding some statistical studies in order to achieve better understanding and interpretation to the estimated quantities by the simulation. Methane phase diagrams were successfully reproduced by an efficient molecular simulation technique with different potential models. This relatively simple demonstration shows how powerful molecular simulation methods could be, hence further applications on more complicated systems are considered. Prediction of phase behavior of elemental sulfur in sour natural gases has been an interesting and challenging field in oil and gas industry. Determination of elemental sulfur solubility conditions helps avoiding all kinds of problems caused by its dissolution in gas production and transportation processes. For this purpose, further enhancement to the methods used is to be considered in order to successfully simulate elemental sulfur phase behavior in sour natural gases mixtures.

  20. Ab initio calculation of the bcc Fe-Al phase diagram including magnetic interactions

    International Nuclear Information System (INIS)

    Gonzales-Ormeno, Pablo Guillermo; Petrilli, Helena Maria; Schoen, Claudio Geraldo

    2006-01-01

    The metastable phase diagram of the body-centered cubic-based ordering equilibria in the Fe-Al system has been calculated by the cluster expansion method, through the combination of the full potential-linear augmented plane wave and cluster variation methods. The results are discussed with reference to the effect of including the spin polarizations of Fe in the thermodynamic model

  1. Studies on the phase diagram of Pb-Mo-O system

    International Nuclear Information System (INIS)

    Aiswarya, P.M.; Ganesan, Rajesh; Gnanasekaran, T.

    2014-01-01

    Liquid lead and Lead-Bismuth Eutectic (LBE) alloy are considered as spallation target and coolant in the accelerator driven systems and as candidate coolant in advanced nuclear reactors. Corrosion of the structural steel components in these liquid metal coolants can be minimized by the insitu formation of passive oxide layer on the steel surface under controlled oxygen concentration. A detailed knowledge of phase diagrams of Pb-M-O and Bi-M-O (M = Fe, Cr, Mo) systems and data on thermochemical properties of the ternary compounds of these systems are required for better understanding of composition and stability of these passive oxide films. In the present work, studies have been carried out to establish the ternary phase diagram of Pb-Mo-O system

  2. The phase diagrams of a ferromagnetic thin film in a random magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zaim, N.; Zaim, A., E-mail: ah_zaim@yahoo.fr; Kerouad, M., E-mail: m.kerouad@fs-umi.ac.ma

    2016-10-07

    In this paper, the magnetic properties and the phase diagrams of a ferromagnetic thin film with a thickness N in a random magnetic field (RMF) are investigated by using the Monte Carlo simulation technique based on the Metropolis algorithm. The effects of the RMF and the surface exchange interaction on the critical behavior are studied. A variety of multicritical points such as tricritical points, isolated critical points, and triple points are obtained. It is also found that the double reentrant phenomenon can appear for appropriate values of the system parameters. - Highlights: • Phase diagrams of a ferromagnetic thin film are examined by the Monte Carlo simulation. • The effect of the random magnetic field on the magnetic properties is studied. • Different types of the phase diagrams are obtained. • The dependence of the magnetization and susceptibility on the temperature are investigated.

  3. High-pressure phase diagrams of liquid CO2 and N2

    Science.gov (United States)

    Boates, Brian; Bonev, Stanimir

    2011-06-01

    The phase diagrams of liquid CO2 and N2 have been investigated using first-principles theory. Both materials exhibit transitions to conducting liquids at high temperatures (T) and relatively modest pressures (P). Furthermore, both liquids undergo polymerization phase transitions at pressures comparable to their solid counterparts. The liquid phase diagrams have been divided into several regimes through a detailed analysis of changes in bonding, as well as structural and electronic properties for pressures and temperatures up to 200 GPa and 10 000 K, respectively. Similarities and differences between the high- P and T behavior of these fluids will be discussed. Calculations of the Hugoniot are in excellent agreement with available experimental data. Work supported by NSERC, LLNL, and the Killam Trusts. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. A proposed phase equilibrium diagram for Pt-Zr system

    International Nuclear Information System (INIS)

    Arias, D.E.; Gribaudo, L.

    1993-01-01

    A revision of the phase diagram of the Pt-Zr system is presented using up to date information from recent publications. The proposed change concerning the invariant transformation in the Pt-rich zone is supported by simplified thermodynamic evaluations. (author). 12 refs., 1 fig

  5. Quest for the QCD phase diagram in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji, E-mail: fuku@rk.phys.keio.ac.jp [Keio University, Department of Physics (Japan)

    2013-03-15

    We review the state-of-the-art status of the research on the phase diagram of QCD matter out of quarks and gluons. Our discussions particularly include the extreme environments such as the high temperature, the high baryon density, and the strong magnetic field.

  6. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO

    Science.gov (United States)

    Jamadi, O.; Réveret, F.; Mallet, E.; Disseix, P.; Médard, F.; Mihailovic, M.; Solnyshkov, D.; Malpuech, G.; Leymarie, J.; Lafosse, X.; Bouchoule, S.; Li, F.; Leroux, M.; Semond, F.; Zuniga-Perez, J.

    2016-03-01

    The polariton condensation phase diagram is compared in GaN and ZnO microcavities grown on mesa-patterned silicon substrate. Owing to a common platform, these microcavities share similar photonic properties with large quality factors and low photonic disorder, which makes it possible to determine the optimal spot diameter and to realize a thorough phase diagram study. Both systems have been investigated under the same experimental conditions. The experimental results and the subsequent analysis reveal clearly that longitudinal optical phonons have no influence in the thermodynamic region of the condensation phase diagram, while they allow a strong (slight) decrease of the polariton lasing threshold in the trade-off zone (kinetic region). Phase diagrams are compared with numerical simulations using Boltzmann equations, and are in satisfactory agreement. A lower polariton lasing threshold has been measured at low temperature in the ZnO microcavity, as is expected due to a larger Rabi splitting. This study highlights polariton relaxation mechanisms and their importance in polariton lasing.

  7. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.

    Science.gov (United States)

    Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan

    2017-06-01

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.

  8. A new experimental phase diagram investigation of Cu-Sb.

    Science.gov (United States)

    Fürtauer, Siegfried; Flandorfer, Hans

    The binary system Cu-Sb is a constituent system that is studied in investigations of technically important ternary and quaternary alloy systems (e.g., casting alloys and lead-free solders). Although this binary system has been thoroughly investigated over the last century, there are still some uncertainties regarding its high-temperature phases. Thus, parts of its phase diagram have been drawn with dashed lines in reviews published in the literature. The aim of this work was to resolve these uncertainties in the current phase diagram of Cu-Sb by performing XRD, SEM-EDX, EPMA, and DTA. The results from thermal analysis agreed well with those given in the literature, although some modifications due to the invariant reaction temperatures were necessary. In particular, reactions located on the Cu-rich side of the nonquenchable high-temperature β phase (BiF 3 -type) left considerable scope for interpretation. Generally, the structural descriptions of the various binary phases given in the literature were verified. The range of homogeneity of the ε phase (Cu 3 Ti type) was found to be higher on the Sb-rich side. Most of the reaction temperatures were verified, but a few had to be revised, such as the eutectoid reaction [Formula: see text] at 440 °C (found to occur at 427 °C in this work) and the eutectoid reaction [Formula: see text] at 400 °C (found to occur at 440 °C in this work). Further phase transformations that had previously only been estimated were confirmed, and their characteristic temperatures were determined.

  9. PHASE DIAGRAM OF GELATINE-POLYURONATE COLLOIDS: ITS APPLICATION FOR MICROENCAPSULATION AND NOT ONLY

    Directory of Open Access Journals (Sweden)

    Alexei Baerle

    2016-06-01

    Full Text Available Phase state and the charge of colloidal particles in the gelatine-polyuronate system were studied. A method for comparative evaluation of molecular weight of colloids by means of viscosimetric measurements and electrophoresis was developed. It is shown that the Diagram {Phase state = f (composition, pH} contains six well-defined regions. The diagram explains and predicts the behaviour of protein-polysaccharide colloids, which are included in beverages or forms the shells of oil-containing microcapsules.

  10. Magnetic phase diagram of Ce2Fe17 under high pressures in high magnetic fields

    International Nuclear Information System (INIS)

    Ishikawa, Fumihiro; Goto, Tsuneaki; Fujii, Hironobu

    2003-01-01

    The magnetization of Ce 2 Fe 17 was precisely measured under high pressures up to 1.2 GPa in magnetic fields up to 18 T. The magnetic phase diagram in the B-T plane is determined at 0, 0.3, 0.4, 0.6, 0.9 and 1.2 GPa. At 0 GPa, five magnetic phases exist and the application of high pressure produces two additional magnetic phases. The shape of the phase diagram changes drastically with increasing pressure

  11. Tight-binding calculation of Ti-Rh--type phase diagram

    International Nuclear Information System (INIS)

    Sluiter, M.; Turchi, P.; Fu Zezhong; de Fontaine, D.

    1988-01-01

    Tight-binding electronic band-structure calculations were combined with a free-energy expression from a statistical mechanical method called the cluster-variation method. The effective pair interactions used in the cluster-variation calculation were evaluated by the generalized perturbation method. Only d orbitals were included and the numbers of d electrons per atom were taken to be three for the pure A element and eight for the pure B. A phase diagram was constructed incorporating, for the first time, both fcc and bcc lattices and their simple-ordered superstructures. The calculated diagram agreed reasonably well with those determined empirically for Ti-Rh or Ti-Ir

  12. Plastic crystal phases of simple water models

    International Nuclear Information System (INIS)

    Aragones, J. L.; Vega, C.

    2009-01-01

    We report the appearance of two plastic crystal phases of water at high pressure and temperature using computer simulations. In one of them the oxygen atoms form a body centered cubic structure (bcc) and in the other they form a face centered cubic structure (fcc). In both cases the water molecules were able to rotate almost freely. We have found that the bcc plastic crystal transformed into a fcc plastic crystal via a Martensitic phase transition when heated at constant pressure. We have performed the characterization and localization in the phase diagram of these plastic crystal phases for the SPC/E, TIP4P, and TIP4P/2005 water potential models. For TIP4P/2005 model free energy calculations were carried out for the bcc plastic crystal and fcc plastic crystal using a new method (which is a slight variation of the Einstein crystal method) proposed for these types of solid. The initial coexistence points for the SPC/E and TIP4P models were obtained using Hamiltonian Gibbs–Duhem integration. For all of these models these two plastic crystal phases appear in the high pressure and temperature region of the phase diagram. It would be of interest to study if such plastic crystal phases do indeed exist for real water. This would shed some light on the question of whether these models can describe satisfactorily the high pressure part of the phase diagram of water, and if not, where and why they fail.

  13. Topological phase diagram of superconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)

    2016-07-01

    The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.

  14. Gd5(SixGe1−x)4 system – updated phase diagram

    International Nuclear Information System (INIS)

    Melikhov, Yevgen; Hadimani, R.L.; Raghunathan, Arun

    2015-01-01

    Gd 5 (Si x Ge 1−x ) 4 for 0.41phase transition between the two. In this range, the magnetic moment vs. magnetic field (MH) isotherms measured just above the first order transition temperature carry information about all magnetic and structural transitions. Here, the Curie–Weiss law was applied to the paramagnetic portions of the MH isotherms which allowed identification of the second order magnetic phase transition temperature of the monoclinic phase, a region where the second order transition does not occur due to the existence of the first order transition. The calculated second order phase transition temperatures of the monoclinic phase were added to the existing phase diagram. The completed magnetic-structural phase diagram carries now all the information including the magnetic transition temperatures of both monoclinic and orthorhombic phases. It was also found that the magnetic transition temperature of the monoclinic phase and the first order transition temperature are interrelated. - Highlights: • Magnetocaloric Gd 5 (Si x Ge 1−x ) 4 for 0.41phase transition suppresses second order transition of monoclinic phase. • Curie–Weiss law and Arrott Plot technique were used to analyse M vs. H isotherms. • Second order phase transition temperatures of the monoclinic phase were estimated. • Magnetic-structural phase diagram Gd 5 (Si x Ge 1−x ) 4 for 0.41

  15. Investigation on U - O - Na, Pu - O - Na and U,Pu - O - Na phase diagrams

    International Nuclear Information System (INIS)

    Pillon, S.

    1989-03-01

    The thermochemical interaction between the nuclear fuel (uranium and plutonium mixed oxides) and the sodium has been investigated and particularly the three phase diagrams: U - O - Na; Pu - O - Na; U,Pu - O - Na. High temperature neutron diffraction, microcalorimetry and powder X-ray diffraction were used for the characterization of the compounds synthetized. This study allowed to complete the knowledge about each of these diagrams and to measure some physical and thermal properties on the compounds. The limits on the modelization of the fuel-sodium interaction are discussed from the results of the UO 2 - Na reaction [fr

  16. Experimental investigation of the Al-Y phase diagram

    International Nuclear Information System (INIS)

    Liu Shuhong; Du Yong; Xu Honghui; He Cuiyun; Schuster, Julius C.

    2006-01-01

    The Al-Y phase diagram has been reinvestigated with 16 key alloys over its whole composition range by means of differential thermal analysis, X-ray diffraction, optical microscopy, and scanning electron microscopy with energy dispersive X-ray techniques. The existence of five intermetallic phases, Al 3 Y, Al 2 Y, AlY, Al 2 Y 3 , and AlY 2 , has been confirmed. Al 2 Y and Al 2 Y 3 melt congruently at 1490 ± 2 and 1105 ± 2 deg. C, respectively. Al 3 Y, AlY, and AlY 2 are formed via the peritectic reactions L + Al 2 Y ↔ Al 3 Y at 980 ± 2 deg. C, L + Al 2 Y ↔ AlY at 1138 ± 2 deg. C, and L + Al 2 Y 3 ↔ AlY 2 at 977 ± 2 deg. C, respectively. Three eutectic reactions L ↔ (Al) + Al 3 Y at 637 ± 2 deg. C, L ↔ AlY + Al 2 Y 3 at 1081 ± 2 deg. C, and L ↔ AlY 2 + (αY) at 955 ± 2 deg. C , are observed. The previously reported Al 3 Y 5 , AlY 3 compounds were not found. A revised Al-Y phase diagram is presented mainly based on the present experimental results

  17. A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR

    Science.gov (United States)

    Han, Pu; Deem, Michael

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.

  18. Phase diagrams and heterogeneous equilibria a practical introduction

    CERN Document Server

    Predel, Bruno; Pool, Monte

    2004-01-01

    This graduate-level textbook provides an introduction to the practical application of phase diagrams. It is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. Heterogeneous equilibria are described by a minimum of theory illustrated by practical examples and realistic case discussions from the different fields of application. The treatment of the physical and energetic background of phase equilibria leads to the discussion of the thermodynamics of mixtures and the correlation between energetics and composition. Thus, tools for the prediction of energetic, structural, and physical quantities are provided. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Furthermore, the text also concisely presents the thermodynamics and composition of polymer systems.

  19. Phase diagram of a modified Lennard-Jones system

    International Nuclear Information System (INIS)

    Sakagami, Takahiro; Fuchizaki, Kazuhiro

    2010-01-01

    The well-known Lennard-Jones potential is modified in such a way that it smoothly vanishes at a certain distance. A system whose interparticle interaction is given by such a potential is referred to as a modified Lennard-Jones system, and is served as a standard system describing simple solids and fluids. A phase diagram is determined based on the free energies obtained through thermodynamic integration.

  20. Thermodynamics and phase diagrams of the plutonium-uranium, uranium-zirconium, plutonium-zirconium and plutonium-uranium-zirconium systems

    International Nuclear Information System (INIS)

    Agarwal, R.; Venugopal, V.

    2004-05-01

    Thermodynamic and phase diagram data reported in literature for the binaries, Pu-U, Pu-Zr and U-Zr , were compiled and optimised to calculate Gibbs energies of all the binary phases of these systems. Lukas program was used to carry out these optimisations, where, thermodynamic and phase diagram data of all the binary phases of a binary system were optimised simultaneously. Gibbs energy sets thus calculated were used to compare our results with the experimental and calculated phase diagram and thermodynamic data reponed in the literature. The Gibbs energies of the binary systems were then compiled together to define Pu-U-Zr ternary system. (author)

  1. Magnetic phase diagram of a frustrated spin ladder

    Science.gov (United States)

    Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi

    2018-04-01

    Frustrated spin ladders show magnetization plateaux depending on the rung-exchange interaction and frustration defined by the ratio of first and second neighbor exchange interactions in each chain. This paper reports on its magnetic phase diagram. Using the variational matrix-product state method, we accurately determine phase boundaries. Several kinds of magnetization plateaux are induced by the frustration and the strong correlation among quasiparticles on a lattice. The appropriate description of quasiparticles and their relevant interactions are changed by a magnetic field. We find that the frustration differentiates the triplet quasiparticle from the singlet one in kinetic energy.

  2. Comparisons between observational color-magnitude diagrams and synthetic cluster diagrams for young star clusters in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Recker, S.A.; Brunish, W.M.; Mathews, G.J.

    1984-01-01

    Young star clusters ( 8 yr) in the Magellanic Clouds (MC) can be used to test the current status of the theory of stellar evolution as applied to intermediate and massive stars. The color-magnitude diagram of many young clusters in the MC shows large numbers of stars in both the main sequence and post main sequence evolutionary phases. Using a grid of stellar evolution models, synthetic cluster H-R diagrams are constructed and compared to observed color-magnitude diagrams to determine the age, age spread, and composition for any given cluster. In addition, for those cases where the data is of high quality, detailed comparisons between theory and observation can provide a diagnostic of the accuracy of the stellar evolution models. Initial indications of these comparisons suggest that the theoretical models should be altered to include: a larger value for the mixing length parameter, a larger rate of mass loss during the asymptotic giant branch phase, and possibly convective overshoot during the core burning phases. (Auth.)

  3. Phase diagrams for systems Cu2S-AIIS (AII=Mg, Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    Andreev, O.V.; Sikerina, N.V.; Solov'eva, A.V.

    2005-01-01

    By the methods of physicochemical analysis phase diagrams of Cu 2 S-A II S (A II =Mg, Ca, Sr, Ba) systems are studied. The system Cu 2 S-SrS is of eutectic type with eutectic coordinates 1095 K and 21.5 mol.% of SrS. Solubility of SrS in Cu 2 S is 2 mol.% at 1095 K. Regularities of phase diagram changes of Cu 2 S-A II S (A II =Mg, Ca, Sr, Ba) system are determined. Thermodynamic analysis is done [ru

  4. Phase diagram of a QED-cavity array coupled via a N-type level scheme

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiasen; Rossini, Davide [CNR, NEST, Scuola Normale Superiore and Istituto di Nanoscienze, Pisa (Italy); Fazio, Rosario [CNR, NEST, Scuola Normale Superiore and Istituto di Nanoscienze, Pisa (Italy); National University of Singapore, Center for Quantum Technologies, Singapore (Singapore)

    2015-01-01

    We study the zero-temperature phase diagram of a one-dimensional array of QED cavities where, besides the single-photon hopping, an additional coupling between neighboring cavities is mediated by an N-type four-level system. By varying the relative strength of the various couplings, the array is shown to exhibit a variety of quantum phases including a polaritonic Mott insulator, a density-wave and a superfluid phase. Our results have been obtained by means of numerical density-matrix renormalization group calculations. The phase diagram was obtained by analyzing the energy gaps for the polaritons, as well as through a study of two-point correlation functions. (orig.)

  5. Macroscopically constrained Wang-Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams

    Science.gov (United States)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-05-01

    A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.

  6. Calculation of superalloy phase diagrams. IV

    International Nuclear Information System (INIS)

    Kaufman, L.; Nesor, H.

    1975-01-01

    Explicit descriptions of the Fe--Mo, Fe--W, Fe--Nb, W--Cr and Ti--W binary systems have been developed in line with lattice stability, thermochemical and phase diagram data. These descriptions, along with similar results derived previously, have been employed to calculate isothermal sections in the Cr--Al--Fe, Fe--Mo--Cr, Fe--W--Cr, Ni--Al--Co, Nb--Ti--W, Ti--W--Mo, Cr--W--Mo, Ni--Mo--W, and Ni--W--Ti systems for comparison with experimental results. The effects of carbon impurities on miscibility gap formation in the Ti--W, Nb--Ti--W, Ti--W--Mo and Cr--W--Mo systems are discussed

  7. Construction of UML class diagram with Model-Driven Development

    Directory of Open Access Journals (Sweden)

    Tomasz Górski

    2016-03-01

    Full Text Available Model transformations play a key role in software development projects based on Model--Driven Development (MDD principles. Transformations allow for automation of repetitive and well-defined steps, thus shortening design time and reducing a number of errors. In the object-oriented approach, the key elements are use cases. They are described, modelled and later designed until executable application code is obtained. The aim of the paper is to present transformation of a model-to-model type, Communication-2-Class, which automates construction of Unified Modelling Language (UML class diagram in the context of the analysis/design model. An UML class diagram is created based on UML communication diagram within use case realization. As a result, a class diagram shows all of the classes involved in the use case realization and the relationships among them. The plug-in which implements Communication-2-Class transformation was implemented in the IBM Rational Software Architect. The article presents the tests results of developed plug-in, which realizes Communication-2-Class transformation, showing capabilities of shortening use case realization’s design time.[b]Keywords[/b]: Model-Driven Development, transformations, Unified Modelling Language, analysis/design model, UML class diagram, UML communication diagram

  8. Zr-Fe-Sn Ternary System Phase Diagrams- New Experimental Results

    International Nuclear Information System (INIS)

    Nieva, N; Gomez, A; Arias, D

    2004-01-01

    New experimental results for the Zr-Fe-Sn ternary system are presented in this paper. The phases present and equilibrium relations for the 900 o C isothermal on the central zone of the Gibbs triangle are analysed. A set of ternary alloys was designed and obtained, and they were analysed by semi quantitative SEM- EDS, XRD, and metallographic samples. The resulting ternary phase diagrams are presented here (JCH)

  9. Phase diagrams and radial distribution of the electric field components of coaxial discharges with outer dielectric tube at different wave modes

    International Nuclear Information System (INIS)

    Neichev, Z; Benova, E; Gamero, A; Sola, A

    2007-01-01

    The purpose of this work is to investigate phase diagrams and electric field radial distribution of coaxial discharges, sustained by a traveling electromagnetic wave, assuming finite and infinite thickness of the discharge chamber in the model. The calculations are made for azimuthally symmetric and dipolar wave modes. The phase diagrams and the radial profiles of the electric field at various thicknesses of the outer dielectric tube of the chamber and different discharge conditions are obtained. For the purpose of low pressure coaxial plasma modelling, radial profiles of the electric field at different discharge conditions have been investigated experimentally and compared with the theoretical results

  10. The TbBr3–LiBr binary system: Experimental thermodynamic investigation and assessment of phase diagram

    International Nuclear Information System (INIS)

    Rycerz, L.; Gong, W.; Gaune-Escard, M.

    2013-01-01

    Highlights: ► DSC measurements for the (LiBr + TbBr 3 ) system. ► congruently Li3TbBr 6 and incongruently melting Li5TbBr 8 compounds. ► Thermodynamic description of the liquid phase in the (LiBr + TbBr 3 ) system. ► Assessment with a two-sublattice ionic solution model. - Abstract: DSC was used to study the phase equilibrium in the TbBr 3 –LiBr binary system. The results obtained provided a basis for constructing the phase diagram of this system. It exhibits two compounds: Li 5 TbBr 8 , which decomposes in the solid state at 611 K, and Li 3 TbBr 6 , which melts congruently at 785 K with the related enthalpy 59.1 kJ·mol −1 . The binary LiBr–TbBr 3 system was then optimized using the available experimental information on phase diagram and thermodynamic properties. A two-sub-lattice ionic solution model (Li + ) P :(Br − , TbBr 6 −3 , TbBr 3 ) Q was adopted to describe the liquid phase. The present assessment of the binary LiBr–TbBr 3 system was in good agreement with the corresponding experimental data and confirmed their consistency.

  11. Magnetic phase diagram of Ba3CoSb2O9 as determined by ultrasound velocity measurements

    Science.gov (United States)

    Quirion, G.; Lapointe-Major, M.; Poirier, M.; Quilliam, J. A.; Dun, Z. L.; Zhou, H. D.

    2015-07-01

    Using high-resolution sound velocity measurements we have obtained a very precise magnetic phase diagram of Ba3CoSb2O9 , a material that is considered to be an archetype of the spin-1/2 triangular-lattice antiferromagnet. Results obtained for the field parallel to the basal plane (up to 18 T) show three phase transitions, consistent with predictions based on simple two-dimensional isotropic Heisenberg models and previous experimental investigations. The phase diagram obtained for the field perpendicular to the basal plane clearly reveals an easy-plane character of this compound and, in particular, our measurements show a single first-order phase transition at Hc 1=12.0 T which can be attributed to a spin flop between an umbrella-type configuration and a coplanar V -type order where spins lie in a plane perpendicular to the a b plane. At low temperatures, softening of the lattice within some of the ordered phases is also observed and may be a result of residual spin fluctuations.

  12. The phase diagram of scalar field theory on the fuzzy disc

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Simone; Sämann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics,Heriot-Watt University,Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)

    2015-11-17

    Using a recently developed bootstrapping method, we compute the phase diagram of scalar field theory on the fuzzy disc with quartic even potential. We find three distinct phases with second and third order phase transitions between them. In particular, we find that the second order phase transition happens approximately at a fixed ratio of the two coupling constants defining the potential. We compute this ratio analytically in the limit of large coupling constants. Our results qualitatively agree with previously obtained numerical results.

  13. Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.

    2012-09-01

    Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.

  14. Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix

    Science.gov (United States)

    Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.

    2018-01-01

    Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition

  15. Low-temperature phase diagram of YbBiPt

    International Nuclear Information System (INIS)

    Movshovich, R.; Lacerda, A.; Canfield, P.C.; Thompson, J.D.; Fisk, Z.

    1994-01-01

    Resistivity measurements are reported on the cubic heavy-fermion compound YbBiPt at ambient and hydrostatic pressures to ∼19 kbar and in magnetic fields to 1 T. The phase transition at T c =0.4 K is identified by a sharp rise in resistivity. That feature is used to build low-temperature H-T and P-T phase diagrams. The phase boundary in the H-T plane follows the weak-coupling BCS expression remarkably well from T c to T c /4, while small hydrostatic pressure of ∼1 kbar suppresses the low-temperature phase entirely. These effects of hydrostatic pressure and magnetic field on the phase transition are consistent with an spin-density-wave (SDW) formation in a very heavy electron band at T=0.4 K. Outside of the SDW phase at low temperature, hydrostatic pressure increases the T 2 coefficient of resistivity, signaling an increase in heavy-fermion correlations with hydrostatic pressure. The residual resistivity decreases with pressure, contrary to trends in other Yb heavy-fermion compounds

  16. Penguin-like diagrams from the standard model

    International Nuclear Information System (INIS)

    Ping, Chia Swee

    2015-01-01

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated

  17. Penguin-like diagrams from the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Chia Swee [High Impact Research, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.

  18. E-T phase diagram of an antiferroelectric liquid crystal with re-entrand smectic C* phase

    Czech Academy of Sciences Publication Activity Database

    Na, Y.-H.; Naruse, Y.; Fukuda, N.; Orihara, H.; Fajar, A.; Hamplová, Věra; Kašpar, Miroslav; Glogarová, Milada

    2008-01-01

    Roč. 364, č. 1 (2008), s. 13-19 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z10100520 Keywords : phase diagram * liquid crystals * dielectric measurements * electric field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.562, year: 2008

  19. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model; Einfluss schwerer hadronischer Zustaende auf das QCD-Phasendiagramm und die Ausfrierbedingungen in einem hadronischen chiralen Modell

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, G.

    2006-07-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the

  20. Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Yves [Mines-ParisTech., CEMEF, UMR CNRS 7635, 1 rue Claude Daunesse 06904 Sophia Antipolis cedex (France); Mija, Alice [University of Nice-Sophia Antipolis, Thermokinetic Group, Laboratory of Chemistry of Organic and Metallic Materials C.M.O.M., 06108 Nice Cedex 2 (France); Burr, Alain; Darque-Ceretti, Evelyne; Felder, Eric [Mines-ParisTech., CEMEF, UMR CNRS 7635, 1 rue Claude Daunesse 06904 Sophia Antipolis cedex (France); Sbirrazzuoli, Nicolas, E-mail: sbirrazz@unice.fr [University of Nice-Sophia Antipolis, Thermokinetic Group, Laboratory of Chemistry of Organic and Metallic Materials C.M.O.M., 06108 Nice Cedex 2 (France)

    2011-07-10

    Highlights: {yields} Blends of Rosin and beeswax are studied by DSC, XRD, and optical microscopy. {yields} The first phase diagram beeswax/rosin is established. {yields} Polymorphic transitions are identified and appear to be highly related to rosin content. - Abstract: Rosin and beeswax are two complex natural materials presenting numerous applications in paints, adhesives, varnishes or inks. Melted, they are particularly interesting for their adhesion properties. This paper establishes the first phase diagram beeswax/rosin blends. A systematic approach using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and polarised optical microscopy (POM) has been performed in order to describe the crystallographic structure and the thermal properties of two materials, beeswax and rosin, and their blends. Indeed, melting, softening and crystallisation temperatures, polymorphic transitions but also crystalline index has been investigated. The resulting phase diagram reveals a complex behaviour in terms of phase transformation and time-dependent phenomenon mainly representative of the complex composition of beeswax.

  1. 450 {sup o}C isothermal section of the Fe-Zn-Si ternary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xuping [Inst. of Materials Research, School of Mechanical Engineering, Xiangtan Univ., Xiangtan, Hunan (China); Univ. of Toronto, Dept. of Materials Science and Engineering, Toronto, Ontario (Canada); Tang, Nai-Yong [Cominco Ltd., Product Technology Centre, Mississauga, Ontario (Canada); Toguri, J.M. [Univ. of Toronto, Dept. of Materials Science and Engineering, Toronto, Ontario (Canada)

    2001-07-01

    The 450 {sup o}C isothermal section of the Fe-Zn-Si ternary phase diagram has been determined experimentally using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry. The focus of the work has been concentrated on the Zn-rich corner which is relevant to general galvanizing. The present study has confirmed the existence of the equilibrium state between the liquid, the {zeta} phase and the FeSi phase. This three phase equilibrium state prevents the equilibrium between the liquid and the {delta} phase suggested by some researchers. Experimental results indicate that Si solubility in all four binary Zn-Fe compounds is limited. The Fe solubility in molten Zn was found to decrease with increasing Si content in the melt. The liquid phase boundary was determined using a model based phenomenological approach. (author)

  2. Determining the phase diagram of lithium via ab initio calculation and ramp compression

    Science.gov (United States)

    Shulenburger, Luke; Seagle, Chris; Haill, Thomas; Harding, Eric

    2015-06-01

    Diamond anvil cell experiments have shown elemental lithium to have an extraordinarily complex phase diagram under pressure exhibiting numerous solid phases at pressures below 1 Mbar, as well as a complicated melting behavior. We explore this phase diagram utilizing a combination of quantum mechanical calculations and ramp compression experiments performed on Sandia National Laboratories' Z-machine. We aim to extend our knowledge of the high pressure behavior to moderate temperatures at pressures above 50 GPa with a specific focus on the melt line above 70 GPa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Dept of Energy's Natl. Nuclear Security Administration under Contract DE-AC04-94AL85000.

  3. Conductivity, calorimetry and phase diagram of the NaHSO4–KHSO4 system

    DEFF Research Database (Denmark)

    Hind, Hamma-Cugny; Rasmussen, Søren Birk; Rogez, J.

    2006-01-01

    to polynomials of the form κ(X)=A(X)+B(X)(T-Tm)+C(X)(T-Tm)2, where Tm is the intermediate temperature of the measured temperature range and X, the mole fraction of KHSO4. The possible role of this binary system as a catalyst solvent is also discussed. (C) 2005 Elsevier B.V. All rights reserved.......Physico-chemical properties of the binary system NaHSO4-KHSO4 were studied by calorimetry and conductivity, The enthalpy of mixing has been measured at 505 K in the full composition range and the phase diagram calculated. The phase diagram has also been constructed from phase transition...

  4. Magnetic phase diagram of ErNi2B2C

    DEFF Research Database (Denmark)

    Jensen, A.; Toft, K.N.; Abrahamsen, A.B.

    2004-01-01

    The magnetic phase diagram of the superconductor ErNi2B2C (T-c = 11 K and T-N = 6 K) has been studied by neutron diffraction as a function of temperature and magnetic field applied along the symmetry directions [010], [110] and [001] of the tetragonal crystal structure. A series of commensurate...... magnetic structures, consistent with a transversely polarized spin-density wave with modulation vectors Q = n/ma* (0.55 less than or equal to n/m field model that has been established from...... an analysis of bulk magnetization and zero-field neutron diffraction data. The model accounts for most of the observed features but fails to explain the occurrence of a small component Qdelta approximate to -0.005b* observed close to H-c2 when the field is applied along [110]. (C) 2004 Elsevier B.V. All...

  5. A Semiempirical Model for Sigma-Phase Precipitation in Duplex and Superduplex Stainless Steels

    Science.gov (United States)

    Ferro, P.; Bonollo, F.

    2012-04-01

    Sigma phase is known to reduce the mechanical properties and corrosion resistance of duplex and superduplex stainless steels. Therefore, heat treatments and welding must be carefully performed so as to avoid the appearance of such a detrimental phase, and clearly, models suitable to faithfully predict σ-phase precipitation are very useful tools. Most fully analytical models are based on thermodynamic calculations whose agreement with experimental results is not always good, so that such models should be used for qualitative purposes only. Alternatively, it is possible to exploit semiempirical models, where time-temperature-transformation (TTT) diagrams are empirically determined for a given alloy and the continuous-cooling-transformation (CCT) diagram is calculated from the TTT diagram. In this work, a semiempirical model for σ-phase precipitation in duplex and superduplex stainless steels, under both isothermal and unisothermal conditions, is proposed. Model parameters are calculated from empirical data and CCT diagrams are obtained by means of the additivity rule, whereas experimental measurements for model validation are taken from the literature. This model gives a satisfactory estimation of σ-phase precipitates during both isothermal aging and the continuous cooling process.

  6. Phase diagram studies for microencapsulation of pharmaceuticals using cellulose acetate trimellitate.

    Science.gov (United States)

    Sanghvi, S P; Nairn, J G

    1991-04-01

    Phase diagrams were prepared to indicate the region of microcapsule formation for the following system: cellulose acetate trimellitate, light mineral oil, and the solvent mixture (acetone:ethanol), using chloroform as the hardening agent. The effect of sorbitan monoleate, sorbitan monolaurate, and sorbitan trioleate on the region of the phase diagram for the formation of microcapsules was investigated. The results indicate that microcapsules are readily formed when the polymer concentration is in the 0.5-1.5% range and the solvent concentration is in the 5-10% range. Aggregation of microcapsules was minimized by using lower solvent concentration. Low concentrations of sorbitan monooleate in mineral oil (less than or equal to 1%) gave products that had smoother coats and more uniform particle size. Surfactants with low hydrophile:lipophile balance produced larger regions on the phase diagram for microencapsulation compared with a surfactant with higher hydrophile:lipophile balance. A mechanism for microencapsulation is described. Tartrazine microcapsules produced using different concentrations of surfactant were tested for dissolution characteristics in both acidic and neutral conditions. Tartrazine-containing microcapsules prepared by using 3% sorbitan monooleate had the lowest release in acidic conditions. The effect of surfactant and formulation concentration on microcapsule size was studied by analyzing the particle size distribution for both blank and tartrazine-containing microcapsules. The smallest microcapsule size was obtained when the sorbitan monooleate concentration was 3%. It appears that there is an upper limit for the surfactant concentration that could be used to achieve successful microencapsulation.

  7. Thermochemical and phase diagram studies of the Sn–Zn–Ni system

    Czech Academy of Sciences Publication Activity Database

    Gandova, V.D.; Brož, P.; Buršík, Jiří; Vassilev, G.P.

    2011-01-01

    Roč. 524, 1-2 (2011), s. 47-55 ISSN 0040-6031 Institutional research plan: CEZ:AV0Z20410507 Keywords : DSC * solders * Sn-Zn-Ni phase diagram Subject RIV: BJ - Thermodynamics Impact factor: 1.805, year: 2011

  8. The Computerised Calculus in the Prognosis of the Phase Equilibrium Diagram of the Ternary System Al-Cu-Si

    Directory of Open Access Journals (Sweden)

    Florentina A. Cziple

    2006-10-01

    Full Text Available The paper presents a model for establishing the mathematical functions of the liquidus and solidus curves, from the binary diagrams Al-Si, Si-Cu, Cu-Al and their use in the prognosis of the phase equilibrium diagram from the ternary system Al-Cu-Si. We have studied the model of the non-ideal liquid solution of the regular type. The calculus and graphic plotting of the equations for the binary systems has been performed on the computer with the software programmes MathCad 2000 Professional, Statistica 5, Curve Expert, and for the ternary system Al-Cu-Si, with the 3D StudioMax software

  9. The happy marriage between electron-phonon superconductivity and Mott physics in Cs3C60: A first-principle phase diagram

    Science.gov (United States)

    Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro

    The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors

  10. Stability conditions and phase diagrams for two-component Fermi gases with population imbalance

    International Nuclear Information System (INIS)

    Chen Qijin; He Yan; Chien, C.-C.; Levin, K.

    2006-01-01

    Superfluidity in atomic Fermi gases with population imbalance has recently become an exciting research focus. There is considerable disagreement in the literature about the appropriate stability conditions for states in the phase diagram throughout the BCS to Bose-Einstein condensation crossover. Here we discuss these stability conditions for homogeneous polarized superfluid phases, and compare with recent alternative proposals. The requirement of a positive second-order partial derivative of the thermodynamic potential with respect to the fermionic excitation gap Δ (at fixed chemical potentials) is demonstrated to be equivalent to the positive definiteness of the particle number susceptibility matrix. In addition, we show the positivity of the effective pair mass constitutes another nontrivial stability condition. These conditions determine the (local) stability of the system towards phase separation (or other ordered phases). We also study systematically the effects of finite temperature and the related pseudogap on the phase diagrams defined by our stability conditions

  11. Temperature gradient method for lipid phase diagram construction using time-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.; Hing, F.S.

    1987-01-01

    A method that enables temperature-composition phase diagram construction at unprecedented rates is described and evaluated. The method involves establishing a known temperature gradient along the length of a metal rod. Samples of different compositions contained in long, thin-walled capillaries are positioned lengthwise on the rod and equilibrated such that the temperature gradient is communicated into the sample. The sample is then moved through a focused, monochromatic synchrotron-derived x-ray beam and the image-intensified diffraction pattern from the sample is recorded on videotape continuously in live-time as a function of position and, thus, temperature. The temperature at which the diffraction pattern changes corresponds to a phase boundary, and the phase(s) existing (coexisting) on either side of the boundary can be identified on the basis of the diffraction pattern. Repeating the measurement on samples covering the entire composition range completes the phase diagram. These additional samples can be conveniently placed at different locations around the perimeter of the cylindrical rod and rotated into position for diffraction measurement. Temperature-composition phase diagrams for the fully hydrated binary mixtures, dimyristoylphosphatidylcholine (DMPC)/dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE)/DPPC, have been constructed using the new temperature gradient method. They agree well with and extend the results obtained by other techniques. In the DPPE/DPPC system structural parameters as a function of temperature in the various phases including the subgel phase are reported. The potential limitations of this steady-state method are discussed

  12. Revision of the Ge–Ti phase diagram and structural stability of the new phase Ge4Ti5

    International Nuclear Information System (INIS)

    Bittner, Roland W.; Colinet, Catherine; Tedenac, Jean-Claude; Richter, Klaus W.

    2013-01-01

    Highlights: •New compound Ge 4 Ti 5 found by experiments and by DFT ground state calculations. •Enthalpies of formation calculated for different Ge–Ti compounds. •Modifications of the Ge–Ti phase diagram suggested. -- Abstract: The binary phase diagram Ge–Ti was investigated experimentally by powder X-ray diffraction, scanning electron microscopy including EDX analysis, and differential thermal analysis. Total energies of the compounds GeTi 3 , GeTi 2 , Ge 3 Ti 5 , Ge 4 Ti 5 , Ge 5 Ti 6 , GeTi and Ge 2 Ti were calculated for various structure types employing electronic density-functional theory (DFT). Experimental studies as well as electronic calculations show the existence of a new phase Ge 4 Ti 5 (Ge 4 Sm 5 -type, oP36, Pnma) which is formed in a solid state reaction Ge 3 Ti 5 + Ge 5 Ti 6 = Ge 4 Ti 5 . In addition, a significant homogeneity range was observed for the compound Ge 3 Ti 5 and the composition of the liquid phase in the eutectic reaction L = Ge + Ge 2 Ti was found to be at significant higher Ge-content (97.5 at.% Ge) than reported in previous studies. Based on these new results, a modified phase diagram Ge–Ti is suggested. The zero-temperature lattice parameters and the formation enthalpies determined by DTF calculations were found to be in good agreement with experimental data

  13. Dynamic vortex-phase diagram of MgB2 single crystals near the peak-effect region

    International Nuclear Information System (INIS)

    Kim, Heon-Jung; Lee, Hyun-Sook; Kang, Byeongwon; Chowdhury, P.; Kim, Kyung-Hee; Park, Min-Seok; Lee, Sung-Ik

    2006-01-01

    The dynamic vortex-phase diagram of MgB 2 single crystals has been constructed by using voltage noise characteristics. Between the onset (H on ) and the peak (H p ) magnetic fields, crossovers from a state with large noises to a noise-free state were observed with increasing current while above H p , a reverse behavior was found. We will discuss the dynamic vortex phase diagram and the possible origins of the crossovers

  14. Modeling cancer registration processes with an enhanced activity diagram.

    Science.gov (United States)

    Lyalin, D; Williams, W

    2005-01-01

    Adequate instruments are needed to reflect the complexity of routine cancer registry operations properly in a business model. The activity diagram is a key instrument of the Unified Modeling Language (UML) for the modeling of business processes. The authors aim to improve descriptions of processes in cancer registration, as well as in other public health domains, through the enhancements of an activity diagram notation within the standard semantics of UML. The authors introduced the practical approach to enhance a conventional UML activity diagram, complementing it with the following business process concepts: timeline, duration for individual activities, responsibilities for individual activities within swimlanes, and descriptive text. The authors used an enhanced activity diagram for modeling surveillance processes in the cancer registration domain. Specific example illustrates the use of an enhanced activity diagram to visualize a process of linking cancer registry records with external mortality files. Enhanced activity diagram allows for the addition of more business concepts to a single diagram and can improve descriptions of processes in cancer registration, as well as in other domains. Additional features of an enhanced activity diagram allow to advance the visualization of cancer registration processes. That, in turn, promotes the clarification of issues related to the process timeline, responsibilities for particular operations, and collaborations among process participants. Our first experiences in a cancer registry best practices development workshop setting support the usefulness of such an approach.

  15. Phase diagram of Fe{sub 1-x}Co{sub x} ultrathin film

    Energy Technology Data Exchange (ETDEWEB)

    Fridman, Yu.A. [V.I. Vernadskiy Taurida National University, Vernadskiy Avenue 4, Simferopol, Crimea 95007 (Ukraine)], E-mail: frid@tnu.crimea.ua; Klevets, Ph.N.; Voytenko, A.P. [V.I. Vernadskiy Taurida National University, Vernadskiy Avenue 4, Simferopol, Crimea 95007 (Ukraine)

    2008-12-15

    Concentration-driven reorientation phase transitions in ultrathin magnetic films of FeCo alloy have been studied. It is established that, in addition to the easy-axis and easy-plane phases, a spatially inhomogeneous phase (domain structure), a canted phase, and also an 'in-plane easy-axis' phase can exist in the system. The realization of the last phase is associated with the competition between the single-ion anisotropy and the magnetoelastic interaction. The critical values of Co concentration corresponding to the phase transitions are evaluated, the types of phase transitions are determined, and the phase diagrams are constructed.

  16. Phase diagrams of site diluted ferromagnetic thin film

    International Nuclear Information System (INIS)

    Hamedoun, M.; Bouslykhane, K.; Bakrim, H.; Hourmatallah, A.; Benzakour, N.; Masrour, R.

    2006-01-01

    The phase transition properties of Ising, classical XY and Heisenberg of diluted ferromagnetic thin film are studied by the method of exact high-temperature series expansions extrapolated with the Pade approximants method. The reduced critical temperature τ c of the diluted ferromagnetic thin films is studied as a function of film thickness L and the exchange interactions in the bulk J b , in the surface J s and between surface and nearest-neighbour layer J - bar . It is found that τ c increases with the exchange interactions of surface and L. The magnetic phase diagram (τ c versus dilution x) is obtained. A critical value of the surface exchange interaction above which the surface magnetism appears is obtained. The dependence of the critical parameter of surface reduced coupling R 2 c as a function of the dilution x and the ratio of the exchange interaction between the surface and nearest-neighbour layer to the bulk one R 1 for the three studied models has been investigated. The percolation threshold is defined as the concentration x p at which τ c =0. The obtained values are x p ∼0.2 in the bulk and x p ∼0.4 at the surface

  17. Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures

    Science.gov (United States)

    Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-04-01

    The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.

  18. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    Science.gov (United States)

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  19. Phase diagram of the Dirac spectrum at nonzero chemical potential

    International Nuclear Information System (INIS)

    Osborn, J. C.; Splittorff, K.; Verbaarschot, J. J. M.

    2008-01-01

    The Dirac spectrum of QCD with dynamical fermions at nonzero chemical potential is characterized by three regions: a region with a constant eigenvalue density, a region where the eigenvalue density shows oscillations that grow exponentially with the volume and the remainder of the complex plane where the eigenvalue density is zero. In this paper we derive the phase diagram of the Dirac spectrum from a chiral Lagrangian. We show that the constant eigenvalue density corresponds to a pion condensed phase while the strongly oscillating region is given by a kaon condensed phase. The normal phase with nonzero chiral condensate but vanishing Bose condensates coincides with the region of the complex plane where there are no eigenvalues.

  20. High-pressure phase transition and phase diagram of gallium arsenide

    Science.gov (United States)

    Besson, J. M.; Itié, J. P.; Polian, A.; Weill, G.; Mansot, J. L.; Gonzalez, J.

    1991-09-01

    Under hydrostatic pressure, cubic GaAs-I undergoes phase transitions to at least two orthorhombic structures. The initial phase transition to GaAs-II has been investigated by optical-transmittance measurements, Raman scattering, and x-ray absorption. The structure of pressurized samples, which are retrieved at ambient, has been studied by x-ray diffraction and high-resolution diffraction microscopy. Various criteria that define the domain of stability of GaAs-I are examined, such as the occurrence of crystalline defects, the local variation in atomic coordination number, or the actual change in crystal structure. These are shown not to occur at the same pressure at 300 K, the latter being observable only several GPa above the actual thermodynamic instability pressure of GaAs-I. Comparison of the evolution of these parameters on increasing and decreasing pressure locates the thermodynamic transition region GaAs-I-->GaAs-II at 12+/-1.5 GPa and at 300 K that is lower than generally reported. The use of thermodynamic relations around the triple point, and of regularities in the properties of isoelectronic and isostructural III-V compounds, yields a phase diagram for GaAs which is consistent with this value.

  1. Production method of carbamazepine/saccharin cocrystal particles by using two solution mixing based on the ternary phase diagram

    Science.gov (United States)

    Kudo, Shoji; Takiyama, Hiroshi

    2014-04-01

    In the pharmaceutical field, improvement of drug solubility is required, and an interest in cocrystals is growing. Crystallization methods for industrial production of cocrystals have not been developed enough whereas many cocrystals have been prepared in order to find a new crystal form by screening in the laboratory. The objective of this study was the development of the crystallization method which is useful for the industrial production of cocrystal particles based on the phase diagram. A cocrystal of carbamazepine and saccharin was selected as a model substance. The ternary phase diagram of carbamazepine and saccharin in methanol at 303 K was measured. A cocrystallization method of mixing two kinds of different eutectic solutions was designed based on the ternary phase diagram. In order to adjust the cocrystallization conditions, the determination method of the driving force for cocrystal deposition such as supersaturation based on mass balance was proposed. The cocrystal particles were obtained under all the conditions of the five mixing ratios. From these experimental results, the relationship between the supersaturation and the induction time for nucleation was confirmed as well as conventional crystallization. In conclusion, the crystallization method for industrial production of cocrystal particles including the determination of the supersaturation was suggested.

  2. Modelling the continuous cooling transformation diagram of engineering steels using neural networks. Part II. Microstructure and hardness

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, P.J. van der; Wang, J. [Delft Univ. of Technology (Netherlands); Sietsma, J.; Zwaag, S. van der [Delft Univ. of Technology, Lab. for Materials Science (Netherlands)

    2002-12-01

    The neural network model of Van der Wolk et al. (2002) describes the effect of composition on the phase regions of the continuous cooling transformation (CCT) diagram, yet does not consider the fractions of microstructural components and the hardness data that are often quoted in CCT diagrams. In the present paper, the construction of two more neural network models, one for the fractions of ferrite, pearlite, bainite and martensite in the microstructure, and one for the hardness after cooling, using the data of 338 and 412 diagrams, respectively. The accuracy of each model was found to be similar to the expected experimental error; moreover, the models were found to be mutually consistent, although they have been constructed independently. Furthermore, the trends in these properties for alloying elements can be quantified with the models, and are largely in line with metallurgical expectations. (orig.)

  3. Equilibrium triple point pressure and pressure-temperature phase diagram of polyethylene

    NARCIS (Netherlands)

    Hikosaka, M.; Tsukijima, K.; Rastogi, S.; Keller, A.

    1992-01-01

    The equil. triple point and pressure and temp. phase diagrams of polyethylene were obtained by in situ optical microscopic and x-ray observations of the melting temp. of hexagonal and orthorhombic isolated extended-chain single crystals at high pressure. The melting temps. of extended-chain crystals

  4. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    International Nuclear Information System (INIS)

    Kantar, Ersin; Ertaş, Mehmet; Keskin, Mustafa

    2014-01-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior

  5. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kantar, Ersin; Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2014-06-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior.

  6. Standard values of fugacity for sulfur which are self-consistent with the low-pressure phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Robert A., E-mail: rob.marriott@ucalgary.ca [Alberta Sulphur Research Ltd., University of Calgary, Alberta (Canada); Wan, Herman H. [Alberta Sulphur Research Ltd., University of Calgary, Alberta (Canada)

    2011-08-15

    Highlights: > We have provided a method for calculating the fugacity for elemental sulfur. > Calculated sulfur fugacities can be used in sulfur equilibrium models. > The sulfur fugacities also can be used to locate the phase changes in the low-pressure phase diagram. > We have measured the 'natural' melting point of sulfur, and found it to be T = 388.5 {+-} 0.2 K. - Abstract: A method for calculating the fugacity of pure sulfur in the {alpha}-solid, {beta}-solid and liquid phase regions has been reported for application to industrial equilibrium conditions, e.g., high-pressure solubility of sulfur in sour gas. The fugacity calculations are self-consistent with the low-pressure phase diagram. As recently discussed by Ferreira and Lobo , empirical fitting of the experimental data does not yield consistent behaviour for the low-pressure phase diagram of elemental sulfur. In particular, there is a discrepancy between the vapour pressure of {beta}-solid (monoclinic) and liquid sulfur at the fusion temperature. We have provided an alternative semi-empirical approach which allows one to calculate values of the fugacity at conditions removed from the conditions of the pure sulfur phase transitions. For our approach, we have forced the liquid vapour pressure to equal the {beta}-solid vapour pressure at the {beta}-l-g triple point corresponding to the 'natural' fusion temperature for {beta}-solid. Many studies show a higher 'observed' fusion temperature for elemental sulfur. The non-reversible conditions for 'observed' fusion conditions for elemental sulfur result from a kinetically hindered melt which causes some thermodynamic measurements to be related to a metastable S{sub 8} liquid. We have measured the 'natural' fusion temperature, T{sub fus}{sup {beta}}(exp.)=(388.5{+-}0.2)K at p = 89.9 kPa, which is consistent with literature fusion data at higher-pressures. Using our semi-empirical approach, we have used or found the

  7. Ammonia-water phase diagram and its implications for icy satellites

    International Nuclear Information System (INIS)

    Johnson, M.L.; Nicol, M.

    1986-01-01

    A Holzapfel-type diamond anvil cell is used to determine the NH 3 - H 2 O phase diagram in the region from 0 to 33 mole percent NH 3 , 240 to 370 K, and 0 to 5 GPa. The following phases were identified: liquid; water ices Ih, III, V, VI, VII, and VIII; ammonia monohydrate, NH 3 .H 2 O; and ammonia dihydrate NH 3 . 2 H 2 O. Ammonia dihydrate becomes prominent at moderate pressures (less than 1 GPa), with planetologically significant implications, including the possibility of layering in Titan's magma ocean

  8. New Wang-Landau approach to obtain phase diagrams for multicomponent alloys

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2017-10-01

    We develop an approach to apply the Wang-Landau algorithm to multicomponent alloys in a semi-grand-canonical ensemble. Although the Wang-Landau algorithm has great advantages over conventional sampling methods, there are few applications to alloys. This is because calculating compositions in a semi-grand-canonical ensemble via the Wang-Landau algorithm requires a multidimensional density of states in terms of total energy and compositions, and constructing it is difficult from the viewpoints of both implementation and computational cost. In this study, we develop a simple approach to calculate the alloy phase diagram based on the Wang-Landau algorithm, and show that a number of one-dimensional densities of states could lead to compositions in a semi-grand-canonical ensemble as a multidimensional density of states could. Finally, we apply the present method to Cu-Au and Pd-Rh alloys and confirm that the present method successfully describes the phase diagram with high efficiency, validity, and accuracy.

  9. Stability diagram for the forced Kuramoto model.

    Science.gov (United States)

    Childs, Lauren M; Strogatz, Steven H

    2008-12-01

    We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.

  10. Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions

    International Nuclear Information System (INIS)

    Akıncı, Ümit

    2012-01-01

    The effect of the random magnetic field distribution on the phase diagrams and ground state magnetizations of the Ising nanowire has been investigated with effective field theory with correlations. Gaussian distribution has been chosen as a random magnetic field distribution. The variation of the phase diagrams with that distribution parameters has been obtained and some interesting results have been found such as disappearance of the reentrant behavior and first order transitions which appear in the case of discrete distributions. Also for single and double Gaussian distributions, ground state magnetizations for different distribution parameters have been determined which can be regarded as separate partially ordered phases of the system. - Highlights: ► We give the phase diagrams of the Ising nanowire under the continuous randomly distributed magnetic field. ► Ground state magnetization values obtained. ► Different partially ordered phases observed.

  11. Investigating the QCD phase diagram with hadron multiplicities at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Becattini, F. [Universita di Firenze (Italy); INFN, Firenze (Italy); Stock, R. [Goethe University, Frankfurt am Main (Germany)

    2016-08-15

    We discuss the potential of the experimental programme at NICA to investigate the QCD phase diagram and particularly the position of the critical line at large baryon-chemical potential with accurate measurements of particle multiplicities. We briefly review the present status and we outline the tasks to be accomplished both theoretically and the experimentally to make hadronic abundances a sensitive probe. (orig.)

  12. Analysis of Sequence Diagram Layout in Advanced UML Modelling Tools

    Directory of Open Access Journals (Sweden)

    Ņikiforova Oksana

    2016-05-01

    Full Text Available System modelling using Unified Modelling Language (UML is the task that should be solved for software development. The more complex software becomes the higher requirements are stated to demonstrate the system to be developed, especially in its dynamic aspect, which in UML is offered by a sequence diagram. To solve this task, the main attention is devoted to the graphical presentation of the system, where diagram layout plays the central role in information perception. The UML sequence diagram due to its specific structure is selected for a deeper analysis on the elements’ layout. The authors research represents the abilities of modern UML modelling tools to offer automatic layout of the UML sequence diagram and analyse them according to criteria required for the diagram perception.

  13. Phase diagram and topological phases in the triangular lattice Kitaev-Hubbard model

    Science.gov (United States)

    Li, Kai; Yu, Shun-Li; Gu, Zhao-Long; Li, Jian-Xin

    2016-09-01

    We study the half-filled Hubbard model on a triangular lattice with spin-dependent Kitaev-like hopping. Using the variational cluster approach, we identify five phases: a metallic phase, a non-coplanar chiral magnetic order, a 120° magnetic order, a nonmagnetic insulator (NMI), and an interacting Chern insulator (CI) with a nonzero Chern number. The transition from CI to NMI is characterized by the change of the charge gap from an indirect band gap to a direct Mott gap. Based on the slave-rotor mean-field theory, the NMI phase is further suggested to be a gapless Mott insulator with a spinon Fermi surface or a fractionalized CI with nontrivial spinon topology, depending on the strength of the Kitaev-like hopping. Our work highlights the rising field in which interesting phases emerge from the interplay between band topology and Mott physics.

  14. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    Science.gov (United States)

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  15. The phase diagram and transport properties of MgO from theory and experiment

    Science.gov (United States)

    Shulenburger, Luke

    2013-06-01

    Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Application Of Empirical Phase Diagrams For Multidimensional Data Visualization Of High Throughput Microbatch Crystallization Experiments.

    Science.gov (United States)

    Klijn, Marieke E; Hubbuch, Jürgen

    2018-04-27

    Protein phase diagrams are a tool to investigate cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphological features, such as crystal size, as well as kinetic features, such as crystal growth time. Common used data visualization techniques include individual line graphs or symbols-based phase diagrams. These techniques have limitations in terms of handling large datasets, comprehensiveness or completeness. To eliminate these limitations, morphological and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram (EPD) method. Morphological features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the EPD method can support high throughput crystallization experiments in its data amount as well as its data complexity. Copyright © 2018. Published by Elsevier Inc.

  17. Experimental investigation and thermodynamic calculations of the Bi–In–Ni phase diagram

    International Nuclear Information System (INIS)

    Premović, Milena; Minić, Duško; Manasijević, Dragan; Ćosović, Vladan; Živković, Dragana; Dervišević, Irma

    2015-01-01

    Highlights: • Calculated constitutive binary system based on literature data. • Experimentally determined (DTA) temperatures of phase transformations compared with analytical calculation. • Definition of several vertical sections. • Calculated horizontal section, confirmed by experimental SEM–EDS and XRD method. • Calculated liquidus surface projection and determined invariant reaction occurred in ternary Bi–In–Ni system. - Abstract: Phase diagram of the Bi–In–Ni ternary system was investigated using differential thermal analysis (DTA), scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray powder diffraction (XRD) analysis. Experimentally obtained results were compared with the results of thermodynamic calculation of phase equilibria based on calculation of phase diagram (CALPHAD) method and literature data. Phase transition temperatures of alloys with overall compositions along three selected vertical sections In–Bi 0.8 Ni 0.2 , x(Bi) = 0.6 and Bi–In 0.5 Ni 0.5 were measured by DTA. Liquidus temperatures were experimentally determined and compared with the results of thermodynamic calculation. Identification of coexisting phases in samples equilibrated at 100 °C, 300 °C and 350 °C was carried out using SEM–EDS and XRD methods. The obtained results were compared with the calculated isothermal sections of the Bi–In–Ni ternary system at corresponding temperatures. Calculated liquidus projection and invariant equilibria of the Bi–In–Ni ternary system were presented

  18. High pressure cosmochemistry applied to major planetary interiors: Experimental studies. [phase diagram for the ammonia water system

    Science.gov (United States)

    Nicol, M. F.; Johnson, M.; Schwake, A.

    1983-01-01

    Progress is reported in the development of the P-T-X diagram for 0 less than or = X less than or = 0.50 and in the development of techniques for measuring adiabats of phases of NH3-H2O. The partial phase diagram is presented, investigations of the compositions of ammonia ices are described, and methods for obtaining the infrared spectra of ices are discussed.

  19. Phase diagram of a bosonic ladder with two coupled chains

    International Nuclear Information System (INIS)

    Luthra, Meetu Sethi; Mishra, Tapan; Pai, Ramesh V.; Das, B. P.

    2008-01-01

    We study a bosonic ladder with two coupled chains using the finite-size density-matrix renormalization group method. We show that in a commensurate bosonic ladder the critical on-site interaction (U C ) for the superfluid to Mott insulator transition gets larger as the interchain hopping (t perpendicular ) increases. We analyze this quantum phase transition and obtain the phase diagram in the t perpendicular -U plane. We also consider the asymmetric case where the on-site interactions are different in the two chains and have shown that the system as a whole will not be in the Mott insulator phase unless both the chains have on-site interactions greater than the critical value

  20. Towards construction of quasi-binary UAI3-USi3 phase diagram

    International Nuclear Information System (INIS)

    Rafailov, Gennady; Uziel, Asaf; White, Avner; Meshi, Louisa; Dahan, Itzhak

    2014-01-01

    Ternary U-Al-Si system has been extensively investigated due to the high potential of Uranium alloyed with Silicon as low-enriched fuel. Another interest in the U-Al-Si ternary system originates from the use of Aluminum alloy, where Silicon is a major alloying element, as U-fuel cladding. In this system, UAl3 and USi3 phases are of special importance. Since UAl3 and USi3 are isostructural and follow the Hume-Rothery rules closely, it would be expected that their quasi-binary phase diagram will be isomorphous. However, previous studies have shown that this system does not display complete liquid and solid solubility. Moreover, conflicting results were reported regarding the phases found . In current work, several compositions were cast and then heat-treated in order to reach equilibrium for subsequent characterization of Si-rich part of the USi3-UAl3 quasi-binary phase diagram. The as-cast and heat-treated alloys were characterized by scanning and transmission electron microscopy and X-ray diffraction (XRD) methods. Quantitative results were obtained from Rietveld analysis performed on XRD data. The results show that the ordered U(Si,Al)3 phase, identified in an earlier study of the Al-rich region is present also in the Si-rich region (studied in present research). Furthermore, ordered phase exhibited substantial stability over quite large range of compositions and temperature. Our results unambiguously point out that this quasi-binary system contains an order-disorder transformation and not a miscibility gap at low temperatures in the studied range of compositions

  1. Magnetic phase diagram of ErGe 1-xSi x (0

    Science.gov (United States)

    Thuéry, P.; El Maziani, F.; Clin, M.; Schobinger-Papamantellos, P.; Buschow, K. H. J.

    1993-10-01

    The composition-temperature magnetic phase diagram of ErGe 1- xSi x (0 0.40. For 0.17 ≥ x ≤ 0.55, a first-order transition occurs as function of the temperature between these two phases. For x ≥ 0.65, a lock-in transition takes place at TIC, leading from the wavevector ( k' x,0, k' z) to (1/2,0,1/2), as was already observed in ErSi. Finally, for x < 0.17 or 0.55 < x < 0.65, the wavevectors of the incommensurate phases characterized by (0,0, kz) or ( k' x,0, k' z) respectively remain unchanged in the whole temperature range below TN. For x≥0.65, a small amount of a magnetic phase characterized by the wavevector (0,0, 1/2) coexists with the main phases, below a Néel temperature T' N slightly lower than TN. In all cases, the erbium magnetic moments are colinear along the orthorhombic α-axis; the arrangement of the moments in the commensurate phases is the same as in ErSi and the incommensurate orderings correspond to sine-wave amplitude modulations. A brief account on the theoretical interpretation of this phase diagram is finally given.

  2. Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ning Shuang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian Xiufang, E-mail: xfbian@sdu.edu.c [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ren Zhenfeng [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2010-09-01

    Activation energy is obtained from temperature dependence of viscosities by means of a fitting to the Arrhenius equation for liquid alloys of Cu-Sb, Cu-Te, Cu-Sn and Cu-Ag systems. We found that the changing trend of activation energy curves with concentration is similar to that of liquidus in the phase diagrams. Moreover, a maximum value of activation energy is in the composition range of the intermetallic phases and a minimum value of activation energy is located at the eutectic point. The correlation between the activation energy and the phase diagrams has been further discussed.

  3. Ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with competing single-ion anisotropies

    International Nuclear Information System (INIS)

    Tonegawa, T; Okamoto, K; Sakai, T; Kaburagi, M

    2009-01-01

    Employing various numerical methods, we determine the ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with antiferromagnetic nearest-neighboring exchange interactions and uniaxial single-ion anisotropies. The resulting phase diagram consists of eight kinds of phases including two phases which accompany the spontaneous breaking of the translational symmetry and a ferrimagnetic phase in which the ground-state magnetization varies continuously with the uniaxial single-ion anisotropy constants for the S=1 and S =2 spins. The appearance of these three phases is attributed to the competition between the uniaxial single-ion anisotropies of both spins.

  4. Thermodynamic Calculations of Ternary Polyalcohol and Amine Phase Diagrams for Thermal Energy Storage Materials

    Science.gov (United States)

    Shi, Renhai

    Organic polyalcohol and amine globular molecular crystal materials as phase change materials (PCMs) such as Pentaglycerine (PG-(CH3)C(CH 2OH)3), Tris(hydroxymethyl)aminomethane (TRIS-(NH2)C(CH 2OH)3), 2-amino-2methyl-1,3-propanediol (AMPL-(NH2)(CH3)C(CH2OH)2), and neopentylglycol (NPG-(CH3)2C(CH2OH) 2) can be considered to be potential candidates for thermal energy storage (TES) applications such as waste heat recovery, solar energy utilization, energy saving in buildings, and electronic device management during heating or cooling process in which the latent heat and sensible heat can be reversibly stored or released through solid state phase transitions over a range of temperatures. In order to understand the polymorphism of phase transition of these organic materials and provide more choice of materials design for TES, binary systems have been studied to lower the temperature of solid-state phase transition for the specific application. To our best knowledge, the study of ternary systems in these organic materials is limited. Based on this motivation, four ternary systems of PG-TRIS-AMPL, PG-TRIS-NPG, PG-AMPL-NPG, and TRIS-AMPL-NPG are proposed in this dissertation. Firstly, thermodynamic assessment with CALPHAD method is used to construct the Gibbs energy functions into thermodynamic database for these four materials based on available experimental results from X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The phase stability and thermodynamic characteristics of these four materials calculated from present thermodynamic database with CALPHAD method can match well the present experimental results from XRD and DSC. Secondly, related six binary phase diagrams of PG-TRIS, PG-AMPL, PG-NPG, TRIS-AMPL, TRIS-NPG, and AMPL-NPG are optimized with CALPHAD method in Thermo-Calc software based on available experimental results, in which the substitutional model is used and excess Gibbs energy is expressed with Redlich-Kister formalism. The

  5. Phase diagrams of exceptional and supersymmetric lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Wellegehausen, Bjoern-Hendrik

    2012-07-10

    In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.

  6. Phase diagrams of exceptional and supersymmetric lattice gauge theories

    International Nuclear Information System (INIS)

    Wellegehausen, Bjoern-Hendrik

    2012-01-01

    In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G 2 , that has a trivial centre. To investigate G 2 gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.

  7. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    International Nuclear Information System (INIS)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M.

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V 3 Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases

  8. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V{sub 3}Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases.

  9. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  10. Studies on the QCD Phase Diagram at SPS and FAIR

    International Nuclear Information System (INIS)

    Blume, Christoph

    2013-01-01

    A review of results of the energy scan program at the CERN-SPS by the NA49 experiment is given. Presented are observables related to the search for a critical point in the QCD phase diagram and for the onset of deconfinement. Furthermore, the ongoing experimental program of NA61 at the CRRN-SPS and the plans of the CBM experiment at FAIR are discussed.

  11. Au-Ni nanoparticles: Phase diagram prediction, synthesis, characterization, and thermal stability

    Czech Academy of Sciences Publication Activity Database

    Sopoušek, J.; Kryštofová, A.; Premovic, M.; Zobač, O.; Postlerová, S.; Brož, P.; Buršík, Jiří

    2017-01-01

    Roč. 58, SEP (2017), s. 25-33 ISSN 0364-5916 R&D Projects: GA ČR(CZ) GA17-12844S; GA ČR(CZ) GA17-15405S Institutional support: RVO:68081723 Keywords : nanoalloy * CALPHAD * phase diagram Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 1.600, year: 2016

  12. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    Science.gov (United States)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  13. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.

    Science.gov (United States)

    Forest, M Gregory; Wang, Qi; Zhou, Ruhai

    2015-08-28

    Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic

  14. Towards the QCD phase diagram

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Philipsen, Owe

    2006-01-01

    We summarize our recent results on the phase diagram of QCD with N_f=2+1 quark flavors, as a function of temperature T and quark chemical potential \\mu. Using staggered fermions, lattices with temporal extent N_t=4, and the exact RHMC algorithm, we first determine the critical line in the quark mass plane (m_{u,d},m_s) where the finite temperature transition at \\mu=0 is second order. We confirm that the physical point lies on the crossover side of this line. Our data are consistent with a tricritical point at (m_{u,d},m_s) = (0,\\sim 500) MeV. Then, using an imaginary chemical potential, we determine in which direction this second-order line moves as the chemical potential is turned on. Contrary to standard expectations, we find that the region of first-order transitions shrinks in the presence of a chemical potential, which is inconsistent with the presence of a QCD critical point at small chemical potential. The emphasis is put on clarifying the translation of our results from lattice to physical units, and ...

  15. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    Science.gov (United States)

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  16. Study of equilibrium phase diagrams of the system In-As-Pb

    International Nuclear Information System (INIS)

    Baranov, A.N.; Gorelenok, A.A.; Litvak, A.M.; Sherstnev, V.V.; Yakovlev, Yu.P.

    1992-01-01

    Experimental data on fusibility diagram of In-As-Pb system are presented. Model calculation of fusibility diagram of this system and corresponding binary subsystems, using EF LCP method was conducted. Preliminary studies demonstrate the possibility of changing type of eigendefect in InAs, when growing from arsenous carbon. This becomes posible when using lead as neutral solvent

  17. Phase diagrams of Pr-C system

    International Nuclear Information System (INIS)

    Eremenko, V.N.; Velikanova, T.Ya.; Gordijchuk, O.V.

    1988-01-01

    Results of the X-ray phase, metallographic and high-temperature differential thermal analysis are used for the first time to plot a diagram of the Pr-C system state. Carbides are formed in the system: Pr 2 C 3 with the bcc-structure of the Pu 2 C 3 type and with the period a 0 = 0.85722+-0.00026 within the phase region + 2 C 3 >, a 0 0.86078+-0.00016 nm - within the region 2 C 3 >+α-PrC 2 ; dimorphous PrC 2 : α-PrC 2 with the bct-structure of the CaC 2 type and periods a 0.38517+-0.00011, c 0 = 0.64337+-0.00019 nm; β-PrC 2 with the fcc-structure, probably, of KCN type. Dicarbide melts congruently at 2320 grad. C, forming eutectics with graphite at 2254+-6 grad. C and composition of 71.5% (at.)C. It is polymorphously transformed in the phase region 2 C 3 > + 2 > at 1145+-4 grad. C, and in the region 2 >+C at 1134+-4 grad. C. Sesquicarbide melts incongruently at 1545+-4 grad. C. The eutectic reaction L ↔ + 2 C 3 > occurs at 800+-4 grad. C, the eutectic composition ∼ 15% (at.)C. The temperature of the eutectoid reaction ↔ + 2 C 3 > is 675+-6 grad C. The limiting carbon solubility in β-Pr is about 8 and in α-Pr it is about 5% (at.)

  18. An investigation of the Pd-Ag-Ru-Gd quaternary system phase diagram

    International Nuclear Information System (INIS)

    Zhang Kanghou; Xu Yun

    2005-01-01

    On the basis of the Ag-Pd-Gd, Ag-Ru-Gd and Pd-Ru-Gd ternary systems, the partial phase diagram of Pd-Ag-Ru-Gd (Gd 3 Gd and Ag 51 Gd 14 ; five two-phase regions: Pd(Ag) + (Ru), Pd(Ag) + Ag 51 Gd 14 (Ru) + Ag 51 Gd 14 , Pd(Ag) + Pd 3 Gd and (Ru) + Pd 3 Gd; three three-phase regions: Pd(Ag) + Pd 3 Gd + (Ru), Pd(Ag) + Ag 51 Gd 14 + (Ru) and (Ru) + Ag 51 Gd 14 + Pd 3 Gd; one four-phase region Pd(Ag) + (Ru) + Ag 51 Gd 14 + Pd 3 Gd. No new quaternary intermetallic phase has been found

  19. Experimental investigation and thermodynamic calculations of the Ag–Bi–Ga phase diagram

    International Nuclear Information System (INIS)

    Minić, Duško; Premović, Milena; Manasijević, Dragan; Ćosović, Vladan; Živković, Dragana; Marković, Aleksandar

    2015-01-01

    Phase diagram of the Ag–Bi–Ga ternary system was investigated using differential thermal analysis (DTA), scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and x-ray powder diffraction (XRD) methods. Experimentally obtained results were compared with the results of thermodynamic prediction of phase equilibria based on calculation of phase diagram (CALPHAD) method. Phase transition temperatures of alloys with overall compositions along three selected vertical sections Ag–Bi 50 Ga 50 , Bi–Ag 50 Ga 50 and Ga–Ag 50 Bi 50 were measured by DTA. Liquidus temperatures were experimentally determined and compared with the results of thermodynamic calculation. Identification of coexisting phases in samples equilibrated at 200 °C was carried out using SEM-EDS and XRD methods. Obtained results were compared with the calculated isothermal section of the Ag–Bi–Ga ternary system at corresponding temperature. Calculated liquidus projection and invariant equilibria of the Ag–Bi–Ga ternary system were presented. The obtained values were found to be in a close agreement. - Highlights: • Calculated constitutive binary system based on literature data. • Experimentally determined (DTA) temperatures of phase transformations compared with analytical calculation. • Definition of three vertical sections Ag–Bi 50 Ga 50 , Bi–Ag 50 Ga 50 and Ga–Ag 50 Bi 50 . • Calculated horizontal section at 200 °C, confirmed by experimental SEM-EDS and XRD method. • Calculated liquidus surface projection and determined invariant reaction occurred in ternary Ag–Bi–Ga system

  20. On the Impact of Diagram Layout: How Are Models Actually Read?

    DEFF Research Database (Denmark)

    Störrle, Harald; Baltsen, Nick; Christoffersen, Henrik

    2014-01-01

    This poster presents the latest results from a very large eye tracking study (n=29) that explores how modelers read UML diagrams. We find that various factors like layout quality, modeler experience, and diagram type lead to significant differences in diagram reading strategies. We derive elements...

  1. Evaluating the phase diagram of superconductors with asymmetric spin populations

    International Nuclear Information System (INIS)

    Mannarelli, Massimo; Nardulli, Giuseppe; Ruggieri, Marco

    2006-01-01

    The phase diagram of a nonrelativistic fermionic system with imbalanced state populations interacting via a short-range S-wave attractive interaction is analyzed in the mean-field approximation. We determine the energetically favored state for different values of the mismatch between the two Fermi spheres in the weak- and strong-coupling regimes considering both homogeneous and nonhomogeneous superconductive states. We find that the homogeneous superconductive phase persists for values of the population imbalance that increase with increasing coupling strength. In the strong-coupling regime and for large population differences the energetically stable homogeneous phase is characterized by one gapless mode. We also find that the inhomogeneous superconductive phase characterized by the condensate Δ(x)∼Δ exp(iq·x) is energetically favored in a range of values of the chemical-potential mismatch that shrinks to zero in the strong-coupling regime

  2. A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials

    International Nuclear Information System (INIS)

    Tipton, William W; Hennig, Richard G

    2013-01-01

    We present an evolutionary algorithm which predicts stable atomic structures and phase diagrams by searching the energy landscape of empirical and ab initio Hamiltonians. Composition and geometrical degrees of freedom may be varied simultaneously. We show that this method utilizes information from favorable local structure at one composition to predict that at others, achieving far greater efficiency of phase diagram prediction than a method which relies on sampling compositions individually. We detail this and a number of other efficiency-improving techniques implemented in the genetic algorithm for structure prediction code that is now publicly available. We test the efficiency of the software by searching the ternary Zr–Cu–Al system using an empirical embedded-atom model potential. In addition to testing the algorithm, we also evaluate the accuracy of the potential itself. We find that the potential stabilizes several correct ternary phases, while a few of the predicted ground states are unphysical. Our results suggest that genetic algorithm searches can be used to improve the methodology of empirical potential design. (paper)

  3. A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials.

    Science.gov (United States)

    Tipton, William W; Hennig, Richard G

    2013-12-11

    We present an evolutionary algorithm which predicts stable atomic structures and phase diagrams by searching the energy landscape of empirical and ab initio Hamiltonians. Composition and geometrical degrees of freedom may be varied simultaneously. We show that this method utilizes information from favorable local structure at one composition to predict that at others, achieving far greater efficiency of phase diagram prediction than a method which relies on sampling compositions individually. We detail this and a number of other efficiency-improving techniques implemented in the genetic algorithm for structure prediction code that is now publicly available. We test the efficiency of the software by searching the ternary Zr-Cu-Al system using an empirical embedded-atom model potential. In addition to testing the algorithm, we also evaluate the accuracy of the potential itself. We find that the potential stabilizes several correct ternary phases, while a few of the predicted ground states are unphysical. Our results suggest that genetic algorithm searches can be used to improve the methodology of empirical potential design.

  4. Equilibrium phase diagram of the Ag-Au-Pb ternary system

    International Nuclear Information System (INIS)

    Hassam, S.; Bahari, Z.

    2005-01-01

    The phase diagram of the ternary system Ag-Au-Pb has been established using differential thermal analysis and X-ray powder diffraction analysis. Four vertical sections were studied: X Pb = 0.40, X Au /X Pb = 1/3, X Ag /X Au = 4/1 and X Ag /X Au = 1/1. Two ternary transitory peritectics and one ternary eutectic were characterized. A schematic representation of the ternary equilibria is given

  5. Phase diagram of a symmetric electron–hole bilayer system: a variational Monte Carlo study

    Science.gov (United States)

    Sharma, Rajesh O.; Saini, L. K.; Prasad Bahuguna, Bhagwati

    2018-05-01

    We study the phase diagram of a symmetric electron–hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater–Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at and the ferromagnetic fluid phase being particularly stable at . As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s   =  20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s   Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.

  6. Phase diagram of a symmetric electron-hole bilayer system: a variational Monte Carlo study.

    Science.gov (United States)

    Sharma, Rajesh O; Saini, L K; Bahuguna, Bhagwati Prasad

    2018-05-10

    We study the phase diagram of a symmetric electron-hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater-Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at [Formula: see text] and the ferromagnetic fluid phase being particularly stable at [Formula: see text]. As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s   =  20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s   Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.

  7. Phase diagram with an enhanced spin-glass region of the mixed Ising-XY magnet LiHoxEr1-xF4

    DEFF Research Database (Denmark)

    Piatek, J. O.; Dalla Piazza, B.; Nikseresht, N.

    2013-01-01

    We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagn...

  8. Phase diagrams for an ideal gas mixture of fermionic atoms and bosonic molecules

    DEFF Research Database (Denmark)

    Williams, J. E.; Nygaard, Nicolai; Clark, C. W.

    2004-01-01

    We calculate the phase diagrams for a harmonically trapped ideal gas mixture of fermionic atoms and bosonic molecules in chemical and thermal equilibrium, where the internal energy of the molecules can be adjusted relative to that of the atoms by use of a tunable Feshbach resonance. We plot...... diagrams obtained in recent experiments on the Bose-Einstein condensation to Bardeen-Cooper-Schrieffer crossover, in which the condensate fraction is plotted as a function of the initial temperature of the Fermi gas measured before a sweep of the magnetic field through the resonance region....

  9. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    Science.gov (United States)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  10. c-T phase diagram and Landau free energies of (AgAu)55 nanoalloy via neural-network molecular dynamic simulations.

    Science.gov (United States)

    Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S

    2017-10-21

    For understanding the structure, dynamics, and thermal stability of (AgAu) 55 nanoalloys, knowledge of the composition-temperature (c-T) phase diagram is essential due to the explicit dependence of properties on composition and temperature. Experimentally, generating the phase diagrams is very challenging, and therefore theoretical insight is necessary. We use an artificial neural network potential for (AgAu) 55 nanoalloys. Predicted global minimum structures for pure gold and gold rich compositions are lower in energy compared to previous reports by density functional theory. The present work based on c-T phase diagram, surface area, surface charge, probability of isomers, and Landau free energies supports the enhancement of catalytic property of Ag-Au nanoalloys by incorporation of Ag up to 24% by composition in Au nanoparticles as found experimentally. The phase diagram shows that there is a coexistence temperature range of 70 K for Ag 28 Au 27 compared to all other compositions. We propose the power spectrum coefficients derived from spherical harmonics as an order parameter to calculate Landau free energies.

  11. Sintering of YBaCu0, implications of the phase diagram

    International Nuclear Information System (INIS)

    Gervais, M.; Douy, A.; Dubois, B.; Coutures, J.P.; Odier, P.

    1989-01-01

    The motivations of this experimental work are to underline the implications between the phases diagram constitution and the sintering of YBaCu0 superconductors. This preliminary work is focussed on the solid → liquid transformations of this system, in the vicinity of the (123) phase. Two transformations are observed at 915 and 935 0 C depending of the composition of the compound. They both have an important role on the sintering process and the chemical homogeneity of the ceramic. No such transformations seems to occur in the domain (123)-(211)-BaCu0 2 , the sintered sample has therefore a better chemical homogeneity [fr

  12. Revision of the Ge–Ti phase diagram and structural stability of the new phase Ge{sub 4}Ti{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Roland W. [University of Vienna, Department of Inorganic Chemistry/Materials Chemistry, Währingerstraße 42, 1090 Wien (Austria); Colinet, Catherine [Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS, 38402 Saint Martin d’Hères Cedex (France); Tedenac, Jean-Claude [Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France); Richter, Klaus W., E-mail: klaus.richter@univie.ac.at [University of Vienna, Department of Inorganic Chemistry/Materials Chemistry, Währingerstraße 42, 1090 Wien (Austria)

    2013-11-15

    Highlights: •New compound Ge{sub 4}Ti{sub 5} found by experiments and by DFT ground state calculations. •Enthalpies of formation calculated for different Ge–Ti compounds. •Modifications of the Ge–Ti phase diagram suggested. -- Abstract: The binary phase diagram Ge–Ti was investigated experimentally by powder X-ray diffraction, scanning electron microscopy including EDX analysis, and differential thermal analysis. Total energies of the compounds GeTi{sub 3}, GeTi{sub 2}, Ge{sub 3}Ti{sub 5}, Ge{sub 4}Ti{sub 5}, Ge{sub 5}Ti{sub 6}, GeTi and Ge{sub 2}Ti were calculated for various structure types employing electronic density-functional theory (DFT). Experimental studies as well as electronic calculations show the existence of a new phase Ge{sub 4}Ti{sub 5} (Ge{sub 4}Sm{sub 5}-type, oP36, Pnma) which is formed in a solid state reaction Ge{sub 3}Ti{sub 5} + Ge{sub 5}Ti{sub 6} = Ge{sub 4}Ti{sub 5}. In addition, a significant homogeneity range was observed for the compound Ge{sub 3}Ti{sub 5} and the composition of the liquid phase in the eutectic reaction L = Ge + Ge{sub 2}Ti was found to be at significant higher Ge-content (97.5 at.% Ge) than reported in previous studies. Based on these new results, a modified phase diagram Ge–Ti is suggested. The zero-temperature lattice parameters and the formation enthalpies determined by DTF calculations were found to be in good agreement with experimental data.

  13. Orientation dependence of phase diagrams and physical properties in epitaxial Ba0.6Sr0.4TiO3 films

    Science.gov (United States)

    Qiu, J. H.; Zhao, T. X.; Chen, Z. H.; Yuan, N. Y.; Ding, J. N.

    2018-04-01

    Orientation dependence of phase diagrams and physical properties of Ba0.6Sr0.4TiO3 films are investigated by using a phenomenological Landau-Devonshire theory. New ferroelectric phases, such as the tetragonal a1 phase and the orthorhombic a2 c phase in (110) oriented film and the monoclinic MA phase in (111) oriented film, appear in the "misfit strain-temperature" phase diagrams as compared with (001) oriented film. Moreover, the phase diagrams of (110) and (111) oriented films are more complex than that of (001) oriented film due to the nonlinear coupling terms appeared in the thermodynamic potential. The dielectric and piezoelectric properties largely depend on the misfit strain and orientation. (111) oriented film has the better piezoelectric property than (110) oriented film. Furthermore, the compressive misfit strain is prone to induce the larger piezoelectric property than tensile misfit strain.

  14. Phase diagram and equation of state of TiH2 at high pressures and high temperatures

    International Nuclear Information System (INIS)

    Endo, Naruki; Saitoh, Hiroyuki; Machida, Akihiko; Katayama, Yoshinori; Aoki, Katsutoshi

    2013-01-01

    Highlights: ► We determined the phase diagram of TiH 2 at high pressures and high temperatures. ► Compression induced stain inhibited the phase transition from the bct to fcc phase. ► The phase boundary was appropriately determined using a sample with heat treatment. ► The high temperature Birch–Murnaghan equation of state of fcc TiH 2 was firstly determined. - Abstract: We determined the phase diagram and the equation of state (EoS) of TiH 2 at high pressures up to 8.7 GPa and high temperatures up to 600 °C by in situ synchrotron radiation X-ray diffraction measurements. Compression induced strain inhibited the phase transition from the low-temperature bct phase to the high-temperature fcc phase, making the phase diagram difficult to determine. However, heating around 600 °C relieved the strain, and the phase boundary between the bct and fcc phases was elucidated. The phase transition temperature at ambient pressure increased from around room temperature to 200 °C at 8.7 GPa. The high temperature Birch–Murnaghan EoS was determined for the fcc phase. With the pressure derivative of the bulk modulus K′ 0 = 4.0, the following parameters were obtained: ambient bulk modulus K 0 = 97.7 ± 0.2 GPa, ambient unit cell of the fcc phase V 0 = 88.57 ± 0.02 Å 3 , temperature derivative of the bulk modulus at constant pressure (∂K/∂T) P = −0.01 ± 0.02, and volumetric thermal expansivity α = a + bT with a = 2.62 ± 1.4 × 10 −5 and b = 5.5 ± 4.5 × 10 −8 . K 0 of fcc TiH 2 was close to those for pure Ti and bct TiH 2 reported in previous studies.

  15. Simple method for the calculation and use of CVD phase diagrams with applications to the Ti-B-Cl-H system, 1200 to 8000K

    International Nuclear Information System (INIS)

    Randich, E.; Gerlach, T.M.

    1980-03-01

    A simple method for calculating multi-component gas-solid equilibrium phase diagrams for chemical vapor deposition (CVD) systems is presented. The method proceeds in three steps: dtermination of stable solid assemblages, evaluation of gas-solid stability relations, and calcuation of conventional phase diagrams using a new free energy minimization technique. The phase diagrams can be used to determine (1) bulk compositions and phase fields accessible by CVD techniques; (2) expected condensed phases for various starting gas mixtures; and (3) maximum equilibrium yields for specific CVD process variables. The three step thermodynamic method is used to calcuate phase diagrams for the example CVD system Ti-B-Cl-H at 1200 and 800 0 K. Examples of applications of the diagrams for yield optimization and experimental accessibility studies are presented and discussed. Experimental verification of the TiB 2 + Gas/Gas phase field boundary at 1200 0 K, H/Cl = 1 confirms the calculated boundary and indicates that equilibrium is nearly and rapidly approached under laboratory conditions

  16. Tuning the phase diagrams: the miscibility studies of multilactate liquid crystalline compounds

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Tykarska, M.; Hamplová, Věra; Kurp, K.

    2016-01-01

    Roč. 89, č. 9 (2016), s. 885-893 ISSN 0141-1594 R&D Projects: GA ČR GA13-14133S; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : miscibility study * binary mixture * polar smectic phase * lactic acid derivative * miscibility study * phase diagram * self-assembling behaviour Subject RIV: JJ - Other Materials Impact factor: 1.060, year: 2016

  17. Electron band theory predictions and the construction of phase diagrams

    International Nuclear Information System (INIS)

    Watson, R.E.; Bennett, L.H.; Davenport, J.W.; Weinert, M.

    1985-01-01

    The a priori theory of metals is yielding energy results which are relevant to the construction of phase diagrams - to the solution phases as well as to line compounds. There is a wide range in the rigor of the calculations currently being done and this is discussed. Calculations for the structural stabilities (fcc vs bcc vs hcp) of the elemental metals, quantities which are employed in the constructs of the terminal phases, are reviewed and shown to be inconsistent with the values currently employed in such constructs (also see Miodownik elsewhere in this volume). Finally, as an example, the calculated heats of formation are compared with experiment for PtHf, IrTa and OsW, three compounds with the same electron to atom ratio but different bonding properties

  18. Phase diagram and magnetic relaxation phenomena in Cu2OSeO3

    Science.gov (United States)

    Qian, F.; Wilhelm, H.; Aqeel, A.; Palstra, T. T. M.; Lefering, A. J. E.; Brück, E. H.; Pappas, C.

    2016-08-01

    We present an investigation of the magnetic-field-temperature phase diagram of Cu2OSeO3 based on dc magnetization and ac susceptibility measurements covering a broad frequency range of four orders of magnitude, from very low frequencies reaching 0.1 Hz up to 1 kHz. The experiments were performed in the vicinity of Tc=58.2 K and around the skyrmion lattice A phase. At the borders between the different phases the characteristic relaxation times reach several milliseconds and the relaxation is nonexponential. Consequently the borders between the different phases depend on the specific criteria and frequency used and an unambiguous determination is not possible.

  19. Phase diagram of a lattice of pancake vortex molecules

    International Nuclear Information System (INIS)

    Tanaka, Y.; Crisan, A.; Shivagan, D.D.; Iyo, A.; Shirage, P.M.; Tokiwa, K.; Watanabe, T.; Terada, N.

    2009-01-01

    On a superconducting bi-layer with thickness much smaller than the penetration depth, λ, a vortex molecule might form. A vortex molecule is composed of two fractional vortices and a soliton wall. The soliton wall can be regarded as a Josephson vortex missing magnetic flux (degenerate Josephson vortex) due to an incomplete shielding. The magnetic energy carried by fractional vortices is less than in the conventional vortex. This energy gain can pay a cost to form a degenerate Josephson vortex. The phase diagram of the vortex molecule is rich because of its rotational freedom.

  20. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    Science.gov (United States)

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  1. Thermodynamic study of sodium-iron oxides. Part 2. Ternary phase diagram of the Na-Fe-O system

    International Nuclear Information System (INIS)

    Huang, Jintao; Furukawa, Tomohiro; Aoto, Kazumi

    2003-01-01

    Studies on ternary phase diagrams of the Na-Fe-O system have been carried out from the thermodynamic point of view. Thermodynamic data of main ternary Na-Fe oxides Na 4 FeO 3 (s), Na 3 FeO 3 (s), Na 5 FeO 4 (s) and Na 8 Fe 2 O 7 (s) have been assessed. A user database has been created by reviewing literature data together with recent DSC and vapor pressure measurements by the present authors. New ternary phase diagrams of the Na-Fe-O system have been constructed from room temperature to 1000K. Stable conditions of the ternary oxides at 800K were presented in predominance diagram as functions of oxygen pressure and sodium pressure

  2. The NaNO2-NaNO3 system – a revised phase diagram

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Kerridge, D.H.; Larsen, Peter Halvor

    2004-01-01

    Three earlier determinations of the phase diagram of the sodium nitrite/sodium nitrate binary system resulted in considerably different conclusions, ranging from simple eutectic to continuous solid solution types, together with different sub-solidus lines. Recent melting enthalpy measurements hav...

  3. Light nuclei production as a probe of the QCD phase diagram

    Science.gov (United States)

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; Pu, Jie; Xu, Zhangbu

    2018-06-01

    It is generally believed that the quark-hadron transition at small values of baryon chemical potentials μB is a crossover but changes to a first-order phase transition with an associated critical endpoint (CEP) as μB increases. Such a μB-dependent quark-hadron transition is expected to result in a double-peak structure in the collision energy dependence of the baryon density fluctuation in heavy-ion collisions with one at lower energy due to the spinodal instability during the first-order phase transition and another at higher energy due to the critical fluctuations in the vicinity of the CEP. By analyzing the data on the p, d and 3H yields in central heavy-ion collisions within the coalescence model for light nuclei production, we find that the relative neutron density fluctuation Δρn = 〈(δρn) 2 〉 /〈ρn 〉 2 at kinetic freeze-out indeed displays a clear peak at √{sNN } = 8.8GeV and a possible strong re-enhancement at √{sNN } = 4.86GeV. Our findings thus provide a strong support for the existence of a first-order phase transition at large μB and its critical endpoint at a smaller μB in the temperature versus baryon chemical potential plane of the QCD phase diagram.

  4. Experimental investigation and thermodynamic calculations of the Ag–Bi–Ga phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Minić, Duško, E-mail: dminic65@open.telekom.rs [University in Priština, Faculty of Technical Science, Kos. Mitrovica (Serbia); Premović, Milena [University in Priština, Faculty of Technical Science, Kos. Mitrovica (Serbia); Manasijević, Dragan [University of Belgrade, Technical Faculty, Bor (Serbia); Ćosović, Vladan [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Belgrade (Serbia); Živković, Dragana [University of Belgrade, Technical Faculty, Bor (Serbia); Marković, Aleksandar [University in Priština, Faculty of Technical Science, Kos. Mitrovica (Serbia)

    2015-10-15

    Phase diagram of the Ag–Bi–Ga ternary system was investigated using differential thermal analysis (DTA), scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and x-ray powder diffraction (XRD) methods. Experimentally obtained results were compared with the results of thermodynamic prediction of phase equilibria based on calculation of phase diagram (CALPHAD) method. Phase transition temperatures of alloys with overall compositions along three selected vertical sections Ag–Bi{sub 50}Ga{sub 50}, Bi–Ag{sub 50}Ga{sub 50} and Ga–Ag{sub 50}Bi{sub 50} were measured by DTA. Liquidus temperatures were experimentally determined and compared with the results of thermodynamic calculation. Identification of coexisting phases in samples equilibrated at 200 °C was carried out using SEM-EDS and XRD methods. Obtained results were compared with the calculated isothermal section of the Ag–Bi–Ga ternary system at corresponding temperature. Calculated liquidus projection and invariant equilibria of the Ag–Bi–Ga ternary system were presented. The obtained values were found to be in a close agreement. - Highlights: • Calculated constitutive binary system based on literature data. • Experimentally determined (DTA) temperatures of phase transformations compared with analytical calculation. • Definition of three vertical sections Ag–Bi{sub 50}Ga{sub 50}, Bi–Ag{sub 50}Ga{sub 50} and Ga–Ag{sub 50}Bi{sub 50}. • Calculated horizontal section at 200 °C, confirmed by experimental SEM-EDS and XRD method. • Calculated liquidus surface projection and determined invariant reaction occurred in ternary Ag–Bi–Ga system.

  5. Thermodynamic study of the A-B phase transition in superfluid 3He: Phase diagram and consequences

    International Nuclear Information System (INIS)

    Hahn, I.

    1993-01-01

    The authors have measured the A-B phase transition temperature of superfluid 3 He at pressures from zero to 29 bars, and in all magnetic fields up to the high field limit of the B phase (0.59 Tesla). This work is the first precision measurement of the A-B phase transition over the entire phase diagram (P, T, B). Measurements at low magnetic fields can be related to microscopic interactions in liquid 3 He. The results show that all current microscopic models of normal liquid 3 He are incomplete. Also, the results suggest the possibility that the conventional identification of the order parameter of superfluid 3 He-A is incorrect. The measurements at high magnetic fields can be related through thermodynamic identities to quantities which are immeasurable directly, such as the molar volume changes at the A-B phase transition, and the specific heat of the A-phase of superfluid 3 He in the limit T → 0. The authors detect the phase transition by monitoring the attenuation of zero around traversing a 4-mm path in the superfluid. Because thermometry is so crucial to the success of the measurements, the authors elected to use two independent thermometers. The authors use a pulsed NMR measurement of the susceptibility of Pt nuclei, which varies as 1/T, to guarantee linearity of the temperature scale. In order to achieve the high resolution required by the experiment, the authors also use an LCMN thermometer driven by a unique digital bridge which the authors constructed

  6. A new stochastic cellular automaton model on traffic flow and its jamming phase transition

    International Nuclear Information System (INIS)

    Sakai, Satoshi; Nishinari, Katsuhiro; Iida, Shinji

    2006-01-01

    A general stochastic traffic cellular automaton (CA) model, which includes the slow-to-start effect and driver's perspective, is proposed in this paper. It is shown that this model includes well-known traffic CA models such as the Nagel-Schreckenberg model, the quick-start model and the slow-to-start model as specific cases. Fundamental diagrams of this new model clearly show metastable states around the critical density even when the stochastic effect is present. We also obtain analytic expressions of the phase transition curve in phase diagrams by using approximate flow-density relations at boundaries. These phase transition curves are in excellent agreement with numerical results

  7. Magnetic phase diagram of UNi2Si2 under magnetic field and high-pressure

    International Nuclear Information System (INIS)

    Honda, F.; Oomi, G.; Svoboda, P.; Syshchenko, A.; Sechovsky, V.; Khmelevski, S.; Divis, M.; Andreev, A.V.; Takeshita, N.; Mori, N.; Menovsky, A.A.

    2001-01-01

    Measurements of electrical resistance under high pressure and neutron diffraction in high-magnetic field of single crystalline UNi 2 Si 2 have been performed. We have found the analogy between the p-T and B-T magnetic phase diagrams. It is also found that the propagation vector q Z of incommensurate antiferromagnetic phase decreases with increasing magnetic field. A new pronounced pressure-induced incommensurate-commensurate magnetic phase transition has been detected

  8. Experimental study of the ternary Ag-Cu-In phase diagram

    International Nuclear Information System (INIS)

    Bahari, Zahra; Elgadi, Mohamed; Rivet, Jacques; Dugue, Jerome

    2009-01-01

    The phase diagram of the Ag-Cu-In system was investigated using powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and electron probe microanalysis (EPMA). Two isothermal sections (at 510 and 607 deg. C) and 15 isopletic sections were studied. The results showed seven ternary peritectics, one ternary eutectic and one ternary metatectic. A complete reaction scheme was constructed, the valleys were drawn and the liquidus surfaces were derived from DSC data in the entire composition range.

  9. Experimental study of the ternary Ag-Cu-In phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Bahari, Zahra [Laboratoire de chimie physique et minerale, Faculte des sciences pharmaceutiques et biologiques, Universite Paris Descartes, avenue de l' Observatoire, 75006 Paris (France); Laboratoire de chimie du solide mineral (LCSM), Faculte des sciences, Universite Mohamed 1er, Route Sidi Maafa, B.P. 524, Oujda, Maroc (Morocco); Elgadi, Mohamed [Laboratoire de chimie du solide mineral (LCSM), Faculte des sciences, Universite Mohamed 1er, Route Sidi Maafa, B.P. 524, Oujda, Maroc (Morocco); Rivet, Jacques [Laboratoire de chimie physique et minerale, Faculte des sciences pharmaceutiques et biologiques, Universite Paris Descartes, avenue de l' Observatoire, 75006 Paris (France); Dugue, Jerome [Laboratoire de chimie physique et minerale, Faculte des sciences pharmaceutiques et biologiques, Universite Paris Descartes, avenue de l' Observatoire, 75006 Paris (France)], E-mail: jerome.dugue@univ-paris5.fr

    2009-05-27

    The phase diagram of the Ag-Cu-In system was investigated using powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and electron probe microanalysis (EPMA). Two isothermal sections (at 510 and 607 deg. C) and 15 isopletic sections were studied. The results showed seven ternary peritectics, one ternary eutectic and one ternary metatectic. A complete reaction scheme was constructed, the valleys were drawn and the liquidus surfaces were derived from DSC data in the entire composition range.

  10. Phase diagram of Se-CaIn4Se7 system

    International Nuclear Information System (INIS)

    Musaeva, R.I.; Aliev, I.I; Ismailova, F.I; Aliev, A.A

    2011-01-01

    Full text: The Se-CaIn 4 Se 7 system has been studied using methods of differential thermal analysis, X-ray diffraction, micro structural analysis, density measurements and its phase diagram has been constructed. It has been established that the section Se-CaIn 4 Se 7 is a quasibinary section of the ternary system Ca-In-Se. At room temperature, on the basis of CaIn 2 Se 4 and Se no solid solution has been found

  11. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    Science.gov (United States)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  12. The binary (solid + liquid) phase diagrams of (caprylic or capric acid) + (1-octanol or 1-decanol)

    International Nuclear Information System (INIS)

    Carareto, Natália D.D.; Castagnaro, Thamires; Costa, Mariana C.; Meirelles, Antonio J.A.

    2014-01-01

    Highlights: • SLE of mixtures of caprylic acid, (capric acid + 1-octanol), 1-decanol were studied. • Experimental data were obtained through DSC and Stepscan DSC. • Systems presented eutectic and peritectic points. • Liquidus line was modeled using Margules and NRTL models. • Solid phase was modeled using the Slaughter and Doherty approach. - Abstract: In the present study the phase diagrams of four (fatty acid + fatty alcohol) binary mixtures composed of caprylic (C8O2) or capric acid (C10O2) + 1-octanol (C8OH) or 1-decanol (C10OH) were obtained by differential scanning calorimetry (DSC). Eutectic and peritectic reactions occurred in the systems. In standard DSC analyses of the (C8O2 + C10OH) and (C10O2 + C8OH) systems, an exothermic transition occurs in association with the melting of a metastable phase. A Stepscan DSC method was used in order to avoid the formation of this metastable phase during the heating of the mixtures. The approach suggested by Slaughter and Doherty (1995) [24] was used for modeling the solid phase, and the Margules 2-suffix, Margules 3-suffix and NRTL models were applied for calculating the activity coefficients of the liquid phase. The best modeling results were obtained using the Margules-3-suffix with an average deviation between experimental and calculated values ranging from T = (0.3 to 0.9) K

  13. Database design using entity-relationship diagrams

    CERN Document Server

    Bagui, Sikha

    2011-01-01

    Data, Databases, and the Software Engineering ProcessDataBuilding a DatabaseWhat is the Software Engineering Process?Entity Relationship Diagrams and the Software Engineering Life Cycle          Phase 1: Get the Requirements for the Database          Phase 2: Specify the Database          Phase 3: Design the DatabaseData and Data ModelsFiles, Records, and Data ItemsMoving from 3 × 5 Cards to ComputersDatabase Models     The Hierarchical ModelThe Network ModelThe Relational ModelThe Relational Model and Functional DependenciesFundamental Relational DatabaseRelational Database and SetsFunctional

  14. Dynamical phase diagrams of a love capacity constrained prey-predator model

    Science.gov (United States)

    Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, Cesar Federico; Caram, Facundo; Sonubi, Adeyemi; Arcagni, Alberto; Stefani, Silvana

    2018-02-01

    One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey-predator Verhulst-Lotka-Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a "love dilemma game". We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams.

  15. Phase diagram of carbon and the factors limiting the quantity and size of natural diamonds

    Science.gov (United States)

    Blank, Vladimir D.; Churkin, Valentin D.; Kulnitskiy, Boris A.; Perezhogin, Igor A.; Kirichenko, Alexey N.; Denisov, Viktor N.; Erohin, Sergey V.; Sorokin, Pavel B.; Popov, Mikhail Yu

    2018-03-01

    Phase diagrams of carbon, and those focusing on the graphite-to-diamond transitional conditions in particular, are of great interest for fundamental and applied research. The present study introduces a number of experiments carried out to convert graphite under high-pressure conditions, showing a formation of stable phase of fullerene-type onions cross-linked by sp3-bonds in the 55-115 GPa pressure range instead of diamonds formation (even at temperature 2000-3000 K) and the already formed diamonds turn into carbon onions. Our results refute the widespread idea that diamonds can form at any pressure from 2.2 to 1000 GPa. The phase diagram built within this study allows us not only to explain the existing numerous experimental data on the formation of diamond from graphite, but also to make assumptions about the conditions of its growth in Earth’s crust.

  16. Edge states and phase diagram for graphene under polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Li, Fuxiang [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  17. Proton dynamics and the phase diagram of dense water ice.

    Science.gov (United States)

    Hernandez, J-A; Caracas, R

    2018-06-07

    All the different phases of water ice between 2 GPa and several megabars are based on a single body-centered cubic sub-lattice of oxygen atoms. They differ only by the behavior of the hydrogen atoms. In this study, we investigate the dynamics of the H atoms at high pressures and temperatures in water ice from first-principles molecular dynamics simulations. We provide a detailed analysis of the O-H⋯O bonding dynamics over the entire stability domain of the body-centered cubic (bcc) water ices and compute transport properties and vibrational density-of-states. We report the first ab initio evidence for a plastic phase of water and we propose a coherent phase diagram for bcc water ices compatible with the two groups of melting curves and with the multiple anomalies reported in ice VII around 15 GPa.

  18. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    Science.gov (United States)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  19. Effect of elastic compliances and higher order Landau coefficients on the phase diagram of single domain epitaxial Pb(Zr,TiO3 (PZT thin films

    Directory of Open Access Journals (Sweden)

    M. Mtebwa

    2014-12-01

    Full Text Available We report the qualitative study of the influence of both elastic compliances and higher order terms of Landau free energy potential on the phase diagram of Pb(Zr0.5Ti0.5O3 thin films by using a single domain Landau theory. Although the impact of elastic compliances and higher order terms of the Landau free energy potential on the phase diagram of ferroelectric thin films are known, the sensitivity of the phase diagram of PZT thin film on these parameters have not been reported. It is demonstrated that, while values of elastic compliances affect the positions of the phase boundaries including phase transition temperature of the cubic phase; higher order terms can potentially introduce an a1a2-phase previously predicted in PbTiO3 phase diagram.

  20. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  1. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    Science.gov (United States)

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14  cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  2. APPLICATION OF VORONOI DIAGRAM TO MASK-BASED INTERCEPTING PHASE-SPACE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Ha, G. [POSTECH

    2017-05-19

    Intercepting multi-aperture masks (e.g. pepper pot or multislit mask) combined with a downstream transversedensity diagnostics (e.g. based on optical transition radiation or employing scintillating media) are commonly used for characterizing the phase space of charged particle beams and the associated emittances. The required data analysis relies on precise calculation of the RMS sizes and positions of the beamlets originated from the mask which drifted up to the analyzing diagnostics. Voronoi diagram is an efficient method for splitting a plane into subsets according to the distances between given vortices. The application of the method to analyze data from pepper pot and multislit mask based measurement is validated via numerical simulation and applied to experimental data acquired at the Argonne Wakefield Accelerator (AWA) facility. We also discuss the application of the Voronoi diagrams to quantify transverselymodulated beams distortion.

  3. Assessment of thermodynamic properties and phase diagram in the Ag–In–Pd system

    Czech Academy of Sciences Publication Activity Database

    Zemanová, A.; Semenova, O.; Kroupa, Aleš; Vřešťál, J.; Chandrasekaran, K.; Richter, K. W.; Ipser, H.

    2007-01-01

    Roč. 15, č. 1 (2007), s. 77-84 ISSN 0966-9795 R&D Projects: GA MŠk(CZ) OC 532.001 Institutional research plan: CEZ:AV0Z20410507 Keywords : phase diagrams * ternary alloy systems * prediction Subject RIV: BJ - Thermodynamics Impact factor: 2.219, year: 2007

  4. Phase diagram of structure of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2002-01-01

    A set of transport equations in toroidal helical plasmas is analyzed, including the bifurcation of the radial electric field. Multiple solutions of E r for the ambipolar condition induces domains of different electric polarities. A structure of the domain interface is analyzed and a phase diagram is obtained in the space of the external control parameters. The region of the reduction of the anomalous transport is identified. (author)

  5. Bifurcation and phase diagram of turbulence constituted from three different scale-length modes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.-I.; Kitazawa, A.; Yagi, M. [Kyushu Univ., Research Inst. for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-04-01

    Cases where three kinds of fluctuations having the different typical scale-lengths coexist are analyzed, and the statistical theory of strong turbulence in inhomogeneous plasmas is developed. Statistical nonlinear interactions between fluctuations are kept in the analysis as the renormalized drag, statistical noise and the averaged drive. The nonlinear interplay through them induces a quenching or suppressing effect, even if all the modes are unstable when they are analyzed independently. Variety in mode appearance takes place: one mode quenches the other two modes, or one mode is quenched by the other two modes, etc. The bifurcation of turbulence is analyzed and a phase diagram is drawn. Phase diagrams with cusp type catastrophe and butterfly type catastrophe are obtained. The subcritical bifurcation is possible to occur through the nonlinear interplay, even though each one is supercritical turbulence when analyzed independently. Analysis reveals that the nonlinear stability boundary (marginal point) and the amplitude of each mode may substantially shift from the conventional results of independent analyses. (author)

  6. The coupling of thermochemistry and phase diagrams for group III-V semiconductor systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.J.

    1998-07-21

    The project was directed at linking the thermochemical properties of III-V compound semiconductors systems with the reported phase diagrams. The solid-liquid phase equilibrium problem was formulated and three approaches to calculating the reduced standard state chemical potential were identified and values were calculated. In addition, thermochemical values for critical properties were measured using solid state electrochemical techniques. These values, along with the standard state chemical potentials and other available thermochemical and phase diagram data, were combined with a critical assessment of selected III-V systems. This work was culminated with a comprehensive assessment of all the III-V binary systems. A novel aspect of the experimental part of this project was the demonstration of the use of a liquid encapsulate to measure component activities by a solid state emf technique in liquid III-V systems that exhibit high vapor pressures at the measurement temperature.

  7. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  8. Study on mutual diffusion and phase diagram in the Ni-Ta system

    International Nuclear Information System (INIS)

    Pimenov, V.N.; Ugaste, Yu.Eh.; Akkushkarova, K.A.

    1977-01-01

    The mutual diffusion in the Ni-Ta system has been investigated with a view of refining the constitutional diagram. The mutual diffusion factors and their effective values in the various phases and the diffusion activation energies are calculated. Given are the dependences of the phase growth constants and the mutual diffusion factors upon the temperature. The existence of five new phases Ta 2 Ni, TaNi, TaNi 2 , TaNi 3 , TaNi 8 has been discovered in the range of temperatures between 1150 and 1300 deg C. It is established that all the phases have a small concentration range of existence. It is noted that the diffusion characteristics in the phases (mutual diffusion factor and activation energy) differ widely, but fail to correlate with their melting points

  9. Fusion Diagrams in the - and - Systems

    Science.gov (United States)

    Asadov, M. M.; Akhmedova, N. A.

    2014-10-01

    A calculation model of the Gibbs energy of ternary oxide compounds from the binary components was used. Thermodynamic properties of -- ternary systems in the condensed state were calculated. Thermodynamic data of binary and ternary compounds were used to determine the stable sections. The probability of reactions between the corresponding components in the -- system was estimated. Fusibility diagrams of systems - and - were studied by physical-chemical analysis. The isothermal section of the phase diagram of -- at 298 K is built, as well as the projection of the liquid surface of --.

  10. The phase diagram of molybdenum at extreme conditions and the role of local liquid structures

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M

    2008-08-15

    Recent DAC measurements made of the Mo melting curve by the x-ray diffraction studies confirms that, up to at least 110 GPa (3300K) melting is directly from bcc to liquid, evidence that there is no basis for a speculated bcc-hcp or fcc transition. An examination of the Poisson Ratio, obtained from shock sound speed measurements, provides evidence that the 210 GPa (4100K) transition detected from shock experiments is a continuation of the bcc-liquid melting, but is from a bcc-to a solid-like mixed phase rather than to liquid. Calculations, modeled to include the free energy of liquid local structures, predict that the transition from the liquid to the mixed phase is near 150 GPa(3500K). The presence of local structures provides the simplest and most direct explanation for the Mo phase diagram, and the low melting slopes.

  11. Statistical quantization of GUT models and phase diagrams of W condensation for the Universe with finite fermion density

    International Nuclear Information System (INIS)

    Kalashnikov, O.K.; Razumov, L.V.; Perez Rojas, H.

    1990-01-01

    The problems of statistical quantization for grand-unified-theory models are studied using as an example the Weinberg-Salam model with finite fermion density under the conditions of neutral and electric charge conservation. The relativistic R γ gauge with an arbitrary parameter is used and the one-loop effective potential together with its extremum equations are found. We demonstrate (and this is our main result) that the thermodynamic potential obtained from the effective one, after the mass shell for ξ is used, remains gauge dependent if all temperature ranges (not only the leading high-temperature terms) are considered. The contradiction detected within the calculational scheme is eliminated after the redefinition of the model studied is made with the aid of the terms which are proportional to the ''non-Abelian'' chemical potential and equal to zero identically when the unitary gauge is fixed. The phase diagrams of the W condensation are established and all their peculiarities are displayed. We found for the universe with a zero neutral charge density that the W condensate occurs at any small fermion density ρ and appears at first near the point of symmetry restoration. For all ρ≠0 this condensate exists only in the finite-temperature domain and evaporates completely or partially when T goes to zero

  12. The pressure-temperature phase diagram of pressure induced organic superconductors β-(BDA-TTP){2}MCl{4} (M = Ga, Fe)

    Science.gov (United States)

    Choi, E. S.; Graf, D.; Brooks, J. S.; Yamada, J.; Tokumoto, M.

    2004-04-01

    We investigate the pressure-temperature phase diagram of β -(BDA-TTP){2}MCl{4} (M=Ga, Fe), which shows a metal-insulator (MI) transition around 120 K at ambient pressure. By applying pressure, the insulating phase is suppressed. When the pressure is higher than 5.5 kbar, the superconducting phase appears in both salts with Tc ˜ 3 K for M=Ga and 2.2 K for M=Fe. We also observed Shubnikov-de Haas (SdH) oscillations at high magnetic field in both salts, where the SdH frequencies are found to be very similar each other. Key words. organic superconductor, pressure, phase diagram.

  13. Hydrogen in niobium, tantalum, and vanadium: Structures, phase diagrams, and morphologies

    International Nuclear Information System (INIS)

    Schober, T.

    1978-07-01

    The paper discusses basic aspects of the reactions between the metals niobium, tantalum, vanadium, and hydrogen or deuterium. After an introduction to problems of preparation experimental technqiues for the investigation of hydrides are presented. The possible hydride structures are discussed. With vanadium, there are great differences between the structures of hydrides and deuterides. Detailed mention is also made of recent measurements of the NGH, TaH, VH, and VD phase diagrams. (orig./WBU) [de

  14. The Establishment, Plotting and Statistic– Mathematical Interpretation of the Liquidus Surface from the Phase Equilibrium Diagram of the Ternary System Al-Cu-Si

    Directory of Open Access Journals (Sweden)

    Florentina A. Cziple

    2006-10-01

    Full Text Available The paper forwards the conclusions of a survey performed on a mathematical model of the phase equilibrium from the ternary system Al-Cu-Si. The author presents the calculus of the statistic equation of the liquidus surface model from this diagram, the plotting and statistical-mathematical interpretation of the results obtained.

  15. Phase diagrams of a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Gueldal, S.

    2009-01-01

    We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.

  16. Phase diagrams of a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, M., E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Canko, O. [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Gueldal, S. [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2009-12-14

    We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.

  17. Vortex phase diagram and vortex dynamics at low temperature in a thick a-MgxB1-x film

    International Nuclear Information System (INIS)

    Okuma, S.; Kohara, M.

    2007-01-01

    We report on the equilibrium vortex phase diagram and vortex dynamics at low temperature T in a thick amorphous (a-)Mg x B 1-x film based on the measurements of the dc resistivity ρ and time (t)-dependent component of the flux-flow voltage, δV(t), respectively. Both ρ(T) in perpendicular fields and the vortex phase diagram are qualitatively similar to those for the a-Mo x Si 1-x films, in which evidence for the quantum-vortex-liquid (QVL) phase has been obtained. In either material system we observe anomalous vortex flow with the asymmetric distribution of δV(t) in the QVL phase, suggesting that the anomalous flow is a universal phenomenon commonly observed for disordered amorphous films, independent of material

  18. Phase diagram of interfacial growth modes by vapor deposition and its application for ZnO nanostructures

    Science.gov (United States)

    Shu, Da-Jun; Xiong, Xiang; Liu, Ming; Wang, Mu

    2017-09-01

    Interfacial growth from vapor has been extensively studied. However, a straightforward picture of the growth mode under different growth conditions is still lacking. In this paper, we develop a comprehensive interfacial growth theory based on the stochastic approach. Using a critical interisland separation, we construct a general phase diagram of the growth modes. It has been revealed that if the Ehrlich-Schwoebel barrier EES is smaller than a critical value, the interfacial growth proceeds in a layer-by-layer (LBL) mode at any deposition rate. However, if EES is larger than the critical value, LBL growth occurs only at very small or very large deposition rates relative to the intralayer hopping rate, and multilayer (ML) growth occurs at a moderate deposition rate. Experiments with zinc oxide growth by chemical vapor deposition have been designed to qualitatively demonstrate the theoretical model. By changing the flux of the carrier gas (nitrogen gas) in chemical vapor deposition, we realize LBL, ML, and then reentrance of LBL homoepitaxial growth of ZnO successively. Moreover, we find that surface kinetics of ZnO is suppressed by decreasing oxygen partial pressure by comparing the experimental observations and theoretical models, which is supported by our recent first-principles calculations. Since the influence of the substrate and the growth species on growth can approximately be represented by binding energy and surface kinetics, we suggest that the phase diagram is essential for interfacial growth of different materials by vapor deposition.

  19. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong

    2013-02-12

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44phases in three and two dimensions simultaneously.

  20. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44phases in three and two dimensions simultaneously.

  1. Partial chord diagrams and matrix models

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Manabe, Masahide

    In this article, the enumeration of partial chord diagrams is discussed via matrix model techniques. In addition to the basic data such as the number of backbones and chords, we also consider the Euler characteristic, the backbone spectrum, the boundary point spectrum, and the boundary length spe...

  2. Numerical model of phase transformation of steel C80U during hardening

    Directory of Open Access Journals (Sweden)

    T. Domański

    2007-12-01

    Full Text Available The article concerns numerical modelling of the phase transformations in solid state hardening of tool steel C80U. The transformations were assumed: initial structure – austenite, austenite – perlite, bainite and austenite – martensite. Model for evaluation of fractions of phases and their kinetics based on continuous heating diagram (CHT and continuous cooling diagram (CCT. The dilatometric tests on the simulator of thermal cycles were performed. The results of dilatometric tests were compared with the results of the test numerical simulations. In this way the derived models for evaluating phase content and kinetics of transformations in heating and cooling processes were verified. The results of numerical simulations confirm correctness of the algorithm that were worked out. In the numerical example the simulated estimation of the phase fraction in the hardened axisimmetrical element was performed.

  3. A partial isothermal section at 1000 ˚C of Al-Mn-Fe phase diagram in vicinity of Taylor phase and decagonal quasicrystal

    Czech Academy of Sciences Publication Activity Database

    Priputen, P.; Černíčková, I.; Lejček, Pavel; Janičkovič, D.; Janovec, J.

    2016-01-01

    Roč. 37, č. 2 (2016), 130-134 ISSN 1547-7037 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : aluminium alloys * equilibria * experimental phase * intermetallics * isothermal section * phase diagram Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.938, year: 2016

  4. Compatible growth models and stand density diagrams

    International Nuclear Information System (INIS)

    Smith, N.J.; Brand, D.G.

    1988-01-01

    This paper discusses a stand average growth model based on the self-thinning rule developed and used to generate stand density diagrams. Procedures involved in testing are described and results are included

  5. On the superconducting phase diagram of high Tc superconductors

    International Nuclear Information System (INIS)

    de la Cruz, F.

    1990-01-01

    The tendency of oxide superconductors to show granularity has been pointed out since the beginning of research on superconductivity in this type of materials. Nevertheless, only very recently the full phase diagram and characteristics of the grains have been determined. In this paper, the authors review and discuss the different critical fields and their relation to the transport of superconducting current. The superconducting response of single crystals of High Tc superconductors is discussed. Special attention is devoted to the behavior of the vortex lattice and, in particular, to the recent discovery of the quenching of H c1 in YBaCuO, several degrees below Tc

  6. Defect phase diagram for doping of Ga2O3

    OpenAIRE

    Stephan Lany

    2018-01-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have d...

  7. Phase Diagrams of Some Sodium and Potassium Salts In Light and Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, K E

    1968-12-15

    Phase diagrams for fluorides, chlorides, bromides, iodides, nitrates, sulphates and carbonates of sodium and potassium with D{sub 2}O and H{sub 2}O have been determined in the range from eutectic temperature to 60 deg C. Generally the relative solubility is less in D{sub 2}O, but there are some exceptions in cases of a hydrate as the solid phase. The freezing point depression for freezing of ice is often somewhat smaller in the case of D{sub 2}O.

  8. Assessment of the thermodynamic properties and phase diagram of the Bi-Pd system

    Czech Academy of Sciences Publication Activity Database

    Vřešťál, Jan; Pinkas, J.; Watson, A.; Scott, A.; Houserová, Jana; Kroupa, Aleš

    2006-01-01

    Roč. 30, č. 1 (2006), s. 14-17 ISSN 0364-5916 R&D Projects: GA MŠk OC 531.001; GA MŠk OC 531.002 Institutional research plan: CEZ:AV0Z20410507 Keywords : phase diagram * ab initio calculations * calorimetry Subject RIV: BJ - Thermodynamics Impact factor: 1.432, year: 2006

  9. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  10. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  11. Disentangling phase transitions and critical points in the proton–neutron interacting boson model by catastrophe theory

    Directory of Open Access Journals (Sweden)

    J.E. García-Ramos

    2014-09-01

    Full Text Available We introduce the basic concepts of catastrophe theory needed to derive analytically the phase diagram of the proton–neutron interacting boson model (IBM-2. Previous studies [1–3] were based on numerical solutions. We here explain the whole IBM-2 phase diagram including the precise order of the phase transitions in terms of the cusp catastrophe.

  12. Phase diagrams of aluminium alloys of Al-Cu-Mg, Al-Mg-Si-Cu, and Al-Mg-Li system

    International Nuclear Information System (INIS)

    Ber, L.B.; Kaputkin, E.Ya.

    2001-01-01

    Isothermal diagrams of phase transformations (DPT) and temperature-time charts (TTC) of variation of electric conductivity and of mechanical features at tension were plotted following thermal treatment according to the pattern of direct hardening and ageing and according to the pattern of normal aging for D16 commercial alloy, Al-Cu-Mg model alloy of the same system, AD37 commercial alloys of Al-Mg-Si-Cu and 1424 one of Al-Li-Mg system. Phase transformations were studied by means of fluorescence electron microscopy, micro-X-ray spectral analysis, X-ray phase analysis of single crystals and polycrystals and differential scanning calorimetry. For every alloy comparison of TTC and DPT enables to clarity the mechanism of phase composition effect on features and to optimize conditions of hardening cooling and ageing [ru

  13. Phase diagram of dense two-color QCD within lattice simulations

    Directory of Open Access Journals (Sweden)

    Braguta V.V.

    2017-01-01

    Full Text Available We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc theory at large Nc.

  14. Studies on the phase diagram of LiBr-SrBr2 system

    International Nuclear Information System (INIS)

    Mahendran, K.H.; Sujatha, K.; Sridharan, R.; Gnanasekaran, T.

    2003-01-01

    Binary LiBr-SrBr 2 system was investigated using differential scanning calorimetry (DSC) and the equilibrium phases at different compositions were identified using X-ray diffraction (XRD). This system has a compound LiSr 2 Br 5 , and exhibits a eutectic reaction between this compound and LiBr at 434 deg. C and the eutectic has a composition of 35 mol% SrBr 2 . The compound LiSr 2 Br 5 undergoes peritectic decomposition at 484 deg. C. From the DSC and XRD results, phase diagram of the LiBr-SrBr 2 system is constructed

  15. Effect of self-interaction on the phase diagram of a Gibbs-like measure derived by a reversible Probabilistic Cellular Automata

    International Nuclear Information System (INIS)

    Cirillo, Emilio N.M.; Louis, Pierre-Yves; Ruszel, Wioletta M.; Spitoni, Cristian

    2014-01-01

    Cellular Automata are discrete-time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time Markov chains on lattice with finite single-cell states whose distinguishing feature is the parallel character of the updating rule. We study the ground states of the Hamiltonian and the low-temperature phase diagram of the related Gibbs measure naturally associated with a class of reversible PCA, called the cross PCA. In such a model the updating rule of a cell depends indeed only on the status of the five cells forming a cross centered at the original cell itself. In particular, it depends on the value of the center spin (self-interaction). The goal of the paper is that of investigating the role played by the self-interaction parameter in connection with the ground states of the Hamiltonian and the low-temperature phase diagram of the Gibbs measure associated with this particular PCA

  16. Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Canko, Osman; Keskin, Mustafa

    2008-01-01

    We extend our recent paper [M. Keskin, O. Canko, M. Ertas, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered (d) and the ferromagnetic-2 (f 2 ) phases, and the f 2 +d, f 2 +fq, fq+d, f 2 +f 1 +fq and f 2 +fq+d, where f 1 are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters

  17. Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field

    Science.gov (United States)

    Ertaş, Mehmet; Canko, Osman; Keskin, Mustafa

    We extend our recent paper [M. Keskin, O. Canko, M. Ertaş, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered ( d) and the ferromagnetic-2 ( f2) phases, and the f2+ d, f2+ fq, fq+ d, f2+ f1+ fq and f2+ fq+ d, where f1 are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters.

  18. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2010-07-12

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  19. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2010-01-01

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  20. Thermochemical and phase diagram studies of the Sn-Zn-Ni system

    International Nuclear Information System (INIS)

    Gandova, V.D.; Broz, P.; Bursik, J.; Vassilev, G.P.

    2011-01-01

    Highlights: → Sn-Zn-Ni phase diagram in the vicinity of the Sn-Zn system. → Unidentified compositions (UX1-UX4) are repeatedly observed. → This indicates up to 6 ternary compounds in the system. → A ternary eutectic reaction at around 190 o C is found. - Abstract: The phase diagram Sn-Zn-Ni was studied by means of DSC and electron microprobe analysis. The samples were positioned in three isopleth sections with nickel contents of 0.04 (section 1), 0.08 (section 2) and 0.12 (section 3) mole fractions. The mole fractions of Sn corresponding to the particular sections were as follows: from 0.230 to 0.768 (section 1), from 0.230 to 0.736 (section 2); from 0.220 to 0.704 (section 3). Mixtures of pure metals were sealed under vacuum in quartz ampoules and annealed at 350 o C. The solid phases identified in the samples were: γ-(i.e. Ni 5 Zn 21 ), (Zn) and the ternary phase T1. Unidentified compositions were observed. One of them: UX1 (X Ni = 0.071 ± 0.005, X Sn = 0.439 ± 0.009 and X Zn = 0.490 ± 0.010) might indicate another (stable or metastable) ternary compound (T3) in the system Sn-Zn-Ni. Considering the data obtained by combining DSC with microstructure observations, the studied alloys could be divided in two groups (A and B). A ternary eutectic reaction at around 190 o C is common for the A-group alloys. The phases taking part in this reaction are, probably, Ni 5 Zn 21 , (Zn), (βSn) and liquid. B-group samples do not show ternary eutectic reaction and are also characterized by the presence of the ternary compound T1 (absent in the A-group alloys). Four other groups of thermal arrests were registered (TA 1 -TA 4 ). It was found that TA 2 peaks were characteristic for most of the A-group samples, while TA 1 peaks were registered with all B-group samples.

  1. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: Systems exhibiting peritectic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Carareto, Natália D.D. [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil); Santos, Adenílson O. dos [Social Sciences, Health and Technology Center, University of Maranhão, UFMA, CEP 65900-410 Imperatriz, MA (Brazil); Rolemberg, Marlus P. [Institute of Science and Technology, University of Alfenas, UNIFAL, Rodovia José AurélioVilela, CEP 37715400 Poços de Caldas, MG (Brazil); Cardoso, Lisandro P. [Institute of Physics GlebWataghin, University of Campinas, UNICAMP, C.P. 6165, CEP 13083-970 Campinas, SP (Brazil); Costa, Mariana C. [School of Applied Science, University of Campinas, UNICAMP, CEP 13484-350 Limeira, SP (Brazil); Meirelles, Antonio J.A., E-mail: tomze@fea.unicamp.br [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil)

    2014-08-10

    Highlights: • SLE of binary mixtures of saturated fatty alcohols was studied. • Experimental data were obtained using DSC and stepscan DSC. • Microscopy and X-ray diffraction used as complementary techniques. • Systems presented eutectic, peritectic and metatectic points. - Abstract: The solid–liquid phase diagrams of the following binary mixtures of even saturated fatty alcohols are reported in the literature for the first time: 1-octanol (C8OH) + 1-decanol (C10OH), 1-decanol + 1-dodecanol (C12OH), 1-dodecanol + 1-hexadecanol (C16OH) and 1-tetradecanol (C14OH) + 1-octadecanol (C18OH). The phase diagrams were obtained by differential scanning calorimetry (DSC) using a linear heating rate of 1 K min{sup −1} and further investigated by using a stepscan DSC method. X-ray diffraction (XRD) and polarized light microscopy were also used to complement the characterization of the phase diagrams which have shown a complex global behavior, presenting not only peritectic and eutectic reactions, but also the metatectic reaction and partial immiscibility on solid state.

  2. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: Systems exhibiting peritectic reaction

    International Nuclear Information System (INIS)

    Carareto, Natália D.D.; Santos, Adenílson O. dos; Rolemberg, Marlus P.; Cardoso, Lisandro P.; Costa, Mariana C.; Meirelles, Antonio J.A.

    2014-01-01

    Highlights: • SLE of binary mixtures of saturated fatty alcohols was studied. • Experimental data were obtained using DSC and stepscan DSC. • Microscopy and X-ray diffraction used as complementary techniques. • Systems presented eutectic, peritectic and metatectic points. - Abstract: The solid–liquid phase diagrams of the following binary mixtures of even saturated fatty alcohols are reported in the literature for the first time: 1-octanol (C8OH) + 1-decanol (C10OH), 1-decanol + 1-dodecanol (C12OH), 1-dodecanol + 1-hexadecanol (C16OH) and 1-tetradecanol (C14OH) + 1-octadecanol (C18OH). The phase diagrams were obtained by differential scanning calorimetry (DSC) using a linear heating rate of 1 K min −1 and further investigated by using a stepscan DSC method. X-ray diffraction (XRD) and polarized light microscopy were also used to complement the characterization of the phase diagrams which have shown a complex global behavior, presenting not only peritectic and eutectic reactions, but also the metatectic reaction and partial immiscibility on solid state

  3. Phase diagram of a polarized Fermi gas across a Feshbach resonance in a potential trap

    International Nuclear Information System (INIS)

    Yi, W.; Duan, L.-M.

    2006-01-01

    We map out the detailed phase diagram of a trapped ultracold Fermi gas with population imbalance across a wide Feshbach resonance. We show that under the local density approximation, the properties of the atoms in any (anisotropic) harmonic traps are universally characterized by three dimensionless parameters: the normalized temperature, the dimensionless interaction strength, and the population imbalance. We then discuss the possible quantum phases in the trap, and quantitatively characterize their phase boundaries in various typical parameter regions

  4. Reduced temperature phase diagrams of the silver-rare earths binary systems

    International Nuclear Information System (INIS)

    Ferro, R.; Delfino, S.; Capelli, R.; Borsese, A.

    1975-01-01

    Phase equilibria of the silver-rare earth binary systems have been reported in ''reduced temperature'' diagrams (the ''reduced temperature'' being defined as the ratio between a characteristic temperature of the Agsub(x)R.E. phase and the melting temperature of the corresponding R.E. metal, both in 0 K). The smooth trends of the various characteristic reduced temperatures, when plotted against the R.E. atomic number, have been demonstrated. On passing from the light- to the heavy-rare-earths, a correlation has been found between the crossing of these curves and other phenomena, such as the disappearing of the Ag 5 R.E. phases from incongruently, to congruently melting compounds. The trends of the reduced-temperature curves have been briefly discussed in terms of the treatment suggested by Gschneidner together with the volumetric data known for the different Agsub(x)R.E. phases. In addition, the characteristic data of the 1:1 AgR.E. compounds have been compared with those of the analogous AuR.E. phases. (Auth.)

  5. Studies of nuclei under the extreme conditions of density, temperature, isospin asymmetry and the phase diagram of hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    2016-10-18

    The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.

  6. T-p phase diagrams and the barocaloric effect in materials with successive phase transitions

    Science.gov (United States)

    Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.

    2017-09-01

    An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .

  7. Overview of the phase diagram of ionic magnetic colloidal dispersions

    International Nuclear Information System (INIS)

    Cousin, F.; Dubois, E.; Cabuil, V.; Boue, F.; Perzynski, R.

    2001-01-01

    We study ionic magnetic colloidal dispersions, which are constituted of γ-Fe 2 O 3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion. The phase diagram PV versus Φ (P: osmotic pressure, V: particle volume, Φ: particle volume fraction) is explored, especially in the range of high Π and high Φ. The osmotic pressure P of the colloidal dispersion is known either by a measurement either because it is imposed during the sample preparation by osmotic compression. The structure of the colloidal dispersion is determined from Small Angle Neutron Scattering. Two regimes can be distinguished. At high pressure, fluid and solid phases can exist. Their structure is governed by strong electrostatic repulsion, the range of which is here evaluated. At low pressure, gas, liquid and glassy solids can exist. Their structure results from a sticky hard sphere potential. (author)

  8. Phase diagram of power law and Lennard-Jones systems: Crystal phases

    International Nuclear Information System (INIS)

    Travesset, Alex

    2014-01-01

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed

  9. Phase diagram of N = 2 superconformal field theories and bifurcation sets in catastrophe theory

    International Nuclear Information System (INIS)

    Kei Ito.

    1989-08-01

    Phase diagrams of N=2 superconformal field theories are mapped out. It is shown that they coincide with bifurcation sets in catastrophe theory. The results are applied to the determination of renormalization group flows triggered by a combination of two or more relevant operators. (author). 13 refs, 2 figs

  10. A partial phase diagram of Pt-rich Pt-Mn alloys

    CERN Document Server

    Sembiring, T; Ohshima, K I; Ota, K; Shishido, T

    2002-01-01

    We have performed the X-ray and electron diffraction studies to reconstruct a partial phase diagram of Pt-rich Pt-Mn alloys in the composition range of 10 to 35 at.% Mn. Electrical resistivity measurement was also used for determining the order-disorder transition temperature in Pt-14.2 at.% Mn alloy. The phase boundary between Cu sub 3 Au type and ABC sub 6 type ordered structures is established, in which the latter has been found recently by the present [J.Phys. Soc. Jpn. 71 (2002) 681]. In the ABC sub 6 type ordered phase, superlattice reflections both at 1/2 1/2 1/2 and its equivalent position (L-point) and at 100, 110 and their equivalent positions (X-point) appear in the composition range from 12.5 to 14.4 at.% Mn below 682degC. In the Cu sub 3 Au type ordered phase, diffuse maxima at L-point appear in the composition range from 15.9 to 19.7 at.% Mn in addition to the superlattice reflections at X-point. The Cu sub 3 Au type ordered structure is found to be stable in the composition range from 19.7 to 3...

  11. Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Lazerges, Mathieu [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Corvis, Yohann; Ceolin, Rene; Espeau, Philippe [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France)

    2010-01-10

    The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 {+-} 0.007 lidocaine mole-fraction, melts at 18.2 {+-} 0.5 {sup o}C with an enthalpy of 17.3 {+-} 0.5 kJ mol{sup -1}. This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.

  12. Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram

    International Nuclear Information System (INIS)

    Lazerges, Mathieu; Rietveld, Ivo B.; Corvis, Yohann; Ceolin, Rene; Espeau, Philippe

    2010-01-01

    The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 ± 0.007 lidocaine mole-fraction, melts at 18.2 ± 0.5 o C with an enthalpy of 17.3 ± 0.5 kJ mol -1 . This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.

  13. Dynamic phase transitions of the Blume–Emery–Griffiths model under an oscillating external magnetic field by the path probability method

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume–Emery–Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • Dynamic magnetic behavior of the Blume–Emery–Griffiths system is investigated by using the path probability method. • The time variations of average magnetizations are studied to find the phases. • The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. • We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  14. Dynamic phase transitions of the Blume–Emery–Griffiths model under an oscillating external magnetic field by the path probability method

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-01-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume–Emery–Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • Dynamic magnetic behavior of the Blume–Emery–Griffiths system is investigated by using the path probability method. • The time variations of average magnetizations are studied to find the phases. • The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. • We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory

  15. Disorder and pseudogap in strongly correlated systems: Phase diagram in the DMFT + Σ approach

    International Nuclear Information System (INIS)

    Kuleeva, N. A.; Kuchinskii, E. Z.

    2013-01-01

    The influence of disorder and pseudogap fluctuations on the Mott insulator-metal transition in strongly correlated systems has been studied in the framework of the generalized dynamic mean field theory (DMFT + Σ approach). Using the results of investigations of the density of states (DOS) and optical conductivity, a phase diagram (disorder-Hubbard interaction-temperature) is constructed for the paramagnetic Anderson-Hubbard model, which allows both the effects of strong electron correlations and the influence of strong disorder to be considered. Strong correlations are described using the DMFT, while a strong disorder is described using a generalized self-consistent theory of localization. The DOS and optical conductivity of the paramagnetic Hubbard model have been studied in a pseudogap state caused by antiferromagnetic spin (or charge) short-range order fluctuations with a finite correlation length, which have been modeled by a static Gaussian random field. The effect of a pseudogap on the Mott insulator-metal transition has been studied. It is established that, in both cases, the static Gaussian random field (related to the disorder or pseudogap fluctuations) leads to suppression of the Mott transition, broadening of the coexistence region of the insulator and metal phases, and an increase in the critical temperature at which the coexistence region disappears

  16. Phase diagram of multiferroic KCu3As2O7(OD ) 3

    Science.gov (United States)

    Nilsen, Gøran J.; Simonet, Virginie; Colin, Claire V.; Okuma, Ryutaro; Okamoto, Yoshihiko; Tokunaga, Masashi; Hansen, Thomas C.; Khalyavin, Dmitry D.; Hiroi, Zenji

    2017-06-01

    The layered compound KCu3As2O7(OD ) 3 , comprising distorted kagome planes of S =1 /2 Cu2 + ions, is a recent addition to the family of type-II multiferroics. Previous zero-field neutron diffraction work has found two helically ordered regimes in KCu3As2O7(OD ) 3 , each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to 20 T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the H -T phase diagram. We find metamagnetic transitions in both low-temperature phases around μ0Hc˜3.7 T, which neutron powder diffraction reveals to correspond to rotations of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at 3.7 T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion, and attempt to account for the metamagnetic transition by adding anisotropic exchange interactions to our existing model for KCu3As2O7(OD ) 3 .

  17. Phase separation of superconducting phases in the Penson–Kolb–Hubbard model

    International Nuclear Information System (INIS)

    Kapcia, Konrad Jerzy; Czart, Wojciech Robert; Ptok, Andrzej

    2016-01-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson–Kolb–Hubbard model for two dimensional square lattice within Hartree–Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed. (author)

  18. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    Science.gov (United States)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  19. Using CCT Diagrams to Optimize the Composition of an As-Rolled Dual-Phase Steel

    Science.gov (United States)

    Coldren, A. Phillip; Eldis, George T.

    1980-03-01

    A continuous-cooling transformation (CCT) diagram study was conducted for the purpose of optimizing the composition of a Mn-Si-Cr-Mo as-rolled dual-phase (ARDP) steel. The individual effects of chromium, molybdenum, and silicon on the allowable cooling rates were determined. On the basis of the CCT diagram study and other available information, an optimum composition was selected. Data from recent mill trials at three steel companies, involving steels with compositions in or near the newly recommended range, are presented and compared with earlier mill trial data. The comparison shows that the optimized composition is highly effective in making the steel's properties more uniform and reproducible in the as-rolled condition.

  20. Dynamic phase transition in the kinetic spin-2 Blume-Emery-Griffiths model in an oscillating field

    Energy Technology Data Exchange (ETDEWEB)

    Ertas, Mehmet [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-06-15

    We extend our recent paper [M. Keskin, O. Canko, M. Ertas, J. Exp. Theor. Phys. (Sov. Phys. JETP) 105 (2007) 1190.] to present a study, within a mean-field approach, the stationary states of the kinetic spin-2 Blume-Emery-Griffiths model in the presence of a time-dependent oscillating magnetic field by using the Glauber-type of stochastic dynamics. We found 20 fundamental types of dynamic phase diagrams where exhibit more complex and richer phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the dynamic triple, quadruple and dynamic double critical end points besides dynamic tricritical points that depending on interaction parameters. The phase diagrams also exhibit a disordered (d) and the ferromagnetic-2 (f{sub 2}) phases, and the f{sub 2}+d, f{sub 2}+fq, fq+d, f{sub 2}+f{sub 1}+fq and f{sub 2}+fq+d, where f{sub 1} are fq the ferromagnetic-1 and ferroquadrupolar or simply quadrupolar phases respectively, coexistence phase regions that strongly depend on interaction parameters.

  1. FIRST-PRINCIPLES PHASE DIAGRAM OF THE Ce-Th SYSTEM

    International Nuclear Information System (INIS)

    Landa, A; Soderlind, P

    2005-01-01

    Actinide physics has seen a remarkable focus the last decade or so due to the combination of improved experimental diamond-anvil-cell techniques and the development of fast computers and more advanced theory. All f-electron systems are expected to have multiphase phase diagrams due to the sensitivity of the f-electron band to external influences such as pressure and temperature. For instance, compression of an f-electron metal generally causes the occupation of f-states to change due to the shift of these bands relative to others. This can in some cases, as in the Ce-Th system, cause the crystal to adopt a lower symmetry structure at elevated pressures. Here we study the phase stabilities of Ce, Th, and the Ce-Th system as a function of compression. Theoretically, both Ce and Th metals are rather well described within the DFT, although a proper treatment of the Ce-Th alloys has not yet been presented. In the present paper we revisit this problem by applying the modern theory of random alloys based on the coherent potential approximation (CPA)

  2. Magnetic phase diagrams from non-collinear canonical band theory

    DEFF Research Database (Denmark)

    Shallcross, Sam; Nordstrom, L.; Sharma, S.

    2007-01-01

    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...... hybridization, and on this basis we are able to analyze the microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets....... to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...

  3. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    Directory of Open Access Journals (Sweden)

    Nicola Lanatà

    2015-01-01

    Full Text Available We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.

  4. Combinatorial materials synthesis and high-throughput screening: an integrated materials chip approach to mapping phase diagrams and discovery and optimization of functional materials.

    Science.gov (United States)

    Xiang, X D

    Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.

  5. Some phase diagram studies of systems with fission product elements for fast reactor fuels

    International Nuclear Information System (INIS)

    Haines, H.R.; Potter, P.E.; Rand, M.H.

    1979-01-01

    The results of some experimental studies on the uranium-carbon- and plutonium-carbon-ternary systems with rhenium and technetium are first described. All the systems are characterized by ternary compounds; in particular two new ternary compounds are reported for the U-Tc-C system. Some studies on the Pu-Cr-C system have revealed two ternary compounds whilst there are no such compounds found in the Pu-Ni-C system. In the second part of the paper some calculations of phase diagrams of the binary systems Mo-Tc, Tc-Rh and Tc-Pd together with the ternary systems Mo-Tc-Rh, Mo-Tc-Pd and Mo-Ru-Pd are presented. A regular solution model has been used to describe the thermodynamic properties of the solutions. (orig.) [de

  6. Universal scattering response across the type-II Weyl semimetal phase diagram

    Science.gov (United States)

    Rüßmann, P.; Weber, A. P.; Glott, F.; Xu, N.; Fanciulli, M.; Muff, S.; Magrez, A.; Bugnon, P.; Berger, H.; Bode, M.; Dil, J. H.; Blügel, S.; Mavropoulos, P.; Sessi, P.

    2018-02-01

    The discovery of Weyl semimetals represents a significant advance in topological band theory. They paradigmatically enlarged the classification of topological materials to gapless systems while simultaneously providing experimental evidence for the long-sought Weyl fermions. Beyond fundamental relevance, their high mobility, strong magnetoresistance, and the possible existence of even more exotic effects, such as the chiral anomaly, make Weyl semimetals a promising platform to develop radically new technology. Fully exploiting their potential requires going beyond the mere identification of materials and calls for a detailed characterization of their functional response, which is severely complicated by the coexistence of surface- and bulk-derived topologically protected quasiparticles, i.e., Fermi arcs and Weyl points, respectively. Here, we focus on the type-II Weyl semimetal class in which we find a stoichiometry-dependent phase transition from a trivial to a nontrivial regime. By exploring the two extreme cases of the phase diagram, we demonstrate the existence of a universal response of both surface and bulk states to perturbations. We show that quasiparticle interference patterns originate from scattering events among surface arcs. Analysis reveals that topologically nontrivial contributions are strongly suppressed by spin texture. We also show that scattering at localized impurities can generate defect-induced quasiparticles sitting close to the Weyl point energy. These give rise to strong peaks in the local density of states, which lift the Weyl node, significantly altering the pristine low-energy spectrum. Remarkably, by comparing the WTe2 and the MoTe2 cases we found that scattering response and topological transition are not directly linked. Visualizing the existence of a universal microscopic response to scattering has important consequences for understanding the unusual transport properties of this class of materials. Overall, our observations provide

  7. Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Biere, Armin; Clarke, Edmund M.

    2000-01-01

    In this paper we show how to do symbolic model checking using Boolean Expression Diagrams (BEDs), a non-canonical representation for Boolean formulas, instead of Binary Decision Diagrams (BDDs), the traditionally used canonical representation. The method is based on standard fixed point algorithm...

  8. Phase diagrams of particles with dissimilar patches: X-junctions and Y-junctions

    International Nuclear Information System (INIS)

    Tavares, J M; Teixeira, P I C

    2012-01-01

    We use Wertheim’s first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f B patches of type B). A patch of type α = {A,B} can bond to a patch of type β = {A,B} in a volume v αβ , thereby decreasing the internal energy by ε αβ . We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (ε AB AA /2) but entropically favoured (v AB ≫ v αα ), and BB bonds, or X-junctions, are energetically favoured (ε BB > 0). We show that, for low values of ε BB /ε AA , the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X- and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of ε BB /ε AA . The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures. (paper)

  9. Defect phase diagram for doping of Ga2O3

    Science.gov (United States)

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  10. Method of non-interacting thermodynamic calculation of binary phase diagrams containing p disordered phases with variable composition and q phases with constant composition at (p, q) ≤ 10

    International Nuclear Information System (INIS)

    Udovskij, A.L.; Karpushkin, V.N.; Nikishina, E.A.

    1991-01-01

    Method of non-interacting thermodynamic calculation of state diagram of binary systems contacting p disordered phases with variable composition and q phases with constant composition for (p, q) ≤ 10 case is developed. Determination of all possible solutions of phase equilibrium equations is realized in the method. Certain application examples of computer-realized method of T-x thermodynamic calculation using PC for Cr-W, Ni-W, Ni-Al, Ni-Re binary systems are given

  11. Diagram Techniques in Group Theory

    Science.gov (United States)

    Stedman, Geoffrey E.

    2009-09-01

    Preface; 1. Elementary examples; 2. Angular momentum coupling diagram techniques; 3. Extension to compact simple phase groups; 4. Symmetric and unitary groups; 5. Lie groups and Lie algebras; 6. Polarisation dependence of multiphoton processes; 7. Quantum field theoretic diagram techniques for atomic systems; 8. Applications; Appendix; References; Indexes.

  12. Diagram Size vs. Layout Flaws: Understanding Quality Factors of UML Diagrams

    DEFF Research Database (Denmark)

    Störrle, Harald

    2016-01-01

    , though, is our third goal of extending our analysis aspects of diagram quality. Method: We improve our definition of diagram size and add a (provisional) definition of diagram quality as the number of topographic layout flaws. We apply these metrics on 60 diagrams of the five most commonly used types...... of UML diagram. We carefully analyze the structure of our diagram samples to ensure representativeness. We correlate diagram size and layout quality with modeler performance data obtained in previous experiments. The data set is the largest of its kind (n-156). Results: We replicate earlier findings......, and extend them to two new diagram types. We provide an improved definition of diagram size, and provide a definition of topographic layout quality, which is one more step towards a comprehensive definition of diagram quality as such. Both metrics are shown to be objectively applicable. We quantify...

  13. DIAGRAM SOLVE THE USE OF SIMULINK BLOCK DIAGRAM TO SOLVE MATHEMA THEMATICAL CONTROL EQU MATHEMATICAL MODELS AND CONTROL EQUATIONS

    Directory of Open Access Journals (Sweden)

    N.M. Ghasem

    2003-12-01

    Full Text Available In this paper, the simulink block diagram is used to solve a model consists of a set of ordinary differential and algebraic equations to control the temperature inside a simple stirred tank heater. The flexibility of simulink block diagram gives students a better understanding of the control systems. The simulink also allows solution of mathematical models and easy visualization of the system variables. A polyethylene fluidized bed reactor is considered as an industrial example and the effect of the Proportional, Integral and Derivative control policy is presented for comparison.

  14. Critical exponents predicted by grouping of Feynman diagrams in φ4 model

    International Nuclear Information System (INIS)

    Kaupuzs, J.

    2001-01-01

    Different perturbation theory treatments of the Ginzburg-Landau phase transition model are discussed. This includes a criticism of the perturbative renormalization group (RG) approach and a proposal of a novel method providing critical exponents consistent with the known exact solutions in two dimensions. The usual perturbation theory is reorganized by appropriate grouping of Feynman diagrams of φ 4 model with O(n) symmetry. As a result, equations for calculation of the two-point correlation function are obtained which allow to predict possible exact values of critical exponents in two and three dimensions by proving relevant scaling properties of the asymptotic solution at (and near) the criticality. The new values of critical exponents are discussed and compared to the results of numerical simulations and experiments. (orig.)

  15. Operations space diagram for ECRH and ECCD

    DEFF Research Database (Denmark)

    Bindslev, H.

    2004-01-01

    at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non......A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates......, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required...

  16. Stress-temperature phase diagram of a ferromagnetic Ni-Mn-Ga shape memory alloy

    International Nuclear Information System (INIS)

    Chernenko, V.A.; Pons, J.; Cesari, E.; Ishikawa, K.

    2005-01-01

    A sequence of thermally and stress-induced intermartensitic transformations has been found in a Ni 52.0 Mn 24.4 Ga 23.6 single crystal, which have been confirmed by transmission electron microscopy through in situ cooling experiments. The stress-strain-temperature behavior under compression along the P and P crystallographic directions has also been studied for this compound and a stress-temperature phase diagram has been established

  17. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids.

    Science.gov (United States)

    Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B

    2016-06-07

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  18. Automated Generation of Phase Diagrams for Binary Systems with Azeotropic Behavior

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht; Zabaloy, Marcelo S.

    2008-01-01

    In this work, we propose a computational strategy and methods for the automated calculation of complete loci of homogeneous azeotropy of binary mixtures and the related Pxy and Txy diagrams for models of the equation-of-state (EOS) type. The strategy consists of first finding the system...

  19. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm

    Science.gov (United States)

    Artrith, Nongnuch; Urban, Alexander; Ceder, Gerbrand

    2018-06-01

    The atomistic modeling of amorphous materials requires structure sizes and sampling statistics that are challenging to achieve with first-principles methods. Here, we propose a methodology to speed up the sampling of amorphous and disordered materials using a combination of a genetic algorithm and a specialized machine-learning potential based on artificial neural networks (ANNs). We show for the example of the amorphous LiSi alloy that around 1000 first-principles calculations are sufficient for the ANN-potential assisted sampling of low-energy atomic configurations in the entire amorphous LixSi phase space. The obtained phase diagram is validated by comparison with the results from an extensive sampling of LixSi configurations using molecular dynamics simulations and a general ANN potential trained to ˜45 000 first-principles calculations. This demonstrates the utility of the approach for the first-principles modeling of amorphous materials.

  20. Scheil-Gulliver Constituent Diagrams

    Science.gov (United States)

    Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.

    2017-06-01

    During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.

  1. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa

    2003-01-01

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  2. Generalized phase diagram for the rare-earth elements: Calculations and correlations of bulk properties

    International Nuclear Information System (INIS)

    Johansson, B.; Rosengren, A.

    1975-01-01

    A ''generalized'' phase diagram is constructed empirically for the lanthanides. This diagram makes it possible, not only in one picture, to assemble a lot of information but also to predict phase transitions not yet experimentally accessible. Further, it clearly illustrates the close relation between the members of the lanthanide group. To account for some of its features, the pseudopotential method is applied. The trend in crystal structure through the lanthanide series can thereby be qualitatively accounted for, as can the trend in crystal structure for an individual element, when compressed. A scaling procedure makes it possible to extend the treatment to elements neighboring the lanthanides in the Periodic Table. In total 25 elements are considered. An atomic parameter f (relatable to the pseudopotential) is introduced, by means of which different phase transitions, both for an individual rare-earth element and intra-rare-earth alloys, can be correlated to certain critical values of this parameter. A nonmagnetic rare-earth series (Sc, Lu, Y, La, and Ac) is introduced and the occurrence of superconductivity is discussed with special emphasis on the pressure dependence of the transition temperature. This temperature can be correlated to the above-mentioned parameter f, both for intra-rare-earth alloys and pure elements at different pressures. The correlation implies that actinium is a superconductor with a critical temperature which could be as high as (11--12) degree K

  3. Rich magnetoelectric phase diagrams of multiferroic single-crystal α -NaFeO2

    Science.gov (United States)

    Terada, Noriki; Ikedo, Yuta; Sato, Hirohiko; Khalyavin, Dmitry D.; Manuel, Pascal; Miyake, Atsushi; Matsuo, Akira; Tokunaga, Masashi; Kindo, Koichi

    2017-07-01

    The magnetic and dielectric properties of the multiferroic triangular lattice magnet compound α -NaFeO2 were studied by magnetization, specific heat, dielectric permittivity, and pyroelectric current measurements and by neutron diffraction experiments using single crystals grown by a hydrothermal synthesis method. This work produced magnetic field (in the monoclinic a b -plane, Ba b, and along the c*-axis, Bc) versus temperature magnetic phase diagrams, including five and six magnetically ordered phases in Ba b and along Bc, respectively. In zero magnetic field, two spin-density-wave orderings with different k vectors—(0 ,q ,1/2 ) in phase I and (qa,qb,qc ) in phase II—appeared at T =9.5 and 8.25 K, respectively. Below T =5 K, a commensurate order with k =(0.5 ,0 ,0.5 ) was stabilized as the ground state in phase III. Both Ba b≥3 T and Bc≥5 T were found to induce ferroelectric phases at the lowest temperature (2 K), with an electric polarization that was not confined to any highly symmetric directions in phases IVa b (3.3 ≤Ba b≤8.5 T), Va b (8.5 ≤Ba b≤13.6 T), IVc (5.0 ≤Bc≤8.5 T), and Vc (8.5 ≤Bc≤13.5 T). In phase VIc, within a narrow temperature region in Bc, the polarization was confined to the a b plane. For each of the ferroelectric phases, the k vector was (qa,qb,qc ), and noncollinear structures were identified, including a general spiral in IVa b an a b cycloid in IVc and Vc, and a proper screw in VIc, along with a triclinic 11' magnetic point group allowing polarization in the general direction. Comparing the polarization direction to the magnetic structures in the ferroelectric phases, we conclude that the extended inverse Dzyaloshinskii-Moriya mechanism expressed by the orthogonal components p1∝ri j×(Si×Sj) and p2∝Si×Sj can explain the polarization directions. Based on calculations incorporating exchange interactions up to fourth-nearest-neighbor (NN) couplings, we infer that competition among antiferromagnetic second NN

  4. Phase diagrams of high-order critical phenomene and high-temperature equilibria in the H2O-HgI2-PbI2 system

    International Nuclear Information System (INIS)

    Valyashko, V.M.; Urusova, M.A.

    1996-01-01

    The paper studies the principal schemes of complete state diagram of volatile component-two non-volatile components three-component system with tricritical point and sequence of phase transformations at variation of temperature, pressure and composition of mixture. H 2 O-HgI 2 -PbI 2 system, solid phase dissolving process, stratification of solutions and critical phenomena under 200-400 deg C are studied experimentally. General nature of the system phase diagram and parameters of three-phase equilibrium critical point (tricritical point), that is, gas-liquid 1 -liquid 2 are determined. 17 refs., 8 figs., 3 tabs

  5. Insulator-insulator and insulator-conductor transitions in the phase diagram of aluminium trichloride

    Directory of Open Access Journals (Sweden)

    Romina Ruberto

    2009-01-01

    Full Text Available We report a classical computer-simulation study of the phase diagram of AlCl3 in the pressure-temperature (p, T plane, showing (i that melting from a layered crystal structure occurs into a molecular liquid at low (p, T and into a dissociated ionic liquid at high (p, T, and (ii that a broad transition from a molecular insulator to an ionic conductor takes place in the liquid state.

  6. Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.

  7. Lattice investigations of the QCD phase diagram

    International Nuclear Information System (INIS)

    Guenther, Jana

    2016-01-01

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  8. Lattice investigations of the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Jana

    2016-12-15

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  9. Magnetic phase diagram of MnSi near critical temperature studied by neutron small angle scattering

    International Nuclear Information System (INIS)

    Ishikawa, Yoshikazu; Arai, Masatoshi

    1984-01-01

    The magnetic phase diagram of MnSi near the critical temperature T sub(N)=29.5K has been studied by neutron small angle scattering at KENS. It has been found that the anomalous new phase predicted by various methods to exist around at 28 K and 2 kOe is the paramagnetic phase where the magnetic correlations exhibit the same characteristics as those found at 29.5 K and zero magnetic field. This phenomenon, together with the sharp decrease of the magnetic phase boundary at T sub(N) and the substantial increase of the satellite Q vector at this temperature, has been found not to be interpreted by the current theories. (author)

  10. Strain effect on the phase diagram of Ba-122

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kazumasa [IFW Dresden (Germany); Nagoya University (Japan); Grinenko, Vadim; Kurth, Fritz; Efremov, Dmitriy; Drechsler, Stefan-Ludwig; Engelmann, Jan; Aswartham, Saicharan; Wurmehl, Sabine; Moench, Ingolf; Huehne, Ruben [IFW Dresden (Germany); Langer, Marco; Erbe, Manuela; Haenisch, Jens; Holzapfel, Bernhard [IFW Dresden (Germany); Karlsruhe Institute of Technology (KIT) (Germany); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, Nagasaka (Japan); Ahrens, Eike [TU Dresden (Germany); Ikuta, Hiroshi [Nagoya University (Japan)

    2015-07-01

    Thin films offer a possibility for tuning superconducting (SC) properties without external pressure or chemical doping. In-plane strain controls the Neel temperature of the antiferromagnetic (AF) transition and the SC transition temperature or even induce superconductivity in the parent compound. We studied the electronic and magnetic properties of Co, Ru, and P doped Ba-122 thin films in different strain states. We have found that the strain shifts nearly rigidly the whole phase diagram including the AF region and the SC dome in the direction of higher or lower substitution levels depending on the direction of strain (i.e. compressive or tensile). In particular, we found that the strain affects the band structure similarly as Co doping despite that the crystal structure changes differently. As a result tensile or compressive strain acts as additional el or h doping, respectively.

  11. Operations space diagram for ECRH and ECCD

    International Nuclear Information System (INIS)

    Bindslev, Henrik

    2004-01-01

    A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non-experts. JET and ITER like plasmas are used, but the method is generic. (author)

  12. Phase diagram of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system with application of mechanical deformation

    Science.gov (United States)

    Yavuz, Aykut Evren; Masalci, Özgür; Kazanci, Nadide

    2014-11-01

    Morphological properties of tetradecyltrimethylammonium bromide (TTAB) + water + octanol system in different concentrations have been studied. In the process, isotropic phase (L1) and nematic calamitic (NC), nematic discotic (ND), hexagonal E and lamellar D anizotropic mesophases have been determined by polarizing microscopy method and partial ternary phase diagram of the system set up. Textural properties of the anisotropic mesophases of the system have been discussed and their birefringence values measured. Mechanical deformation has been applied to the mesophases. The textural properties and the birefringence values have been observed to be changed by the deformation, after and before which changes have been compared.

  13. Antiferroquadrupolar ordering and anisotropic magnetic phase diagram of dysprosium palladium bronze, DyPd3S4

    International Nuclear Information System (INIS)

    Matsuoka, Eiichi; Tayama, Takashi; Sakakibara, Toshiro; Hiroi, Zenji; Takeda, Naoya; Ishikawa, Masayasu; Shirakawa, Naoki

    2007-01-01

    From the measurements of magnetization and specific heat, we constructed B-T phase diagrams of single-crystalline DyPd 3 S 4 which is known to exhibit antiferroquadrupolar (AFQ) and antiferromagnetic (AFM) ordering at low temperatures. The phase diagrams are found to be highly anisotropic and re-entrant, which are typical of rare-earth compounds exhibiting multipolar ordering. The crystalline electric field (CEF) scheme of Dy 3+ in DyPd 3S4 was deduced from the specific heat and magnetization measurements of the Y-diluted compounds Dy 1-x Y x Pd 3 S 4 (0.1≤x≤0.9) and discussed in detail. The CEF ground state was determined to be the orbitally-degenerated quartet Γ 67 (1) , and the overall splitting width was estimated to be about 104 K. No correlation was found between the anisotropy of T Q and that of the Zeeman splitting width of the ground quartet Γ 67 (1) . (author)

  14. Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model

    Science.gov (United States)

    Lang, Johannes; Frank, Bernhard; Halimeh, Jad C.

    2018-05-01

    We construct the finite-temperature dynamical phase diagram of the fully connected transverse-field Ising model from the vantage point of two disparate concepts of dynamical criticality. An analytical derivation of the classical dynamics and exact diagonalization simulations are used to study the dynamics after a quantum quench in the system prepared in a thermal equilibrium state. The different dynamical phases characterized by the type of nonanalyticities that emerge in an appropriately defined Loschmidt-echo return rate directly correspond to the dynamical phases determined by the spontaneous breaking of Z2 symmetry in the long-time steady state. The dynamical phase diagram is qualitatively different depending on whether the initial thermal state is ferromagnetic or paramagnetic. Whereas the former leads to a dynamical phase diagram that can be directly related to its equilibrium counterpart, the latter gives rise to a divergent dynamical critical temperature at vanishing final transverse-field strength.

  15. Defect phase diagram for doping of Ga2O3

    Directory of Open Access Journals (Sweden)

    Stephan Lany

    2018-04-01

    Full Text Available For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn, a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T, O partial pressures (pO2, and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2 conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  16. Magnetic phase diagram simulation of La{sub 1-x}Ca{sub x}MnO{sub 3} system by using Monte Carlo, Metropolis algorithm and Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.c [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Salazar-Enriquez, C.D.; Londono-Navarro, J.; Jurado, J.F. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulacion, Instituto de Fisica. Universidad de Antioquia, A.A. 1226, Medellin (Colombia)

    2011-06-15

    This work presents a critical temperature study of La{sub 1-x}Ca{sub x}MnO{sub 3} manganites in bulk by means of Monte Carlo method thermal activated magnetic properties. The analysis was carried out for stoichiometries in the range of 0{<=}x{<=}1. The model is based on a three-dimensional classical Heisenberg-Hamiltonian involving the presence of Mn{sup 3+eg}, Mn{sup 3+eg'} and Mn{sup 4+} ions, and their nearest neighbor interaction. For this modeling, simple cubic lattice samples of size L{sup 3}, with L=6, 15 and 30 were used. The values of exchange parameters were determined by using LaMnO{sub 3} (x=0), La{sub 0.5}Ca{sub 0.5}MnO{sub 3} and CaMnO{sub 3} (x=1) phases. Relationships between exchange parameters and anisotropy constants for different hole densities were found. Results of transition temperatures for each phase showed good agreement with experimental reports, especially for L=30 and L{yields}{infinity}. - Research highlights: Stoichiometry influences the exchange interaction between magnetic ions. Charge and orbital ordering depend on the stoichiometry. LCMO magnetic phase diagram has a great variety of magnetic states.

  17. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-08-15

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors.

  18. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-01-01

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors

  19. Vortex phase diagram and vortex dynamics at low temperature in a thick a-Mg{sub x}B{sub 1-x} film

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, S. [Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan)], E-mail: sokuma@o.cc.titech.ac.jp; Kohara, M. [Research Center for Low Temperature Physics, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2007-09-01

    We report on the equilibrium vortex phase diagram and vortex dynamics at low temperature T in a thick amorphous (a-)Mg{sub x}B{sub 1-x} film based on the measurements of the dc resistivity {rho} and time (t)-dependent component of the flux-flow voltage, {delta}V(t), respectively. Both {rho}(T) in perpendicular fields and the vortex phase diagram are qualitatively similar to those for the a-Mo{sub x}Si{sub 1-x} films, in which evidence for the quantum-vortex-liquid (QVL) phase has been obtained. In either material system we observe anomalous vortex flow with the asymmetric distribution of {delta}V(t) in the QVL phase, suggesting that the anomalous flow is a universal phenomenon commonly observed for disordered amorphous films, independent of material.

  20. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films

    Directory of Open Access Journals (Sweden)

    Huaping Wu

    2016-01-01

    Full Text Available The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110 orientation leads to a lower symmetry and more complicated phase transition than the (111 orientation in BaTiO3 films. The increase of compressive strain will dramatically enhance the Curie temperature TC of (110-oriented BaTiO3 films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110- and (111-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  1. Optimizing UML Class Diagrams

    Directory of Open Access Journals (Sweden)

    Sergievskiy Maxim

    2018-01-01

    Full Text Available Most of object-oriented development technologies rely on the use of the universal modeling language UML; class diagrams play a very important role in the design process play, used to build a software system model. Modern CASE tools, which are the basic tools for object-oriented development, can’t be used to optimize UML diagrams. In this manuscript we will explain how, based on the use of design patterns and anti-patterns, class diagrams could be verified and optimized. Certain transformations can be carried out automatically; in other cases, potential inefficiencies will be indicated and recommendations given. This study also discusses additional CASE tools for validating and optimizing of UML class diagrams. For this purpose, a plugin has been developed that analyzes an XMI file containing a description of class diagrams.

  2. On the magnetism of the C14 Nb0.975Fe2.025 Laves phase compound: Determination of the H-T phase diagram

    Science.gov (United States)

    Bałanda, Maria; Dubiel, Stanisław M.

    2018-05-01

    A C14 Nb0.975Fe2.025 Laves phase compound was investigated aimed at determining the H-T magnetic phase diagram. Magnetization, M, and AC magnetic susceptibility measurement were performed. Concerning the former field-cooled and zero-field-cooled M-curves were recorded in the temperature range of 2-200 K and in applied magnetic field, H, up to 1000 Oe, isothermal M(H) curves at 2 K, 5 K, 50 K, 80 K and 110 K as well as hysteresis loops at several temperatures over the field range of ±10 kOe were measured. Regarding the AC susceptibility, χ, both real and imaginary components were registered as a function of increasing temperature in the interval of 2 K-150 K at the frequencies of the oscillating field, f, from 3 Hz up to 999 Hz. An influence of the external DC magnetic field on the temperature dependence of χ was investigated, too. The measurements clearly demonstrated that the magnetism of the studied sample is weak, itinerant and has a reentrant character. Based on the obtained results a magnetic phase diagram has been constructed in the H-T coordinates.

  3. Phase Diagram of Binary Mixture E7:TM74A Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Serafin Delica

    1999-12-01

    Full Text Available Although there are many liquid crystalline materials, difficulty is often experienced in obtaining LCs that are stable and has a wide mesophase range. In this study, mixtures of two different LCs were used to formulate a technologically viable LC operating at room temperature. Nematic E7(BDH and cholesteric TM74A were mixed at different weight ratios at 10% increments. Transition temperatures were determined via Differential Scanning Calorimetry and phase identification was done using Optical Polarizing Microscopy. The phase diagram showed the existence of three different phases for the temperature range of 10-80°C. Mixtures with 0-20% E7 exhibit only the cholesteric-nematic mesophase, which could be due to the mixture's being largely TM74A and its behavior in the temperature range considered is similar to the behavior of pure TM74A. With an increase in the concentration of E7, the smectic phase of the pure cholesteric was enhanced, as seen from the increased transition to the cholesteric-nematic phase and a broader smectic range. The cholesteric-nematic to isotropic transition increased as the nematic concentration increases, following the behavior expected from LC mixtures. For mixtures that are largely nematic (more than 50% E7, the smectic phase has vanished and the cholesteric-nematic phase dominated from 30-60°C.

  4. Application of dual-anneal diffusion multiples to the effective study of phase diagrams and phase transformations in the Fe–Cr–Ni system

    International Nuclear Information System (INIS)

    Cao, Siwei; Zhao, Ji-Cheng

    2015-01-01

    A dual-anneal diffusion multiple (DADM) approach is developed for effective determination of intermediate-temperature phase diagrams that are critical to the establishment of reliable thermodynamic databases. A large amount of phase equilibrium data was obtained from DADMs to construct the Fe–Cr–Ni isothermal sections at 1200, 900, 800 and 700 °C. The DADM approach is also a systematic and effective way to study phase precipitation from wide ranges of compositions, thus generating rich atlases of microstructures induced by various transformations. The results from this study indicate that the body-centered cubic to sigma phase transformation in the Fe–Cr–Ni system took place initially through a massive transformation mechanism

  5. Phase diagrams of the Fe-rich part of the Fe-W system under high pressure

    International Nuclear Information System (INIS)

    Yamane, T.; Kang, Y.S.; Minamino, Y.; Araki, H.; Hiraki, A.; Miyamoto, Y.

    1995-01-01

    Phase diagrams of the Fe-rich part of the Fe-W system under high pressure (1.2 and 2.2 GPa) were established by a reaction-diffusion method and calculated with thermodynamic and volumetric data. When high pressure is applied, the γ region extends and the α region contracts. As a result of increasing pressure, eutectoid and peritectoid reactions appear. (orig.)

  6. Asymptotic laws for random knot diagrams

    Science.gov (United States)

    Chapman, Harrison

    2017-06-01

    We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.

  7. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  8. An Accurate Estimate of the Free Energy and Phase Diagram of All-DNA Bulk Fluids

    Directory of Open Access Journals (Sweden)

    Emanuele Locatelli

    2018-04-01

    Full Text Available We present a numerical study in which large-scale bulk simulations of self-assembled DNA constructs have been carried out with a realistic coarse-grained model. The investigation aims at obtaining a precise, albeit numerically demanding, estimate of the free energy for such systems. We then, in turn, use these accurate results to validate a recently proposed theoretical approach that builds on a liquid-state theory, the Wertheim theory, to compute the phase diagram of all-DNA fluids. This hybrid theoretical/numerical approach, based on the lowest-order virial expansion and on a nearest-neighbor DNA model, can provide, in an undemanding way, a parameter-free thermodynamic description of DNA associating fluids that is in semi-quantitative agreement with experiments. We show that the predictions of the scheme are as accurate as those obtained with more sophisticated methods. We also demonstrate the flexibility of the approach by incorporating non-trivial additional contributions that go beyond the nearest-neighbor model to compute the DNA hybridization free energy.

  9. The phase diagram of the Shastry-Sutherland antiferromagnet

    International Nuclear Information System (INIS)

    Zheng, W.; Oitmaa, J.; Hamer, C.J.

    2002-01-01

    Full text: The material SrCu 2 (BO 3 ) 2 , synthesised only a few years ago, appears to be an excellent realization of the Shastry-Sutherland model. The main physics of this model is a competition between Neel order and dimerization. Early studies suggested a single quantum phase transition separating these two phases, but recent studies suggest the presence of an intermediate phase. Various candidates for this intermediate phase have been proposed, including long-range helical order, and a plaquette-singlet phase. We use series expansion methods to argue against each of these, although our new extended results do support the existence of an intermediate phase of some kind. We propose a columnar dimer phase, as a possible candidate, and explore some of its properties

  10. A new model of Ishikawa diagram for quality assessment

    Science.gov (United States)

    Liliana, Luca

    2016-11-01

    The paper presents the results of a study concerning the use of the Ishikawa diagram in analyzing the causes that determine errors in the evaluation of theparts precision in the machine construction field. The studied problem was"errors in the evaluation of partsprecision” and this constitutes the head of the Ishikawa diagram skeleton.All the possible, main and secondary causes that could generate the studied problem were identified. The most known Ishikawa models are 4M, 5M, 6M, the initials being in order: materials, methods, man, machines, mother nature, measurement. The paper shows the potential causes of the studied problem, which were firstly grouped in three categories, as follows: causes that lead to errors in assessing the dimensional accuracy, causes that determine errors in the evaluation of shape and position abnormalities and causes for errors in roughness evaluation. We took into account the main components of parts precision in the machine construction field. For each of the three categories of causes there were distributed potential secondary causes on groups of M (man, methods, machines, materials, environment/ medio ambiente-sp.). We opted for a new model of Ishikawa diagram, resulting from the composition of three fish skeletons corresponding to the main categories of parts accuracy.

  11. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  12. Transformation of UML Behavioral Diagrams to Support Software Model Checking

    Directory of Open Access Journals (Sweden)

    Luciana Brasil Rebelo dos Santos

    2014-04-01

    Full Text Available Unified Modeling Language (UML is currently accepted as the standard for modeling (object-oriented software, and its use is increasing in the aerospace industry. Verification and Validation of complex software developed according to UML is not trivial due to complexity of the software itself, and the several different UML models/diagrams that can be used to model behavior and structure of the software. This paper presents an approach to transform up to three different UML behavioral diagrams (sequence, behavioral state machines, and activity into a single Transition System to support Model Checking of software developed in accordance with UML. In our approach, properties are formalized based on use case descriptions. The transformation is done for the NuSMV model checker, but we see the possibility in using other model checkers, such as SPIN. The main contribution of our work is the transformation of a non-formal language (UML to a formal language (language of the NuSMV model checker towards a greater adoption in practice of formal methods in software development.

  13. Monte Carlo simulations of phase transitions and lattice dynamics in an atom-phonon model for spin transition compounds

    International Nuclear Information System (INIS)

    Apetrei, Alin Marian; Enachescu, Cristian; Tanasa, Radu; Stoleriu, Laurentiu; Stancu, Alexandru

    2010-01-01

    We apply here the Monte Carlo Metropolis method to a known atom-phonon coupling model for 1D spin transition compounds (STC). These inorganic molecular systems can switch under thermal or optical excitation, between two states in thermodynamical competition, i.e. high spin (HS) and low spin (LS). In the model, the ST units (molecules) are linked by springs, whose elastic constants depend on the spin states of the neighboring atoms, and can only have three possible values. Several previous analytical papers considered a unique average value for the elastic constants (mean-field approximation) and obtained phase diagrams and thermal hysteresis loops. Recently, Monte Carlo simulation papers, taking into account all three values of the elastic constants, obtained thermal hysteresis loops, but no phase diagrams. Employing Monte Carlo simulation, in this work we obtain the phase diagram at T=0 K, which is fully consistent with earlier analytical work; however it is more complex. The main difference is the existence of two supplementary critical curves that mark a hysteresis zone in the phase diagram. This explains the pressure hysteresis curves at low temperature observed experimentally and predicts a 'chemical' hysteresis in STC at very low temperatures. The formation and the dynamics of the domains are also discussed.

  14. High Pressure-Temperature Phase Diagram of 1,1-diamino-2,2-dinitroethylene

    Science.gov (United States)

    Bishop, Matthew; Chellappa, Raja; Liu, Zhenxian; Preston, Daniel; Sandstrom, Mary; Dattelbaum, Dana; Vohra, Yogesh; Velisavljevic, Nenad

    2013-06-01

    1,1-diamino-2,2-dinitroethelyne (FOX-7) is a less sensitive energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ) . In this study, we have investigated the high P-T stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra confirmed the known α --> β (110 °C) and β --> γ (160 °C) phase transitions; as well as, indicated an additional phase transition, γ --> δ (210°C), with the δ phase being stable up to 250 °C prior to melt/decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa revealed that the α --> β transition occurs at 180 °C, while β --> β + δ phase transition shifted to 300 °C with suppression of γ phase. Decomposition was observed above 325 °C. Based on multiple high P-T measurements, we have established the first high P-T phase diagram of FOX-7. This work was, in part, supported by the US DOE under contract No. DE-AC52-06NA25396 and Science Campaign 2 Program. MB acknowledges additional support from the NSF BD program. Use of NSLS (DE-AC02-98CH10886) beamline U2A (COMPRES, No.EAR01-35554, CDAC).

  15. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Ma, Xuefu; Zhang, Zheng; Zeng, Jun; Chai, Guozhong [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Wang, Jie [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  16. Simple material physics experiment for studying phase diagrams and solid state transformations in alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S; Kamal, R [Punjabi Univ., Patiala (India). Dept. of Physics

    1977-09-01

    Study of phase diagram and accompanying solid state transformations is essential to determine the best possible composition, manufacturing techniques and physical properties of an alloy. A simple technique having wide applications in metallurgical industry is to study the temperature--time curve of the alloy undergoing cooling with an uniform rate. An experiment which uses this technique is described. It is widely applicable in the fields of materials science, applied solid state physics, physical metallurgy and physical chemistry.

  17. Phase transitions in the sdg interacting boson model

    Science.gov (United States)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-05-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  18. Phase transitions in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-01-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole (β 2 ), axial hexadecapole (β 4 ) and triaxial (γ 2 ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU ± (3) and the γ 2 -soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  19. Bose-Einstein condensation and chiral phase transition in linear sigma model

    International Nuclear Information System (INIS)

    Shu Song; Li Jiarong

    2005-01-01

    With the linear sigma model, we have studied Bose-Einstein condensation and the chiral phase transition in the chiral limit for an interacting pion system. A μ-T phase diagram including these two phenomena is presented. It is found that the phase plane has been divided into three areas: the Bose-Einstein condensation area, the chiral symmetry broken phase area and the chiral symmetry restored phase area. Bose-Einstein condensation can occur either from the chiral symmetry broken phase or from the restored phase. We show that the onset of the chiral phase transition is restricted in the area where there is no Bose-Einstein condensation

  20. Spin glass and ferromagnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys: Multicritical points in the magnetic phase diagram

    International Nuclear Information System (INIS)

    Synoradzki, K.; Toliński, T.

    2016-01-01

    We report on the CeNi_4Mn (ferromagnet FM) - CeCu_4Mn (spin-glass SG) transformation leading to a complex magnetic phase diagram (MPD). It is verified that all the Ce(Cu_1_-_xNi_x)_4Mn alloys are isostructural and the transformation is governed only by the Cu-Ni substitution. MPD is built based on the magnetic dc/ac susceptibility measurements and reveals SG formation as well as the region of the coexistence of the FM and SG state in the middle range of the Ni concentration. The complex MPD is explained by clusters formation and a competition of interactions between various crystallographic sites of the hexagonal CaCu_5-type structure, mainly the 3g-3g and 3g-2c interactions. The predominance of the SG state is confirmed by the analysis of the frequency dependence of the ac magnetic susceptibility components and the relaxation of the remanent magnetization. Additionally, the presence of two multicritical points is observed. - Highlights: • We fully characterized the magnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys. • We show the presence of complex magnetic behaviour due to atomic-site disorder. • Magnetic phase diagram revels mixed-phase ground state. • Two multicritical points on magnetic phase diagram occurs.