Efficiency of a statistical transport model for turbulent particle dispersion
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains.
Dissipative particle dynamics model for colloid transport in porous media
Energy Technology Data Exchange (ETDEWEB)
Pan, W.; Tartakovsky, A. M.
2013-08-01
We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation effect. In the present work, we use the new formulation to study the contact efficiency in colloid filtration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian diffusion. Our results of contact efficiency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.
Particle Tracking Model and Abstraction of Transport Processes
Energy Technology Data Exchange (ETDEWEB)
B. Robinson
2000-04-07
The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone.
Modeling transport and aggregation of volcanic ash particles
Costa, Antonio; Folch, Arnau; Macedonio, Giovanni; Durant, Adam
2010-05-01
A complete description of ash aggregation processes in volcanic clouds is an very arduous task and the full coupling of ash transport and ash aggregation models is still computationally prohibitive. A large fraction of fine ash injected in the atmosphere during explosive eruptions aggregate because of complex interactions of surface liquid layers, electrostatic forces, and differences in settling velocities. The formation of aggregates of size and density different from those of the primary particles dramatically changes the sedimentation dynamics and results in lower atmospheric residence times of ash particles and in the formation of secondary maxima of tephra deposit. Volcanic ash transport models should include a full aggregation model accounting for all particle class interaction. However this approach would require prohibitive computational times. Here we present a simplified model for wet aggregation that accounts for both atmospheric and volcanic water transport. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average efficiencies factors, and collision frequency functions accounting for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, such as the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. Moreover, understanding aggregation processes in volcanic clouds will contribute to mitigate the risks related with volcanic ash transport and sedimentation.
Modeling reactive transport with particle tracking and kernel estimators
Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-04-01
Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.
Particle Tracking Model and Abstraction of Transport Processes
Energy Technology Data Exchange (ETDEWEB)
B. Robinson
2004-10-21
The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.
Applying dispersive changes to Lagrangian particles in groundwater transport models
Konikow, Leonard F.
2010-01-01
Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.
Simulation of Cell Adhesion using a Particle Transport Model
Chesnutt, Jennifer
2005-11-01
An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.
Particle model for nonlocal heat transport in fusion plasmas.
Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R
2013-02-01
We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.
Kopp, Andreas; Wiengarten, Tobias; Fichtner, Horst; Effenberger, Frederic; Kühl, Patrick; Heber, Bernd; Raath, Jan-Louis; Potgieter, Marius S.
2017-03-01
The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.
Smoothed Particle Hydrodynamics Model for Reactive Transport and Mineral Precipitation
Energy Technology Data Exchange (ETDEWEB)
Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Redden, George; Meakin, Paul; Fang, Yilin
2006-06-30
A new Lagrangian particle model based on smoothed particle hydrodynamics was used to simulate pore scale precipitation reactions. The side-by-side injection of reacting solutions into two halves of a two-dimensional granular porous medium was simulated. Precipitation on grain surfaces occurred along a narrow zone in the middle of the domain, where the reacting solutes mixed to generate a supersaturated reaction product. The numerical simulations qualitatively reproduced the behavior observed in related laboratory experiments.
Energy Technology Data Exchange (ETDEWEB)
Jayaraju, S.T., E-mail: jayaraju@nrg.eu [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Sathiah, P.; Roelofs, F. [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Dehbi, A. [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland)
2015-08-15
Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions.
Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron
2014-05-01
Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-01-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux a...
Tsai, Christina; Hung, Serena
2016-04-01
To more precisely describe particle movement in surface water, both the random particle arrival process at the receiving water and the stochastic particle movement in the receiving water should be carefully considered in sediment transport modeling. In this study, a stochastic framework is developed for a probabilistic description of discrete particle transport through a probability density function of sediment concentrations and transport rates. In order to more realistically describe the particle arrivals into receiving waters at random times and with a probabilistic particle number in each arrival, the continuous-time batch Markovian arrival process is introduced. The particle tracking model (PTM) composed of physically based stochastic differential equations (SDEs) for particle trajectory is then used to depict the random movement of particles in the receiving water. Particle deposition and entrainment processes are considered in the model. It is expected that the particle concentrations in the receiving water and particle transport rates can be mathematically expressed as a stochastic process. Compared with deterministic modeling, the proposed approach has the advantage of capturing any randomly selected scenarios (or realizations) of flow and sediment properties. Availability of a more sophisticated stochastic process for random particle arrival processes can assist in quantifying the probabilistic characteristics of sediment transport rates and concentrations. In addition, for a given turbidity threshold, the risk of exceeding a pre-established water quality standard can be quantified as needed.
Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.
2016-08-01
We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional magnetohydrodynamic (MHD) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity, and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti model but the Porth et al. model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average Péclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of ˜ 2 × 1027(Ls/0.42 Ly) cm2 s- 1 (Ls is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of γp ˜ 1010.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
Light Particle Tracking Model for Simulating Bed Sediment Transport Load in River Areas
Directory of Open Access Journals (Sweden)
Israel E. Herrera-Díaz
2017-01-01
Full Text Available In this work a fast computational particles tracer model is developed based on Particle-In-Cell method to estimate the sediment transport in the access zone of a river port area. To apply the particles tracer method, first it is necessary to calculate the hydrodynamic fields of the study zone to determine the velocity fields in the three directions. The particle transport is governed mainly by the velocity fields and the turbulent dispersion. The mechanisms of dispersion and resuspension of particles are based in stochastic models, which describes the movement through a probability function. The developed code was validated using two well known cases with a discrete transformation obtaining a max relative error around 4.8% in both cases. The simulations were carried out with 350,000 particles allowing us to determine under certain circumstances different hydrodynamic scenarios where the zones are susceptible to present erosion and siltation at the entrance of the port.
Gonzalez, Arnulfo
2016-01-01
The problem of monoenergetic neutral particle transport in a duct, where particles travel inside the duct walls, is treated using an approximate one-dimensional model. The one-dimensional model uses three-basis functions, as part of a previously derived weighted-residual procedure, to account for the geometry of particle transport in a duct system (where particle migration into the walls is not considered). Our model introduces two stochastic parameters to account for particle-wall interactions: an albedo approximation yielding the fraction of particles that return to the duct after striking the walls, and a mean-distance travelled in the walls transverse to the duct by particles that re-enter the duct. Our model produces a set of three transport equations with a non-local scattering kernel. We solve these equations using discrete ordinates with source iteration. Numerical results for the reflection and transmission probabilities of neutron transport in ducts of circular cross section are compared to Monte Ca...
Particle transport in fluidized beds : experiments and stochastic models
Dechsiri, Chutima
2004-01-01
Fluidization is a process in which solids are caused to behave like fluid by blowing gas or liquid upwards through the solid-filled reactor. The behavior of a bed of particles within the reactor during the process is very complex and difficult to predict. To make sure that a fluidized bed reactor is
Modeling nitrogen transport and transformation in aquifers using a particle-tracking approach
Cui, Zhengtao; Welty, Claire; Maxwell, Reed M.
2014-09-01
We have integrated multispecies biodegradation and geochemical reactions into an existing particle-tracking code to simulate reactive transport in three-dimensional variably saturated media, with a focus on nitrification and denitrification processes. This new numerical model includes reactive air-phase transport so that gases such as N2 and CO2 can be tracked. Although nitrogen biodegradation is the primary problem addressed here, the method presented is also applicable to other reactive multispecies transport problems. We verified the model by comparison with (1) analytical solutions for saturated one- and two-dimensional cases; (2) a finite element model for a one-dimensional unsaturated case; and (3) laboratory observations for a one-dimensional saturated case. Good agreement between the new code and the verification problems is demonstrated. The new model can simulate nitrogen transport and transformation in a heterogeneous permeability field where sharp concentration gradients are present. An example application to nitrogen species biodegradation and transport of a plume emanating from a leaking sewer in a heterogeneous, variably saturated aquifer is presented to illustrate this capability. This example is a novel application of coupling unsaturated/saturated zone transport with nitrogen species biodegradation. The code has the computational advantages of particle-tracking algorithms, including local and global mass conservation and minimal numerical dispersion. We also present new methods for improving particle code efficiency by implementing the concept of tracking surplus/deficit particles and particle recycling in order to control the growth of particle numbers. The new model retains the advantages of the particle tracking approach such as allowing relatively low spatial and temporal resolutions to be used, while incorporating the robustness of grid-based Monod kinetics to simulate biogeochemical reactions.
New bipartition model of neutral particle transport in the HL-2A divertor region
Institute of Scientific and Technical Information of China (English)
DENG Bai-quan; YAN Jian-cheng; PENG Li-lin
2005-01-01
A new bipartition neutral transport model has been developed for simulation of the hydrogenic neutral particle transport in the vicinity of HL-2A divertor target plate. The numerical calculation results on the basis of this model are fairly consistent with the results obtained with the "multi-generation method". One possible application of this model is to provide a source term originating from neutral transport calculation for any other edge plasma transport code, for instance, B-2 code, which has been used to simulate edge plasma transport of the HL-2A divertor configuration. Especially it can be utilized to quickly classify the plasma in divertor region as high or low recycling regime.
Non-Markovian Model for Transport and Reactions of Particles in Spiny Dendrites
Fedotov, Sergei; Méndez, Vicenç
2008-11-01
Motivated by the experiments [Santamaria , Neuron 52, 635 (2006)NERNET0896-627310.1016/j.neuron.2006.10.025] that indicated the possibility of subdiffusive transport of molecules along dendrites of cerebellar Purkinje cells, we develop a mesoscopic model for transport and chemical reactions of particles in spiny dendrites. The communication between spines and a parent dendrite is described by a non-Markovian random process and, as a result, the overall movement of particles can be subdiffusive. A system of integrodifferential equations is derived for the particles densities in dendrites and spines. This system involves the spine-dendrite interaction term which describes the memory effects and nonlocality in space. We consider the impact of power-law waiting time distributions on the transport of biochemical signals and mechanism of the accumulation of plasticity-inducing signals inside spines.
Naqshband, Suleyman; McElroy, Brandon; Mahon, Robert C.
2017-05-01
The mechanics of sediment transport are of fundamental importance for fluvio-deltaic morphodynamics. The present study focuses on quantifying particle motions and trajectories across a wide range of flow conditions. In particular, a continuous model is presented that predicts particle travel distances for saltation and suspension based on Rouse number and relative grain roughness. By utilizing a series of eight video cameras in a plexiglass flume direct measurements of the distributions of particle travel distances (excursion lengths) were obtained. To this end, experiments were carried out in dark under black lights with fluorescent painted plastic and quartz sand particles. For relatively high Rouse numbers indicating bed load dominant transport regime (P≥2.5), particle motion is governed by the effect of gravitational forces (settling velocities) and measured excursion lengths closely follow a Gaussian distribution. For P=2.5, particle motion is equally subjected to both gravitational and turbulent forces. Consequently, measured excursion lengths exhibit a bimodal distribution with two distinct peaks. As turbulent fluctuations increase and dominate particle motion over gravity (P(P=1.8-8.9). Furthermore, measured excursion lengths are observed to fit within the predicted range of excursion lengths with no significant difference between measured excursion lengths of plastic and quartz sand particles.
Porth, O; Lyutikov, M; Engelbrecht, N E
2016-01-01
We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional MHD (see Porth et al. (2014) for details) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti (1984) model but the Porth et al. (2014) model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of...
Energy Technology Data Exchange (ETDEWEB)
Goodarz Ahmadi
2002-07-01
In this project, a computational modeling approach for analyzing flow and ash transport and deposition in filter vessels was developed. An Eulerian-Lagrangian formulation for studying hot-gas filtration process was established. The approach uses an Eulerian analysis of gas flows in the filter vessel, and makes use of the Lagrangian trajectory analysis for the particle transport and deposition. Particular attention was given to the Siemens-Westinghouse filter vessel at Power System Development Facility in Wilsonville in Alabama. Details of hot-gas flow in this tangential flow filter vessel are evaluated. The simulation results show that the rapidly rotation flow in the spacing between the shroud and the vessel refractory acts as cyclone that leads to the removal of a large fraction of the larger particles from the gas stream. Several alternate designs for the filter vessel are considered. These include a vessel with a short shroud, a filter vessel with no shroud and a vessel with a deflector plate. The hot-gas flow and particle transport and deposition in various vessels are evaluated. The deposition patterns in various vessels are compared. It is shown that certain filter vessel designs allow for the large particles to remain suspended in the gas stream and to deposit on the filters. The presence of the larger particles in the filter cake leads to lower mechanical strength thus allowing for the back-pulse process to more easily remove the filter cake. A laboratory-scale filter vessel for testing the cold flow condition was designed and fabricated. A laser-based flow visualization technique is used and the gas flow condition in the laboratory-scale vessel was experimental studied. A computer model for the experimental vessel was also developed and the gas flow and particle transport patterns are evaluated.
Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking
Energy Technology Data Exchange (ETDEWEB)
Dong Ding; David Benson; Amir Paster; Diogo Bolster
2012-01-01
We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle
Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Venugopalan, Vasan; Spanier, Jerome
2016-05-01
We present a polarization-sensitive, transport-rigorous perturbation Monte Carlo (pMC) method to model the impact of optical property changes on reflectance measurements within a discrete particle scattering model. The model consists of three log-normally distributed populations of Mie scatterers that approximate biologically relevant cervical tissue properties. Our method provides reflectance estimates for perturbations across wavelength and/or scattering model parameters. We test our pMC model performance by perturbing across number densities and mean particle radii, and compare pMC reflectance estimates with those obtained from conventional Monte Carlo simulations. These tests allow us to explore different factors that control pMC performance and to evaluate the gains in computational efficiency that our pMC method provides.
Modeling of advection-diffusion-reaction processes using transport dissipative particle dynamics
Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-11-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. In particular, the transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of Lagrangian particles. To validate the proposed tDPD model and the boundary conditions, three benchmark simulations of one-dimensional diffusion with different boundary conditions are performed, and the results show excellent agreement with the theoretical solutions. Also, two-dimensional simulations of ADR systems are performed and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, an application of tDPD to the spatio-temporal dynamics of blood coagulation involving twenty-five reacting species is performed to demonstrate the promising biological applications of the tDPD model. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.
Energy Technology Data Exchange (ETDEWEB)
Jin, C.; Potts, I.; Reeks, M. W., E-mail: mike.reeks@ncl.ac.uk [School of Mechanical and Systems Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)
2015-05-15
We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.
Modeling of laser radiation transport in powder beds with high-dispersive metal particles
Energy Technology Data Exchange (ETDEWEB)
Kharanzhevskiy, Evgeny, E-mail: eh@udsu.ru [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation); Kostenkov, Sergey [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation)
2014-02-15
Highlights: ► Transport of laser energy in dispersive powder beds was numerically simulated. ► The results of simulating are compared with physicals experiments. ► We established the dependence of the extinction coefficient from powder properties. ► A confirmation of a geometric optic approach for monodisperse powders was proposed. -- Abstract: Two-dimensional transfer of laser radiation in a high-dispersive powder heterogeneous media is numerically calculated. The size of particles is comparable with the wave length of laser radiation so the model takes into account all known physical effects that are occurred on the vacuum–metal surface interface. It is shown that in case of small particles size both morphology of powder particles and porosity of beds influence on absorptance by the solid phase and laser radiation penetrate deep into the area of geometric shadow. Intensity of laser radiation may be described as a function corresponded to the Beer–Lambert–Bouguer law.
Fluid and gyrokinetic modelling of particle transport in plasmas with hollow density profiles
Tegnered, D.; Oberparleiter, M.; Nordman, H.; Strand, P.
2016-11-01
Hollow density profiles occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the fuelling scheme inefficient. In the present work, the particle transport driven by ITG/TE mode turbulence in regions of hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description, and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/LT , and magnetic shear are investigated. It is found that β in particular has a stabilizing effect in the negative R/Ln region, both nonlinear GENE and EDWM show a decrease in inward flux for negative R/Ln and a change of direction from inward to outward for positive R/Ln . This might have serious consequences for pellet fuelling of high β plasmas.
Models and numerical methods for time- and energy-dependent particle transport
Energy Technology Data Exchange (ETDEWEB)
Olbrant, Edgar
2012-04-13
Particles passing through a medium can be described by the Boltzmann transport equation. Therein, all physical interactions of particles with matter are given by cross sections. We compare different analytical models of cross sections for photons, electrons and protons to state-of-the-art databases. The large dimensionality of the transport equation and its integro-differential form make it analytically difficult and computationally costly to solve. In this work, we focus on the following approximative models to the linear Boltzmann equation: (i) the time-dependent simplified P{sub N} (SP{sub N}) equations, (ii) the M{sub 1} model derived from entropy-based closures and (iii) a new perturbed M{sub 1} model derived from a perturbative entropy closure. In particular, an asymptotic analysis for SP{sub N} equations is presented and confirmed by numerical computations in 2D. Moreover, we design an explicit Runge-Kutta discontinuous Galerkin (RKDG) method to the M{sub 1} model of radiative transfer in slab geometry and construct a scheme ensuring the realizability of the moment variables. Among other things, M{sub 1} numerical results are compared with an analytical solution in a Riemann problem and the Marshak wave problem is considered. Additionally, we rigorously derive a new hierarchy of kinetic moment models in the context of grey photon transport in one spatial dimension. For the perturbed M{sub 1} model, we present numerical results known as the two beam instability or the analytical benchmark due to Su and Olson and compare them to the standard M{sub 1} as well as transport solutions.
Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer
Abdelaziz, Ramadan; Zambrano-Bigiarini, Mauricio
2014-08-01
Particle Swarm Optimization (PSO) has received considerable attention as a global optimization technique from scientists of different disciplines around the world. In this article, we illustrate how to use PSO for inverse modeling of a coupled flow and transport groundwater model (MODFLOW2005-MT3DMS) in a fractured gneiss aquifer. In particular, the hydroPSO R package is used as optimization engine, because it has been specifically designed to calibrate environmental, hydrological and hydrogeological models. In addition, hydroPSO implements the latest Standard Particle Swarm Optimization algorithm (SPSO-2011), with an adaptive random topology and rotational invariance constituting the main advancements over previous PSO versions. A tracer test conducted in the experimental field at TU Bergakademie Freiberg (Germany) is used as case study. A double-porosity approach is used to simulate the solute transport in the fractured Gneiss aquifer. Tracer concentrations obtained with hydroPSO were in good agreement with its corresponding observations, as measured by a high value of the coefficient of determination and a low sum of squared residuals. Several graphical outputs automatically generated by hydroPSO provided useful insights to assess the quality of the calibration results. It was found that hydroPSO required a small number of model runs to reach the region of the global optimum, and it proved to be both an effective and efficient optimization technique to calibrate the movement of solute transport over time in a fractured aquifer. In addition, the parallel feature of hydroPSO allowed to reduce the total computation time used in the inverse modeling process up to an eighth of the total time required without using that feature. This work provides a first attempt to demonstrate the capability and versatility of hydroPSO to work as an optimizer of a coupled flow and transport model for contaminant migration.
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-07-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.
Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems
Energy Technology Data Exchange (ETDEWEB)
Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.; Karniadakis, George E.
2015-07-07
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-01
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-01
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU’s shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0
Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model
Stöckl, Stefan; Rotach, Mathias W.
2016-04-01
The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was
Le, Nam Q.; Duda, John C.; English, Timothy S.; Hopkins, Patrick E.; Beechem, Thomas E.; Norris, Pamela M.
2012-04-01
The performance of many micro- and nanoscale devices depends on the ability to control interfacial thermal transport, which is predominantly mediated by phonons in semiconductor systems. The phonon transmissivity at an interface is therefore a quantity of interest. In this work, an empirical model, termed the thermal mismatch model, is developed to predict transmissivity at ideal interfaces between semiconductor materials, producing an excellent agreement with molecular dynamics simulations of wave packets. To investigate propagation through multilayered structures, this thermal mismatch model is then incorporated into a simulation scheme that represents wave packets as particles, showing a good agreement with a similar scheme that used molecular dynamics simulations as input [P. K. Schelling and S. R. Phillpot, J. Appl. Phys. 93, 5377 (2003)]. With these techniques validated for both single interfaces and superlattices, they are further used to identify ways to tune the transmissivity of multilayered structures. It is shown that by introducing intermediate layers of certain atomic masses, the total transmissivity can either be systematically enhanced or reduced compared to that of a single interface. Thus, this model can serve as a computationally inexpensive means of developing strategies to control phonon transmissivity in applications that may benefit from either enhancement (e.g., microelectronics) or reduction (e.g., thermoelectrics) in thermal transport.
Mesoscale Model for Blood Cell Adhesion and Transport using Ellipsoidal Particles
Chesnutt, Jennifer; Marshall, Jeffrey
2008-11-01
A novel discrete-element computational model for efficient transport, collision, and adhesion of ellipsoidal particles is applied to blood cells adhering through receptor-ligand binding in three-dimensional flow. The model has been used for simulation of over 13,000 adhesive cells through approximation of blood cells as elastic particles and other physically-justifiable approximations. The computational model is validated against experimental data of red blood cell (RBC) aggregation in shear and channel flows. The structure of aggregates formed by RBCs is analyzed by various measures that relate RBCs which are in contact with each other and that characterize an aggregate by fitting an ellipse to the projection of cells contained in the aggregate. Factors such as shear rate and adhesive surface energy density between cells are examined for their effects on the size and structure of RBC aggregates in both two- and three-dimensional computations. The effect of RBC aggregation on migration of blood elements (RBCs, leukocytes, platelets) in channel flow is also investigated.
Siade, A. J.; Prommer, H.; Welter, D.
2014-12-01
Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site
Pahar, Gourabananda; Dhar, Anirban
2017-04-01
A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.
Energy Technology Data Exchange (ETDEWEB)
Laporte Patrice, M.
1996-02-22
The results developed in this thesis describe the ions and neutral atoms transport in a tokamak plasma. The effort is especially made on modelling of neutral particles transport. The presentation of the two computer codes Trap and Neli take the first part of the thesis. This study shows that heat and matter transport anomaly present some real characteristics of an electrostatic turbulence. Then, if particles diffusivity stays abnormal on the whole discharge of a tore supra plasma, in revenge in the central part of the discharge, the convective flux value is compatible with neoclassical theory. (N.C.). 67 refs., 67 figs., 6 appends.
Xu, Jun
2016-01-01
Based on an extended multiphase transport model, which includes mean-field potentials in both the partonic and hadronic phases, uses the mix-event coalescence, and respects charge conservation during the hadronic evolution, we have studied the collision energy dependence of the elliptic flow splitting between particles and their antiparticles. This extended transport model reproduces reasonably well the experimental data at lower collision energies but only describes qualitatively the elliptic flow splitting at higher beam energies. The present study thus indicates the existence of other mechanisms for the elliptic flow splitting besides the mean-field potentials and the need of further improvements of the multiphase transport model.
Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Yessayan, Raffi; Azmy, Yousry; Schunert, Sebastian
2017-02-01
The THOR neutral particle transport code enables simulation of complex geometries for various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V requiring computational efficiency. This has motivated various improvements including angular parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future improvements to the code’s efficiency, better characterization of its parallel performance is useful. A parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify performance bottlenecks. Using INL’s Falcon HPC, the PPM development incorporates an evaluation of network communication behavior over heterogeneous links and a functional characterization of the per-cell/angle/group runtime of each major code component. After evaluating several possible sources of variability, this resulted in a communication model and a parallel portion model. The former’s accuracy is bounded by the variability of communication on Falcon while the latter has an error on the order of 1%.
Transport methods for energetic particles
Institute of Scientific and Technical Information of China (English)
WuHong－Lu; YangChui－Hsu
1997-01-01
In order to estimate radiation risk assessment for astronaut's radiation safety in space activities.transport codes for high energy particles have been created.Two of the transport methods,perturbation and Green function methods,for high energy particles are reviewed in this paper,and some of the calculated results with the perturbation method are presented.Finally,the low energy transport in the regard of the biological effects by low energy ions in also briefly discussed.
Heat and particle transport in a one-dimensional hard-point gas model with on-site potential
Directory of Open Access Journals (Sweden)
Lei Wang
2015-05-01
Full Text Available Heat and particle transport in a one-dimensional hard-point gas of elastically colliding particles are studied. In the nonequal mass case, due to the presence of on-site potential, the heat conduction of the model obeys the Fourier law and all the transport coefficients asymptotically approach constants in the thermodynamic limit. The thermoelectric figure of merit ZT increases slowly with the system length L and is proportional to the height of the potential barriers H in high H regime. These findings may serve as a guide for future theoretical and experimental studies.
Yang, Xinyao; Zhang, Yimeng; Chen, Fangmin; Yang, Yuesuo
2015-11-17
The investigation on factors that affect the impact of natural organic matter (NOM) on colloid transport in complex hydraulic flow systems remains incomplete. Using our previously established approach, the interplay of flow rate and particle size on the NOM effect was quantified, using flow rates of 1 and 2 mL/min and particle sizes of 50 and 200 nm to represent small nanoparticles (1-100 nm) and large non-nano-microspheres (100-1000 nm) in the low-flow groundwater environment. Latex particles, Suwannee River humic acid (SRHA), and iron oxide-coated sand were used as model particles, NOM, and the aquifer medium, respectively. The quantitative results show NOM blocked more sites for large particles at a high flow rate: 1 μg of SRHA blocked 5.95 × 10(9) microsphere deposition sites at 2 mL/min but only 7.38 × 10(8) nanoparticle deposition sites at 1 mL/min. The particle size effect dominated over the flow rate, and the overall effect of the two is antagonistic. Granule-scale visualization of the particle packing on the NOM-presented sand surface corroborates the quantification results, revealing a more dispersed status of large particles at a high flow rate. We interpret this phenomenon as a polydispersivity effect resulting from the differential size of the particles and NOM: high flow and a high particle size enlarge the ratio of particle-blocked to NOM-blocked areas and thus the NOM blockage. To our knowledge, this is the first model-assisted quantification on the interplay of NOM, flow rate, and particle size on colloid transport. These findings are significant for nanorisk assessment and nanoremediation practices.
Iwashita, Shinya; Schulze, Julian; Hartmann, Peter; Donkó, Zoltán; Uchida, Giichiro; Koga, Kazunori; Shiratani, Masaharu; Czarnetzki, Uwe
2013-01-01
The control of the spatial distribution of micrometer-sized dust particles in capacitively coupled radio frequency discharges is relevant for research and applications. Typically, dust particles in plasmas form a layer located at the sheath edge adjacent to the bottom electrode. Here, a method of manipulating this distribution by the application of a specific excitation waveform, i.e. two consecutive harmonics, is discussed. Tuning the phase angle \\theta between the two harmonics allows to adjust the discharge symmetry via the Electrical Asymmetry Effect (EAE). An adiabatic (continuous) phase shift leaves the dust particles at an equilibrium position close to the lower sheath edge. Their levitation can be correlated with the electric field profile. By applying an abrupt phase shift the dust particles are transported between both sheaths through the plasma bulk and partially reside at an equilibium position close to the upper sheath edge. Hence, the potential profile in the bulk region is probed by the dust pa...
Mass transport models for a single particle in gas phase propylene polymerization
Parasu Veera, U.
2003-01-01
Olefin polymerisation on heterogeneous catalysts is gaining importance due to widening of the polymer properties window. The supported active catalyst on the heterogeneous particle reacts with the monomer and produces polymer. Polymeric flow (PF) model is relatively simple and assume that particle
2007-11-02
realistic flight sensor computer models; (3) performance of particle transport calculations ; (4) analysis of transport simulation results, including...programs (LAHET, ACCEPT, CYLTRAN, MCNPX ) for particle transport simulation were applied to the modeling of the CEASE and HEP sensors. In addition, a...preliminary version of a post-processor program for analysis of single particle histories from MCNPX was written. Shown in this report are several listings
Afanasiev, Alexandr; Battarbee, Markus; Vainio, Rami; Rouillard, Alexis; Aran, Angels; Sipola, Robert; Pomoell, Jens
2016-04-01
The EU/H2020 project "High Energy Solar Particle Events foRecastIng and Analysis" (HESPERIA) has an objective to gain improved understanding of solar energetic particle (SEP) acceleration, release and transport related to long-duration gamma-ray emissions recently observed by Fermi/LAT. We have performed simulation studies for particle acceleration and transport for the 17 May 2012 event, which is also a Ground Level Enhancement (GLE) of solar cosmic rays. The particle event is modeled assuming that it is accelerated by the shock wave driven by the erupting coronal mass ejection (CME). We first analyze the 3-dimensional propagation of the shock through the corona using imaging observations from SDO, SOHO and STEREO spacecraft. The derived kinematics of the shock is combined with magnetohydrodynamic and potential field modeling of the ambient corona to derive the evolution of the shock parameters on a large set of field lines. We then employ the self-consistent Coronal Shock Acceleration (CSA) simulation model of the University of Turku to study the acceleration process on selected field lines and combine it with a new model of downstream particle transport to assess the energy spectrum and time profile of accelerated particles precipitating in the dense surface regions below the corona. We also employ the Shock and Particle (SaP) simulation model of the University of Barcelona to analyze the interplanetary counterpart of the Fermi event. In this paper, we will present the observations of the event, our approach to the modeling and the first results of the analysis. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA).
Transport of particles by surface waves: a modification of the classical bouncer model
Energy Technology Data Exchange (ETDEWEB)
Ragulskis, M [Department of Mathematical Research in Systems, Kaunas University of Technology, Studentu 50-222, 51638 Kaunas (Lithuania); Sanjuan, M A F [Nonlinear Dynamics and Chaos Group, Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)], E-mail: minvydas.ragulskis@ktu.lt, E-mail: miguel.sanjuan@urjc.es
2008-08-15
We consider a ball under the influence of gravity on a platform. A propagating surface wave travels on the surface of the platform, while the platform remains motionless. This is a modification of the classical bouncing ball problem and describes the transport of particles by surface waves. Phase and velocity maps cannot be expressed in an explicit form owing to implicit formulations, and no formal analytical analysis is possible. Numerical analysis shows that the transition to chaos is produced via a period doubling route, which is a common property for classical bouncers. The bouncing process can be sensitive to the initial conditions, which can build the ground for control techniques that can dramatically increase the effectiveness of particle transport in practical applications.
Indian Academy of Sciences (India)
Trishikhi Raychoudhury; Vikranth Kumar Surasani
2017-06-01
Retention of surface-modified nanoscale zero-valent iron (NZVI) particles in the porous media near the point of injection has been reported in the recent studies. Retention of excess particles in porous media can alter the media properties. The main objectives of this study are, therefore, to evaluate the effect of particle retention on the porous media properties and its implication on further NZVI particle transport under different flow conditions. To achieve the objectives, a one-dimensional transport model is developed by considering particle deposition, detachment, and straining mechanisms along with the effect of changes in porosity resulting from retention of NZVI particles. Two different flow conditions are considered for simulations. The first is a constant Darcy’s flow rate condition, which assumes a change in porosity, causes a change in pore water velocity and the second, is a constant head condition, which assumes the change in porosity, influence the permeability and hydraulic conductivity (thus Darcy’s flow rate). Overall a rapid decrease in porosity was observed as a result of high particle retention near the injection points resulting in a spatial distribution of deposition rate coefficient. In the case of constant head condition, the spatial distribution of Darcy’s velocities is predicted due to variation in porosity and hydraulic conductivity. The simulation results are compared with the data reported from the field studies; which suggests straining is likely to happen in the real field condition.
Rain water transport and storage in a model sandy soil with hydrogel particle additives.
Wei, Y; Durian, D J
2014-10-01
We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.
Energy Technology Data Exchange (ETDEWEB)
Kartavykh, Y. Y.; Dröge, W. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Gedalin, M. [Department of Physics, Ben-Gurion Unversity of the Negev, Beer-Sheva (Israel)
2016-03-20
We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.
Applications of Turbulence Models for Transport of Dissolved Pollutants and Particles
DEFF Research Database (Denmark)
Petersen, Ole
The present report concerns itself with numerical models of turbulent transport and mixing, with emphasis on the description of the mixing processes which occur in recipients and tanks. Consequently a part of the report is dedicated to a discussion of flows where differences in density play...... a substantial role in the mixing. In the first part of the report the theoretical bask for the partial differential equations which govern turbulent flows and the transport of matter is derived. The background for one- and two-equation turbulence models is reviewed and formulated both in a general way...
Quadrupole Induced Resonant Particle Transport
Gilson, Erik; Fajans, Joel
1999-11-01
We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)
ParPor: Particles in Pores. Stochastic Modeling of Polydisperse Transport
DEFF Research Database (Denmark)
Yuan, Hao
2010-01-01
Liquid flow containing particles in the different types of porous media appear in a large variety of practically important industrial and natural processes. The project aims at developing a stochastic model for the deep bed filtration process in which the polydisperse suspension flow in the polyd...
Edery, Y.; Rubin, S.; Dror, I.; Berkowitz, B.
2012-12-01
Nickel migration measured in laboratory-scale, natural soil column experiments is shown to display anomalous (non-Fickian) transport and non-equilibrium adsorption and desorption patterns. Similar experiments using a conservative tracer also exhibit anomalous behavior. In parallel batch experiments, adsorption and desorption isotherms demonstrate hysteresis, indicating some permanent adsorption. While adsorption is described by the Langmuir isotherm, equilibrium concentrations are higher than those predicted by the same model for desorption. Furthermore, batch and flow-through column experiments show the occurrence of ion exchange of nickel with magnesium and potassium in the soil; aluminum and other ion concentrations are also affected by the presence of nickel. Strong retention of nickel during transport in soil columns leads to delayed initial breakthrough (~40 pore volumes), slow increase in concentration, and extended concentration tailing at long times. Standard models, including two-site non-equilibrium formulations, fail to capture these features quantitatively. We describe the mechanisms of transport and adsorption/desorption in terms of a continuous time random walk (CTRW) model, and use a particle tracking formulation to simulate the nickel migration in the column. This approach allows us to capture the non-Fickian transport and the subtle local effects of adsorption and desorption. The model uses transport parameters estimated from the conservative tracer and, as a starting point, adsorption/desorption parameters based on the batch experiments to account for the reactions. It is shown that the batch parameters under-estimate the actual adsorption in the column. The CTRW particle tracking model is shown to capture both the full evolution of the measured breakthrough curve and the measured spatial concentration profile. Analysis of these results provides further understanding of the interaction and dynamics between transport and sorption mechanisms in
Applications of Turbulence Models for Transport of Dissolved Pollutants and Particles
DEFF Research Database (Denmark)
Petersen, Ole
a substantial role in the mixing. In the first part of the report the theoretical bask for the partial differential equations which govern turbulent flows and the transport of matter is derived. The background for one- and two-equation turbulence models is reviewed and formulated both in a general way...
Miyawaki, Shinjiro; Hoffman, Eric A; Lin, Ching-Long
2016-10-01
Advances in quantitative computed tomography (CT) has provided methods to assess the detailed structure of the pulmonary airways and parenchyma, providing the means of applying computational fluid dynamics-based modeling to better understand subject-specific differences in structure-to-function relationships. Most of the previous numerical studies, seeking to predict patterns of inhaled particle deposition, have considered airway geometry and regional ventilation derived from static images. Because geometric alterations of the airway and parenchyma associated with regional ventilation may greatly affect particle transport, we have sought to investigate the effect of rigid vs. deforming airways, linear vs. nonlinear airway deformations, and step-wise static vs. dynamic imaging on particle deposition with varying numbers of intermediate lung volume increments. Airway geometry and regional ventilation at different time points were defined by four-dimensional (space and time) dynamic or static CT images. Laminar, transitional, and turbulent air flows were reproduced with a three-dimensional eddy-resolving computational fluid dynamics model. Finally, trajectories of particles were computed with the Lagrangian tracking algorithm. The results demonstrated that static-imaging-based models can contribute 7% uncertainty to overall particle distribution and deposition primarily due to regional flow rate (ventilation) differences as opposed to geometric alterations. The effect of rigid vs. deforming airways on serial distribution of particles over generations was significantly smaller than reported in a previous study that used the symmetric Weibel geometric model with smaller flow rate. Rigid vs. deforming airways were also shown to affect parallel particle distribution over lobes by 8% and the differences associated with use of static vs. dynamic imaging was 18%. These differences demonstrate that estimates derived from static vs. dynamic imaging can significantly affect the
Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen
2016-04-01
The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.
Particle Transport in Parallel-Plate Reactors
Energy Technology Data Exchange (ETDEWEB)
Rader, D.J.; Geller, A.S.
1999-08-01
A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle
Sheng, He; Waltz, R. E.; Staebler, G. M.
2017-07-01
The Trapped-Gyro-Landau-Fluid (TGLF) transport model is a physically realistic and comprehensive theory based on a local quasilinear transport model fitted to linear and nonlinear GYRO gyrokinetic simulations [Staebler et al., Phys. Plasmas 14, 55909 (2007)]. This work presents the first use of the TGLF model to treat low-n Alfvén eigenmode (AE) stability and energetic particle (EP) transport. TGLF accurately recovers the local GYRO toroidicity-induced AE (TAE) and energetic particle mode (EPM) linear growth and frequency rates for a fusion alpha case. With a very high grid resolution, TGLF can quickly find the critical EP pressure gradient profile for stiff EP transport based on an AE linear threshold given the background thermal plasma profiles in DIII-D. The TGLF critical gradient profile using the recipe γAE = 0, that is the linear AE growth rate without additional driving rates from the background plasma gradients, matches the more expensive linear GYRO results with a single worst toroidal mode number n. TGLF can easily find the minimum critical gradient profile with testing multiple ns. From a database of runs using a newly developed TGLFEP code, a rough but insightful parametric "power law" scaling for critical EP beta is demonstrated. An important toroidal stabilization condition on the EP pressure gradient pEP/LpEP drive is isolated: R /LpEP>CR ˜ 3 , where LpEP is the EP pressure gradient length and R is the tokamak major radius. This paper also demonstrates that relaxation of the fixed slowing down EP profile shape approximation often used to find the critical EP density profile has little effect on the resulting EP transport. The single EP species critical gradient model is generalized to handle two EP species.
PREDICTION OF PARTICLE TRANSPORT IN ENCLOSED ENVIRONMENT
Institute of Scientific and Technical Information of China (English)
Qingyan Chen; Zhao Zhang
2005-01-01
Prediction of particle transport in enclosed environment is crucial to the welfare of its occupants. The prediction requires not only a reliable particle model but also an accurate flow model. This paper introduces two categories of flow models - Reynolds Averaged Navier-Stokes equation modeling (RANS modeling) and Large Eddy Simulation (LES); as well as two popular particle models - Lagrangian and Eulerian methods. The computed distributions of air velocity, air temperature, and tracer-gas concentration in a ventilated room by the RANS modeling and LES agreed reasonably with the experimental data from the literature. The two flow models gave similar prediction accuracy. Both the Lagrangian and Eulerian methods were applied to predict particle transport in a room. Again, the computed results were in reasonable agreement with the experimental data obtained in an environmental chamber. The performance of the two methods was nearly identical. Finally the flow and particle models were applied to study particle dispersion in a Boeing 767 cabin and in a small building with six rooms. The computed results look plausible.
Kinetic transport simulation of energetic particles
Sheng, He; Waltz, R. E.
2016-05-01
A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.
Glutamine transport in submitochondrial particles
Energy Technology Data Exchange (ETDEWEB)
Sastrasinh, S.; Sastrasinh, M.
1989-12-01
Glutamine transport was studied in submitochondrial particles (SMP) to avoid interference from glutamine metabolism. Phosphate-dependent glutaminase activity in SMP was only 0.04% of that in intact mitochondria. The uptake of glutamine in SMP represented both the transport into vesicles and membrane binding (about one-third of total uptake). Sulfhydryl reagents inhibited glutamine uptake in SMP. The uptake of L-({sup 3}H)glutamine increased more than twofold in SMP preloaded with 1 mM L-glutamine, an effect that was not seen with 1 mM D-glutamine. The uptake of L-({sup 3}H)glutamine was inhibited in the presence of either L-glutamine or L-alanine in the incubation medium. Other amino acids did not inhibit glutamine uptake. Alanine was also shown to trans-stimulate glutamine transport in SMP and cis-inhibit glutamine transport in both SMP and intact mitochondria. Glutamine transport showed a positive cooperativity effect with a Hill coefficient of 1.45. Metabolic acidosis increased the affinity of the transporter for glutamine without any change in other kinetic parameters. These data indicated that mitochondrial glutamine transport occurs via a specific carrier with multiple binding sites and that the transport of glutamine into mitochondria has an important role in increased ammoniagenesis during metabolic acidosis.
Discrete particle simulation of mixed sand transport
Institute of Scientific and Technical Information of China (English)
Fengjun Xiao; Liejin Guo; Debiao Li; Yueshe Wang
2012-01-01
An Eulerian/Lagrangian numerical simulation is performed on mixed sand transport.Volume averaged Navier-Stokes equations are solved to calculate gas motion,and particle motion is calculated using Newton's equation,involving a hard sphere model to describe particle-to-particle and particle-to-wall collisions.The influence of wall characteristics,size distribution of sand particles and boundary layer depth on vertical distribution of sand mass flux and particle mean horizontal velocity is analyzed,suggesting that all these three factors affect sand transport at different levels.In all cases,for small size groups,sand mass flux first increases with height and then decreases while for large size groups,it decreases exponentially with height and for middle size groups the behavior is in-between.The mean horizontal velocity for all size groups well fits experimental data,that is,increasing logarithmically with height in the middle height region.Wall characteristics greatly affects particle to wall collision and makes the flat bed similar to a Gobi surface and the rough bed similar to a sandy surface.Particle size distribution largely affects the sand mass flux and the highest heights they can reach especially for larger particles.
Lee, H.-J.; Kim, S.-W.; Brioude, J.; Cooper, O. R.; Frost, G. J.; Kim, C.-H.; Park, R. J.; Trainer, M.; Woo, J.-H.
2014-03-01
Nitrogen dioxide (NO2) columns observed from space have been useful in detecting the increase of nitrogen oxides (NOx) emissions in East Asia, particularly China, coinciding with rapid economic growth during the past several decades. NO2 columns retrieved above a particular location reflect a combination of local NOx emissions and transported NOx from upwind sources. In this study, we demonstrate the transport of NOx emitted in East Asia using satellite and surface in situ measurements and Lagrangian particle dispersion model simulations. Enhanced satellite NO2 columns in the Yellow Sea (between China and South Korea) and the East Sea (between South Korea and Japan), and different seasonal variations of NO2 in China, North and South Korea, and Japan, suggest the importance of NOx transport in understanding the local NOx budget. Lagrangian transport model simulations with tracers of different chemical lifetimes identify source-receptor relationships that explain high NO2 over the oceans and springtime peaks in Korea and Japan, with China being the most likely source region. Our results have important implications for studies using satellite NO2 retrievals to derive NOx emissions at local scales in regions adjacent to large sources, such as in East Asia, Europe, and the Eastern U.S.
Transport of particles in an atmospheric turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
Xiongping Luo; Shiyi Chen
2005-01-01
A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.
Institute of Scientific and Technical Information of China (English)
R.E. Waltz
2007-01-01
@@ There has been remarkable progress during the past decade in understanding and modeling turbulent transport in tokamaks. With some exceptions the progress is derived from the huge increases in computational power and the ability to simulate tokamak turbulence with ever more fundamental and physically realistic dynamical equations, e.g.
SIMPLIFIED CHARGED PARTICLE BEAM TRANSPORT MODELING USING COMMONLY AVAILABLE COMMERCIAL SOFTWARE
Energy Technology Data Exchange (ETDEWEB)
D. Douglas; K. Beard; J. Eldred; P. Evtushenko; A. Jenkins; W. Moore; L. Osborne; D. Sexton; C. Tennant
2007-06-18
Particle beam modeling in accelerators has been the focus of considerable effort since the 1950s. Many generations of tools have resulted from this process, each leveraging both prior experience and increases in computer power. However, continuing innovation in accelerator technology results in systems that are not well described by existing tools, so the software development process is on-going. We discuss a novel response to this situation, which was encountered when Jefferson Lab began operation of its energy-recovering linacs. These machines were not readily described with legacy soft-ware; therefore a model was built using Microsoft Excel. This interactive simulation can query data from the accelerator, use it to compute machine parameters, analyze difference orbit data, and evaluate beam properties. It can also derive new accelerator tunings and rapidly evaluate the impact of changes in machine configuration. As it is spreadsheet-based, it can be easily user-modified in response to changing requirements. Examples for the JLab IR Upgrade FEL are presented.
Monte Carlo model of neutral-particle transport in diverted plasmas
Energy Technology Data Exchange (ETDEWEB)
Heifetz, D.; Post, D.; Petravic, M.; Weisheit, J.; Bateman, G.
1981-11-01
The transport of neutral atoms and molecules in the edge and divertor regions of fusion experiments has been calculated using Monte-Carlo techniques. The deuterium, tritium, and helium atoms are produced by recombination in the plasma and at the walls. The relevant collision processes of charge exchange, ionization, and dissociation between the neutrals and the flowing plasma electrons and ions are included, along with wall reflection models. General two-dimensional wall and plasma geometries are treated in a flexible manner so that varied configurations can be easily studied. The algorithm uses a pseudo-collision method. Splitting with Russian roulette, suppression of absorption, and efficient scoring techniques are used to reduce the variance. The resulting code is sufficiently fast and compact to be incorporated into iterative treatments of plasma dynamics requiring numerous neutral profiles. The calculation yields the neutral gas densities, pressures, fluxes, ionization rates, momentum transfer rates, energy transfer rates, and wall sputtering rates. Applications have included modeling of proposed INTOR/FED poloidal divertor designs and other experimental devices.
Directory of Open Access Journals (Sweden)
A. Petroff
2010-12-01
Full Text Available A size-resolved particle dry deposition scheme is developed for inclusion in large-scale air quality and climate models where the size distribution and fate of atmospheric aerosols is of concern. The "resistance" structure is similar to what is proposed by Zhang et al. (2001, while a new "surface" deposition velocity (or surface resistance is derived by simplification of a one-dimensional aerosol transport model (Petroff et al., 2008b, 2009. Compared to Zhang et al.'s model, the present model accounts for the leaf size, shape and area index as well as the height of the vegetation canopy. Consequently, it is more sensitive to the change of land covers, particularly in the accumulation mode (0.1–1 micron. A drift velocity is included to account for the phoretic effects related to temperature and humidity gradients close to liquid and solid water surfaces. An extended comparison of this model with experimental evidence is performed over typical land covers such as bare ground, grass, coniferous forest, liquid and solid water surfaces and highlights its adequate prediction. The predictions of the present model differ from Zhang et al.'s model in the fine mode, where the latter tends to over-estimate in a significant way the particle deposition, as measured by various investigators or predicted by the present model. The present development is thought to be useful to modellers of the atmospheric aerosol who need an adequate parameterization of aerosol dry removal to the earth surface, described here by 26 land covers. An open source code is available in Fortran90.
Directory of Open Access Journals (Sweden)
A. Petroff
2010-08-01
Full Text Available A size-resolved particle dry deposition scheme is developed, which has been designed for inclusion in large-scale air quality and climate models, where the size distribution and fate of the atmospheric aerosol is of concern. The "resistance" structure is similar to what is proposed by Zhang et al. (2001, 2003, while a new "surface" deposition velocity (or surface resistance is derived by simplification of a one-dimensional aerosol transport model (Petroff et al., 2008b, 2009. Collection efficiencies are given for the 26 Land Use Categories that decribe the earth surface. Validation of this model with existing measurements is performed on desert, grass, coniferous forest and liquid water surfaces. A comparison of this model with measurements on snow and ice is also given. Even though a qualitative agreement is reached, further size-segegated measurements are needed in order to confirm the model accuracy on this surface. The present analytical model provides more accurate predictions of the aerosol deposition on these surfaces than previous models.
Energy Technology Data Exchange (ETDEWEB)
Battaglia, D. J. [PPPL; Boedo, J. A. [University of California San Diego; Burrell, K. H. [General Atomics; Chang, C. S. [PPPL; Canik, J. M. [ORNL; deGrassie, J. S. [General Atomics; Gerhardt, S. P. [PPPL; Grierson, B. A. [General Atomics; Groebner, R. J. [General Atomics; Maingi, Rajesh [PPPL; Smith, S. P. [General Atomics
2014-09-01
Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.
CSIR Research Space (South Africa)
Garland, Rebecca M
2016-11-01
Full Text Available -burning emissions and dust globally, which are large sources of aerosol particles (Crutzen and Andreae, 1990; Schütz et al., 1981). Dust aerosols, along with carbonaceous aerosols produced from biomass burning, are known to impact climate through direct..., 1990; Schütz et al, 1981). Thus, it is critical to understand if CCAM using the CMIP5 emissions inventory from the IPCC assessment can capture the monthly cycle of these large emission sources. In addition, only sites that had a multi...
Particle transport in inclined annuli
Energy Technology Data Exchange (ETDEWEB)
Kurtzhals, Erik
1993-12-31
A new model for the formation and behaviour of deposits in inclined wellbores is formulated. The annular space is divided into two layers, separated by a distinct plane boundary. While the lower layer is taken to consist of closely packed cuttings, the upper layer is presumed to behave as a pure fluid. A force balance for the lower layer decides whether it is stationary or slides in the upwards- or downwards direction. The position of the deposit surface is governed by the fluid shear stress at the deposit surface. The proposed model represents a major improvement compared to an earlier model. The predictions from the SCSB-model are in good qualitative agreement with experimental results obtained by the author, and results published by research groups in the U.S.A., United Kingdom and Germany. The quantitative agreement is variable, presumably because the SCSB-model is a somewhat simplified description of particle behaviour in inclined annuli. However, the model provides a clearer understanding of the physical background for previously published experimental results. In order to couple the theoretical work with experimental observations, an annular flow loop has been constructed. A characteristic feature in the flow loop design is the application of load cells, which permits determination of the annular particle content at steady state as well as under transient conditions. Due to delays in the constructional work, it has only been possible to perform a limited number of investigations in the loop. However, the results produced are in agreement with results published by other research groups. (au)
Directory of Open Access Journals (Sweden)
Li Hua-Rong
2014-01-01
Full Text Available Two improved multigrain models (MGMs for preparing homopolypropylene and long chain branched polypropylene via propylene polymerization using silica-supported metallocene or dual function metallocene as catalysts are presented in this paper. The presented models are used to predict the intraparticle flow fields involved in the polymerizations. The simulation results show that the flow field distributions involve dare basically identical. The results also show that both the two polymerization processes have an initiation stage and the controlling step for them is reaction-diffusion-reaction with the polymerization proceeding. Furthermore, the simulation results show that the intra particle mass transfer resistance has significant effect on the polymerization but the heat transfer resistance can be ignored.
Directory of Open Access Journals (Sweden)
Mimoun Maurice
2011-03-01
Full Text Available Abstract Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD. Methods The study was carried out in 4 steps: i patient room design, ii CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii construction of a prototype room and subsequent experimental studies to characterize its performance iv qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF open-source software Code_Saturne® (http://www.code-saturne.org was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to
Hiemstra, P.H.; Karssenberg, D.J.; Dijk, A. van
2011-01-01
Atmospheric transport models and observations from monitoring networks are commonly used aids for forecasting spatial distribution of contamination in case of a radiological incident. In this study, we assessed the particle filter data-assimilation technique as a tool for ensemble forecasting the
Monte Carlo methods for particle transport
Haghighat, Alireza
2015-01-01
The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: * Introduces the particle importance equation and its use for variance reduction * Describes general and particle-transport-specific variance reduction techniques * Presents particle transport eigenvalue issues and methodologies to address these issues * Explores advanced formulations based on the author's research activities * Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide ...
Tsai, Christina W.; Lin, Emily Y.; Hung, Serena Y.
2016-10-01
In extreme flow conditions, both the flow carrying capacity and movement of particles may abruptly change from those associated with regular flows. This study investigates movement of sediment particles in response to extreme flow events using a Lagrangian stochastic jump diffusion particle tracking model (SJD-PTM). The study attempts to investigate the frequency change of extreme flow event occurrences and its impact on suspended sediment particle movement. Using the concept of logistic regression, the trend magnitude of extreme flow events can be used as an input of the proposed stochastic jump diffusion particle tracking model with Logistic regression (SJ-PTM_LR) to account for the potential effects of environmental change. The predicted frequency change of extreme flows from available data in the Chijiawan region in central Taiwan is illustrated in this study. Both ensemble mean and variance of particle trajectory can be quantified under such predicted frequency trend change of extreme flow occurrences via simulations of SJ-PTM_LR. Results show that particle movement uncertainty may undergo a significant increase by taking the effect of the predicted flow frequency trend into consideration. Such probabilistic outcome provides a valuable means for assessing the probability of failure (i.e., risk) resulting from sedimentation processes.
Proussevitch, Alexander
2014-05-01
Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.
The effects of realistic pancake solenoids on particle transport
Energy Technology Data Exchange (ETDEWEB)
Gu, X.; Okamura, M.; Pikin, A.; Fischer, W.; Luo, Y.
2011-02-01
Solenoids are widely used to transport or focus particle beams. Usually, they are assumed as being ideal solenoids with a high axial-symmetry magnetic field. Using the Vector Field Opera program, we modeled asymmetrical solenoids with realistic geometry defects, caused by finite conductor and current jumpers. Their multipole magnetic components were analyzed with the Fourier fit method; we present some possible optimized methods for them. We also discuss the effects of 'realistic' solenoids on low energy particle transport. The finding in this paper may be applicable to some lower energy particle transport system design.
Transport velocities of coal and sand particles
Energy Technology Data Exchange (ETDEWEB)
Adanez, J. (Inst. de Carboquimica, Zaragoza (Spain)); Diego, L.F. de (Inst. de Carboquimica, Zaragoza (Spain)); Gayan, P. (Inst. de Carboquimica, Zaragoza (Spain))
1993-10-01
Transport velocities of narrow cut sizes of coarse particles of sand and coal were determined at room temperature and atmospheric pressure. These velocities were obtained by four different methods previously utilized by other authors with fine particles. The four methods tested gave good predictions of the transport velocities. The method based on the measurement of the time required for all the solids to leave the bed without feeding in any fresh solid is specially interesting because of its rapidity and simplicity. The determined transport velocities were strongly dependent on the solid particle size and density. The experimental values were fitted to an equation which fitted both the experimental results obtained in this work and other published results obtained with fine particles. (orig.)
Stochastic Simulation of Lagrangian Particle Transport in Turbulent Flows
Sun, Guangyuan
This dissertation presents the development and validation of the One Dimensional Turbulence (ODT) multiphase model in the Lagrangian reference frame. ODT is a stochastic model that captures the full range of length and time scales and provides statistical information on fine-scale turbulent-particle mixing and transport at low computational cost. The flow evolution is governed by a deterministic solution of the viscous processes and a stochastic representation of advection through stochastic domain mapping processes. The three algorithms for Lagrangian particle transport are presented within the context of the ODT approach. The Type-I and -C models consider the particle-eddy interaction as instantaneous and continuous change of the particle position and velocity, respectively. The Type-IC model combines the features of the Type-I and -C models. The models are applied to the multi-phase flows in the homogeneous decaying turbulence and turbulent round jet. Particle dispersion, dispersion coefficients, and velocity statistics are predicted and compared with experimental data. The models accurately reproduces the experimental data sets and capture particle inertial effects and trajectory crossing effect. A new adjustable particle parameter is introduced into the ODT model, and sensitivity analysis is performed to facilitate parameter estimation and selection. A novel algorithm of the two-way momentum coupling between the particle and carrier phases is developed in the ODT multiphase model. Momentum exchange between the phases is accounted for through particle source terms in the viscous diffusion. The source term is implemented in eddy events through a new kernel transformation and an iterative procedure is required for eddy selection. This model is applied to a particle-laden turbulent jet flow, and simulation results are compared with experimental measurements. The effect of particle addition on the velocities of the gas phase is investigated. The development of
Particle transport and deposition: basic physics of particle kinetics.
Tsuda, Akira; Henry, Frank S; Butler, James P
2013-10-01
The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research.
Turbulence driven particle transport in Texas Helimak
Toufen, Dennis L; Caldas, Iberê L; Marcus, Francisco A; Gentle, Kenneth W
2011-01-01
We analyze the turbulence driven particle transport in Texas Helimak (K. W. Gentle and Huang He, Plasma Sci. and Technology, 10, 284 (2008)), a toroidal plasma device with one-dimensional equilibrium with magnetic curvature and shear. Alterations on the radial electric field, through an external voltage bias, change spectral plasma characteristics inducing a dominant frequency for negative bias values and a broad band frequency spectrum for positive bias values. For negative biased plasma discharges, the transport is high where the waves propagate with phase velocities near the plasma flow velocity, an indication that the transport is strongly affected by a wave particle resonant interaction. On the other hand, for positive bias the plasma has a reversed shear flow and we observe that the transport is almost zero in the shearless radial region, an evidence of a transport barrier in this region.
Arolla, Sunil K
2014-01-01
A volume-filtered Euler-Lagrange large eddy simulation methodology is used to predict the physics of turbulent liquid-solid slurry flow through a horizontal pipe. A dynamic Smagorinsky model based on Lagrangian averaging is employed to account for the sub-filter scale effects in the liquid phase. A fully conservative immersed boundary method is used to account for the pipe geometry on a uniform cartesian grid. The liquid and solid phases are coupled through volume fraction and momentum exchange terms. Particle-particle and particle-wall collisions are modeled using a soft-sphere approach. A series of simulations have been performed by varying the superficial liquid velocity to be consistent with the experimental data by Dahl et al. (2003). Depending on the liquid flow rate, a particle bed can form and develop different patterns, which are discussed in the light of various regime diagrams proposed in the literature. The fluctuation in the height of the liquid-bed interface is characterized to understand the sp...
Spatiotemporal Structure of Aeolian Particle Transport on Flat Surface
Niiya, Hirofumi; Nishimura, Kouichi
2017-05-01
We conduct numerical simulations based on a model of blowing snow to reveal the long-term properties and equilibrium state of aeolian particle transport from 10-5 to 10 m above the flat surface. The numerical results are as follows. (i) Time-series data of particle transport are divided into development, relaxation, and equilibrium phases, which are formed by rapid wind response below 10 cm and gradual wind response above 10 cm. (ii) The particle transport rate at equilibrium is expressed as a power function of friction velocity, and the index of 2.35 implies that most particles are transported by saltation. (iii) The friction velocity below 100 µm remains roughly constant and lower than the fluid threshold at equilibrium. (iv) The mean particle speed above 300 µm is less than the wind speed, whereas that below 300 µm exceeds the wind speed because of descending particles. (v) The particle diameter increases with height in the saltation layer, and the relationship is expressed as a power function. Through comparisons with the previously reported random-flight model, we find a crucial problem that empirical splash functions cannot reproduce particle dynamics at a relatively high wind speed.
The energetic alpha particle transport method EATM
Energy Technology Data Exchange (ETDEWEB)
Kirkpatrick, R.C.
1998-02-01
The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets.
Heavy Particle Transport in the Turbulent Boundary Layer
Richter, D. H.
2016-12-01
To describe the emission and transport of dust in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission and saltation process with the larger-scale atmospheric uptake and turbulent flux. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large particles can be described in a simplified Eulerian framework such as Monin-Obukhov similarity theory. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow.
Energy Technology Data Exchange (ETDEWEB)
Chang,L.S.; Schwartz, S.E.; McGraw, R.; Lewis, E.R.
2009-04-02
Four theoretical formulations of new particle formation (NPF) and one empirical formulation are used to examine the sensitivity of observable aerosol properties to NPF formulation and to properties of emitted particles in a continental-scale model for the United States over a 1-month simulation (July 2004). For each formulation the dominant source of Aitken mode particles is NPF with only a minor contribution from primary emissions, whereas for the accumulation mode both emissions and transfer of particles from the Aitken mode are important. The dominant sink of Aitken mode number is coagulation, whereas the dominant sink of accumulation mode number is wet deposition (including cloud processing), with a minor contribution from coagulation. The aerosol mass concentration, which is primarily in the accumulation mode, is relatively insensitive to NPF formulation despite order-of-magnitude differences in the Aitken mode number concentration among the different parameterizations. The dominant sensitivity of accumulation mode number concentration is to the number of emitted particles (for constant mass emission rate). Comparison of modeled aerosol properties with aircraft measurements shows, as expected, better agreement in aerosol mass concentration than in aerosol number concentration for all NPF formulations considered. These comparisons yield instances of rather accurate simulations in the planetary boundary layer, with poor model performance in the free troposphere attributed mainly to lack of representation of biomass burning and/or to long-range transport of particles from outside the model domain. Agreement between model results and measurements is improved by using smaller grid cells (12 km versus 60 km).
Energy Technology Data Exchange (ETDEWEB)
Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)
2015-12-01
An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.
Transport and Entrapment of Particles in Steel Continuous Casting
Thomas, Brian G.; Yuan, Quan; Mahmood, Sana; Liu, Rui; Chaudhary, Rajneesh
2013-08-01
A particle-capture model based on local force balances has been developed, implemented into computational models of turbulent fluid flow and particle transport, and applied to simulate the entrapment of slag inclusions and bubbles during the continuous casting of steel slabs. Turbulent flow of molten steel is computed in the nozzle and mold using transient computational fluid flow models, both with and without the effects of argon gas injection. Next, the transport and capture of many particles are simulated using a Lagrangian approach. Particles touching the dendritic interface may be pushed away, dragged away by the transverse flow, or captured into the solidifying shell according to the results of a local balance of ten different forces. This criterion was validated by reproducing experimental results in two different systems. The implications of this criterion are discussed quantitatively. Finally, the fluid flow/particle transport model results and capture criterion are applied together to predict the entrapment distributions of different sized particles in a typical slab caster. More large particles are safely removed than small ones, but the entrapment rate into the solidifying shell as defects is still very high.
Santos-Costa, D.; Hill, T. W.; Johnson, R. E.; Rymer, A.; Paty, P. S.; Coates, A. J.; Young, D. T.; Bolton, S. J.; Menietti, J. D.; Dougherty, M.
2007-12-01
Our first analysis of electron populations using a diffusion theory model allowed the discussion of plasma production and its distribution in Saturn's inner magnetosphere. Our results in modeling the interactions between low-energy electrons and different components of the Kronian system (satellites, dust, and neutral clouds) showed that 1) part of the cold plasma observed by the Cassini Plasma Spectrometer is produced during the impact-ionization of neutrals, and 2) during such a process, the hot component of the electron populations is redistributed along the field lines. Our primary result was then the theoretical demonstration that the impact- ionization process contributes to the `bimodal' energy distributions and `butterfly' pitch-angle distributions. We now present our recent investigation of the sources, sinks and transports of electron plasma populations obtained by combining CAPS-ELS data with our physical particle transport model. We will focus on presenting our results for the period where Cassini was orbiting near the equatorial plane (from late 2005 to early 2006). Plasma data will be used for constraining our modeling, and assisting with the validation of our new simulations. Interaction with neutrals will be studied in the purpose of analyzing the various Saturnian plasma domains. We will also reexamine the diffusive radial transport by discussing magnetospheric processes susceptible to drive inward transport and outward plasma flow.
Transport of Sputtered Particles in Capacitive Sputter Sources
Trieschmann, Jan
2015-01-01
The transport of sputtered aluminum inside a multi frequency capacitively coupled plasma chamber is simulated by means of a kinetic test multi-particle approach. A novel consistent set of scattering parameters obtained for a modified variable hard sphere collision model is presented for both argon and aluminum. An angular dependent Thompson energy distribution is fitted to results from Monte-Carlo simulations and used for the kinetic simulation of the transport of sputtered aluminum. For the proposed configuration the transport of sputtered particles is characterized under typical process conditions at a gas pressure of p = 0.5 Pa. It is found that - due to the peculiar geometric conditions - the transport can be understood in a one dimensional picture, governed by the interaction of the imposed and backscattered particle fluxes. It is shown that the precise geometric features play an important role only in proximity to the electrode edges, where the effect of backscattering from the outside chamber volume be...
FLUKA: A Multi-Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A.; Sala, P.R.; /CERN /INFN, Milan; Fasso, A.; /SLAC; Ranft, J.; /Siegen U.
2005-12-14
This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.
Scalable Domain Decomposed Monte Carlo Particle Transport
Energy Technology Data Exchange (ETDEWEB)
O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
Up-gradient transport in a probabilistic transport model
DEFF Research Database (Denmark)
Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.
2005-01-01
The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....
Turbulent transport of alpha particles in tokamak plasmas
Croitoru, A.; Palade, D. I.; Vlad, M.; Spineanu, F.
2017-03-01
We investigate the \\boldsymbol{E}× \\boldsymbol{B} diffusion of fusion born α particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron mode (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the α particles. According to our results, significant turbulent transport of the α particles can appear only at energies of the order of 100 KeV. We determine the corresponding conditions.
Tosco, Tiziana; Gastone, Francesca; Sethi, Rajandrea
2014-10-01
In the present work column transport tests were performed in order to study the mobility of guar-gum suspensions of microscale zero-valent iron particles (MZVI) in porous media. The results were analyzed with the purpose of implementing a radial model for the design of full scale interventions. The transport tests were performed using several concentrations of shear thinning guar gum solutions as stabilizer (1.5, 3 and 4 g/l) and applying different flow rates (Darcy velocity in the range 1 · 10- 4 to 2 · 10- 3 m/s), representative of different distances from the injection point in the radial domain. Empirical relationships, expressing the dependence of the deposition and release parameters on the flow velocity, were derived by inverse fitting of the column transport tests using a modified version of E-MNM1D (Tosco and Sethi, 2010) and the user interface MNMs (www.polito.it/groundwater/software). They were used to develop a comprehensive transport model of MZVI suspensions in radial coordinates, called E-MNM1R, which takes into account the non Newtonian (shear thinning) rheological properties of the dispersant fluid and the porous medium clogging associated with filtration and sedimentation in the porous medium of both MZVI and guar gum residual undissolved particles. The radial model was run in forward mode to simulate the injection of MZVI dispersed in guar gum in conditions similar to those applied in the column transport tests. In a second stage, we demonstrated how the model can be used as a valid tool for the design and the optimization of a full scale intervention. The simulation results indicated that several concurrent aspects are to be taken into account for the design of a successful delivery of MZVI/guar gum slurries via permeation injection, and a compromise is necessary between maximizing the radius of influence of the injection and minimizing the injection pressure, to guarantee a sufficiently homogeneous distribution of the particles around the
Computational methods for two-phase flow and particle transport
Lee, Wen Ho
2013-01-01
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Particle Swarm Transport in Fracture Networks
Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.
2012-12-01
Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These
Stochastic models of intracellular transport
Bressloff, Paul C.
2013-01-09
The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.
Cassiani, Massimo; Stohl, Andreas; Olivié, Dirk; Seland, Øyvind; Bethke, Ingo; Pisso, Ignacio; Iversen, Trond
2016-11-01
The offline FLEXible PARTicle (FLEXPART) stochastic dispersion model is currently a community model used by many scientists. Here, an alternative FLEXPART model version has been developed and tailored to use with the meteorological output data generated by the CMIP5-version of the Norwegian Earth System Model (NorESM1-M). The atmospheric component of the NorESM1-M is based on the Community Atmosphere Model (CAM4); hence, this FLEXPART version could be widely applicable and it provides a new advanced tool to directly analyse and diagnose atmospheric transport properties of the state-of-the-art climate model NorESM in a reliable way. The adaptation of FLEXPART to NorESM required new routines to read meteorological fields, new post-processing routines to obtain the vertical velocity in the FLEXPART coordinate system, and other changes. These are described in detail in this paper. To validate the model, several tests were performed that offered the possibility to investigate some aspects of offline global dispersion modelling. First, a comprehensive comparison was made between the tracer transport from several point sources around the globe calculated online by the transport scheme embedded in CAM4 and the FLEXPART model applied offline on output data. The comparison allowed investigating several aspects of the transport schemes including the approximation introduced by using an offline dispersion model with the need to transform the vertical coordinate system, the influence on the model results of the sub-grid-scale parameterisations of convection and boundary layer height and the possible advantage entailed in using a numerically non-diffusive Lagrangian particle solver. Subsequently, a comparison between the reference FLEXPART model and the FLEXPART-NorESM/CAM version was performed to compare the well-mixed state of the atmosphere in a 1-year global simulation. The two model versions use different methods to obtain the vertical velocity but no significant difference
Directed transport of Brownian particles in a changing temperature field
Energy Technology Data Exchange (ETDEWEB)
Grillo, A [DMFCI, Facolta di Ingegneria, Universita di Catania. Viale Andrea Doria 6, 95125 Catania (Italy); Jinha, A [HPL-Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Federico, S [HPL-Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Ait-Haddou, R [HPL-Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Herzog, W [HPL-Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Giaquinta, G [DMFCI, Facolta di Ingegneria, Universita di Catania. Viale Andrea Doria 6, 95125 Catania (Italy)
2008-01-11
We study the interaction of Brownian particles with a changing temperature field in the presence of a one-dimensional periodic adiabatic potential. We show the existence of directed transport through the determination of the overall current of Brownian particles crossing the boundary of the system. With respect to the case of Brownian particles in a thermal bath, we determine a current which exhibits a contribution explicitly related to the presence of a thermal gradient. Beyond the self-consistent calculation of the temperature and probability density distribution of Brownian particles, we evaluate the energy consumption for directed transport to take place. Our description is based on Streater's model, and solutions are obtained by perturbing the system from its initial thermodynamic equilibrium state.
CFD Modeling of Particle Resuspension
Degraw, Jason; Cimbala, John; Freihaut, James
2006-11-01
The phenomenon of resuspension plays a role in everyday life and is an important factor in indoor air quality. There are several models available for particle detachment, but the mechanisms by which particles are induced to lift off of a surface are not well explained in the literature. The lifting forces on a particle are generally too small to resuspend it, especially in the air flows generated by human activity (e.g., walking). We model the interaction of the aerodynamic disturbances and a thin layer of particles deposited on the surface. A standard CFD solver is used to compute the flow, and the particle transport model is one-way-coupled with the flow solution. Several time-dependent flows are considered, including an idealized footstep. The foot is represented using an immersed boundary technique, and is modeled as a disk that moves up and down with a trajectory patterned after experimental gait data. A jet and a radially moving vortex are generated as the foot approaches the floor. The strength of the jet is determined by the details of the foot movement near the surface. If the foot is slowed as it nears the floor, we find maximum velocities around 3 m/s, while the maximum velocity is more than doubled by a sudden stop. We have also computed a ``vacuum cleaner'' case to model the airflow generated by cleaning activities. In either case, the wall shear along the floor and the near-wall flow structure are used to examine the resuspension of particles.
Energy Technology Data Exchange (ETDEWEB)
Faure, M.H.
1994-03-01
Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs.
Spatiotemporal Structure of Aeolian Particle Transport on Flat Surface
Niiya, Hirofumi
2016-01-01
We conduct numerical simulations based on a model of blowing snow to reveal the long-term properties and equilibrium state of aeolian particle transport from $10^{-5} \\hspace{0.5 ex} \\mathrm{m}$ to $10 \\hspace{0.5 ex} \\mathrm{m}$ above the flat surface. The numerical results are s follows. (i) Time-series data of particle transport are divided into development, relaxation, and equilibrium phases, which are formed by rapid wind response below $10 \\hspace{0.5 ex} \\mathrm{cm}$ and gradual wind response above $10 \\hspace{0.5 ex} \\mathrm{cm}$. (ii) The particle transport rate at equilibrium is expressed as a power function of friction velocity, and the index of 2.35 implies that most particles are transported by saltation. (iii) The friction velocity below $100 \\hspace{0.5 ex} \\mu\\mathrm{m}$ remains roughly constant and lower than the fluid threshold at equilibrium. (iv) The mean particle speed above $300 \\hspace{0.5 ex} \\mu\\mathrm{m}$ is less than the wind speed, whereas that below $300 \\hspace{0.5 ex} \\mu\\mathrm...
Energetic particle transport across the mean magnetic field: before diffusion
Laitinen, T
2016-01-01
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short time-scales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in non-diffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1-10 MeV protons in turbulence conditions typical of the solar wind at 1~AU. Subsequently, particles decouple from th...
Verification of Gyrokinetic Particle of Turbulent Simulation of Device Size Scaling Transport
Institute of Scientific and Technical Information of China (English)
LIN Zhihong; S. ETHIER; T. S. HAHM; W. M. TANG
2012-01-01
Verification and historical perspective are presented on the gyrokinetic particle simulations that discovered the device size scaling of turbulent transport and indentified the geometry model as the source of the long-standing disagreement between gyrokinetic particle and continuum simulations.
Energy Technology Data Exchange (ETDEWEB)
M. McGraw
2000-04-13
The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.
Particle, momentum and thermal transport in the PTRANSP code
Bateman, G.; Halpern, F. D.; Kritz, A. H.; Pankin, A. Y.; Rafiq, T.; McCune, D. C.; Budny, R. V.; Indireshkumar, K.
2008-11-01
The combined effects of particle, momentum and thermal transport are investigated in tokamak discharges using a coupled system of transport equations implemented in the PTRANSP integrated modeling code. The magnetic diffusion equation is advanced separately, along with the evolution of the equilibrium. Simulations are carried out using theory-based models to compute transport, sources and sinks. Boundary conditions are either read from data or computed using a pedestal model for H-mode discharges. Different techniques are explored for controlling numerical problems [1] in time-dependent simulations that include sawtooth oscillations and other rapid changes in the profiles. Results for the density, temperature and toroidal angular velocity profiles are compared with experimental data. [1] S.C. Jardin et al, ``On 1D diffusion problems with a gradient-dependent diffusion coefficient''; G.V. Pereverzev and G. Corrigan, ``Stable numeric scheme for diffusion equation with a stiff transport''; both papers to appear in Comp. Phys. Comm. (2008).
A Sediment Transport Model for Sewers
DEFF Research Database (Denmark)
Mark, Ole; Larsson, Johan; Larsen, Torben
1993-01-01
This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...
Directory of Open Access Journals (Sweden)
C. A. Stroud
2012-02-01
Full Text Available Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007 in southern Ontario (ON, Canada, were used to evaluate Environment Canada's regional chemical transport model predictions of primary organic aerosol (POA. Environment Canada's operational numerical weather prediction model and the 2006 Canadian and 2005 US national emissions inventories were used as input to the chemical transport model (named AURAMS. Particle-component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON and two rural sites (Harrow and Bear Creek, ON to derive hydrocarbon-like organic aerosol (HOA factors. Co-located carbon monoxide (CO, PM_{2.5} black carbon (BC, and PM_{1} SO_{4} measurements were also used for evaluation and interpretation, permitting a detailed diagnostic model evaluation.
At the urban site, good agreement was observed for the comparison of daytime campaign PM_{1} POA and HOA mean values: 1.1 μg m^{−3} vs. 1.2 μg m^{−3}, respectively. However, a POA overprediction was evident on calm nights due to an overly-stable model surface layer. Biases in model POA predictions trended from positive to negative with increasing HOA values. This trend has several possible explanations, including (1 underweighting of urban locations in particulate matter (PM spatial surrogate fields, (2 overly-coarse model grid spacing for resolving urban-scale sources, and (3 lack of a model particle POA evaporation process during dilution of vehicular POA tail-pipe emissions to urban scales. Furthermore, a trend in POA bias was observed at the urban site as a function of the BC/HOA ratio, suggesting a possible association of POA underprediction for diesel combustion sources. For several time periods, POA overprediction was also observed for sulphate-rich plumes, suggesting that our model POA fractions for the PM_{2.5} chemical
Pavish, D. L.; Spaulding, M. L.
1977-01-01
A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.
Transport of energetic particles in the heliosphere
Energy Technology Data Exchange (ETDEWEB)
Schreiner, Cedric
2014-07-01
With most of our simulations being numerically very expensive, we were able to run only a few different setups. The overall conclusion we have drawn so far is that our code - or PIC codes in general - is suitable for studies of particle transport characteristics on a microscopic scale. However, simulation runs and physical setups have to be chosen carefully, in order not to waste computing time. We are planning follow-up simulations, which will be run either within our current project pr85li or in a successional project. Especially the above mentioned scenario of electrons scattering off of Whistler modes will be a point of interest, since it is a relevant process in the solar wind. (orig.)
DEFF Research Database (Denmark)
Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael
2015-01-01
The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An...... conclude that more experimental cross section data are needed in the lower energy range in order to resolve this contradiction, ideally combined with more rigorous models for annihilation on compounds....
Directory of Open Access Journals (Sweden)
Olaf Lubeck
2009-01-01
Full Text Available The IBM Cell Broadband Engine (BE is a novel multi-core chip with the potential for the demanding floating point performance that is required for high-fidelity scientific simulations. However, data movement within the chip can be a major challenge to realizing the benefits of the peak floating point rates. In this paper, we present the results of implementing Sweep3D on the Cell/B.E. using an intra-chip message passing model that minimizes data movement. We compare the advantages/disadvantages of this programming model with a previous implementation using a master–worker threading strategy. We apply a previously validated micro-architecture performance model for the application executing on the Cell/B.E. (based on our previous work in Monte Carlo performance models, that predicts overall CPI (cycles per instruction, and gives a detailed breakdown of processor stalls. Finally, we use the micro-architecture model to assess the performance of future design parameters for the Cell/B.E. micro-architecture. The methodologies and results have broader implications that extend to multi-core architectures.
Momentum and particle transport in a nonhomogenous canopy
Gould, Andrew W.
Turbulent particle transport through the air plays an important role in the life cycle of many plant pathogens. In this study, data from a field experiment was analyzed to explore momentum and particle transport within a grape vineyard. The overall goal of these experiments was to understand how the architecture of a sparse agricultural canopy interacts with turbulent flow and ultimately determines the dispersion of airborne fungal plant pathogens. Turbulence in the vineyard canopy was measured using an array of four sonic anemometers deployed at heights z/H 0.4, 0.9, 1.45, and 1.95 where z is the height of the each sonic and H is the canopy height. In addition to turbulence measurements from the sonic anemometers, particle dispersion was measured using inert particles with the approximate size and density of powdery mildew spores and a roto-rod impaction trap array. Measurements from the sonic anemometers demonstrate that first and second order statistics of the wind field are dependent on wind direction orientation with respect to vineyard row direction. This dependence is a result of wind channeling which transfers energy between the velocity components when the wind direction is not aligned with the rows. Although the winds have a strong directional dependence, spectra analysis indicates that the structure of the turbulent flow is not fundamentally altered by the interaction between wind direction and row direction. Examination of a limited number of particle release events indicates that the wind turning and channeling observed in the momentum field impacts particle dispersion. For row-aligned flow, particle dispersion in the direction normal to the flow is decreased relative to the plume spread predicted by a standard Gaussian plume model. For flow that is not aligned with the row direction, the plume is found to rotate in the same manner as the momentum field.
High performance stream computing for particle beam transport simulations
Energy Technology Data Exchange (ETDEWEB)
Appleby, R; Bailey, D; Higham, J; Salt, M [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)], E-mail: Robert.Appleby@manchester.ac.uk, E-mail: David.Bailey-2@manchester.ac.uk
2008-07-15
Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed.
High performance stream computing for particle beam transport simulations
Appleby, R.; Bailey, D.; Higham, J.; Salt, M.
2008-07-01
Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed.
Particle transport in density gradient driven TE mode turbulence
Skyman, Andreas; Strand, P I
2011-01-01
The turbulent transport of main ion and trace impurities in a tokamak device in the presence of steep electron density gradients has been studied. The parameters are chosen for trapped electron (TE) mode turbulence, driven primarily by steep electron density gradients relevant to H-mode physics, but with a transition to temperature gradient driven turbulence as the density gradient flattens. Results obtained through non-linear (NL) and quasilinear (QL) gyrokinetic simulations using the GENE code are compared with results obtained from a fluid model. Main ion and impurity transport is studied by examining the balance of convective and diffusive transport, as quantified by the density gradient corresponding to zero particle flux (peaking factor). Scalings are obtained for the impurity peaking with the background electron density gradient and the impurity charge number. It is shown that the impurity peaking factor is weakly dependent on impurity charge and significantly smaller than the driving electron density ...
Effective N-particle collisions in a hadronic transport approach
Oliinychenko, Dmytro
2016-01-01
Hadronic transport approaches based on an effective solution of the relativistic Boltzmann equation are widely applied for the dynamical description of heavy ion reactions at low beam energies. At high densities, the assumption of binary interactions often used in hadronic transport approaches may not be applicable anymore. Therefore, we introduce a way to include N-particle collisions effectively in a transport approach. This framework provides the opportunity to interpolate in a dynamical way between two different limits of kinetic theory: the dilute gas approximation and the ideal fluid case. This approach will be important for studies of the dynamical evolution of heavy ion collisions at low and intermediate energies as experimentally investigated at the beam energy scan program at RHIC, and in the future at FAIR and NICA. On the other hand, this new way of modelling hot and dense strongly-interacting matter might be relevant for small systems at high energies (LHC and RHIC) as well.
Peristaltic particle transport using the Lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Connington, Kevin William [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr [Los Alamos National Laboratory; Chen, Shiyi [JOHNS HOPKINS UNIV.
2009-01-01
Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.
Nonclassical Particle Transport in 1-D Random Periodic Media
Vasques, Richard; Slaybaugh, Rachel N
2016-01-01
We investigate the accuracy of the recently proposed nonclassical transport equation. This equation contains an extra independent variable compared to the classical transport equation (the path-length $s$), and models particle transport taking place in homogenized random media in which a particle's distance-to-collision is not exponentially distributed. To solve the nonclassical equation one needs to know the $s$-dependent ensemble-averaged total cross section, $\\Sigma_t(\\mu,s)$, or its corresponding path-length distribution function, $p(\\mu,s)$. We consider a 1-D spatially periodic system consisting of alternating solid and void layers, randomly placed in the $x$-axis. We obtain an analytical expression for $p(\\mu,s)$ and use this result to compute the corresponding $\\Sigma_t(\\mu,s)$. Then, we proceed to numerically solve the nonclassical equation for different test problems in rod geometry; that is, particles can move only in the directions $\\mu=\\pm 1$. To assess the accuracy of these solutions, we produce ...
Transport of active ellipsoidal particles in ratchet potentials
Energy Technology Data Exchange (ETDEWEB)
Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn; Wu, Jian-Chun [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China)
2014-03-07
Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)
Directory of Open Access Journals (Sweden)
C. A. Stroud
2012-09-01
Full Text Available Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007 in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA and two other carbonaceous species, black carbon (BC and carbon monoxide (CO, made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON and two rural sites (Harrow and Bear Creek, ON to derive hydrocarbon-like organic aerosol (HOA factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA. Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species.
At the rural sites, daytime mean PM_{1} POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM_{1} POA and HOA mean values, 1.1 μg m^{−3} and 1.2 μg m^{−3}, respectively. Biases in model POA predictions also trended from positive to negative with increasing HOA values. Periods of POA over-prediction were most evident at the urban site on calm nights due to an overly-stable model surface layer
Charged Particle Energization and Transport in the Magnetotail during Substorms
Pan, Qingjiang
This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical. The simulation results validated by the observations show that electrons following a power law distribution at high energies are generated earthward of the reconnection site, and that the majority of the energetic electrons observed in the inner magnetosphere are caused by adiabatic acceleration in association with magnetic dipolarizations and fast flows during earthward transport. We extend the global MHD+LSK simulations to examine ion energization and compare it with electron energization. The simulations demonstrate that ions in the magnetotail are first nonadiabatically accelerated in the weak
Particle Simulations of DARHT-II Transport System
Energy Technology Data Exchange (ETDEWEB)
Poole, B; Chen, Y J
2001-06-11
The DARHT-II beam line utilizes a fast stripline kicker to temporally chop a high current electron beam from a single induction LINAC and deliver multiple temporal electron beam pulses to an x-ray converter target. High beam quality needs to be maintained throughout the transport line from the end of the accelerator through the final focus lens to the x-ray converter target to produce a high quality radiographic image. Issues that will affect beam quality such as spot size and emittance at the converter target include dynamic effects associated with the stripline kicker as well as emittance growth due to the nonlinear forces associated with the kicker and various focusing elements in the transport line. In addition, dynamic effects associated with transverse resistive wall instability as well as gas focusing will affect the beam transport. A particle-in-cell code is utilized to evaluate beam transport in the downstream transport line in DARHT-II. External focusing forces are included utilizing either analytic expressions or field maps. Models for wakefields from the beam kicker, transverse resistive wall instability, and gas focusing are included in the simulation to provide a more complete picture of beam transport in DARHT-II. From these simulations, for various initial beam loads based on expected accelerator performance the temporally integrated target spot size and emittance can be estimated.
Particle Simulations of DARHT-II Transport System
Energy Technology Data Exchange (ETDEWEB)
Poole, B; Chen, Y J
2001-06-11
The DARHT-II beam line utilizes a fast stripline kicker to temporally chop a high current electron beam from a single induction LINAC and deliver multiple temporal electron beam pulses to an x-ray converter target. High beam quality needs to be maintained throughout the transport line from the end of the accelerator through the final focus lens to the x-ray converter target to produce a high quality radiographic image. Issues that will affect beam quality such as spot size and emittance at the converter target include dynamic effects associated with the stripline kicker as well as emittance growth due to the nonlinear forces associated with the kicker and various focusing elements in the transport line. In addition, dynamic effects associated with transverse resistive wall instability as well as gas focusing will affect the beam transport. A particle-in-cell code is utilized to evaluate beam transport in the downstream transport line in DARHT-II. External focusing forces are included utilizing either analytic expressions or field maps. Models for wakefields from the beam kicker, transverse resistive wall instability, and gas focusing are included in the simulation to provide a more complete picture of beam transport in DARHT-II. From these simulations, for various initial beam loads based on expected accelerator performance the temporally integrated target spot size and emittance can be estimated.
Entropic Ratchet transport of interacting active Brownian particles
Energy Technology Data Exchange (ETDEWEB)
Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)
2014-11-21
Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.
Trieschmann, Jan; Schmidt, Frederik; Mussenbrock, Thomas
2016-01-01
The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kinetic approach is actually needed and which numerical concepts allow for the inherent nonequilibrium behavior of the charged and neutral particles. At the example of a generic sputtering discharge both the fundamentals of the applied Monte Carlo me...
Overview of Particle and Heavy Ion Transport Code System PHITS
Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit
2014-06-01
A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.
Community Sediment Transport Model
2007-01-01
are used to determine that model results are consistent across compilers, platforms, and computer architectures , and to ensure that changes in code do...Mississippi State University: Bhate During the early months of this project, the focus was on understanding ROMS-CSTM model, architecture , and...Marchesiello, J.C. McWilliams, & K.D. Stolzenbach, 2007: Sediment transport modeling on Southern Californian shelves: A ROMS case study. Continental
Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator
Energy Technology Data Exchange (ETDEWEB)
Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.
2009-05-21
We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.
Chen, Xueshun; Wang, Zifa; Yu, Fangqun; Pan, Xiaole; Li, Jie; Ge, Baozhu; Wang, Zhe; Hu, Min; Yang, Wenyi; Chen, Huansheng
2017-08-01
Mixing state of black carbon (BC) particles has significant impacts on their radiative forcing, visibility impairment and the ability in modifying cloud formation. In this study, an aging scheme of BC particles using prognostic variables based on aerosol microphysics was incorporated into a regional atmospheric chemistry model, Nested Air Quality Prediction Modeling System with Advanced Particle Microphysics (NAQPMS + APM), to investigate the temporal and spatial variations in aging time scale of BC particles in polluted atmosphere over central-eastern China. The model results show that the aging time scale has a clear diurnal variation with a lower value in the daytime and a higher value in the nighttime. The shorter aging time scale in the daytime is due to condensation aging associated with intense photochemical reaction while the longer aging time scale in the nighttime is due to coagulation aging, which is much slower than that due to condensation. In Beijing, the aging time scale is 2 h or less in the surface layer in daytime, which is far below the fixed 1.2 days used in many models. As a result, the fraction of hydrophilic BC particles by the new scheme is larger than that by the scheme with fixed aging time scale though the mean aging time scale by the new scheme is much larger than 1.2 days. Hydrophilic fraction of BC particles increases with the increase of height. Over central-eastern China, the averaged aging time scale calculated by the new scheme is in the range from 12 h to 7 days, with higher values in regions far from the source areas. Hydrophilic fraction of BC particles is more than 90% at the higher levels in polluted atmosphere. Difference of simulated BC concentration with internal mixing and microphysical aging is within 5%, indicating that the assumption of internal mixing for BC particles to respond to in-cloud scavenging is more appropriate than the external mixing assumption in polluted atmosphere over central-eastern China.
Parallelization of a Monte Carlo particle transport simulation code
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
High energy particle transport code NMTC/JAM
Energy Technology Data Exchange (ETDEWEB)
Niita, Koji [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan); Meigo, Shin-ichiro; Takada, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-03-01
We have developed a high energy particle transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI97. The applicable energy range of NMTC/JAM is extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code JAM for the intra-nuclear cascade part. For the evaporation and fission process, we have also implemented a new model, GEM, by which the light nucleus production from the excited residual nucleus can be described. According to the extension of the applicable energy, we have upgraded the nucleon-nucleus non-elastic, elastic and differential elastic cross section data by employing new systematics. In addition, the particle transport in a magnetic field has been implemented for the beam transport calculations. In this upgrade, some new tally functions are added and the format of input of data has been improved very much in a user friendly manner. Due to the implementation of these new calculation functions and utilities, consequently, NMTC/JAM enables us to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than before. This report serves as a user manual of the code. (author)
Particle Flow Characteristics and Transportation Optimization of Superfine Unclassified Backfilling
Directory of Open Access Journals (Sweden)
Ke-ping Zhou
2017-01-01
Full Text Available In order to investigate the high volume fraction problem of the solid phase in superfine unclassified backfilling pipeline transportation, characteristic parameters were obtained by fitting to test data with an R–R particle size distribution function; then, a Euler dense-phase DPM (Discrete phase model model was established by applying solid–liquid two-phase flow theory and the kinetic theory of granular flow (KTGF. The collision and friction of particles were imported by the UDF (User-define function function, and the pipeline fluidization system, dominated by interphase drag forces, was analyzed. The best concentration and flow rate were finally obtained by comparing the results of the stress conditions, flow field characteristics, and the discrete phase distributions. It is revealed that reducing the concentration and flow rate could control pressure loss and pipe damage to a certain degree, while lower parameters show negative effects on the transportation integrity and backfilling strength. Indoor tests and field industrial tests verify the reliability of the results of the numerical simulations. Research shows that the model optimization method is versatile and practical for other, similar, complex flow field working conditions.
Up-gradient transport in a probabilistic transport model
DEFF Research Database (Denmark)
Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.
2005-01-01
The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard...... deviation of the step size is large compared to its value when the gradient is below critical. For symmetric as well as asymmetric off-axis fueling, the model is capable of producing profiles peaking at the axis. Additionally, profile consistency is obtained over a broad range of source strengths....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....
Particle transport in evolving protoplanetary disks: Implications for results from Stardust
Hughes, Anna L H
2010-01-01
Samples returned from comet 81P/Wild 2 by Stardust confirm that substantial quantities of crystalline silicates were incorporated into the comet at formation. We investigate the constraints that this observation places upon protoplanetary disk physics, assuming that outward transport of particles processed at high temperatures occurs via advection and turbulent diffusion in an evolving disk. We also look for constraints on particle formation locations. Our results are based upon 1D disk models that evolve with time under the action of viscosity and photoevaporation, and track solid transport using an ensemble of individual particle trajectories. We find that two classes of disk model are consistent with the Stardust findings. One class features a high particle diffusivity (a Schmidt number Sc 1, such models are unlikely to be viable, and significant outward transport requires that the particles of interest settle into a midplane layer that experiences an outward gas flow. In either class of models, the mass ...
Frandsen, Michael W.; Wessol, Daniel E.; Wheeler, Floyd J.
2001-01-16
Methods and computer executable instructions are disclosed for ultimately developing a dosimetry plan for a treatment volume targeted for irradiation during cancer therapy. The dosimetry plan is available in "real-time" which especially enhances clinical use for in vivo applications. The real-time is achieved because of the novel geometric model constructed for the planned treatment volume which, in turn, allows for rapid calculations to be performed for simulated movements of particles along particle tracks there through. The particles are exemplary representations of neutrons emanating from a neutron source during BNCT. In a preferred embodiment, a medical image having a plurality of pixels of information representative of a treatment volume is obtained. The pixels are: (i) converted into a plurality of substantially uniform volume elements having substantially the same shape and volume of the pixels; and (ii) arranged into a geometric model of the treatment volume. An anatomical material associated with each uniform volume element is defined and stored. Thereafter, a movement of a particle along a particle track is defined through the geometric model along a primary direction of movement that begins in a starting element of the uniform volume elements and traverses to a next element of the uniform volume elements. The particle movement along the particle track is effectuated in integer based increments along the primary direction of movement until a position of intersection occurs that represents a condition where the anatomical material of the next element is substantially different from the anatomical material of the starting element. This position of intersection is then useful for indicating whether a neutron has been captured, scattered or exited from the geometric model. From this intersection, a distribution of radiation doses can be computed for use in the cancer therapy. The foregoing represents an advance in computational times by multiple factors of
Energy Technology Data Exchange (ETDEWEB)
Garbet, X.; Ghendrih, Ph.; Sarazin, Y. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint-Paul-lez-Durance (France); Grandgirard, V.; Agullo, O.; Benkadda, S. [CNRS-Universite de Provence, Equipe de Dynamique des Systemes Complexes, Aix-Marseille 1, 13 (France)
2000-09-01
Numerous experimental data show the existence of non-diffusive transport in tokamak plasmas. This article deals with the trajectories of test particles going through edge turbulence in scrape off layer (that is in the region where magnetic field lines are open). The interchange mechanism of the turbulence tends to generate convective cells by electrical shift, the radial extension is comparable to the size of the system. The resulting transport is mainly a ballistic-type transport whose time features are very short. Whenever the transport is directed towards outside, it appears profitable because it produces a broadening of the scrape off layer. On the contrary, the existence of ballistic trajectories directed towards the inside of the discharge implies an important contamination of the plasma by impurities coming from the wall. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
Walsh, Jonathan A., E-mail: walshjon@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Palmer, Todd S. [Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, 116 Radiation Center, Corvallis, OR 97331 (United States); Urbatsch, Todd J. [XTD-IDA: Theoretical Design, Integrated Design and Assessment, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2015-12-15
Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.
Isotope effects on particle transport in the Compact Helical System
Tanaka, K.; Okamura, S.; Minami, T.; Ida, K.; Mikkelsen, D. R.; Osakabe, M.; Yoshimura, Y.; Isobe, M.; Morita, S.; Matsuoka, K.
2016-05-01
The hydrogen isotope effects of particle transport were studied in the hydrogen and deuterium dominant plasmas of the Compact Helical System (CHS). Longer decay time of electron density after the turning-off of the gas puffing was observed in the deuterium dominant plasma suggesting that the recycling was higher and/or the particle confinement was better in the deuterium dominant plasma. Density modulation experiments showed the quantitative difference of the particle transport coefficients. Density was scanned from 0.8 × 1019 m-3 to 4 × 1019 m-3 under the same magnetic field and almost the same heating power. In the low density regime (line averaged density 2.5 × 1019 m-3) no clear difference was observed. This result indicates that the isotope effects of particle transport exist only in the low density regime. Comparison with neoclassical transport coefficients showed that the difference of particle transport is likely to be due to the difference of turbulence driven anomalous transport. Linear character of the ion scale turbulence was studied. The smaller linear growth rate qualitatively agreed with the reduced particle transport in the deuterium dominant plasma of the low density regime.
Transport modelling in coastal waters using stochastic differential equations
Charles, W.M.
2007-01-01
In this thesis, the particle model that takes into account the short term correlation behaviour of pollutants dispersion has been developed. An efficient particle model for sediment transport has been developed. We have modified the existing particle model by adding extra equations for the suspensio
Heyman, J.; Bohorquez, P.; Ancey, C.
2016-10-01
In gravel bed rivers, bed load transport exhibits considerable variability in time and space. Recently, stochastic bed load transport theories have been developed to address the mechanisms and effects of bed load transport fluctuations. Stochastic models involve parameters such as particle diffusivity, entrainment, and deposition rates. The lack of hard information on how these parameters vary with flow conditions is a clear impediment to their application to real-world scenarios. In this paper, we determined the closure equations for the above parameters from laboratory experiments. We focused on shallow supercritical flow on a sloping mobile bed in straight channels, a setting that was representative of flow conditions in mountain rivers. Experiments were run at low sediment transport rates under steady nonuniform flow conditions (i.e., the water discharge was kept constant, but bed forms developed and migrated upstream, making flow nonuniform). Using image processing, we reconstructed particle paths to deduce the particle velocity and its probability distribution, particle diffusivity, and rates of deposition and entrainment. We found that on average, particle acceleration, velocity, and deposition rate were responsive to local flow conditions, whereas entrainment rate depended strongly on local bed activity. Particle diffusivity varied linearly with the depth-averaged flow velocity. The empirical probability distribution of particle velocity was well approximated by a Gaussian distribution when all particle positions were considered together. In contrast, the particles located in close vicinity to the bed had exponentially distributed velocities. Our experimental results provide closure equations for stochastic or deterministic bed load transport models.
Neutral Particle Transport in Cylindrical Plasma Simulated by a Monte Carlo Code
Institute of Scientific and Technical Information of China (English)
YU Deliang; YAN Longwen; ZHONG Guangwu; LU Jie; YI Ping
2007-01-01
A Monte Carlo code (MCHGAS) has been developed to investigate the neutral particle transport.The code can calculate the radial profile and energy spectrum of neutral particles in cylindrical plasmas.The calculation time of the code is dramatically reduced when the Splitting and Roulette schemes are applied. The plasma model of an infinite cylinder is assumed in the code,which is very convenient in simulating neutral particle transports in small and middle-sized tokamaks.The design of the multi-channel neutral particle analyser (NPA) on HL-2A can be optimized by using this code.
Groupage Cargo Transportation Model
Directory of Open Access Journals (Sweden)
Aleksejevs Ruslans
2016-03-01
Full Text Available In this work we consider a specific problem of optimal planning of maritime transportation of multiproduct cargo by ships of one (corporate strategy or several (partially corporate strategy companies: the core of the problem consists of the existence of the network of intermediate seaports (i.e. transitional seaports, where for every ship arrived the cargo handling is done, and which are situated between the starting and the finishing seaports. In this work, there are mathematical models built from scratch in the form of multicriteria optimization problem; then the goal attainment method of Gembicki is used for reducing the built models to a one-criterion problem of linear programming.
High energy electromagnetic particle transportation on the GPU
Canal, P.; Elvira, D.; Jun, S. Y.; Kowalkowski, J.; Paterno, M.; Apostolakis, J.
2014-06-01
We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.
High energy electromagnetic particle transportation on the GPU
Energy Technology Data Exchange (ETDEWEB)
Canal, P. [Fermilab; Elvira, D. [Fermilab; Jun, S. Y. [Fermilab; Kowalkowski, J. [Fermilab; Paterno, M. [Fermilab; Apostolakis, J. [CERN
2014-01-01
We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.
Development of A Stochastic Bedload Transport Model
Tsai, C. W.; Kuai, Z.
2009-12-01
Sediment particle transport can be viewed as a Markov chain process. In a non-equilibrium condition, the interchange of sediment particles occurs not only between the bedload layer and the bed surface, but also across the interface between bedload and suspended load. We can quantify the number of saltating particles by modeling the occupancy probabilities vector of particles staying in three states, namely, the bed surface, bedload layer, and suspended sediment layer. Most bedload transport models in the literature are formulated in terms of the mean bed shear stress or flow velocity. The proposed Markovian bedload model and the bedload transport rates are governed by various transition probabilities. These transition probabilities are all functions of the bed shear stress. The stochastic property of the bed shear stress can be incorporated into the above bedload transport model knowing the probability density function of the bed shear stress. This study presents a theoretical method to compute stochastic bedload transport rates considering the stochastic fluctuation of the bed shear stress.
Microstripes for transport and separation of magnetic particles
DEFF Research Database (Denmark)
Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt
2012-01-01
We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...
ULF Waves and Diffusive Radial Transport of Charged Particles
Ali, Ashar Fawad
The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic
An Optimal Transport Formulation of the Linear Feedback Particle Filter
Taghvaei, Amirhossein; Mehta, Prashant G.
2015-01-01
Feedback particle filter (FPF) is an algorithm to numerically approximate the solution of the nonlinear filtering problem in continuous time. The algorithm implements a feedback control law for a system of particles such that the empirical distribution of particles approximates the posterior distribution. However, it has been noted in the literature that the feedback control law is not unique. To find a unique control law, the filtering task is formulated here as an optimal transportation pro...
Directed Transport of Interacting Particle Systems: Recent Progress
Institute of Scientific and Technical Information of China (English)
ZHENG Zhi-Gang
2005-01-01
Recent developments in studies of directed transport processes in interacting particle systems are retrospected. Due to the interactions among elements, the directed transport process exhibits complicated and novel cooperative dynamics. We considered various possibilities in achieving ratchet motion by breaking different symmetries of many-body systems. It is shown that the directional transport can even be induced by breaking the coupling symmetry and the spatiotemporal symmetries.
Despagne, Wilfried; Frenod, Emmanuel
2014-01-01
Purpose: The purpose of this paper is to investigate the road freight haulage activity. Using the physical and data flow information from a freight forwarder, we intend to model the flow of inbound and outbound goods in a freight transport hub. Approach: This paper presents the operation of a road haulage group. To deliver goods within two days to any location in France, a haulage contractor needs to be part of a network. This network handles the processing of both physical goods and data. We...
Isobe, Mitsutaka; Shinohara, Kouji
Escaping energetic ion diagnostics in magnetically confined plasma experiments are described in this lecture note. Experimental results from escaping energetic ion diagnostics in TFTR, JFT-2M, CHS and W7-AS are shown. In addition to mechanism of energetic ion loss from a viewpoint of particle orbit, effect of MHD activity on energetic particle transport is reviewed.
Transport of large particles released in a nuclear accident
Energy Technology Data Exchange (ETDEWEB)
Poellaenen, R.; Toivonen, H.; Lahtinen, J.; Ilander, T.
1995-10-01
Highly radioactive particulate material may be released in a nuclear accident or sometimes during normal operation of a nuclear power plant. However, consequence analyses related to radioactive releases are often performed neglecting the particle nature of the release. The properties of the particles have an important role in the radiological hazard. A particle deposited on the skin may cause a large and highly non-uniform skin beta dose. Skin dose limits may be exceeded although the overall activity concentration in air is below the level of countermeasures. For sheltering purposes it is crucial to find out the transport range, i.e. the travel distance of the particles. A method for estimating the transport range of large particles (aerodynamic diameter d{sub a} > 20 {mu}m) in simplified meteorological conditions is presented. A user-friendly computer code, known as TROP, is developed for fast range calculations in a nuclear emergency. (orig.) (23 refs., 13 figs.).
Mathematical modelling of the combustion of a single wood particle
Energy Technology Data Exchange (ETDEWEB)
Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)
2006-01-15
A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)
Yang, Zhifeng; Wang, Jun; Ichoku, Charles; Hyer, Edward; Zeng, Jing
2013-11-01
transport and vertical distribution of smoke and dust aerosols over the northern sub-Saharan African region are simulated in the Weather Research and Forecasting model with Chemistry (WRF-Chem), which uses hourly dynamic smoke emissions from the Fire Locating and Modeling of Burning Emissions database derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) fire products. Model performance for February 2008 is evaluated using MODIS true color images, aerosol optical depth (AOD) measurements from the Aerosol Robotic Network, MODIS AOD retrievals, and the Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Between the equator and 10°N, Saharan dust is often mixed with smoke near the surface, and their transport patterns manifest the interplay of trade winds, subtropical highs, precipitation associated with the Intertropical Convergence Zone, and the high mountains located near the Great Rift Valley region. At the 700 hPa level and above, smoke layers spread farther to the north and south and are often above the dust layers over the Sahel region. In some cases, transported smoke can also be mixed with dust over the Saharan region. Statistically, 5% of the CALIOP valid measurements in February 2007-2011 show aerosol layers either above or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region.
Trieschmann, Jan; Mussenbrock, Thomas
2016-01-01
The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kinetic approach is actually needed and which numerical concepts allow for the inherent nonequilibrium behavior of the charged and neutral particles. At the example of a generic sputtering discharge both the fundamentals of the applied Monte Carlo methods as well as the conceptual details in the context of the sputtering scenario are elaborated on. Finally, two in the context of sputtering transport simulations often exploited assumptions, namely on the energy distribution of impinging ions as well as on the test particle approach, are validated for the proposed example discharge.
Particle and thermal transport due to drift resistive ballooning modes
Goldstein, T.; Rafiq, T.; Kritz, A. H.; Bateman, G.; Pankin, A. Y.
2009-11-01
The ion-temperature-gradient and trapped electron modes are primary candidates for producing the turbulence that drives anomalous transport in the core of magnetically confined plasmas. The situation at the edge is different. Since the edge plasma is influenced strongly by collisions, it is expected that resistive ballooning modes (RBMs) are an important driver of turbulence in the edge region. In this work, a new advanced RBM model [1] is tested as a function of plasma parameters. In this model, the eigenvalues and eigenvectors are used together with a quasi-linear mixing length estimate to determine fluxes and diffusivities. Particle and thermal transport coefficients are investigated in systematic scans over plasma density, density gradient, electron and ion temperature gradients, magnetic q, collisions, magnetic shear, finite Larmor radius effects, and pressure gradient. In the low temperature plasma region, it is found that RBM diffusivities increase with increasing density gradient, magnetic q, and collisionality.[4pt] [1] T. Rafiq, et al, poster at this APS meeting
Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?
White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.
2013-12-01
Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image
Drift Wave Test Particle Transport in Reversed Shear Profile
Energy Technology Data Exchange (ETDEWEB)
Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.
1998-06-01
Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated.
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa
2014-07-01
The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.
Stochastic particle based models for suspended particle movement in surface flows
Institute of Scientific and Technical Information of China (English)
Christina W.TSAI; Chuanjian MAN; Jungsun OH
2014-01-01
Modeling of suspended sediment particle movement in surface water can be achieved by stochastic particle tracking model approaches. In this paper, different mathematical forms of particle tracking models are introduced to describe particle movement under various flow conditions, i.e., the stochastic diffusion process, stochastic jump process, and stochastic jump diffusion process. While the stochastic diffusion process can be used to represent the stochastic movement of suspended particles in turbulent flows, the stochastic jump and the stochastic jump diffusion processes can be used to describe suspended particle movement in the occurrences of a sequence of extreme flows. An extreme flow herein is defined as a hydrologic flow event or a hydrodynamic flow phenomenon with a low probability of occurrence and a high impact on its ambient flow environment. In this paper, the suspended sediment particle is assumed to immediately follow the extreme flows in the jump process (i.e. the time lag between the flow particle and the sediment particle in extreme flows is considered negligible). In the proposed particle tracking models, a random term mainly caused by fluid eddy motions is modeled as a Wiener process, while the random occurrences of a sequence of extreme flows can be modeled as a Poisson process. The frequency of occurrence of the extreme flows in the proposed particle tracking model can be explicitly accounted for by the Poisson process when evaluating particle movement. The ensemble mean and variance of particle trajectory can be obtained from the proposed stochastic models via simulations. The ensemble mean and variance of particle velocity are verified with available data. Applicability of the proposed stochastic particle tracking models for sediment transport modeling is also discussed.
The role of unsteady forces for sediment particles in bedload transport
Liu, Detian; Liu, Xiaofeng; Fu, Xudong
2016-04-01
In engineering, bedload transport is usually predicted by a variety of formulas, and huge uncertainty is found from case to case. One of the fundamental reasons is the lack of fully understanding the dynamic behavior of bedload particles. We explore the dynamic characteristics of sediment particles transported in turbulent open-channel flows. A numerical model of sediment transport is built by combining the large eddy simulation (LES) with discrete element model (DEM) using a fully four-way coupling method. Particular attention is paid to the hydrodynamic forces acting on bedload particles. The result shows that, in addition to drag force, the unsteady forces (i.e. Basset history force and added mass force) are important (40%~60% in the summation of all the time-averaged magnitude of forces) for fine sediment particles (with a diameter of 0.5 mm), which are usually ignored for computational complexity. While the lift force has been found to be significant for gravel particles (with a diameter of 31 mm)[1], it is not relatively dominant for such fine particles (less than 3% in the summation). This helps explaining why the prediction of the same formula change greatly from case to case. The comparison with experimental data also shows great potential of the current LES-DEM model for fundamental research in bedload transport. Reference: [1] Nino, Y., & Garcia, M. (1994). Gravel saltation 2. Modeling. Water Resources Research, 30(6), 1915-1924.
Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses
Energy Technology Data Exchange (ETDEWEB)
Poellaenen, R
2002-05-01
In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has
Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing
2016-01-01
Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'.
Directory of Open Access Journals (Sweden)
Tafireyi eNemaura
2015-06-01
Full Text Available Understanding drug transportation mechanisms in the human body is of paramount importance in modelling Pharmacokinetic-Pharmacodynamic relationships. This work gives a novel general model of efavirenz transportation projections based on concentrations simulated from patients on a dose of 600mg. The work puts forward a proposition that transportation can wholly be modeled by concentration and time in a uniform volumetric space. Furthermore, movement entities are used to inform the state of kinetic solubility of a solution. There is use of Ricker’s model, and forms of the Hill’s equation in modelling transportation. Characterization on the movement rates of solution particle are suggested in relation to advection rate of solution particle. At turning points on the transportation rate of solution particle vs concentration curve, a suggestion of possibly change of dominance in the mode of transportation and saturation is made. There are four movement rates postulated at primary micro-level transportation, that are attributed to convection, diffusion (passive transportation ( EI and energy dependent system transportation ( ED in relation to advection. Furthermore, a new parameter is introduced which is defined as an advection rate constant of solution particle. It is postulated to be dependent on two rate constants of solution particle, that is a convection rate constant of solution particle and a saturable transportation rate constant of solution particle. At secondary micro-level transportation, the results show convection as sum of advection and saturable transportation. The kinetics of dissolution of efavirenz in the solution space is postulated. Relatively, a good level of kinetics of dissolution is projected in the concentration region 0−32.82μg/ml.
Modeling Deep Burn TRISO particle nuclear fuel
Energy Technology Data Exchange (ETDEWEB)
Besmann, T.M., E-mail: besmanntm@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Stoller, R.E., E-mail: stollerre@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Samolyuk, G., E-mail: samolyukgd@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Schuck, P.C., E-mail: schuckpc@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Golubov, S.I., E-mail: golubovsi@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Rudin, S.P., E-mail: srudin@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wills, J.M., E-mail: jxw@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Coe, J.D., E-mail: jcoe@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wirth, B.D., E-mail: bdwirth@utk.edu [University of Tennessee, Knoxville, TN 37996-0750 (United States); Kim, S., E-mail: sungtae@cae.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Morgan, D.D., E-mail: ddmorgan@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Szlufarska, I., E-mail: izabela@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States)
2012-11-15
Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.
Linear kinetic theory and particle transport in stochastic mixtures
Energy Technology Data Exchange (ETDEWEB)
Pomraning, G.C. [Univ. of California, Los Angeles, CA (United States)
1995-12-31
We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.
A concurrent vector-based steering framework for particle transport
Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro
2014-01-01
High Energy Physics has traditionally been a technology - limited science that has pushed the boundaries of both the detectors collecting the information about the particles and the computing infrastructure processing this information. However, since a few years the increase in computing power comes in the form of increased parallelism at all levels, and High Energy Physics has now to optimise its code to take advantage of the new architectures, including GPUs and hybrid systems. One of the primary targets for optimisation is the particle transport code used to simulate the detector response, as it is largely experiment independent and one of the most demanding applications in terms of CPU resources . The Geant Vector Prototype project aims to explore innovative designs in particle transport aimed at obtaining maximal performance on the new architectures. This paper describes the current status of the project and its future perspectives. In particular we describe how the present design tries to expose the par...
A generalized transport-velocity formulation for smoothed particle hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.
2017-05-15
The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable for fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.
Goods Transport Modelling, Vol 1
DEFF Research Database (Denmark)
Petersen, Morten Steen (red.); Kristiansen, Jørgen
The report is a study of data requirements and methodologies for goods transport. The study is intended to provide the basis for general discussion about the application of goods transport models in Denmark. The report provides an overview of different types of models and data availability....
Drug transport in HEMA conjunctival inserts containing precipitated drug particles.
Gupta, Chhavi; Chauhan, Anuj
2010-07-01
This paper focuses on exploring the mechanism of cyclosporine A transport in hydroxyethyl methacrylate (HEMA) rods to develop conjunctival inserts for extended ocular delivery. Cylindrical conjunctival HEMA inserts were prepared by thermal polymerization in presence of drug at high loadings to create rods containing particles of drug dispersed in the matrix. The drug release rates were measured to explore the effect of length, drug loading, crosslinking, and mixing in the release medium. Also microstructure of the inserts was characterized by SEM imaging. The inserts release the drug for a period of about a month at therapeutic rates. The rates of drug release are zero order and independent of drug loading and crosslinking for certain period of time. These effects were shown to arise due to a mass-transfer boundary layer in the fluid and a mathematical model was developed by coupling mass transfer in the insert with that in the boundary layer in the surrounding fluid. The model with diffusivity in the insert and boundary layer thickness as parameters fits the experimental data and explains all trends in release kinetics. The fitted diffusivity is about twice that obtained by direct measurements, which agreed well with the value obtained by using the Brinkman's equation but only after accounting for drug binding to the polymer.
Stochastic transport of interacting particles in periodically driven ratchets
Savel'Ev, Sergey; Marchesoni, Fabio; Nori, Franco
2004-12-01
An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential U(x+l)=U(x) is studied in terms of an infinite set of coupled partial differential equations describing the time evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy of equations can be replaced by a nonlinear integro-differential Fokker-Planck equation. This is applicable when the distance a between particles is much less than the interaction length λ , i.e., a particle interacts with many others, resulting in averaging out fluctuations. The equation obtained in the mean-field approximation is applied to an ensemble of locally (a≪λ≪l) interacting (either repelling or attracting) particles placed in an asymmetric one-dimensional substrate potential, either with an oscillating temperature (temperature rachet) or driven by an ac force (rocked ratchet). In both cases we focus on the high-frequency limit. For the temperature ratchet, we find that the net current is typically suppressed (or can even be inverted) with increasing density of the repelling particles. In contrast, the net current through a rocked ratchet can be enhanced by increasing the density of the repelling particles. In the case of attracting particles, our perturbation technique is valid up to a critical value of the particle density, above which a finite fraction of the particles starts condensing in a liquidlike state near the substrate minima. The dependence of the net transport current on the particle density and the interparticle potential is analyzed in detail for different values of the ratchet parameters.
Pucci, F.; Malara, F.; Perri, S.; Zimbardo, G.; Sorriso-Valvo, L.; Valentini, F.
2016-07-01
The transport of energetic particles in the presence of magnetic turbulence is an important but unsolved problem of space physics and astrophysics. Here, we aim at advancing the understanding of energetic particle transport by means of a new numerical model of synthetic magnetic turbulence. The model builds up a turbulent magnetic field as a superposition of space-localized fluctuations at different spatial scales. The resulting spectrum is isotropic with an adjustable spectral index. The model allows us to reproduce a spectrum broader than four decades, and to regulate the level of intermittency through a technique based on the p-model. Adjusting the simulation parameters close to solar wind conditions at 1 au, we inject ˜1 MeV protons in the turbulence realization and compute the parallel and perpendicular diffusion coefficients as a function of spectral extension, turbulence level, and intermittency. While a number of previous results are recovered in the appropriate limits, including anomalous transport regimes for low turbulence levels, we find that long spectral extensions tend to reduce the diffusion coefficients. Furthermore, we find for the first time that intermittency has an influence on parallel transport but not on perpendicular transport, with the parallel diffusion coefficient increasing with the level of intermittency. We also obtain the distribution of particle inversion times for parallel velocity, a power law for more than one decade, and compare it with the pitch angle scattering times observed in the solar wind. This parametric study can be useful to interpret particle propagation properties in astrophysical systems.
DEFF Research Database (Denmark)
Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael
2015-01-01
The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data...
MCNPX Monte Carlo simulations of particle transport in SiC semiconductor detectors of fast neutrons
Sedlačková, K.; Zat'ko, B.; Šagátová, A.; Pavlovič, M.; Nečas, V.; Stacho, M.
2014-05-01
The aim of this paper was to investigate particle transport properties of a fast neutron detector based on silicon carbide. MCNPX (Monte Carlo N-Particle eXtended) code was used in our study because it allows seamless particle transport, thus not only interacting neutrons can be inspected but also secondary particles can be banked for subsequent transport. Modelling of the fast-neutron response of a SiC detector was carried out for fast neutrons produced by 239Pu-Be source with the mean energy of about 4.3 MeV. Using the MCNPX code, the following quantities have been calculated: secondary particle flux densities, reaction rates of elastic/inelastic scattering and other nuclear reactions, distribution of residual ions, deposited energy and energy distribution of pulses. The values of reaction rates calculated for different types of reactions and resulting energy deposition values showed that the incident neutrons transfer part of the carried energy predominantly via elastic scattering on silicon and carbon atoms. Other fast-neutron induced reactions include inelastic scattering and nuclear reactions followed by production of α-particles and protons. Silicon and carbon recoil atoms, α-particles and protons are charged particles which contribute to the detector response. It was demonstrated that although the bare SiC material can register fast neutrons directly, its detection efficiency can be enlarged if it is covered by an appropriate conversion layer. Comparison of the simulation results with experimental data was successfully accomplished.
Numerical Modelling Approaches for Sediment Transport in Sewer Systems
DEFF Research Database (Denmark)
Mark, Ole
A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....
Container Logistic Transport Planning Model
Directory of Open Access Journals (Sweden)
Xin Zhang
2013-05-01
Full Text Available The study proposed a stochastic method of container logistic transport in order to solve the unreasonable transportation’s problem and overcome the traditional models’ two shortcomings. Container transport has rapidly developed into a modern means of transportation because of their significant advantages. With the development, it also exacerbated the flaws of transport in the original. One of the most important problems was that the invalid transport had not still reduced due to the congenital imbalances of transportation. Container transport exacerbated the invalid transport for the empty containers. To solve the problem, people made many efforts, but they did not make much progress. There had two theoretical flaws by analyzing the previous management methods in container transport. The first one was the default empty containers inevitability. The second one was that they did not overall consider how to solve the problem of empty containers allocation. In order to solve the unreasonable transportation’s problem and overcome the traditional models’ two shortcomings, the study re-built the container transport planning model-gravity model. It gave the general algorithm and has analyzed the final result of model.
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Energy Technology Data Exchange (ETDEWEB)
Kerschbaumer, Andreas; Hannig, Katrin [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie, Troposphaerische Umweltforschung
2013-06-15
In this report the coupling of a global model is presented with a continental model. It examines how far the forecasts of regional air quality in Europe are affected by the choice of boundary conditions. The focus of this report is to analyze the influence of different boundary conditions on the calculated soil concentrations of ozone and PM10. A model evaluation, however, was not the aim of this study. [German] In diesem Bericht wird die Koppelung eines Globalmodells mit einem kontinentalen Modell vorgestellt. Es wird untersucht, wie weit die Prognosen der regionalen Luftqualitaet in Europa von der Wahl der Randbedingungen beeinflusst werden. Der Schwerpunkt des vorliegenden Berichts liegt in der Analyse des Einflusses der verschiedenen Randbedingungen auf die berechneten Bodenkonzentrationen von Ozon und PM10. Eine Modellevaluierung hingegen war nicht Ziel dieser Studie.
A study on the particle penetration in RMS Right Single Quotation Marks particle transport system
Energy Technology Data Exchange (ETDEWEB)
Son, S. M.; Oh, S. H.; Choi, C. R. [ELSOLTEC Inc., Youngin (Korea, Republic of)
2014-10-15
In nuclear facilities, a radiation monitoring system (RMS) monitors the exhaust gas containing the radioactive material. Samples of exhaust gas are collected in the downstream region of air cleaning units (ACUs) in order to examine radioactive materials. It is possible to predict an amount of radioactive material by analyzing the corrected samples. Representation of the collected samples should be assured in order to accurately sense and measure of radioactive materials. The radius of curvature is mainly 5 times of tube diameter. Sometimes, a booster fan is additionally added to enhance particle penetration rate... In this study, particle penetrations are calculated to evaluate particle penetration rate with various design parameters (tube lengths, tube declined angles, radius of curvatures, etc). The particle penetration rates have been calculated for several elements in the particle transport system. In general, the horizontal length of tube and the number of bending tube have a big impact on the penetration rate in the particle transport system. If the sampling location is far from the radiation monitoring system, additional installation of booster fans could be considered in case of large diameter tubes, but is not recommended in case of small diameter tube. In order to enhance particle penetration rate, the following works are recommended by priority. 1) to reduce the interval between sampling location and radiation monitoring system 2) to reduce the number of the bending tube.
Spatial correlations in bed load transport: evidence, importance, and modelling
Heyman, J; Mettra, F; Ancey, C
2016-01-01
This article examines the spatial {dynamics of bed load particles} in water. We focus particularly on the fluctuations of particle activity, which is defined as the number of moving particles per unit bed {length}. Based on a stochastic model recently proposed by \\citet{Ancey2013}, we derive the second moment of particle activity analytically; that is the spatial correlation functions of particle activity. From these expressions, we show that large moving particle clusters can develop spatially. Also, we provide evidence that fluctuations of particle activity are scale-dependent. Two characteristic lengths emerge from the model: a saturation length $\\ell_{sat}$ describing the length needed for a perturbation in particle activity to relax to the homogeneous solution, and a correlation length $\\ell_c$ describing the typical size of moving particle clusters. A dimensionless P\\'eclet number can also be defined according to the transport model. Three different experimental data sets are used to test the theoretica...
Particle acceleration, transport and turbulence in cosmic and heliospheric physics
Matthaeus, W.
1992-01-01
In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.
Kinetic simulation of neutral particle transport in sputtering processes
Trieschmann, Jan; Gallian, Sara; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Ries, Stefan; Bibinov, Nikita; Awakowicz, Peter
2013-09-01
For many physical vapor deposition applications using sputtering processes, knowledge about the detailed spatial and temporal evolution of the involved gas species is of great importance. Modeling of the involved gas dynamic and plasma processes is however challenging, because the operating pressure is typically below 1 Pa. In consequence, only kinetic descriptions are appropriate. In order to approach this problem, the dynamics of sputtered particle transport through a neutral gas background is simulated. For this study, a modified version of the three-dimensional Direct Simulation Monte Carlo (DSMC) code dsmcFoam is utilized. The impact of a transient sputtering wind is investigated in a generic reactor geometry, which may be used for dc Magnetron Sputtering (dcMS), High Power Impulse Magnetron Sputtering (HiPIMS), as well as sputtering in capacitively coupled discharges. In the present work a rarefaction of the background gas is observed. Moreover in pulsed mode the temporal dynamics of the rarefaction and subsequent recovery of the background gas is investigated. This work is supported by the German Research Foundation in the frame of TRR 87.
Modeling Deep Burn TRISO Particle Nuclear Fuel
Energy Technology Data Exchange (ETDEWEB)
Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison
2012-01-01
Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.
Gyrokinetics Simulation of Energetic Particle Turbulence and Transport
Energy Technology Data Exchange (ETDEWEB)
Diamond, Patrick H.
2011-09-21
Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas
An aggregation model for ash particles in volcanic clouds
Costa, A.; Folch, A.; Macedonio, G.; Durant, A.
2009-12-01
A large fraction of fine ash particles injected into the atmosphere during explosive eruptions aggregate through complex interactions of surface liquid layers, electrostatic forces, and differences in particle settling velocities. The aggregates formed have a different size and density compared to primary particles formed during eruption which dramatically changes the dynamics of sedimentation from the volcanic cloud. Consequently, the lifetime of ash particles in the atmosphere is reduced and a distal mass deposition maximum is often generated in resulting tephra deposits. A complete and rigorous description of volcanic ash fallout requires the full coupling of models of volcanic cloud dynamics and dispersion, and ash particle transport, aggregation and sedimentation. Furthermore, volcanic ash transport models should include an aggregation model that accounts for the interaction of all particle size classes. The problem with this approach is that simulations would require excessively long computational times thereby prohibiting its application in an operational setting during an explosive volcanic eruption. Here we present a simplified model for ash particle transport and aggregation that includes the effects of water in the volcanic cloud and surrounding atmosphere. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average sticking efficiency factors, and collision frequency functions that account for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. A parametric study on the key parameters of the model was performed. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, including the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. In these cases, mass deposited as a function of deposit area and the particle
Transport properties site descriptive model. Guidelines for evaluation and modelling
Energy Technology Data Exchange (ETDEWEB)
Berglund, Sten [WSP Environmental, Stockholm (Sweden); Selroos, Jan-Olof [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)
2004-04-01
modelling of transport properties, and hence the guidelines in this report, involve two main categories of parameters: Parameters that characterise the retention properties of geologic materials. These parameters quantify the diffusion and sorption properties of intact and altered rock, fracture coatings and fracture-filling materials, and are described within the framework of the 3D geometric models devised by Geology. Parameters that characterise solute transport along flow paths (flow-related transport parameters). These parameters include the 'F-parameter' and 'water travel time', tw, and parameters that account for spatial variability in diffusion and sorption. The flow-related parameters are obtained by means of particle tracking simulations in groundwater flow models.
A phase-field point-particle model for particle-laden interfaces
Gu, Chuan; Botto, Lorenzo
2014-11-01
The irreversible attachment of solid particles to fluid interfaces is exploited in a variety of applications, such as froth flotation and Pickering emulsions. Critical in these applications is to predict particle transport in and near the interface, and the two-way coupling between the particles and the interface. While it is now possible to carry out particle-resolved simulations of these systems, simulating relatively large systems with many particles remains challenging. We present validation studies and preliminary results for a hybrid Eulerian-Lagrangian simulation method, in which the dynamics of the interface is fully-resolved by a phase-field approach, while the particles are treated in the ``point-particle'' approximation. With this method, which represents a compromise between the competing needs of resolving particle and interface scale phenomena, we are able to simulate the adsorption of a large number of particles in the interface of drops, and particle-interface interactions during the spinodal coarsening of a multiphase system. While this method models the adsorption phenomenon efficiently and with reasonable accuracy, it still requires understanding subtle issues related to the modelling of hydrodynamic and capillary forces for particles in contact with interface.
Chemically generated convective transport of micron sized particles
Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman
2015-11-01
A variety of chemical and biological applications require manipulation of micron sized objects like cells, viruses, and large molecules. Increasing the size of particles up to a micron reduces performance of techniques based on diffusive transport. Directional transport of cargo toward detecting elements reduces the delivery time and improves performance of sensing devices. We demonstrate how chemical reactions can be used to organize fluid flows carrying particles toward the assigned destinations. Convection is driven by density variations caused by a chemical reaction occurring at a catalyst or enzyme-covered target site. If the reaction causes a reduction in fluid density, as in the case of catalytic decomposition of hydrogen peroxide, then fluid and suspended cargo is drawn toward the target along the bottom surface. The intensity of the fluid flow and the time of cargo delivery are controlled by the amount of reagent in the system. After the reagent has been consumed, the fluid pump stops and particles are found aggregated on and around the enzyme-coated patch. The pumps are reusable, being reactivated upon injection of additional reagent. The developed technique can be implemented in lab-on-a-chip devices for transportation of micro-scale object immersed in solution.
Honda, Mitsuru
2005-10-01
In order to predict the performance of ITER plasma, it is important to validate the existing theory-based turbulent transport models by systematicallycomparing them with the experimental observations. Taking experimental data from the ITPA profile database, we have carried out transport simulations with the CDBM, GLF23 and Weiland models by the one-dimensional diffusive transport code TASK/TR. The results are evaluated by the six figures of merit as specified in ITER Physics Basis^1. From the simulation on 55 discharges, it is found that each model has unique dependence on devices and operation modes and the CDBM model gives the most satisfactory results. We have incorporated the dependence on the elongation on the CDBM model^2 and confirmed that the accuracy of the prediction is improved for H-mode discharges. Single-particle-species heat transport simulations have indicated that the CDBM model reproduces Ti profiles more accurately than Te profiles. We will also show the results of the predictive simulations coupling TASK/TR and TASK/EQ, two-dimensional equilibrium code, for high performance plasmas with internal transport barriers like the high βp and reversed shear plasmas. [1] ITER Physics Basis Expert Groups, Nucl. Fusion, 39, 2175 (1999) [2] M. Yagi et al., J. Phys. Soc. Japan, 66, 379 (1997)
Transient Characterization of Type B Particles in a Transport Riser
Energy Technology Data Exchange (ETDEWEB)
Shadle, L.J.; Monazam, E.R. (REM Engineering Services, Morgantown, WV); Mei, J.S.
2007-01-01
Simple and rapid dynamic tests were used to evaluate fluid dynamic behavior of granular materials in the transport regime. Particles with densities ranging from 189 to 2,500 kg/m3 and Sauter mean size from 61 to 812 μm were tested in a 0.305 m diameter, 15.5 m height circulating fluidized bed (CFB) riser. The transient tests involved the abrupt stoppage of solids flow for each granular material over a wide range gas flow rates. The riser emptying time was linearly related to the Froude number in each of three different operating regimes. The flow structure along the height of the riser followed a distinct pattern as tracked through incremental pressures. These results are discussed to better understand the transformations that take place when operating over various regimes. During the transients the particle size distribution was measured. The effects of pressure, particle size, and density on test performance are also presented.
Moreno, P. A.; Bombardelli, F. A.
2012-12-01
Particles laying motionless at the bed of rivers, lakes and estuaries can be put into motion when the shear stress exerted by the flow on the particles exceeds the critical shear stress. When these particles start their motion they can either remain suspended by long periods of time (suspended load) or move close to the bed (bed load). Particles are transported as bed load in three different modes: Sliding, rolling and saltation. Saltation is usually described as the bouncing motion of sediment particles in a layer a few particle diameters thick. The amount of particles and the bed-load mode in which they move depend on the particle size and density, and the flow intensity, usually quantified by the shear velocity. The bottom shear stress in natural streams will most likely be large enough to set saltation as the most important bed-load transport mechanism among all three modes. Thus, studying the saltation process is crucial for the overall understanding of bed-load transport. Particularly, numerical simulations of this process have been providing important insight regarding the relative importance of the physical mechanisms involved in it. Several processes occur when particles are saltating near the bed: i) Particles collide with the bed, ii) they "fly" between collisions with the bed, as a result of their interaction with the fluid flow, iii) and they collide among themselves. These processes can be simulated using a three-dimensional Eulerian-Lagrangian model. In order to mimic these processes we have experimented with an averaged turbulent flow field represented by the logarithmic law of the wall, and with a more involved approach in which a computed turbulent velocity field for a flat plate was used as a surrogate of the three-dimensional turbulent conditions present close to stream beds. Since flat-plate and open-channel boundary layers are essentially different, a dynamic similarity analysis was performed showing that the highly-resolved three
Transport model of underground sediment in soils.
Jichao, Sun; Guangqian, Wang
2013-01-01
Studies about sediment erosion were mainly concentrated on the river channel sediment, the terrestrial sediment, and the underground sediment. The transport process of underground sediment is studied in the paper. The concept of the flush potential sediment is founded. The transport equation with stable saturated seepage is set up, and the relations between the flush potential sediment and water sediment are discussed. Flushing of underground sediment begins with small particles, and large particles will be taken away later. The pore ratio of the soil increases gradually. The flow ultimately becomes direct water seepage, and the sediment concentration at the same position in the water decreases over time. The concentration of maximal flushing potential sediment decreases along the path. The underground sediment flushing model reflects the flushing mechanism of underground sediment.
Cai, Zhengqing; Fu, Jie; Liu, Wen; Fu, Kunming; O'Reilly, S E; Zhao, Dongye
2017-01-15
This work investigated effects of three model oil dispersants (Corexit EC9527A, Corexit EC9500A and SPC1000) on settling of fine sediment particles and particle-facilitated distribution and transport of oil components in sediment-seawater systems. All three dispersants enhanced settling of sediment particles. The nonionic surfactants (Tween 80 and Tween 85) play key roles in promoting particle aggregation. Yet, the effects varied with environmental factors (pH, salinity, DOM, and temperature). Strongest dispersant effect was observed at neutral or alkaline pH and in salinity range of 0-3.5wt%. The presence of water accommodated oil and dispersed oil accelerated settling of the particles. Total petroleum hydrocarbons in the sediment phase were increased from 6.9% to 90.1% in the presence of Corexit EC9527A, and from 11.4% to 86.7% for PAHs. The information is useful for understanding roles of oil dispersants in formation of oil-sediment aggregates and in sediment-facilitated transport of oil and PAHs in marine eco-systems.
McNair, James N; Newbold, J Denis
2012-05-07
Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances.
Measurement of particle transport coefficients on Alcator C-Mod
Energy Technology Data Exchange (ETDEWEB)
Luke, T.C.T.
1994-10-01
The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.
Tsurutani, B. T.; Zhang, L. D.; Mason, G. L.; Lakhina, G. S.; Hada, T.; Arballo, J. K.; Zwickl, R. D.
2002-04-01
Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths l
Particle tracking modeling of sediment-laden jets
Chan, S. N.; Lee, J. H. W.
2014-06-01
This paper presents a general model to predict the particulate transport and deposition from a sediment-laden horizontal momentum jet. A three-dimensional (3-D) stochastic particle tracking model is developed based on the governing equation of particle motion. The turbulent velocity fluctuations are modelled by a Lagrangian velocity autocorrelation function that captures the trapping of sediment particles in turbulent eddies, which result in the reduction of settling velocity. Using classical solutions of mean jet velocity, and turbulent fluctuation and dissipation rate profiles derived from computational fluid dynamics calculations of a pure jet, the equation of motion is solved numerically to track the particle movement in the jet flow field. The 3-D particle tracking model predictions of sediment deposition and concentration profiles are in excellent agreement with measured data. The computationally demanding Basset history force is shown to be negligible in the prediction of bottom deposition profiles.
Particle multiplicities and particle ratios in excluded volume model
Mishra, M
2008-01-01
One of the most surprising results is to find that a consistent description of all the experimental results on particle multiplicities and particle ratios obtained from the lowest AGS to the highest RHIC energies is possible within the framework of a thermal statistical model. We propose here a thermodynamically consistent excluded-volume model involving an interacting multi-component hadron gas. We find that the energy dependence of the total multiplicities of strange and non-strange hadrons obtained in this model agrees closely with the experimental results. It indicates that the freeze out volume of the fireball is uniformly the same for all the particles. We have also compared the variation of the particle ratios such as $/, /, K^{-}/K^{+}, \\bar{p}/p, \\bar{\\Lambda}/\\Lambda, \\bar{\\Xi}/\\Xi, \\bar{\\Omega}/\\Omega, /, /, /$ and $/$ with respect to the center-of-mass energy as predicted by our model with the recent experimental data.
Kubo, Yûki; Sato, Tatsuhiko
2015-01-01
Solar energetic particles (SEPs) are one of the extreme space weather phenomena. A huge SEP event increases the radiation dose received by aircrews, who should be warned of such events as early as possible. We developed a warning system for aviation exposure to SEPs. This article describes one component of the system, which calculates the temporal evolution of the SEP intensity and the spectrum immediately outside the terrestrial magnetosphere. To achieve this, we performed numerical simulations of SEP transport in interplanetary space, in which interplanetary SEP transport is described by the focused transport equation. We developed a new simulation code to solve the equation using a set of stochastic differential equations. In the code, the focused transport equation is expressed in a magnetic field line coordinate system, which is a non-orthogonal curvilinear coordinate system. An inverse Gaussian distribution is employed as the injection profile of SEPs at an inner boundary located near the Sun. We applie...
Energy Technology Data Exchange (ETDEWEB)
O' Brien, M. J.; Brantley, P. S.
2015-01-20
In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 2^{21} = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.
Coupling fine particle and bedload transport in gravel-bedded streams
Park, Jungsu; Hunt, James R.
2017-09-01
Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.
A concurrent vector-based steering framework for particle transport
Apostolakis, John; Brun, René; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro
2014-06-01
High Energy Physics has traditionally been a technology-limited science that has pushed the boundaries of both the detectors collecting the information about the particles and the computing infrastructure processing this information. However, since a few years the increase in computing power comes in the form of increased parallelism at all levels, and High Energy Physics has now to optimise its code to take advantage of the new architectures, including GPUs and hybrid systems. One of the primary targets for optimisation is the particle transport code used to simulate the detector response, as it is largely experiment independent and one of the most demanding applications in terms of CPU resources. The Geant Vector Prototype project aims to explore innovative designs in particle transport aimed at obtaining maximal performance on the new architectures. This paper describes the current status of the project and its future perspectives. In particular we describe how the present design tries to expose the parallelism of the problem at all possible levels, in a design that is aimed at minimising contentions and maximising concurrency, both at the coarse granularity level (threads) and at the micro granularity one (vectorisation, instruction pipelining, multiple instructions per cycle). The future plans and perspectives will also be mentioned.
Directory of Open Access Journals (Sweden)
T. Hada
Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading
Modelling of Transport Projects Uncertainties
DEFF Research Database (Denmark)
Salling, Kim Bang; Leleur, Steen
2009-01-01
This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....
Next Generation Transport Phenomenology Model
Strickland, Douglas J.; Knight, Harold; Evans, J. Scott
2004-01-01
This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.
Nanoparticle transport in heterogeneous porous media with particle tracking numerical methods
Pham, Ngoc H.; Papavassiliou, Dimitrios V.
2017-01-01
In this article, transport and retention of nanoparticles that flow in suspension through packed beds with unconsolidated spheres and through consolidated Berea sandstone are numerically explored. The surfaces exhibit electrical charge heterogeneity where particles can deposit blocking the surrounding surface deposition sites. The lattice Boltzmann method with Lagrangian particle tracking are the techniques employed. Four ideal patterns of surface charge heterogeneity are adopted for the packed sphere beds, while a real distribution of charge heterogeneity is determined for the Berea core through micro-CT image segmentation. It is found that particle breakthrough curves do not reach a plateau, unless the pore surfaces are completely saturated. Surface saturation also enhances particle propagation because of the surface blocking mechanism, reducing the effective particle deposition rate. In addition, surface saturation mitigates the effect of the pattern of heterogeneity on particle retention, which might be pronounced when blocking is not taken into account. It is also observed from the case of Berea core that the heterogeneity of the mineralogical surfaces disturbs particle transport depending on the physicochemical properties of the surfaces. Likewise, similarity of the mineralogical surface properties is a prerequisite for the commonly used patch-wise model with Langmuirian blocking to reproduce nanoparticle breakthrough in such porous media.
Nanoparticle transport in heterogeneous porous media with particle tracking numerical methods
Pham, Ngoc H.; Papavassiliou, Dimitrios V.
2016-08-01
In this article, transport and retention of nanoparticles that flow in suspension through packed beds with unconsolidated spheres and through consolidated Berea sandstone are numerically explored. The surfaces exhibit electrical charge heterogeneity where particles can deposit blocking the surrounding surface deposition sites. The lattice Boltzmann method with Lagrangian particle tracking are the techniques employed. Four ideal patterns of surface charge heterogeneity are adopted for the packed sphere beds, while a real distribution of charge heterogeneity is determined for the Berea core through micro-CT image segmentation. It is found that particle breakthrough curves do not reach a plateau, unless the pore surfaces are completely saturated. Surface saturation also enhances particle propagation because of the surface blocking mechanism, reducing the effective particle deposition rate. In addition, surface saturation mitigates the effect of the pattern of heterogeneity on particle retention, which might be pronounced when blocking is not taken into account. It is also observed from the case of Berea core that the heterogeneity of the mineralogical surfaces disturbs particle transport depending on the physicochemical properties of the surfaces. Likewise, similarity of the mineralogical surface properties is a prerequisite for the commonly used patch-wise model with Langmuirian blocking to reproduce nanoparticle breakthrough in such porous media.
Particle transport in microturbulence and acceleration performances of relativistic shocks
Plotnikov, Illya; Lemoine, Martin
2012-01-01
Collisionless relativistic shocks have been the focus of intense theoretical and numerical investigations and these interesting physics have a direct impact on the generation of energetic particles and the interpretation of gamma ray spectra. The Fermi acceleration process that takes place in these shocks is intimately linked with the excitation of micro-turbulence responsible for the shock formation, electron heating and supra-thermal tail generation that in turn excites micro-turbulence, developing thus a self-sustaining phenomenon. In this paper we discuss the development of the micro-turbulence and we investigate two important issues: firstly the transport of supra-thermal particles in the excited microturbulence upstream of the shock and its consequences for the efficiency of the Fermi process; secondly, the preheating process of the incoming background electrons as they cross the shock precursor and experience relativistic oscillations in the electric field of the micro-turbulence.We emphasize the impor...
Computational transport phenomena of fluid-particle systems
Arastoopour, Hamid; Abbasi, Emad
2017-01-01
This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes’ many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing. Explains how to couple the population balance e...
Model of reversible vesicular transport with exclusion
Bressloff, Paul C.; Karamched, Bhargav R.
2016-08-01
A major question in neurobiology concerns the mechanics behind the motor-driven transport and delivery of vesicles to synaptic targets along the axon of a neuron. Experimental evidence suggests that the distribution of vesicles along the axon is relatively uniform and that vesicular delivery to synapses is reversible. A recent modeling study has made explicit the crucial role that reversibility in vesicular delivery to synapses plays in achieving uniformity in vesicle distribution, so called synaptic democracy (Bressloff et al 2015 Phys. Rev. Lett. 114 168101). In this paper we generalize the previous model by accounting for exclusion effects (hard-core repulsion) that may occur between molecular motor-cargo complexes (particles) moving along the same microtubule track. The resulting model takes the form of an exclusion process with four internal states, which distinguish between motile and stationary particles, and whether or not a particle is carrying vesicles. By applying a mean field approximation and an adiabatic approximation we reduce the system of ODEs describing the evolution of occupation numbers of the sites on a 1D lattice to a system of hydrodynamic equations in the continuum limit. We find that reversibility in vesicular delivery allows for synaptic democracy even in the presence of exclusion effects, although exclusion does exacerbate nonuniform distributions of vesicles in an axon when compared with a model without exclusion. We also uncover the relationship between our model and other models of exclusion processes with internal states.
Mathematical modeling of kidney transport.
Layton, Anita T
2013-01-01
In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease.
Speedup of Particle Transport Problems with a Beowulf Cluster
Directory of Open Access Journals (Sweden)
Zhongxiang Zhao
2006-01-01
Full Text Available The MCNP code is a general Monte Carlo N-Particle Transport program that is widely used in health physics, medical physics and nuclear engineering for problems involving neutron, photon and electron transport[1]. However, due to the stochastic nature of the algorithms employed to solve the Boltzmann transport equation, MCNP generally exhibits a slow rate of convergence. In fact, engineers and scientists can quickly identify intractable versions of their most challenging and CPU-intensive problems. For example, despite the latest advancements in personal computers (PCs and quantum leaps in their computational capabilities, an ordinary electron transport problem could require up to several CPU-days or even CPU-weeks on a typical desktop PC of today. One common contemporary approach to help address these performance limitations is by taking advantage of parallel processing. In fact, the very nature of the Monte Carlo approach embedded within MCNP is inherently parallel because, at least in principle, every particle history can potentially be tracked individually in an independent processor. In practice, however, there are many issues that must be confronted to achieve a reasonable level of parallelization. First, of course, a suitable parallel computing platform is required. Next, the computer program itself should exploit parallelism from within by combining such tools as Fortran-90 and PVM, for example. This article describes the installation and performance testing of the latest release of MCNP, Version 5 (MCNP5, compiled with PGI Fortran-90 and with PVM on a recently assembled 22-node Beowulf cluster that is now a dedicated platform for the faculty and students of the University of Cincinnatis Nuclear and Radiological Engineering (UCNRE Program. The performance of a neutron transport problem and that of a more challenging gamma-electron (coupled problem are both highlighted. The results show that the PVM-compiled MCNP5 version with 20 tasks
Channeling of particles and associated anomalous transport in a 2D complex plasma crystal
Du, Cheng-Ran; Zhdanov, Sergey; Thomas, Hubertus M; Morfill, Gregor E
2013-01-01
Implications of recently discovered effect of channeling of upstream extra particles for transport phenomena in a two-dimensional plasma crystal are discussed. Upstream particles levitated above the lattice layer and tended to move between the rows of lattice particles. An example of heat transport is considered, where upstream particles act as moving heat sources, which may lead to anomalous heat transport. The average channeling length observed was 15 - 20 interparticle distances. New features of the channeling process are also reported.
Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP
Energy Technology Data Exchange (ETDEWEB)
Podesta,, Mario; Gorelenkova, Marina; White, Roscoe
2014-02-28
Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.
Energy Technology Data Exchange (ETDEWEB)
Krommes, J.A.; Kleva, R.G.; Oberman, C.
1978-05-01
A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-..beta.. micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient.
Directory of Open Access Journals (Sweden)
Long Ma
2015-05-01
Full Text Available We studied sediment cores from Sayram Lake in the Tianshan Mountains of northwest China to evaluate variations in aeolian transport processes over the past ~150 years. Using an end-member modeling algorithm of particle size data, we interpreted end members with a strong bimodal distribution as having been transported by aeolian processes, whereas other end members were interpreted to have been transported by fluvial processes. The aeolian fraction accounted for an average of 27% of the terrigenous components in the core. We used the ratio of aeolian to fluvial content in the Sayram Lake sediments as an index of past intensity of aeolian transport in the Tianshan Mountains. During the interval 1910-1930, the index was high, reflecting the fact that dry climate provided optimal conditions for aeolian dust transport. From 1930-1980, the intensity of aeolian transport was weak. From the 1980s to the 2000s, aeolian transport to Sayram Lake increased. Although climate in northwest China became more humid in the mid-1980s, human activity had by that time altered the impact of climate on the landscape, leading to enhanced surface erosion, which provided more transportable material for dust storms. Comparison of the Lake Sayram sediment record with sediment records from other lakes in the region indicates synchronous intervals of enhanced aeolian transport from 1910 to 1930 and 1980 to 2000.
Evidence for particle transport between alveolar macrophages in vivo
Energy Technology Data Exchange (ETDEWEB)
Benson, J.M.; Nikula, K.J.; Guilmette, R.A.
1995-12-01
Recent studies at this Institute have focused on determining the role of alveolar macrophages (AMs) in the transport of particles within and form the lung. For those studies, AMs previously labeled using the nuclear stain Hoechst 33342 and polychromatic Fluoresbrite microspheres (1 {mu}m diameter, Polysciences, Inc., Warrington, PA) were instilled into lungs of recipient F344 rats. The fate of the donor particles and the doubly labeled AMs within recipient lungs was followed for 32 d. Within 2-4 d after instillation, the polychromatic microspheres were found in both donor and resident AMs, suggesting that particle transfer occurred between the donor and resident AMs. However, this may also have been an artifact resulting from phagocytosis of the microspheres form dead donor cells or from the fading or degradation of Hoechst 33342 within the donor cells leading to their misidentification as resident AMs. The results support the earlier findings that microspheres in donor AMs can be transferred to resident AMs within 2 d after instillation.
Synthesis of electrostatic fields for transportation of charged particle beams
Directory of Open Access Journals (Sweden)
Vladimir V. Pavlov
2016-06-01
Full Text Available In this paper, an approach to creating corpuscular-optical devices for transportation and transformation of charged particle beams has been elucidated. These devices are able to optimize and create the most convenient configuration of ionic or electron paths. The approach relies upon the inverse dynamics problem formulated on the basis of the Hamilton-Jacobi equation. The motion in the symmetry plane of a three-dimensional (3D field was considered. The problem was solved by analytical methods. An algorithm for constructing electric fields providing the particle motion on the desired trajectories was described. А key to this algorithm lies with a concept of conformal transformation from the theory of complex-valued function. This procedure was illustrated by examples. Quadratic potential was chosen as a basis. Three functions of conformal transformation were considered, providing the rotation of the focused charged particle beam at a fixed angle, the transformation of divergent flow to parallel one. The calculated two-dimensional potentials were extended into 3D-space by power series expansion on transverse coordinate. Device embodiments were suggested on the basis of the calculated field structures.
The Roles of Transport and Wave-Particle Interactions on Radiation Belt Dynamics
Fok, Mei-Ching; Glocer, Alex; Zheng, Qiuhua
2011-01-01
Particle fluxes in the radiation belts can vary dramatically during geomagnetic active periods. Transport and wave-particle interactions are believed to be the two main types of mechanisms that control the radiation belt dynamics. Major transport processes include substorm dipolarization and injection, radial diffusion, convection, adiabatic acceleration and deceleration, and magnetopause shadowing. Energetic electrons and ions are also subjected to pitch-angle and energy diffusion when interact with plasma waves in the radiation belts. Important wave modes include whistler mode chorus waves, plasmaspheric hiss, electromagnetic ion cyclotron waves, and magnetosonic waves. We investigate the relative roles of transport and wave associated processes in radiation belt variations. Energetic electron fluxes during several storms are simulated using our Radiation Belt Environment (RBE) model. The model includes important transport and wave processes such as substorm dipolarization in global MHD fields, chorus waves, and plasmaspheric hiss. We discuss the effects of these competing processes at different phases of the storms and validate the results by comparison with satellite and ground-based observations. Keywords: Radiation Belts, Space Weather, Wave-Particle Interaction, Storm and Substorm
Simulation of Neutral Particle Transport During HiPIMS
Trieschmann, Jan; Gallian, Sara; Brinkmann, Ralf Peter; Mussenbrock, Thomas
2014-10-01
In this work the importance of the knowledge of the spatial distribution, its temporal evolution as well as their energy distribution of heavy particles within sputtering processes is discussed. To describe these discharges - typically operated at very low pressures below 1 Pa - specific modeling approaches are required. Our approach comprises a three-dimensional kinetic Lagrangian description of neutral particles. A modified version of the direct simulation Monte Carlo (DSMC) code dsmcFoam is used, with the aim to describe the evolution of background and sputtered particles of a High Power Impulse Magnetron Sputtering (HiPIMS) process in a research reactor. Emphasize is put on the influence of the initial angular distribution of sputtered particles, as well as their energy distribution and its angular dependence. Based on the work of Stepanova and Dew a modified Thompson energy distribution is used. Differently distributed sputtered particles provide densities and fluxes concerning the corresponding film formation. This work is supported by the German Research Foundation in the frame of the Collaborative Research Centre TRR 87.
Furbish, D. J.
2009-04-01
Sediment particles transported by rainsplash, by bioturbation, and as bedload in turbulent flows, undergo motions that are quasi-random in magnitude and direction. Moreover, these motions characteristically are intermittent, in that particles are mostly at rest most of the time, and heterogeneous, in that the volumetric or areal concentration of particles in motion at any instant is spatially patchy. These particle motions can be formulated as a stochastic processes involving both advective and dispersive parts. By taking into account the intermittent activity of particles, and separating this activity from the physics of motion in the parametric description of transport, the formulation indicates that gradients in particle activity can have a key role in transport. The formulation illustrates, for example, how the growth of soil mounds beneath desert shrubs involves differential rainsplash that initially causes more grains to be splashed inward beneath protective shrub canopies than outward. This ‘harvesting' of nearby soil material, including nutrients, means that shrubs locally participate in regulating the rate sediment transport down a hillslope. With soil bioturbation, spatial variations in the disturbance frequency strongly influence the mixing of soil constituents, including distinct particle fractions (such as specific size or mineral fractions, seeds, or debitage), or elements and compounds adsorbed to particles. The formulation also provides a probabilistic version of the Exner equation. During bedload transport, gradients in particle activity, through both advective and dispersive effects, may contribute importantly to the local divergence of the particle flux, thereby influencing initial bedform growth.
Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak
Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))
1993-03-01
Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.
Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak
Energy Technology Data Exchange (ETDEWEB)
Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Kissick, M.W. [Wisconsin Univ., Madison, WI (United States)
1993-03-01
Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.
Matthaeus, W. H.; Ruffolo, D. J.; Tooprakai, P.; Seripienlert, A.; Chuychai, P.
2016-12-01
We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density, and the particles' lateral transport. Among random-phase realizations of 2D turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r 1 AU. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern's evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 AU), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances. Partially supported by the Thailand Research Fund (Grants BRG5880009 and RTA5980003), the U.S. NSF (AGS-1063439), NASA (NNX14AI63G & NNX15AB88G), and the Solar Probe Plus/ISIS project.
Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis
Qian, Shizhi
2012-01-01
Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect
S, Savithiri; Pattamatta, Arvind; Das, Sarit K
2015-01-01
Severe contradictions exist between experimental observations and computational predictions regarding natural convective thermal transport in nanosuspensions. The approach treating nanosuspensions as homogeneous fluids in computations has been pin pointed as the major contributor to such contradictions. To fill the void, inter particle and particle fluid interactivities (slip mechanisms), in addition to effective thermophysical properties, have been incorporated within the present formulation. Through thorough scaling analysis, the dominant slip mechanisms have been identified. A Multi Component Lattice Boltzmann Model (MCLBM) approach has been proposed, wherein the suspension has been treated as a non homogeneous twin component mixture with the governing slip mechanisms incorporated. The computations based on the mathematical model can accurately predict and quantify natural convection thermal transport in nanosuspensions. The role of slip mechanisms such as Brownian diffusion, thermophoresis, drag, Saffman ...
A Particle In Cell code development for high current ion beam transport and plasma simulations
Joshi, N
2016-01-01
A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.
Modelling of aircrew radiation exposure during solar particle events
Energy Technology Data Exchange (ETDEWEB)
Al Anid, H.; Lewis, B.J.; Bennett, L.G.I. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Takada, M. [National Inst. of Radiological Science, International Space Radiation Lab., anagawa, Inage-Ku, Chiba (Japan)
2010-07-01
A transport code analysis using the Monte Carlo N-Particle eXtended code, MCNPX, has been used to propagate an extrapolated particle spectrum based on satellite measurements through the atmosphere to estimate radiation exposure during solar storms at high altitudes. Neutron monitor count rate data from stations around the world were used to benchmark the model calculations during a Ground Level Event. A comparison was made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during GLE 60. A computer-code has been developed to implement the model for routine analysis. (author)
Modelling of aircrew radiation exposure during solar particle events
Energy Technology Data Exchange (ETDEWEB)
Al Anid, H.; Lewis, B.J.; Bennett, L.G.I. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Takada, M. [National Inst. of Radiological Science, International Space Radiation Lab., Anagawa, Inage-Ku, Chiba (Japan)
2011-03-15
A transport code analysis using the Monte Carlo N-Particle eXtended code, MCNPX, has been used to propagate an extrapolated particle spectrum based on satellite measurements through the atmosphere to estimate radiation exposure during solar storms at high altitudes. Neutron monitor count rate data from stations around the world were used to benchmark the model calculations during a Ground Level Event. A comparison was made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during GLE 60. A computer-code has been developed to implement the model for routine analysis. (author)
Modelling of aircrew radiation exposure from solar particle events
Energy Technology Data Exchange (ETDEWEB)
Al Anid, H.; Lewis, B.J.; Bennett, L.G.I. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)
2008-07-01
A transport code analysis using the Monte Carlo code, MCNPX, has been used to propagate an extrapolated particle spectrum based on GOES satellite measurements through the atmosphere to estimate aircrew radiation exposure due to solar particle events. Neutron monitor count rate data from ground stations around the world were used to benchmark the model calculations during several Ground Level Events (GLEs). In addition, a comparison was made between the model predictions and actual flight measurements made by some European investigators with various types of instrument used to measure the mixed radiation field during GLE 60 and 65. A computer-code has been further developed to implement the model for routine analysis. (author)
Stochastic Modeling of Non-equilibrium Bedload Transport
Kuai, Z.; Tsai, C. W.
2009-05-01
Traditional stochastic bed load models aimed to solve for the equilibrium bedload transport rate by matching the rate of bed erosion with the rate of deposition. Bedload transport can be in nonequilibrium even under the steady flow condition, as the quantity of moving particles in the bedload layer may vary. In a nonequilibrium condition, the interchange of sediment particles occurs not only between the bedload layer and the bed surface, but also across the interface between bedload and suspended load. The proposed approach attempts to add a new bedload-suspended load interchange layer to a stochastic bedlod transport model based on the Markov chain. The bedload transport rate is the product of the total particle volume in saltation and the average saltating velocity. We can quantify the number of saltating particles by modeling the occupancy probabilities vector of particles staying in three states (i.e., bed surface, bedload layer, and the interchange layer between the bedload and the suspended load.). The new stochastic bedload relation is validated against existing bedload model. The sudden change of flow and/or sediment condition leads to changes in the transition probabilities. The influence of sudden changes in flow-sediment properties on the bedload transport rate is investigated in this preliminary study. It is found that the neglecting the exchange process between the bedload layer and the suspended layer may lead to non-negligible errors in bedload calculation when the flow and/or sediment conditions change.
Modelling of Transport Projects Uncertainties
DEFF Research Database (Denmark)
Salling, Kim Bang; Leleur, Steen
2012-01-01
This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....
Experimental evaluation of a Markov multizone model of particulate contaminant transport.
Jones, Rachael M; Nicas, Mark
2014-10-01
The performance of a Markov chain model of the three-dimensional transport of particulates in indoor environments is evaluated against experimentally measured supermicrometer particle deposition. Previously, the model was found to replicate the predictions of relatively simple particle transport and fate models; and this work represents the next step in model evaluation. The experiments modeled were (i) the release of polydispersed particles inside a building lobby, and (ii) the release of monodispersed fluorescein-tagged particles inside an experimental chamber under natural and forced mixing. The Markov model was able to reproduce the spatial patterns of particle deposition in both experiments, though the model predictions were sensitive to the parameterization of the particle release mechanism in the second experiment. Overall, the results indicate that the Markov model is a plausible tool for modeling the fate and transport of supermicrometer particles.
Wohletz, K. H.; Sheridan, M. F.; Brown, W. K.
1989-11-01
The assumption that distributions of mass versus size interval for fragmented materials fit the log normal distribution is empirically based and has historical roots in the late 19th century. Other often used distributions (e.g., Rosin-Rammler, Weibull) are also empirical and have the general form for mass per size interval: n(l) = klα exp (-lβ), where n(l) represents the number of particles of diameter l, l is the normalized particle diameter, and k, α, and β are constants. We describe and extend the sequential fragmentation distribution to include transport effects upon observed volcanic ash size distributions. The sequential fragmentation/transport (SFT) distribution is also of the above mathematical form, but it has a physical basis rather than empirical. The SFT model applies to a particle-mass distribution formed by a sequence of fragmentation (comminution) and transport (size sorting) events acting upon an initial mass m': n(x, m) = C ∫∫ n(x', m')p(ξ)dx' dm', where x' denotes spatial location along a linear axis, C is a constant, and integration is performed over distance from an origin to the sample location and mass limits from 0 to m. We show that the probability function that models the production of particles of different size from an initial mass and sorts that distribution, p(ξ), is related to mg, where g (noted as γ for fragmentation processes) is a free parameter that determines the location, breadth, and skewness of the distribution; g(γ) must be greater than -1, and it increases from that value as the distribution matures with greater number of sequential steps in the fragmentation or transport process; γ is expected to be near -1 for "sudden" fragmentation mechanisms such as single-event explosions and transport mechanisms that are functionally dependent upon particle mass. This free parameter will be more positive for evolved fragmentation mechanisms such as ball milling and complex transport processes such as saltation. The SFT
Standard Model Particles from Split Octonions
Directory of Open Access Journals (Sweden)
Gogberashvili M.
2016-01-01
Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.
Standard Model Particles from Split Octonions
Gogberashvili, Merab
2016-01-01
We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors). It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.
Exploring the Standard Model of Particles
Johansson, K. E.; Watkins, P. M.
2013-01-01
With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…
Exploring the Standard Model of Particles
Johansson, K. E.; Watkins, P. M.
2013-01-01
With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…
Vectorising the detector geometry to optimize particle transport
Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro
2014-01-01
Among the components contributing to particle transport, geometry navigation is an important consumer of CPU cycles. The tasks performed to get answers to "basic" queries such as locating a point within a geometry hierarchy or computing accurately the distance to the next boundary can become very computing intensive for complex detector setups. So far, the existing geometry algorithms employ mainly scalar optimisation strategies (voxelization, caching) to reduce their CPU consumption. In this paper, we would like to take a different approach and investigate how geometry navigation can benefit from the vector instruction set extensions that are one of the primary source of performance enhancements on current and future hardware. While on paper, this form of microparallelism promises increasing performance opportunities, applying this technology to the highly hierarchical and multiply branched geometry code is a difficult challenge. We refer to the current work done to vectorise an important part of the critica...
Directory of Open Access Journals (Sweden)
Dogan Ciloglu
2017-01-01
Full Text Available The trajectory and deposition efficiency of micron-sized (1–5 µm particles, inhaled into the pulmonary system, are accurately determined with the aid of a newly developed model and modified simulation techniques. This alveolar model, which has a simple but physiologically appropriate geometry, and the utilized fluid structure interaction (FSI methods permit the precise simulation of tissue wall deformation and particle fluid interactions. The relation between tissue movement and airflow in the alveolated duct is solved by a two-way fluid structure interaction simulation technique, using ANSYS Workbench (Release 16.0, ANSYS INC., Pittsburgh, PA, USA, 2015. The dynamic transport of particles and their deposition are investigated as a function of aerodynamic particle size, tissue visco-elasticity, tidal breathing period, gravity orientation and particle–fluid interactions. It is found that the fluid flows and streamlines differ between the present flexible model and rigid models, and the two-way coupling particle trajectories vary relative to one-way particle coupling. In addition, the results indicate that modelling the two-way coupling particle system is important because the two-way discrete phase method (DPM approach despite its complexity provides more extensive particle interactions and is more reliable than transport results from the one-way DPM approach. The substantial difference between the results of the two approaches is likely due to particle–fluid interactions, which re-suspend the sediment particles in the airway stream and hence pass from the current generation.
A Theoretic Model of Transport Logistics Demand
Directory of Open Access Journals (Sweden)
Natalija Jolić
2006-01-01
Full Text Available Concerning transport logistics as relation between transportand integrated approaches to logistics, some transport and logisticsspecialists consider the tenn tautological. However,transport is one of the components of logistics, along with inventories,resources, warehousing, infonnation and goods handling.Transport logistics considers wider commercial and operationalframeworks within which the flow of goods is plannedand managed. The demand for transport logistics services canbe valorised as highly qualitative, differentiated and derived.While researching transport phenomenon the implementationof models is inevitable and demand models highly desirable. Asa contribution to transport modelling this paper improves decisionmaking and planning in the transport logistics field.
New Electroweak Model Without a Higgs Particle
Institute of Scientific and Technical Information of China (English)
WUNing
2002-01-01
A new unified electroweak model is proposed in this paper,In this unified electroweak model,Higgs echanism is not used.So no Higgs particle exists in the model.In order to keep the masses of intermediate gauge bosons non-zero,two sets of gauge fields will be introduced.In order to introduce symmetry breaking and to help to introduce the masses of all fileds.a vacuum potential is needed.Except for those terms concerning Higgs particle,the fundamental dynamical properties of this model are similar to those of the standard model.And in a proper limit,this model with approximately return to the standard model.The purpose of this paper is not to say that the Higgs particle does not exist in Nature,it is only to prove that,without a Higgs particle,we can also set up a unified electroweak model which is consistent with present experiments.
A Proportional Odds Model of Particle Pollution
2014-01-01
A linear regression model of particle pollution and an ordered logistic regression model of the relevant index were selected for observations in the US city of Los Angeles, California. Models were used to forecast Air Quality Index (AQI) from a sample, and were compared and contrasted. Methods are comparable overall but markedly different in their powers to predict certain categories. Linear regression models of AQI through particle pollution are more favored to predict moderate air quality; ...
Transport properties of stochastic Lorentz models
Beijeren, H. van
1982-01-01
Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed waiti
Modelling of Transport Projects Uncertainties
DEFF Research Database (Denmark)
Salling, Kim Bang; Leleur, Steen
2009-01-01
This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario...
Graphical User Interface for High Energy Multi-Particle Transport Project
National Aeronautics and Space Administration — Computer codes such as MCNPX now have the capability to transport most high energy particle types (34 particle types now supported in MCNPX) with energies extending...
Dierl, Marcel; Einax, Mario; Maass, Philipp
2013-06-01
Driven lattice gases serve as canonical models for investigating collective transport phenomena and properties of nonequilibrium steady states. Here we study one-dimensional transport with nearest-neighbor interactions both in closed bulk systems and in open channels coupled to two particle reservoirs at the ends of the channel. For the widely employed Glauber rates we derive an exact current-density relation in the bulk for unidirectional hopping. An approach based on time-dependent density functional theory provides a good description of the kinetics. For open systems, the system-reservoir couplings are shown to have a striking influence on boundary-induced phase diagrams. The role of particle-hole symmetry is discussed, and its consequence for the topology of the phase diagrams. It is furthermore demonstrated that systems with weak bias can be mapped onto systems with unidirectional hopping.
Modeling of magnetic particle suspensions for simulations
Satoh, Akira
2017-01-01
The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...
Wave induced mixing and transport of buoyant particles: application to the Statfjord A oil spill
Directory of Open Access Journals (Sweden)
M. Drivdal
2014-05-01
Full Text Available The modelling of wave-current and wave-turbulence interactions have received much attention in recent years. In this study the focus is on how these wave effects modify the transport of particles in the ocean. Here the particles are buoyant tracers that can represent oil droplets, plastic particles or plankton, for example fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production as well as the stronger veering by the Coriolis–Stokes force affect the drift of the particles. The energy and momentum fluxes as well as the Stokes drift depend on the directional wave spectrum that can be obtained from a wave model or from observations. As a first test the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (e.g. classical Ekman theory. Secondly the model is applied to a case where we investigate the oil drift after an offshore oil spill outside the western coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by empirical models. With wind and wave forcing from the ERA Interim archive, it is shown that the wave effects are important for the resultant drift in this case, and has the potential to improve drift forecasting.
Sources, transport, and mixing of particle-bound PAHs fluxes in the upper Neckar River basin
Schwientek, Marc; Rügner, Hermann; Qin, Xintong; Scherer, Ulrike; Grathwohl, Peter
2016-04-01
Transport of many urban pollutants in rivers is coupled to transport of suspended particles. The degree of contamination of these suspended particles depends on the mixture of "polluted" urban and "clean" background particles. Recent results have shown that, in several meso-scale catchments studied in southwestern and eastern Germany, the loading of particles with polycyclic aromatic hydrocarbons (PAHs) was stable over time and characteristic for each catchment. The absence of significant long-term trends or pronounced changes of the catchment-specific loadings indicate that either input and output of PAHs into the stream networks are largely at steady state or that storage of PAHs in the sediments within the stream network are sufficient to smooth out larger fluctuations. Moreover, it was shown that the contamination of sediments and suspended particles with PAHs is proportional to the number of inhabitants per suspended sediment flux in a catchment. These processes are being further studied at larger scale in the upper Neckar River basin (2300 km²) in southwestern Germany. This basin, located between the mountain ranges of the Black Forest and the Swabian Alb, comprises sub-catchments that are diverse in terms of urban impact, geology (ranging from gypsum and limetstones to siliceous sandstones) and hydrology (dynamics driven either by summerly convective events or by winterly frontal systems and snow melt). Accordingly, quality and quantity of particles being released in the sub-catchments as potential vectors for hydrophobic pollutants differ; and so do the events that mobilize the particles. These settings enable the investigation of how particle-bound pollutant fluxes generated at the meso-scale are mixed and transported at larger scales when introduced into a higher order river. A prominent research question is whether varying contributions from contrasting sub-catchments lead to changing contamination patterns in the main stem or if the sediment storage in
ACE-Asia Chemical Transport Modeling Overview
UNO, I.; Chin, M.; Collins, W.; Ginoux, P.; Rasch, P.; Carmichael, G. R.; Yienger, J. J.
2001-12-01
ACE-Asia (Asia Pacific Regional Aerosol Characterization Experiment) was designed to increase our understanding of how atmospheric aerosol particles affect the Earth?s climate system. The intensive observation period was carried out during March to May, 2001, and more than 100 researchers from several countries (United States, Japan, Korea, China, and many other Asian countries) participated using aircraft, a research vessel, surface stations and numerical models. Aerosol transport forecast activities played an important role during the ACE-Asia intensive observation period. Three independent modeling groups operated chemical transport models in forecast mode and participated in flight planning activities at the operations center. These models were: MATCH (Model of Atmospheric Transport and Chemistry; Rasch and Collins); GOCART (Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model; Chin and Ginour) and CFORS (Research Institute for Applied Mechanics, Kyushu University + University of Iowa - Chemical weather FORecast System; Uno, Carmichael and Yienger). The MATCH model used in ACE-Asia was a transport model applied for the Asia region, driven by NCEP forecast meteorology. A unique feature of this model was that it assimilated satellite derived optical depths into its forecast algorithm. The GOCART model provided global aerosol forecast using forecast meteorological fields provided by the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The CFORS model provided regional forecasts using a limited area transport model coupled with Regional Meteorological Modeling System (RAMS), initialized by NCEP and JMA forecasts. All models produced 3-d aerosol forecast products consisting of aerosol mass distributions and optical depths for sulfate, black carbon, organic carbon, sea salt, and dust. In the field these model products were made available to all participating scientists via the Web, and were also presented during the
Cui, Z.; Welty, C.; Maxwell, R. M.
2011-12-01
Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in
Observations and Modeling of Geospace Energetic Particles
Li, Xinlin
2016-07-01
Comprehensive measurements of energetic particles and electric and magnetic fields from state-of-art instruments onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of the energetic particles and the fields in the inner magnetosphere and impose new challenges to any quantitative modeling of the physical processes responsible for these observations. Concurrent measurements of energetic particles by satellites in highly inclined low Earth orbits and plasma and fields by satellites in farther distances in the magnetospheres and in the up stream solar wind are the critically needed information for quantitative modeling and for leading to eventual accurate forecast of the variations of the energetic particles in the magnetosphere. In this presentation, emphasis will be on the most recent advance in our understanding of the energetic particles in the magnetosphere and the missing links for significantly advance in our modeling and forecasting capabilities.
Charged Particle Transport in High-Energy-Density Matter
Stanton, Liam; Murillo, Michael
2016-10-01
Transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. We have developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. Our results have been validated with molecular dynamics simulations for self-diffusion, interdiffusion, viscosity, thermal conductivity and stopping power. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. Using a velocity-dependent screening model, we examine the role of dynamical screening in transport as well. Implications of these results for Coulomb logarithm approaches are discussed. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Polarizable water model for Dissipative Particle Dynamics
Pivkin, Igor; Peter, Emanuel
2015-11-01
Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.
Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill
Directory of Open Access Journals (Sweden)
M. Drivdal
2014-12-01
Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.
Energy Technology Data Exchange (ETDEWEB)
Walsh, J. A. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, NW12-312 Albany, St. Cambridge, MA 02139 (United States); Palmer, T. S. [Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, 116 Radiation Center, Corvallis, OR 97331 (United States); Urbatsch, T. J. [XTD-5: Air Force Systems, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2013-07-01
A new method for generating discrete scattering cross sections to be used in charged particle transport calculations is investigated. The method of data generation is presented and compared to current methods for obtaining discrete cross sections. The new, more generalized approach allows greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data generated with the new method is verified through a comparison with discrete data obtained with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code package, Milagro. The implementation of this capability is verified using test problems with analytic solutions as well as a comparison of electron dose-depth profiles calculated with Milagro and an already-established electron transport code. An initial investigation of a preliminary integration of the discrete cross section generation method with the new charged particle transport capability in Milagro is also presented. (authors)
Modeling of dilute and dense dispersed fluid-particle flow
Energy Technology Data Exchange (ETDEWEB)
Laux, Harald
1998-08-01
A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a
A unified transport equation for both cosmic rays and thermal particles
Williams, L. L.; Schwadron, N.; Jokipii, J. R.; Gombosi, T. I.
1993-01-01
We present a unified transport equation that is valid for particles of all energies if the particle mean free paths are much smaller than macroscopic fluid length scales. If restricted to particles with random speeds much greater than fluid flow speeds, this equation reduces to the previously discussed extended cosmic-ray transport equation. It is significant that this allows one to describe the acceleration of particles from thermal energies to cosmic-ray energies using one transport equation. This is in contrast to previous transport equations (the Parker equation and the extended cosmic-ray transport equation), which were restricted to fast particles. The close connection to the extended cosmic-ray transport equation is demonstrated.
Particle Transport in ECRH Plasmas of the TJ-II; Transporte de Particulas en Plasmas ECRH del TJ-II
Energy Technology Data Exchange (ETDEWEB)
Vargas, V. I.; Lopez-Bruna, D.; Estrada, T.; Guasp, J.; Reynolds, J. M.; Velasco, J. L.; Herranz, J.
2007-07-01
We present a systematic study of particle transport in ECRH plasmas of TJ-II with different densities. The goal is to fi nd particle confinement time and electron diffusivity dependence with line-averaged density. The experimental information consists of electron temperature profiles, T{sub e} (Thomson Scattering TS) and electron density, n{sub e}, (TS and reflectometry) and measured puffing data in stationary discharges. The profile of the electron source, Se, was obtained by the 3D Monte-Carlo code EIRENE. The analysis of particle balance has been done by linking the results of the code EIRENE with the results of a model that reproduces ECRH plasmas in stationary conditions. In the range of densities studied (0.58 {<=}n{sub e}> (10{sup 1}9m{sup -}3) {<=}0.80) there are two regions of confinement separated by a threshold density,
Nonlinear physics and energetic particle transport features of the beam-plasma instability
Carlevaro, Nakia; Montani, Giovanni; Zonca, Fulvio
2015-01-01
In this paper, we study transport features of a one-dimensional beam-plasma system in the presence of multiple resonances. As a model description of the general problem of a warm energetic particle beam, we assume $n$ cold supra-thermal beams and investigate the self-consistent evolution in the presence of the complete spectrum of nearly degenerate Langmuir modes. A qualitative transport estimation is obtained by computing the Lagrangian Coherent Structures of the system on given temporal scales. This leads to the splitting of the phase space into regions where the local transport processes are relatively faster. The general theoretical framework is applied to the case of the nonlinear dynamics of two cold beams, for which numerical simulation results are illustrated and analyzed.
Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Koifman, Naama; Shimoni, Eyal; Rechav, Katya; Arraf, Alaa A; Schultheiss, Thomas M; Talmon, Yeshayahu; Zelzer, Elazar; Weiner, Stephen; Addadi, Lia
2016-02-01
During bone formation in embryos, large amounts of calcium and phosphate are taken up and transported to the site where solid mineral is first deposited. The initial mineral forms in vesicles inside osteoblasts and is deposited as a highly disordered calcium phosphate phase. The mineral is then translocated to the extracellular space where it penetrates the collagen matrix and crystallizes. To date little is known about the transport mechanisms of calcium and phosphate in the vascular system, especially when high transport rates are needed and the concentrations of these ions in the blood serum may exceed the solubility product of the mineral phase. Here we used a rapidly growing biological model, the chick embryo, to study the bone mineralization pathway taking advantage of the fact that large amounts of bone mineral constituents are transported. Cryo scanning electron microscopy together with cryo energy dispersive X-ray spectroscopy and focused-ion beam imaging in the serial surface view mode surprisingly reveal the presence of abundant vesicles containing small mineral particles in the lumen of the blood vessels. Morphologically similar vesicles are also found in the cells associated with bone formation. This observation directly implicates the vascular system in solid mineral distribution, as opposed to the transport of ions in solution. Mineral particle transport inside vesicles implies that far larger amounts of the bone mineral constituents can be transported through the vasculature, without the danger of ectopic precipitation. This introduces a new stage into the bone mineral formation pathway, with the first mineral being formed far from the bone itself.
Energy Technology Data Exchange (ETDEWEB)
Wohletz, K.H. (Earth and Space Science Division Los Alamos National Laboratory, New Mexico (USA)); Sheridan, M.F. (Department of Geology, Arizona State University, Tempe (USA)); Brown, W.K. (Math/Science Division, Lassen College, Susanville, California (USA))
1989-11-10
The assumption that distributions of mass versus size interval for fragmented materials fit the log normal distribution is empirically based and has historical roots in the late 19th century. Other often used distributions (e.g., Rosin-Rammler, Weibull) are also empirical and have the general form for mass per size interval: {ital n}({ital l})={ital kl}{sup {alpha}} exp(-{ital l}{beta}), where {ital n}({ital l}) represents the number of particles of diameter {ital l}, {ital l} is the normalized particle diameter, and {ital k}, {alpha}, and {beta} are constants. We describe and extend the sequential fragmentation distribution to include transport effects upon observed volcanic ash size distributions. The sequential fragmentation/transport (SFT) distribution is also of the above mathematical form, but it has a physical basis rather than empirical. The SFT model applies to a particle-mass distribution formed by a sequence of fragmentation (comminution) and transport (size sorting) events acting upon an initial mass {ital m}{prime}: {ital n}({ital x}, {ital m})={ital C} {integral}{integral} {ital n}({ital x}{prime}, {ital m}{prime}){ital p}({xi}) {ital dx}{prime} {ital dm}{prime}, where {ital x}{prime} denotes spatial location along a linear axis, {ital C} is a constant, and integration is performed over distance from an origin to the sample location and mass limits from 0 to {ital m}.
Scoggins, James B.; Knisely, Carleton P.; Magin, Thierry E.
2016-11-01
We propose a unified fluid model for multicomponent plasmas in thermal nonequilibrium accounting for the influence of the electromagnetic field. In a previous work, this model was derived from kinetic theory based on a generalized Chapman-Enskog perturbative solution of the Boltzmann equation, scaled using the ratio of electron to heavy-particle masses. Anisotropic transport properties were derived in terms of bracket integrals. In this work, explicit expressions for asymptotic solutions of the transport properties are derived using a spectral Galerkin projection supplied with Laguerre-Sonine polynomial basis functions, and we analyze the crossed contributions to electron and heavy particle mass and energy fluxes, known as the Kolesnikov effect.
Validating modelling assumptions of alpha particles in electrostatic turbulence
Wilkie, George; Highcock, Edmund; Dorland, William
2014-01-01
To rigorously model fast ions in fusion plasmas, a non-Maxwellian equilibrium distribution must be used. In the work, the response of high-energy alpha particles to electrostatic turbulence has been analyzed for several different tokamak parameters. Our results are consistent with known scalings and experimental evidence that alpha particles are generally well-confined: on the order of several seconds. It is also confirmed that the effect of alphas on the turbulence is negligible at realistically low concentrations, consistent with linear theory. It is demonstrated that the usual practice of using a high-temperature Maxwellian gives incorrect estimates for the radial alpha particle flux, and a method of correcting it is provided. Furthermore, we see that the timescales associated with collisions and transport compete at moderate energies, calling into question the assumption that alpha particles remain confined to a flux surface that is used in the derivation of the slowing-down distribution.
Modelling of radon transport in porous media
van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M
1998-01-01
This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil
Modelling of radon transport in porous media
van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M
1998-01-01
This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil
Dynamics and transport of laser-accelerated particle beams
Energy Technology Data Exchange (ETDEWEB)
Becker, Stefan
2010-04-19
The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects
Transport Properties for Combustion Modeling
Energy Technology Data Exchange (ETDEWEB)
Brown, N.J.; Bastein, L.; Price, P.N.
2010-02-19
This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4
Directions in Radiation Transport Modelling
Directory of Open Access Journals (Sweden)
P Nicholas Smith
2016-12-01
More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.
Fan, Niannian; Zhong, Deyu; Wu, Baosheng; Foufoula-Georgiou, Efi; Guala, Michele
2014-03-01
Bed load transport is a highly complex process. The probability density function (PDF) of particle velocities results from the local particle momentum variability in response to fluid drag and interactions with the bed. Starting from the forces exerted on a single particle under low transport rates (i.e., rolling and sliding regimes), we derive here the nonlinear stochastic Langevin equation (LE) to describe the dynamics of a single particle, accounting for both the deterministic and the stochastic components of such forces. Then, the Fokker-Planck equation (FPE), which describes the evolution of the PDF of the ensemble particle velocities, is derived from the LE. We show that the theoretical PDFs of both streamwise and cross-stream velocities obtained by solving the FPE under equilibrium conditions have exponential form (PDFs of both positive and negative velocities decay exponentially), consistent with the experimental data by Roseberry et al. Moreover, we theoretically show how the exponential-like PDF of an ensemble of particle velocities results from the forces exerted on a single particle. We also show that the simulated particle motions using the proposed Langevin model exhibit an emergent nonlinear relationship between hop distances and travel times (power law with exponent 5/3), in agreement with the experimental data, providing a statistical description of the particles' random motion in the context of a stochastic transport process. Finally, our study emphasizes that the motion of individual particles, described by the LE, and the behavior of the ensemble, described by the FPE, are connected within a statistical mechanics framework.
Islam, Mohammad S.; Saha, Suvash C.; Sauret, Emilie; Gu, Y. T.; Molla, Md Mamun
2017-06-01
Diesel exhaust particulates matter (DEPM) is a compound mixture of gasses and fine particles that contain more than 40 toxic air pollutants including benzene, formaldehyde, and nitrogen oxides. Exposure of DEPM to human lung airway during respiratory inhalation causes severe health hazards like diverse pulmonary diseases. This paper studies the DEPM transport and deposition in upper three generations of the realistic lung airways. A 3-D digital airway bifurcation model is constructed from the computerized tomography (CT) scan data of a healthy adult man. The Euler-Lagrange approach is used to solve the continuum and disperse phases of the calculation. Local averaged Navier-Stokes equations are solved to calculate the transport of the continuum phase. Lagrangian based Discrete Phase Model (DPM) is used to investigate the particle transport and deposition in the current anatomical model. The effects of size specific monodispersed particles on deposition are extensively investigated during different breathing pattern. The numerical results illustrate that particle diameter and breathing pattern have a substantial impact on particles transport and deposition in the tracheobronchial airways. The present realistic bifurcation model also depicts a new deposition hot spot which could advance the understanding of the therapeutic drug delivery system to the specific position of the respiratory airways.
Transient Particle Transport Analysis on TJ-II Stellarator
Energy Technology Data Exchange (ETDEWEB)
Eguilior, S.; Castejon, F.; Guasp, J.; Estrada, T.; Medina, F.; Tabares, F.L.; Branas, B.
2006-12-18
Particle diffusivity and convective velocity have been determined in ECRH plasmas confined in the stellarator TJ-II by analysing the evolving density profile. This is obtained from an amplitude modulation reflectometry system in addition to an X-ray tomographic reconstruction. The source term, which is needed as an input for transport equations, is obtained using EIRENE code. In order to discriminate between the diffusive and convective contributions, the dynamics of the density evolution has been analysed in several perturbative experiments. This evolution has been considered in discharges with injection of a single pulse of H2 as well as in those that present a spontaneous transition to an enhanced confinement mode and whose confinement properties are modified by inducing an ohmic current. The pinch velocity and diffusivity are parameterized by different expressions in order to fit the experimental time evolution of density profile. The profile evolution is very different from one case to another due to the different values of convective velocities and diffusivities, besides the different source terms. (Author) 19 refs.
Modeling of particle agglomeration in nanofluids
Energy Technology Data Exchange (ETDEWEB)
Krishna, K. Hari; Neti, S.; Oztekin, A. [Department of Mechanical Engineering and Mechanics, Lehigh University, 19W Memorial Dr, Bethlehem, Pennsylvania 18015 (United States); Mohapatra, S. [Dynalene Inc., 5250W Coplay Rd, Whitehall, Pennsylvania 18052 (United States)
2015-03-07
Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.
Satoh, Akira; Ozaki, Masataka
2006-06-15
We have investigated the influence of the magnetic field strength, shear rate, and rotational Brownian motion on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. The rodlike particle is modeled as a magnetic spheroidal particle which has a magnetic moment normal to the particle axis; such a particle may typically be a hematite particle. In the present study, an external magnetic field is applied in the direction normal to the shear plane of a simple shear flow. The basic equation of the orientational distribution function has been derived from the balance of torques and solved numerically. The results obtained here are summarized as follows. Although the orientational distribution function shows a sharp peak in the shear flow direction for a very strong magnetic field, such a peak is not restricted to the field direction alone, but continues in every direction of the shear plane. This is due to the characteristic particle motion that the particle can rotate around the axis of the magnetic moment in the shear plane, although the magnetic moment nearly points to the magnetic field direction. This particle motion in the shear plane causes negative values of the viscosity due to the magnetic field. The viscosity decreases, attains a minimum value, and then converges to zero as the field strength increases. Additionally, the diffusion coefficient is significantly influenced by such characteristic particle motion in the shear plane for a strong magnetic field.
Markov-Tree model of intrinsic transport in Hamiltonian systems
Meiss, J. D.; Ott, E.
1985-01-01
A particle in a chaotic region of phase space can spend a long time near the boundary of a regular region since transport there is slow. This 'stickiness' of regular regions is thought to be responsible for previous observations in numerical experiments of a long-time algebraic decay of the particle survival probability, i.e., survival probability approximately t to the (-z) power for large t. This paper presents a global model for transport in such systems and demonstrates the essential role of the infinite hierarchy of small islands interspersed in the chaotic region. Results for z are discussed.
Multi-Fraction Bayesian Sediment Transport Model
Directory of Open Access Journals (Sweden)
Mark L. Schmelter
2015-09-01
Full Text Available A Bayesian approach to sediment transport modeling can provide a strong basis for evaluating and propagating model uncertainty, which can be useful in transport applications. Previous work in developing and applying Bayesian sediment transport models used a single grain size fraction or characterized the transport of mixed-size sediment with a single characteristic grain size. Although this approach is common in sediment transport modeling, it precludes the possibility of capturing processes that cause mixed-size sediments to sort and, thereby, alter the grain size available for transport and the transport rates themselves. This paper extends development of a Bayesian transport model from one to k fractional dimensions. The model uses an existing transport function as its deterministic core and is applied to the dataset used to originally develop the function. The Bayesian multi-fraction model is able to infer the posterior distributions for essential model parameters and replicates predictive distributions of both bulk and fractional transport. Further, the inferred posterior distributions are used to evaluate parametric and other sources of variability in relations representing mixed-size interactions in the original model. Successful OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 1067 development of the model demonstrates that Bayesian methods can be used to provide a robust and rigorous basis for quantifying uncertainty in mixed-size sediment transport. Such a method has heretofore been unavailable and allows for the propagation of uncertainty in sediment transport applications.
Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams
Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon
2016-07-01
We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.
Coclite, Alessandro; Pascazio, Giuseppe; Decuzzi, Paolo
2016-01-01
Modelling the vascular transport and adhesion of man-made particles is crucial for optimizing their efficacy in the detection and treatment of diseases. Here, a Lattice Boltzmann and Immersed Boundary methods are combined together for predicting the near wall dynamics of particles with different shapes in a laminar flow. For the lattice Boltzmann modelling, a Gauss-Hermite projection is used to derive the lattice equation, wall boundary conditions are imposed through the Zou-He framework, and a moving least squares algorithm accurately reconstructs the forcing term accounting for the immersed boundary. First, the computational code is validated against two well-known test cases: the sedimentation of circular and elliptical cylinders in a quiescent fluid. A very good agreement is observed between the present results and those available in the literature. Then, the transport of circular, elliptical, rectangular, square and triangular particles is analyzed in a Couette flow, at Re=20. All particles drifted later...
Data decomposition of Monte Carlo particle transport simulations via tally servers
Energy Technology Data Exchange (ETDEWEB)
Romano, Paul K., E-mail: paul.k.romano@gmail.com [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Siegel, Andrew R., E-mail: siegala@mcs.anl.gov [Argonne National Laboratory, Theory and Computing Sciences, 9700 S Cass Ave., Argonne, IL 60439 (United States); Forget, Benoit, E-mail: bforget@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Smith, Kord, E-mail: kord@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)
2013-11-01
An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.
Analytical model for flux saturation in sediment transport.
Pähtz, Thomas; Parteli, Eric J R; Kok, Jasper F; Herrmann, Hans J
2014-05-01
The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment, and a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of sediment landscapes emerging due to surface transport of sediment is controlled by situations out of equilibrium. In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment entrainment prevailing under different environmental conditions. Our analytical treatment allows us to derive a closed expression for the saturation length of sediment flux, which is general and thus can be applied under different physical conditions.
Solar Energetic Particle Transport Near a Heliospheric Current Sheet
Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.
2017-02-01
Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1-800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.
Business Models For Transport eBusiness
Dragan Cisic; Ivan Franciskovic; Ana Peric
2003-01-01
In this paper authors are presenting expectations from electronic commerce and its connotations on transport logistics. Based on trends, the relations between the companies in the international transport have to be strengthened using Internet business models. In the paper authors are investigating e-business information models for usage in transport
ABCD-Type Law for Charged-Particle Beam Transport in Paraxial Approximation
Institute of Scientific and Technical Information of China (English)
陈宝信; 孙别和
2003-01-01
Based on the similarity between charged-particle beam transversal transport and transmission of ellipse Gaussian light beam in paraxial approximation, it is shown that charged-particle beam transversal transport in real space is governed by the ABCD-type law for a complex curvature radius of the charged-particle beam in which the beam transverse emittance plays the role of wavelength; from this, a novel technique for characterizing charged-particle beam is proposed. Finally, this analogy provides an insight observation that it is hopeful to attain possible coherent charged-particle beam in favourable accelerator environment.
Groundwater transport modeling with nonlinear sorption and intraparticle diffusion
Singh, Anshuman; Allen-King, Richelle M.; Rabideau, Alan J.
2014-08-01
Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of "dual mode" sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including "dual mode" and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.
Grossi, Claudia; Morguí, Josep Anton; Curcoll, Roger; Àgueda, Alba; Arnold, Delia; Batet, Oscar; Cañas, Lidia; Nofuentes, Manel; Occhipinti, Paola; Vogel, Felix; Vargas, Arturo; Rodó, Xavier
2014-05-01
The Gredos and Iruelas station (GIC3) is part of the IC3 (Institut Català de Ciències del Clima) atmospheric monitoring network. This station is located in the Gredos Natural Park (40.22º N; -5.14º E) in the Spanish central plateau. The IC3 network consists of 8 stations distributed across Spain. It has been developed with the aim of studying climatic processes and the responses of impacted systems at different temporal and spatial scales. Since 2012, CO2, CH4, 222Rn (a natural radioactive gas) and meteorological variables are continuously measured at GIC3 at 20 m a.g.l. (1100 m a.s.l.). Furthermore, 4-days backward simulations are run daily for each IC3 station using the FLEXPART model. Simulations use ECMWF meteorological data as input and a horizontal spatial resolution of 0.2 degrees. The Laboratory of the Atmosphere and the Oceans (LAO) of the IC3 has elaborated a new approach to evaluate the local or remote greenhouse gases emissions using the radon gas as tracer and the atmospheric particles transport model FLEXPART under nocturnal and winter conditions. The ratios between the normalized and rescaled measured concentrations of CH4 and 222Rn during nocturnal hours (21h, 00h, 03h and 06h) and in the winter season, in order to reduce local radon flux and methane source due to seasonal livestock migration and to get stable atmospheric conditions, have been analyzed in relation to the influence of the local area (set to an initial dimension of 20x20 km2). The influence area (IA) has been defined as the percentage of the ratio between the residence time of the fictitious particles released in FLEXPART simulations over the area of interest (TLocal Area) and the residence time of these fictitious particles over the total area included in the simulation (TTotal Area ), i.e. IA = (TLocal Area/TTotal Area * 100). First results considering an area of interest of 20x20 km2 show a linear increase of the radon concentration with IA until reaching a maximum when IA is
New particle formation in air mass transported between two measurement sites in Northern Finland
Directory of Open Access Journals (Sweden)
M. Komppula
2006-01-01
Full Text Available This study covers four years of aerosol number size distribution data from Pallas and Värriö sites 250 km apart from each other in Northern Finland and compares new particle formation events between these sites. In air masses of eastern origin almost all events were observed to start earlier at the eastern station Värriö, whereas in air masses of western origin most of the events were observed to start earlier at the western station Pallas. This demonstrates that particle formation in a certain air mass type depends not only on the diurnal variation of the parameters causing the phenomenon (such as photochemistry but also on some properties carried by the air mass itself. The correlation in growth rates between the two sites was relatively good, which suggests that the amount of condensable vapour causing the growth must have been at about the same level in both sites. The condensation sink was frequently much higher at the downwind station. It seems that secondary particle formation related to biogenic sources dominate in many cases over the particle sinks during the air mass transport between the sites. Two cases of transport from Pallas to Värriö were further analysed with an aerosol dynamics model. The model was able to reproduce the observed nucleation events 250 km down-wind at Värriö but revealed some differences between the two cases. The simulated nucleation rates were in both cases similar but the organic concentration profiles that best reproduced the observations were different in the two cases indicating that divergent formation reactions may dominate under different conditions. The simulations also suggested that organic compounds were the main contributor to new particle growth, which offers a tentative hypothesis to the distinct features of new particles at the two sites: Air masses arriving from the Atlantic Ocean typically spent approximately only ten hours over land before arriving at Pallas, and thus the time for the
Mechanical models of physical fields and particles
Dmitriyev, V P
1999-01-01
Earlier obtained results on mechanical analogies of physical fields and particles are reviewed. The approach rests on the concept of the substratum - a mechanical medium, which occupies all the space and serves as a seat to support the light and to transmit interactions. A turbulent ideal fluid was chosen for the substratum. The turbulence is supposed to be homogeneous and isotropic in its ground state. Perturbations of the turbulence model physical fields. Particles originate from the voids in the fluid. Symmetrical pairs of particle-antiparticle find analogies in mechanical pairs of cyclone-anticyclone. A quantum particle is modeled by the dispersion of a point discontinuity (defect) in the stochastic medium. Gravitation relates to emitting by defects the continual flow of the transient point dilatation. The shock wave mechanism of the re-collection a discontinuity in the incompressible medium governs such phenomena as the "wave function collapse" and instantaneous quantum correlations. Microscopically, the...
Modeling energy transport in nanostructures
Pattamatta, Arvind
Heat transfer in nanostructures differ significantly from that in the bulk materials since the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of the nanostructures. Nanostructure materials hold the promise of novel phenomena, properties, and functions in the areas of thermal management and energy conversion. Example of thermal management in micro/nano electronic devices is the use of efficient nanostructured materials to alleviate 'hot spots' in integrated circuits. Examples in the manipulation of heat flow and energy conversion include nanostructures for thermoelectric energy conversion, thermophotovoltaic power generation, and data storage. One of the major challenges in Metal-Oxide Field Effect Transistor (MOSFET) devices is to study the 'hot spot' generation by accurately modeling the carrier-optical phonon-acoustic phonon interactions. Prediction of hotspot temperature and position in MOSFET devices is necessary for improving thermal design and reliability of micro/nano electronic devices. Thermoelectric properties are among the properties that may drastically change at nanoscale. The efficiency of thermoelectric energy conversion in a material is measured by a non-dimensional figure of merit (ZT) defined as, ZT = sigmaS2T/k where sigma is the electrical conductivity, S is the Seebeck coefficient, T is the temperature, and k is the thermal conductivity. During the last decade, advances have been made in increasing ZT using nanostructures. Three important topics are studied with respect to energy transport in nanostructure materials for micro/nano electronic and thermoelectric applications; (1) the role of nanocomposites in improving the thermal efficiency of thermoelectric devices, (2) the interfacial thermal resistance for the semiconductor/metal contacts in thermoelectric devices and for metallic interconnects in micro/nano electronic devices, (3) the
Bonded-cell model for particle fracture
Nguyen, Duc-Hanh; Azéma, Émilien; Sornay, Philippe; Radjaï, Farhang
2015-01-01
International audience; Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and ...
Numerical study of the auroral particle transport in the polar upper atmosphere
Institute of Scientific and Technical Information of China (English)
2008-01-01
Starting from the Boltzmann equation and with some reasonable assumptions, a one-dimensional transport equation of charged energetic particles is derived by taking account of major interactions with neutral species in the upper atmosphere, including the processes of elastic scattering, the excitation, the ionization and the secondary electron production. The transport equation is numerically solved, for a simplified atmosphere consisting only of nitrogen molecules (N2), to obtain the variations of incident electron fluxes as a function of altitude, energy and pitch angle. The model results can describe fairly the transport characteristics of pre-cipitating auroral electron spectra in the polar upper atmosphere; meanwhile the N2 ionization rates calculated from the modeled differential flux spectra also exhibit good agreements with existing empirical models in terms of several key parameters. Taking the energy flux spectra of precipitating electrons observed by FAST satellite flying over EISCAT site on May 15, 1997 as model inputs, the model-calculated ionization rate profile of neutral atmosphere consists reasonably with that recon-structed from electron density measurements by the radar.
Cholesterol transport in model membranes
Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula
2010-03-01
Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.
Application of the New Weiland Model for Studying Transport Barriers
Kritz, Arnold; Fan, Xiang; Rafiq, Tariq; Tangri, Varun; Pankin, Alexei; Weiland, Jan
2012-10-01
Recent advances in the Weiland drift wave model include new correlation length and new kink (peeling) terms as well as collisions on free electrons. The new model also includes electromagnetic effects on toroidal and poloidal momentum transport. These advances make the model suitable for simulating anomalous effects in transport barriers. A description of the Weiland model content is included in the adjacent poster by T. Rafiq et al. In this study, particle, thermal, and momentum transport coefficients are computed in systematic scans over electron and ion temperature gradients, temperature ratio, density gradient, magnetic q, collision frequency, trapped particle fraction, magnetic shear, Larmor radius, plasma β and elongation. Special consideration is given to the plasma parameter scans that correspond to the plasma edge region such as large temperature and density gradients, large magnetic shear and large magnetic q. The transport results yielded by the new Weiland drift wave model are contrasted with the earlier version of the model. Combined with high fidelity models for neoclassical effects such as NEO and XGC0 models, it is anticipated that the new Weiland model can be used to model H-mode pedestal buildup and recovery between ELM crashes.
Results and perspectives of particle transport measurements in gases in microgravity
Vedernikov, Andrei; Balapanov, Daniyar; Beresnev, Sergey
2016-07-01
Solid or liquid particles floating in a gas belong to dispersed systems, most often referred to as aerosols or dust clouds. They are widely spread in nature, involving both environmental and technological issues. They attract growing attention in microgravity, particularly in complex plasma, simulation of protoplanetary dust clouds, atmospheric aerosol, etc. Brownian random walk, motion of particles in gravity, electrostatic and magnetic fields, are well defined. We present the survey showing that the quantitative description of a vast variety of other types of motion is much less accurate, often known only in a limited region of parameters, sometimes described by the contradictory models, poorly verified experimentally. It is true even for the most extensively investigated transport phenomena - thermophoresis and photophoresis, not to say about diffusiophoresis, gravito-photophoresis, various other types of particle motion driven by physicochemical transformation and accommodation peculiarities on the particle-gas interface, combination of different processes. The number of publications grow very quickly, only those dealing with thermophoresis exceeded 300 in 2015. Hence, there is a strong need in high quality experimental data on particle transport properties with growing interest to expand the scope for non-isometric particles, agglomerates, dense clouds, interrelation with the two-phase flow dynamics. In most cases, the accuracy and sometimes the entire possibility of the measurement is limited by the presence of gravity. Floating particles have the density considerably different from that of the gas. They sediment, often with gliding and tumbling, that perturbs the motion trajectory, local hydrodynamic environment around particles, all together complicating definition of the response. Measurements at very high or very low Knudsen numbers (rarefied gas or too big particles) are of particular difficulty. Experiments assume creating a well-defined force, i
Ogawa, Shun; Leoncini, Xavier; Dif-Pradalier, Guilhem; Garbet, Xavier
2016-01-01
Charged particles with low kinetic energy move along magnetic field lines, but so do not energetic particles. We investigate the topological structure changes in the phase space of energetic particles with respect to the magnetic one. For this study cylindrical magnetic fields with non-monotonic safety factors that induce the magnetic internal transport barrier are considered. We show that the topological structure of the magnetic field line and of the particle trajectories can be quite diffe...
Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.
2005-05-01
It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.
Aeolian Sediment Transport Integration in General Stratigraphic Forward Modeling
Directory of Open Access Journals (Sweden)
T. Salles
2011-01-01
Full Text Available A large number of numerical models have been developed to simulate the physical processes involved in saltation, and, recently to investigate the interaction between soil vegetation cover and aeolian transport. These models are generally constrained to saltation of monodisperse particles while natural saltation occurs over mixed soils. We present a three-dimensional numerical model of steady-state saltation that can simulate aeolian erosion, transport and deposition for unvegetated mixed soils. Our model simulates the motion of saltating particles using a cellular automata algorithm. A simple set of rules is used and takes into account an erosion formula, a transport model, a wind exposition function, and an avalanching process. The model is coupled to the stratigraphic forward model Sedsim that accounts for a larger number of geological processes. The numerical model predicts a wide range of typical dune shapes, which have qualitative correspondence to real systems. The model reproduces the internal structure and composition of the resulting aeolian deposits. It shows the complex formation of dune systems with cross-bedding strata development, bounding surfaces overlaid by fine sediment and inverse grading deposits. We aim to use it to simulate the complex interactions between different sediment transport processes and their resulting geological morphologies.
Pähtz, Thomas; Durán, Orencio
2017-07-01
In steady sediment transport, the deposition of transported particles is balanced by the entrainment of soil bed particles by the action of fluid forces or particle-bed impacts. Here we propose a proxy to determine the role of impact entrainment relative to entrainment by the mean turbulent flow: the "bed velocity" Vb, which is an effective near-bed-surface value of the average horizontal particle velocity that generalizes the classical slip velocity, used in studies of aeolian saltation transport, to sediment transport in an arbitrary Newtonian fluid. We study Vb for a wide range of the particle-fluid-density ratio s , Galileo number Ga , and Shields number Θ using direct sediment transport simulations with the numerical model of Durán et al. [Phys. Fluids 24, 103306 (2012), 10.1063/1.4757662], which couples the discrete element method for the particle motion with a continuum Reynolds-averaged description of hydrodynamics. We find that transport is fully sustained through impact entrainment (i.e., Vb is constant in natural units) when the "impact number" Im =Ga √{s +0.5 }≳20 or Θ ≳5 /Im . These conditions are obeyed for the vast majority of transport regimes, including steady turbulent bedload, which has long been thought to be sustained solely through fluid entrainment. In fact, we find that transport is fully sustained through fluid entrainment (i.e., Vb scales with the near-bed horizontal fluid velocity) only for sufficiently viscous bedload transport at grain scale (i.e., for Im ≲20 and Θ ≲1 /Im ). Finally, we do not find a strong correlation between Vb, or the classical slip velocity, and the transport-layer-averaged horizontal particle velocity vx¯, which challenges the long-standing consensus that predominant impact entrainment is responsible for a linear scaling of the transport rate with Θ . For turbulent bedload in particular, vx¯ increases with Θ despite Vb remaining constant, which we propose is linked to the formation of a liquidlike
Interspecies modeling of inhaled particle deposition patterns
Energy Technology Data Exchange (ETDEWEB)
Martonen, T.B.; Zhang, Z.; Yang, Y.
1992-01-01
To evaluate the potential toxic effects of ambient contaminants or therapeutic effects of airborne drugs, inhalation exposure experiments can be performed with surrogate laboratory animals. Herein, an interspecies particle deposition theory is presented for physiologically based pharmacokinetic modeling. It is derived to improve animal testing protocols. The computer code describes the behavior and fate of particles in the lungs of human subjects and a selected surrogate, the laboratory rat. In the simulations CO2 is integrated with exposure chamber atmospheres, and its concentrations regulated to produce rat breathing profiles corresponding to selected levels of human physical activity. The dosimetric model is used to calculate total, compartmental (i.e., tracheobronchial and pulmonary), and localized distribution patterns of inhaled particles in rats and humans for comparable ventilatory conditions. It is demonstrated that the model can be used to predetermine the exposure conditions necessary to produce deposition patterns in rats that are equivalent to those in humans at prescribed physical activities.
GPU-accelerated Red Blood Cells Simulations with Transport Dissipative Particle Dynamics
Blumers, Ansel L; Li, Zhen; Li, Xuejin; Karniadakis, George E
2016-01-01
Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 c...
van der Does, Michèlle; Korte, Laura F.; Munday, Chris I.; Brummer, Geert-Jan A.; Stuut, Jan-Berend W.
2016-11-01
Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.
Model of Image Artifacts from Dust Particles
Willson, Reg
2008-01-01
A mathematical model of image artifacts produced by dust particles on lenses has been derived. Machine-vision systems often have to work with camera lenses that become dusty during use. Dust particles on the front surface of a lens produce image artifacts that can potentially affect the performance of a machine-vision algorithm. The present model satisfies a need for a means of synthesizing dust image artifacts for testing machine-vision algorithms for robustness (or the lack thereof) in the presence of dust on lenses. A dust particle can absorb light or scatter light out of some pixels, thereby giving rise to a dark dust artifact. It can also scatter light into other pixels, thereby giving rise to a bright dust artifact. For the sake of simplicity, this model deals only with dark dust artifacts. The model effectively represents dark dust artifacts as an attenuation image consisting of an array of diffuse darkened spots centered at image locations corresponding to the locations of dust particles. The dust artifacts are computationally incorporated into a given test image by simply multiplying the brightness value of each pixel by a transmission factor that incorporates the factor of attenuation, by dust particles, of the light incident on that pixel. With respect to computation of the attenuation and transmission factors, the model is based on a first-order geometric (ray)-optics treatment of the shadows cast by dust particles on the image detector. In this model, the light collected by a pixel is deemed to be confined to a pair of cones defined by the location of the pixel s image in object space, the entrance pupil of the lens, and the location of the pixel in the image plane (see Figure 1). For simplicity, it is assumed that the size of a dust particle is somewhat less than the diameter, at the front surface of the lens, of any collection cone containing all or part of that dust particle. Under this assumption, the shape of any individual dust particle artifact
SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION
Energy Technology Data Exchange (ETDEWEB)
B.W. ARNOLD
2004-10-27
The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.
In vitro placental model optimization for nanoparticle transport studies
Directory of Open Access Journals (Sweden)
Cartwright L
2012-01-01
Full Text Available Laura Cartwright1, Marie Sønnegaard Poulsen2, Hanne Mørck Nielsen3, Giulio Pojana4, Lisbeth E Knudsen2, Margaret Saunders1, Erik Rytting2,51Bristol Initiative for Research of Child Health (BIRCH, Biophysics Research Unit, St Michael's Hospital, UH Bristol NHS Foundation Trust, Bristol, UK; 2University of Copenhagen, Faculty of Health Sciences, Department of Public Health, 3University of Copenhagen, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics and Analytical Chemistry, Copenhagen, Denmark; 4Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice, Italy; 5Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USABackground: Advances in biomedical nanotechnology raise hopes in patient populations but may also raise questions regarding biodistribution and biocompatibility, especially during pregnancy. Special consideration must be given to the placenta as a biological barrier because a pregnant woman's exposure to nanoparticles could have significant effects on the fetus developing in the womb. Therefore, the purpose of this study is to optimize an in vitro model for characterizing the transport of nanoparticles across human placental trophoblast cells.Methods: The growth of BeWo (clone b30 human placental choriocarcinoma cells for nanoparticle transport studies was characterized in terms of optimized Transwell® insert type and pore size, the investigation of barrier properties by transmission electron microscopy, tight junction staining, transepithelial electrical resistance, and fluorescein sodium transport. Following the determination of nontoxic concentrations of fluorescent polystyrene nanoparticles, the cellular uptake and transport of 50 nm and 100 nm diameter particles was measured using the in vitro BeWo cell model.Results: Particle size measurements, fluorescence readings, and confocal microscopy indicated both cellular uptake of
Computer Models Simulate Fine Particle Dispersion
2010-01-01
Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.
Transport Processes from Mechanics: Minimal and Simplest Models
Bunimovich, Leonid A.; Grigo, Alexander
2017-02-01
We review the current state of a fundamental problem of rigorous derivation of transport processes in classical statistical mechanics from classical mechanics. Such derivations for diffusion and momentum transport (viscosities) were obtained for minimal models of these processes involving one and two particles respectively. However, a minimal model which demonstrates heat conductivity contains three particles. Its rigorous analysis is currently out of reach for existing mathematical techniques. The gas of localized balls is widely accepted as a basis for a simplest model for derivation of Fourier's law. We suggest a modification of the localized balls gas and argue that this gas of localized activated balls is a good candidate to rigorously prove Fourier's law. In particular, hyperbolicity is derived for a reduced version of this model.
Transport Processes from Mechanics: Minimal and Simplest Models
Bunimovich, Leonid A.; Grigo, Alexander
2016-12-01
We review the current state of a fundamental problem of rigorous derivation of transport processes in classical statistical mechanics from classical mechanics. Such derivations for diffusion and momentum transport (viscosities) were obtained for minimal models of these processes involving one and two particles respectively. However, a minimal model which demonstrates heat conductivity contains three particles. Its rigorous analysis is currently out of reach for existing mathematical techniques. The gas of localized balls is widely accepted as a basis for a simplest model for derivation of Fourier's law. We suggest a modification of the localized balls gas and argue that this gas of localized activated balls is a good candidate to rigorously prove Fourier's law. In particular, hyperbolicity is derived for a reduced version of this model.
Energy Technology Data Exchange (ETDEWEB)
Santos, Adriano dos; Barros, Paulo [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)
2008-07-01
An analytical model for transport of particulate suspensions in porous medium is discussed. The model takes microscopic rock characteristics into account and considers that size exclusion is the dominant particle retention mechanism. Analytical solutions for suspended and retained particle concentrations are obtained and the inverse problem is solved, allowing the filtration coefficients determination from experiments. The filtration coefficients for the proposed and the classical deep bed filtration models are calculated from experimental data available in the literature and the results are compared. Finally, it is shown that the proposed model tends to the classical deep bed filtration model when the particle retention probability tends to zero. (author)
Logistics and Transport - a conceptual model
DEFF Research Database (Denmark)
Jespersen, Per Homann; Drewes, Lise
2004-01-01
This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...
Sensitivity Analysis and Statistical Convergence of a Saltating Particle Model
Maldonado, S
2016-01-01
Saltation models provide considerable insight into near-bed sediment transport. This paper outlines a simple, efficient numerical model of stochastic saltation, which is validated against previously published experimental data on saltation in a channel of nearly horizontal bed. Convergence tests are systematically applied to ensure the model is free from statistical errors emanating from the number of particle hops considered. Two criteria for statistical convergence are derived; according to the first criterion, at least $10^3$ hops appear to be necessary for convergent results, whereas $10^4$ saltations seem to be the minimum required in order to achieve statistical convergence in accordance with the second criterion. Two empirical formulae for lift force are considered: one dependent on the slip (relative) velocity of the particle multiplied by the vertical gradient of the horizontal flow velocity component; the other dependent on the difference between the squares of the slip velocity components at the to...
Tests of the improved Weiland ion temperature gradient transport model
Energy Technology Data Exchange (ETDEWEB)
Kinsey, J.E.; Bateman, G.; Kritz, A.H. [Lehigh Univ., Bethlehem, PA (United States)] [and others
1996-12-31
The Weiland theoretically derived transport model for ion temperature gradient and trapped electron modes has been improved to include the effects of parallel ion motion, finite beta, and collisionality. The model also includes the effects of impurities, fast ions, unequal ion and electron temperatures, and finite Larmor radius. This new model has been implemented in our time-dependent transport code and is used in conjunction with pressure-driven modes and neoclassical theory to predict the radial particle and thermal transport in tokamak plasmas. Simulations of TFTR, DIII-D, and JET L-mode plasmas have been conducted to test how the new effects change the predicted density and temperature profiles. Comparisons are made with results obtained using the previous version of the model which was successful in reproducing experimental data from a wide variety of tokamak plasmas. Specifically, the older model has been benchmarked against over 50 discharges from at least 7 different tokamaks including L-mode scans in current, heating power, density, and dimensionless scans in normalized gyro-radius, collisionality, and beta. We have also investigated the non-diffusive elements included in the Weiland model, particularly the particle pinch in order to characterize its behavior. This is partly motivated by recent simulations of ITER. In those simulations, the older Weiland model predicted a particle pinch and ignition was more easily obtained.
RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS
Energy Technology Data Exchange (ETDEWEB)
S. Magnuson
2004-11-01
The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.
Ecosystem element transport model for Lake Eckarfjaerden
Energy Technology Data Exchange (ETDEWEB)
Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)
2014-07-01
The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)
Human Cough as a Two-Stage Jet and Its Role in Particle Transport
Li, Yuguo
2017-01-01
The human cough is a significant vector in the transmission of respiratory diseases in indoor environments. The cough flow is characterized as a two-stage jet; specifically, the starting jet (when the cough starts and flow is released) and interrupted jet (after the source supply is terminated). During the starting-jet stage, the flow rate is a function of time; three temporal profiles of the exit velocity (pulsation, sinusoidal and real-cough) were investigated in this study, and our results showed that the cough flow’s maximum penetration distance was in the range of a 50.6–85.5 opening diameter (D) under our experimental conditions. The real-cough and sinusoidal cases exhibited greater penetration ability than the pulsation cases under the same characteristic Reynolds number (Rec) and normalized cough expired volume (Q/AD, with Q as the cough expired volume and A as the opening area). However, the effects of Rec and Q/AD on the maximum penetration distances proved to be more significant; larger values of Rec and Q/AD reflected cough flows with greater penetration distances. A protocol was developed to scale the particle experiments between the prototype in air, and the model in water. The water tank experiments revealed that although medium and large particles deposit readily, their maximum spread distance is similar to that of small particles. Moreover, the leading vortex plays an important role in enhancing particle transport. PMID:28046084
Biological transportation networks: Modeling and simulation
Albi, Giacomo
2015-09-15
We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.
Modeling of dilute and dense dispersed fluid-particle flow
Energy Technology Data Exchange (ETDEWEB)
Laux, Harald
1998-08-01
A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a
le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O.
2015-03-01
Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.
Energy Technology Data Exchange (ETDEWEB)
Le Roux, J. A.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Khabarova, O., E-mail: jar0013@uah.edu [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation)
2015-03-10
Simulations of particle acceleration in turbulent plasma regions with multiple contracting and merging (reconnecting) magnetic islands emphasize the key role of temporary particle trapping in island structures for the efficient acceleration of particles to form hard power-law spectra. Statistical kinetic transport theories have been developed that capture the essential physics of particle acceleration in multi-island regions. The transport theory of Zank et al. is further developed by considering the acceleration effects of both the mean and the variance of the electric fields induced by the dynamics of multiple inertial-scale flux ropes. A focused transport equation is derived that includes new Fokker-Planck terms for particle scattering and stochastic acceleration due to the variance in multiple flux-rope magnetic fields, plasma flows, and reconnection electric fields. A Parker transport equation is also derived in which a new expression for momentum diffusion appears, combining stochastic acceleration by particle scattering in the mean multi-flux-rope electric fields with acceleration by the variance in these electric fields. Test particle acceleration is modeled analytically considering drift acceleration by the variance in the induced electric fields of flux ropes in the slow supersonic, radially expanding solar wind. Hard power-law spectra occur for sufficiently strong inertial-scale flux ropes with an index modified by adiabatic cooling, solar wind advection, and diffusive escape from flux ropes. Flux ropes might be sufficiently strong behind interplanetary shocks where the index of suprathermal ion power-law spectra observed in the supersonic solar wind can be reproduced.
Particle-based simulations of steady-state mass transport at high P\\'eclet numbers
Müller, Thomas; Rajah, Luke; Cohen, Samuel I A; Yates, Emma V; Vendruscolo, Michele; Dobson, Chrisopher M; Knowles, Tuomas P J
2015-01-01
Conventional approaches for simulating steady-state distributions of particles under diffusive and advective transport at high P\\'eclet numbers involve solving the diffusion and advection equations in at least two dimensions. Here, we present an alternative computational strategy by combining a particle-based rather than a field-based approach with the initialisation of particles in proportion to their flux. This method allows accurate prediction of the steady state and is applicable even at high P\\'eclet numbers where traditional particle-based Monte-Carlo methods starting from randomly initialised particle distributions fail. We demonstrate that generating a flux of particles according to a predetermined density and velocity distribution at a single fixed time and initial location allows for accurate simulation of mass transport under flow. Specifically, upon initialisation in proportion to their flux, these particles are propagated individually and detected by summing up their Monte-Carlo trajectories in p...
Extended hard-sphere model and collisions of cohesive particles.
Kosinski, Pawel; Hoffmann, Alex C
2011-09-01
In two earlier papers the present authors modified a standard hard-sphere particle-wall and particle-particle collision model to account for the presence of adhesive or cohesive interaction between the colliding particles: the problem is of importance for modeling particle-fluid flow using the Lagrangian approach. This technique, which involves a direct numerical simulation of such flows, is gaining increasing popularity for simulating, e.g., dust transport, flows of nanofluids and grains in planetary rings. The main objective of the previous papers was to formally extend the impulse-based hard-sphere model, while suggestions for quantifications of the adhesive or cohesive interaction were made. This present paper gives an improved quantification of the adhesive and cohesive interactions for use in the extended hard-sphere model for cases where the surfaces of the colliding bodies are "dry," e.g., there is no liquid-bridge formation between the colliding bodies. This quantification is based on the Johnson-Kendall-Roberts (JKR) analysis of collision dynamics but includes, in addition, dissipative forces using a soft-sphere modeling technique. In this way the cohesive impulse, required for the hard-sphere model, is calculated together with other parameters, namely the collision duration and the restitution coefficient. Finally a dimensional analysis technique is applied to fit an analytical expression to the results for the cohesive impulse that can be used in the extended hard-sphere model. At the end of the paper we show some simulation results in order to illustrate the model.
Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.
2015-12-01
We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.
Bonded-cell model for particle fracture.
Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang
2015-02-01
Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.
Cloth Modeling Based on Particle System
Institute of Scientific and Technical Information of China (English)
钟跃崎; 王善元
2001-01-01
A physical-based particle system is employed for cloth modeling supported by two basic algorithms, between which one is the construction of the internal and external forces acting on the particle system in terms of KES-F bending and shearing tests, and the other is the collision algorithm of which the collision detection is carried by means of bi-section of time step and the collision response is handled according to the empirical law for frictionless collision With these algorithms. the geometric state of parcles can be expressed as ordinary differential equationswhich is numerically solved by fourth order Runge- Kutta integration. Different draping figures of cotton fabric and wool fabric prove that such a particle system is suitable for 3D cloth modeling and simulation.
Tabony, James; Rigotti, Nathalie; Glade, Nicolas; Cortès, Sandra
2007-05-01
Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.
Cuttings Transport Models and Experimental Visualization of Underbalanced Horizontal Drilling
Directory of Open Access Journals (Sweden)
Na Wei
2013-01-01
Full Text Available Aerated underbalanced horizontal drilling technology has become the focus of the drilling industry at home and abroad, and one of the engineering core issues is the horizontal borehole cleaning. Therefore, calculating the minimum injection volume of gas and liquid accurately is essential for the construction in aerated underbalanced horizontal drilling. This paper establishes a physical model of carrying cuttings and borehole cleaning in wellbore of horizontal well and a critical transport mathematical model according to gas-liquid-solid flow mechanism and large plane dunes particle transport theory.
Airborne bacteria transported with Sahara dust particles from Northern Africa to the European Alps
Lazzaro, A.; Meola, M.
2015-12-01
The Sahara Desert is the most important source of aerosols transported across the Mediterranean towards Europe. Airborne microorganisms associated with aerosols may be transported over long distances and act as colonizers of distant habitats. However, little is known on the composition and viability of such microorganisms, due to difficulties related to their detection, collection and isolation. Here we describe an in-depth assessment of the bacterial communities associated with Sahara dust (SD) particles deposited on snow. Two distinct SD events reaching the European Alps in February and May 2014 were preserved as distinct ochre-coloured layers within the snowpack. In June 2014, we collected samples from a snow profile at 3621 m a.s.l. close to the Jungfraujoch (Swiss Alps). SD particles were analyzed by Scanning Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy (SEM-EDX). Backward trajectories were calculated using the NOAA HYSPLIT model. Bacterial communities were charac-terized by MiSeq Illumina sequencing of the 16S rRNA gene. Microbial physiological profiles were assessed by incubation of samples on BIOLOG plates. The SD-layers were generally enriched in illite and kaolinite particles as compared to the adjacent snow layers. The source of SD could be traced back to Algeria. We observed distinct bacterial community structures in the SD-layers as compared to the clean snow layers. While sporulating bacteria were not enriched in the SD-layers, low abundant (<1%) phyla such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bioindicators for SD. Both phyla are adapted to arid oligotrophic environments and UV radiation and thus are well suited to survive the harsh conditions of long-distance airborne transport. Our results show that bacteria are viable and metabolically active after the trek to the European Alps.
Pyrolysis of thermally thick wood particles - experiments and mathematical modelling
Energy Technology Data Exchange (ETDEWEB)
Moeller Andersen, S.; Thaaning Pedersen, S.; Goebel, B.; Houbak, N.; Henriksen, Ulrik [MEK - DTU, Kgs. Lyngby (Denmark); Dall Bentzen, J. [COWI a/s, Kgs. Lyngby (Denmark)
2005-07-01
A simple, dynamic, l-dimensional model describing heating, drying and pyrolysis of thermally thick wood particles with a l-dimensional geometry has been developed and implemented. The model output is the dynamic evolution of both the char yield and the amount of volatiles. The model is developed in such a simple and accessible way, that it easily can be implemented in a larger model for dimensioning and optimisation of applications where pyrolysis is a part of the overall process as for instance gasification. Experiments using a Thermo Gravimetric Analyser (TGA), built so pieces of wood can be fed into a hot atmosphere instantaneously, have been used to observe the influence of various parameters like temperature and size and wood types on the pyrolysis process. Results from the model have been compared with results from the experiments. The comparison showed good accordance when both wood particles with a well-defined geometry (a cylinder) and when beds of wood chips and wood pellets, respectively, were pyrolyzed. The model has proven that transport of heat to the wood; internal transport and accumulation of heat inside the wood and kinetics of pyrolysis are all important parameters. (au)
Linking particle and pore-size distribution parameters to soil gas transport properties
DEFF Research Database (Denmark)
Arthur, Emmanuel; Møldrup, Per; Schjønning, Per
2012-01-01
Accurate estimation of soil gas diffusivity (Dp/Do, the ratio of gas diffusion coefficients in soil and free air) and air permeability (ka) from basic texture and pore characteristics will be highly valuable for modeling soil gas transport and emission and their field-scale variations. From......, respectively) and the Campbell water retention parameter b were used to characterize particle and pore size distributions, respectively. Campbell b yielded a wide interval (4.6–26.2) and was highly correlated with α, β, and volumetric clay content. Both Dp/Do and ka followed simple power-law functions (PLFs...... also well (but relatively more weakly) correlated with the basic soil characteristics, again with the best correlations to volumetric clay content and b. As a first attempt at developing a simple Dp/Do model useful at the field scale, we extended the classical Buckingham Dp/Do model (εa2) by a scaling...
Particle simulation of neoclassical transport in the plasma Edge
Energy Technology Data Exchange (ETDEWEB)
Chang, C.S. [Department of Physics, Korea Advanced Institute of Science and Technology (Korea); Ku, S. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY (United States); Department of Physics, Korea Advanced Institute of Science and Technology (Korea)
2006-09-15
Particle-in-cell is a popular technique for a global five dimensional numerical simulation of the neoclassical plasma phenomena in a toroidal plasma. In this paper, we briefly review the physical and mathematical aspects of the modern neoclassical particle simulation methodology for a plasma edge simulation and present representative results recently obtained from XGC (X-point included Guiding Center) code. The strength and weakness in the modern neoclassical particle simulation techniques will also be discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.
Implementation Strategies for Large-Scale Transport Simulations Using Time Domain Particle Tracking
Painter, S.; Cvetkovic, V.; Mancillas, J.; Selroos, J.
2008-12-01
Time domain particle tracking is an emerging alternative to the conventional random walk particle tracking algorithm. With time domain particle tracking, particles are moved from node to node on one-dimensional pathways defined by streamlines of the groundwater flow field or by discrete subsurface features. The time to complete each deterministic segment is sampled from residence time distributions that include the effects of advection, longitudinal dispersion, a variety of kinetically controlled retention (sorption) processes, linear transformation, and temporal changes in groundwater velocities and sorption parameters. The simulation results in a set of arrival times at a monitoring location that can be post-processed with a kernel method to construct mass discharge (breakthrough) versus time. Implementation strategies differ for discrete flow (fractured media) systems and continuous porous media systems. The implementation strategy also depends on the scale at which hydraulic property heterogeneity is represented in the supporting flow model. For flow models that explicitly represent discrete features (e.g., discrete fracture networks), the sampling of residence times along segments is conceptually straightforward. For continuous porous media, such sampling needs to be related to the Lagrangian velocity field. Analytical or semi-analytical methods may be used to approximate the Lagrangian segment velocity distributions in aquifers with low-to-moderate variability, thereby capturing transport effects of subgrid velocity variability. If variability in hydraulic properties is large, however, Lagrangian velocity distributions are difficult to characterize and numerical simulations are required; in particular, numerical simulations are likely to be required for estimating the velocity integral scale as a basis for advective segment distributions. Aquifers with evolving heterogeneity scales present additional challenges. Large-scale simulations of radionuclide
Particle in the Brusselator Model with Flow
DEFF Research Database (Denmark)
Kuptsov, P.V.; Kuznetsov, S.P.; Mosekilde, Erik
2002-01-01
We consider the interaction of a small moving particle with a stationary space-periodic pattern in a chemical reaction-diffusion system with a flow. The pattern is produced by a one-dimensional Brusselator model that is perturbed by a constant displacement from the equilibrium state at the inlet....... By partially blocking the flow, the particle gives rise to a local increment of the flow rate. For certain parameter values a response with intermittent Hopf and Turing type structures is observed. In other regimes a wave of substitution of missing peaks runs across the pattern....
Kaur, S; Nieuwenhuijsen, M J
2009-07-01
Short-term human exposure concentrations to PM2.5, ultrafine particle counts (particle range: 0.02-1 microm), and carbon monoxide (CO) were investigated at and around a street canyon intersection in Central London, UK. During a four week field campaign, groups of four volunteers collected samples at three timings (morning, lunch, and afternoon), along two different routes (a heavily trafficked route and a backstreet route) via five modes of transport (walking, cycling, bus, car, and taxi). This was followed by an investigation into the determinants of exposure using a regression technique which incorporated the site-specific traffic counts, meteorological variables (wind speed and temperature) and the mode of transport used. The analyses explained 9, 62, and 43% of the variability observed in the exposure concentrations to PM2.5, ultrafine particle counts, and CO in this study, respectively. The mode of transport was a statistically significant determinant of personal exposure to PM2.5, ultrafine particle counts, and CO, and for PM2.5 and ultrafine particle counts it was the most important determinant. Traffic count explained little of the variability in the PM2.5 concentrations, but it had a greater influence on ultrafine particle count and CO concentrations. The analyses showed that temperature had a statistically significant impact on ultrafine particle count and CO concentrations. Wind speed also had a statistically significant effect but smaller. The small proportion in variability explained in PM2.5 by the model compared to the largest proportion in ultrafine particle counts and CO may be due to the effect of long-range transboundary sources, whereas for ultrafine particle counts and CO, local traffic is the main source.
Barchyn, Thomas E.; Hugenholtz, Chris H.; Li, Bailiang; Neuman, Cheryl McKenna; Steven Sanderson, R.
2014-12-01
Despite almost a century of study, aeolian sediment transport remains difficult to measure. Low temporal resolution sediment traps filter sub-second scale variability hypothesized to be important, and high resolution electronic sensors are poorly tested, inconsistent, and often produce incomparable particle count outputs. No sediment transport prediction model can be validated or applied without quality empirical transport measurements. Here, we test a popular electronic laser gate sensor (Wenglor YH03PCT8, 'the Wenglor') in a wind tunnel. We have 3 goals: (i) assess the reproducibility of Wenglor measurements, (ii) examine saturation potential, and (iii) relate trap-measured sediment flux to particle counts. To assess reproducibility we measured particle counts with two co-located Wenglors. Temporally-autocorrelated sections of the time series occurred where one Wenglor deviated; this is likely the result of lens contamination. To examine saturation potential, we measured saltator velocity to calculate particle concentration within the airstream. Particle concentrations suggest the mean number of particles within the laser sampling volume is consistently less than one. To relate trap-measured sediment flux to particle counts, we used particle size samples to calculate an average mass per counted particle. We relate count predicted mass fluxes to trap-measured mass fluxes with linear regression and obtain the relation: trap flux = 2.1 * Wenglor predicted flux (r2 = 0.99). The constant represents aspects of the Wenglor operation that cannot be directly evaluated. Together, these investigations suggest the Wenglor provides a consistent and low-cost method to measure aeolian saltation flux at a high resolution in non-dusty settings.
Particle Physics And Cosmology In Supersymmetric Models
Morrissey, D E
2005-01-01
The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model para...
Entrainment of coarse grains using a discrete particle model
Energy Technology Data Exchange (ETDEWEB)
Valyrakis, Manousos, E-mail: Manousos.Valyrakis@glasgow.ac.uk [Lecturer in Water and Environmental Engineering, Rankine 817b, University of Glasgow, Glasgow G12 8LT (United Kingdom); Arnold, Roger B. Jr. [Environmental Engineer, Arcadis, USA (formerly: research assistant Virginia Tech, USA) (United States)
2014-10-06
Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to the degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport.
Impact modeling with Smooth Particle Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Stellingwerf, R.F.; Wingate, C.A.
1993-07-01
Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.
The european Trans-Tools transport model
Rooijen, T. van; Burgess, A.
2008-01-01
The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland
The european Trans-Tools transport model
Rooijen, T. van; Burgess, A.
2008-01-01
The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland wate
Particle filters for random set models
Ristic, Branko
2013-01-01
“Particle Filters for Random Set Models” presents coverage of state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. The resulting algorithms, known as particle filters, in the last decade have become one of the essential tools for stochastic filtering, with applications ranging from navigation and autonomous vehicles to bio-informatics and finance. While particle filters have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. These recent developments have dramatically widened the scope of applications, from single to multiple appearing/disappearing objects, from precise to imprecise measurements and measurement models. This book...
Beyond the standard model of particle physics.
Virdee, T S
2016-08-28
The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'.
Energy Technology Data Exchange (ETDEWEB)
McGraw, Robert [Atmospheric Sciences Division, Environmental Sciences Department Brookhaven National Laboratory, Upton, NY 11973 (United States)
2007-07-15
Nonlinear transport algorithms designed to reduce numerical diffusion fail to preserve correlations between moments, isotope abundances, etc. when these scalar densities are transported in models as separate tracers. In case of the particle size/composition coordinates of an aerosol, such loss can give rise to unphysical moment sets. New statistical approaches to aerosol dynamics, which involve tracking moments directly, offer highly efficient alternatives to sectional and modal methods for representing aerosols in climate models, but it is essential that moment set integrity be preserved throughout a simulation. In this paper we review the problem and weaknesses of previous attempts at solution, including vector transport - a scheme in which the moments, as internal aerosol coordinates, are transported together with a single lead tracer such as number or mass. A non-negative least squares (NNLS) solution that finally eliminates the problem without requiring modification of the transport algorithm itself is presented. Following each transport step, new moment sets are resolved into sums of previously validated sets with non-negative coefficients using NNLS Transport errors are removed and the now guaranteed-to-be-valid moment sets are ready for passage to the aerosol dynamics module. In addition to moment set validation, the new scheme reduces numerical diffusion during transport and provides greater accuracy for the source apportionment of aerosol mixtures. The method is not limited to moment transport - similar improvements in accuracy are expected using NNLS in conjunction with modal and sectional methods.
DANTSYS: A diffusion accelerated neutral particle transport code system
Energy Technology Data Exchange (ETDEWEB)
Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.
1995-06-01
The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.
Phenomena of charged particles transport in variable magnetic fields
Savane, S Y; Faza-Barry, M; Vladmir, L
2002-01-01
This present work is dedicated to the study of the dynamical phenomena for the transport of ions in the presence of variable magnetic fields in front of the Jupiter wave shock. We obtain the spectrum of the accelerated ions and we study the conditions of acceleration by solving the transport equation in the planetocentric system. We discuss the theoretical results obtained and make a comparison with the experimental parameters in the region of acceleration behind the Jupiter wave shock.
Optimal transportation networks models and theory
Bernot, Marc; Morel, Jean-Michel
2009-01-01
The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.
Pähtz, Thomas
2016-01-01
To sustain steady sediment transport, the loss of transported particles that become trapped in the soil bed must be balanced by the entrainment of bed particles through fluid forces or energetic impacts of transported particles. Here we show that the transition to fully impact-sustained transport occurs at a critical impact number $\\mathrm{Im}=\\Theta\\mathrm{Re}\\sqrt{s}\\approx3$, where $\\Theta$ is the Shields number, $\\mathrm{Re}$ the particle Reynolds number, and $s$ the particle-fluid-density ratio. Hence, fluid entrainment is negligible for most regimes, including turbulent bedload transport.
Xu, Guangping; Wang, Jiasong
2017-10-01
Two dynamical models, the traditional method of moments coupled model (MCM) and Taylor-series expansion method of moments coupled model (TECM) for particle dispersion distribution and gravitation deposition are developed in three-dimensional ventilated environments. The turbulent airflow field is modeled with the renormalization group (RNG) k-ε turbulence model. The particle number concentration distribution in a ventilated room is obtained by solving the population balance equation coupled with the airflow field. The coupled dynamical models are validated using experimental data. A good agreement between the numerical and experimental results can be achieved. Both models have a similar characteristic for the spatial distribution of particle concentration. Relative to the MCM model, the TECM model presents a more close result to the experimental data. The vortex structure existed in the air flow makes a relative large concentration difference at the center region and results in a spatial non-uniformity of concentration field. With larger inlet velocity, the mixing level of particles in the room is more uniform. In general, the new dynamical models coupled with computational fluid dynamics (CFD) in the current study provide a reasonable and accurate method for the temporal and spatial evolution of particles effected by the deposition and dispersion behaviors. In addition, two ventilation modes with different inlet velocities are proceeded to study the effect on the particle evolution. The results show that with the ceiling ventilation mode (CVM), the particles can be better mixed and the concentration level is also higher. On the contrast, with the side ceiling ventilation mode (SVM), the particle concentration has an obvious stratified distribution with a relative lower level and it makes a much better environment condition to the human exposure.
S, Savithiri; Dhar,Purbarun; Pattamatta, Arvind; Das, Sarit K
2015-01-01
Severe contradictions exist between experimental observations and computational predictions regarding natural convective thermal transport in nanosuspensions. The approach treating nanosuspensions as homogeneous fluids in computations has been pin pointed as the major contributor to such contradictions. To fill the void, inter particle and particle fluid interactivities (slip mechanisms), in addition to effective thermophysical properties, have been incorporated within the present formulation...
Van Ommen, J.R.
2010-01-01
The invention provides a process for depositing a coating onto particles being pneumatically transported in a tube. The process comprising the steps of providing a tube having an inlet opening and an outlet opening; feeding a carrier gas entraining particles into the tube at or near the inlet openin
Update on the Development and Validation of MERCURY: A Modern, Monte Carlo Particle Transport Code
Energy Technology Data Exchange (ETDEWEB)
Procassini, R J; Taylor, J M; McKinley, M S; Greenman, G M; Cullen, D E; O' Brien, M J; Beck, B R; Hagmann, C A
2005-06-06
An update on the development and validation of the MERCURY Monte Carlo particle transport code is presented. MERCURY is a modern, parallel, general-purpose Monte Carlo code being developed at the Lawrence Livermore National Laboratory. During the past year, several major algorithm enhancements have been completed. These include the addition of particle trackers for 3-D combinatorial geometry (CG), 1-D radial meshes, 2-D quadrilateral unstructured meshes, as well as a feature known as templates for defining recursive, repeated structures in CG. New physics capabilities include an elastic-scattering neutron thermalization model, support for continuous energy cross sections and S ({alpha}, {beta}) molecular bound scattering. Each of these new physics features has been validated through code-to-code comparisons with another Monte Carlo transport code. Several important computer science features have been developed, including an extensible input-parameter parser based upon the XML data description language, and a dynamic load-balance methodology for efficient parallel calculations. This paper discusses the recent work in each of these areas, and describes a plan for future extensions that are required to meet the needs of our ever expanding user base.
Cui, Z.; Welty, C.; Gold, A. J.; Groffman, P. M.; Kaushal, S.; Maxwell, R. M.
2012-12-01
Nitrate is the most common and mobile form of nitrogen contaminant found in groundwater. Riparian zones, often identified as denitrification hot spots, play an important role in processing nitrate as it moves from uplands to streams through the subsurface. However, in urban areas, where groundwater flow paths may be altered by channel incision, it is not clear how riparian zone denitrification responds to such changes in groundwater flow paths. To quantify the effects of groundwater flow path changes on riparian zone denitrification, we are applying a recently-developed 3D numerical groundwater nitrogen transport model to this problem. Based on an existing particle-tracking code, SLIM-FAST, new components were added using the operator splitting technique to account for biogeochemical reactions. The model was verified with analytical solutions, other numerical codes, and laboratory experimental results. Here we report on application of the model to a hypothetical stream riparian site to evaluate nitrogen transformations under various groundwater flow conditions. The flow field is generated using the 3D groundwater flow code, ParFlow. The particle-tracking code uses the flow field as input and the movement and reactions of the nitrogen species are simulated by the code. Initial model simulation results confirm well-known behavior that as groundwater flow paths pass through DOC-rich riparian zones, higher denitrification rates are obtained. Ongoing simulations are being carried out to quantify the effect of stream downcutting on the denitrification process.
Third-order TRANSPORT: A computer program for designing charged particle beam transport systems
Energy Technology Data Exchange (ETDEWEB)
Carey, D.C. [Fermi National Accelerator Lab., Batavia, IL (United States); Brown, K.L.; Rothacker, F. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1995-05-01
TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.
Strauss, R. Du Toit; Effenberger, Frederic
2017-03-01
In this review, an overview of the recent history of stochastic differential equations (SDEs) in application to particle transport problems in space physics and astrophysics is given. The aim is to present a helpful working guide to the literature and at the same time introduce key principles of the SDE approach via "toy models". Using these examples, we hope to provide an easy way for newcomers to the field to use such methods in their own research. Aspects covered are the solar modulation of cosmic rays, diffusive shock acceleration, galactic cosmic ray propagation and solar energetic particle transport. We believe that the SDE method, due to its simplicity and computational efficiency on modern computer architectures, will be of significant relevance in energetic particle studies in the years to come.
The influence of the Kubo number on the transport of energetic particles
Shalchi, A.
2016-08-01
We discuss the interaction between charged energetic particles and magnetized plasmas by using analytical theory. Based on the unified nonlinear transport (UNLT) theory we compute the diffusion coefficient across a large scale magnetic field. To achieve analytical tractability we use a simple Gaussian approach to model the turbulent magnetic fields. We show that the perpendicular diffusion coefficient depends only on two parameters, namely the Kubo number and the parallel mean free path. We combine the aforementioned turbulence model with the UNLT theory and we solve the corresponding integral equation numerically to show how these two parameters control the perpendicular diffusion coefficient. Furthermore, we consider two extreme cases, namely the case of strong and suppressed pitch-angle scattering, respectively. For each case we consider small and large Kubo numbers to achieve a further simplification. All our analytical findings are compared with formulas which are known in diffusion theory.
Influence of tube and particle diameter on heat transport in packed beds
Borkink, J.G.H.; Borkink, J.G.H.; Westerterp, K.R.
1992-01-01
Influence of the tube and particle diameter and shape, as well as their ratio, on the radial heat transport in packed beds has been studied. Heat transport experiments were performed with four different packings in three wall-cooled tubes, which differed in inner diameter only. Experimental values f
Influence of tube and particle diameter on heat transport in packed beds
Borkink, J.G.H.; Borkink, J.G.H.; Westerterp, K.R.
1992-01-01
Influence of the tube and particle diameter and shape, as well as their ratio, on the radial heat transport in packed beds has been studied. Heat transport experiments were performed with four different packings in three wall-cooled tubes, which differed in inner diameter only. Experimental values
Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung
2014-07-01
This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.
Uncertainty in tsunami sediment transport modeling
Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.
2016-01-01
Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.
Gusyev, M. A.; D. Abrams; Toews, M. W.; U. Morgenstern; M. K. Stewart
2014-01-01
The purpose of this study is to simulate tritium concentrations and groundwater transit times in river water with particle-tracking (MODPATH) and compare them to solute transport (MT3DMS) simulations. Tritium measurements in river water are valuable for the calibration of particle-tracking and solute transport models as well as for understanding of watershed storage dynamics. In a previous study, we simulated tritium concentrations in river water of the western Lake Taupo...
Modelling transport of graded sediment under partial transport conditions
Tuijnder, Arjan; Ribberink, Jan S.; Hulscher, Suzanne J.M.H.; Weerts, H.J.T.; Ritsema, I.L; van Os, A.G.
2006-01-01
Tentative plans are presented for research on the modelling of i) selective sediment transport in suspension and as bed-load, and ii) large-scale morphology in mixed sand-gravel bed rivers. Since the planning of the research is still in its early stages, the plans are flexible. Please feel free to
Particle Mechanics Models with W-symmetries
Gomis, J P; Kamimura, K; Roca, J
1995-01-01
We introduce a particle mechanics model with Sp($2M$) gauge invariance. Different partial gauge-fixings by means of sl(2) embeddings on the gauge algebra lead to reduced models which are invariant under diffeomorphisms and classical non-linear \\W-transformations as the residual gauge symmetries thus providing a set of models of gauge and matter fields coupled in a \\W-invariant way. The equations of motion for the matter variables give Lax operators in a matrix form. We examine several examples in detail and discuss the issue of integration of infinitesimal \\W-transformations.
The Random Ray Method for neutral particle transport
Energy Technology Data Exchange (ETDEWEB)
Tramm, John R., E-mail: jtramm@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 (United States); Smith, Kord S., E-mail: kord@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Forget, Benoit, E-mail: bforget@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Siegel, Andrew R., E-mail: siegela@mcs.anl.gov [Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 (United States)
2017-08-01
A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.
Charge-transport model for conducting polymers
Dongmin Kang, Stephen; Jeffrey Snyder, G.
2016-11-01
The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.
Particle Transport in a 3D duct by adding and doubling
Ganapol, Barry D
2016-01-01
Particle transport through a duct by Lambertian reflection from duct walls is again considered. This popular transport example has been solved by most numerical transport methods except notably one- the method of doubling. We shall show that the method of doubling provides every bit as, or more, accurate reflectances and transmittances as the numerical discrete ordinates (NDO) and analytical discrete ordinates (ADO) methods with less mathematical and numerical effort.
Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations
Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi
2010-01-01
There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.
Transport of Optically Active Particles from the Surface Mixed Layer
2005-09-30
aragonite in the form of abundant coccoliths and coccospheres, and occasional forams, pteropods and larval gastropods . The δ18O signature of the 2003... APPLICATIONS These experiments were designed to identify the major loss terms of optically-active particles. This indeed was accomplished. Such
Particle acceleration and transport in the solar atmosphere
Kontar, Eduard
2016-07-01
During periods of sporadic flare activity, the Sun releases energy stored in the magnetic field into the plasma of the solar atmosphere. This is an extremely efficient process, with a large fraction of the magnetic energy going into plasma particles. The solar flares are accompanied by prompt electromagnetic emission virtually over the entire electromagnetic spectrum from gamma-rays down to radio frequencies. The Sun, through its activity, also plays a driving role in the Sun-Earth system that substantially influences geophysical space. Solar flare energetic particles from the Sun are detected in interplanetary space by in-situ measurements making them a vital component of the single Sun-Earth system. Although a qualitative picture is generally agreed upon, many processes solar flare processes are poorly understood. Specifically, the processes of acceleration and propagation of energetic particles interacting on various physical scales remain major challenges in solar physics and basic plasma physics. In the talk, I will review the current understanding of solar flare energetic particles focusing on recent observational progress, which became possible due to the numerous spacecraft and ground-based observations.
Modelling of aircrew radiation exposure during solar particle events
Al Anid, Hani Khaled
show a very different response during anisotropic events, leading to variations in aircrew radiation doses that may be significant for dose assessment. To estimate the additional exposure due to solar flares, a model was developed using a Monte-Carlo radiation transport code, MCNPX. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere using the MCNPX analysis. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during Ground Level Enhancements 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis. Keywords: Radiation Dosimetry, Radiation Protection, Space Physics.
Vertical Transport of Aerosol Particles across Mountain Topography near the Los Angeles Basin
Murray, J. J.; Schill, S.; Freeman, S.; Bertram, T. H.; Lefer, B. L.
2015-12-01
Transport of aerosol particles is known to affect air quality and is largely dependent on the characteristic topography of the surrounding region. To characterize this transport, aerosol number distributions were collected with an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS, DMT) during the 2015 NASA Student Airborne Research Program (SARP) in and around the Los Angeles Basin in Southern California. Increases in particle number concentration and size were observed over mountainous terrain north of Los Angeles County. Chemical analysis and meteorological lagrangian trajectories suggest orographic lifting processes, known as the "chimney effect". Implications for spatial transport and distribution will be discussed.
Choudhary, Mangilal; Bandyopadhyay, P
2016-01-01
A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current (DC) glow discharge. These dust particles are found to get trapped in an electrostatic potential well which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self excited dust acoustic waves and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust par...
Modeling Water Waves with Smoothed Particle Hydrodynamics
2013-09-30
flows, such as undertow, longshore currents, and rip currents. APPROACH The approach is based on improving various aspects of the SPH code ...Smoothed Particle Hydrodynamics ( SPH ) is a meshless numerical method that is being developed for the study of nearshore waves and other Navy needs. The...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes
Particle physics and cosmology in supersymmetric models
Morrissey, David Edgar
The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model parameter space. The strongest constraints on this scenario come from the lower bound on the Higgs boson mass, and the upper bound on the electric dipole moment of the electron. Moreover, upcoming experiments will probe the remaining allowed parameter space in the near future. Some of these constraints may be relaxed by going beyond the MSSM. With this in mind, we also investigate the nMSSM, a minimal singlet extension of the MSSM. We find that this model can also explain both the dark matter and the baryon asymmetry.
Nonclassical Particle Transport in the 1-D Diffusive Limit
Vasques, Richard; Krycki, Kai
2016-01-01
This paper provides numerical results that demonstrate the validity of the nonclassical diffusion approximation to the nonclassical transport equation in certain 1-D diffusive systems. This result provides a more solid foundation in which to improve this theory for relevant nuclear applications.
Seamless particle-based modeling of blood clotting
Yazdani, Alireza; Karniadakis, George
2016-11-01
We propose a new multiscale framework that seamlessly integrate four key components of blood clotting namely, blood rheology, cell mechanics, coagulation kinetics and transport of species and platelet adhesive dynamics. We use transport dissipative particle dynamics (tDPD) which is an extended form of original DPD as the base solver to model both blood flow and the reactive transport of chemical species in the coagulation cascade. Further, we use a coarse-grained representation of blood cell's membrane that accounts for its mechanics; both red blood cells and platelets are resolved at sub-cellular resolution, and stochastic bond formation/dissociation are included to account for platelet adhesive dynamics at the site of injury. Our results show good qualitative agreement with in vivo experiments. The numerical framework allows us to perform systematic analysis on different mechanisms of blood clotting. In addition, this new multiscale particle-based methodology can open new directions in addressing different biological processes from sub-cellular to macroscopic scales. NIH Grant No. U01HL116323.
Potentiometric detection of model bioaerosol particles.
Sarantaridis, Dimitris; Caruana, Daren J
2010-09-15
A new technique for the detection of bioaerosols is presented, utilizing particle combustion/ionization in a premixed hydrogen/oxygen/nitrogen flame plasma, followed by gas phase electrochemical detection. Bermuda grass pollen (Cynodon dactylon, one of the most common causes of pollen allergy) and black walnut pollen (Juglans nigra) were used as model bioaerosol particles. We demonstrate that single particle detection can be comfortably achieved by zero current potential measurements between two platinum electrodes, giving potential signals of over 800 mV and unique fragmentation features which may be used for differentiating between species. The high sensitivity is due to the inherent amplification through flame fragmentation, gasification and ionization; a single pollen grain of 25 μm diameter can give a plume of combustion products measuring 4 mm in diameter. The physical basis of the potential difference is a mixed interfacial potential with an additive diffusion/junction potential due to the increase in ionization from the pollen combustion. The results suggest this methodology may be applied to the detection of particulates composed of ionizable species (organic or inorganic) in gaseous environments, such as bacteria, viruses, pollen grains, and dust. Its effectiveness will depend on the propensity of the target particle to combust and generate voltages under specific flame and electrode conditions.
Ogawa, Shun; Dif-Pradalier, Guilhem; Garbet, Xavier
2016-01-01
Charged particles with low kinetic energy move along magnetic field lines, but so do not energetic particles. We investigate the topological structure changes in the phase space of energetic particles with respect to the magnetic one. For this study cylindrical magnetic fields with non-monotonic safety factors that induce the magnetic internal transport barrier are considered. We show that the topological structure of the magnetic field line and of the particle trajectories can be quite different. We explain this difference using the concept of effective particle $q$-profile. Using this notion we can investigate the location and existence of resonances for particle orbits that are different from the magnetic ones. These are examined both numerically by integrating an equation of motion and theoretically by use of Alfv\\'en's guiding center theory and by use of the effective reduced Hamiltonian for the integrable unperturbed system. It is clarified that, for the energetic particles, the grad $B$ drift effect sh...
Consolidant particle transport in limestone, concrete and bone
Campbell, Alanna Stacey
2013-01-01
The use of chemically compatible nano and fine particle colloidal consolidants is a new development within the field of cultural heritage conservation and applied most widely so far to the historic built environment. The ability to introduce a significantly higher quantity of chemically compatible consolidant to a substrate in fewer treatments with the possibility for greater penetration and fewer possible side-effects compared to more established consolidants is a significant ...
Beckett, F. M.; Witham, C. S.; Hort, M. C.; Stevenson, J. A.; Bonadonna, C.; Millington, S. C.
2015-11-01
This study examines the sensitivity of atmospheric dispersion model forecasts of volcanic ash clouds to the physical characteristics assigned to the particles. We show that the particle size distribution (PSD) used to initialise a dispersion model has a significant impact on the forecast of the mass loading of the ash particles in the atmosphere. This is because the modeled fall velocity of the particles is sensitive to the particle diameter. Forecasts of the long-range transport of the ash cloud consider particles with diameters between 0.1 μm and 100 μm. The fall velocity of particles with diameter 100 μm is over 5 orders of magnitude greater than a particle with diameter 0.1 μm, and 30 μm particles fall 88% slower and travel up to 5× further than a 100 μm particle. Identifying the PSD of the ash cloud at the source, which is required to initialise a model, is difficult. Further, aggregation processes are currently not explicitly modeled in operational dispersion models due to the high computational costs associated with aggregation schemes. We show that using a modified total grain size distribution (TGSD) that effectively accounts for aggregation processes improves the modeled PSD of the ash cloud and deposits from the eruption of Eyjafjallajökull in 2010. Knowledge of the TGSD of an eruption is therefore critical for reducing uncertainty in quantitative forecasts of ash cloud dispersion. The density and shape assigned to the model particles have a lesser but still significant impact on the calculated fall velocity. Accounting for the density distribution and sphericity of ash from the eruption of Eyjafjallajökull in 2010, modeled particles can travel up to 84% further than particles with default particle characteristics that assume the particles are spherical and have a fixed density.
Surface transport and stable trapping of particles and cells by an optical waveguide loop.
Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh
2012-09-21
Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.
Suspended particle transport through constriction channel with Brownian motion
Hanasaki, Itsuo; Walther, Jens H.
2017-08-01
It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the deviation from the dynamics of the surrounding fluid. We show by numerical analysis that the particle injection into the narrower part of the channel is affected by thermal fluctuation, where the particles have spherical symmetry and are smaller than the height of the constriction. The Péclet number (Pe) is the order parameter that governs the phenomena, which clarifies the spatio-temporal significance of Brownian motion compared to hydrodynamics. Furthermore, we find that there exists an optimal condition of Pe to attain the highest flow rate of particles relative to the dispersant fluid flow. Our finding is important in science and technology from nanopore DNA sequencers and lab-on-a-chip devices to filtration by porous materials and chromatography.
Stokes drift for inertial particles transported by water waves
Boffetta, G; Mazzino, A; Onorato, M; Santamaria, F
2012-01-01
We study the effect of surface gravity waves on the motion of inertial particles in an incompressible fluid. Using the multiple-scale technique, we perform an analytical calculation which allows us to predict the dynamics of such particles; results are shown for both the infinite- and finite-depth regimes. Numerical simulations based on the velocity field resulting from the second-order Stokes theory for the surface elevation have been performed, and an excellent agreement with the analytical predictions is observed. Such an agreement seems to hold even beyond the formal applicability of the theory. We find that the presence of inertia leads to a non-negligible correction to the well-known horizontal Stokes drift; moreover, we find that the vertical velocity is also affected by a drift. The latter result may have some relevant consequences on the rate of sedimentation of particles of finite size. We underline that such a drift would also be observed in the (hypothetical) absence of the gravitational force.
Nonlinear mechanisms for drift wave saturation and induced particle transport
Energy Technology Data Exchange (ETDEWEB)
Dimits, A.M. (Maryland Univ., College Park, MD (USA). Lab. for Plasma Research); Lee, W.W. (Princeton Univ., NJ (USA). Plasma Physics Lab.)
1989-12-01
A detailed theoretical study of the nonlinear dynamics of gyrokinetic particle simulations of electrostatic collisionless and weakly collisional drift waves is presented. In previous studies it was shown that, in the nonlinearly saturated phase of the evolution, the saturation levels and especially the particle fluxes have an unexpected dependence on collisionality. In this paper, the explanations for these collisionality dependences are found to be as follows: The saturation level is determined by a balance between the electron and ion fluxes. The ion flux is small for levels of the potential below an E {times} B-trapping threshold and increases sharply once this threshold is crossed. Due to the presence of resonant electrons, the electron flux has a much smoother dependence on the potential. In the 2-1/2-dimensional ( pseudo-3D'') geometry, the electrons are accelerated away from the resonance as they diffuse spatially, resulting in an inhibition of their diffusion. Collisions and three-dimensional effects can repopulate the resonance thereby increasing the value of the particle flux. 30 refs., 32 figs., 2 tabs.
Polar auxin transport: models and mechanisms
Berkel, van K.; Boer, de R.J.; Scheres, B.; Tusscher, ten K.
2013-01-01
Spatial patterns of the hormone auxin are important drivers of plant development. The observed feedback between the active, directed transport that generates auxin patterns and the auxin distribution that influences transport orientation has rendered this a popular subject for modelling studies. Her
Concept Layout Model of Transportation Terminals
Directory of Open Access Journals (Sweden)
Li-ya Yao
2012-01-01
Full Text Available Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish the function layout design. The mapping mechanism of demand, function, and structure was analyzed, and a quantitative relationship between function and structure was obtained from a design perspective. Passenger demand and terminal structure were decomposed into several demand units and structural elements following the principle of reverse engineering. The relationship maps between these two kinds of elements were then analyzed. Function-oriented concept layout model of transportation terminals was established using the previous method. Thus, a technique in planning and design of transportation structures was proposed. Meaningful results were obtained from the optimization of transportation terminal facilities, which guide the design of the functional layout of transportation terminals and improve the development of urban passenger transportation systems.
Hoshino, Masahiro
2015-02-13
Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.
Transport coefficients for relativistic gas mixtures of hard-sphere particles
Kremer, Gilberto M.; Moratto, Valdemar
2017-04-01
In the present work, we calculate the transport coefficients for a relativistic binary mixture of diluted gases of hard-sphere particles. The gas mixture under consideration is studied within the relativistic Boltzmann equation in the presence of a gravitational field described by the isotropic Schwarzschild metric. We obtain the linear constitutive equations for the thermodynamic fluxes. The driving forces for the fluxes of particles and heat will appear with terms proportional to the gradient of gravitational potential. We discuss the consequences of the gravitational dependence on the driving forces. We obtain general integral expressions for the transport coefficients and evaluate them by assuming a hard-sphere interaction amongst the particles when they collide and not very disparate masses and diameters of the particles of each species. The obtained results are expressed in terms of their temperature dependence through the relativistic parameter which gives the ratio of the rest energy of the particles and the thermal energy of the gas mixture. Plots are given to analyze the behavior of the transport coefficients with respect to the temperature when small variations in masses and diameters of the particles of the species are present. We also analyze for each coefficient the corresponding limits to a single gas so the non-relativistic and ultra-relativistic limiting cases are recovered as well. Furthermore, we show that the transport coefficients have a dependence on the gravitational field.
Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Energy Technology Data Exchange (ETDEWEB)
Diamond, P.H.; Lin, Z.; Wang, W.; Horton, W.; Klasky, S.; Decyk, V.; Ma, K.-L.; Chames, J.; Adams, M.
2011-09-21
The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed with C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.
Boltzmann Transport in Hybrid PIC HET Modeling
2015-07-01
Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Boltzmann transport in hybrid PIC HET modeling 5a. CONTRACT NUMBER In...produced a variety of self-consistent electron swarm codes, such as the Magboltz code, focused on directly solving the steady Boltzmann trans-port...Std. 239.18 Boltzmann transport in hybrid PIC HET modeling IEPC-2015- /ISTS-2015-b- Presented at Joint Conference of 30th International
Energy Technology Data Exchange (ETDEWEB)
Schneller, Mirjam Simone
2013-08-02
In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss
He, H -Q
2015-01-01
In some solar energetic particle (SEP) events, a counter-streaming particle beam with a deep depression of flux near 90 degrees pitch angle during the beginning phase is observed. Two different interpretations exist in the community to explain this interesting phenomenon. One explanation invokes the hypothesis of an outer reflecting boundary or a magnetic mirror beyond the observer. The other one considers the effect of the perpendicular diffusion on the transport process of SEPs in the interplanetary space. In this work, we revisit the problem of the counter-streaming particle beams observed in SEP events and discuss the possible mechanisms responsible for the formation of this phenomenon. We clarify some results in previous works.
Kim, Eugene; Larson, Timothy
A plume model is presented describing the downwind transport of large particles (1-100 μm) under stable conditions. The model includes both vertical variations in wind speed and turbulence intensity as well as an algorithm for particle deposition at the surface. Model predictions compare favorably with the Hanford single and dual tracer experiments of crosswind integrated concentration (for particles: relative bias=-0.02 and 0.16, normalized mean square error=0.61 and 0.14, for the single and dual tracer experiments, respectively), whereas the US EPA's fugitive dust model consistently overestimates the observed concentrations at downwind distances beyond several hundred meters (for particles: relative bias=0.31 and 2.26, mean square error=0.42 and 1.71, respectively). For either plume model, the measured ratio of particle to gas concentration is consistently overestimated when using the deposition velocity algorithm of Sehmel and Hodgson (1978. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA). In contrast, these same ratios are predicted with relatively little bias when using the algorithm of Kim et al. (2000. Atmospheric Environment 34 (15), 2387-2397).
Reconciling transport models across scales: The role of volume exclusion
Taylor, P. R.; Yates, C. A.; Simpson, M. J.; Baker, R. E.
2015-10-01
Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.
Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq
2017-03-01
The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.
Hydrologic modeling of pathogen fate and transport.
Dorner, Sarah M; Anderson, William B; Slawson, Robin M; Kouwen, Nicholas; Huck, Peter M
2006-08-01
A watershed-scale fate and transport model has been developed for Escherichia coli and several waterborne pathogens: Cryptosporidiumspp., Giardiaspp., Campylobacter spp, and E. coli O157:H7. The objectives were to determine the primary sources of pathogenic contamination in a watershed used for drinking water supply and to gain a greater understanding of the factors that most influence their survival and transport. To predict the levels of indicator bacteria and pathogens in surface water, an existing hydrologic model, WATFLOOD, was augmented for pathogen transport and tested on a watershed in Southwestern Ontario, Canada. The pathogen model considered transport as a result of overland flow, subsurface flow to tile drainage systems, and in-stream routing. The model predicted that most microorganisms entering the stream from land-based sources enter the stream from tile drainage systems rather than overland transport. Although the model predicted overland transport to be rare, when it occurred, it corresponded to the highest observed and modeled microbial concentrations. Furthermore, rapid increases in measured E. coli concentrations during storm events suggested that the resuspension of microorganisms from stream sediments may be of equal or greater importance than land-based sources of pathogens.
Computational modelling flow and transport
Stelling, G.S.; Booij, N.
1999-01-01
Lecture notes CT wa4340. Derivation of equations using balance principles; numerical treatment of ordinary differential equations; time dependent partial differential equations; the strucure of a computer model:DUFLO; usage of numerical models.
SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas
Energy Technology Data Exchange (ETDEWEB)
Lin, Zhihong [Univ. of California, Irvine, CA (United States)
2013-12-18
During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.
Discrete particle modelling of granular roll waves
Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie
2016-11-01
A granular current flowing down an inclined chute or plane can undergo an instability that leads to the formation of surface waves, known as roll waves. Examples of roll waves are found in avalanches and debris flows in landslides, and in many industrial processes. Although related to the Kapitza instability of viscous fluid films, granular roll waves are not yet as well understood. Laboratory experiments typically measure the surface height and velocity of a current as functions of position and time, but they do not give insight into the processes below the surface: in particular, the possible formation of a boundary layer at the free surface as well as the base. To overcome this, we are running discrete particle model (DPM) simulations. Simulations are validated against our laboratory experiments, but they also allow us to examine a much larger range of parameters, such as material properties, chute geometry and particle size dispersity, than that which is possible in the lab. We shall present results from simulations in which we vary particle size and dispersity, and examine the implications on roll wave formation and propagation. Future work will include simulations in which the shape of the chute is varied, both cross-sectionally and in the downstream direction. EPSRC studentship (Tsang) and Royal Society Research Fellowship (Vriend).
Applications to particle transport in the Earth`s aurora
Energy Technology Data Exchange (ETDEWEB)
Jasperse, J.R.
1994-12-31
The visual display of light called the aurora borealis occurs when energetic (1 to 100-keV) electrons, protons, and hydrogen atoms from the Earth`s magnetosphere enter the Earth`s upper atmosphere and collide with the ambient neutral particles. Two kinds of auroras occur in nature: those excited by incident electrons and those excited by incident protons and hydrogen atoms. In this paper, we consider only the latter. The proton-hydrogen aurora may be divided into two altitude regions: high altitudes ({approximately}250 to {approximately}600 km) where charge-changing collisions dominate and energy-loss collisions may be neglected and low altitudes ({approximately}100 to {approximately}250 km) where energy-loss collisions also become important and cause rapid energy degradation. The focus of this review is on the high-altitude region where the one-group approximation is valid.
Modelling the motion of particles around choanoflagellates
Orme, B. A. A.; Blake, J. R.; Otto, S. R.
2003-01-01
The three-dimensional particle paths due to a helical beat pattern of the flagellum of a sessile choanoflagellate, Salpingoeca Amphoridium (SA), are modelled and compared to the experimental observations of Pettitt (2001). The organism’s main components are a flagellum and a cell body which are situated above a substrate such that the interaction between these entities is crucial in determining the fluid flow around the choanoflagellate. This flow of fluid can be characterized as Stokes flow and a flow field analogous to one created by the flagellum is generated by a distribution of stokeslets and dipoles along a helical curve.
Physical considerations relevant to HZE-particle transport in matter
Schimmerling, W.
1988-01-01
High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.
Physical considerations relevant to HZE-particle transport in matter.
Schimmerling, W
1988-06-01
High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.
Resolving Rapid Variation in Energy for Particle Transport
Energy Technology Data Exchange (ETDEWEB)
Haut, Terry Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Ahrens, Cory Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Jonko, Alexandra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Till, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Lowrie, Robert Byron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division
2016-08-23
Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracy and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.
Molecular model of the neural dopamine transporter
Ravna, Aina Westrheim; Sylte, Ingebrigt; Dahl, Svein G.
2003-05-01
The dopamine transporter (DAT) regulates the action of dopamine by reuptake of the neurotransmitter into presynaptic neurons, and is the main molecular target of amphetamines and cocaine. DAT and the Na+/H+ antiporter (NhaA) are secondary transporter proteins that carry small molecules across a cell membrane against a concentration gradient, using ion gradients as energy source. A 3-dimensional projection map of the E. coli NhaA has confirmed a topology of 12 membrane spanning domains, and was previously used to construct a 3-dimensional NhaA model with 12 trans-membrane α-helices (TMHs). The NhaA model, and site directed mutagenesis data on DAT, were used to construct a detailed 3-dimensional DAT model using interactive molecular graphics and empiric force field calculations. The model proposes a dopamine transport mechanism involving TMHs 1, 3, 4, 5, 7 and 11. Asp79, Tyr252 and Tyr274 were the primary cocaine binding residues. Binding of cocaine or its analogue, (-)-2β-carbomethoxy-3β-(4-fluorophenyl)tropane (CFT), seemed to lock the transporter in an inactive state, and thus inhibit dopamine transport. The present model may be used to design further experimental studies of the molecular structure and mechanisms of DAT and other secondary transporter proteins.
Energy Technology Data Exchange (ETDEWEB)
Wang, G. Q.; Ma, J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Centre for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Weiland, J.; Zang, Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2013-10-15
We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport.
Electron-tomographic analysis of intraflagellar transport particle trains in situ.
Pigino, Gaia; Geimer, Stefan; Lanzavecchia, Salvatore; Paccagnini, Eugenio; Cantele, Francesca; Diener, Dennis R; Rosenbaum, Joel L; Lupetti, Pietro
2009-10-05
Intraflagellar transport (IFT) is the bidirectional movement of multipolypeptide particles between the ciliary membrane and the axonemal microtubules, and is required for the assembly, maintenance, and sensory function of cilia and flagella. In this paper, we present the first high-resolution ultrastructural analysis of trains of flagellar IFT particles, using transmission electron microscopy and electron-tomographic analysis of sections from flat-embedded Chlamydomonas reinhardtii cells. Using wild-type and mutant cells with defects in IFT, we identified two different types of IFT trains: long, narrow trains responsible for anterograde transport; and short, compact trains underlying retrograde IFT. Both types of trains have characteristic repeats and patterns that vary as one sections longitudinally through the trains of particles. The individual IFT particles are highly complex, bridged to each other and to the outer doublet microtubules, and are closely apposed to the inner surface of the flagellar membrane.
Uncertainty calculation in transport models and forecasts
DEFF Research Database (Denmark)
Manzo, Stefano; Prato, Carlo Giacomo
in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...... the uncertainty propagation pattern over time specific for key model outputs becomes strategically important. 1 Manzo, S., Nielsen, O. A. & Prato, C. G. (2014). The Effects of uncertainty in speed-flow curve parameters on a large-scale model. Transportation Research Record, 1, 30-37. 2 Manzo, S., Nielsen, O. A...
Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.
2017-01-01
Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.
Receptor modeling application framework for particle source apportionment.
Watson, John G; Zhu, Tan; Chow, Judith C; Engelbrecht, Johann; Fujita, Eric M; Wilson, William E
2002-12-01
Receptor models infer contributions from particulate matter (PM) source types using multivariate measurements of particle chemical and physical properties. Receptor models complement source models that estimate concentrations from emissions inventories and transport meteorology. Enrichment factor, chemical mass balance, multiple linear regression, eigenvector. edge detection, neural network, aerosol evolution, and aerosol equilibrium models have all been used to solve particulate air quality problems, and more than 500 citations of their theory and application document these uses. While elements, ions, and carbons were often used to apportion TSP, PM10, and PM2.5 among many source types, many of these components have been reduced in source emissions such that more complex measurements of carbon fractions, specific organic compounds, single particle characteristics, and isotopic abundances now need to be measured in source and receptor samples. Compliance monitoring networks are not usually designed to obtain data for the observables, locations, and time periods that allow receptor models to be applied. Measurements from existing networks can be used to form conceptual models that allow the needed monitoring network to be optimized. The framework for using receptor models to solve air quality problems consists of: (1) formulating a conceptual model; (2) identifying potential sources; (3) characterizing source emissions; (4) obtaining and analyzing ambient PM samples for major components and source markers; (5) confirming source types with multivariate receptor models; (6) quantifying source contributions with the chemical mass balance; (7) estimating profile changes and the limiting precursor gases for secondary aerosols; and (8) reconciling receptor modeling results with source models, emissions inventories, and receptor data analyses.
Directory of Open Access Journals (Sweden)
Kiao Inthavong
2009-01-01
Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.
Zhang, Ming; Rassoul, Hamid; Qin, Gang
We present a model calculation of solar energetic particle propagation in a realistic 3-d Interplanetary magnetic field. The model includes essentially all the particle transport mechanisms: streaming along magnetic fields, convection with the solar wind, pitch-angle diffusion, magnetic focusing, cross-field diffusion, and adiabatic cooling with pitch-angle dependence. We solve a Fokker-Planck transport equation with simulation of stochastic processes in a fixed reference frame, in which an observer on a spacecraft is roughly stationary. For simplicity, as the first model calculation of this sort, we focus on high-energy E > 10 MeV solar energetic particles that are accelerated near the Sun and then released into interplanetary space. The source of solar energetic particles can be either solar flares or coronal mass ejections, both having limited coverage of latitude and longitude on the solar surface. We compute the particle flux and anisotropy profiles for various observation locations in interplanetary space up to 5 AU from the ecliptic to the poles. Our model calculation results can explain why we often see solar energetic particles reach an almost uniform reservoir in the inner heliosphere a few days after onset of a solar energetic particle event and then the intensities of particles in a broad range of particle energies decay uniformly everywhere. This phenomenon can happen without a need of particle diffusion barrier in the outer heliosphere. We will discuss what mechanism is behind the formation of such a reservoir and what role the cross-field diffusion plays in the transport of solar energetic particles.
The impact of advances in computer technology on particle transport Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Martin, W.R. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering; Rathkopf, J.A. [Lawrence Livermore National Lab., CA (United States); Brown, F.B. [Knolls Atomic Power Lab., Schenectady, NY (United States)
1992-01-21
Advances in computer technology, including hardware, architectural, and software advances, have led to dramatic gains in computer performance over the past decade. We summarize these performance trends and discuss the extent to which particle transport Monte Carlo codes have been able to take advantage of these performance gains. We consider MIMD, SIMD, and parallel distributed computer configurations for particle transport Monte Carlo applications. Some specific experience with vectorization and parallelization of production Monte Carlo codes is included. The topic of parallel random number generation is discussed in some detail. Finally, some software issues that hinder the implementation of Monte Carlo methods on parallel processors are addressed.
Mao, W. Y.; Song, P. Y.; Deng, Q. G.; Xu, H. J.
2016-05-01
With the purpose of studying performance of the vortex pump for transporting solid-liquid two-phase with light particles whose relative density smaller than 1, the numerical simulation of solid-liquid two phase flowing in the whole channel of a vortex pump with the particle diameter being 0.5 mm, 1 mm, 2 mm, 3 mm and the initial solid phase volume concentrations being 10%, 20% and 30% are respectively carried out by using the commercial software ANSYS Fluent by adopting RNG κ-ɛ turbulent flow model, Eulerian-Eulerian multi-phase flow model and SIMPLEC algorithm. The simulation results show that in the impeller region, the particles concentrate on the non-working surface of the blades, and the particles are rare on the working surface of the blades. As the initial solid phase volume concentration and particle diameter increase, the pump delivery head of vortex pump decrease. The pump delivery head of vortex pump with different initial solid phase concentrations and different particle diameters are predicted and compared with those obtained by an empirical formula, and they shows good agreement.
Valyrakis, Manousos; Farhadi, Hamed
2017-04-01
This study, reports on the analysis of appropriately designed fluvial experiments investigating the transport of coarse bed material using two approaches: particle tracking velocimetry (PTV) to extract bulk transport parameters and inertia sensor data (via the use of "smart-pebbles") to obtain refined statistics for the transport of the particle. The purpose of this study is to provide further insight on the use of technologies (optical techniques and inertial sensors) that are complementary one to another, towards producing improved estimates of bedload transport in natural rivers. The experiments are conducted in the Water Engineering Lab at the University of Glasgow on a tilting recirculating flume with 90 cm width. Ten different discharges have been implemented in this study. A couple of fake beds, made of well-packed beads of three different sizes have been set up in the flume. The particle motion is captured by two high-speed commercial cameras, responsible for recording the top view covering the full length of the fake beds over which the "smart-pebble" is allowed to be transported. "Smart-pebbles" of four different densities are initially located at the upstream end of the configuration, fully exposed to the instream flow. These are instrumented with appropriate inertial sensors that allow recording the particle's motion, in the Langrangian frame, in high resolution. Specifically, the "smart-pebble" employ a tri-axial gyroscope, magnetometer and accelerometer, which are utilized to obtain minute linear and angular displacements in high frequency (up to 200Hz). However, these are not enough to accurately reconstruct the full trajectory of the particles rolling downstream. To that goal optical methods are used. In particular, by using particle tracking velocimetry data and image processing techniques, the location, orientation and velocities of the "smart-pebble" are derived. Specific consideration is given to appropriately preprocess the obtained video, as
Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow
Icardi, Matteo
2013-04-01
An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.
Particle-in-Cell Simulations of the VENUS Ion Beam Transport System
Todd, Damon; Leitner, Daniela; Lyneis, Claude; Qiang, Ji
2005-01-01
The next-generation superconducting ECR ion source VENUS serves as the prototype injector ion source for the linac driver of the proposed Rare Isotope Accelerator (RIA). The high-intensity heavy ion beams required by the RIA driver linac present significant challenges for the design and simulation of an ECR extraction and low energy ion beam transport system. Extraction and beam formation take place in a strong (up to 3T) axial magnetic field, which leads to significantly different focusing properties for the different ion masses and charge states of the extracted beam. Typically, beam simulations must take into account the contributions of up to 30 different charge states and ion masses. Two three-dimensional, particle-in-cell codes developed for other purposes, IMPACT and WARP, have been adapted in order to model intense, multi-species DC beams. A discussion of the differences of these codes and the advantages of each in the simulation of the low energy beam transport system of an ECR ion source is given. D...
Yang, Y. M.; Bednarz, B.
2013-02-01
Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.
The effect of particle density on ultrasound-mediated transport of nanoparticles
Lea-Banks, Harriet; Teo, Boon; Stride, Eleanor; Coussios, Constantin C.
2016-11-01
A significant barrier to successful drug delivery is the limited penetration of nanoscale therapeutics beyond the vasculature. Building on recent in vivo findings in the context of cancer drug delivery, the current study investigates whether modification of nanoparticle drug-carriers to increase their density can be used to enhance their penetration into viscoelastic materials under ultrasound exposure. A computational model is first presented to predict the transport of identically sized nanoparticles of different densities in an ultrasonic field in the presence of an oscillating microbubble, by a combination of primary and secondary acoustic radiation forces, acoustic streaming and microstreaming. Experiments are then described in which near monodisperse (polydispersity index <0.2) nanoparticles of approximate mean diameter 200 nm and densities ranging from 1.01 g cm-3 to 5.58 g cm-3 were fabricated and delivered to a tissue-mimicking material in the presence or absence of a microbubble ultrasound contrast agent, at ultrasound frequencies of 0.5 MHz and 1.6 MHz and a peak negative pressure of 1 MPa. Both the theoretical and experimental results confirm that denser particles exhibit significantly greater ultrasound-mediated transport than their lower density counterparts, indicating that density is a key consideration in the design of nanoscale therapeutics.
Numerical modelling of flow and transport in rough fractures
Institute of Scientific and Technical Information of China (English)
Scott Briggs; Bryan W. Karney; Brent E. Sleep
2014-01-01
Simulation of flow and transport through rough walled rock fractures is investigated using the lattice Boltzmann method (LBM) and random walk (RW), respectively. The numerical implementation is developed and validated on general purpose graphic processing units (GPGPUs). Both the LBM and RW method are well suited to parallel implementation on GPGPUs because they require only next-neighbour communication and thus can reduce expenses. The LBM model is an order of magnitude faster on GPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified for parallel plate flow, backward facing step and single fracture flow;and the RW model is verified for point-source diffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithms place limitations on the discrete displacement of fluid or particle transport per time step to minimise the numerical error that must be considered during implementation.
Charmed particle lifetimes. [Review, six quark model
Energy Technology Data Exchange (ETDEWEB)
Rosner, J.L.
1979-01-01
Conventional estimates are reviewed for charmed particle lifetimes. Free-quark models give values of (a few) x 10/sup -13/ sec to (a few) x 10/sup -12/ sec. The shorter of these values also follows from an extrapolation based on D ..-->.. Ke/sup nu/. Possible differences among the lifetimes and production rates of D/sup 0/, D/sup +/, F/sup +/, C/sub 0//sup +/, the heavy lepton tau, and the fifth quark b are discussed. Extreme values of mixing angles in a six-quark model could extend charmed particle lifetimes by a factor of at most three from the above estimates, while shorter lifetimes than those predicted could occur for some species like D/sup 0/ or F/sup +/ if their nonleptonic decays were enhanced. The predictions are discussed in the light of some current experimental results, and it is estimated that sigma(pp ..-->.. charm) approx. = 10 ..mu..b at 400 GeV/c. 95 references.
Particle Tracking Model (PTM) with Coastal Modeling System (CMS)
2014-10-31
System ( CMS ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...www.erdc.usace.army.mil/Missions/WaterResources/CIRP.aspx Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The...System ( CMS ), which provides coupled wave and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a
Real time model for public transportation management
Directory of Open Access Journals (Sweden)
Ireneusz Celiński
2014-03-01
Full Text Available Background: The article outlines managing a public transportation fleet in the dynamic aspect. There are currently many technical possibilities of identifying demand in the transportation network. It is also possible to indicate legitimate basis of estimating and steering demand. The article describes a general public transportation fleet management concept based on balancing demand and supply. Material and methods: The presented method utilizes a matrix description of demand for transportation based on telemetric and telecommunication data. Emphasis was placed mainly on a general concept and not the manner in which data was collected by other researchers. Results: The above model gave results in the form of a system for managing a fleet in real-time. The objective of the system is also to optimally utilize means of transportation at the disposal of service providers. Conclusions: The presented concept enables a new perspective on managing public transportation fleets. In case of implementation, the project would facilitate, among others, designing dynamic timetables, updated based on observed demand, and even designing dynamic points of access to public transportation lines. Further research should encompass so-called rerouting based on dynamic measurements of the characteristics of the transportation system.
SEM++: A particle model of cellular growth, signaling and migration
Milde, Florian; Tauriello, Gerardo; Haberkern, Hannah; Koumoutsakos, Petros
2014-06-01
We present a discrete particle method to model biological processes from the sub-cellular to the inter-cellular level. Particles interact through a parametrized force field to model cell mechanical properties, cytoskeleton remodeling, growth and proliferation as well as signaling between cells. We discuss the guiding design principles for the selection of the force field and the validation of the particle model using experimental data. The proposed method is integrated into a multiscale particle framework for the simulation of biological systems.
Review of resuspension models. [Particle resuspension
Energy Technology Data Exchange (ETDEWEB)
Healy, J.W.
1976-01-01
Resuspension of particles is classified, according to the prominent path of exposure and the type of consideration involved in estimating concentrations, as general resuspension, local resuspension, and transfer resuspension. General resuspension can be driven by winds or mechanical disturbances while local resuspension and transfer resuspension are primarily caused by mechanical disturbances. Modeling techniques consist of the resuspension factor, the resuspension rate and mass-loading. For general resuspension the resuspension rate is preferred while the resuspension factor or mass-loading approach can be used for local resuspension. Data for estimation of transfer resuspension are not really adequate to even make a first approximation as to its importance. Resuspension of contaminants on the ground leading to inhalation is generally assumed to be an important pathway of exposure to people. Methods of calculation for prediction of this pathway (models) are used widely in Environmental Impact Statements, risk assessments, and derivation of standards.
Phenrat, Tanapon; Kim, Hye-Jin; Fagerlund, Fritjof; Illangasekare, Tissa; Tilton, Robert D; Lowry, Gregory V
2009-07-01
The effect of particle concentration, size distribution (polydispersity) and magnetic attractive forces (Fe(0) content) on agglomeration and transport of poly(styrene sulfonate) (PSS) modified NZVI was studied in water-saturated sand (d(p) = 300 microm) columns. Particle concentrations ranged from 0.03 to 6 g/L in 5 mM NaCl/5 mM NaHCO3 at a pore water velocity of 3.2 x 10(-4) m/s. Three NZVI dispersions with different intrinsic particle size distributions obtained from sequential sedimentation are compared. The influence of magnetic attraction (Fe(0) content) on NZVI agglomeration and deposition in porous media is assessed by comparing the deposition behavior of PSS-modified NZVI (magnetic) having different Fe(0) contents with PSS-modified hematite (nonmagnetic) with the same surface modifier. At low particle concentration (30 mg/L) all particles were mobile in sand columns regardless of size or magnetic attractive forces. At high concentration (1 to 6 g/L), deposition of the relatively monodisperse dispersion containing PSS-modified NZVI (hydrodynamic radius (R(H)) = 24 nm) with the lowest Fe(0) content (4 wt%) is low (attachment efficiency (alpha) = 2.5 x 10(-3)), insensitive to particle concentration, and similar to PSS-modified hematite. At 1 to 6 g/L, the attachment efficiency of polydisperse dispersions containing both primary particles and sintered aggregates (R(H) from 15 to 260 nm) of PSS-modified NZVI with a range of Fe(0) content (10-60%) is greater (alpha = 1.2 x 10(-2) to 7.2 x 10(-2) and is sensitive to particle size distribution. The greater attachment for larger, more polydisperse Fe(0) nanoparticles with higher Fe(0) content is a result of their agglomeration during transport in porous media because the magnetic attractive force between particles increases with the sixth power of particle/agglomerate radius. A filtration model that considers agglomeration in porous media and subsequent deposition explains the observed transport of polydisperse PSS
Friedel, R. H. W.; Bourdarie, S.; Fennell, J.; Kanekal, S.; Cayton, T. E.
2004-01-01
The highly energetic electron environment in the inner magnetosphere (GEO inward) has received a lot of research attention in resent years, as the dynamics of relativistic electron acceleration and transport are not yet fully understood. These electrons can cause deep dielectric charging in any space hardware in the MEO to GEO region. We use a new and novel approach to obtain a global representation of the inner magnetospheric energetic electron environment, which can reproduce the absolute environment (flux) for any spacecraft orbit in that region to within a factor of 2 for the energy range of 100 KeV to 5 MeV electrons, for any levels of magnetospheric activity. We combine the extensive set of inner magnetospheric energetic electron observations available at Los Alamos with the physics based Salammbo transport code, using the data assimilation technique of "nudging". This in effect input in-situ data into the code and allows the diffusion mechanisms in the code to interpolate the data into regions and times of no data availability. We present here details of the methods used, both in the data assimilation process and in the necessary inter-calibration of the input data used. We will present sample runs of the model/data code and compare the results to test spacecraft data not used in the data assimilation process.
Energy Technology Data Exchange (ETDEWEB)
Ness, H., E-mail: herve.ness@kcl.ac.uk [Department of Physics, School of Natural and Mathematical Sciences, King' s College London, Strand, London WC2R 2LS (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); European Theoretical Spectroscopy Facility (ETSF), Liege (Belgium); Dash, L. K. [European Theoretical Spectroscopy Facility (ETSF), Liege (Belgium); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2014-04-14
We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.
Ness, H; Dash, L K
2014-04-14
We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.
Coupled Large Eddy Simulation and Discrete Element Model for Particle Saltation
Liu, X.; Liu, D.; Fu, X.
2016-12-01
Particle saltation is the major mode of motion for sediment transport. The quantification of the characteristics of saltation, either as an individual particle or as a group, is of great importance to our understanding of the transport process. In the past, experiments and numerical models have been performed to study the saltation length, height, and velocity under different turbulent flow and rough bed conditions. Most previous numerical models have very restrictive assumptions. For example, many models assumed Log-law flow velocity profiles to drive the motion of particles. Others assumed some "splash-function" which assigns the reflection angle for the rebounding of the saltating particle after each collision with bed. This research aims to relax these restrictions by a coupled eddy-resolving flow solver and a discrete element model. The model simulates the fully four-way coupling among fluid, particles, and wall. The model is extensively validated on both the turbulent flow field and saltation statistics. The results show that the two controlling factors for particle saltation are turbulent fluctuations and bed collision. Detailed quantification of these two factors will be presented. Through the statistics of incidence reflection angles, a more physical "splash-function" is obtained in which the reflection angle follows an asymmetric bimodal distribution for a given incidence angle. The higher mode is always located on the upstream side of the bed particle, while the lower one is always on the downstream surface.
Numerical modelling of particle-laden sonic CO2 jets with experimental validation
Wareing, C. J.; Fairweather, M.; Peakall, J.; Keevil, G.; Falle, S. A. E. G.; Woolley, R. M.
2013-10-01
The characteristics of the particle distribution, evolution and movement in a sonic jet release of carbon dioxide (CO2) from a high pressure reservoir are investigated. The motivation is to numerically model the sonic jet with particles, using the hitherto unknown initial particle distribution measured herein, and hence understand and numerically reproduce the experimentally observedparticle behaviour downstream of the Mach shock, including turbulence characteristics and level of agglomeration. We employ a Reynolds-averaged Navier-Stokes scheme with adaptive mesh refinement (AMR), combined with a Lagrangian particle tracker and particle distribution function. The model is seeded at the nozzle with the experimentally measured particle distribution and exploited to reproduce the observed characteristics of the jet. These releases are designed to be representative of a sonic CO2 release into the atmosphere and so provide data to help interpret how accidental or operational releases from the transport aspect of a carbon capture and storage chain might behave.
Radionuclide Transport Models Under Ambient Conditions
Energy Technology Data Exchange (ETDEWEB)
G. Moridis; Q. Hu
2001-12-20
The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.
Shock Particle Interaction - Fully Resolved Simulations and Modeling
Mehta, Yash; Neal, Chris; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth
2016-11-01
Currently there is a substantial lack of fully resolved data for shock interacting with multiple particles. In this talk we will fill this gap by presenting results of shock interaction with 1-D array and 3-D structured arrays of particles. Objectives of performing fully resolved simulations of shock propagation through packs of multiple particles are twofold, 1) To understand the complicated physical phenomena occurring during shock particle interaction, and 2) To translate the knowledge from microscale simulations in building next generation point-particle models for macroscale simulations that can better predict the motion (forces) and heat transfer for particles. We compare results from multiple particle simulations against the single particle simulations and make relevant observations. The drag history and flow field for multiple particle simulations are markedly different from those of single particle simluations, highlighting the effect of neighboring particles. We propose new models which capture this effect of neighboring particles. These models are called Pair-wise Interaction Extended Point Particle models (PIEP). Effect of multiple neighboring particles is broken down into pair-wise interactions, and these pair-wise interactions are superimposed to get the final model U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
China, Swarup; Alpert, Peter A.; Zhang, Bo; Schum, Simeon; Dzepina, Katja; Wright, Kendra; Owen, R. Chris; Fialho, Paulo; Mazzoleni, Lynn R.; Mazzoleni, Claudio; Knopf, Daniel A.
2017-03-01
Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition between samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. This study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.
Radionuclide Transport Models Under Ambient Conditions
Energy Technology Data Exchange (ETDEWEB)
G. Moridis; Q. Hu
2000-03-12
The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive
System Convergence in Transport Modelling
DEFF Research Database (Denmark)
Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.
2010-01-01
-of-successive-averages (MSA) have been proposed. Convergence of the MSA under fairly weak regularity conditions was shown in Robbins and Monro (1951). The iteration between demand and assignment ? the external equilibrium ? are in many models either decoupled or follow a very simple iteration pattern. However, as demand...
Stokes, Peter W.; Philippa, Bronson; Cocks, Daniel; White, Ronald D.
2017-04-01
A generalized phase-space kinetic Boltzmann equation for highly nonequilibrium charged particle transport via localized and delocalized states is used to develop continuity, momentum, and energy balance equations, accounting explicitly for scattering, trapping and detrapping, and recombination loss processes. Analytic expressions detail the effect of these microscopic processes on mobility and diffusivity. Generalized Einstein relations (GER) are developed that enable the anisotropic nature of diffusion to be determined in terms of the measured field dependence of the mobility. Interesting phenomena such as negative differential conductivity and recombination heating and cooling are shown to arise from recombination loss processes and the localized and delocalized nature of transport. Fractional transport emerges naturally within this framework through the appropriate choice of divergent mean waiting time distributions for localized states, and fractional generalizations of the GER and mobility are presented. Signature impacts on time-of-flight current transients of recombination loss processes via both localized and delocalized states are presented.
Chapman-Enskog expansion for the Vicsek model of self-propelled particles
Ihle, Thomas
2016-01-01
Using the standard Vicsek model, I show how the macroscopic transport equations can be systematically derived from microscopic collision rules. The approach starts with the exact evolution equation for the N-particle probability distribution, and after making the mean-field assumption of Molecular Chaos leads to a multi-particle Enskog-type equation. This equation is treated by a non-standard Chapman-Enskog expansion to extract the macroscopic behavior. The expansion includes terms up to third order in a formal expansion parameter $\\epsilon$, and involves a fast time scale. A self-consistent closure of the moment equations is presented that leads to a continuity equation for the particle density and a Navier-Stokes-like equation for the momentum density. Expressions for all transport coefficients in these macroscopic equations are given explicitly in terms of microscopic parameters of the model. The transport coefficients depend on specific angular integrals which are evaluated asymptotically in the limit of ...
Burnout of pulverized biomass particles in large scale boiler – Single particle model approach
DEFF Research Database (Denmark)
Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero
2010-01-01
the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....
Chrysikopoulos, Constantinos V.; Manariotis, Ioannis D.; Syngouna, Vasiliki I.
2014-05-01
Accurate prediction of colloid and biocolloid transport in porous media relies heavily on usage of suitable dispersion coefficients. The widespread procedure for dispersion coefficient determination consists of conducting conservative tracer experiments and subsequently fitting the collected breakthrough data with a selected advection-dispersion transport model. The fitted dispersion coefficient is assumed to characterize the porous medium and is often used thereafter to analyze experimental results obtained from the same porous medium with other solutes, colloids, and biocolloids. The classical advection-dispersion equation implies that Fick's first law of diffusion adequately describes the dispersion process, or that the dispersive flux is proportional to the concentration gradient. Therefore, the above-described procedure inherently assumes that the dispersive flux of all solutes, colloids and biocolloids under the same flow field conditions is exactly the same. Furthermore, the available mathematical models for colloid and biocoloid transport in porous media do not adequately account for gravity effects. Here an extensive laboratory study was undertaken in order to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size, interstitial velocity and length scale. The breakthrough curves were successfully simulated with a mathematical model describing colloid and biocolloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity increases very slowly with increasing interstitial velocity, and increases with column length. Furthermore, contrary to earlier results, which were based either on just a few experimental observations or experimental conditions leading to low mass recoveries, dispersivity was positively correlated with colloid particle size. Also, transport experiments were performed with biocolloids (bacteriophages:
Modeling of particle size segregation: calibration using the discrete particle method
Thornton, Anthony; Weinhart, Thomas; Luding, Stefan; Bokhove, Onno
2012-01-01
Over the last 25 years a lot of work has been undertaken on constructing continuum models for segregation of particles of different sizes. We focus on one model that is designed to predict segregation and remixing of two differently sized particle species. This model contains two dimensionless param
Multiscale modeling with smoothed dissipative particle dynamics.
Kulkarni, Pandurang M; Fu, Chia-Chun; Shell, M Scott; Leal, L Gary
2013-06-21
In this work, we consider two issues related to the use of Smoothed Dissipative Particle Dynamics (SDPD) as an intermediate mesoscale model in a multiscale scheme for solution of flow problems when there are local parts of a macroscopic domain that require molecular resolution. The first is to demonstrate that SDPD with different levels of resolution can accurately represent the fluid properties from the continuum scale all the way to the molecular scale. Specifically, while the thermodynamic quantities such as temperature, pressure, and average density remain scale-invariant, we demonstrate that the dynamic properties are quantitatively consistent with an all-atom Lennard-Jones reference system when the SDPD resolution approaches the atomistic scale. This supports the idea that SDPD can serve as a natural bridge between molecular and continuum descriptions. In the second part, a simple multiscale methodology is proposed within the SDPD framework that allows several levels of resolution within a single domain. Each particle is characterized by a unique physical length scale called the smoothing length, which is inversely related to the local number density and can change on-the-fly. This multiscale methodology is shown to accurately reproduce fluid properties for the simple problem of steady and transient shear flow.
Frank, Donya; Calantoni, Joseph
2017-05-01
Improved understanding of coastal hydrodynamics and morphology will lead to more effective mitigation measures that reduce fatalities and property damage caused by natural disasters such as hurricanes. We investigated sediment transport under oscillatory flow over flat and rippled beds with phase-separated stereoscopic Particle Image Velocimetry (PIV). Standard PIV techniques severely limit measurements at the fluid-sediment interface and do not allow for the observation of separate phases in multi-phase flow (e.g. sand grains in water). We have implemented phase-separated Particle Image Velocimetry by adding fluorescent tracer particles to the fluid in order to observe fluid flow and sediment transport simultaneously. While sand grains scatter 532 nm wavelength laser light, the fluorescent particles absorb 532 nm laser light and re-emit light at a wavelength of 584 nm. Optical long-pass filters with a cut-on wavelength of 550 nm were installed on two cameras configured to perform stereoscopic PIV to capture only the light emitted by the fluorescent tracer particles. A third high-speed camera was used to capture the light scattered by the sand grains allowing for sediment particle tracking via particle tracking velocimetry (PTV). Together, these overlapping, simultaneously recorded images provided sediment particle and fluid velocities at high temporal and spatial resolution (100 Hz sampling with 0.8 mm vector spacing for the 2D-3C fluid velocity field). Measurements were made under a wide range of oscillatory flows over flat and rippled sand beds. The set of observations allow for the investigation of the relative importance of pressure gradients and shear stresses on sediment transport.
Energy Technology Data Exchange (ETDEWEB)
Rajaram, Harihar [University of Colorado, Boulder; Brutz, Michael [University of Colorado, Boulder; Klein, Dylan R [University of Colorado, Boulder; Mallikamas, Wasin [University of Colorado, Boulder
2014-09-18
Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in “effective” parameters used in these models, such as the “effective matrix diffusivity”. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between the effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in “effective matrix diffusion” coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in flow fields
Band transport model for discotic liquid crystals
Lever, L. J.; Kelsall, R. W.; Bushby, R. J.
2005-07-01
A theoretical model is presented for charge transport in discotic liquid crystals in which a charge is delocalized over more than one lattice site. As such, charge transport is via a banded conduction process in a narrow bandwidth system and takes place over coherent lengths of a few molecules. The coherent lengths are disrupted by the geometrical disorder of the system and are treated as being terminated by quantum tunnel barriers. The transmission probabilities at these barriers have been calculated as a function of the charge carrier energy. Phononic interactions are also considered and the charge carrier scattering rates are calculated for intermolecular and intramolecular vibrations. The results of the calculations have been used to develop a Monte Carlo simulation of the charge transport model. Simulated data are presented and used to discuss the nature of the tunnel barriers required to reproduce experimental data. We find that the model successfully reproduces experimental time of flight data including temperature dependence.
DAC 22 High Speed Civil Transport Model
1992-01-01
Between tests, NASA research engineer Dave Hahne inspects a tenth-scale model of a supersonic transport model in the 30- by 60-Foot Tunnel at NASA Langley Research Center, Hampton, Virginia. The model is being used in support of NASA's High-Speed Research (HSR) program. Langley researchers are applying advance aerodynamic design methods to develop a wing leading-edge flap system which significantly improves low-speed fuel efficiency and reduces noise generated during takeoff operation. Langley is NASA's lead center for the agency's HSR program, aimed at developing technology to help U.S. industry compete in the rapidly expanding trans-oceanic transport market. A U.S. high-speed civil transport is expected to fly in about the year 2010. As envisioned, it would fly 300 passengers across the Pacific in about four hours at Mach 2.4 (approximately 1,600 mph/1950 kph) for a modest increase over business class fares.
Laser particle counter validation for aeolian sand transport measurements using a highspeed camera
Duarte Campos, Leonardo Andres; Wijnberg, Kathelijne Mariken; Oyarte Galvez, Loreto Alejandra; Hulscher, Suzanne J.M.H.
2017-01-01
Measuring aeolian sand transport rates in the field has been a long-standing challenge. In this paper, we present the results of a laboratory experiment to test the ability of a laser particle counter sensor (Wenglor) to accurately count sand grains of various grain size classes and stainless steel
TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS
TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...
Methodologies for Removing/Desorbing and Transporting Particles from Surfaces to Instrumentation
Miller, Carla J.; Cespedes, Ernesto R.
2012-12-01
Explosive trace detection (ETD) continues to be a key technology supporting the fight against terrorist bombing threats. Very selective and sensitive ETD instruments have been developed to detect explosive threats concealed on personnel, in vehicles, in luggage, and in cargo containers, as well as for forensic analysis (e.g. post blast inspection, bomb-maker identification, etc.) in a broad range of homeland security, law enforcement, and military applications. A number of recent studies have highlighted the fact that significant improvements in ETD systems' capabilities will be achieved, not by increasing the selectivity/sensitivity of the sensors, but by improved techniques for particle/vapor sampling, pre-concentration, and transport to the sensors. This review article represents a compilation of studies focused on characterizing the adhesive properties of explosive particles, the methodologies for removing/desorbing these particles from a range of surfaces, and approaches for transporting them to the instrument. The objectives of this review are to summarize fundamental work in explosive particle characterization, to describe experimental work performed in harvesting and transport of these particles, and to highlight those approaches that indicate high potential for improving ETD capabilities.
Measurements and models of reactive transport in geological media
Berkowitz, Brian; Dror, Ishai; Hansen, Scott K.; Scher, Harvey
2016-12-01
Reactive chemical transport plays a key role in geological media across scales, from pore scale to aquifer scale. Systems can be altered by changes in solution chemistry and a wide variety of chemical transformations, including precipitation/dissolution reactions that cause feedbacks that directly affect the flow and transport regime. The combination of these processes with advective-dispersive-diffusive transport in heterogeneous media leads to a rich spectrum of complex dynamics. The principal challenge in modeling reactive transport is to account for the subtle effects of fluctuations in the flow field and species concentrations; spatial or temporal averaging generally suppresses these effects. Moreover, it is critical to ground model conceptualizations and test model outputs against laboratory experiments and field measurements. This review emphasizes the integration of these aspects, considering carefully designed and controlled experiments at both laboratory and field scales, in the context of development and solution of reactive transport models based on continuum-scale and particle tracking approaches. We first discuss laboratory experiments and field measurements that define the scope of the phenomena and provide data for model comparison. We continue by surveying models involving advection-dispersion-reaction equation and continuous time random walk formulations. The integration of measurements and models is then examined, considering a series of case studies in different frameworks. We delineate the underlying assumptions, and strengths and weaknesses, of these analyses, and the role of probabilistic effects. We also show the key importance of quantifying the spreading and mixing of reactive species, recognizing the role of small-scale physical and chemical fluctuations that control the initiation of reactions.
GEOS-5 Chemistry Transport Model User's Guide
Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.
2015-01-01
The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.
A Typical Path Model of Tracheobronchial Clearance of Inhaled Particles in Rats
2002-01-01
A mathematical description of particle clearance from the ciliated conducting airways (tracheobronchial region) of the lungs in rats was developed...particle transport velocities for given generations of airways were estimated from reported tracheal transport velocities. Using typical rat airway geometry...and estimated particle transport velocities solutions of sets of rate equations for transport from each generation of airways were summed to estimate
Modelling Transition Towards Sustainable Transportation Sector
DEFF Research Database (Denmark)
Dominkovic, Dominik Franjo; Bačeković, I.; Mýrdal, Jón Steinar Garðarsson
2016-01-01
In a transition towards 100% renewable energy system, transportation sector is rarely dealt withusing the holistic approach and measuring its impact on the whole energy system. Furthermore, assolutions for power and heat sectors are clearer, it is a tendency of the researchers to focus on thelatter...... two energy sectors. In order to deal with the raised issue, authors of this paper developed amethodology for calculation of the transition towards sustainable transport sector, focusing on thesolutions that are already available. Furthermore, as a part of the model, a detailed mapping ofresources...... needed has been carried out for each of the alternatives. It was shown that theelectrification of the transportation sector is a crucial point in transition, while for the transportmodes that cannot be electrified, or shifted to different transportation modes, four alternatives weredefined: synthetic...
Transport of Lactate-modified Nanoscale Iron Particles in Porous Media
Reddy, K. R.
2012-12-01
Nanoscale iron particles (NIP) have recently shown to be effective for dehalogenation of recalcitrant organic contaminants such as pentachlorphenol (PCP) and dinitrotoluene (DNT) in the environment. However, effective transport of NIP into the contaminated subsurface zones is crucial for the success of in-situ remediation. Previous studies showed that the transport of NIP in soils is very limited and surface-modification of NIP is required to achieve adequate transport. This paper investigates the transport of NIP and lactate-modified NIP (LMNIP) through four different porous media (sands with different particle size and distribution). A series of laboratory column experiments was conducted to quantify the transport of NIP and LMNIP at two different slurry concentrations of 1 g/L and 4 g/L under two different flow velcoities. NIP used in this study possessed magentic properties, thus a magnetic susceptibility sensor system was used to monitor the changes in magnetic susceptibility (MS) along the length of the column at different times during the experiments. At the end of testing, the distribution of total Fe in the sand column was measured. Results showed a linear correlation between the Fe concentration and MS and it was used to assess the transient transport of NIP and LMNIP in the sand columns. Results showed that LMNIP transported better than bare NIP and higher concentration of 4 g/L LMNIP exhibited unform and greater transport compared to other tested conditions. Transport of NIP increased in the order from fine Ottawa sand > medium field sand > coarse field sand > coarse Ottawa sand. Filtration theory and advective-dispersion equation with reaction were applied to capture the transport response of NIP and LMNIP in the sand columns.
Particle velocity and sediment transport at the limit of deposition in sewers.
Ota, J J; Perrusquía, G S
2013-01-01
This paper focuses on the sediment particle while it is transported at the limit of deposition in storm sewers, i.e. as bed load at the limit of concentration that leads to sediment deposition. Although many empirical sediment transport equations are known in the literature, there is only limited knowledge concerning particle velocity. Sediment particle and sphere velocity measurements were carried out in two pipe channels and these results led to the development of a semi-theoretical equation for sediment transport at the limit of deposition in sewers. Even in the transport process without deposition, sediment movement is slower than water velocity and depends on the angle of repose of sediment with a diameter d on the roughness k of the pipe channel. Instead of classical dimensionless bed shear stress ψ, a modified dimensionless bed shear stress ψ (d/k)(2/3) was suggested, based on the angle of repose and this parameter was proved to be significant for quantifying the transport capacity. The main purpose of this article is to emphasize the importance of careful observation of experiments. Not only number of tests, but physical understanding are essential for better empirical equations.
Directory of Open Access Journals (Sweden)
Mosel Ulrich
2013-06-01
Full Text Available We give an overview over the hadronic transport model GiBUU as a simulation tool for hadronic and electroweak reactions on nuclei over a wide energy range [1]. The model is able to handle hadron-, photon- and lepton-induced reactions as well as nucleus nucleus collisions from sub-GeV energies up to hundreds of GeV. After a general introduction of the model, we discuss its possible application to cosmic ray air showers.
THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS
Energy Technology Data Exchange (ETDEWEB)
M. WILLIAMS [and others
1999-08-01
The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.
Energy Technology Data Exchange (ETDEWEB)
Charles, F.
2009-11-15
The thesis deals with kinetic models describing a rarefied spray. These models rely on coupling two Partial Differential Equations which describe the spatio-temporal evolution of the distribution of molecules and dust particles. The model presented in the first part is described by two Boltzmann-type equations where collisions between molecules and particles are modeled by two collision operators. We suggest two models of this collision operators. In the first one, collisions between dust particles and molecules are supposed to be elastic. In the second one, we assume those collisions are inelastic and given by a diffuse reflexion mechanism on the surface of dust specks. This leads to establish non classical collision operators. We prove that in the case of elastic collisions, the spatially homogeneous system has weak solutions which preserve mass and energy, and which satisfy an entropy inequality. We then describe the numerical simulation of the inelastic model, which is based on a Direct Simulation Method. This brings to light that the numerical simulation of the system becomes too expensive because the typical size of a dust particle is too large. We therefore introduce in the second part of this work a model constituted of a coupling (by a drag force term) between a Boltzmann equation and a Vlasov equation. To this end, we perform a scaling of the Boltzmann/Boltzmann system and an asymptotic expansion of one of the dimensionless collision operators with respect to the ratio of mass between a molecule of gas and a particle. A rigorous proof of the passage to the limit is given in the spatially homogeneous setting, for the elastic model of collision operators. It includes a new variant of Povzner's inequality in which the vanishing mass ratio is taken into account. Moreover, we numerically compare the Boltzmann/Boltzmann and Vlasov/Boltzmann systems with the inelastic collision operators. The simulation of the Vlasov equation is performed with a Particle
The chemical transport model Oslo CTM3
Directory of Open Access Journals (Sweden)
O. A. Søvde
2012-06-01
Full Text Available We present here the global chemical transport model Oslo CTM3, an update of the Oslo CTM2. The update comprises a faster transport scheme, an improved wet scavenging scheme for large scale rain, updated photolysis rates and a new lightning parameterization. Oslo CTM3 is better parallelized and allows for stable, large time steps for advection, enabling more complex or high resolution simulations. Thorough comparisons between the Oslo CTM3, Oslo CTM2 and measurements are performed, and in general the Oslo CTM3 is found to reproduce measurements well. Inclusion of tropospheric sulfur chemistry and nitrate aerosols in CTM3 is shown to be important to reproduce tropospheric O_{3}, OH and the CH_{4} lifetime well. Using the same meteorology to drive the two models, shows that some features related to transport are better resolved by the CTM3, such as polar cap transport, while features like transport close to the vortex edge are resolved better in the Oslo CTM2 due to its required shorter transport time step. The longer transport time steps in CTM3 result in larger errors e.g. near the jets, and when necessary, this can be remedied by using a shorter time step. An additional, more accurate and time consuming, treatment of polar cap transport is presented, however, both perform acceptably. A new treatment of the horizontal distribution of lightning is presented and found to compare well with measurements. Vertical distributions of lighting are updated, and tested against the old vertical distribution. The new profiles are found to produce more NO_{x} in the tropical middle troposphere, and less at the surface and at high altitudes.
Turbulent transport of MeV range cyclotron heated minorities as compared to alpha particles
Pusztai, István; Kazakov, Yevgen O; Fülöp, Tünde
2016-01-01
We study the turbulent transport of an ion cyclotron resonance heated (ICRH), MeV range minority ion species in tokamak plasmas. Such highly energetic minorities, which can be produced in the three ion minority heating scheme [Ye. O. Kazakov et al. (2015) Nucl. Fusion 55, 032001], have been proposed to be used to experimentally study the confinement properties of fast ions without the generation of fusion alphas. We compare the turbulent transport properties of ICRH ions with that of fusion born alpha particles. Our results indicate that care must be taken when conclusions are drawn from experimental results: While the effect of turbulence on these particles is similar in terms of transport coefficients, differences in their distribution functions - ultimately their generation processes - make the resulting turbulent fluxes different.
Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles
Directory of Open Access Journals (Sweden)
Jaćimovski Darko R.
2014-01-01
Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022
Nguyen van Ye, Romain; Del-Castillo-Negrete, Diego; Spong, D.; Hirshman, S.; Farge, M.
2008-11-01
A limitation of particle-based transport calculations is the noise due to limited statistical sampling. Thus, a key element for the success of these calculations is the development of efficient denoising methods. Here we discuss denoising techniques based on Proper Orthogonal Decomposition (POD) and Wavelet Decomposition (WD). The goal is the reconstruction of smooth (denoised) particle distribution functions from discrete particle data obtained from Monte Carlo simulations. In 2-D, the POD method is based on low rank truncations of the singular value decomposition of the data. For 3-D we propose the use of a generalized low rank approximation of matrices technique. The WD denoising is based on the thresholding of empirical wavelet coefficients [Donoho et al., 1996]. The methods are illustrated and tested with Monte-Carlo particle simulation data of plasma collisional relaxation including pitch angle and energy scattering. As an application we consider guiding-center transport with collisions in a magnetically confined plasma in toroidal geometry. The proposed noise reduction methods allow to achieve high levels of smoothness in the particle distribution function using significantly less particles in the computations.
Modeling of Motion of Particle Clouds Formed by Dumping Dredged Material
Institute of Scientific and Technical Information of China (English)
YING Xinya(应新亚); Juichiro AKIYAMA; MAO Genhai(毛根海)
2001-01-01
The motion of particle clouds formed by dumping dredged material into quiescent waters is experimentally and numerically studied. In the numerical model, the particle phase is modeled by the dispersion model, and turbulence is calculated by the large eddy simulation. The governing equations, including the filtered Navier-Stokes equations and mass transport equation, are solved based on the operator-splitting algorithm and an implicit cubic spline interpolation scheme. The eddy viscosity is evaluated by the modified Smagorinsky model including the buoyancy term. Comparisons of main flow characteristics, including shape, size, average density excess, moving speed and the amount of particles deposited on the bed, between experimental and computational results show that the numerical model well predicts the motion of the cloud from the falling to spreading stage. The effects of silt-fence on the motion of the particle cloud are also investigated.
A Particle Resistance Model for Flow through Porous Media
Institute of Scientific and Technical Information of China (English)
WU Jin-Sui; YIN Shang-Xian; ZHAO Dong-Yu
2009-01-01
A particle model for resistance of flow in isotropic porous media is developed based on the fractal geometry theory and on the drag force flowing around sphere.The proposed model is expressed as a function of porosity,fluid property,particle size,fluid velocity (or Reynolds number) and fractal characters Df of particles in porous media.The model predictions are in good agreement with the experimental data.The validity of the proposed model is thus verified.
Multi-compartment Aerosol Transport Model
Energy Technology Data Exchange (ETDEWEB)
Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony
2017-06-01
A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.
Extending the Modelling Framework for Gas-Particle Systems
DEFF Research Database (Denmark)
Rosendahl, Lasse Aistrup
, with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...
Error estimation and adaptive chemical transport modeling
Directory of Open Access Journals (Sweden)
Malte Braack
2014-09-01
Full Text Available We present a numerical method to use several chemical transport models of increasing accuracy and complexity in an adaptive way. In largest parts of the domain, a simplified chemical model may be used, whereas in certain regions a more complex model is needed for accuracy reasons. A mathematically derived error estimator measures the modeling error and provides information where to use more accurate models. The error is measured in terms of output functionals. Therefore, one has to consider adjoint problems which carry sensitivity information. This concept is demonstrated by means of ozone formation and pollution emission.
A Lagrangian particle method with remeshing for tracer transport on the sphere
Bosler, Peter A.; Kent, James; Krasny, Robert; Jablonowski, Christiane
2017-07-01
A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracer integral, and preservation of nonlinear correlation in a pair of tracers. We compare results obtained using LPM and the Lin-Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.
Ortiz-Amezcua, Pablo; Guerrero-Rascado, Juan Luis; José Granados-Muñoz, María; Benavent-Oltra, José Antonio; Böckmann, Christine; Samaras, Stefanos; Stachlewska, Iwona S.; Janicka, Łucja; Baars, Holger; Bohlmann, Stephanie; Alados-Arboledas, Lucas
2017-05-01
Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1-2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30 % of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: color ratio of lidar ratios (LR532 / LR355) around 2, α-related ångström exponents of less than 1, effective radii of 0.3 µm and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established.