WorldWideScience

Sample records for model parameters vary

  1. Modelling tourists arrival using time varying parameter

    Science.gov (United States)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  2. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  3. Sensor placement for calibration of spatially varying model parameters

    Science.gov (United States)

    Nath, Paromita; Hu, Zhen; Mahadevan, Sankaran

    2017-08-01

    This paper presents a sensor placement optimization framework for the calibration of spatially varying model parameters. To account for the randomness of the calibration parameters over space and across specimens, the spatially varying parameter is represented as a random field. Based on this representation, Bayesian calibration of spatially varying parameter is investigated. To reduce the required computational effort during Bayesian calibration, the original computer simulation model is substituted with Kriging surrogate models based on the singular value decomposition (SVD) of the model response and the Karhunen-Loeve expansion (KLE) of the spatially varying parameters. A sensor placement optimization problem is then formulated based on the Bayesian calibration to maximize the expected information gain measured by the expected Kullback-Leibler (K-L) divergence. The optimization problem needs to evaluate the expected K-L divergence repeatedly which requires repeated calibration of the spatially varying parameter, and this significantly increases the computational effort of solving the optimization problem. To overcome this challenge, an approximation for the posterior distribution is employed within the optimization problem to facilitate the identification of the optimal sensor locations using the simulated annealing algorithm. A heat transfer problem with spatially varying thermal conductivity is used to demonstrate the effectiveness of the proposed method.

  4. Robust linear parameter varying induction motor control with polytopic models

    Directory of Open Access Journals (Sweden)

    Dalila Khamari

    2013-01-01

    Full Text Available This paper deals with a robust controller for an induction motor which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI based approach and robust Lyapunov feedback controller are associated. This new approach is related to the fact that the synthesis of a linear parameter varying (LPV feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic model because of speed and rotor resistance affine dependence their values can be estimated on line during systems operations. The simulation results are presented to confirm the effectiveness of the proposed approach where robustness stability and high performances have been achieved over the entire operating range of the induction motor.

  5. Model Predictive Control of Nonlinear Parameter Varying Systems via Receding Horizon Control Lyapunov Functions

    National Research Council Canada - National Science Library

    Sznaier, Mario

    2001-01-01

    .... In this chapter we propose a suboptimal regulator for nonlinear parameter varying, control affine systems based upon the combination of model predictive and control Lyapunov function techniques...

  6. Long Memory of Financial Time Series and Hidden Markov Models with Time-Varying Parameters

    DEFF Research Database (Denmark)

    Nystrup, Peter; Madsen, Henrik; Lindström, Erik

    2016-01-01

    Hidden Markov models are often used to model daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior have not been thoroughly examined. This paper presents an adaptive...... estimation approach that allows for the parameters of the estimated models to be time varying. It is shown that a two-state Gaussian hidden Markov model with time-varying parameters is able to reproduce the long memory of squared daily returns that was previously believed to be the most difficult fact...... to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step density forecasts. Finally, it is shown that the forecasting performance of the estimated models can be further improved using local smoothing to forecast the parameter variations....

  7. varying elastic parameters distributions

    KAUST Repository

    Moussawi, Ali

    2014-12-01

    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  8. Long memory of financial time series and hidden Markov models with time-varying parameters

    DEFF Research Database (Denmark)

    Nystrup, Peter; Madsen, Henrik; Lindström, Erik

    Hidden Markov models are often used to capture stylized facts of daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time-varying behavior for the ability to reproduce the stylized...... facts have not been thoroughly examined. This paper presents an adaptive estimation approach that allows for the parameters of the estimated models to be time-varying. It is shown that a two-state Gaussian hidden Markov model with time-varying parameters is able to reproduce the long memory of squared...... daily returns that was previously believed to be the most difficult fact to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step predictions....

  9. Identification of Affine Linear Parameter Varying Models for Adaptive Interventions in Fibromyalgia Treatment.

    Science.gov (United States)

    Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred

    2013-12-31

    There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.

  10. Dynamics of modified Leslie-Gower-type prey-predator model with seasonally varying parameters

    International Nuclear Information System (INIS)

    Gakkhar, Sunita; Singh, Brahampal

    2006-01-01

    A modified Leslie-Gower-type prey-predator model composed of a logistic prey with Holling's type II functional response is studied. The axial point (1, 0) is found to be globally asymptotically stable in a domain. Condition for stability of the non-trivial equilibrium point is obtained. The existence of stable limit cycle of the system is also established. The analysis for Hopf bifurcation is carried out. The numerical simulations are carried out to study the effects of seasonally varying parameters of the model. The system shows the rich dynamic behavior including bifurcation and chaos

  11. Time-Varying FOPDT Modeling and On-line Parameter Identification

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Sun, Zhen

    2013-01-01

    A type of Time-Varying First-Order Plus Dead-Time (TV-FOPDT) model is extended from SISO format into a MISO version by explicitly taking the disturbance input into consideration. Correspondingly, a set of on-line parameter identification algorithms oriented to MISO TV-FOPDT model are proposed based...... on the Mixed-Integer-Nonlinear Programming, Least-Mean-Square and sliding window techniques. The proposed approaches can simultaneously estimate the time-dependent system parameters, as well as the unknown disturbance input if it is the case, in an on-line manner. The proposed concepts and algorithms...... are firstly illustrated through a numerical example, and then applied to investigate transient superheat dynamic modeling in a supermarket refrigeration system....

  12. Nonlinear Parameter-Varying AeroServoElastic Reduced Order Model for Aerostructural Sensing and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate nonlinear, parameter-varying (PV),...

  13. Nonlinear Parameter-Varying AeroServoElastic Reduced Order Model for Aerostructural Sensing and Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate parameter-varying (PV), aeroservoelastic (ASE)...

  14. Linear parameter-varying modeling and control of the steam temperature in a Canadian SCWR

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Peiwei, E-mail: sunpeiwei@mail.xjtu.edu.cn; Zhang, Jianmin; Su, Guanghui

    2017-03-15

    Highlights: • Nonlinearity of Canadian SCWR is analyzed based on step responses and Nyquist plots. • LPV model is derived through Jacobian linearization and curve fitting. • An output feedback H{sub ∞} controller is synthesized for the steam temperature. • The control performance is evaluated by step disturbances and wide range operation. • The controller can stabilize the system and reject the reactor power disturbance. - Abstract: The Canadian direct-cycle Supercritical Water-cooled Reactor (SCWR) is a pressure-tube type SCWR under development in Canada. The dynamics of the steam temperature have a high degree of nonlinearity and are highly sensitive to reactor power disturbances. Traditional gain scheduling control cannot theoretically guarantee stability for all operating regions. The control performance can also be deteriorated when the controllers are switched. In this paper, a linear parameter-varying (LPV) strategy is proposed to solve such problems. Jacobian linearization and curve fitting are applied to derive the LPV model, which is verified using a nonlinear dynamic model and determined to be sufficiently accurate for control studies. An output feedback H{sub ∞} controller is synthesized to stabilize the steam temperature system and reject reactor power disturbances. The LPV steam temperature controller is implemented using a nonlinear dynamic model, and step changes in the setpoints and typical load patterns are carried out in the testing process. It is demonstrated through numerical simulation that the LPV controller not only stabilizes the steam temperature under different disturbances but also efficiently rejects reactor power disturbances and suppresses the steam temperature variation at different power levels. The LPV approach is effective in solving control problems of the steam temperature in the Canadian SCWR.

  15. Linear parameter-varying modeling and control of the steam temperature in a Canadian SCWR

    International Nuclear Information System (INIS)

    Sun, Peiwei; Zhang, Jianmin; Su, Guanghui

    2017-01-01

    Highlights: • Nonlinearity of Canadian SCWR is analyzed based on step responses and Nyquist plots. • LPV model is derived through Jacobian linearization and curve fitting. • An output feedback H ∞ controller is synthesized for the steam temperature. • The control performance is evaluated by step disturbances and wide range operation. • The controller can stabilize the system and reject the reactor power disturbance. - Abstract: The Canadian direct-cycle Supercritical Water-cooled Reactor (SCWR) is a pressure-tube type SCWR under development in Canada. The dynamics of the steam temperature have a high degree of nonlinearity and are highly sensitive to reactor power disturbances. Traditional gain scheduling control cannot theoretically guarantee stability for all operating regions. The control performance can also be deteriorated when the controllers are switched. In this paper, a linear parameter-varying (LPV) strategy is proposed to solve such problems. Jacobian linearization and curve fitting are applied to derive the LPV model, which is verified using a nonlinear dynamic model and determined to be sufficiently accurate for control studies. An output feedback H ∞ controller is synthesized to stabilize the steam temperature system and reject reactor power disturbances. The LPV steam temperature controller is implemented using a nonlinear dynamic model, and step changes in the setpoints and typical load patterns are carried out in the testing process. It is demonstrated through numerical simulation that the LPV controller not only stabilizes the steam temperature under different disturbances but also efficiently rejects reactor power disturbances and suppresses the steam temperature variation at different power levels. The LPV approach is effective in solving control problems of the steam temperature in the Canadian SCWR.

  16. Improvement of and Parameter Identification for the Bimodal Time-Varying Modified Kanai-Tajimi Power Spectral Model

    Directory of Open Access Journals (Sweden)

    Huiguo Chen

    2017-01-01

    Full Text Available Based on the Kanai-Tajimi power spectrum filtering method proposed by Du Xiuli et al., a genetic algorithm and a quadratic optimization identification technique are employed to improve the bimodal time-varying modified Kanai-Tajimi power spectral model and the parameter identification method proposed by Vlachos et al. Additionally, a method for modeling time-varying power spectrum parameters for ground motion is proposed. The 8244 Orion and Chi-Chi earthquake accelerograms are selected as examples for time-varying power spectral model parameter identification and ground motion simulations to verify the feasibility and effectiveness of the improved bimodal time-varying modified Kanai-Tajimi power spectral model. The results of this study provide important references for designing ground motion inputs for seismic analyses of major engineering structures.

  17. Mathematical Modeling And Simulation of Photo-Voltaic Converter Operation when Varying Different Parameters

    Directory of Open Access Journals (Sweden)

    Miholca CONSTANTIN

    2008-07-01

    Full Text Available The paper presents a method of mathematical modelling of a solar converter using the results of full-scale testing. The advantages of analytical modelling method applied to photovoltaic systems are also presented; this is because the model parameters are directly measurable by data acquisition from the photovoltaic field consisting of photovoltaic cells type Z - (mono-crystalline photovoltaic. The model parameter also includes both the photovoltaic cell characteristics as a device (forming the photovoltaic field and the temperature influence on the photovoltaic field performance. The results of the photovoltaic model numerical simulation (PV to the major parameters conversion variation can also be used to design and assess the performance of low and medium - power photovoltaic systems operating in single regime (to supply the home appliances.

  18. Artificial neural network modeling of DDGS flowability with varying process and storage parameters

    Science.gov (United States)

    Neural Network (NN) modeling techniques were used to predict flowability behavior in distillers dried grains with solubles (DDGS) prepared with varying CDS (10, 15, and 20%, wb), drying temperature (100, 200, and 300°C), cooling temperature (-12, 0, and 35°C) and cooling time (0 and 1 month) levels....

  19. Effects of a Time-Varying Color-Luminosity Parameter β on the Cosmological Constraints of Modified Gravity Models

    Science.gov (United States)

    Wang, Shuang; Wang, Yong-Zhen; Zhang, Xin

    2014-12-01

    It has been found that, for the Supernova Legacy Survey three-year (SNLS3) data, there is strong evidence for the redshift-evolution of color-luminosity parameter β. In previous studies, only dark energy (DE) models are used to explore the effects of a time-varying β on parameter estimation. In this paper, we extend the discussions to the case of modified gravity (MG), by considering Dvali—Gabadadze—Porrati (DGP) model, power-law type f(T) model and exponential type f(T) model. In addition to the SNLS3 data, we also use the latest Planck distance priors data, the galaxy clustering (GC) data extracted from Sloan Digital Sky Survey (SDSS) data release 7 (DR7) and Baryon Oscillation Spectroscopic Survey (BOSS), as well as the direct measurement of Hubble constant H0 from the Hubble Space Telescope (HST) observation. We find that, for both cases of using the supernova (SN) data alone and using the combination of all data, adding a parameter of β can reduce χ2 by ~ 36 for all the MG models, showing that a constant β is ruled out at 6σ confidence level (CL). Moreover, we find that a time-varying β always yields a larger fractional matter density Ωm0 and a smaller reduced Hubble constant h; in addition, it significantly changes the shapes of 1σ and 2σ confidence regions of various MG models, and thus corrects systematic bias for the parameter estimation. These conclusions are consistent with the results of DE models, showing that β's evolution is completely independent of the cosmological models in the background. Therefore, our work highlights the importance of considering the evolution of β in the cosmology-fits.

  20. Early marketing matters : A time-varying parameter approach to persistence modeling

    NARCIS (Netherlands)

    Osinga, E.C.; Leeflang, P.S.H.; Wieringa, J.E.

    Are persistent marketing effects most likely to appear right after the introduction of a product? The authors give an affirmative answer to this question by developing a model that explicitly reports how persistent and transient marketing effects evolve over time. The proposed model provides

  1. Linear Parameter Varying Control of Induction Motors

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    The subject of this thesis is the development of linear parameter varying (LPV) controllers and observers for control of induction motors. The induction motor is one of the most common machines in industrial applications. Being a highly nonlinear system, it poses challenging control problems...... for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...

  2. Structured Linear Parameter Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sloth, Christoffer; Stoustrup, Jakob

    2012-01-01

    High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this chapter, a framework for modelling and controller design of wind turbines is pre...

  3. Output-only modal parameter estimator of linear time-varying structural systems based on vector TAR model and least squares support vector machine

    Science.gov (United States)

    Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei

    2018-01-01

    Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.

  4. Tracking time-varying parameters with local regression

    DEFF Research Database (Denmark)

    Joensen, Alfred Karsten; Nielsen, Henrik Aalborg; Nielsen, Torben Skov

    2000-01-01

    This paper shows that the recursive least-squares (RLS) algorithm with forgetting factor is a special case of a varying-coe\\$cient model, and a model which can easily be estimated via simple local regression. This observation allows us to formulate a new method which retains the RLS algorithm......, but extends the algorithm by including polynomial approximations. Simulation results are provided, which indicates that this new method is superior to the classical RLS method, if the parameter variations are smooth....

  5. Control of Linear Parameter Varying Systems with Applications

    CERN Document Server

    Mohammadpour, Javad

    2012-01-01

    Control of Linear Parameter Varying Systems with Applications compiles state-of-the-art contributions on novel analytical and computational methods to address system modeling and identification, complexity reduction, performance analysis and control design for time-varying and nonlinear systems in the LPV framework. The book has an interdisciplinary character by emphasizing techniques that can be commonly applied in various engineering fields. It also includes a rich collection of illustrative applications in diverse domains to substantiate the effectiveness of the design methodologies and provide pointers to open research directions. The book is divided into three parts. The first part collects chapters of a more tutorial character on the background of LPV systems modeling and control. The second part gathers chapters devoted to the theoretical advancement of LPV analysis and synthesis methods to cope with the design constraints such as uncertainties and time delay. The third part of the volume showcases con...

  6. Power System Event Ranking Using a New Linear Parameter-Varying Modeling with a Wide Area Measurement System-Based Approach

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Abolhasani Jabali

    2017-07-01

    Full Text Available Detecting critical power system events for Dynamic Security Assessment (DSA is required for reliability improvement. The approach proposed in this paper investigates the effects of events on dynamic behavior during nonlinear system response while common approaches use steady-state conditions after events. This paper presents some new and enhanced indices for event ranking based on time-domain simulation and polytopic linear parameter-varying (LPV modeling of a power system. In the proposed approach, a polytopic LPV representation is generated via linearization about some points of the nonlinear dynamic behavior of power system using wide-area measurement system (WAMS concepts and then event ranking is done based on the frequency response of the system models on the vertices. Therefore, the nonlinear behaviors of the system in the time of fault occurrence are considered for events ranking. The proposed algorithm is applied to a power system using nonlinear simulation. The comparison of the results especially in different fault conditions shows the advantages of the proposed approach and indices.

  7. Robust and Fault-Tolerant Linear Parameter-Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Esbensen, Thomas; Stoustrup, Jakob

    2011-01-01

    High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this paper we design and compare multiple linear parameter-varying (LPV) controllers,...

  8. Observer-based linear parameter varying H∞ tracking control for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Yiqing Huang

    2016-11-01

    Full Text Available This article aims to develop observer-based linear parameter varying output feedback H∞ tracking controller for hypersonic vehicles. Due to the complexity of an original nonlinear model of the hypersonic vehicle dynamics, a slow–fast loop linear parameter varying polytopic model is introduced for system stability analysis and controller design. Then, a state observer is developed by linear parameter varying technique in order to estimate the unmeasured attitude angular for slow loop system. Also, based on the designed linear parameter varying state observer, a kind of attitude tracking controller is presented to reduce tracking errors for all bounded reference attitude angular inputs. The closed-loop linear parameter varying system is proved to be quadratically stable by Lypapunov function technique. Finally, simulation results show that the developed linear parameter varying H∞ controller has good tracking capability for reference commands.

  9. Incremental Closed-loop Identification of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2011-01-01

    , closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended......This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately...... to accommodate linear parameter varying systems as well....

  10. Iterative solution of field problems with a varying physical parameter

    NARCIS (Netherlands)

    Tijhuis, A.G.; Beurden, M.C. van; Zwamborn, A.P.M.

    2002-01-01

    In this paper, linear field problems with a varying physical parameter are solved with the conjugate-gradient FFT method and a dedicated extrapolation procedure for generating the initial estimate. The scheme is formulated and illustrated for two simple example problems. The importance of the choice

  11. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  12. Varying coefficients model with measurement error.

    Science.gov (United States)

    Li, Liang; Greene, Tom

    2008-06-01

    We propose a semiparametric partially varying coefficient model to study the relationship between serum creatinine concentration and the glomerular filtration rate (GFR) among kidney donors and patients with chronic kidney disease. A regression model is used to relate serum creatinine to GFR and demographic factors in which coefficient of GFR is expressed as a function of age to allow its effect to be age dependent. GFR measurements obtained from the clearance of a radioactively labeled isotope are assumed to be a surrogate for the true GFR, with the relationship between measured and true GFR expressed using an additive error model. We use locally corrected score equations to estimate parameters and coefficient functions, and propose an expected generalized cross-validation (EGCV) method to select the kernel bandwidth. The performance of the proposed methods, which avoid distributional assumptions on the true GFR and residuals, is investigated by simulation. Accounting for measurement error using the proposed model reduced apparent inconsistencies in the relationship between serum creatinine and GFR among different clinical data sets derived from kidney donor and chronic kidney disease source populations.

  13. Analysis and design of composite slab by varying different parameters

    Science.gov (United States)

    Lambe, Kedar; Siddh, Sharda

    2018-03-01

    Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.

  14. Modified Hubble law, the time-varying Hubble parameter and the problem of dark energy

    OpenAIRE

    Liu, Jian-Miin

    2005-01-01

    In the framework of the solvable model of cosmology constructed in the Earth-related coordinate system, we derive the modified Hubble law. This law carries the slowly time-varying Hubble parameter. The modified Hubble law eliminates the need for dark energy.

  15. Conceptual Modeling of Time-Varying Information

    DEFF Research Database (Denmark)

    Gregersen, Heidi; Jensen, Christian Søndergaard

    2004-01-01

    A wide range of database applications manage information that varies over time. Many of the underlying database schemas of these were designed using the Entity-Relationship (ER) model. In the research community as well as in industry, it is common knowledge that the temporal aspects of the mini-world...... are important, but difficult to capture using the ER model. Several enhancements to the ER model have been proposed in an attempt to support the modeling of temporal aspects of information. Common to the existing temporally extended ER models, few or no specific requirements to the models were given...

  16. Stability of neutrino parameters and self-complementarity relation with varying SUSY breaking scale

    Science.gov (United States)

    Singh, K. Sashikanta; Roy, Subhankar; Singh, N. Nimai

    2018-03-01

    The scale at which supersymmetry (SUSY) breaks (ms) is still unknown. The present article, following a top-down approach, endeavors to study the effect of varying ms on the radiative stability of the observational parameters associated with the neutrino mixing. These parameters get additional contributions in the minimal supersymmetric model (MSSM). A variation in ms will influence the bounds for which the Standard Model (SM) and MSSM work and hence, will account for the different radiative contributions received from both sectors, respectively, while running the renormalization group equations (RGE). The present work establishes the invariance of the self complementarity relation among the three mixing angles, θ13+θ12≈θ23 against the radiative evolution. A similar result concerning the mass ratio, m2:m1 is also found to be valid. In addition to varying ms, the work incorporates a range of different seesaw (SS) scales and tries to see how the latter affects the parameters.

  17. Effect of Varying Controller Parameters on the Performance of a ...

    African Journals Online (AJOL)

    This paper presents the results of computer simulation studies designed to isolate the effects of the major parameters of a fuzzy logic controller namely the range of the universe of discourse, the extent of overlap of the fuzzy sets, the rules in the rule base and the modes of the output fuzzy sets on the performance of a fuzzy ...

  18. Response model parameter linking

    NARCIS (Netherlands)

    Barrett, M.L.D.

    2015-01-01

    With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of equating observed scores on different test forms. This thesis argues, however, that the use of item response models does not require

  19. Controlled nanoporous Pt morphologies by varying deposition parameters

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Baldwin, J Kevin [Los Alamos National Laboratory; Goodwin, Peter M [Los Alamos National Laboratory; Bhattacharyya, Dhriti [Los Alamos National Laboratory; Antoniou, Antonia [GEROGIA INSTITUTE OF TECH

    2009-01-01

    Typically, dealloying of an alloy can result in an open cell nanoporous structure of the least electrochemically active element. Here, we show that a wider range of nanoporous structures is possible by controlling the composition and deposition parameters of the as-synthesized alloy as a way to provide sites for preferential etching. We demonstrate this by synthesizing nanoporous platinum (np-Pt) through electrochemical dealloying in aqueous HF from co-sputtered Pt{sub x}Si{sub 1-x} amorphous films. For increased Pt fraction of the amorphous alloy, silicon dissolution is favored along pre-existing features of the amorphous film (e.g. column boundaries or surface asperities). The resulting np-Pt depends on the manner in which silicon is preferentially removed. In addition to the expected isotropic open cell structure, columnar and Voronoi (radial) np-Pt are observed. A processing-structure map is developed to correlate np-Pt morphology to the initial composition and thickness of the amorphous Pt{sub x}Si{sub 1-x} film and the negative substrate bias used in magnetron sputtering.

  20. Crops Models for Varying Environmental Conditions

    Science.gov (United States)

    Jones, Harry; Cavazzoni, James; Keas, Paul

    2001-01-01

    New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.

  1. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  2. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  3. Calculation of the separate parameters of a countercurrent centrifuge with an axially varying internal flow

    International Nuclear Information System (INIS)

    Migliavacca, S.C.P.

    1991-01-01

    A review of the isotope separation theory for the countercurrent gas centrifuge is presented. The diffusion-convection equation is solved according to the ONSAGER-COHEN solution for the constant internal flow and adapted to an axially varying countercurrent flow. Based on that theory, a numerical program is developed for the calculation of the isotopic compositions and the separative parameters of the centrifuge. The influence of the feed flow and the internal parameters. Like cut and countercurrent flow, on the separative parameters is then analysed for a model-centrifuge, which afterwards is optimized with respect to its separative power. Finally, a comparison between the present calculation procedure and some published results, provided by different theories, shows deviations lower then 20%. (author)

  4. Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations

    KAUST Repository

    Cao, Jiguo

    2012-01-01

    Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online.

  5. Robust control design for active driver assistance systems a linear-parameter-varying approach

    CERN Document Server

    Gáspár, Péter; Bokor, József; Nemeth, Balazs

    2017-01-01

    This monograph focuses on control methods that influence vehicle dynamics to assist the driver in enhancing passenger comfort, road holding, efficiency and safety of transport, etc., while maintaining the driver’s ability to override that assistance. On individual-vehicle-component level the control problem is formulated and solved by a unified modelling and design method provided by the linear parameter varying (LPV) framework. The global behaviour desired is achieved by a judicious interplay between the individual components, guaranteed by an integrated control mechanism. The integrated control problem is also formalized and solved in the LPV framework. Most important among the ideas expounded in the book are: application of the LPV paradigm in the modelling and control design methodology; application of the robust LPV design as a unified framework for setting control tasks related to active driver assistance; formulation and solution proposals for the integrated vehicle control problem; proposal for a re...

  6. Modeling information diffusion in time-varying community networks

    Science.gov (United States)

    Cui, Xuelian; Zhao, Narisa

    2017-12-01

    Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.

  7. Effect of varying two key parameters in simulating evacuation for a dormitory in China

    Science.gov (United States)

    Lei, Wenjun; Li, Angui; Gao, Ran

    2013-01-01

    Student dormitories are both living and resting areas for students in their spare time. There are many small rooms in the dormitories. And the students are distributed densely in the dormitories. High occupant density is the main characteristic of student dormitories. Once there is an accident, such as fire or earthquake, the losses will be cruel. Computer evacuation models developed overseas are commonly applied in working out safety management schemes. The average minimum widths of corridor and exit are the two key parameters affecting the evacuation for the dormitory. The effect of varying these two parameters will be studied in this paper by taking a dormitory in our university as an example. Evacuation performance is predicted with the software FDS + Evac. The default values in the software are used and adjusted through a field survey. The effect of varying either of the two parameters is discussed. It is found that the simulated results agree well with the experimental results. From our study it seems that the evacuation time is not in proportion to the evacuation distance. And we also named a phenomenon of “the closer is not the faster”. For the building researched in this article, a corridor width of 3 m is the most appropriate. And the suitable exit width of the dormitory for evacuation is about 2.5 to 3 m. The number of people has great influence on the walking speed of people. The purpose of this study is to optimize the building, and to make the building in favor of personnel evacuation. Then the damage could be minimized.

  8. Bianchi Type-V Bulk Viscous Cosmic String in f(R,T Gravity with Time Varying Deceleration Parameter

    Directory of Open Access Journals (Sweden)

    Bïnaya K. Bishi

    2015-01-01

    Full Text Available We study the Bianchi type-V string cosmological model with bulk viscosity in f(R,T theory of gravity by considering a special form and linearly varying deceleration parameter. This is an extension of the earlier work of Naidu et al., 2013, where they have constructed the model by considering a constant deceleration parameter. Here we find that the cosmic strings do not survive in both models. In addition we study some physical and kinematical properties of both models. We observe that in one of our models these properties are identical to the model obtained by Naidu et al., 2013, and in the other model the behavior of these parameters is different.

  9. Online Support Vector Regression with Varying Parameters for Time-Dependent Data

    International Nuclear Information System (INIS)

    Omitaomu, Olufemi A.; Jeong, Myong K.; Badiru, Adedeji B.

    2011-01-01

    Support vector regression (SVR) is a machine learning technique that continues to receive interest in several domains including manufacturing, engineering, and medicine. In order to extend its application to problems in which datasets arrive constantly and in which batch processing of the datasets is infeasible or expensive, an accurate online support vector regression (AOSVR) technique was proposed. The AOSVR technique efficiently updates a trained SVR function whenever a sample is added to or removed from the training set without retraining the entire training data. However, the AOSVR technique assumes that the new samples and the training samples are of the same characteristics; hence, the same value of SVR parameters is used for training and prediction. This assumption is not applicable to data samples that are inherently noisy and non-stationary such as sensor data. As a result, we propose Accurate On-line Support Vector Regression with Varying Parameters (AOSVR-VP) that uses varying SVR parameters rather than fixed SVR parameters, and hence accounts for the variability that may exist in the samples. To accomplish this objective, we also propose a generalized weight function to automatically update the weights of SVR parameters in on-line monitoring applications. The proposed function allows for lower and upper bounds for SVR parameters. We tested our proposed approach and compared results with the conventional AOSVR approach using two benchmark time series data and sensor data from nuclear power plant. The results show that using varying SVR parameters is more applicable to time dependent data.

  10. Closed-loop Identification for Control of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2014-01-01

    , closed- loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can......This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately...... be extended to accommodate linear parameter varying systems as well. We investigate the identified subsystem’s parameter dependency and observe that, under mild assumptions, the identified subsystem is affine in the parameter vector. Various identification methods are compared in direct and Hansen Scheme...

  11. Attributing varying ENSO amplitudes in climate model ensembles

    Science.gov (United States)

    Watanabe, M.; Kug, J.-S.; Jin, F.-F.; Collins, M.; Ohba, M.; Wittenberg, A.

    2012-04-01

    Realistic simulation of the El Niño-Southern Oscillation (ENSO) phenomenon, which has a great impact on the global weather and climate, is of primary importance in the coupled atmosphere-ocean modeling. Nevertheless, the ENSO amplitude is known to vary considerably in a multi-model ensemble (MME) archived in the coupled model inter-comparison project phase 3 (CMIP3). Given a large uncertainty in the atmospheric processes having a substantial influence to the models' ENSO intensity, we constructed physics parameter ensembles (PPEs) based on four climate models (two of them are included in the CMIP5 archive) in which parameters in the atmospheric parameterization schemes have been perturbed. Analysis to the 33-member PPEs reveals a positive relationship between the ENSO amplitude and the mean precipitation over the eastern equatorial Pacific in each model. This relationship is explained by the mean state difference controling the ENSO activity but not by the ENSO rectification of the mean state. The wetter mean state in the eastern equatorial Pacific favors an eastward shift in the equatorial zonal wind stress response to El Niño/La Niña, which acts to increase the ENSO amplitude due to enhanced coupled instability. Such a relationship, however, cannot be seen in both CMIP3 and CMIP5 MMEs, indicating that the above mechanism does not explain the diversity in ENSO amplitude across the models. Yet, ensemble historical runs available for some of the CMIP5 models show the positive relationship between the ENSO amplitude and the mean precipitation, providing a useful insight into the ENSO changes under the global warming in individual models.

  12. Risk adjusted receding horizon control of constrained linear parameter varying systems

    NARCIS (Netherlands)

    Sznaier, M.; Lagoa, C.; Stoorvogel, Antonie Arij; Li, X.

    2005-01-01

    In the past few years, control of Linear Parameter Varying Systems (LPV) has been the object of considerable attention, as a way of formalizing the intuitively appealing idea of gain scheduling control for nonlinear systems. However, currently available LPV techniques are both computationally

  13. Vector Autoregressions with Parsimoniously Time Varying Parameters and an Application to Monetary Policy

    DEFF Research Database (Denmark)

    Callot, Laurent; Kristensen, Johannes Tang

    the monetary policy response to inflation and business cycle fluctuations in the US by estimating a parsimoniously time varying parameter Taylor rule.We document substantial changes in the policy response of the Fed in the 1970s and 1980s, and since 2007, but also document the stability of this response...

  14. Scalable Video Streaming Adaptive to Time-Varying IEEE 802.11 MAC Parameters

    Science.gov (United States)

    Lee, Kyung-Jun; Suh, Doug-Young; Park, Gwang-Hoon; Huh, Jae-Doo

    This letter proposes a QoS control method for video streaming service over wireless networks. Based on statistical analysis, the time-varying MAC parameters highly related to channel condition are selected to predict available bitrate. Adaptive bitrate control of scalably-encoded video guarantees continuity in streaming service even if the channel condition changes abruptly.

  15. Linking Item Response Model Parameters.

    Science.gov (United States)

    van der Linden, Wim J; Barrett, Michelle D

    2016-09-01

    With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of test equating scores on different test forms. This paper argues, however, that the use of item response models does not require any test score equating. Instead, it involves the necessity of parameter linking due to a fundamental problem inherent in the formal nature of these models-their general lack of identifiability. More specifically, item response model parameters need to be linked to adjust for the different effects of the identifiability restrictions used in separate item calibrations. Our main theorems characterize the formal nature of these linking functions for monotone, continuous response models, derive their specific shapes for different parameterizations of the 3PL model, and show how to identify them from the parameter values of the common items or persons in different linking designs.

  16. Robust control and linear parameter varying approaches application to vehicle dynamics

    CERN Document Server

    Gaspar, Peter; Bokor, József

    2013-01-01

    Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g.   ·          proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design,   ·          take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations,   ·          manage interactions between various actuators to optimize the dynamic behavior of vehicles.   This book results from the 32th International Summer School in Automatic that held in Grenoble, France, in September 2011, where recent methods (based on robust control and LPV technics), then applied to the control of vehicle dynamics, have been presented. After some theoretical background and a view on so...

  17. Parameter Estimation of a Closed Loop Coupled Tank Time Varying System using Recursive Methods

    International Nuclear Information System (INIS)

    Basir, Siti Nora; Yussof, Hanafiah; Shamsuddin, Syamimi; Selamat, Hazlina; Zahari, Nur Ismarrubie

    2013-01-01

    This project investigates the direct identification of closed loop plant using discrete-time approach. The uses of Recursive Least Squares (RLS), Recursive Instrumental Variable (RIV) and Recursive Instrumental Variable with Centre-Of-Triangle (RIV + COT) in the parameter estimation of closed loop time varying system have been considered. The algorithms were applied in a coupled tank system that employs covariance resetting technique where the time of parameter changes occur is unknown. The performances of all the parameter estimation methods, RLS, RIV and RIV + COT were compared. The estimation of the system whose output was corrupted with white and coloured noises were investigated. Covariance resetting technique successfully executed when the parameters change. RIV + COT gives better estimates than RLS and RIV in terms of convergence and maximum overshoot

  18. Modeling non-Gaussian time-varying vector autoregressive process

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a novel and general methodology for modeling time-varying vector autoregressive processes which are widely used in many areas such as modeling of chemical...

  19. Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters.

    Science.gov (United States)

    Li, Mi; Liu, Lianqing; Xu, Xinning; Xing, Xiaojing; Dang, Dan; Xi, Ning; Wang, Yuechao

    2018-03-27

    Cell mechanics plays an important role in regulating the physiological activities of cells. The advent of atomic force microscopy (AFM) provides a novel powerful instrument for quantifying the mechanics of single cells at the nanoscale. The applications of AFM in single-cell mechanical assays in the past decade have significantly contributed to the field of cell and molecular biology. However, current AFM-based cellular mechanical studies are commonly carried out with fixed measurement parameters, which provides limited information about the dynamic cellular mechanical behaviors in response to the variable external stimuli. In this work, we utilized AFM to investigate cellular viscoelasticity (portrayed as relaxation time) with varying measurement parameters, including ramp rate and surface dwell time, on both cell lines and primary cells. The experimental results show that the obtained cellular relaxation times are remarkably dependent on the parameter surface dwell time and ramp rate during measurements. Besides, the dependencies to the measurement parameters are variable for different types of cells, which can be potentially used to indicate cell states. The research improves our understanding of single-cell dynamic rheology and provides a novel idea for discriminating different types of cells by AFM-based cellular viscoelastic assays with varying measurement parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Linear parameter varying control of wind turbines covering both partial load and full load conditions

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

    2009-01-01

    This paper considers the design of linear parameter varying (LPV) controllers for wind turbines in order to obtain a multivariable control law that covers the entire nominal operating trajectory.The paper first presents a controller structure for selecting a proper operating trajectory as a funct......This paper considers the design of linear parameter varying (LPV) controllers for wind turbines in order to obtain a multivariable control law that covers the entire nominal operating trajectory.The paper first presents a controller structure for selecting a proper operating trajectory...... as a function of estimated wind speed. The dynamic control law is based on LPV controller synthesis with general parameter dependency by gridding the parameter space.The controller construction can, for medium- to large-scale systems, be difficult from a numerical point of view, because the involved matrix...... operations tend to be ill-conditioned. The paper proposes a controller construction algorithm together with various remedies for improving the numerical conditioning the algorithm.The proposed algorithm is applied to the design of a LPV controller for wind turbines, and a comparison is made with a controller...

  1. Estimation of time varying system parameters from ambient response using improved Particle-Kalman filter with correlated noise

    Science.gov (United States)

    Sen, Subhamoy; Crinière, Antoine; Mevel, Laurent; Cerou, Frederic; Dumoulin, Jean

    2017-04-01

    Keywords: Parameter estimation; Kalman filter; Particle filter; Particle-Kalman filter; Correlated noise Although Kalman filter (KF) was originally proposed for system control i.e. steering a system as desired by monitoring the system states, its application for parameter estimation problems is widespread because of the excellent similarity between these two apparently different problem types in state space description. In standard Kalman filter, system dynamics is described through the dynamics of certain internal variable, termed as states, evolving over time as defined by an assumed process model, while a measurement model maps these states to measurements. In some parameter estimation problems, the system is replaced by a state space formulation of the dynamic model with parameters appended in the unobserved states and collectively observed through the response measurements. Filtering based parameter estimation problems are thus inherently nonlinear due to the required nonlinear mapping of parameters to the corresponding observations. Being a linear estimator, Kalman Filter (KF) cannot be employed for such nonlinear system estimation and alternative filtering algorithms (eg. Particle filter) are therefore generally used. However, being model based, these filters optimally estimate the parameters of a quasi-static model of the real dynamic system. Consequently, any time variation in the system dynamics may completely diverge the estimation yielding a false or infeasible solution. By decoupling the estimation of system states and parameters, and applying concurrent filtering strategy that attempts conditional estimation of states based on parameters and vice versa, time varying systems can be estimated. This article attempts to combine KF with Particle filter (PF) and apply them for estimation of states and system parameters respectively on a system with correlated noise in process and measurement. The idea is to nest a bank of linear KFs for state estimation

  2. Genetic algorithm–based varying parameter linear quadratic regulator control for four-wheel independent steering vehicle

    Directory of Open Access Journals (Sweden)

    Linlin Gao

    2015-11-01

    Full Text Available From the perspective of vehicle dynamics, the four-wheel independent steering vehicle dynamics stability control method is studied, and a four-wheel independent steering varying parameter linear quadratic regulator control system is proposed with the help of expert control method. In the article, a four-wheel independent steering linear quadratic regulator controller for model following purpose is designed first. Then, by analyzing the four-wheel independent steering vehicle dynamic characteristics and the influence of linear quadratic regulator control parameters on control performance, a linear quadratic regulator control parameter adjustment strategy based on vehicle steering state is proposed to achieve the adaptive adjustment of linear quadratic regulator control parameters. In addition, to further improve the control performance, the proposed varying parameter linear quadratic regulator control system is optimized by genetic algorithm. Finally, simulation studies have been conducted by applying the proposed control system to the 8-degree-of-freedom four-wheel independent steering vehicle dynamics model. The simulation results indicate that the proposed control system has better performance and robustness and can effectively improve the stability and steering safety of the four-wheel independent steering vehicle.

  3. An estimation of crude oil import demand in Turkey: Evidence from time-varying parameters approach

    International Nuclear Information System (INIS)

    Ozturk, Ilhan; Arisoy, Ibrahim

    2016-01-01

    The aim of this study is to model crude oil import demand and estimate the price and income elasticities of imported crude oil in Turkey based on a time-varying parameters (TVP) approach with the aim of obtaining accurate and more robust estimates of price and income elasticities. This study employs annual time series data of domestic oil consumption, real GDP, and oil price for the period 1966–2012. The empirical results indicate that both the income and price elasticities are in line with the theoretical expectations. However, the income elasticity is statistically significant while the price elasticity is statistically insignificant. The relatively high value of income elasticity (1.182) from this study suggests that crude oil import in Turkey is more responsive to changes in income level. This result indicates that imported crude oil is a normal good and rising income levels will foster higher consumption of oil based equipments, vehicles and services by economic agents. The estimated income elasticity of 1.182 suggests that imported crude oil consumption grows at a higher rate than income. This in turn reduces oil intensity over time. Therefore, crude oil import during the estimation period is substantially driven by income. - Highlights: • We estimated the price and income elasticities of imported crude oil in Turkey. • Income elasticity is statistically significant and it is 1.182. • The price elasticity is statistically insignificant. • Crude oil import in Turkey is more responsive to changes in income level. • Crude oil import during the estimation period is substantially driven by income.

  4. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  5. A 3D domain decomposition approach for the identification of spatially varying elastic material parameters

    KAUST Repository

    Moussawi, Ali

    2015-02-24

    Summary: The post-treatment of (3D) displacement fields for the identification of spatially varying elastic material parameters is a large inverse problem that remains out of reach for massive 3D structures. We explore here the potential of the constitutive compatibility method for tackling such an inverse problem, provided an appropriate domain decomposition technique is introduced. In the method described here, the statically admissible stress field that can be related through the known constitutive symmetry to the kinematic observations is sought through minimization of an objective function, which measures the violation of constitutive compatibility. After this stress reconstruction, the local material parameters are identified with the given kinematic observations using the constitutive equation. Here, we first adapt this method to solve 3D identification problems and then implement it within a domain decomposition framework which allows for reduced computational load when handling larger problems.

  6. Partially linear varying coefficient models stratified by a functional covariate

    KAUST Repository

    Maity, Arnab

    2012-10-01

    We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric component and a profiling estimator of the parametric component of the model and derive their asymptotic properties. Specifically, we show the consistency of the nonparametric functional estimates and derive the asymptotic expansion of the estimates of the parametric component. We illustrate the performance of our methodology using a simulation study and a real data application.

  7. Modelling Flow over Stepped Spillway with Varying Chute Geometry ...

    African Journals Online (AJOL)

    This study has modeled some characteristics of the flows over stepped spillway with varying chute geometry through a laboratory investigation. Using six physically built stepped spillway models, with each having six horizontal plain steps at 4cm constant height, 30 cm width and respective chute slope angles at 310, 320, ...

  8. An observer for an occluded reaction-diffusion system with spatially varying parameters

    Science.gov (United States)

    Kramer, Sean; Bollt, Erik M.

    2017-03-01

    Spatially dependent parameters of a two-component chaotic reaction-diffusion partial differential equation (PDE) model describing ocean ecology are observed by sampling a single species. We estimate the model parameters and the other species in the system by autosynchronization, where quantities of interest are evolved according to misfit between model and observations, to only partially observed data. Our motivating example comes from oceanic ecology as viewed by remote sensing data, but where noisy occluded data are realized in the form of cloud cover. We demonstrate a method to learn a large-scale coupled synchronizing system that represents the spatio-temporal dynamics and apply a network approach to analyze manifold stability.

  9. Effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2017-01-01

    Full Text Available Sandwich structure is an attractive alternative that increasingly used in the transportation and aerospace industry. Corrugated-core with trapezoidal shape allows enhancing the damage resistance to the sandwich structure, but on the other hand, it changes the structural response of the sandwich structure. The aim of this paper is to study the effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure under compression loading. The corrugated-core specimen was fabricated using press technique, following the shape of trapezoidal shape. Two different materials were used in the study, glass fibre reinforced plastic (GFRP and carbon fibre reinforced plastic (CFRP. The result shows that the mechanical properties of the core in compression loading are sensitive to the variation of a number of unit cells and the core thickness.

  10. The Oil Price and Exchange Rate Relationship Revisited: A time-varying VAR parameter approach

    Directory of Open Access Journals (Sweden)

    Vincent Brémond

    2016-07-01

    Full Text Available The aim of this paper is to study the relationship between the effective exchange rate of the dollar and the oil price dynamics from 1976 to 2013. We explore the links between financial factors (exchange rate, monetary policy, international liquidity and the oil price volatility. Using a Bayesian time-varying parameter vector auto-regressive estimation we demonstrate that the “historical coincidence” of oil and financial crises can be explained by the specificities of the relationship between these two commodities. The results of this paper are twofold. The US Dollar effective exchange rate elasticity of crude oil prices is not constant across time and remains negative from 1989: a depreciation of the effective exchange rate of the dollar triggers an increase of crude oil prices. This paper also demonstrates the contagion of financial commodities markets development upon the global economy.

  11. Analysis of the importance for the doses of varying parameters in the BIOPATH-program

    International Nuclear Information System (INIS)

    Bergstroem, U.

    1981-01-01

    The doses to individuals and populations from water-borne nuclides leaked from a repository have been calculated earlier using the computer program BIOPATH. The turnover of nuclides in the biosphere is thereby simulated by the application of compartment theory. For the dominant nuclides in the disposal an analysis of the importance of varying parameters has been done, to decide how strongly uncertainties in data will affect resulting doses. The essential part has been the transfer coefficients but also the uptake in the food-chains has been studied. The purpose of the study has also been to make proposals for forthcoming efforts to improve the basis for such calculations. The study shows the great importance of the surface water-soil-groundwater-drinking water system for the dose. Thereby the most important question is the solubility of the nuclides in the different water reservoirs. (Auth.)

  12. Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules

    International Nuclear Information System (INIS)

    Jordehi, Ahmad Rezaee

    2016-01-01

    Highlights: • A modified PSO has been proposed for parameter estimation of PV cells and modules. • In the proposed modified PSO, acceleration coefficients are changed during run. • The proposed modified PSO mitigates premature convergence problem. • Parameter estimation problem has been solved for both PV cells and PV modules. • The results show that proposed PSO outperforms other state of the art algorithms. - Abstract: Estimating circuit model parameters of PV cells/modules represents a challenging problem. PV cell/module parameter estimation problem is typically translated into an optimisation problem and is solved by metaheuristic optimisation problems. Particle swarm optimisation (PSO) is considered as a popular and well-established optimisation algorithm. Despite all its advantages, PSO suffers from premature convergence problem meaning that it may get trapped in local optima. Personal and social acceleration coefficients are two control parameters that, due to their effect on explorative and exploitative capabilities, play important roles in computational behavior of PSO. In this paper, in an attempt toward premature convergence mitigation in PSO, its personal acceleration coefficient is decreased during the course of run, while its social acceleration coefficient is increased. In this way, an appropriate tradeoff between explorative and exploitative capabilities of PSO is established during the course of run and premature convergence problem is significantly mitigated. The results vividly show that in parameter estimation of PV cells and modules, the proposed time varying acceleration coefficients PSO (TVACPSO) offers more accurate parameters than conventional PSO, teaching learning-based optimisation (TLBO) algorithm, imperialistic competitive algorithm (ICA), grey wolf optimisation (GWO), water cycle algorithm (WCA), pattern search (PS) and Newton algorithm. For validation of the proposed methodology, parameter estimation has been done both for

  13. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  14. High Frequency Asymptotic Methods for Traveltimes and Anisotropy Parameter Estimation in Azimuthally Varying Media

    KAUST Repository

    Masmoudi, Nabil

    2014-05-01

    Traveltimes are conventionally evaluated by solving the zero-order approximation of the Wentzel, Kramers and Brillouin (WKB) expansion of the wave equation. This high frequency approximation is good enough for most imaging applications and provides us with a traveltime equation called the eikonal equation. The eikonal equation is a non-linear partial differential equation which can be solved by any of the familiar numerical methods. Among the most popular of these methods is the method of characteristics which yields the ray tracing equations and the finite difference approaches. In the first part of the Master Thesis, we use the ray tracing method to solve the eikonal equation to get P-waves traveltimes for orthorhombic models with arbitrary orientation of symmetry planes. We start with a ray tracing procedure specified in curvilinear coordinate system valid for anisotropy of arbitrary symmetry. The coordinate system is constructed so that the coordinate lines are perpendicular to the symmetry planes of an orthorohombic medium. Advantages of this approach are the conservation of orthorhombic symmetry throughout the model and reduction of the number of parameters specifying the model. We combine this procedure with first-order ray tracing and dynamic ray tracing equations for P waves propagating in smooth, inhomogeneous, weakly anisotropic media. The first-order ray tracing and dynamic ray tracing equations are derived from the exact ones by replacing the exact P-wave eigenvalue of the Christoffel matrix by its first-order approximation. In the second part of the Master Thesis, we compute traveltimes using the fast marching method and we develop an approach to estimate the anisotropy parameters. The idea is to relate them analytically to traveltimes which is challenging in inhomogeneous media. Using perturbation theory, we develop traveltime approximations for transversely isotropic media with horizontal symmetry axis (HTI) as explicit functions of the

  15. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  16. On the link between oil price and exchange rate: A time-varying VAR parameter approach

    International Nuclear Information System (INIS)

    Bremond, Vincent; Razafindrabe, Tovonony; Hache, Emmanuel

    2015-07-01

    The aim of this paper is to study the relationship between the effective exchange rate of the dollar and the oil price dynamics from 1976 to 2013. In this context, we propose to explore the economic literature dedicated to financial channels factors (exchange rate, monetary policy, and international liquidity) that could affect the oil price dynamics. In addition to oil prices and the effective exchange rate of the dollar, we use the dry cargo index as a proxy for the real economic activity and prices for precious and industrial raw materials. Using a Bayesian time-varying parameter vector auto-regressive estimation, our main results show that the US Dollar effective exchange rate elasticity of the crude oil prices is not constant across the time and remains negative from 1989. It then highlights that a depreciation of the effective exchange rate of the dollar leads to an increase of the crude oil prices. Our paper also demonstrates the growing influence of financial and commodities markets development upon the global economy. (authors)

  17. Varying Coefficient Panel Data Model in the Presence of Endogenous Selectivity and Fixed Effects

    OpenAIRE

    Malikov, Emir; Kumbhakar, Subal C.; Sun, Yiguo

    2013-01-01

    This paper considers a flexible panel data sample selection model in which (i) the outcome equation is permitted to take a semiparametric, varying coefficient form to capture potential parameter heterogeneity in the relationship of interest, (ii) both the outcome and (parametric) selection equations contain unobserved fixed effects and (iii) selection is generalized to a polychotomous case. We propose a two-stage estimator. Given consistent parameter estimates from the selection equation obta...

  18. Modelling Time-Varying Volatility in Financial Returns

    DEFF Research Database (Denmark)

    Amado, Cristina; Laakkonen, Helinä

    2014-01-01

    The “unusually uncertain” phase in the global financial markets has inspired many researchers to study the effects of ambiguity (or “Knightian uncertainty”) on the decisions made by investors and their implications for the capital markets. We contribute to this literature by using a modified...... version of the time-varying GARCH model of Amado and Teräsvirta (2013) to analyze whether the increasing uncertainty has caused excess volatility in the US and European government bond markets. In our model, volatility is multiplicatively decomposed into two time-varying conditional components: the first...... being captured by a stable GARCH(1,1) process and the second driven by the level of uncertainty in the financial market....

  19. The Effect of Stochastically Varying Creep Parameters on Residual Stresses in Ceramic Matrix Composites

    Science.gov (United States)

    Pineda, Evan J.; Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.

    2015-01-01

    Constituent properties, along with volume fraction, have a first order effect on the microscale fields within a composite material and influence the macroscopic response. Therefore, there is a need to assess the significance of stochastic variation in the constituent properties of composites at the higher scales. The effect of variability in the parameters controlling the time-dependent behavior, in a unidirectional SCS-6 SiC fiber-reinforced RBSN matrix composite lamina, on the residual stresses induced during processing is investigated numerically. The generalized method of cells micromechanics theory is utilized to model the ceramic matrix composite lamina using a repeating unit cell. The primary creep phases of the constituents are approximated using a Norton-Bailey, steady state, power law creep model. The effect of residual stresses on the proportional limit stress and strain to failure of the composite is demonstrated. Monte Carlo simulations were conducted using a normal distribution for the power law parameters and the resulting residual stress distributions were predicted.

  20. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool using the parameter varying estimation (PVE) methodology, called the PVE Toolbox,...

  1. Model Complexities of Shallow Networks Representing Highly Varying Functions

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Sanguineti, M.

    2016-01-01

    Roč. 171, 1 January (2016), s. 598-604 ISSN 0925-2312 R&D Projects: GA MŠk(CZ) LD13002 Grant - others:grant for Visiting Professors(IT) GNAMPA-INdAM Institutional support: RVO:67985807 Keywords : shallow networks * model complexity * highly varying functions * Chernoff bound * perceptrons * Gaussian kernel units Subject RIV: IN - Informatics, Computer Science Impact factor: 3.317, year: 2016

  2. Kalman filtering and smoothing for model-based signal extraction that depend on time-varying spectra

    NARCIS (Netherlands)

    Koopman, S.J.; Wong, S.Y.

    2011-01-01

    We develop a flexible semi-parametric method for the introduction of time-varying parameters in a model-based signal extraction procedure. Dynamic model specifications for the parameters in the model are not required. We show that signal extraction based on Kalman filtering and smoothing can be made

  3. Seleção de variáveis em modelos matemáticos dos parâmetros de cultivo do camarão marinho Litopenaeus vannamei Selection of variables in mathematical models of culture parameters of marine shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Ady Marinho Bezerra

    2007-03-01

    Full Text Available O objetivo deste trabalho foi selecionar as variáveis de manejo do camarão marinho Litopenaeus vannamei que mais influenciaram nas variáveis-respostas ao cultivo (produção, produtividade, peso final e taxa de sobrevivência, em modelos matemáticos. O banco de dados foi composto por 83 cultivos, realizados no período de 2003 a 2005, obtidos de uma fazenda comercial localizada no litoral sul de Pernambuco. Para estimar os parâmetros dos modelos, utilizou-se a técnica dos mínimos quadrados. A seleção das variáveis foi realizada com o processo "backward elimination" associado ao método de transformação de Box e Cox. A adequação das equações e os pressupostos de normalidade e homocedasticidade, para os erros, foram analisadas com base na análise de variância e análise de resíduo. É possível relacionar essas variáveis e estabelecer predições com as equações.The objective of this work was to select management variables of the marine shrimp Litopenaeus vannamei that most influenced culture variable responses (production, productivity, final weight and survival rate, in mathematical models. The database was composed of 83 cultures in the period of 2003 to 2005, obtained from a shrimp farm located in the South coast of Pernambuco. To estimate the parameters of the models it was used the technique of least square. The selection of variable was carried through the backward elimination process associated to the Box and Cox transformation. The adequacy of the equations and the hypothesis of normality and homogeneous variance for the errors were analyzed based on the analysis of variance and on the analysis of residuals. It is possible to correlate those variables and to establish predictions with the equations.

  4. Testing for time-varying loadings in dynamic factor models

    DEFF Research Database (Denmark)

    Mikkelsen, Jakob Guldbæk

    Abstract: In this paper we develop a test for time-varying factor loadings in factor models. The test is simple to compute and is constructed from estimated factors and residuals using the principal components estimator. The hypothesis is tested by regressing the squared residuals on the squared...... factors. The squared correlation coefficient times the sample size has a limiting chi-squared distribution. The test can be made robust to serial correlation in the idiosyncratic errors. We find evidence for factor loadings variance in over half of the variables in a dataset for the US economy, while...

  5. A hepatitis C virus infection model with time-varying drug effectiveness: solution and analysis.

    Directory of Open Access Journals (Sweden)

    Jessica M Conway

    2014-08-01

    Full Text Available Simple models of therapy for viral diseases such as hepatitis C virus (HCV or human immunodeficiency virus assume that, once therapy is started, the drug has a constant effectiveness. More realistic models have assumed either that the drug effectiveness depends on the drug concentration or that the effectiveness varies over time. Here a previously introduced varying-effectiveness (VE model is studied mathematically in the context of HCV infection. We show that while the model is linear, it has no closed-form solution due to the time-varying nature of the effectiveness. We then show that the model can be transformed into a Bessel equation and derive an analytic solution in terms of modified Bessel functions, which are defined as infinite series, with time-varying arguments. Fitting the solution to data from HCV infected patients under therapy has yielded values for the parameters in the model. We show that for biologically realistic parameters, the predicted viral decay on therapy is generally biphasic and resembles that predicted by constant-effectiveness (CE models. We introduce a general method for determining the time at which the transition between decay phases occurs based on calculating the point of maximum curvature of the viral decay curve. For the parameter regimes of interest, we also find approximate solutions for the VE model and establish the asymptotic behavior of the system. We show that the rate of second phase decay is determined by the death rate of infected cells multiplied by the maximum effectiveness of therapy, whereas the rate of first phase decline depends on multiple parameters including the rate of increase of drug effectiveness with time.

  6. Long-term visibility data in the UK - how does visibility vary with meteorological and pollutant parameters?

    Science.gov (United States)

    Singh, Ajit; Bloss, William J.; Pope, Francis D.

    2016-04-01

    Poor visibility can be an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to accidents particularly during winter when fogs are prevalent. The present quantitative analysis attempts to explain the influence of aerosol concentration and composition, and meteorology on long-term UK visibility. We use visibility data from eight UK meteorological stations which have been running since the 1950s. The site locations include urban, rural and marine environments. Overall, most stations show a long term trend of visibility increase, which is indicative of reductions in aerosol pollution, especially in urban areas. Additionally, results at all sites show a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosols to scatter radiation and hence impact upon visibility. The dependence of visibility on other meteorological parameters (e.g. relative humidity, air temperature, wind speed & direction) is also investigated. To explain the long term visibility trends and their dependence on meteorological conditions, a light extinction model was constructed incorporating the concentrations and composition of historic aerosol. The lack of historic aerosol size distributions and aerosol composition data, which determine hygroscopicity and refractive index, leads to an under-constrained model. Aerosol measurements from the last 10 years are used to constrain these model parameters, and hence their historical variation can be estimated; sensitivity analyses are used to estimate errors for the time period before regular aerosol measurements are available. A good agreement is observed between modelled and measured visibility. This work has generated a unique 60 year data set with which to understand how aerosol concentration and composition has varied over the UK. The model is applicable and easily transferrable to other data sets

  7. 60 years of visibility data in the UK - how does visibility vary with meteorological and pollutant parameters?

    Science.gov (United States)

    Singh, A.; Bloss, W.; Pope, F.

    2015-12-01

    Reduced visibility can be an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to accidents particularly during the winter season when fogs are prevalent. Here, we explore the combined influence of aerosol characteristics and meteorology on long-term visibility. We use visibility data from eight meteorological stations, situated in the UK, which have been running since the 1950s. The site locations include urban, rural and marine environments. Most stations show a long term trend of visibility increase, which is indicative of reductions in aerosol pollution, especially in urban areas. Additionally, results at all sites show a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosols to scatter radiation and hence impact upon visibility. The dependence of visibility on other meteorological parameters (e.g. wind speed, wind direction) is also investigated. To explain the long term visibility trends and their dependence on meteorological conditions, a light extinction model was constructed incorporating the concentrations and composition of historic aerosol. The lack of historic aerosol size distributions and aerosol composition data, which determine hygroscopicity and refractive index, leads to an under-constrained model. Aerosol measurements from the last 10 years are used to constrain these model parameters, and hence their historical variation can be estimated; sensitivity analyses are used to estimate errors for the time period before regular aerosol measurements are available. This work has generated a unique 60 year data set with which to understand how aerosol concentration and composition has varied over the UK. The model is applicable and easily transferrable to other data sets worldwide. Hence, different clean air legislation can be assessed for its effectiveness in reducing aerosol pollution. The

  8. Magnetized strange quark matter in f(R, T) gravity with bilinear and special form of time varying deceleration parameter

    Science.gov (United States)

    Sahoo, P. K.; Sahoo, Parbati; Bishi, Binaya K.; Aygün, Sezgin

    2018-04-01

    In this paper, we have studied homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type-I model with magnetized strange quark matter (MSQM) distribution and cosmological constant Λ in f(R, T) gravity where R is the Ricci scalar and T the trace of matter source. The exact solutions of the field equations are obtained under bilinear and special form of time varying deceleration parameter (DP). Firstly, we have considered two specific forms of bilinear DP with a single parameter of the form: q = α(1-t)/1+t and q = -αt/1+t, which leads to the constant or linear nature of the function based on the constant α. Second one is the special form of the DP as q = - 1 + β/1+aβ. From the results obtained here, one can observe that in the early universe magnetic flux has more effects and it reduces gradually in the later stage. For t → ∞, we get p → -Bc and ρ → Bc. The behaviour of strange quark matter along with magnetic epoch gives an idea of accelerated expansion of the universe as per the observations of the type Ia Supernovae.

  9. Model microswimmers in channels with varying cross section

    Science.gov (United States)

    Malgaretti, Paolo; Stark, Holger

    2017-05-01

    We study different types of microswimmers moving in channels with varying cross section and thereby interacting hydrodynamically with the channel walls. Starting from the Smoluchowski equation for a dilute suspension, for which interactions among swimmers can be neglected, we derive analytic expressions for the lateral probability distribution between plane channel walls. For weakly corrugated channels, we extend the Fick-Jacobs approach to microswimmers and thereby derive an effective equation for the probability distribution along the channel axis. Two regimes arise dominated either by entropic forces due to the geometrical confinement or by the active motion. In particular, our results show that the accumulation of microswimmers at channel walls is sensitive to both the underlying swimming mechanism and the geometry of the channels. Finally, for asymmetric channel corrugation, our model predicts a rectification of microswimmers along the channel, the strength and direction of which strongly depends on the swimmer type.

  10. Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure

    DEFF Research Database (Denmark)

    Amado, Christina; Teräsvirta, Timo

    in the conditional and unconditional variances where the transition between regimes over time is smooth. A modelling strategy for these new time-varying parameter GARCH models is developed. It relies on a sequence of Lagrange multiplier tests, and the adequacy of the estimated models is investigated by Lagrange...... multiplier type misspecification tests. Finite-sample properties of these procedures and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice...

  11. Fitting Social Network Models Using Varying Truncation Stochastic Approximation MCMC Algorithm

    KAUST Repository

    Jin, Ick Hoon

    2013-10-01

    The exponential random graph model (ERGM) plays a major role in social network analysis. However, parameter estimation for the ERGM is a hard problem due to the intractability of its normalizing constant and the model degeneracy. The existing algorithms, such as Monte Carlo maximum likelihood estimation (MCMLE) and stochastic approximation, often fail for this problem in the presence of model degeneracy. In this article, we introduce the varying truncation stochastic approximation Markov chain Monte Carlo (SAMCMC) algorithm to tackle this problem. The varying truncation mechanism enables the algorithm to choose an appropriate starting point and an appropriate gain factor sequence, and thus to produce a reasonable parameter estimate for the ERGM even in the presence of model degeneracy. The numerical results indicate that the varying truncation SAMCMC algorithm can significantly outperform the MCMLE and stochastic approximation algorithms: for degenerate ERGMs, MCMLE and stochastic approximation often fail to produce any reasonable parameter estimates, while SAMCMC can do; for nondegenerate ERGMs, SAMCMC can work as well as or better than MCMLE and stochastic approximation. The data and source codes used for this article are available online as supplementary materials. © 2013 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

  12. Effects of time-varying β in SNLS3 on constraining interacting dark energy models

    International Nuclear Information System (INIS)

    Wang, Shuang; Wang, Yong-Zhen; Geng, Jia-Jia; Zhang, Xin

    2014-01-01

    It has been found that, for the Supernova Legacy Survey three-year (SNLS3) data, there is strong evidence for the redshift evolution of the color-luminosity parameter β. In this paper, adopting the w-cold-dark-matter (wCDM) model and considering its interacting extensions (with three kinds of interaction between dark sectors), we explore the evolution of β and its effects on parameter estimation. In addition to the SNLS3 data, we also use the latest Planck distance priors data, the galaxy clustering data extracted from sloan digital sky survey data release 7 and baryon oscillation spectroscopic survey, as well as the direct measurement of Hubble constant H 0 from the Hubble Space Telescope observation. We find that, for all the interacting dark energy (IDE) models, adding a parameter of β can reduce χ 2 by ∝34, indicating that a constant β is ruled out at 5.8σ confidence level. Furthermore, it is found that varying β can significantly change the fitting results of various cosmological parameters: for all the dark energy models considered in this paper, varying β yields a larger fractional CDM densities Ω c0 and a larger equation of state w; on the other side, varying β yields a smaller reduced Hubble constant h for the wCDM model, but it has no impact on h for the three IDE models. This implies that there is a degeneracy between h and coupling parameter γ. Our work shows that the evolution of β is insensitive to the interaction between dark sectors, and then highlights the importance of considering β's evolution in the cosmology fits. (orig.)

  13. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.

    Science.gov (United States)

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.

  14. Distributed Time-Varying Formation Robust Tracking for General Linear Multiagent Systems With Parameter Uncertainties and External Disturbances.

    Science.gov (United States)

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-05-18

    This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.

  15. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  16. LMI-based gain scheduled controller synthesis for a class of linear parameter varying systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Anderson, Brian; Lanzon, Alexander

    2006-01-01

    of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when...... as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example....

  17. Model parameter updating using Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Treml, C. A. (Christine A.); Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  18. Cyclo-stationary linear parameter time-varying subspace realization method applied for identification of horizontal-axis wind turbines

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Wind energy is becoming increasingly important worldwide as an alternative renewable energy source. Economical, maintenance and operation are critical issues for large slender dynamic structures, especially for remote offshore wind farms. Health monitoring systems are very promising instruments to assure reliability and good performance of the structure. These sensing and control technologies are typically informed by models based on mechanics or data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order and having overlapping frequency content. Instead, time-domain techniques have shown powerful advantages from a practical point of view (e.g. embedded algorithms in wireless-sensor networks), being more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify the analysis, but such is not the case for wind loaded structures with spinning multibodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system, and the wind tower substructure interaction. Transformations of the cyclic effects on the vibration data can be applied to isolate inertia quantities different from rotating-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated Eigensystem realizations. In this paper an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here by means of a modified Eigensystem Realization Algorithm (ERA) via Stochastic Subspace Identification (SSI) and Linear Parameter Time-Varying (LPTV) techniques. Structural response is assumed under stationary ambient excitation produced by a Gaussian (white) noise assembled

  19. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...

  20. Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L2-Gain Control

    OpenAIRE

    Hong, Boe-Shong; Wu, Mei-Hung

    2015-01-01

    This work aims at online regulating transient current out of the batteries of small-sized electric cars that transport people and goods around cities. In a city with heavy traffic, transient current dominates the energy economy and propulsion capability, which are in opposition to each other. In order to manage the trade-off between energy consumption per distance and propulsion capability in transience, the authors improve on previous work on multi-objective linear parameter-varying (LPV) L2...

  1. Parameter identification in the logistic STAR model

    DEFF Research Database (Denmark)

    Ekner, Line Elvstrøm; Nejstgaard, Emil

    We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th......We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter...

  2. A special case of reduced rank models for identification and modelling of time varying effects in survival analysis.

    Science.gov (United States)

    Perperoglou, Aris

    2016-12-10

    Flexible survival models are in need when modelling data from long term follow-up studies. In many cases, the assumption of proportionality imposed by a Cox model will not be valid. Instead, a model that can identify time varying effects of fixed covariates can be used. Although there are several approaches that deal with this problem, it is not always straightforward how to choose which covariates should be modelled having time varying effects and which not. At the same time, it is up to the researcher to define appropriate time functions that describe the dynamic pattern of the effects. In this work, we suggest a model that can deal with both fixed and time varying effects and uses simple hypotheses tests to distinguish which covariates do have dynamic effects. The model is an extension of the parsimonious reduced rank model of rank 1. As such, the number of parameters is kept low, and thus, a flexible set of time functions, such as b-splines, can be used. The basic theory is illustrated along with an efficient fitting algorithm. The proposed method is applied to a dataset of breast cancer patients and compared with a multivariate fractional polynomials approach for modelling time-varying effects. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  4. Application of lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil. Subsequently, the assembly of the dynamic stiffness matrix for the foundation is considered, and the solution for obtaining the steady state response, when using lumped-parameter models is given. (au)

  5. Hybrid online sensor error detection and functional redundancy for systems with time-varying parameters.

    Science.gov (United States)

    Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali

    2017-12-01

    Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.

  6. CHAMP: Changepoint Detection Using Approximate Model Parameters

    Science.gov (United States)

    2014-06-01

    form (with independent emissions or otherwise), in which parameter estimates are available via means such as maximum likelihood fit, MCMC , or sample ...counterparts, including the ability to generate a full posterior distribution over changepoint locations and offering a natural way to incorporate prior... sample consensus method. Our modifications also remove a significant restriction on model definition when detecting parameter changes within a single

  7. Visual Predictive Check in Models with Time-Varying Input Function.

    Science.gov (United States)

    Largajolli, Anna; Bertoldo, Alessandra; Campioni, Marco; Cobelli, Claudio

    2015-11-01

    The nonlinear mixed effects models are commonly used modeling techniques in the pharmaceutical research as they enable the characterization of the individual profiles together with the population to which the individuals belong. To ensure a correct use of them is fundamental to provide powerful diagnostic tools that are able to evaluate the predictive performance of the models. The visual predictive check (VPC) is a commonly used tool that helps the user to check by visual inspection if the model is able to reproduce the variability and the main trend of the observed data. However, the simulation from the model is not always trivial, for example, when using models with time-varying input function (IF). In this class of models, there is a potential mismatch between each set of simulated parameters and the associated individual IF which can cause an incorrect profile simulation. We introduce a refinement of the VPC by taking in consideration a correlation term (the Mahalanobis or normalized Euclidean distance) that helps the association of the correct IF with the individual set of simulated parameters. We investigate and compare its performance with the standard VPC in models of the glucose and insulin system applied on real and simulated data and in a simulated pharmacokinetic/pharmacodynamic (PK/PD) example. The newly proposed VPC performance appears to be better with respect to the standard VPC especially for the models with big variability in the IF where the probability of simulating incorrect profiles is higher.

  8. Exploiting intrinsic fluctuations to identify model parameters.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  9. Setting Parameters for Biological Models With ANIMO

    NARCIS (Netherlands)

    Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran

    2014-01-01

    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions

  10. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  11. Modeling Latin-American stock markets volatility: Varying probabilities and mean reversion in a random level shift model

    Directory of Open Access Journals (Sweden)

    Gabriel Rodríguez

    2016-06-01

    Full Text Available Following Xu and Perron (2014, I applied the extended RLS model to the daily stock market returns of Argentina, Brazil, Chile, Mexico and Peru. This model replaces the constant probability of level shifts for the entire sample with varying probabilities that record periods with extremely negative returns. Furthermore, it incorporates a mean reversion mechanism with which the magnitude and the sign of the level shift component vary in accordance with past level shifts that deviate from the long-term mean. Therefore, four RLS models are estimated: the Basic RLS, the RLS with varying probabilities, the RLS with mean reversion, and a combined RLS model with mean reversion and varying probabilities. The results show that the estimated parameters are highly significant, especially that of the mean reversion model. An analysis of ARFIMA and GARCH models is also performed in the presence of level shifts, which shows that once these shifts are taken into account in the modeling, the long memory characteristics and GARCH effects disappear. Also, I find that the performance prediction of the RLS models is superior to the classic models involving long memory as the ARFIMA(p,d,q models, the GARCH and the FIGARCH models. The evidence indicates that except in rare exceptions, the RLS models (in all its variants are showing the best performance or belong to the 10% of the Model Confidence Set (MCS. On rare occasions the GARCH and the ARFIMA models appear to dominate but they are rare exceptions. When the volatility is measured by the squared returns, the great exception is Argentina where a dominance of GARCH and FIGARCH models is appreciated.

  12. Parameters and error of a theoretical model

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs

  13. Assessment of Homodyned K Distribution Modeling Ultrasonic Speckles from Scatterers with Varying Spatial Organizations

    Directory of Open Access Journals (Sweden)

    Xiao Hu

    2017-01-01

    Full Text Available Objective. This paper presents an assessment of physical meanings of parameter and goodness of fit for homodyned K (HK distribution modeling ultrasonic speckles from scatterer distributions with wide-varying spatial organizations. Methods. A set of 3D scatterer phantoms based on gamma distributions is built to be implemented from the clustered to random to uniform scatterer distributions continuously. The model parameters are obtained by maximum likelihood estimation (MLE from statistical histograms of the ultrasonic envelope data and then compared with those by the optimally fitting models chosen from three single distributions. Results show that the parameters of the HK distribution still present their respective physical meanings of independent contributions in the scatterer distributions. Moreover, the HK distribution presents better goodness of fit with a maximum relative MLE difference of 6.23% for random or clustered scatterers with a well-organized periodic structure. Experiments based on ultrasonic envelope data from common carotid arterial B-mode images of human subjects validate the modeling performance of HK distribution. Conclusion. We conclude that the HK model for ultrasonic speckles is a better choice for characterizing tissue with a wide variety of spatial organizations, especially the emphasis on the goodness of fit for the tissue in practical applications.

  14. Application of lumped-parameter models

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse......This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1...

  15. A potato model intercomparison across varying climates and productivity levels

    DEFF Research Database (Denmark)

    H. Fleisher, David; Condori, Bruno; Quiroz, Roberto

    2017-01-01

    unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for non-irrigated sites). Differences in predictions due to model representation of light utilization were significant (p ...A potato crop multi-model assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States......) input management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield...

  16. Setting Parameters for Biological Models With ANIMO

    Directory of Open Access Journals (Sweden)

    Stefano Schivo

    2014-03-01

    Full Text Available ANIMO (Analysis of Networks with Interactive MOdeling is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions between biological entities in form of a graph, while the parameters determine the speed of occurrence of such interactions. When a mismatch is observed between the behavior of an ANIMO model and experimental data, we want to update the model so that it explains the new data. In general, the topology of a model can be expanded with new (known or hypothetical nodes, and enables it to match experimental data. However, the unrestrained addition of new parts to a model causes two problems: models can become too complex too fast, to the point of being intractable, and too many parts marked as "hypothetical" or "not known" make a model unrealistic. Even if changing the topology is normally the easier task, these problems push us to try a better parameter fit as a first step, and resort to modifying the model topology only as a last resource. In this paper we show the support added in ANIMO to ease the task of expanding the knowledge on biological networks, concentrating in particular on the parameter settings.

  17. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  18. Device and performance parameters of Cu(In,Ga)(Se,S)2-based solar cells with varying i-ZnO layer thickness

    International Nuclear Information System (INIS)

    Macabebe, E.Q.B.; Sheppard, C.J.; Dyk, E.E. van

    2009-01-01

    In pursuit of low-cost and highly efficient thin film solar cells, Cu(In,Ga)(Se,S) 2 /CdS/i-ZnO/ZnO:Al (CIGSS) solar cells were fabricated using a two-step process. The thickness of i-ZnO layer was varied from 0 to 454 nm. The current density-voltage (J-V) characteristics of the devices were measured, and the device and performance parameters of the solar cells were obtained from the J-V curves to analyze the effect of varying i-ZnO layer thickness. The device parameters were determined using a parameter extraction method that utilized particle swarm optimization. The method is a curve-fitting routine that employed the two-diode model. The J-V curves of the solar cells were fitted with the model and the parameters were determined. Results show that as the thickness of i-ZnO was increased, the average efficiency and the fill factor (FF) of the solar cells increase. Device parameters reveal that although the series resistance increased with thicker i-ZnO layer, the solar cells absorbed more photons resulting in higher short-circuit current density (J sc ) and, consequently, higher photo-generated current density (J L ). For solar cells with 303-454 nm-thick i-ZnO layer, the best devices achieved efficiency between 15.24% and 15.73% and the fill factor varied between 0.65 and 0.67.

  19. Device and performance parameters of Cu(In,Ga)(Se,S){sub 2}-based solar cells with varying i-ZnO layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Macabebe, E.Q.B. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Sheppard, C.J. [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Dyk, E.E. van, E-mail: ernest.vandyk@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2009-12-01

    In pursuit of low-cost and highly efficient thin film solar cells, Cu(In,Ga)(Se,S){sub 2}/CdS/i-ZnO/ZnO:Al (CIGSS) solar cells were fabricated using a two-step process. The thickness of i-ZnO layer was varied from 0 to 454 nm. The current density-voltage (J-V) characteristics of the devices were measured, and the device and performance parameters of the solar cells were obtained from the J-V curves to analyze the effect of varying i-ZnO layer thickness. The device parameters were determined using a parameter extraction method that utilized particle swarm optimization. The method is a curve-fitting routine that employed the two-diode model. The J-V curves of the solar cells were fitted with the model and the parameters were determined. Results show that as the thickness of i-ZnO was increased, the average efficiency and the fill factor (FF) of the solar cells increase. Device parameters reveal that although the series resistance increased with thicker i-ZnO layer, the solar cells absorbed more photons resulting in higher short-circuit current density (J{sub sc}) and, consequently, higher photo-generated current density (J{sub L}). For solar cells with 303-454 nm-thick i-ZnO layer, the best devices achieved efficiency between 15.24% and 15.73% and the fill factor varied between 0.65 and 0.67.

  20. Modelling and parameter estimation of dynamic systems

    CERN Document Server

    Raol, JR; Singh, J

    2004-01-01

    Parameter estimation is the process of using observations from a system to develop mathematical models that adequately represent the system dynamics. The assumed model consists of a finite set of parameters, the values of which are calculated using estimation techniques. Most of the techniques that exist are based on least-square minimization of error between the model response and actual system response. However, with the proliferation of high speed digital computers, elegant and innovative techniques like filter error method, H-infinity and Artificial Neural Networks are finding more and mor

  1. Models and parameters for environmental radiological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C W [ed.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  2. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  3. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base

  4. Effects of varying densities on serum reproductive parameters in pen-reared juvenile female rainbow trout Oncorhynchus mykiss farms

    Science.gov (United States)

    Hou, Zhishuai; Wen, Haishen; Li, Jifang; He, Feng; Liu, Qun; Wang, Jinhuan; Guan, Biao; Wang, Qinglong

    2017-01-01

    The primary goal of this study was to assess the effect of varying densities on serum reproductive parameters of immature rainbow trout Oncorhynchus mykiss. Experimental trout were maintained in intensive, pen-reared farms for 300 days in fresh water reservoirs. Initial densities were 4.6, 6.6, and 8.6 kg/m3 (40, 60, 80 ind./m3), indicated as SD1, SD2, SD3, and final densities were 31.1, 40.6, 49.3 kg/m3, respectively. A summary of the ovarian stages were observed by histological examination. Serum E2 (estradiol), T (testosterone) were evaluated by radioimmunoassay and FSH (follicle-stimulating-hormone), LH (luteinizing-hormone), vitellogenin, 17α,20β-P (17α,20βdihydroxy4-pregnen-3-one) were measured by enzyme-linked immunosorbent assay. Our findings demonstrated that ovarian development were retarded (from stage III to stage IV) at highest rearing density (SD3) after 180 days of intensive culture (over 40.6 kg/m3). In addition, we observed an inverse relationship between serum reproductive parameters and rearing density. Furthermore, compared to serum reproductive parameters of SD1, E2, T, FSH, vitellogenin, 17α,20β-P, GSI and LH of two higher density groups decreased firstly and significantly at 60 (over 15.9 kg/m 3 ), 180 (over 31.7 kg/m 3 ), 180 (over 40.6 kg/m3), 240 (over 36 kg/m3), 240 (over 36 kg/m3), 240 (over 45 kg/m3) and 300 (over 49.3 kg/m3) days, respectively. Comparing serum reproductive parameters within the same ovarian development stage of rainbow trout from varying densities revealed that higher population density also led to significantly lower overall serum reproductive parameters. Overall, this study presents the reproductive, endocrinological parameters of juvenile female rainbow trout at high rearing densities and indicates the need for rainbow trout (114.44±5.21 g, 19.69±0.31 cm) that are initially stocked at 6.6 or 8.6 kg/m3 should be classified and subdivided into lower density after 180 days of farming (not over 31.7 kg/m3).

  5. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  6. Importance of hydrological parameters in contaminant transport modeling in a terrestrial environment

    International Nuclear Information System (INIS)

    Tsuduki, Katsunori; Matsunaga, Takeshi

    2007-01-01

    A grid type multi-layered distributed parameter model for calculating discharge in a watershed was described. Model verification with our field observation resulted in different sets of hydrological parameter values, all of which reproduced the observed discharge. The effect of those varied hydrological parameters on contaminant transport calculation was examined and discussed by simulation of event water transfer. (author)

  7. Advances in Modelling, System Identification and Parameter ...

    Indian Academy of Sciences (India)

    models determined from flight test data by using parameter estimation methods find extensive use in design/modification of flight control systems, high fidelity flight simulators and evaluation of handling qualitites of aircraft and rotorcraft. R K Mehra et al present new algorithms and results for flutter tests and adaptive notching ...

  8. A lumped parameter model of plasma focus

    International Nuclear Information System (INIS)

    Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro

    1999-01-01

    A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)

  9. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  10. Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L2-Gain Control

    Directory of Open Access Journals (Sweden)

    Boe-Shong Hong

    2015-09-01

    Full Text Available This work aims at online regulating transient current out of the batteries of small-sized electric cars that transport people and goods around cities. In a city with heavy traffic, transient current dominates the energy economy and propulsion capability, which are in opposition to each other. In order to manage the trade-off between energy consumption per distance and propulsion capability in transience, the authors improve on previous work on multi-objective linear parameter-varying (LPV L2-gain control. The observer embedded into this multi-objective controller no longer assumes Kalman-filtering structure, and structural conservatism is thus removed. A full-spectrum set of experiments is performed. The results reveal that the feedback design significantly improves energy-motion management.

  11. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  12. Analisis Perbandingan Parameter Transformasi Antar Itrf Hasil Hitungan Kuadrat Terkecil Model Helmert 14-parameter Dengan Parameter Standar Iers

    OpenAIRE

    Fadly, Romi; Dewi, Citra

    2014-01-01

    This research aims to compare the 14 transformation parameters between ITRF from computation result using the Helmert 14-parameter models with IERS standard parameters. The transforma- tion parameters are calculated from the coordinates and velocities of ITRF05 to ITRF00 epoch 2000.00, and from ITRF08 to ITRF05 epoch 2005.00 for respectively transformation models. The transformation parameters are compared to the IERS standard parameters, then tested the signifi- cance of the d...

  13. Constant-parameter capture-recapture models

    Science.gov (United States)

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  14. Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications

    Science.gov (United States)

    Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein

    2018-03-01

    The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.

  15. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer ...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented.......This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...

  16. Research on Adaptive Neural Network Control System Based on Nonlinear U-Model with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Fengxia Xu

    2014-01-01

    Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.

  17. Biochemical parameters in the blood of grass snakes (Natrix natrix in ecosystems under varying degrees of anthropogenic influence

    Directory of Open Access Journals (Sweden)

    V. Y. Gasso

    2016-09-01

    Full Text Available The grass snake Natrix natrix (Linnaeus, 1758 is a partly hygrophilous species, distributed throughoutUkraine. This snake may be considered as a test object for environmental biomonitoring. Modern biochemical methods make it possible to obtain new scientific data on the effects of anthropogenic pressure on reptiles. Blood is a sensitive and informative indicator of the condition of an organism as it responds quickly to most changes in exogenous and endogenous factors, and reflects negative influences on both individual and, indirectly, populations. Changes in biochemical parameters may be used as biomarkers of the state of health of reptiles in ecosystems under varying degrees of anthropogenic pressure. Due the increase in anthropogenic influence the development and introduction of new methods of perceptual research, collection of up-to-date information and development of a database of reptile biochemical parameters have become an urgent priority. We collected mature individuals of the grass snake in floodplain ecosystems on the right bank of the Dnieper River in Dnipropetrovsk city. Grass snakes from floodplain habitats on the left bank of theSamaraRiver (O.L. Belgard Prysamarskii International Biosphere Station, Novomoskovsk district, Dnipropetrovsk province were studied as the control specimens. Our study demonstrated statistically significant differences between snakes from the study sites in the amount of albumin, urea and urea nitrogen, and inorganic phosphorus, as well as in alanine aminotransferase (ALT and alkaline phosphatise (AP activity. The amount of albumin in the blood serum of specimens from the anthropogenically transformed areas was significantly lower (by 25% than in that of the snakes caught in the control habitats. Decrease of the albumin concentration usually indicates abnormal processes in the kidneys and liver. According to the changes observed in the concentration of albumin, a corresponding increase in the albumin to

  18. On the role of modeling parameters in IMRT plan optimization

    International Nuclear Information System (INIS)

    Krause, Michael; Scherrer, Alexander; Thieke, Christian

    2008-01-01

    The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way

  19. Lumped Parameters Model of a Crescent Pump

    Directory of Open Access Journals (Sweden)

    Massimo Rundo

    2016-10-01

    Full Text Available This paper presents the lumped parameters model of an internal gear crescent pump with relief valve, able to estimate the steady-state flow-pressure characteristic and the pressure ripple. The approach is based on the identification of three variable control volumes regardless of the number of gear teeth. The model has been implemented in the commercial environment LMS Amesim with the development of customized components. Specific attention has been paid to the leakage passageways, some of them affected by the deformation of the cover plate under the action of the delivery pressure. The paper reports the finite element method analysis of the cover for the evaluation of the deflection and the validation through a contactless displacement transducer. Another aspect described in this study is represented by the computational fluid dynamics analysis of the relief valve, whose results have been used for tuning the lumped parameters model. Finally, the validation of the entire model of the pump is presented in terms of steady-state flow rate and of pressure oscillations.

  20. Toy Models of Universe with an Effective Varying Λ-Term in Lyra Manifold

    Directory of Open Access Journals (Sweden)

    Martiros Khurshudyan

    2015-01-01

    Full Text Available Research on the accelerated expansion of our Universe captures a lot of attention. The dark energy (DE is a way to explain it. In this paper we will consider scalar field quintessence DE with ωDE>-1 EoS, where the dynamics of the DE models related to the dynamics of the scalar field. We are interested in the study of the behavior of the Universe in the presence of interacting quintessence DE models in Lyra manifold with a varying Λt. In a considered framework we also would like to propose a new form for Λt. We found that the models correspond to the transit Universe, which will enter the accelerated expansion phase and will remain there with a constant deceleration parameter q. We found also that the Λt is a decreasing function which takes a small positive value with Ωm≠0 and ΩQ→const dominating Ωm in the old Universe. Observational constraints are applied and causality issue via CS2 is discussed as a possible way to either reject or accept the models.

  1. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery

    International Nuclear Information System (INIS)

    Ouyang, Minggao; Feng, Xuning; Han, Xuebing; Lu, Languang; Li, Zhe; He, Xiangming

    2016-01-01

    Highlights: • A dynamic capacity degradation model for large format Li-ion battery is proposed. • The change of the model parameters directly link with the degradation mechanisms. • The model can simulate the fading behavior of Li-ion battery under varying loads. • The model can help evaluate the longevity of a battery system under specific load. • The model can help predict the evolution of cell variations within a battery pack. - Abstract: The capacity degradation of the lithium ion battery should be well predicted during battery system design. Therefore, high-fidelity capacity degradation models that are suitable for the task of capacity prediction are required. This paper proposes a novel capacity degradation model that can simulate the degradation dynamics under varying working conditions for large-format lithium ion batteries. The degradation model is built based on a mechanistic and prognostic model (MPM) whose parameters are closely linked with the degradation mechanisms of lithium ion batteries. Chemical kinetics was set to drive the parameters of the MPM to change as capacity degradation continues. With the dynamic parameters of the MPM, the capacity predicted by the degradation model decreases as the cycle continues. Accelerated aging tests were conducted on three types of commercial lithium ion batteries to calibrate the capacity degradation model. The good fit with the experimental data indicates that the model can capture the degradation mechanisms well for different types of commercial lithium ion batteries. Furthermore, the calibrated model can be used to (1) evaluate the longevity of a battery system under a specific working load and (2) predict the evolution of cell variations within a battery pack when different cell works at different conditions. Correlated applications are discussed using the calibrated degradation model.

  2. Dynamic linear models to explore time-varying suspended sediment-discharge rating curves

    Science.gov (United States)

    Ahn, Kuk-Hyun; Yellen, Brian; Steinschneider, Scott

    2017-06-01

    This study presents a new method to examine long-term dynamics in sediment yield using time-varying sediment-discharge rating curves. Dynamic linear models (DLMs) are introduced as a time series filter that can assess how the relationship between streamflow and sediment concentration or load changes over time in response to a wide variety of natural and anthropogenic watershed disturbances or long-term changes. The filter operates by updating parameter values using a recursive Bayesian design that responds to 1 day-ahead forecast errors while also accounting for observational noise. The estimated time series of rating curve parameters can then be used to diagnose multiscale (daily-decadal) variability in sediment yield after accounting for fluctuations in streamflow. The technique is applied in a case study examining changes in turbidity load, a proxy for sediment load, in the Esopus Creek watershed, part of the New York City drinking water supply system. The results show that turbidity load exhibits a complex array of variability across time scales. The DLM highlights flood event-driven positive hysteresis, where turbidity load remained elevated for months after large flood events, as a major component of dynamic behavior in the rating curve relationship. The DLM also produces more accurate 1 day-ahead loading forecasts compared to other static and time-varying rating curve methods. The results suggest that DLMs provide a useful tool for diagnosing changes in sediment-discharge relationships over time and may help identify variability in sediment concentrations and loads that can be used to inform dynamic water quality management.

  3. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  4. Parameter estimation in fractional diffusion models

    CERN Document Server

    Kubilius, Kęstutis; Ralchenko, Kostiantyn

    2017-01-01

    This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...

  5. Generalized partial linear varying multi-index coefficient model for gene-environment interactions.

    Science.gov (United States)

    Liu, Xu; Gao, Bin; Cui, Yuehua

    2017-03-01

    Epidemiological studies have suggested the joint effect of simultaneous exposures to multiple environments on disease risk. However, how environmental mixtures as a whole jointly modify genetic effect on disease risk is still largely unknown. Given the importance of gene-environment (G×E) interactions on many complex diseases, rigorously assessing the interaction effect between genes and environmental mixtures as a whole could shed novel insights into the etiology of complex diseases. For this purpose, we propose a generalized partial linear varying multi-index coefficient model (GPLVMICM) to capture the genetic effect on disease risk modulated by multiple environments as a whole. GPLVMICM is semiparametric in nature which allows different index loading parameters in different index functions. We estimate the parametric parameters by a profile procedure, and the nonparametric index functions by a B-spline backfitted kernel method. Under some regularity conditions, the proposed parametric and nonparametric estimators are shown to be consistent and asymptotically normal. We propose a generalized likelihood ratio (GLR) test to rigorously assess the linearity of the interaction effect between multiple environments and a gene, while apply a parametric likelihood test to detect linear G×E interaction effect. The finite sample performance of the proposed method is examined through simulation studies and is further illustrated through a real data analysis.

  6. Moose models with vanishing S parameter

    International Nuclear Information System (INIS)

    Casalbuoni, R.; De Curtis, S.; Dominici, D.

    2004-01-01

    In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2) L and U(1) Y at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric

  7. Optimal Control of a Delay-Varying Computer Virus Propagation Model

    OpenAIRE

    Ren, Jianguo; Xu, Yonghong; Zhang, Chunming

    2013-01-01

    By incorporating the objective of keeping a low number of infected nodes and a high number of recovered nodes at a lower cost into a known computer virus model (the delay-varying SIRC model) extended by introducing quarantine, a novel model is described by means of the optimal control strategy and theoretically analyzed. Through the comparison of simulation results, it is shown that the propagation of computer virus with varying latency period can be suppressed effectively by the optimal cont...

  8. Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.

    Science.gov (United States)

    Bringmann, Laura F; Ferrer, Emilio; Hamaker, Ellen L; Borsboom, Denny; Tuerlinckx, Francis

    2018-03-05

    Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.

  9. Cosmological effects of scalar-photon couplings: dark energy and varyingModels

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Luzzi, G., E-mail: tavgoust@gmail.com, E-mail: Carlos.Martins@astro.up.pt, E-mail: mmonteiro@fc.up.pt, E-mail: up110370652@alunos.fc.up.pt, E-mail: gluzzi@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France)

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  10. The varying cosmological constant: a new approximation to the Friedmann equations and universe model

    Science.gov (United States)

    Öztaş, Ahmet M.; Dil, Emre; Smith, Michael L.

    2018-05-01

    We investigate the time-dependent nature of the cosmological constant, Λ, of the Einstein Field Equation (EFE). Beginning with the Einstein-Hilbert action as our fundamental principle we develop a modified version of the EFE allowing the value of Λ to vary as a function of time, Λ(t), indirectly, for an expanding universe. We follow the evolving Λ presuming four-dimensional space-time and a flat universe geometry and present derivations of Λ(t) as functions of the Hubble constant, matter density, and volume changes which can be traced back to the radiation epoch. The models are more detailed descriptions of the Λ dependence on cosmological factors than previous, allowing calculations of the important parameters, Ωm and Ωr, to deep lookback times. Since we derive these without the need for extra dimensions or other special conditions our derivations are useful for model evaluation with astronomical data. This should aid resolution of several difficult problems of astronomy such as the best value for the Hubble constant at present and at recombination.

  11. Identification of a Time-Varying, Box-Jenkins Model of Intrinsic Joint Compliance.

    Science.gov (United States)

    Guarin, Diego L; Kearney, Robert E

    2017-08-01

    The mechanical properties of a joint are determined by the combination of intrinsic and reflex mechanisms. However, in some situations the reflex contributions are small so that intrinsic mechanisms play the dominant role in the control of posture and movement. The intrinsic mechanisms, characterized by the joint compliance, can be described well by a second order, linear model for small perturbations around an operating point defined by mean position and torque. However, the compliance parameters depend strongly on the operating point. Thus, for functional activities, such as walking, where position and torque undergo large, rapid changes, the joint compliance will also present large, fast changes and so will appear to be Time-Varying (TV). Therefore, a TV system identification algorithm must be used to characterize these changes. This paper introduces a novel TV system identification algorithm that achieves this. The method extends an instrumental-variable based algorithm for the identification of linear, TV, parametric, Box-Jenkins models to use periodic data. Simulation studies demonstrate that the new algorithm accurately tracks the changes in intrinsic joint compliance expected during walking. Moreover, the method performs well with the complex noise encountered in practice. Consequently the new method should be a valuable tool for the study of joint mechanics during functional activities.

  12. Models for setting ATM parameter values

    DEFF Research Database (Denmark)

    Blaabjerg, Søren; Gravey, A.; Romæuf, L.

    1996-01-01

    presents approximate methods and discusses their applicability. We then discuss the problem of obtaining traffic characteristic values for a connection that has crossed a series of switching nodes. This problem is particularly relevant for the traffic contract components corresponding to ICIs...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...... essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper...

  13. Mass balance model parameter transferability on a tropical glacier

    Science.gov (United States)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  14. Positive Almost Periodic Solutions for a Time-Varying Fishing Model with Delay

    Directory of Open Access Journals (Sweden)

    Xia Li

    2011-01-01

    Full Text Available This paper is concerned with a time-varying fishing model with delay. By means of the continuation theorem of coincidence degree theory, we prove that it has at least one positive almost periodic solution.

  15. Diarrhea Morbidities in Small Areas: Accounting for Non-Stationarity in Sociodemographic Impacts using Bayesian Spatially Varying Coefficient Modelling.

    Science.gov (United States)

    Osei, F B; Stein, A

    2017-08-30

    Model-based estimation of diarrhea risk and understanding the dependency on sociodemographic factors is important for prioritizing interventions. It is unsuitable to calibrate regression model with a single set of coefficients, especially for large spatial domains. For this purpose, we developed a Bayesian hierarchical varying coefficient model to account for non-stationarity in the covariates. We used the integrated nested Laplace approximation for parameter estimation. Diarrhea morbidities in Ghana motivated our empirical study. Results indicated improvement regarding model fit and epidemiological benefits. The findings highlighted substantial spatial, temporal, and spatio-temporal heterogeneities in both diarrhea risk and the coefficients of the sociodemographic factors. Diarrhea risk in peri-urban and urban districts were 13.2% and 10.8% higher than rural districts, respectively. The varying coefficient model indicated further details, as the coefficients varied across districts. A unit increase in the proportion of inhabitants with unsafe liquid waste disposal was found to increase diarrhea risk by 11.5%, with higher percentages within the south-central parts through to the south-western parts. Districts with safe and unsafe drinking water sources unexpectedly had a similar risk, as were districts with safe and unsafe toilets. The findings show that site-specific interventions need to consider the varying effects of sociodemographic factors.

  16. A hill-type muscle model expansion accounting for effects of varying transverse muscle load.

    Science.gov (United States)

    Siebert, Tobias; Stutzig, Norman; Rode, Christian

    2018-01-03

    Recent studies demonstrated that uniaxial transverse loading (F G ) of a rat gastrocnemius medialis muscle resulted in a considerable reduction of maximum isometric muscle force (ΔF im ). A hill-type muscle model assuming an identical gearing G between both ΔF im and F G as well as lifting height of the load (Δh) and longitudinal muscle shortening (Δl CC ) reproduced experimental data for a single load. Here we tested if this model is able to reproduce experimental changes in ΔF im and Δh for increasing transverse loads (0.64 N, 1.13 N, 1.62 N, 2.11 N, 2.60 N). Three different gearing ratios were tested: (I) constant G c representing the idea of a muscle specific gearing parameter (e.g. predefined by the muscle geometry), (II) G exp determined in experiments with varying transverse load, and (III) G f that reproduced experimental ΔF im for each transverse load. Simulations using G c overestimated ΔF im (up to 59%) and Δh (up to 136%) for increasing load. Although the model assumption (equal G for forces and length changes) held for the three lower loads using G exp and G f , simulations resulted in underestimation of ΔF im by 38% and overestimation of Δh by 58% for the largest load, respectively. To simultaneously reproduce experimental ΔF im and Δh for the two larger loads, it was necessary to reduce F im by 1.9% and 4.6%, respectively. The model seems applicable to account for effects of muscle deformation within a range of transverse loading when using a linear load-dependent function for G. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Fragment-Cloud Model for Breakup of Asteroids with Varied Internal Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Ed; Brown, Peter

    2016-01-01

    As an asteroid descends toward Earth, it deposits energy in the atmosphere through aerodynamic drag and ablation. Asteroid impact risk assessments rely on energy deposition estimates to predict blast overpressures and ground damage that may result from an airburst, such as the one that occurred over Chelyabinsk, Russia in 2013. The rates and altitudes at which energy is deposited along the entry trajectory depend upon how the bolide fragments, which in turn depends upon its internal structure and composition. In this work, we have developed an analytic asteroid fragmentation model to assess the atmospheric energy deposition of asteroids with a range of structures and compositions. The modeling approach combines successive fragmentation of larger independent pieces with aggregate debris clouds released with each fragmentation event. The model can vary the number and masses of fragments produced, the amount of mass released as debris clouds, the size-strength scaling used to increase the robustness of smaller fragments, and other parameters. The initial asteroid body can be seeded with a distribution of independent fragment sizes amid a remaining debris mass to represent loose rubble pile conglomerations, can be given an outer regolith later, or can be defined as a coherent or fractured monolith. This approach enables the model to represent a range of breakup behaviors and reproduce detailed energy deposition features such as multiple flares due to successive burst events, high-altitude regolith blow-off, or initial disruption of rubble piles followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of ground damage to potential variations in asteroid structure.

  18. Dengue human infection model performance parameters.

    Science.gov (United States)

    Endy, Timothy P

    2014-06-15

    Dengue is a global health problem and of concern to travelers and deploying military personnel with development and licensure of an effective tetravalent dengue vaccine a public health priority. The dengue viruses (DENVs) are mosquito-borne flaviviruses transmitted by infected Aedes mosquitoes. Illness manifests across a clinical spectrum with severe disease characterized by intravascular volume depletion and hemorrhage. DENV illness results from a complex interaction of viral properties and host immune responses. Dengue vaccine development efforts are challenged by immunologic complexity, lack of an adequate animal model of disease, absence of an immune correlate of protection, and only partially informative immunogenicity assays. A dengue human infection model (DHIM) will be an essential tool in developing potential dengue vaccines or antivirals. The potential performance parameters needed for a DHIM to support vaccine or antiviral candidates are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Dimensionality reduction of RKHS model parameters.

    Science.gov (United States)

    Taouali, Okba; Elaissi, Ilyes; Messaoud, Hassani

    2015-07-01

    This paper proposes a new method to reduce the parameter number of models developed in the Reproducing Kernel Hilbert Space (RKHS). In fact, this number is equal to the number of observations used in the learning phase which is assumed to be high. The proposed method entitled Reduced Kernel Partial Least Square (RKPLS) consists on approximating the retained latent components determined using the Kernel Partial Least Square (KPLS) method by their closest observation vectors. The paper proposes the design and the comparative study of the proposed RKPLS method and the Support Vector Machines on Regression (SVR) technique. The proposed method is applied to identify a nonlinear Process Trainer PT326 which is a physical process available in our laboratory. Moreover as a thermal process with large time response may help record easily effective observations which contribute to model identification. Compared to the SVR technique, the results from the proposed RKPLS method are satisfactory. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Online Estimation of Model Parameters of Lithium-Ion Battery Using the Cubature Kalman Filter

    Science.gov (United States)

    Tian, Yong; Yan, Rusheng; Tian, Jindong; Zhou, Shijie; Hu, Chao

    2017-11-01

    Online estimation of state variables, including state-of-charge (SOC), state-of-energy (SOE) and state-of-health (SOH) is greatly crucial for the operation safety of lithium-ion battery. In order to improve estimation accuracy of these state variables, a precise battery model needs to be established. As the lithium-ion battery is a nonlinear time-varying system, the model parameters significantly vary with many factors, such as ambient temperature, discharge rate and depth of discharge, etc. This paper presents an online estimation method of model parameters for lithium-ion battery based on the cubature Kalman filter. The commonly used first-order resistor-capacitor equivalent circuit model is selected as the battery model, based on which the model parameters are estimated online. Experimental results show that the presented method can accurately track the parameters variation at different scenarios.

  1. Clustering reveals limits of parameter identifiability in multi-parameter models of biochemical dynamics.

    Science.gov (United States)

    Nienałtowski, Karol; Włodarczyk, Michał; Lipniacki, Tomasz; Komorowski, Michał

    2015-09-29

    Compared to engineering or physics problems, dynamical models in quantitative biology typically depend on a relatively large number of parameters. Progress in developing mathematics to manipulate such multi-parameter models and so enable their efficient interplay with experiments has been slow. Existing solutions are significantly limited by model size. In order to simplify analysis of multi-parameter models a method for clustering of model parameters is proposed. It is based on a derived statistically meaningful measure of similarity between groups of parameters. The measure quantifies to what extend changes in values of some parameters can be compensated by changes in values of other parameters. The proposed methodology provides a natural mathematical language to precisely communicate and visualise effects resulting from compensatory changes in values of parameters. As a results, a relevant insight into identifiability analysis and experimental planning can be obtained. Analysis of NF-κB and MAPK pathway models shows that highly compensative parameters constitute clusters consistent with the network topology. The method applied to examine an exceptionally rich set of published experiments on the NF-κB dynamics reveals that the experiments jointly ensure identifiability of only 60% of model parameters. The method indicates which further experiments should be performed in order to increase the number of identifiable parameters. We currently lack methods that simplify broadly understood analysis of multi-parameter models. The introduced tools depict mutually compensative effects between parameters to provide insight regarding role of individual parameters, identifiability and experimental design. The method can also find applications in related methodological areas of model simplification and parameters estimation.

  2. Optimization of space-time material layout for 1D wave propagation with varying mass and stiffness parameters

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2010-01-01

    Results are presented for optimal layout of materials in the spatial and temporal domains for a 1D structure subjected to transient wave propagation. A general optimization procedure is outlined including derivation of design sensitivities for the case when the mass density and stiffness vary...

  3. Block Empirical Likelihood for Longitudinal Single-Index Varying-Coefficient Model

    Directory of Open Access Journals (Sweden)

    Yunquan Song

    2013-01-01

    Full Text Available In this paper, we consider a single-index varying-coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to longitudinal single-index varying-coefficient model, and prove a nonparametric version of Wilks’ theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.

  4. Perfect fluid Bianchi Type-I cosmological models with time varying G ...

    Indian Academy of Sciences (India)

    Bianchi Type-I cosmological models containing perfect fluid with time varying and have been presented. The solutions obtained represent an expansion scalar bearing a constant ratio to the anisotropy in the direction of space-like unit vector . Of the two models obtained, one has negative vacuum energy density, ...

  5. Perfect fluid Bianchi Type-I cosmological models with time varying G ...

    Indian Academy of Sciences (India)

    Abstract. Bianchi Type-I cosmological models containing perfect fluid with time vary- ing G and Λ have been presented. The solutions obtained represent an expansion scalar θ bearing a constant ratio to the anisotropy in the direction of space-like unit vector λi. Of the two models obtained, one has negative vacuum energy ...

  6. Analysis of Model Parameters for a Polymer Filtration Simulator

    Directory of Open Access Journals (Sweden)

    N. Brackett-Rozinsky

    2011-01-01

    Full Text Available We examine a simulation model for polymer extrusion filters and determine its sensitivity to filter parameters. The simulator is a three-dimensional, time-dependent discretization of a coupled system of nonlinear partial differential equations used to model fluid flow and debris transport, along with statistical relationships that define debris distributions and retention probabilities. The flow of polymer fluid, and suspended debris particles, is tracked to determine how well a filter performs and how long it operates before clogging. A filter may have multiple layers, characterized by thickness, porosity, and average pore diameter. In this work, the thickness of each layer is fixed, while the porosities and pore diameters vary for a two-layer and three-layer study. The effects of porosity and average pore diameter on the measures of filter quality are calculated. For the three layer model, these effects are tested for statistical significance using analysis of variance. Furthermore, the effects of each pair of interacting parameters are considered. This allows the detection of complexity, where in changing two aspects of a filter together may generate results substantially different from what occurs when those same aspects change separately. The principal findings indicate that the first layer of a filter is the most important.

  7. Optimization of a simplified automobile finite element model using time varying injury metrics.

    Science.gov (United States)

    Gaewsky, James P; Danelson, Kerry A; Weaver, Caitlin M; Stitzel, Joel D

    2014-01-01

    In 2011, frontal crashes resulted in 55% of passenger car injuries with 10,277 fatalities and 866,000 injuries in the United States. To better understand frontal crash injury mechanisms, human body finite element models (FEMs) can be used to reconstruct Crash Injury Research and Engineering Network (CIREN) cases. A limitation of this method is the paucity of vehicle FEMs; therefore, we developed a functionally equivalent simplified vehicle model. The New Car Assessment Program (NCAP) data for our selected vehicle was from a frontal collision with Hybrid III (H3) Anthropomorphic Test Device (ATD) occupant. From NCAP test reports, the vehicle geometry was created and the H3 ATD was positioned. The material and component properties optimized using a variation study process were: steering column shear bolt fracture force and stroke resistance, seatbelt pretensioner force, frontal and knee bolster airbag stiffness, and belt friction through the D-ring. These parameters were varied using three successive Latin Hypercube Designs of Experiments with 130-200 simulations each. The H3 injury response was compared to the reported NCAP frontal test results for the head, chest and pelvis accelerations, and seat belt and femur forces. The phase, magnitude, and comprehensive error factors, from a Sprague and Geers analysis were calculated for each injury metric and then combined to determine the simulations with the best match to the crash test. The Sprague and Geers analyses typically yield error factors ranging from 0 to 1 with lower scores being more optimized. The total body injury response error factor for the most optimized simulation from each round of the variation study decreased from 0.466 to 0.395 to 0.360. This procedure to optimize vehicle FEMs is a valuable tool to conduct future CIREN case reconstructions in a variety of vehicles.

  8. Application of regression model on stream water quality parameters

    International Nuclear Information System (INIS)

    Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.

    2012-01-01

    Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)

  9. An approach to measure parameter sensitivity in watershed hydrologic modeling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Abstract Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier...

  10. Output-only cyclo-stationary linear-parameter time-varying stochastic subspace identification method for rotating machinery and spinning structures

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2015-02-01

    stochastic subspace identification (SSI) and linear parameter time-varying (LPTV) techniques. Structural response is assumed to be stationary ambient excitation produced by a Gaussian (white) noise within the operative range bandwidth of the machinery or structure in study. ERA-OKID analysis is driven by correlation-function matrices from the stationary ambient response aiming to reduce noise effects. Singular value decomposition (SVD) and eigenvalue analysis are computed in a last stage to identify frequencies and complex-valued mode shapes. Proposed assumptions are carefully weighted to account for the uncertainty of the environment. A numerical example is carried out based a spinning finite element (SFE) model, and verified using ANSYS® Ver. 12. Finally, comments and observations are provided on how this subspace realization technique can be extended to the problem of modal-parameter identification using only ambient vibration data.

  11. Sample Size and Item Parameter Estimation Precision When Utilizing the One-Parameter "Rasch" Model

    Science.gov (United States)

    Custer, Michael

    2015-01-01

    This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…

  12. Time-varying effect models for ordinal responses with applications in substance abuse research.

    Science.gov (United States)

    Dziak, John J; Li, Runze; Zimmerman, Marc A; Buu, Anne

    2014-12-20

    Ordinal responses are very common in longitudinal data collected from substance abuse research or other behavioral research. This study develops a new statistical model with free SAS macros that can be applied to characterize time-varying effects on ordinal responses. Our simulation study shows that the ordinal-scale time-varying effects model has very low estimation bias and sometimes offers considerably better performance when fitting data with ordinal responses than a model that treats the response as continuous. Contrary to a common assumption that an ordinal scale with several levels can be treated as continuous, our results indicate that it is not so much the number of levels on the ordinal scale but rather the skewness of the distribution that makes a difference on relative performance of linear versus ordinal models. We use longitudinal data from a well-known study on youth at high risk for substance abuse as a motivating example to demonstrate that the proposed model can characterize the time-varying effect of negative peer influences on alcohol use in a way that is more consistent with the developmental theory and existing literature, in comparison with the linear time-varying effect model. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  14. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.

    Directory of Open Access Journals (Sweden)

    Andrew White

    2016-12-01

    Full Text Available We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.

  15. Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach

    Directory of Open Access Journals (Sweden)

    Jeyhun I. Mikayilov

    2017-11-01

    Full Text Available Recent literature has shown that electricity demand elasticities may not be constant over time and this has investigated using time-varying estimation methods. As accurate modeling of electricity demand is very important in Azerbaijan, which is a transitional country facing significant change in its economic outlook, we analyze whether the response of electricity demand to income and price is varying over time in this economy. We employed the Time-Varying Coefficient cointegration approach, a cutting-edge time-varying estimation method. We find evidence that income elasticity demonstrates sizeable variation for the period of investigation ranging from 0.48% to 0.56%. The study has some useful policy implications related to the income and price aspects of the electricity consumption in Azerbaijan.

  16. A 3D Finite Element Model with Improved Spatial Resolution to Investigate the Effect of Varying Viscosity on Antarctica

    Science.gov (United States)

    Blank, B.; van der Wal, W.; Pappa, F.; Ebbing, J.

    2017-12-01

    B. Blank1, H. Hu1, W. van der Wal1, F Pappa2, J. Ebbing21Delft University of Technology 2Christian-Albrechts-University of KielSince the beginning of the 2000's time-variable gravity data from GRACE has proved to be an effective method for mapping ice mass loss in Antarctica. However, Glacial Isostatic Adjustment (GIA) models are required to correct for GIA induced mass changes. While most GIA models have adopted an Earth model that only varies radially in parameters, it has long been clear that the Earth structure also varies with longitude and latitude. For this study a new global 3D GIA model has been developed within the finite element software package ABAQUS, which can be modified to operate on a spatial resolution down to 50 km locally. The model is being benchmarked against normal model models for surface loading. It will be used to investigate the effects of a 3D varying lithosphere and upper asthenosphere in Antarctica. Viscosity which will be computed from temperature estimates with laboratory based flow laws. A new 3D temperature map of the Antarctic lithosphere has been developed within ESA's GOCE+ project based on seismic data as well as on GOCE and GRACE inferred gravity gradients. Output from the GIA model with this new temperature estimates will be compared to that of 1D viscosity profiles and other recent 3D viscosity models based on seismic data. From these side to side comparisons we want to investigate the influence of the viscosity map on uplift rates and horizontal movement. Finally the results can be compared to GPS measurement to investigate the validity of all models.

  17. Transverse alignment of fibers in a periodically sheared suspension: An absorbing phase transition with a slowly-varying control parameter

    Science.gov (United States)

    Franceschini, Alexandre; Filippidi, Emmanouela; Guazzelli, Elisabeth; Pine, David

    2011-11-01

    Shearing fibers and polymer solutions tends to align particles with the flow direction. Here, we report that neutrally buoyant non-Brownian fibers subjected to oscillatory shear are observed to align perpendicular to the flow. This alignment occurs over a finite range of strain amplitudes and is governed by a subtle interplay between fiber orientation and short-range interactions through an athermal (non-equilibrium) process known as random organization. For a given strain amplitude and concentration, the mean field orientation defines a time-dependant control parameter that can drive the suspension through an absorbing phase transition. The slow drift of the control parameter does not influence the class of the transition. The measured critical threshold and exponents are consistent with the one reported for sphere suspensions. This work was supported by the NSF through the NYU MRSEC, Award DMR:0820341. Additional support was provided by a Lavoisier Fellowship (AF) and from the Onassis Foundation (EF).

  18. Visualisation of time-varying respiratory system elastance in experimental ARDS animal models.

    Science.gov (United States)

    van Drunen, Erwin J; Chiew, Yeong Shiong; Pretty, Christopher; Shaw, Geoffrey M; Lambermont, Bernard; Janssen, Nathalie; Chase, J Geoffrey; Desaive, Thomas

    2014-03-02

    Patients with acute respiratory distress syndrome (ARDS) risk lung collapse, severely altering the breath-to-breath respiratory mechanics. Model-based estimation of respiratory mechanics characterising patient-specific condition and response to treatment may be used to guide mechanical ventilation (MV). This study presents a model-based approach to monitor time-varying patient-ventilator interaction to guide positive end expiratory pressure (PEEP) selection. The single compartment lung model was extended to monitor dynamic time-varying respiratory system elastance, Edrs, within each breathing cycle. Two separate animal models were considered, each consisting of three fully sedated pure pietrain piglets (oleic acid ARDS and lavage ARDS). A staircase recruitment manoeuvre was performed on all six subjects after ARDS was induced. The Edrs was mapped across each breathing cycle for each subject. Six time-varying, breath-specific Edrs maps were generated, one for each subject. Each Edrs map shows the subject-specific response to mechanical ventilation (MV), indicating the need for a model-based approach to guide MV. This method of visualisation provides high resolution insight into the time-varying respiratory mechanics to aid clinical decision making. Using the Edrs maps, minimal time-varying elastance was identified, which can be used to select optimal PEEP. Real-time continuous monitoring of in-breath mechanics provides further insight into lung physiology. Therefore, there is potential for this new monitoring method to aid clinicians in guiding MV treatment. These are the first such maps generated and they thus show unique results in high resolution. The model is limited to a constant respiratory resistance throughout inspiration which may not be valid in some cases. However, trends match clinical expectation and the results highlight both the subject-specificity of the model, as well as significant inter-subject variability.

  19. Handling Interfaces and Time-varying Properties in Radionuclide Transport Models

    International Nuclear Information System (INIS)

    Robinson, Peter; Watson, Claire

    2010-12-01

    This report documents studies undertaken by Quintessa during 2010 in preparation for the SR-Site review that will be initiated by SSM in 2011. The studies relate to consequence analysis calculations, that is to the calculation of radionuclide release and transport if a canister is breached. A sister report documents modelling work undertaken to investigate the coupled processes relevant to copper corrosion and buffer erosion. The Q eq concept is an important part of SKB's current methodology for radionuclide transport using one-dimensional transport modelling; it is used in particular to model transport at the buffer/fracture interface. Quintessa's QPAC code has been used to investigate the Q eq approach and to explore the importance of heterogeneity in the fracture and spalling on the deposition hole surface. The key conclusions are that: - The basic approach to calculating Q eq values is sound and can be reproduced in QPAC. - The fracture resistance dominates over the diffusive resistance in the buffer except for the highest velocity cases. - Heterogeneity in the fracture, in terms of uncorrelated random variations in the fracture aperture, tends to reduce releases, so the use of a constant average aperture approach is conservative. - Narrow channels could lead to the same release as larger fractures with the same pore velocity, so a channel enhancement factor of √10 should be considered. - A spalling zone that increases the area of contact between flowing water and the buffer has the potential to increase the release significantly and changes the functional dependence of Q eq frac on the flowing velocity. Quintessa's AMBER software has previously been used to reproduce SKB's one-dimensional transport calculations and AMBER allows the use of time varying properties. This capability has been used to investigate the effects of glacial episodes on radionuclide transport. The main parameters that could be affected are sorption coefficients and flow rates. For both

  20. Optimizing incomplete sample designs for item response model parameters

    NARCIS (Netherlands)

    van der Linden, Willem J.

    Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with

  1. Applicability of common stomatal conductance models in maize under varying soil moisture conditions.

    Science.gov (United States)

    Wang, Qiuling; He, Qijin; Zhou, Guangsheng

    2018-07-01

    In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    Science.gov (United States)

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  3. Modeling the Time-Varying Nature of Student Exceptionality Classification on Achievement Growth

    Science.gov (United States)

    Nese, Joseph F. T.; Stevens, Joseph J.; Schulte, Ann C.; Tindal, Gerald; Elliott, Stephen N.

    2017-01-01

    Our purpose was to examine different approaches to modeling the time-varying nature of exceptionality classification. Using longitudinal data from one state's mathematics achievement test for 28,829 students in Grades 3 to 8, we describe the reclassification rate within special education and between general and special education, and compare four…

  4. Linearity Testing in Time-Varying Smooth Transition Autoregressive Models under Unknown Degree of Persistency

    DEFF Research Database (Denmark)

    Sandberg, Rickard; Kruse, Robinson

    Building upon the work of Vogelsang (1998) and Harvey and Leybourne (2007) we derive tests that are invariant to the order of integration when the null hypothesis of linearity is tested in time-varying smooth transition models. As heteroscedasticity may lead to spurious rejections of the null...

  5. Time-varying coefficient estimation in SURE models. Application to portfolio management

    DEFF Research Database (Denmark)

    Casas, Isabel; Ferreira, Eva; Orbe, Susan

    This paper provides a detailed analysis of the asymptotic properties of a kernel estimator for a Seemingly Unrelated Regression Equations model with time-varying coefficients (tv-SURE) under very general conditions. Theoretical results together with a simulation study differentiates the cases for...

  6. Study on Parameters Modeling of Wind Turbines Using SCADA Data

    Directory of Open Access Journals (Sweden)

    Yonglong YAN

    2014-08-01

    Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.

  7. The estimation of time-varying risks in asset pricing modelling using B-Spline method

    Science.gov (United States)

    Nurjannah; Solimun; Rinaldo, Adji

    2017-12-01

    Asset pricing modelling has been extensively studied in the past few decades to explore the risk-return relationship. The asset pricing literature typically assumed a static risk-return relationship. However, several studies found few anomalies in the asset pricing modelling which captured the presence of the risk instability. The dynamic model is proposed to offer a better model. The main problem highlighted in the dynamic model literature is that the set of conditioning information is unobservable and therefore some assumptions have to be made. Hence, the estimation requires additional assumptions about the dynamics of risk. To overcome this problem, the nonparametric estimators can also be used as an alternative for estimating risk. The flexibility of the nonparametric setting avoids the problem of misspecification derived from selecting a functional form. This paper investigates the estimation of time-varying asset pricing model using B-Spline, as one of nonparametric approach. The advantages of spline method is its computational speed and simplicity, as well as the clarity of controlling curvature directly. The three popular asset pricing models will be investigated namely CAPM (Capital Asset Pricing Model), Fama-French 3-factors model and Carhart 4-factors model. The results suggest that the estimated risks are time-varying and not stable overtime which confirms the risk instability anomaly. The results is more pronounced in Carhart’s 4-factors model.

  8. Parameter and Uncertainty Estimation in Groundwater Modelling

    DEFF Research Database (Denmark)

    Jensen, Jacob Birk

    The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... was applied.Capture zone modelling was conducted on a synthetic stationary 3-dimensional flow problem involving river, surface and groundwater flow. Simulated capture zones were illustrated as likelihood maps and compared with a deterministic capture zones derived from a reference model. The results showed...

  9. Error propagation of partial least squares for parameters optimization in NIR modeling

    Science.gov (United States)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-01

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.

  10. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    SUBGRADE MODELING. Asrat Worku. Department of ... The models give consistently larger stiffness for the Winkler springs as compared to previously proposed similar continuum-based models that ignore the lateral stresses. ...... (ν = 0.25 and E = 40MPa); (b) a medium stiff clay (ν = 0.45 and E = 50MPa). In contrast to this, ...

  11. Time-varying respiratory system elastance: a physiological model for patients who are spontaneously breathing.

    Science.gov (United States)

    Chiew, Yeong Shiong; Pretty, Christopher; Docherty, Paul D; Lambermont, Bernard; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2015-01-01

    Respiratory mechanics models can aid in optimising patient-specific mechanical ventilation (MV), but the applications are limited to fully sedated MV patients who have little or no spontaneously breathing efforts. This research presents a time-varying elastance (E(drs)) model that can be used in spontaneously breathing patients to determine their respiratory mechanics. A time-varying respiratory elastance model is developed with a negative elastic component (E(demand)), to describe the driving pressure generated during a patient initiated breathing cycle. Data from 22 patients who are partially mechanically ventilated using Pressure Support (PS) and Neurally Adjusted Ventilatory Assist (NAVA) are used to investigate the physiology relevance of the time-varying elastance model and its clinical potential. E(drs) of every breathing cycle for each patient at different ventilation modes are presented for comparison. At the start of every breathing cycle initiated by patient, E(drs) is 25 cmH2Os/l and thus can be used as an acute respiratory distress syndrome (ARDS) severity indicator. The E(drs) model captures unique dynamic respiratory mechanics for spontaneously breathing patients with respiratory failure. The model is fully general and is applicable to both fully controlled and partially assisted MV modes.

  12. Time-varying respiratory system elastance: a physiological model for patients who are spontaneously breathing.

    Directory of Open Access Journals (Sweden)

    Yeong Shiong Chiew

    Full Text Available BACKGROUND: Respiratory mechanics models can aid in optimising patient-specific mechanical ventilation (MV, but the applications are limited to fully sedated MV patients who have little or no spontaneously breathing efforts. This research presents a time-varying elastance (E(drs model that can be used in spontaneously breathing patients to determine their respiratory mechanics. METHODS: A time-varying respiratory elastance model is developed with a negative elastic component (E(demand, to describe the driving pressure generated during a patient initiated breathing cycle. Data from 22 patients who are partially mechanically ventilated using Pressure Support (PS and Neurally Adjusted Ventilatory Assist (NAVA are used to investigate the physiology relevance of the time-varying elastance model and its clinical potential. E(drs of every breathing cycle for each patient at different ventilation modes are presented for comparison. RESULTS: At the start of every breathing cycle initiated by patient, E(drs is 25 cmH2Os/l and thus can be used as an acute respiratory distress syndrome (ARDS severity indicator. CONCLUSION: The E(drs model captures unique dynamic respiratory mechanics for spontaneously breathing patients with respiratory failure. The model is fully general and is applicable to both fully controlled and partially assisted MV modes.

  13. Modeling and Analysis of a Piezoelectric Energy Harvester with Varying Cross-Sectional Area

    Directory of Open Access Journals (Sweden)

    Maiara Rosa

    2014-01-01

    Full Text Available This paper reports on the modeling and on the experimental verification of electromechanically coupled beams with varying cross-sectional area for piezoelectric energy harvesting. The governing equations are formulated using the Rayleigh-Ritz method and Euler-Bernoulli assumptions. A load resistance is considered in the electrical domain for the estimate of the electric power output of each geometric configuration. The model is first verified against the analytical results for a rectangular bimorph with tip mass reported in the literature. The experimental verification of the model is also reported for a tapered bimorph cantilever with tip mass. The effects of varying cross-sectional area and tip mass on the electromechanical behavior of piezoelectric energy harvesters are also discussed. An issue related to the estimation of the optimal load resistance (that gives the maximum power output on beam shape optimization problems is also discussed.

  14. New Inference Procedures for Semiparametric Varying-Coefficient Partially Linear Cox Models

    Directory of Open Access Journals (Sweden)

    Yunbei Ma

    2014-01-01

    Full Text Available In biomedical research, one major objective is to identify risk factors and study their risk impacts, as this identification can help clinicians to both properly make a decision and increase efficiency of treatments and resource allocation. A two-step penalized-based procedure is proposed to select linear regression coefficients for linear components and to identify significant nonparametric varying-coefficient functions for semiparametric varying-coefficient partially linear Cox models. It is shown that the penalized-based resulting estimators of the linear regression coefficients are asymptotically normal and have oracle properties, and the resulting estimators of the varying-coefficient functions have optimal convergence rates. A simulation study and an empirical example are presented for illustration.

  15. From calls to communities: a model for time-varying social networks

    Science.gov (United States)

    Laurent, Guillaume; Saramäki, Jari; Karsai, Márton

    2015-11-01

    Social interactions vary in time and appear to be driven by intrinsic mechanisms that shape the emergent structure of social networks. Large-scale empirical observations of social interaction structure have become possible only recently, and modelling their dynamics is an actual challenge. Here we propose a temporal network model which builds on the framework of activity-driven time-varying networks with memory. The model integrates key mechanisms that drive the formation of social ties - social reinforcement, focal closure and cyclic closure, which have been shown to give rise to community structure and small-world connectedness in social networks. We compare the proposed model with a real-world time-varying network of mobile phone communication, and show that they share several characteristics from heterogeneous degrees and weights to rich community structure. Further, the strong and weak ties that emerge from the model follow similar weight-topology correlations as real-world social networks, including the role of weak ties.

  16. Effects of gluten-free breads, with varying functional supplements, on the biochemical parameters and antioxidant status of rat serum.

    Science.gov (United States)

    Świeca, Michał; Reguła, Julita; Suliburska, Joanna; Złotek, Urszula; Gawlik-Dziki, Urszula

    2015-09-01

    This paper examines the effects of gluten-free bread enriched with functional ingredients (milk powder, poppy, sunflower and pumpkin seeds, egg yolk, carum, hazel nuts and amaranth) on the morphological and biochemical parameters and antioxidant status of rats serum. Rats were provided test diets--gluten-free breads and water ad libitum. After 14 days, the animals were weighed and killed. A hazel nut-amaranth bread diet significantly increased the level of thrombocytes when compared to control bread. A mixed bread diet significantly decreased cholesterol levels in rats. All fortified breads decreased triglyceride levels and alanine transaminase activity and caused an increase in antiradical activity of the serum. In rats fed with poppy-milk bread, milk-seed bread and mixed bread, a marked decrease in superoxide dismutase activity was found. Enriched breads reduced the levels of triglyceride and improved the antiradical properties of serum, although the physiological relevance of this needs to be confirmed by human studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Identifying the connective strength between model parameters and performance criteria

    Directory of Open Access Journals (Sweden)

    B. Guse

    2017-11-01

    Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria

  18. Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes.

    Science.gov (United States)

    Voelkle, Manuel C; Oud, Johan H L

    2013-02-01

    When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem. © 2012 The British Psychological Society.

  19. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  20. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2016-01-01

    A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests...

  1. Estimation of Parameters in Latent Class Models with Constraints on the Parameters.

    Science.gov (United States)

    Paulson, James A.

    This paper reviews the application of the EM Algorithm to marginal maximum likelihood estimation of parameters in the latent class model and extends the algorithm to the case where there are monotone homogeneity constraints on the item parameters. It is shown that the EM algorithm can be used to obtain marginal maximum likelihood estimates of the…

  2. A river water quality model for time varying BOD discharge concentration

    Directory of Open Access Journals (Sweden)

    Oppenheimer Seth F.

    1999-01-01

    Full Text Available We consider a model for biochemical oxygen demand (BOD in a semi-infinite river where the BOD is prescribed by a time varying function at the left endpoint. That is, we study the problem with a time varying boundary loading. We obtain the well-posedness for the model when the boundary loading is smooth in time. We also obtain various qualitative results such as ordering, positivity, and boundedness. Of greatest interest, we show that a periodic loading function admits a unique asymptotically attracting periodic solution. For non-smooth loading functions, we obtain weak solutions. Finally, for certain special cases, we show how to obtain explicit solutions in the form of infinite series.

  3. The Design and Its Application in Secure Communication and Image Encryption of a New Lorenz-Like System with Varying Parameter

    Directory of Open Access Journals (Sweden)

    Lilian Huang

    2016-01-01

    Full Text Available A new Lorenz-like chaotic system with varying parameter is proposed by adding a state feedback function. The structure of the new designed system is simple and has more complex dynamic behaviors. The chaos behavior of the new system is studied by theoretical analysis and numerical simulation. And the bifurcation diagram shows a chaos-cycle-chaos evolution when the new parameter changes. Then a new synchronization scheme by a single state variable drive is given based on the new system and a chaotic parameter modulation digital secure communication system is also constructed. The results of simulation demonstrate that the new proposed system could be well applied in secure communication. Otherwise, based on the new system, the encryption and decryption of image could be achieved also.

  4. Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes

    Science.gov (United States)

    He, Minxue; Hogue, Terri S.; Franz, Kristie J.; Margulis, Steven A.; Vrugt, Jasper A.

    2011-01-01

    The National Weather Service (NWS) uses the SNOW17 model to forecast snow accumulation and ablation processes in snow-dominated watersheds nationwide. Successful application of the SNOW17 relies heavily on site-specific estimation of model parameters. The current study undertakes a comprehensive sensitivity and uncertainty analysis of SNOW17 model parameters using forcing and snow water equivalent (SWE) data from 12 sites with differing meteorological and geographic characteristics. The Generalized Sensitivity Analysis and the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm are utilized to explore the parameter space and assess model parametric and predictive uncertainty. Results indicate that SNOW17 parameter sensitivity and uncertainty generally varies between sites. Of the six hydroclimatic characteristics studied, only air temperature shows strong correlation with the sensitivity and uncertainty ranges of two parameters, while precipitation is highly correlated with the uncertainty of one parameter. Posterior marginal distributions of two parameters are also shown to be site-dependent in terms of distribution type. The SNOW17 prediction ensembles generated by the DREAM-derived posterior parameter sets contain most of the observed SWE. The proposed uncertainty analysis provides posterior parameter information on parameter uncertainty and distribution types that can serve as a foundation for a data assimilation framework for hydrologic models.

  5. Parameter determination for singlet oxygen modeling of BPD-mediated PDT

    Science.gov (United States)

    McMillan, Dayton D.; Chen, Daniel; Kim, Michele M.; Liang, Xing; Zhu, Timothy C.

    2013-03-01

    Photodynamic therapy (PDT) offers a cancer treatment modality capable of providing minimally invasive localized tumor necrosis. To accurately predict PDT treatment outcome based on pre-treatment patient specific parameters, an explicit dosimetry model is used to calculate apparent reacted 1O2 concentration ([1O2]rx) at varied radial distances from the activating light source inserted into tumor tissue and apparent singlet oxygen threshold concentration for necrosis ([1O2]rx, sd) for type-II PDT photosensitizers. Inputs into the model include a number of photosensitizer independent parameters as well as photosensitizer specific photochemical parameters ξ σ, and β. To determine the specific photochemical parameters of benzoporphyrin derivative monoacid A (BPD), mice were treated with BPDPDT with varied light source strengths and treatment times. All photosensitizer independent inputs were assessed pre-treatment and average necrotic radius in treated tissue was determined post-treatment. Using the explicit dosimetry model, BPD specific ξ σ, and β photochemical parameters were determined which estimated necrotic radii similar to those observed in initial BPD-PDT treated mice using an optimization algorithm that minimizes the difference between the model and that of the measurements. Photochemical parameters for BPD are compared with those of other known photosensitizers, such as Photofrin. The determination of these BPD specific photochemical parameters provides necessary data for predictive treatment outcome in clinical BPD-PDT using the explicit dosimetry model.

  6. Incremental parameter estimation of kinetic metabolic network models

    Directory of Open Access Journals (Sweden)

    Jia Gengjie

    2012-11-01

    Full Text Available Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE. Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified. Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates exceeds that of metabolites (chemical species. Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.

  7. SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size

    Science.gov (United States)

    Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang

    2017-10-01

    Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028

  8. Using video modeling with substitutable loops to teach varied play to children with autism.

    Science.gov (United States)

    Dupere, Sally; MacDonald, Rebecca P F; Ahearn, William H

    2013-01-01

    Children with autism often engage in repetitive play with little variation in the actions performed or items used. This study examined the use of video modeling with scripted substitutable loops on children's pretend play with trained and untrained characters. Three young children with autism were shown a video model of scripted toy play that included a substitutable loop that allowed various characters to perform the same actions and vocalizations. Three characters were modeled with the substitutable loop during training sessions, and 3 additional characters were present in the video but never modeled. Following video modeling, all the participants incorporated untrained characters into their play, but the extent to which they did so varied. © Society for the Experimental Analysis of Behavior.

  9. SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size

    International Nuclear Information System (INIS)

    Dong Suyalatu; Deng Yan-Bin; Huang Yong-Chang

    2017-01-01

    Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network . (paper)

  10. Cox models with dynamic ridge penalties on time-varying effects of the covariates.

    Science.gov (United States)

    Perperoglou, Aris

    2014-01-15

    Analysis of long-term follow-up survival studies require more sophisticated approaches than the proportional hazards model. To account for the dynamic behaviour of fixed covariates, penalized Cox models can be employed in models with interactions of the covariates and known time functions. In this work, I discuss some of the suggested methods and emphasize on the use of a ridge penalty in survival models. I review different strategies for choosing an optimal penalty weight and argue for the use of the computationally efficient restricted maximum likelihood (REML)-type method. A ridge penalty term can be subtracted from the likelihood when modelling time-varying effects in order to control the behaviour of the time functions. I suggest using flexible time functions such as B-splines and constrain the behaviour of these by adding proper penalties. I present the basic methods and illustrate different penalty weights in two different datasets. Copyright © 2013 John Wiley & Sons, Ltd.

  11. An approach to adjustment of relativistic mean field model parameters

    Directory of Open Access Journals (Sweden)

    Bayram Tuncay

    2017-01-01

    Full Text Available The Relativistic Mean Field (RMF model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs of 58Ni and 208Pb have been found in agreement with the literature values.

  12. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  13. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model

    International Nuclear Information System (INIS)

    Barnes, M.J.; Brade, T.K.; MacKenzie, A.R.; Whyatt, J.D.; Carruthers, D.J.; Stocker, J.; Cai, X.; Hewitt, C.N.

    2014-01-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. -- Highlights: • Spatially variable roughness improved performance of an operational model. • Scenario modelling explored effect of reduced roughness on air pollution. • Reducing surface roughness can increase modelled ground-level pollution. • Damped vertical mixing outweighs increased horizontal advection in model study. • Result should hold for any model with a land-surface coupling based on roughness. -- Spatially varying roughness improves model simulations of urban air pollutant dispersion. Reducing roughness does not always decrease ground-level pollution concentrations

  14. Lumped parameter models for the interpretation of environmental tracer data

    International Nuclear Information System (INIS)

    Maloszewski, P.; Zuber, A.

    1996-01-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs

  15. Modelling of coupled heat and electric field distribution during ohmic heating of solid foods with varying sizes

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Bøknæs, Niels; Nielsen, P.L.

    Heat treatment is an important process in the manufacturing of a wide range of solid foods. When food products of different sizes (e.g. cooking of shrimps) are processed with the conventional thermal processes, the products are heated unevenly where the small bodies are overcooked and the large...... bodies are undercooked. Ohmic heating (OH) is one of the novel technologies potentially solving this problem. However, the ability to predict and optimize the resulting temperature profile in solid foods processed by OH rests on a better understanding of the fundamental aspects of OH and of the physical...... factors leading to variations and uncertainties in prediction of the right process parameters. The current work is focused on modelling of OH of solid food pieces of varying sizes cooked in one batch. A 3D mathematical model of coupled heat transfer and electric field during OH of shrimps has been...

  16. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  17. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  18. Exploring the interdependencies between parameters in a material model.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Fermen-Coker, Muge

    2014-01-01

    A method is investigated to reduce the number of numerical parameters in a material model for a solid. The basis of the method is to detect interdependencies between parameters within a class of materials of interest. The method is demonstrated for a set of material property data for iron and steel using the Johnson-Cook plasticity model.

  19. Sensitivity of chemical cement alteration : modeling the effect of parameter uncertainty and varying subsurface conditions

    NARCIS (Netherlands)

    Wasch, L.J.; Koenen, M.; Wollenweber, J.; Tambach, T.J.

    2015-01-01

    To ensure the safety of a CO 2 storage site and containment of CO 2 in the subsurface, the integrity of wellbore materials must be maintained. Field and laboratory studies have shown CO 2 -induced reactivity of wellbore cement, but these results have to be extrapolated to the extended time span of

  20. Marginalized adaptive particle filtering for nonlinear models with unknown time-varying noise parameters

    Czech Academy of Sciences Publication Activity Database

    Ökzan, E.; Šmídl, Václav; Saha, S.; Lundquist, C.; Gustafsson, F.

    2013-01-01

    Roč. 49, č. 6 (2013), s. 1566-1575 ISSN 0005-1098 R&D Projects: GA ČR(CZ) GAP102/11/0437 Keywords : Unknown Noise Statistics * Adaptive Filtering * Marginalized Particle Filter * Bayesian Conjugate prior Subject RIV: BC - Control Systems Theory Impact factor: 3.132, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/smidl-0393047.pdf

  1. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  2. Modeling passive power generation in a temporally-varying temperature environment via thermoelectrics

    International Nuclear Information System (INIS)

    Bomberger, Cory C.; Attia, Peter M.; Prasad, Ajay K.; Zide, Joshua M.O.

    2013-01-01

    This paper presents a model to predict the power generation of a thermoelectric generator in a temporally-varying temperature environment. The model employs a thermoelectric plate sandwiched between two different heat exchangers to convert a temporal temperature gradient in the environment to a spatial temperature gradient within the device suitable for thermoelectric power generation. The two heat exchangers are designed such that their temperatures respond to a change in the environment's temperature at different rates which sets up a temperature differential across the thermoelectric and results in power generation. In this model, radiative and convective heat transfer between the device and its surroundings, and heat flow between the two heat exchangers across the thermoelectric plate are considered. The model is simulated for power generation in Death Valley, CA during the summer using the diurnal variation of air temperature and radiative exchange with the sun and night sky as heat sources and sinks. The optimization of power generation via scaling the device size is discussed. Additional applications of this device are considered. -- Highlights: • Thermoelectric power generation with time-varying temperature is modeled. • The ability to generate power without a natural spatial gradient is demonstrated. • Time dependent heat-transfer and differential heat flow rates are considered. • Optimization of power generation via scaling the device size is discussed

  3. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  4. Brownian motion model with stochastic parameters for asset prices

    Science.gov (United States)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  5. Estimation of shape model parameters for 3D surfaces

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen

    2008-01-01

    is applied to a database of 3D surfaces from a section of the porcine pelvic bone extracted from 33 CT scans. A leave-one-out validation shows that the parameters of the first 3 modes of the shape model can be predicted with a mean difference within [-0.01,0.02] from the true mean, with a standard deviation......Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D...... surfaces using distance maps, which enables the estimation of model parameters without the requirement of point correspondence. For applications with acquisition limitations such as speed and cost, this formulation enables the fitting of a statistical shape model to arbitrarily sampled data. The method...

  6. Numerical modeling of shoreline undulations part 2: Varying wave climate and comparison with observations

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg; Fredsøe, Jørgen

    2013-01-01

    The present work applies the shoreline model from part 1 to a real environment. In part 1, a numerical shoreline model which could handle the development of arbitrarily shaped shorelines was applied to consider the development of shoreline undulations on an unstable shoreline exposed to incoming...... waves with a directional spreading. In this paper, these findings are extended to firstly include the effect of a varying wave climate on the shoreline morphology and secondly, to tune the model to two naturally occurring shorelines. It is found that the effect of a variable wave climate is to slow down...... the development of the morphology and in some cases to inhibit the formation of shore-parallel spits at the crest of the undulations. On one of the natural shorelines, the west coast of Namibia, the shore is exposed to very obliquely waves from one main direction. Here, the shoreline model is able to describe...

  7. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  8. GOCO05c: A New Combined Gravity Field Model Based on Full Normal Equations and Regionally Varying Weighting

    Science.gov (United States)

    Fecher, T.; Pail, R.; Gruber, T.

    2017-05-01

    GOCO05c is a gravity field model computed as a combined solution of a satellite-only model and a global data set of gravity anomalies. It is resolved up to degree and order 720. It is the first model applying regionally varying weighting. Since this causes strong correlations among all gravity field parameters, the resulting full normal equation system with a size of 2 TB had to be solved rigorously by applying high-performance computing. GOCO05c is the first combined gravity field model independent of EGM2008 that contains GOCE data of the whole mission period. The performance of GOCO05c is externally validated by GNSS-levelling comparisons, orbit tests, and computation of the mean dynamic topography, achieving at least the quality of existing high-resolution models. Results show that the additional GOCE information is highly beneficial in insufficiently observed areas, and that due to the weighting scheme of individual data the spectral and spatial consistency of the model is significantly improved. Due to usage of fill-in data in specific regions, the model cannot be used for physical interpretations in these regions.

  9. Time-varying BRDFs.

    Science.gov (United States)

    Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K

    2007-01-01

    The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.

  10. Handling Qualities of Model Reference Adaptive Controllers with Varying Complexity for Pitch-Roll Coupled Failures

    Science.gov (United States)

    Schaefer, Jacob; Hanson, Curt; Johnson, Marcus A.; Nguyen, Nhan

    2011-01-01

    Three model reference adaptive controllers (MRAC) with varying levels of complexity were evaluated on a high performance jet aircraft and compared along with a baseline nonlinear dynamic inversion controller. The handling qualities and performance of the controllers were examined during failure conditions that induce coupling between the pitch and roll axes. Results from flight tests showed with a roll to pitch input coupling failure, the handling qualities went from Level 2 with the baseline controller to Level 1 with the most complex MRAC tested. A failure scenario with the left stabilator frozen also showed improvement with the MRAC. Improvement in performance and handling qualities was generally seen as complexity was incrementally added; however, added complexity usually corresponds to increased verification and validation effort required for certification. The tradeoff between complexity and performance is thus important to a controls system designer when implementing an adaptive controller on an aircraft. This paper investigates this relation through flight testing of several controllers of vary complexity.

  11. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  12. Some tests for parameter constancy in cointegrated VAR-models

    DEFF Research Database (Denmark)

    Hansen, Henrik; Johansen, Søren

    1999-01-01

    Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ...

  13. 1-D free-electron laser model without the slowly-varying approximation

    Science.gov (United States)

    Kim, Chang-Bae; Uhm, Yong-Woong; Lee, Jae-Koo

    1995-04-01

    A free-electron laser amplifier in the strong pump regime is studied without the slowly-varying envelope approximation (SVEA). A one-dimensional time-dependent code is used for numerical simulation of the evolution of the electron energy, the synchrotron phase of the electrons and the electric field of the laser. Electron-laser-facility-like parameters are used for the strong pump regime. Since the cooperation length is much smaller than the electron beam length, a steady-state solution is found to exist. Comparisons are made with the earlier results with the SVEA and the difference turns out to be negligible. It can be concluded that the SVEA can be applied to a wider class of problems than it sets out to be appropriate for.

  14. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Science.gov (United States)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  15. A boundary element model for diffraction of water waves on varying water depth

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Sanne

    1997-12-31

    In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)

  16. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...

  17. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  18. Assessing composition and structure of soft biphasic media from Kelvin-Voigt fractional derivative model parameters.

    Science.gov (United States)

    Zhang, Hong Mei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F

    2017-03-01

    Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques - ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material's fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r . Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η - E A relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties.

  19. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  20. Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver

    Science.gov (United States)

    Kang, Ling; Zhou, Liwei

    2018-02-01

    Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.

  1. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    2007-01-01

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines......-parameter models with respect to the prediction of the maximum response during excitation and the geometrical damping related to free vibrations of a footing....

  2. Specification and testing of Multiplicative Time-Varying GARCH models with applications

    DEFF Research Database (Denmark)

    Amado, Cristina; Teräsvirta, Timo

    2017-01-01

    In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smoothly...... over time. This nonstationary component is defined as a linear combination of logistic transition functions with time as the transition variable. The appropriate number of transition functions is determined by a sequence of specification tests. For that purpose, a coherent modelling strategy based...... on statistical inference is presented. It is heavily dependent on Lagrange multiplier type misspecification tests. The tests are easily implemented as they are entirely based on auxiliary regressions. Finite-sample properties of the strategy and tests are examined by simulation. The modelling strategy...

  3. Incorporating model parameter uncertainty into inverse treatment planning

    International Nuclear Information System (INIS)

    Lian Jun; Xing Lei

    2004-01-01

    Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment

  4. Modeling intensive longitudinal data with mixtures of nonparametric trajectories and time-varying effects.

    Science.gov (United States)

    Dziak, John J; Li, Runze; Tan, Xianming; Shiffman, Saul; Shiyko, Mariya P

    2015-12-01

    Behavioral scientists increasingly collect intensive longitudinal data (ILD), in which phenomena are measured at high frequency and in real time. In many such studies, it is of interest to describe the pattern of change over time in important variables as well as the changing nature of the relationship between variables. Individuals' trajectories on variables of interest may be far from linear, and the predictive relationship between variables of interest and related covariates may also change over time in a nonlinear way. Time-varying effect models (TVEMs; see Tan, Shiyko, Li, Li, & Dierker, 2012) address these needs by allowing regression coefficients to be smooth, nonlinear functions of time rather than constants. However, it is possible that not only observed covariates but also unknown, latent variables may be related to the outcome. That is, regression coefficients may change over time and also vary for different kinds of individuals. Therefore, we describe a finite mixture version of TVEM for situations in which the population is heterogeneous and in which a single trajectory would conceal important, interindividual differences. This extended approach, MixTVEM, combines finite mixture modeling with non- or semiparametric regression modeling, to describe a complex pattern of change over time for distinct latent classes of individuals. The usefulness of the method is demonstrated in an empirical example from a smoking cessation study. We provide a versatile SAS macro and R function for fitting MixTVEMs. (c) 2015 APA, all rights reserved).

  5. Estimation of Bid Curves in Power Exchanges using Time-varying Simultaneous-Equations Models

    Science.gov (United States)

    Ofuji, Kenta; Yamaguchi, Nobuyuki

    Simultaneous-equations model (SEM) is generally used in economics to estimate interdependent endogenous variables such as price and quantity in a competitive, equilibrium market. In this paper, we have attempted to apply SEM to JEPX (Japan Electric Power eXchange) spot market, a single-price auction market, using the publicly available data of selling and buying bid volumes, system price and traded quantity. The aim of this analysis is to understand the magnitude of influences to the auctioned prices and quantity from the selling and buying bids, than to forecast prices and quantity for risk management purposes. In comparison with the Ordinary Least Squares (OLS) estimation where the estimation results represent average values that are independent of time, we employ a time-varying simultaneous-equations model (TV-SEM) to capture structural changes inherent in those influences, using State Space models with Kalman filter stepwise estimation. The results showed that the buying bid volumes has that highest magnitude of influences among the factors considered, exhibiting time-dependent changes, ranging as broad as about 240% of its average. The slope of the supply curve also varies across time, implying the elastic property of the supply commodity, while the demand curve remains comparatively inelastic and stable over time.

  6. Modelling of the diffusion of pollutants in the atmosphere under varying conditions in large cultivated regions

    International Nuclear Information System (INIS)

    Wueneke, C.D.; Schultz, H.

    1975-01-01

    The most important routines of a numerical code based on the particle-in-cell-method for calculating the transport and the turbulent dispersion of inert and radio-active pollutants in the atmosphere have been programmed and have been tested successfully on the CDC computer CYBER 73/76 of the Regional Computer Centre for Niedersachsen in Hanover. Compared to the Gaussian plume model such a numerical code based on the particle-in-cell-method offers several advantages for the computation of the diffusion under varying conditions in large cultivated regions. (orig.) [de

  7. A method for model identification and parameter estimation

    International Nuclear Information System (INIS)

    Bambach, M; Heinkenschloss, M; Herty, M

    2013-01-01

    We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)

  8. Optimal parameters for the FFA-Beddoes dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Mert, M. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)

  9. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  10. Finite size scaling study of a two parameter percolation model: Constant and correlated growth

    Science.gov (United States)

    Roy, Bappaditya; Santra, S. B.

    2018-02-01

    A new percolation model of enhanced parameter space with nucleation and growth is developed taking the initial seed concentration ρ and a growth parameter g as two tunable parameters. Percolation transition is determined by the final static configurations of spanning clusters once taking uniform growth probability for all the clusters and then taking a cluster size dependent dynamic growth probability. The uniform growth probability remains constant over time and leads to a constant growth model whereas the dynamically varying growth probability leads to a correlated growth model. In the first case, the growth of a cluster will encounter partial hindrance due to the presence of other clusters whereas in the second case the growth of a larger cluster will be further suppressed in comparison to the growth of smaller clusters. A finite size scaling theory for percolation transition is developed and numerically verified for both the models. The scaling functions are found to depend on both g and ρ. At the critical growth parameter gc, the values of the critical exponents are found to be same as that of the original percolation at all values of ρ for the constant growth model whereas in the case of correlated growth model the scaling behavior deviates from ordinary percolation in the dilute limit of ρ. The constant growth model then belongs to the same universality class of percolation for a wide range of ρ whereas the correlated growth model displays a continuously varying universality class as ρ decreases towards zero.

  11. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation of struct......This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation...... response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...

  12. Tank tests to determine the effect of varying design parameters of planing-tail hulls II : effect of varying depth of step, angle of after- body keel, length of afterbody chine, and gross load

    Science.gov (United States)

    Dawson, John R; Mckann, Robert; Hay, Elizabeth S

    1946-01-01

    The second part of a series of tests made in Langley tank no. 2 to determine the effect of varying design parameters of planing-tail hulls is presented. Results are given to show the effects on resistance characteristics of varying angle of afterbody keel, depth of step, and length of afterbody chine. The effect of varying the gross load is shown for one configuration. The resistance characteristics of planing-tail hulls are compared with those of a conventional flying-boat hull. The forces on the forebody and afterbody of one configuration are compared with the forces on a conventional hull. Increasing the angle of afterbody keel had small effect on hump resistance and no effect on high-speed resistance but increased free-to-trim resistance at intermediate speeds. Increasing the depth of step increased hump resistance, had little effect on high-speed resistance, and increased free-to-trim resistance at intermediate speeds. Omitting the chines on the forward 25 percent of the afterbody had no appreciable effect on resistance. Omitting 70 percent of the chine length had almost no effect on maximum resistance but broadened the hump and increased spray around the afterbody. Load-resistance ratio at the hump decreased more rapidly with increasing load coefficient for the planing-tail hull than for the representative conventional hull, although the load-resistance ratio at the hump was greater for the planing-tail hull than for the conventional hull throughout the range of loads tested. At speeds higher than hump speed, load-resistance ratio for the planing-tail hull was a maximum at a particular gross load and was slightly less at heavier and lighter gross loads. The planing-tail hull was found to have lower resistance than the conventional hull at both the hump and at high speeds, but at intermediate speeds there was little difference. The lower hump resistance of the planing-tail hull was attributed to the ability of the afterbody to carry a greater percentage of the

  13. A time-varying subjective quality model for mobile streaming videos with stalling events

    Science.gov (United States)

    Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.

    2015-09-01

    Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.

  14. Parameter estimation for groundwater models under uncertain irrigation data

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  15. Transformations among CE–CVM model parameters for ...

    Indian Academy of Sciences (India)

    Unknown

    parameters which exclusively represent interactions of the higher order systems. Such a procedure is presen- ted in detail in this communication. Furthermore, the details of transformations required to express the model parameters in one basis from those defined in another basis for the same system are also presented.

  16. Transformations among CE–CVM model parameters for ...

    Indian Academy of Sciences (India)

    ... of parameters which exclusively represent interactions of the higher order systems. Such a procedure is presented in detail in this communication. Furthermore, the details of transformations required to express the model parameters in one basis from those defined in another basis for the same system are also presented.

  17. Prior distributions for item parameters in IRT models

    NARCIS (Netherlands)

    Matteucci, M.; S. Mignani, Prof.; Veldkamp, Bernard P.

    2012-01-01

    The focus of this article is on the choice of suitable prior distributions for item parameters within item response theory (IRT) models. In particular, the use of empirical prior distributions for item parameters is proposed. Firstly, regression trees are implemented in order to build informative

  18. Different motor models based on parameter variation using method of genetic algorithms

    OpenAIRE

    Sarac, Vasilija; Cvetkovski, Goga

    2010-01-01

    Three new motor models of Single Phase Shade Pole Motor were developed using the method of genetic agoithms for optimisation purposes of motor design. In each of newly developed motor models number of varied parameters was gradually increased which results in gradual increase of electroamgnetic torque as target function for optimisation. Increase of electromagnetic torque was followed by the increase of efficiency factor. Finite Element Method Analysis was performed in order to be obtained ma...

  19. Proportional hazards model with varying coefficients for length-biased data.

    Science.gov (United States)

    Zhang, Feipeng; Chen, Xuerong; Zhou, Yong

    2014-01-01

    Length-biased data arise in many important applications including epidemiological cohort studies, cancer prevention trials and studies of labor economics. Such data are also often subject to right censoring due to loss of follow-up or the end of study. In this paper, we consider a proportional hazards model with varying coefficients for right-censored and length-biased data, which is used to study the interact effect nonlinearly of covariates with an exposure variable. A local estimating equation method is proposed for the unknown coefficients and the intercept function in the model. The asymptotic properties of the proposed estimators are established by using the martingale theory and kernel smoothing techniques. Our simulation studies demonstrate that the proposed estimators have an excellent finite-sample performance. The Channing House data is analyzed to demonstrate the applications of the proposed method.

  20. Retrospective forecast of ETAS model with daily parameters estimate

    Science.gov (United States)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  1. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  2. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Science.gov (United States)

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  3. Stochastic hyperelastic modeling considering dependency of material parameters

    Science.gov (United States)

    Caylak, Ismail; Penner, Eduard; Dridger, Alex; Mahnken, Rolf

    2018-03-01

    This paper investigates the uncertainty of a hyperelastic model by treating random material parameters as stochastic variables. For its stochastic discretization a polynomial chaos expansion (PCE) is used. An important aspect in our work is the consideration of stochastic dependencies in the stochastic modeling of Ogden's material model. To this end, artificial experiments are generated using the auto-regressive moving average process based on real experiments. The parameter identification for all data provides statistics of Ogden's material parameters, which are subsequently used for stochastic modeling. Stochastic dependencies are incorporated into the PCE using a Nataf transformation from dependent distributed random variables to independent standard normal distributed ones. The representative numerical example shows that our proposed method adequately takes into account the stochastic dependencies of Ogden's material parameters.

  4. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    by the Armstrong–Frederick model, contained as a special case of the present model for a particular choice of the shape parameter. In contrast to previous work, where shaping the stress-strain loops is derived from multiple internal stress states, this effect is here represented by a single parameter......The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  5. Parameter Estimation for the Thurstone Case III Model.

    Science.gov (United States)

    Mackay, David B.; Chaiy, Seoil

    1982-01-01

    The ability of three estimation criteria to recover parameters of the Thurstone Case V and Case III models from comparative judgment data was investigated via Monte Carlo techniques. Significant differences in recovery are shown to exist. (Author/JKS)

  6. Improved parameter estimation for hydrological models using weighted object functions

    NARCIS (Netherlands)

    Stein, A.; Zaadnoordijk, W.J.

    1999-01-01

    This paper discusses the sensitivity of calibration of hydrological model parameters to different objective functions. Several functions are defined with weights depending upon the hydrological background. These are compared with an objective function based upon kriging. Calibration is applied to

  7. Partial sum approaches to mathematical parameters of some growth models

    Science.gov (United States)

    Korkmaz, Mehmet

    2016-04-01

    Growth model is fitted by evaluating the mathematical parameters, a, b and c. In this study, the method of partial sums were used. For finding the mathematical parameters, firstly three partial sums were used, secondly four partial sums were used, thirdly five partial sums were used and finally N partial sums were used. The purpose of increasing the partial decomposition is to produce a better phase model which gives a better expected value by minimizing error sum of squares in the interval used.

  8. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all....... For a comparison the parameters are also estimated by an output error method, where the sum of squared simulation error is minimized. The former methodology is optimal for short-term prediction whereas the latter is optimal for simulations. Hence, depending on the purpose it is possible to select whether...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  9. Luminescence model with quantum impact parameter for low energy ions

    CERN Document Server

    Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S

    2002-01-01

    We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.

  10. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rasmuson; K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters

  11. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  12. SPOTting Model Parameters Using a Ready-Made Python Package.

    Directory of Open Access Journals (Sweden)

    Tobias Houska

    Full Text Available The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool, an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI. We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  13. Simultaneous inference for model averaging of derived parameters

    DEFF Research Database (Denmark)

    Jensen, Signe Marie; Ritz, Christian

    2015-01-01

    Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...

  14. Updating parameters of the chicken processing line model

    DEFF Research Database (Denmark)

    Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna

    2010-01-01

    A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate performance of this method in updating parameters...... of the chicken processing line model....

  15. Lumped-Parameter Models for Windturbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...

  16. Parameter estimation and model selection in computational biology.

    Directory of Open Access Journals (Sweden)

    Gabriele Lillacci

    2010-03-01

    Full Text Available A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.

  17. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters.

    Science.gov (United States)

    Liu, Fei; Heiner, Monika; Yang, Ming

    2016-01-01

    Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information.

  18. Using the power balance model to simulate cross-country skiing on varying terrain

    Directory of Open Access Journals (Sweden)

    Moxnes JF

    2014-05-01

    Full Text Available John F Moxnes,1 Øyvind Sandbakk,2 Kjell Hausken31Department for Protection, Norwegian Defence Research Establishment, Kjeller, Norway; 2Center for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; 3Faculty of Social Sciences, University of Stavanger, Stavanger, NorwayAbstract: The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier’s locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier’s position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.Keywords: air drag, efficiency, friction coefficient, speed, locomotive power

  19. Rangeland Livelihood Strategies under Varying Climate Regimes: Model Insights from Southern Kenya

    Directory of Open Access Journals (Sweden)

    Rebecca Kariuki

    2018-04-01

    Full Text Available Rangelands throughout sub-Saharan Africa are currently undergoing two major pressures: climate change (through altered rainfall and seasonality patterns and habitat fragmentation (brought by land use change driven by land demand for agriculture and conservation. Here we explore these dimensions, investigating the impact of land use change decisions, by pastoralists in southern Kenya rangelands, on human well-being and animal densities using an agent-based model. The constructed agent-based model uses input biomass data simulated by the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS dynamic vegetation model and parameterized with data from literature. Scenarios of land use change under different rainfall years, land tenure types and levels of wildlife conservation support were simulated. Reflecting reality, our results show livestock grazing as the predominant land use that changes with precipitation and land tenure leading to varying livelihood strategies. For example, agriculture is the most common livelihood in wet years and conservation levels increase with increasing support of wildlife conservation initiatives. Our model demonstrates the complex and multiple interactions between pastoralists, land management and the environment. We highlight the importance of understanding the conditions driving the sustainability of semi-arid rangelands and the communities they support, and the role of external actors, such as wildlife conservation investors, in East Africa.

  20. Global Sensitivity Analysis for Identifying Important Parameters of Nitrogen Nitrification and Denitrification under Model and Scenario Uncertainties

    Science.gov (United States)

    Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.

    2017-12-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.

  1. Effects of model schematisation, geometry and parameter values on urban flood modelling.

    Science.gov (United States)

    Vojinovic, Z; Seyoum, S D; Mwalwaka, J M; Price, R K

    2011-01-01

    One-dimensional (1D) hydrodynamic models have been used as a standard industry practice for urban flood modelling work for many years. More recently, however, model formulations have included a 1D representation of the main channels and a 2D representation of the floodplains. Since the physical process of describing exchanges of flows with the floodplains can be represented in different ways, the predictive capability of different modelling approaches can also vary. The present paper explores effects of some of the issues that concern urban flood modelling work. Impacts from applying different model schematisation, geometry and parameter values were investigated. The study has mainly focussed on exploring how different Digital Terrain Model (DTM) resolution, presence of different features on DTM such as roads and building structures and different friction coefficients affect the simulation results. Practical implications of these issues are analysed and illustrated in a case study from St Maarten, N.A. The results from this study aim to provide users of numerical models with information that can be used in the analyses of flooding processes in urban areas.

  2. Development of new model for high explosives detonation parameters calculation

    Directory of Open Access Journals (Sweden)

    Jeremić Radun

    2012-01-01

    Full Text Available The simple semi-empirical model for calculation of detonation pressure and velocity for CHNO explosives has been developed, which is based on experimental values of detonation parameters. Model uses Avakyan’s method for determination of detonation products' chemical composition, and is applicable in wide range of densities. Compared with the well-known Kamlet's method and numerical model of detonation based on BKW EOS, the calculated values from proposed model have significantly better accuracy.

  3. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    Science.gov (United States)

    Martini, Johannes W. R.; Habeck, Michael

    2015-03-01

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

  4. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    International Nuclear Information System (INIS)

    Martini, Johannes W. R.; Habeck, Michael

    2015-01-01

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest

  5. Description of signature scales in a floating wind turbine model wake subjected to varying turbulence intensity

    Science.gov (United States)

    Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon

    2017-11-01

    The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.

  6. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])

  7. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  8. Interacting viscous entropy-corrected holographic scalar field models of dark energy with time-varying G in modified FRW cosmology

    International Nuclear Information System (INIS)

    Adabi, Farzin; Karami, Kayoomars; Felegary, Fereshte; Azarmi, Zohre

    2012-01-01

    We study the entropy-corrected version of the holographic dark energy (HDE) model in the framework of modified Friedmann-Robertson-Walker cosmology. We consider a non-flat universe filled with an interacting viscous entropy-corrected HDE (ECHDE) with dark matter. Also included in our model is the case of the variable gravitational constant G. We obtain the equation of state and the deceleration parameters of the interacting viscous ECHDE. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting viscous ECHDE model with time-varying G. (research papers)

  9. Parameter uncertainty analysis of a biokinetic model of caesium

    International Nuclear Information System (INIS)

    Li, W.B.; Oeh, U.; Klein, W.; Blanchardon, E.; Puncher, M.; Leggett, R.W.; Breustedt, B.; Nosske, D.; Lopez, M.A.

    2015-01-01

    Parameter uncertainties for the biokinetic model of caesium (Cs) developed by Leggett et al. were inventoried and evaluated. The methods of parameter uncertainty analysis were used to assess the uncertainties of model predictions with the assumptions of model parameter uncertainties and distributions. Furthermore, the importance of individual model parameters was assessed by means of sensitivity analysis. The calculated uncertainties of model predictions were compared with human data of Cs measured in blood and in the whole body. It was found that propagating the derived uncertainties in model parameter values reproduced the range of bioassay data observed in human subjects at different times after intake. The maximum ranges, expressed as uncertainty factors (UFs) (defined as a square root of ratio between 97.5. and 2.5. percentiles) of blood clearance, whole-body retention and urinary excretion of Cs predicted at earlier time after intake were, respectively: 1.5, 1.0 and 2.5 at the first day; 1.8, 1.1 and 2.4 at Day 10 and 1.8, 2.0 and 1.8 at Day 100; for the late times (1000 d) after intake, the UFs were increased to 43, 24 and 31, respectively. The model parameters of transfer rates between kidneys and blood, muscle and blood and the rate of transfer from kidneys to urinary bladder content are most influential to the blood clearance and to the whole-body retention of Cs. For the urinary excretion, the parameters of transfer rates from urinary bladder content to urine and from kidneys to urinary bladder content impact mostly. The implication and effect on the estimated equivalent and effective doses of the larger uncertainty of 43 in whole-body retention in the later time, say, after Day 500 will be explored in a successive work in the framework of EURADOS. (authors)

  10. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception

  11. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  12. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M. A.

    2003-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values

  13. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-06-27

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699

  14. A Fragment-Cloud Approach for Modeling Atmospheric Breakup of Asteroids with Varied Internal Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; NASA Engineering Risk Assessment Team, NASA Asteroid Threat Assessment Project

    2016-10-01

    As an asteroid descends toward Earth, it deposits energy in the atmosphere through aerodynamic drag and ablation. Asteroid impact risk assessments rely on energy deposition estimates to predict blast overpressures and ground damage that may result from an airburst, such as the one that occurred over Chelyabinsk, Russia in 2013. The rates and altitudes at which energy is deposited along the entry trajectory depend upon how the bolide fragments, which in turn depends upon its internal structure and composition. In this work, an analytic asteroid fragmentation model has been developed to model the atmospheric breakup and resulting energy deposition of asteroids with a range of internal structures. The modeling approach combines successive fragmentation of larger independent pieces with aggregate debris clouds released with each fragmentation event. The model can vary the number and masses of fragments produced, the amount of mass released as debris clouds, and the size-strength scaling used to increase the robustness of smaller fragments. The initial asteroid body can be seeded with a distribution of independent fragment sizes amid a remaining debris mass to represent loose rubble pile conglomerations, or can be defined as a monolith with an outer regolith layer. This approach enables the model to represent a range of breakup behaviors and reproduce detailed energy deposition features such as multiple flares due to successive burst events, high-altitude regolith blow-off, or initial disruption of rubble piles followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of ground damage to potential variations in asteroid structure.

  15. Procedures for parameter estimates of computational models for localized failure

    NARCIS (Netherlands)

    Iacono, C.

    2007-01-01

    In the last years, many computational models have been developed for tensile fracture in concrete. However, their reliability is related to the correct estimate of the model parameters, not all directly measurable during laboratory tests. Hence, the development of inverse procedures is needed, that

  16. Geometry parameters for musculoskeletal modelling of the shoulder system

    NARCIS (Netherlands)

    Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H

    A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of

  17. Hybrid modeling for dynamic analysis of cable-pulley systems with time-varying length cable and its application

    Science.gov (United States)

    Wang, Jing; Qi, Zhaohui; Wang, Gang

    2017-10-01

    The dynamic analysis of cable-pulley systems is investigated in this paper, where the time-varying length characteristic of the cable as well as the coupling motion between the cable and the pulleys are considered. The dynamic model for cable-pulley systems are presented based on the principle of virtual power. Firstly, the cubic spline interpolation is adopted for modeling the flexible cable elements and the virtual 1powers of tensile strain, inertia and gravity forces on the cable are formulated. Then, the coupled motions between the cable and the movable or fixed pulley are described by the input and output contact points, based on the no-slip assumption and the spatial description. The virtual powers of inertia, gravity and applied forces on the contact segment of the cable, the movable and fixed pulleys are formulated. In particular, the internal node degrees of freedom of spline cable elements are reduced, which results in that only the independent description parameters of the nodes connected to the pulleys are included in the final governing dynamic equations. At last, two cable-pulley lifting mechanisms are considered as demonstrative application examples where the vibration of the lifting process is investigated. The comparison with ADAMS models is given to prove the validity of the proposed method.

  18. A software for parameter estimation in dynamic models

    Directory of Open Access Journals (Sweden)

    M. Yuceer

    2008-12-01

    Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.

  19. An approach to measure parameter sensitivity in watershed hydrological modelling

    Science.gov (United States)

    Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the...

  20. Improving the realism of hydrologic model through multivariate parameter estimation

    Science.gov (United States)

    Rakovec, Oldrich; Kumar, Rohini; Attinger, Sabine; Samaniego, Luis

    2017-04-01

    Increased availability and quality of near real-time observations should improve understanding of predictive skills of hydrological models. Recent studies have shown the limited capability of river discharge data alone to adequately constrain different components of distributed model parameterizations. In this study, the GRACE satellite-based total water storage (TWS) anomaly is used to complement the discharge data with an aim to improve the fidelity of mesoscale hydrologic model (mHM) through multivariate parameter estimation. The study is conducted in 83 European basins covering a wide range of hydro-climatic regimes. The model parameterization complemented with the TWS anomalies leads to statistically significant improvements in (1) discharge simulations during low-flow period, and (2) evapotranspiration estimates which are evaluated against independent (FLUXNET) data. Overall, there is no significant deterioration in model performance for the discharge simulations when complemented by information from the TWS anomalies. However, considerable changes in the partitioning of precipitation into runoff components are noticed by in-/exclusion of TWS during the parameter estimation. A cross-validation test carried out to assess the transferability and robustness of the calibrated parameters to other locations further confirms the benefit of complementary TWS data. In particular, the evapotranspiration estimates show more robust performance when TWS data are incorporated during the parameter estimation, in comparison with the benchmark model constrained against discharge only. This study highlights the value for incorporating multiple data sources during parameter estimation to improve the overall realism of hydrologic model and its applications over large domains. Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016): Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res., 52, http://dx.doi.org/10

  1. Ground level enhancement (GLE) energy spectrum parameters model

    Science.gov (United States)

    Qin, G.; Wu, S.

    2017-12-01

    We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.

  2. Determination of appropriate models and parameters for premixing calculations

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan

    2008-03-15

    The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.

  3. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash

  4. Parameter Estimation for Single Diode Models of Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.

    2015-03-01

    Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.

  5. Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation

    Science.gov (United States)

    Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.

    2011-12-01

    A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.

  6. Modeling Chinese ionospheric layer parameters based on EOF analysis

    Science.gov (United States)

    Yu, You; Wan, Weixing

    2016-04-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation co- efficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  7. Parameters and variables appearing in repository design models

    International Nuclear Information System (INIS)

    Curtis, R.H.; Wart, R.J.

    1983-12-01

    This report defines the parameters and variables appearing in repository design models and presents typical values and ranges of values of each. Areas covered by this report include thermal, geomechanical, and coupled stress and flow analyses in rock. Particular emphasis is given to conductivity, radiation, and convection parameters for thermal analysis and elastic constants, failure criteria, creep laws, and joint properties for geomechanical analysis. The data in this report were compiled to help guide the selection of values of parameters and variables to be used in code benchmarking. 102 references, 33 figures, 51 tables

  8. Blinking model and synchronization in small-world networks with a time-varying coupling

    Science.gov (United States)

    Belykh, Igor V.; Belykh, Vladimir N.; Hasler, Martin

    2004-08-01

    The paper proposes a new type of small-world networks of cells with chaotic behavior. This network consists of a regular lattice of cells with constant 2 K-nearest neighbor couplings and time-dependent on-off couplings between any other pair of cells. In each time interval of duration τ such a coupling is switched on with probability p and the corresponding switching random variables are independent for different links and for different times. At each moment, the coupling structure corresponds to a small-world graph, but the shortcuts change from time interval to time interval, which is a good model for many real-world dynamical networks. It is to be distinguished from networks that have randomly chosen shortcuts, fixed in time. Here, we apply the Connection Graph Stability method, developed in the companion paper (“Connection graph stability method for synchronized coupled chaotic systems”, see this issue), to the study of global synchronization in this network with the time-varying coupling structure, in the case where the on-off switching is fast with respect to the characteristic synchronization time of the network. The synchronization thresholds are explicitly linked with the average path length of the coupling graph and with the probability p of shortcut switchings in this blinking model. We prove that for the blinking model, a few random shortcut additions significantly lower the synchronization threshold together with the effective characteristic path length. Short interactions between cells, as in the blinking model, are important in practice. To cite prominent examples, computers networked over the Internet interact by sending packets of information, and neurons in our brain interact by sending short pulses, called spikes. The rare interaction between arbitrary nodes in the network greatly facilitates synchronization without loading the network much. In this respect, we believe that it is more efficient than a structure of fixed random connections.

  9. A Loudness Model for Time-Varying Sounds Incorporating Binaural Inhibition

    Directory of Open Access Journals (Sweden)

    Brian C. J. Moore

    2016-12-01

    Full Text Available This article describes a model of loudness for time-varying sounds that incorporates the concept of binaural inhibition, namely, that the signal applied to one ear can reduce the internal response to a signal at the other ear. For each ear, the model includes the following: a filter to allow for the effects of transfer of sound through the outer and middle ear; a short-term spectral analysis with greater frequency resolution at low than at high frequencies; calculation of an excitation pattern, representing the magnitudes of the outputs of the auditory filters as a function of center frequency; application of a compressive nonlinearity to the output of each auditory filter; and smoothing over time of the resulting instantaneous specific loudness pattern using an averaging process resembling an automatic gain control. The resulting short-term specific loudness patterns are used to calculate broadly tuned binaural inhibition functions, the amount of inhibition depending on the relative short-term specific loudness at the two ears. The inhibited specific loudness patterns are summed across frequency to give an estimate of the short-term loudness for each ear. The overall short-term loudness is calculated as the sum of the short-term loudness values for the two ears. The long-term loudness for each ear is calculated by smoothing the short-term loudness for that ear, again by a process resembling automatic gain control, and the overall loudness impression is obtained by summing the long-term loudness across ears. The predictions of the model are more accurate than those of an earlier model that did not incorporate binaural inhibition.

  10. A lumped parameter, low dimension model of heat exchanger

    International Nuclear Information System (INIS)

    Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami

    1980-01-01

    This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)

  11. In the interests of time: improving HIV allocative efficiency modelling via optimal time-varying allocations.

    Science.gov (United States)

    Shattock, Andrew J; Kerr, Cliff C; Stuart, Robyn M; Masaki, Emiko; Fraser, Nicole; Benedikt, Clemens; Gorgens, Marelize; Wilson, David P; Gray, Richard T

    2016-01-01

    International investment in the response to HIV and AIDS has plateaued and its future level is uncertain. With many countries committed to ending the epidemic, it is essential to allocate available resources efficiently over different response periods to maximize impact. The objective of this study is to propose a technique to determine the optimal allocation of funds over time across a set of HIV programmes to achieve desirable health outcomes. We developed a technique to determine the optimal time-varying allocation of funds (1) when the future annual HIV budget is pre-defined and (2) when the total budget over a period is pre-defined, but the year-on-year budget is to be optimally determined. We use this methodology with Optima, an HIV transmission model that uses non-linear relationships between programme spending and associated programmatic outcomes to quantify the expected epidemiological impact of spending. We apply these methods to data collected from Zambia to determine the optimal distribution of resources to fund the right programmes, for the right people, at the right time. Considering realistic implementation and ethical constraints, we estimate that the optimal time-varying redistribution of the 2014 Zambian HIV budget between 2015 and 2025 will lead to a 7.6% (7.3% to 7.8%) decrease in cumulative new HIV infections compared with a baseline scenario where programme allocations remain at 2014 levels. This compares to a 5.1% (4.6% to 5.6%) reduction in new infections using an optimal allocation with constant programme spending that recommends unrealistic programmatic changes. Contrasting priorities for programme funding arise when assessing outcomes for a five-year funding period over 5-, 10- and 20-year time horizons. Countries increasingly face the need to do more with the resources available. The methodology presented here can aid decision-makers in planning as to when to expand or contract programmes and to which coverage levels to maximize impact.

  12. Modeling hyporheic exchange and in-stream transport with time-varying transit time distributions

    Science.gov (United States)

    Ball, A.; Harman, C. J.; Ward, A. S.

    2014-12-01

    Transit time distributions (TTD) are used to understand in-stream transport and exchange with the hyporheic zone by quantifying the probability of water (and of dissolved material) taking time T to traverse the stream reach control volume. However, many studies using this method assume a TTD that is time-invariant, despite the time-variability of the streamflow. Others assume that storage is 'randomly sampled' or 'well-mixed' with a fixed volume or fixed exchange rate. Here we present a formulation for a time-variable TTD that relaxes both the time-invariant and 'randomly sampled' assumptions and only requires a few parameters. The framework is applied to transient storage, representing some combination of in-stream and hyporheic storage, along a stream reach. This approach does not assume that hyporheic and dead-zone storage is fixed or temporally-invariant, and allows for these stores to be sampled in more physically representative ways determined by the system itself. Instead of using probability distributions of age, probability distributions of storage (ranked by age) called Ω functions are used to describe how the off-stream storage is sampled in the outflow. Here the Ω function approach is used to describe hyporheic exchange during diurnal fluctuations in streamflow in a gaining reach of the H.J. Andrews Experimental Forest. The breakthrough curves of salt slugs injected four hours apart over a 28-hour period show a systematic variation in transit time distribution. This new approach allows us to relate these salt slug TTDs to a corresponding time-variation in the Ω function, which can then be related to changes in in-stream storage and hyporheic zone mobilization under varying flow conditions. Thus, we can gain insights into how channel storage and hyporheic exchange are changing through time without having to specify difficult to measure or unmeasurable quantities of our system, such as total storage.

  13. Control of the SCOLE configuration using distributed parameter models

    Science.gov (United States)

    Hsiao, Min-Hung; Huang, Jen-Kuang

    1994-01-01

    A continuum model for the SCOLE configuration has been derived using transfer matrices. Controller designs for distributed parameter systems have been analyzed. Pole-assignment controller design is considered easy to implement but stability is not guaranteed. An explicit transfer function of dynamic controllers has been obtained and no model reduction is required before the controller is realized. One specific LQG controller for continuum models had been derived, but other optimal controllers for more general performances need to be studied.

  14. Incorporating cyclical effects and time-varying covariates in models for single-source capture-recapture data

    NARCIS (Netherlands)

    Husken, T.F.; Cruyff, M.J.L.F.; van der Heijden, P.G.M.

    2017-01-01

    The objective of capture-recapture analysis is to estimate the size of an elusive population, for which the zero-truncated Poisson model is a basic model. We extend this model to the more general recurrent events model to include cyclical eects and time-varying covariates. An application to police

  15. SPOTting model parameters using a ready-made Python package

    Science.gov (United States)

    Houska, Tobias; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for

  16. Modelling of intermittent microwave convective drying: parameter sensitivity

    Directory of Open Access Journals (Sweden)

    Zhang Zhijun

    2017-06-01

    Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  17. Modelling of intermittent microwave convective drying: parameter sensitivity

    Science.gov (United States)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  18. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  19. Modeling nonlinear time-dependent treatment effects: an application of the generalized time-varying effect model (TVEM).

    Science.gov (United States)

    Shiyko, Mariya P; Burkhalter, Jack; Li, Runze; Park, Bernard J

    2014-10-01

    The goal of this article is to introduce to social and behavioral scientists the generalized time-varying effect model (TVEM), a semiparametric approach for investigating time-varying effects of a treatment. The method is best suited for data collected intensively over time (e.g., experience sampling or ecological momentary assessments) and addresses questions pertaining to effects of treatment changing dynamically with time. Thus, of interest is the description of timing, magnitude, and (nonlinear) patterns of the effect. Our presentation focuses on practical aspects of the model. A step-by-step demonstration is presented in the context of an empirical study designed to evaluate effects of surgical treatment on quality of life among early stage lung cancer patients during posthospitalization recovery (N = 59; 61% female, M age = 66.1 years). Frequency and level of distress associated with physical symptoms were assessed twice daily over a 2-week period, providing a total of 1,544 momentary assessments. Traditional analyses (analysis of covariance [ANCOVA], repeated-measures ANCOVA, and multilevel modeling) yielded findings of no group differences. In contrast, generalized TVEM identified a pattern of the effect that varied in time and magnitude. Group differences manifested after Day 4. Generalized TVEM is a flexible statistical approach that offers insight into the complexity of treatment effects and allows modeling of nonnormal outcomes. The practical demonstration, shared syntax, and availability of a free set of macros aim to encourage researchers to apply TVEM to complex data and stimulate important scientific discoveries. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Science.gov (United States)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  1. Assessment of Lumped-Parameter Models for Rigid Footings

    DEFF Research Database (Denmark)

    Andersen, Lars

    2010-01-01

    The quality of consistent lumped-parameter models of rigid footings is examined. Emphasis is put on the maximum response during excitation and the geometrical damping related to free vibrations. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal...... and vertical translations as well as torsion and rocking, and the necessity of coupling between horizontal sliding and rocking is discussed. Most of the analyses are carried out for hexagonal footings; but in order to generalise the conclusions to a broader variety of footings, comparisons are made...... with the response of circular and square foundations....

  2. Climate change decision-making: Model & parameter uncertainties explored

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Linville, C.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.

  3. Modeling Radar Scattering by Planetary Regoliths for Varying Angles of Incidence

    Science.gov (United States)

    Prem, P.; Patterson, G. W.; Zimmerman, M. I.

    2017-12-01

    readily accommodate varying incidence angles, as well as heterogeneities in regolith composition and properties - factors that may be of interest in both lunar and other contexts. We will report on the development and validation of the coupled MSTM-Monte Carlo model, and discuss its application to problems of interest.

  4. Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.

    Science.gov (United States)

    Cuba, Christian E; Valle, Alexander R; Ayala-Charca, Giancarlo; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.

  5. Parameter estimation in nonlinear models for pesticide degradation

    International Nuclear Information System (INIS)

    Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.

    1991-01-01

    A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)

  6. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  7. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  8. Hydrological model performance and parameter estimation in the wavelet-domain

    Directory of Open Access Journals (Sweden)

    B. Schaefli

    2009-10-01

    Full Text Available This paper proposes a method for rainfall-runoff model calibration and performance analysis in the wavelet-domain by fitting the estimated wavelet-power spectrum (a representation of the time-varying frequency content of a time series of a simulated discharge series to the one of the corresponding observed time series. As discussed in this paper, calibrating hydrological models so as to reproduce the time-varying frequency content of the observed signal can lead to different results than parameter estimation in the time-domain. Therefore, wavelet-domain parameter estimation has the potential to give new insights into model performance and to reveal model structural deficiencies. We apply the proposed method to synthetic case studies and a real-world discharge modeling case study and discuss how model diagnosis can benefit from an analysis in the wavelet-domain. The results show that for the real-world case study of precipitation – runoff modeling for a high alpine catchment, the calibrated discharge simulation captures the dynamics of the observed time series better than the results obtained through calibration in the time-domain. In addition, the wavelet-domain performance assessment of this case study highlights the frequencies that are not well reproduced by the model, which gives specific indications about how to improve the model structure.

  9. The level density parameters for fermi gas model

    International Nuclear Information System (INIS)

    Zuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi

    1986-01-01

    Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D D , radiative capture width Γ γ 0 at neutron binding energy and cumulative level number N 0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements

  10. Phase transition of the susceptible-infected-susceptible dynamics on time-varying configuration model networks

    Science.gov (United States)

    St-Onge, Guillaume; Young, Jean-Gabriel; Laurence, Edward; Murphy, Charles; Dubé, Louis J.

    2018-02-01

    We present a degree-based theoretical framework to study the susceptible-infected-susceptible (SIS) dynamics on time-varying (rewired) configuration model networks. Using this framework on a given degree distribution, we provide a detailed analysis of the stationary state using the rewiring rate to explore the whole range of the time variation of the structure relative to that of the SIS process. This analysis is suitable for the characterization of the phase transition and leads to three main contributions: (1) We obtain a self-consistent expression for the absorbing-state threshold, able to capture both collective and hub activation. (2) We recover the predictions of a number of existing approaches as limiting cases of our analysis, providing thereby a unifying point of view for the SIS dynamics on random networks. (3) We obtain bounds for the critical exponents of a number of quantities in the stationary state. This allows us to reinterpret the concept of hub-dominated phase transition. Within our framework, it appears as a heterogeneous critical phenomenon: observables for different degree classes have a different scaling with the infection rate. This phenomenon is followed by the successive activation of the degree classes beyond the epidemic threshold.

  11. Impulsive synchronization and parameter mismatch of the three-variable autocatalator model

    International Nuclear Information System (INIS)

    Li, Yang; Liao, Xiaofeng; Li, Chuandong; Huang, Tingwen; Yang, Degang

    2007-01-01

    The synchronization problems of the three-variable autocatalator model via impulsive control approach are investigated; several theorems on the stability of impulsive control systems are also investigated. These theorems are then used to find the conditions under which the three-variable autocatalator model can be asymptotically controlled to the equilibrium point. This Letter derives some sufficient conditions for the stabilization and synchronization of a three-variable autocatalator model via impulsive control with varying impulsive intervals. Furthermore, we address the chaos quasi-synchronization in the presence of single-parameter mismatch. To illustrate the effectiveness of the new scheme, several numerical examples are given

  12. Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arimescu, Carmen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Napier, Bruce A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hay, Tristan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-11-01

    The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 models are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.

  13. Assessing composition and structure of soft biphasic media from Kelvin-Voigt fractional derivative model parameters

    Science.gov (United States)

    Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.

    2017-03-01

    Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.

  14. Ripples and Dunes in Directionally Varying Flows--Three Decades of Experiments, Theory, and Modeling (Invited)

    Science.gov (United States)

    Rubin, D. M.

    2013-12-01

    The morphology and dynamics of ripples and dunes have received considerable study for the past half-century, but most studies have focused on only the small subset of flows that are convenient to study in a lab: using flumes with flows that are constant in direction or wave tanks with flows that reverse by 180°. Many natural flows are free to change in direction by other angles (seasonal or daily cycles in wind direction; reversing wave-generated flows combined with alongshore currents; reversing tidal currents in curved channels; unsteady separated flows). A handful of studies have addressed a broader set of such flows using specialized lab setups (rotating beds in unidirectional flows; oscillating or pulsed beds in static or flowing water; unsteady flows that arise in channel expansions or topographic depressions). Other studies have applied theory or modeling (usually incorporating simplified relations between topography, flow, and sediment transport) to bedform morphology and orientation. The studies that have addressed this broader variety of natural flows have found that compared to the relatively sinuous barchanoid morphology of ripples and dunes in unidirectional flows, bedforms in bi-directional flows can have relatively long straight crests (wave ripples or linear dunes); and multi-directional flows have been shown to produce brick- or tile-pattern ripples under interfering waves, star dunes in deserts, and polygonal dunes within craters on Mars. The topic receiving most study in directionally varying flows is bedform orientation in bi-directional flows. A number of lab, field, theoretical, and modeling studies have found that bedforms arise with the orientation subject to maximum gross-normal transport, but some recent results suggest other orientations are possible where a bed is only partially covered in sand.

  15. Real time damage detection using recursive principal components and time varying auto-regressive modeling

    Science.gov (United States)

    Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.

    2018-02-01

    In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving

  16. Identifiability and error minimization of receptor model parameters with PET

    International Nuclear Information System (INIS)

    Delforge, J.; Syrota, A.; Mazoyer, B.M.

    1989-01-01

    The identifiability problem and the general framework for experimental design optimization are presented. The methodology is applied to the problem of the receptor-ligand model parameter estimation with dynamic positron emission tomography data. The first attempts to identify the model parameters from data obtained with a single tracer injection led to disappointing numerical results. The possibility of improving parameter estimation using a new experimental design combining an injection of the labelled ligand and an injection of the cold ligand (displacement experiment) has been investigated. However, this second protocol led to two very different numerical solutions and it was necessary to demonstrate which solution was biologically valid. This has been possible by using a third protocol including both a displacement and a co-injection experiment. (authors). 16 refs.; 14 figs

  17. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  18. Joint Dynamics Modeling and Parameter Identification for Space Robot Applications

    Directory of Open Access Journals (Sweden)

    Adenilson R. da Silva

    2007-01-01

    Full Text Available Long-term mission identification and model validation for in-flight manipulator control system in almost zero gravity with hostile space environment are extremely important for robotic applications. In this paper, a robot joint mathematical model is developed where several nonlinearities have been taken into account. In order to identify all the required system parameters, an integrated identification strategy is derived. This strategy makes use of a robust version of least-squares procedure (LS for getting the initial conditions and a general nonlinear optimization method (MCS—multilevel coordinate search—algorithm to estimate the nonlinear parameters. The approach is applied to the intelligent robot joint (IRJ experiment that was developed at DLR for utilization opportunity on the International Space Station (ISS. The results using real and simulated measurements have shown that the developed algorithm and strategy have remarkable features in identifying all the parameters with good accuracy.

  19. Application of a Statistical Linear Time-Varying System Model of High Grazing Angle Sea Clutter for Computing Interference Power

    Science.gov (United States)

    2017-12-08

    Application of a Statistical Linear Time -Varying System Model of High Grazing Angle Sea Clutter for Computing Interference Power i REPORT DOCUMENTATION...for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Application of a Statistical Linear Time -Varying System Model of High

  20. Prediction of interest rate using CKLS model with stochastic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Khor Chia [Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Hin, Pooi Ah [Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor (Malaysia)

    2014-06-19

    The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.

  1. Model parameters estimation and sensitivity by genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca

    2003-01-01

    In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The

  2. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    Science.gov (United States)

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  3. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.

    Science.gov (United States)

    Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E

    2013-12-01

    Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.

  4. Investigation of land use effects on Nash model parameters

    Science.gov (United States)

    Niazi, Faegheh; Fakheri Fard, Ahmad; Nourani, Vahid; Goodrich, David; Gupta, Hoshin

    2015-04-01

    Flood forecasting is of great importance in hydrologic planning, hydraulic structure design, water resources management and sustainable designs like flood control and management. Nash's instantaneous unit hydrograph is frequently used for simulating hydrological response in natural watersheds. Urban hydrology is gaining more attention due to population increases and associated construction escalation. Rapid development of urban areas affects the hydrologic processes of watersheds by decreasing soil permeability, flood base flow, lag time and increase in flood volume, peak runoff rates and flood frequency. In this study the influence of urbanization on the significant parameters of the Nash model have been investigated. These parameters were calculated using three popular methods (i.e. moment, root mean square error and random sampling data generation), in a small watershed consisting of one natural sub-watershed which drains into a residentially developed sub-watershed in the city of Sierra Vista, Arizona. The results indicated that for all three methods, the lag time, which is product of Nash parameters "K" and "n", in the natural sub-watershed is greater than the developed one. This logically implies more storage and/or attenuation in the natural sub-watershed. The median K and n parameters derived from the three methods using calibration events were tested via a set of verification events. The results indicated that all the three method have acceptable accuracy in hydrograph simulation. The CDF curves and histograms of the parameters clearly show the difference of the Nash parameter values between the natural and developed sub-watersheds. Some specific upper and lower percentile values of the median of the generated parameters (i.e. 10, 20 and 30 %) were analyzed to future investigates the derived parameters. The model was sensitive to variations in the value of the uncertain K and n parameter. Changes in n are smaller than K in both sub-watersheds indicating

  5. Revised models and genetic parameter estimates for production and ...

    African Journals Online (AJOL)

    Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...

  6. Transformations among CE–CVM model parameters for ...

    Indian Academy of Sciences (India)

    In the development of thermodynamic databases for multicomponent systems using the cluster expansion–cluster variation methods, we need to have a consistent procedure for expressing the model parameters (CECs) of a higher order system in terms of those of the lower order subsystems and to an independent set of ...

  7. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  8. Comparison of parameter estimation algorithms in hydrological modelling

    DEFF Research Database (Denmark)

    Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan

    2006-01-01

    for these types of models, although at a more expensive computational cost. The main purpose of this study is to investigate the performance of a global and a local parameter optimization algorithm, respectively, the Shuffled Complex Evolution (SCE) algorithm and the gradient-based Gauss...

  9. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  10. Constraint on Parameters of Inverse Compton Scattering Model for ...

    Indian Academy of Sciences (India)

    J. Astrophys. Astr. (2011) 32, 299–300 c Indian Academy of Sciences. Constraint on Parameters of Inverse Compton Scattering Model for PSR B2319+60. H. G. Wang. ∗. & M. Lv. Center for Astrophysics,Guangzhou University, Guangzhou, China. ∗ e-mail: cosmic008@yahoo.com.cn. Abstract. Using the multifrequency radio ...

  11. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the

  12. Integrating microbial diversity in soil carbon dynamic models parameters

    Science.gov (United States)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  13. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-09-24

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air

  14. Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth

    Science.gov (United States)

    Zhang, Hong; Zuo, Ran; Zhang, Guoyi

    2017-11-01

    In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.

  15. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  16. Estimating model parameters in nonautonomous chaotic systems using synchronization

    International Nuclear Information System (INIS)

    Yang, Xiaoli; Xu, Wei; Sun, Zhongkui

    2007-01-01

    In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation

  17. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  18. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  19. Space geodetic techniques for global modeling of ionospheric peak parameters

    Science.gov (United States)

    Alizadeh, M. Mahdi; Schuh, Harald; Schmidt, Michael

    The rapid development of new technological systems for navigation, telecommunication, and space missions which transmit signals through the Earth’s upper atmosphere - the ionosphere - makes the necessity of precise, reliable and near real-time models of the ionospheric parameters more crucial. In the last decades space geodetic techniques have turned into a capable tool for measuring ionospheric parameters in terms of Total Electron Content (TEC) or the electron density. Among these systems, the current space geodetic techniques, such as Global Navigation Satellite Systems (GNSS), Low Earth Orbiting (LEO) satellites, satellite altimetry missions, and others have found several applications in a broad range of commercial and scientific fields. This paper aims at the development of a three-dimensional integrated model of the ionosphere, by using various space geodetic techniques and applying a combination procedure for computation of the global model of electron density. In order to model ionosphere in 3D, electron density is represented as a function of maximum electron density (NmF2), and its corresponding height (hmF2). NmF2 and hmF2 are then modeled in longitude, latitude, and height using two sets of spherical harmonic expansions with degree and order 15. To perform the estimation, GNSS input data are simulated in such a way that the true position of the satellites are detected and used, but the STEC values are obtained through a simulation procedure, using the IGS VTEC maps. After simulating the input data, the a priori values required for the estimation procedure are calculated using the IRI-2012 model and also by applying the ray-tracing technique. The estimated results are compared with F2-peak parameters derived from the IRI model to assess the least-square estimation procedure and moreover, to validate the developed maps, the results are compared with the raw F2-peak parameters derived from the Formosat-3/Cosmic data.

  20. Time-Varying Identification Model for Crack Monitoring Data from Concrete Dams Based on Support Vector Regression and the Bayesian Framework

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2017-01-01

    Full Text Available The modeling of cracks and identification of dam behavior changes are difficult issues in dam health monitoring research. In this paper, a time-varying identification model for crack monitoring data is built using support vector regression (SVR and the Bayesian evidence framework (BEF. First, the SVR method is adopted for better modeling of the nonlinear relationship between the crack opening displacement (COD and its influencing factors. Second, the BEF approach is applied to determine the optimal SVR modeling parameters, including the penalty coefficient, the loss coefficient, and the width coefficient of the radial kernel function, under the principle that the prediction errors between the monitored and the model forecasted values are as small as possible. Then, considering the predicted COD, the historical maximum COD, and the time-dependent component, forewarning criteria are proposed for identifying the time-varying behavior of cracks and the degree of abnormality of dam health. Finally, an example of modeling and forewarning analysis is presented using two monitoring subsequences from a real structural crack in the Chencun concrete arch-gravity dam. The findings indicate that the proposed time-varying model can provide predicted results that are more accurately nonlinearity fitted and is suitable for use in evaluating the behavior of cracks in dams.

  1. Quantifying geographic variation in the climatic drivers of midcontinent wetlands with a spatially varying coefficient model.

    Science.gov (United States)

    Roy, Christian

    2015-01-01

    The wetlands in the Prairie Pothole Region and in the Great Plains are notorious for their sensitivity to weather variability. These wetlands have been the focus of considerable attention because of their ecological importance and because of the expected impact of climate change. Few models in the literature, however, take into account spatial variation in the importance of wetland drivers. This is surprising given the importance spatial heterogeneity in geomorphology and climatic conditions have in the region. In this paper, I use spatially-varying coefficients to assess the variation in ecological drivers in a number of ponds observed over a 50-year period (1961-2012). I included the number of ponds observed the year before on a log scale, the log of total precipitation, and mean maximum temperature during the four previous seasons as explanatory variables. I also included a temporal component to capture change in the number of ponds due to anthropogenic disturbance. Overall, fall and spring precipitation were most important in pond abundance in the west, whereas winter and summer precipitation were the most important drivers in the east. The ponds in the east of the survey area were also more dependent on pond abundance during the previous year than those in the west. Spring temperature during the previous season influenced pond abundance; while the temperature during the other seasons had a limited effect. The ponds in the southwestern part of the survey area have been increasing independently of climatic conditions, whereas the ponds in the northeast have been steadily declining. My results underline the importance of accounting the spatial heterogeneity in environmental drivers, when working at large spatial scales. In light of my results, I also argue that assessing the impacts of climate change on wetland abundance in the spring, without more accurate climatic forecasting, will be difficult.

  2. Quantifying geographic variation in the climatic drivers of midcontinent wetlands with a spatially varying coefficient model.

    Directory of Open Access Journals (Sweden)

    Christian Roy

    Full Text Available The wetlands in the Prairie Pothole Region and in the Great Plains are notorious for their sensitivity to weather variability. These wetlands have been the focus of considerable attention because of their ecological importance and because of the expected impact of climate change. Few models in the literature, however, take into account spatial variation in the importance of wetland drivers. This is surprising given the importance spatial heterogeneity in geomorphology and climatic conditions have in the region. In this paper, I use spatially-varying coefficients to assess the variation in ecological drivers in a number of ponds observed over a 50-year period (1961-2012. I included the number of ponds observed the year before on a log scale, the log of total precipitation, and mean maximum temperature during the four previous seasons as explanatory variables. I also included a temporal component to capture change in the number of ponds due to anthropogenic disturbance. Overall, fall and spring precipitation were most important in pond abundance in the west, whereas winter and summer precipitation were the most important drivers in the east. The ponds in the east of the survey area were also more dependent on pond abundance during the previous year than those in the west. Spring temperature during the previous season influenced pond abundance; while the temperature during the other seasons had a limited effect. The ponds in the southwestern part of the survey area have been increasing independently of climatic conditions, whereas the ponds in the northeast have been steadily declining. My results underline the importance of accounting the spatial heterogeneity in environmental drivers, when working at large spatial scales. In light of my results, I also argue that assessing the impacts of climate change on wetland abundance in the spring, without more accurate climatic forecasting, will be difficult.

  3. Investigation of RADTRAN Stop Model input parameters for truck stops

    International Nuclear Information System (INIS)

    Griego, N.R.; Smith, J.D.; Neuhauser, K.S.

    1996-01-01

    RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops

  4. Four-parameter analytical local model potential for atoms

    International Nuclear Information System (INIS)

    Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang

    2009-01-01

    Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)

  5. Improving the transferability of hydrological model parameters under changing conditions

    Science.gov (United States)

    Huang, Yingchun; Bárdossy, András

    2014-05-01

    Hydrological models are widely utilized to describe catchment behaviors with observed hydro-meteorological data. Hydrological process may be considered as non-stationary under the changing climate and land use conditions. An applicable hydrological model should be able to capture the essential features of the target catchment and therefore be transferable to different conditions. At present, many model applications based on the stationary assumptions are not sufficient for predicting further changes or time variability. The aim of this study is to explore new model calibration methods in order to improve the transferability of model parameters. To cope with the instability of model parameters calibrated on catchments in non-stationary conditions, we investigate the idea of simultaneously calibration on streamflow records for the period with dissimilar climate characteristics. In additional, a weather based weighting function is implemented to adjust the calibration period to future trends. For regions with limited data and ungauged basins, the common calibration was applied by using information from similar catchments. Result shows the model performance and transfer quantity could be well improved via common calibration. This model calibration approach will be used to enhance regional water management and flood forecasting capabilities.

  6. Models of few optical cycle solitons beyond the slowly varying envelope approximation

    Energy Technology Data Exchange (ETDEWEB)

    Leblond, H., E-mail: herve.leblond@univ-angers.fr [LUNAM University, Université d’Angers, Laboratoire de Photonique d’Angers, EA 4464, 2 Bd. Lavoisier, 49045 Angers Cedex 01 (France); Mihalache, D. [LUNAM University, Université d’Angers, Laboratoire de Photonique d’Angers, EA 4464, 2 Bd. Lavoisier, 49045 Angers Cedex 01 (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest (Romania)

    2013-02-15

    In the past years there was a huge interest in experimental and theoretical studies in the area of few-optical-cycle pulses and in the broader fast growing field of the so-called extreme nonlinear optics. This review concentrates on theoretical studies performed in the past decade concerning the description of few optical cycle solitons beyond the slowly varying envelope approximation (SVEA). Here we systematically use the powerful reductive expansion method (alias multiscale analysis) in order to derive simple integrable and nonintegrable evolution models describing both nonlinear wave propagation and interaction of ultrashort (femtosecond) pulses. To this aim we perform the multiple scale analysis on the Maxwell–Bloch equations and the corresponding Schrödinger–von Neumann equation for the density matrix of two-level atoms. We analyze in detail both long-wave and short-wave propagation models. The propagation of ultrashort few-optical-cycle solitons in quadratic and cubic nonlinear media are adequately described by generic integrable and nonintegrable nonlinear evolution equations such as the Korteweg–de Vries equation, the modified Korteweg–de Vries equation, the complex modified Korteweg–de Vries equation, the sine–Gordon equation, the cubic generalized Kadomtsev–Petviashvili equation, and the two-dimensional sine–Gordon equation. Moreover, we consider the propagation of few-cycle optical solitons in both (1+1)- and (2+1)-dimensional physical settings. A generalized modified Korteweg–de Vries equation is introduced in order to describe robust few-optical-cycle dissipative solitons. We investigate in detail the existence and robustness of both linearly polarized and circularly polarized few-cycle solitons, that is, we also take into account the effect of the vectorial nature of the electric field. Some of these results concerning the systematic use of the reductive expansion method beyond the SVEA can be relatively easily extended to few

  7. Modeling extreme events: Sample fraction adaptive choice in parameter estimation

    Science.gov (United States)

    Neves, Manuela; Gomes, Ivette; Figueiredo, Fernanda; Gomes, Dora Prata

    2012-09-01

    When modeling extreme events there are a few primordial parameters, among which we refer the extreme value index and the extremal index. The extreme value index measures the right tail-weight of the underlying distribution and the extremal index characterizes the degree of local dependence in the extremes of a stationary sequence. Most of the semi-parametric estimators of these parameters show the same type of behaviour: nice asymptotic properties, but a high variance for small values of k, the number of upper order statistics to be used in the estimation, and a high bias for large values of k. This shows a real need for the choice of k. Choosing some well-known estimators of those parameters we revisit the application of a heuristic algorithm for the adaptive choice of k. The procedure is applied to some simulated samples as well as to some real data sets.

  8. Artificial Neural Network model for the determination of GSM Rxlevel from atmospheric parameters

    Directory of Open Access Journals (Sweden)

    Julia Ofure Eichie

    2017-04-01

    Full Text Available Accurate received signal level (Rxlevel values are useful for mobile telecommunication network planning. Rxlevel is affected by the dynamics of the atmosphere through which it propagates. Adequate knowledge of the prevailing atmospheric conditions in an environment is essential for proper network planning. However most of the existing GSM received signal determination model are function of distance between point of signal reception and transmitting site thus necessitating the development of a model that involve the use of atmospheric parameters in the determination of received GSM signal level. In this paper, a three stage approach was used in the development of the model using some atmospheric parameters such as atmospheric temperature, relative humidity and dew point. The selected and easily measurable atmospheric parameters were used as input parameters in developing two new models for computing the Rxlevel of GSM signal using a three-step approach. Data acquisition and pre-processing serves as the first stage and formulation of ANN design and the development of parametric model for the Rxlevel using ANN synaptic weights form the second stage of the proposed approach. The third stage involves the use of ANN weight and bias values, and network architecture in the development of the model equation. In evaluating the performance of the proposed models, network parameters were varied and the results obtained using mean squared error (MSE as performance measure showed the developed model with 33 neurons in the hidden layer and tansig activation, function in both the hidden and output layers as the optimal model with least MSE value of 0.056. Thus showing that the developed model has an acceptable accuracy value as demonstrated from comparison of results with actual measured values.

  9. Combining Multi-Sensor Measurements and Models to Constrain Time-Varying Aerosol Fire Emissions

    Science.gov (United States)

    Cohen, J. B.

    2013-12-01

    . This data has been used in connection with a new analytical technique to derive the temporally and spatially varying component of the emissions. Combining this result with the Kalman Filter annual base emissions and the modelling system shows that fires can be reproduced more accurately than many other methods, including using straight Fire Radiative Power estimations. Finally, this new combined product is analyzed using measurements from the CALIPSO sensor to quantify further properties of these fires, particularly in terms of radiative forcing and vertical distribution. The results are compared against other studies of fires and the impacts on the radiative balance are quantified. One conclusion is that emissions of both BC and OC from these fires are currently underestimated and this method provides a means by which to quantify this underestimation, both in terms of absolute amount as well as space and time. A second conclusion is that this method provides a strong rationale for why relying solely on a Fire Radiative Power approach may not be appropriate, especially in a cloud-covered region such as Southeast Asia. Finally, the limitations of the use of multiple-sensors and this approach in general are detailed by looking more in-depth at the massive biomass-burning episode in June of 2013 that occurred in Southeast Asia.

  10. Model parameter learning using Kullback-Leibler divergence

    Science.gov (United States)

    Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan

    2018-02-01

    In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.

  11. Biosphere modelling for a HLW repository - scenario and parameter variations

    International Nuclear Information System (INIS)

    Grogan, H.

    1985-03-01

    In Switzerland high-level radioactive wastes have been considered for disposal in deep-lying crystalline formations. The individual doses to man resulting from radionuclides entering the biosphere via groundwater transport are calculated. The main recipient area modelled, which constitutes the base case, is a broad gravel terrace sited along the south bank of the river Rhine. An alternative recipient region, a small valley with a well, is also modelled. A number of parameter variations are performed in order to ascertain their impact on the doses. Finally two scenario changes are modelled somewhat simplistically, these consider different prevailing climates, namely tundra and a warmer climate than present. In the base case negligibly low doses to man in the long term, resulting from the existence of a HLW repository have been calculated. Cs-135 results in the largest dose (8.4E-7 mrem/y at 6.1E+6 y) while Np-237 gives the largest dose from the actinides (3.6E-8 mrem/y). The response of the model to parameter variations cannot be easily predicted due to non-linear coupling of many of the parameters. However, the calculated doses were negligibly low in all cases as were those resulting from the two scenario variations. (author)

  12. Thermal Model Parameter Identification of a Lithium Battery

    Directory of Open Access Journals (Sweden)

    Dirk Nissing

    2017-01-01

    Full Text Available The temperature of a Lithium battery cell is important for its performance, efficiency, safety, and capacity and is influenced by the environmental temperature and by the charging and discharging process itself. Battery Management Systems (BMS take into account this effect. As the temperature at the battery cell is difficult to measure, often the temperature is measured on or nearby the poles of the cell, although the accuracy of predicting the cell temperature with those quantities is limited. Therefore a thermal model of the battery is used in order to calculate and estimate the cell temperature. This paper uses a simple RC-network representation for the thermal model and shows how the thermal parameters are identified using input/output measurements only, where the load current of the battery represents the input while the temperatures at the poles represent the outputs of the measurement. With a single measurement the eight model parameters (thermal resistances, electric contact resistances, and heat capacities can be determined using the method of least-square. Experimental results show that the simple model with the identified parameters fits very accurately to the measurements.

  13. Contaminant transport in aquifers: improving the determination of model parameters

    International Nuclear Information System (INIS)

    Sabino, C.V.S.; Moreira, R.M.; Lula, Z.L.; Chausson, Y.; Magalhaes, W.F.; Vianna, M.N.

    1998-01-01

    Parameters conditioning the migration behavior of cesium and mercury are measured with their tracers 137 Cs and 203 Hg in the laboratory, using both batch and column experiments. Batch tests were used to define the sorption isotherm characteristics. Also investigated were the influences of some test parameters, in particular those due to the volume of water to mass of soil ratio (V/m). A provisional relationship between V/m and the distribution coefficient, K d , has been advanced, and a procedure to estimate K d 's valid for environmental values of the ratio V/m has been suggested. Column tests provided the parameters for a transport model. A major problem to be dealt with in such tests is the collimation of the radioactivity probe. Besides mechanically optimizing the collimator, a deconvolution procedure has been suggested and tested, with statistical criteria, to filter off both noise and spurious tracer signals. Correction procedures for the integrating effect introduced by sampling at the exit of columns have also been developed. These techniques may be helpful in increasing the accuracy required in the measurement of parameters conditioning contaminant migration in soils, thus allowing more reliable predictions based on mathematical model applications. (author)

  14. The Investigation of EM Scattering from the Time-Varying Overturning Wave Crest Model by the IEM

    Directory of Open Access Journals (Sweden)

    Xiao Meng

    2016-01-01

    Full Text Available Investigation of the electromagnetic (EM scattering of time-varying overturning wave crests is a worthwhile endeavor. Overturning wave crest is one of the reasons of sea spike generation, which increases the probability of false radar alarms and reduces the performance of multitarget detection in the environment. A three-dimensional (3D time-varying overturning wave crest model is presented in this paper; this 3D model is an improvement of the traditional two-dimensional (2D time-varying overturning wave crest model. The integral equation method (IEM was employed to investigate backward scattering radar cross sections (RCS at various incident angles of the 3D overturning wave crest model. The super phenomenon, where the intensity of horizontal polarization scattering is greater than that of vertical polarization scattering, is an important feature of sea spikes. Simulation results demonstrate that super phenomena may occur in some time samples as variations in the overturning wave crest.

  15. HOM study and parameter calculation of the TESLA cavity model

    CERN Document Server

    Zeng, Ri-Hua; Gerigk Frank; Wang Guang-Wei; Wegner Rolf; Liu Rong; Schuh Marcel

    2010-01-01

    The Superconducting Proton Linac (SPL) is the project for a superconducting, high current H-accelerator at CERN. To find dangerous higher order modes (HOMs) in the SPL superconducting cavities, simulation and analysis for the cavity model using simulation tools are necessary. The. existing TESLA 9-cell cavity geometry data have been used for the initial construction of the models in HFSS. Monopole, dipole and quadrupole modes have been obtained by applying different symmetry boundaries on various cavity models. In calculation, scripting language in HFSS was used to create scripts to automatically calculate the parameters of modes in these cavity models (these scripts are also available in other cavities with different cell numbers and geometric structures). The results calculated automatically are then compared with the values given in the TESLA paper. The optimized cavity model with the minimum error will be taken as the base for further simulation of the SPL cavities.

  16. Modeling the time-varying interaction between surface water and groundwater bodies

    Science.gov (United States)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were

  17. VISUAL AND STATISTICAL ANALYSIS OF DIGITAL ELEVATION MODELS GENERATED USING IDW INTERPOLATOR WITH VARYING POWERS

    Directory of Open Access Journals (Sweden)

    F. F. Asal

    2012-07-01

    Full Text Available Digital elevation data obtained from different Engineering Surveying techniques is utilized in generating Digital Elevation Model (DEM, which is employed in many Engineering and Environmental applications. This data is usually in discrete point format making it necessary to utilize an interpolation approach for the creation of DEM. Quality assessment of the DEM is a vital issue controlling its use in different applications; however this assessment relies heavily on statistical methods with neglecting the visual methods. The research applies visual analysis investigation on DEMs generated using IDW interpolator of varying powers in order to examine their potential in the assessment of the effects of the variation of the IDW power on the quality of the DEMs. Real elevation data has been collected from field using total station instrument in a corrugated terrain. DEMs have been generated from the data at a unified cell size using IDW interpolator with power values ranging from one to ten. Visual analysis has been undertaken using 2D and 3D views of the DEM; in addition, statistical analysis has been performed for assessment of the validity of the visual techniques in doing such analysis. Visual analysis has shown that smoothing of the DEM decreases with the increase in the power value till the power of four; however, increasing the power more than four does not leave noticeable changes on 2D and 3D views of the DEM. The statistical analysis has supported these results where the value of the Standard Deviation (SD of the DEM has increased with increasing the power. More specifically, changing the power from one to two has produced 36% of the total increase (the increase in SD due to changing the power from one to ten in SD and changing to the powers of three and four has given 60% and 75% respectively. This refers to decrease in DEM smoothing with the increase in the power of the IDW. The study also has shown that applying visual methods supported

  18. Global Exponential Stability of Positive Almost Periodic Solutions for a Fishing Model with a Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2014-01-01

    Full Text Available This paper is concerned with a nonautonomous fishing model with a time-varying delay. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive almost periodic solutions of the model with almost periodic coefficients and delays. Moreover, an example and its numerical simulation are given to illustrate the main results.

  19. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    Science.gov (United States)

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2018-01-01

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  20. The definition of input parameters for modelling of energetic subsystems

    Directory of Open Access Journals (Sweden)

    Ptacek M.

    2013-06-01

    Full Text Available This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.

  1. The definition of input parameters for modelling of energetic subsystems

    Science.gov (United States)

    Ptacek, M.

    2013-06-01

    This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.

  2. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  3. Empirical flow parameters : a tool for hydraulic model validity

    Science.gov (United States)

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  4. Parameter estimation and uncertainty quantification in a biogeochemical model using optimal experimental design methods

    Science.gov (United States)

    Reimer, Joscha; Piwonski, Jaroslaw; Slawig, Thomas

    2016-04-01

    The statistical significance of any model-data comparison strongly depends on the quality of the used data and the criterion used to measure the model-to-data misfit. The statistical properties (such as mean values, variances and covariances) of the data should be taken into account by choosing a criterion as, e.g., ordinary, weighted or generalized least squares. Moreover, the criterion can be restricted onto regions or model quantities which are of special interest. This choice influences the quality of the model output (also for not measured quantities) and the results of a parameter estimation or optimization process. We have estimated the parameters of a three-dimensional and time-dependent marine biogeochemical model describing the phosphorus cycle in the ocean. For this purpose, we have developed a statistical model for measurements of phosphate and dissolved organic phosphorus. This statistical model includes variances and correlations varying with time and location of the measurements. We compared the obtained estimations of model output and parameters for different criteria. Another question is if (and which) further measurements would increase the model's quality at all. Using experimental design criteria, the information content of measurements can be quantified. This may refer to the uncertainty in unknown model parameters as well as the uncertainty regarding which model is closer to reality. By (another) optimization, optimal measurement properties such as locations, time instants and quantities to be measured can be identified. We have optimized such properties for additional measurement for the parameter estimation of the marine biogeochemical model. For this purpose, we have quantified the uncertainty in the optimal model parameters and the model output itself regarding the uncertainty in the measurement data using the (Fisher) information matrix. Furthermore, we have calculated the uncertainty reduction by additional measurements depending on time

  5. Lumped-parameter Model of a Bucket Foundation

    DEFF Research Database (Denmark)

    Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten

    2009-01-01

    As an alternative to gravity footings or pile foundations, offshore wind turbines at shallow water can be placed on a bucket foundation. The present analysis concerns the development of consistent lumped-parameter models for this type of foundation. The aim is to formulate a computationally effic...... be disregarded without significant loss of accuracy. Finally, special attention is drawn to the influence of the skirt stiffness, i.e. whether the embedded part of the caisson is rigid or flexible....

  6. Modeling Water Quality Parameters Using Data-driven Methods

    Directory of Open Access Journals (Sweden)

    Shima Soleimani

    2017-02-01

    Full Text Available Introduction: Surface water bodies are the most easily available water resources. Increase use and waste water withdrawal of surface water causes drastic changes in surface water quality. Water quality, importance as the most vulnerable and important water supply resources is absolutely clear. Unfortunately, in the recent years because of city population increase, economical improvement, and industrial product increase, entry of pollutants to water bodies has been increased. According to that water quality parameters express physical, chemical, and biological water features. So the importance of water quality monitoring is necessary more than before. Each of various uses of water, such as agriculture, drinking, industry, and aquaculture needs the water with a special quality. In the other hand, the exact estimation of concentration of water quality parameter is significant. Material and Methods: In this research, first two input variable models as selection methods (namely, correlation coefficient and principal component analysis were applied to select the model inputs. Data processing is consisting of three steps, (1 data considering, (2 identification of input data which have efficient on output data, and (3 selecting the training and testing data. Genetic Algorithm-Least Square Support Vector Regression (GA-LSSVR algorithm were developed to model the water quality parameters. In the LSSVR method is assumed that the relationship between input and output variables is nonlinear, but by using a nonlinear mapping relation can create a space which is named feature space in which relationship between input and output variables is defined linear. The developed algorithm is able to gain maximize the accuracy of the LSSVR method with auto LSSVR parameters. Genetic algorithm (GA is one of evolutionary algorithm which automatically can find the optimum coefficient of Least Square Support Vector Regression (LSSVR. The GA-LSSVR algorithm was employed to

  7. A procedure for determining parameters of a simplified ligament model.

    Science.gov (United States)

    Barrett, Jeff M; Callaghan, Jack P

    2018-01-03

    A previous mathematical model of ligament force-generation treated their behavior as a population of collagen fibres arranged in parallel. When damage was ignored in this model, an expression for ligament force in terms of the deflection, x, effective stiffness, k, mean collagen slack length, μ, and the standard deviation of slack lengths, σ, was obtained. We present a simple three-step method for determining the three model parameters (k, μ, and σ) from force-deflection data: (1) determine the equation of the line in the linear region of this curve, its slope is k and its x -intercept is -μ; (2) interpolate the force-deflection data when x is -μ to obtain F 0 ; (3) calculate σ with the equation σ=2πF 0 /k. Results from this method were in good agreement to those obtained from a least-squares procedure on experimental data - all falling within 6%. Therefore, parameters obtained using the proposed method provide a systematic way of reporting ligament parameters, or for obtaining an initial guess for nonlinear least-squares. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modelling spatial-temporal and coordinative parameters in swimming.

    Science.gov (United States)

    Seifert, L; Chollet, D

    2009-07-01

    This study modelled the changes in spatial-temporal and coordinative parameters through race paces in the four swimming strokes. The arm and leg phases in simultaneous strokes (butterfly and breaststroke) and the inter-arm phases in alternating strokes (crawl and backstroke) were identified by video analysis to calculate the time gaps between propulsive phases. The relationships among velocity, stroke rate, stroke length and coordination were modelled by polynomial regression. Twelve elite male swimmers swam at four race paces. Quadratic regression modelled the changes in spatial-temporal and coordinative parameters with velocity increases for all four strokes. First, the quadratic regression between coordination and velocity showed changes common to all four strokes. Notably, the time gaps between the key points defining the beginning and end of the stroke phases decreased with increases in velocity, which led to decreases in glide times and increases in the continuity between propulsive phases. Conjointly, the quadratic regression among stroke rate, stroke length and velocity was similar to the changes in coordination, suggesting that these parameters may influence coordination. The main practical application for coaches and scientists is that ineffective time gaps can be distinguished from those that simply reflect an individual swimmer's profile by monitoring the glide times within a stroke cycle. In the case of ineffective time gaps, targeted training could improve the swimmer's management of glide time.

  9. The Impact of Three Factors on the Recovery of Item Parameters for the Three-Parameter Logistic Model

    Science.gov (United States)

    Kim, Kyung Yong; Lee, Won-Chan

    2017-01-01

    This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…

  10. Spatially-varied erosion modeling using WEPP for timber harvested and burned hillslopes

    Science.gov (United States)

    Peter R. Robichaud; T. M. Monroe

    1997-01-01

    Spatially-varied hydrologic surface conditions exist on steep hillslopes after timber harvest operation and site preparation burning treatments. Site preparation burning creates low- and high-severity burn surface conditions or disturbances. In this study, a hillslope was divided into multiple combinations of surface conditions to determine how their spatial...

  11. Identification of Time Varying Civil Engineering Structures using Multivariate Recursive Time Domain Models

    DEFF Research Database (Denmark)

    Andersen, P.; Skjærbæk, P. S.; Kirkegaard, Poul Henning

    with the smoothed quanties which have been obtained from SARCOF. The results show the usefulness of the technique for identification of a time varying civil engineering structure. It is found that all the techniques give reliable estiates of the frequencies of the two lowest modes and the first mode shape. Only...

  12. Local sensitivity analysis of a distributed parameters water quality model

    International Nuclear Information System (INIS)

    Pastres, R.; Franco, D.; Pecenik, G.; Solidoro, C.; Dejak, C.

    1997-01-01

    A local sensitivity analysis is presented of a 1D water-quality reaction-diffusion model. The model describes the seasonal evolution of one of the deepest channels of the lagoon of Venice, that is affected by nutrient loads from the industrial area and heat emission from a power plant. Its state variables are: water temperature, concentrations of reduced and oxidized nitrogen, Reactive Phosphorous (RP), phytoplankton, and zooplankton densities, Dissolved Oxygen (DO) and Biological Oxygen Demand (BOD). Attention has been focused on the identifiability and the ranking of the parameters related to primary production in different mixing conditions

  13. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  14. Information Theoretic Tools for Parameter Fitting in Coarse Grained Models

    KAUST Repository

    Kalligiannaki, Evangelia

    2015-01-07

    We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.

  15. EXTRACTION OF SPATIAL PARAMETERS FROM CLASSIFIED LIDAR DATA AND AERIAL PHOTOGRAPH FOR SOUND MODELING

    Directory of Open Access Journals (Sweden)

    S. Biswas

    2012-07-01

    Full Text Available Prediction of outdoor sound levels in 3D space is important for noise management, soundscaping etc. Sound levels at outdoor can be predicted using sound propagation models which need terrain parameters. The existing practices of incorporating terrain parameters into models are often limited due to inadequate data or inability to determine accurate sound transmission paths through a terrain. This leads to poor accuracy in modelling. LIDAR data and Aerial Photograph (or Satellite Images provide opportunity to incorporate high resolution data into sound models. To realize this, identification of building and other objects and their use for extraction of terrain parameters are fundamental. However, development of a suitable technique, to incorporate terrain parameters from classified LIDAR data and Aerial Photograph, for sound modelling is a challenge. Determination of terrain parameters along various transmission paths of sound from sound source to a receiver becomes very complex in an urban environment due to the presence of varied and complex urban features. This paper presents a technique to identify the principal paths through which sound transmits from source to receiver. Further, the identified principal paths are incorporated inside the sound model for sound prediction. Techniques based on plane cutting and line tracing are developed for determining principal paths and terrain parameters, which use various information, e.g., building corner and edges, triangulated ground, tree points and locations of source and receiver. The techniques developed are validated through a field experiment. Finally efficacy of the proposed technique is demonstrated by developing a noise map for a test site.

  16. Finding the effective parameter perturbations in atmospheric models: the LORENZ63 model as case study

    NARCIS (Netherlands)

    Moolenaar, H.E.; Selten, F.M.

    2004-01-01

    Climate models contain numerous parameters for which the numeric values are uncertain. In the context of climate simulation and prediction, a relevant question is what range of climate outcomes is possible given the range of parameter uncertainties. Which parameter perturbation changes the climate

  17. Evaluating climate model performance with various parameter sets using observations over the recent past

    Directory of Open Access Journals (Sweden)

    M. F. Loutre

    2011-05-01

    Full Text Available Many sources of uncertainty limit the accuracy of climate projections. Among them, we focus here on the parameter uncertainty, i.e. the imperfect knowledge of the values of many physical parameters in a climate model. Therefore, we use LOVECLIM, a global three-dimensional Earth system model of intermediate complexity and vary several parameters within a range based on the expert judgement of model developers. Nine climatic parameter sets and three carbon cycle parameter sets are selected because they yield present-day climate simulations coherent with observations and they cover a wide range of climate responses to doubled atmospheric CO2 concentration and freshwater flux perturbation in the North Atlantic. Moreover, they also lead to a large range of atmospheric CO2 concentrations in response to prescribed emissions. Consequently, we have at our disposal 27 alternative versions of LOVECLIM (each corresponding to one parameter set that provide very different responses to some climate forcings. The 27 model versions are then used to illustrate the range of responses provided over the recent past, to compare the time evolution of climate variables over the time interval for which they are available (the last few decades up to more than one century and to identify the outliers and the "best" versions over that particular time span. For example, between 1979 and 2005, the simulated global annual mean surface temperature increase ranges from 0.24 °C to 0.64 °C, while the simulated increase in atmospheric CO2 concentration varies between 40 and 50 ppmv. Measurements over the same period indicate an increase in global annual mean surface temperature of 0.45 °C (Brohan et al., 2006 and an increase in atmospheric CO2 concentration of 44 ppmv (Enting et al., 1994; GLOBALVIEW-CO2, 2006. Only a few parameter sets yield simulations that reproduce the observed key variables of the climate system over the last

  18. Comparison of parameter estimation algorithms in hydrological modelling

    DEFF Research Database (Denmark)

    Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan

    2006-01-01

    Local search methods have been applied successfully in calibration of simple groundwater models, but might fail in locating the optimum for models of increased complexity, due to the more complex shape of the response surface. Global search algorithms have been demonstrated to perform well...... for these types of models, although at a more expensive computational cost. The main purpose of this study is to investigate the performance of a global and a local parameter optimization algorithm, respectively, the Shuffled Complex Evolution (SCE) algorithm and the gradient-based Gauss......-Marquardt-Levenberg algorithm (implemented in the PEST software), when applied to a steady-state and a transient groundwater model. The results show that PEST can have severe problems in locating the global optimum and in being trapped in local regions of attractions. The global SCE procedure is, in general, more effective...

  19. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets.

    Science.gov (United States)

    Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze

    2017-01-01

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Flare parameters inferred from a 3D loop model database

    Science.gov (United States)

    Cuambe, Valente A.; Costa, J. E. R.; Simões, P. J. A.

    2018-04-01

    We developed a database of pre-calculated flare images and spectra exploring a set of parameters which describe the physical characteristics of coronal loops and accelerated electron distribution. Due to the large number of parameters involved in describing the geometry and the flaring atmosphere in the model used (Costa et al. 2013), we built a large database of models (˜250 000) to facilitate the flare analysis. The geometry and characteristics of non-thermal electrons are defined on a discrete grid with spatial resolution greater than 4 arcsec. The database was constructed based on general properties of known solar flares and convolved with instrumental resolution to replicate the observations from the Nobeyama radio polarimeter (NoRP) spectra and Nobeyama radio-heliograph (NoRH) brightness maps. Observed spectra and brightness distribution maps are easily compared with the modelled spectra and images in the database, indicating a possible range of solutions. The parameter search efficiency in this finite database is discussed. Eight out of ten parameters analysed for one thousand simulated flare searches were recovered with a relative error of less than 20 per cent on average. In addition, from the analysis of the observed correlation between NoRH flare sizes and intensities at 17 GHz, some statistical properties were derived. From these statistics the energy spectral index was found to be δ ˜ 3, with non-thermal electron densities showing a peak distribution ⪅107 cm-3, and Bphotosphere ⪆2000 G. Some bias for larger loops with heights as great as ˜2.6 × 109 cm, and looptop events were noted. An excellent match of the spectrum and the brightness distribution at 17 and 34 GHz of the 2002 May 31 flare, is presented as well.

  1. Parameter and uncertainty estimation for mechanistic, spatially explicit epidemiological models

    Science.gov (United States)

    Finger, Flavio; Schaefli, Bettina; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea

    2014-05-01

    Epidemiological models can be a crucially important tool for decision-making during disease outbreaks. The range of possible applications spans from real-time forecasting and allocation of health-care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. Our spatially explicit, mechanistic models for cholera epidemics have been successfully applied to several epidemics including, the one that struck Haiti in late 2010 and is still ongoing. Calibration and parameter estimation of such models represents a major challenge because of properties unusual in traditional geoscientific domains such as hydrology. Firstly, the epidemiological data available might be subject to high uncertainties due to error-prone diagnosis as well as manual (and possibly incomplete) data collection. Secondly, long-term time-series of epidemiological data are often unavailable. Finally, the spatially explicit character of the models requires the comparison of several time-series of model outputs with their real-world counterparts, which calls for an appropriate weighting scheme. It follows that the usual assumption of a homoscedastic Gaussian error distribution, used in combination with classical calibration techniques based on Markov chain Monte Carlo algorithms, is likely to be violated, whereas the construction of an appropriate formal likelihood function seems close to impossible. Alternative calibration methods, which allow for accurate estimation of total model uncertainty, particularly regarding the envisaged use of the models for decision-making, are thus needed. Here we present the most recent developments regarding methods for parameter and uncertainty estimation to be used with our mechanistic, spatially explicit models for cholera epidemics, based on informal measures of goodness of fit.

  2. Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis

    International Nuclear Information System (INIS)

    Jacobs, William R; Dodd, Tony J; Anderson, Sean R; Wilson, Emma D; Porrill, John; Assaf, Tareq; Rossiter, Jonathan

    2015-01-01

    Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input–output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics. (paper)

  3. A review of distributed parameter groundwater management modeling methods

    Science.gov (United States)

    Gorelick, Steven M.

    1983-01-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  4. Modeling error and stability of endothelial cytoskeletal membrane parameters based on modeling transendothelial impedance as resistor and capacitor in series.

    Science.gov (United States)

    Bodmer, James E; English, Anthony; Brady, Megan; Blackwell, Ken; Haxhinasto, Kari; Fotedar, Sunaina; Borgman, Kurt; Bai, Er-Wei; Moy, Alan B

    2005-09-01

    Transendothelial impedance across an endothelial monolayer grown on a microelectrode has previously been modeled as a repeating pattern of disks in which the electrical circuit consists of a resistor and capacitor in series. Although this numerical model breaks down barrier function into measurements of cell-cell adhesion, cell-matrix adhesion, and membrane capacitance, such solution parameters can be inaccurate without understanding model stability and error. In this study, we have evaluated modeling stability and error by using a chi(2) evaluation and Levenberg-Marquardt nonlinear least-squares (LM-NLS) method of the real and/or imaginary data in which the experimental measurement is compared with the calculated measurement derived by the model. Modeling stability and error were dependent on current frequency and the type of experimental data modeled. Solution parameters of cell-matrix adhesion were most susceptible to modeling instability. Furthermore, the LM-NLS method displayed frequency-dependent instability of the solution parameters, regardless of whether the real or imaginary data were analyzed. However, the LM-NLS method identified stable and reproducible solution parameters between all types of experimental data when a defined frequency spectrum of the entire data set was selected on the basis of a criterion of minimizing error. The frequency bandwidth that produced stable solution parameters varied greatly among different data types. Thus a numerical model based on characterizing transendothelial impedance as a resistor and capacitor in series and as a repeating pattern of disks is not sufficient to characterize the entire frequency spectrum of experimental transendothelial impedance.

  5. The effects of computed tomography scanner parameters on the quality of the reverse triangular surface model of the fibula

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Nasir; Ahmad, Mushtaq, E-mail: nasirhayat@uet.edu.pk [Faculty of Mechanical Engineering, UET, Lahore (Pakistan)

    2016-01-15

    This study investigates the effects of computed tomography (CT) parameters on the quality and size of the reverse triangular surface model with an objective of obtaining an accurate 3D triangular surface model of complex-shaped customized objects for reverse engineering and many other applications such as surgical planning and finite element analysis. For this purpose, the fibula of a human knee joint was CT scanned by changing various parameters (slice thickness, slice spacing, pixel size, X-ray tube current and helical pitch) over wide ranges. Three-dimensional triangular surface models were created from point cloud data extracted from the CT image data. To assess the influences of scanning parameters on the surface quality and accuracy, the resulting surface models were qualitatively compared based on various anatomical features. Statistical analysis was used to quantify the deviations of surface models with different scanning parameter levels from the reference CT surface model. The results show that these parameters to a varying degree affect the surface quality, reproduction of various anatomical details and size of the resulting surface model. Moreover, these parameters are highly dependent on each other. Interactive effects of these parameters have been discussed and recommendations have been made for parameter settings. The results of the study would help to improve the accuracy of the 3D surface models required for customized implants and other applications. (author)

  6. Perfect fluid Bianchi Type-I cosmological models with time varying G ...

    Indian Academy of Sciences (India)

    (27). From eq. (27), we observe that Λ is a constant in the absence of matter (Tij = 0) implying that matter is essential for a time varying Λ. In the field eqs (4), Λ accounts for vacuum energy with its energy density ρv and isotropic pressure pv satisfying the equation of state pv = −ρv = −. Λ. 8πG . The usual conservation law for ...

  7. Some notes on unobserved parameters (frailties) in reliability modeling

    International Nuclear Information System (INIS)

    Cha, Ji Hwan; Finkelstein, Maxim

    2014-01-01

    Unobserved random quantities (frailties) often appear in various reliability problems especially when dealing with the failure rates of items from heterogeneous populations. As the failure rate is a conditional characteristic, the distributions of these random quantities, similar to Bayesian approaches, are updated in accordance with the corresponding survival information. At some instances, apart from a statistical meaning, frailties can have also useful interpretations describing the underlying lifetime model. We discuss and clarify these issues in reliability context and present and analyze several meaningful examples. We consider the proportional hazards model with a random factor; the stress–strength model, where the unobserved strength of a system can be viewed as frailty; a parallel system with a random number of components and, finally, the first passage time problem for the Wiener process with random parameters. - Highlights: • We discuss and clarify the notion of frailty in reliability context and present and analyze several meaningful examples. • The paper provides a new insight and general perspective on reliability models with unobserved parameters. • The main message of the paper is well illustrated by several meaningful examples and emphasized by detailed discussion

  8. A new LPV modeling approach using PCA-based parameter set mapping to design a PSS

    Directory of Open Access Journals (Sweden)

    Mohammad B. Abolhasani Jabali

    2017-01-01

    Full Text Available This paper presents a new methodology for the modeling and control of power systems based on an uncertain polytopic linear parameter-varying (LPV approach using parameter set mapping with principle component analysis (PCA. An LPV representation of the power system dynamics is generated by linearization of its differential-algebraic equations about the transient operating points for some given specific faults containing the system nonlinear properties. The time response of the output signal in the transient state plays the role of the scheduling signal that is used to construct the LPV model. A set of sample points of the dynamic response is formed to generate an initial LPV model. PCA-based parameter set mapping is used to reduce the number of models and generate a reduced LPV model. This model is used to design a robust pole placement controller to assign the poles of the power system in a linear matrix inequality (LMI region, such that the response of the power system has a proper damping ratio for all of the different oscillation modes. The proposed scheme is applied to controller synthesis of a power system stabilizer, and its performance is compared with a tuned standard conventional PSS using nonlinear simulation of a multi-machine power network. The results under various conditions show the robust performance of the proposed controller.

  9. A new LPV modeling approach using PCA-based parameter set mapping to design a PSS.

    Science.gov (United States)

    Jabali, Mohammad B Abolhasani; Kazemi, Mohammad H

    2017-01-01

    This paper presents a new methodology for the modeling and control of power systems based on an uncertain polytopic linear parameter-varying (LPV) approach using parameter set mapping with principle component analysis (PCA). An LPV representation of the power system dynamics is generated by linearization of its differential-algebraic equations about the transient operating points for some given specific faults containing the system nonlinear properties. The time response of the output signal in the transient state plays the role of the scheduling signal that is used to construct the LPV model. A set of sample points of the dynamic response is formed to generate an initial LPV model. PCA-based parameter set mapping is used to reduce the number of models and generate a reduced LPV model. This model is used to design a robust pole placement controller to assign the poles of the power system in a linear matrix inequality (LMI) region, such that the response of the power system has a proper damping ratio for all of the different oscillation modes. The proposed scheme is applied to controller synthesis of a power system stabilizer, and its performance is compared with a tuned standard conventional PSS using nonlinear simulation of a multi-machine power network. The results under various conditions show the robust performance of the proposed controller.

  10. Hydrological Modelling and Parameter Identification for Green Roof

    Science.gov (United States)

    Lo, W.; Tung, C.

    2012-12-01

    Green roofs, a multilayered system covered by plants, can be used to replace traditional concrete roofs as one of various measures to mitigate the increasing stormwater runoff in the urban environment. Moreover, facing the high uncertainty of the climate change, the present engineering method as adaptation may be regarded as improper measurements; reversely, green roofs are unregretful and flexible, and thus are rather important and suitable. The related technology has been developed for several years and the researches evaluating the stormwater reduction performance of green roofs are ongoing prosperously. Many European counties, cities in the U.S., and other local governments incorporate green roof into the stormwater control policy. Therefore, in terms of stormwater management, it is necessary to develop a robust hydrologic model to quantify the efficacy of green roofs over different types of designs and environmental conditions. In this research, a physical based hydrologic model is proposed to simulate water flowing process in the green roof system. In particular, the model adopts the concept of water balance, bringing a relatively simple and intuitive idea. Also, the research compares the two methods in the surface water balance calculation. One is based on Green-Ampt equation, and the other is under the SCS curve number calculation. A green roof experiment is designed to collect weather data and water discharge. Then, the proposed model is verified with these observed data; furthermore, the parameters using in the model are calibrated to find appropriate values in the green roof hydrologic simulation. This research proposes a simple physical based hydrologic model and the measures to determine parameters for the model.

  11. Modelling Technical and Economic Parameters in Selection of Manufacturing Devices

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2017-11-01

    Full Text Available Sustainable science and technology development is also conditioned by continuous development of means of production which have a key role in structure of each production system. Mechanical nature of the means of production is complemented by controlling and electronic devices in context of intelligent industry. A selection of production machines for a technological process or technological project has so far been practically resolved, often only intuitively. With regard to increasing intelligence, the number of variable parameters that have to be considered when choosing a production device is also increasing. It is necessary to use computing techniques and decision making methods according to heuristic methods and more precise methodological procedures during the selection. The authors present an innovative model for optimization of technical and economic parameters in the selection of manufacturing devices for industry 4.0.

  12. Dynamic systems models new methods of parameter and state estimation

    CERN Document Server

    2016-01-01

    This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...

  13. Parameter Estimation for a Class of Lifetime Models

    Directory of Open Access Journals (Sweden)

    Xinyang Ji

    2014-01-01

    Full Text Available Our purpose in this paper is to present a better method of parametric estimation for a bivariate nonlinear regression model, which takes the performance indicator of rubber aging as the dependent variable and time and temperature as the independent variables. We point out that the commonly used two-step method (TSM, which splits the model and estimate parameters separately, has limitation. Instead, we apply the Marquardt’s method (MM to implement parametric estimation directly for the model and compare these two methods of parametric estimation by random simulation. Our results show that MM has better effect of data fitting, more reasonable parametric estimates, and smaller prediction error compared with TSM.

  14. The parameter space of Cubic Galileon models for cosmic acceleration

    CERN Document Server

    Bellini, Emilio

    2013-01-01

    We use recent measurements of the expansion history of the universe to place constraints on the parameter space of cubic Galileon models. This gives strong constraints on the Lagrangian of these models. Most dynamical terms in the Galileon Lagrangian are constraint to be small and the acceleration is effectively provided by a constant term in the scalar potential, thus reducing, effectively, to a LCDM model for current acceleration. The effective equation of state is indistinguishable from that of a cosmological constant w = -1 and the data constraint it to have no temporal variations of more than at the few % level. The energy density of the Galileon can contribute only to about 10% of the acceleration energy density, being the other 90% a cosmological constant term. This demonstrates how useful direct measurements of the expansion history of the universe are at constraining the dynamical nature of dark energy.

  15. Numerical investigation of flow past rod arrays for determining main parameters of the integral model of turbulence: longitudinal flow

    International Nuclear Information System (INIS)

    Vlasov, M.N.; Korsun, A.S.; Maslov, Yu.A.; Merinov, I.G.; Kharitonov, V.S.

    2013-01-01

    Systematic numerical calculations have been performed for studying the longitudinal flow past an array of rods with a corridor or chess-board packing in a broad range of flow Reynolds numbers. Structures with the porosity varied in a broad range have been studied and the main parameters of the proposed integral model of turbulence are determined [ru

  16. Integrating retention soil filters into urban hydrologic models - Relevant processes and important parameters

    Science.gov (United States)

    Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich

    2018-04-01

    Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated

  17. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models.

    Directory of Open Access Journals (Sweden)

    Catherine C Sun

    Full Text Available An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation. We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.

  18. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models.

    Science.gov (United States)

    Sun, Catherine C; Fuller, Angela K; Royle, J Andrew

    2014-01-01

    An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.

  19. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales

    Science.gov (United States)

    Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...

  20. Optimization of Experimental Model Parameter Identification for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Rosario Morello

    2013-09-01

    Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.

  1. Applying Atmospheric Measurements to Constrain Parameters of Terrestrial Source Models

    Science.gov (United States)

    Hyer, E. J.; Kasischke, E. S.; Allen, D. J.

    2004-12-01

    Quantitative inversions of atmospheric measurements have been widely applied to constrain atmospheric budgets of a range of trace gases. Experiments of this type have revealed persistent discrepancies between 'bottom-up' and 'top-down' estimates of source magnitudes. The most common atmospheric inversion uses the absolute magnitude as the sole parameter for each source, and returns the optimal value of that parameter. In order for atmospheric measurements to be useful for improving 'bottom-up' models of terrestrial sources, information about other properties of the sources must be extracted. As the density and quality of atmospheric trace gas measurements improve, examination of higher-order properties of trace gas sources should become possible. Our model of boreal forest fire emissions is parameterized to permit flexible examination of the key uncertainties in this source. Using output from this model together with the UM CTM, we examined the sensitivity of CO concentration measurements made by the MOPITT instrument to various uncertainties in the boreal source: geographic distribution of burned area, fire type (crown fires vs. surface fires), and fuel consumption in above-ground and ground-layer fuels. Our results indicate that carefully designed inversion experiments have the potential to help constrain not only the absolute magnitudes of terrestrial sources, but also the key uncertainties associated with 'bottom-up' estimates of those sources.

  2. Bayesian parameter estimation for stochastic models of biological cell migration

    Science.gov (United States)

    Dieterich, Peter; Preuss, Roland

    2013-08-01

    Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.

  3. Constructing Regional Groundwater Models from Geophysical Data of Varying Type, Age, and Quality

    DEFF Research Database (Denmark)

    Vest Christiansen, Anders; Auken, Esben; Marker, Pernille Aabye

    is calibrated against observed lithological data. In other words, the translator function interprets the geophysical resistivities into a 3D clay fraction model and the 3D clay fraction model is then turned into a zonation for the hydrological model by a K-means clustering. We present the methodology by show...

  4. Modelling the solidification of ductile cast iron parts with varying wall thicknesses

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper

    2015-01-01

    In the present paper modelling the solidification of cast iron parts is considered. Common for previous efforts in this field is that they have mainly considered thin walled to medium thickness castings. Hence, a numerical model combining the solidification model presented by Lesoultet al. [1] wi...

  5. Application of a free parameter model to plastic scintillation samples

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2011-08-21

    In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.

  6. Microbial Communities Model Parameter Calculation for TSPA/SR

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2001-07-16

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.

  7. Microbial Communities Model Parameter Calculation for TSPA/SR

    International Nuclear Information System (INIS)

    D. Jolley

    2001-01-01

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed

  8. Global Stability of Multigroup SIRS Epidemic Model with Varying Population Sizes and Stochastic Perturbation around Equilibrium

    Directory of Open Access Journals (Sweden)

    Xiaoming Fan

    2014-01-01

    Full Text Available We discuss multigroup SIRS (susceptible, infectious, and recovered epidemic models with random perturbations. We carry out a detailed analysis on the asymptotic behavior of the stochastic model; when reproduction number ℛ0>1, we deduce the globally asymptotic stability of the endemic equilibrium by measuring the difference between the solution and the endemic equilibrium of the deterministic model in time average. Numerical methods are employed to illustrate the dynamic behavior of the model and simulate the system of equations developed. The effect of the rate of immunity loss on susceptible and recovered individuals is also analyzed in the deterministic model.

  9. Modelled basic parameters for semi-industrial irradiation plant design

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    The basic parameters of an irradiation plant design are the total activity, the product uniformity ratio and the efficiency process. The target density, the minimum dose required and the throughput depends on the use to which the irradiator will be put at. In this work, a model for calculating the specific dose rate at several depths in an infinite homogeneous medium produced by a slab source irradiator is presented. The product minimum dose rate for a set of target thickness is obtained. The design method steps are detailed and an illustrative example is presented. (author)

  10. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  11. Taming Many-Parameter BSM Models with Bayesian Neural Networks

    Science.gov (United States)

    Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.

    2017-09-01

    The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.

  12. Bayesian analysis of inflation: Parameter estimation for single field models

    International Nuclear Information System (INIS)

    Mortonson, Michael J.; Peiris, Hiranya V.; Easther, Richard

    2011-01-01

    Future astrophysical data sets promise to strengthen constraints on models of inflation, and extracting these constraints requires methods and tools commensurate with the quality of the data. In this paper we describe ModeCode, a new, publicly available code that computes the primordial scalar and tensor power spectra for single-field inflationary models. ModeCode solves the inflationary mode equations numerically, avoiding the slow roll approximation. It is interfaced with CAMB and CosmoMC to compute cosmic microwave background angular power spectra and perform likelihood analysis and parameter estimation. ModeCode is easily extendable to additional models of inflation, and future updates will include Bayesian model comparison. Errors from ModeCode contribute negligibly to the error budget for analyses of data from Planck or other next generation experiments. We constrain representative single-field models (φ n with n=2/3, 1, 2, and 4, natural inflation, and 'hilltop' inflation) using current data, and provide forecasts for Planck. From current data, we obtain weak but nontrivial limits on the post-inflationary physics, which is a significant source of uncertainty in the predictions of inflationary models, while we find that Planck will dramatically improve these constraints. In particular, Planck will link the inflationary dynamics with the post-inflationary growth of the horizon, and thus begin to probe the ''primordial dark ages'' between TeV and grand unified theory scale energies.

  13. Spatial modeling of limnological parameters in a solar saltwork of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Diógenes Félix da Silva Costa

    2015-03-01

    Full Text Available AimIn this research, we aimed to model limnological parameters in the Salina Unidos (Macau-Brazil using GIS technology. We hypothesized that in solar saltworks, the geochemical characteristics of the brines (i.e. the strong solution of salts vary considerably through the salt ponds circuit, in which drastic changes can damage the entire salt production.MethodsGeochemical parameters were monitored in seven sampling points distributed along the salt ponds circuit, during a complete cycle of salt production, i.e., from January to December 2007. The open source software Spring 5.1.6 was used to build, store, analyze and model the spatial distribution of the parameters.ResultsWe identified a spatial gradient of the salinity and temperature, with values increasing from evaporation ponds to concentration ponds, showing a relationship with the salt production. The parameters, depth, dissolved oxygen concentrations and total dissolved reactive phosphorus showed a decrease from the evaporation ponds towards the concentration ponds. Among the dissolved inorganic nitrogen forms analyzed (NH3-, NO2- and NO3-, nitrate was the predominant, namely in the concentration ponds, where it reached the highest concentrations. The concentration of chlorophyll awas higher in the initial and intermediate evaporation ponds, showing a distinct dynamics of in relation to other environmental variables.ConclusionsThe increased concentration of the analyzed limnological parameters, from the evaporation ponds towards the concentration ponds, evidenced a heterogeneous distribution varying significantly with season. The geochemical spatialization of brine, as illustrated by GIS approach, is very important for the conservation of these environments because this spatial heterogeneity can provide a high diversity of habitat types. This spatial analysis proved to be a practical tool for an adequate management of solar saltworks considering the environmental (ecosystem and the socio

  14. How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors?

    Science.gov (United States)

    Bassu, Simona; Brisson, Nadine; Grassini, Patricio; Durand, Jean-Louis; Boote, Kenneth; Lizaso, Jon; Jones, James W.; Rosenzweig, Cynthia; Ruane, Alex C.; Adam, Myriam; hide

    2014-01-01

    Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(sup 1) per degC. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.

  15. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Science.gov (United States)

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  16. Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle

    OpenAIRE

    Canaza-Cayo, Ali William; Lopes, Paulo Sávio; da Silva, Marcos Vinicius Gualberto Barbosa; de Almeida Torres, Robledo; Martins, Marta Fonseca; Arbex, Wagner Antonio; Cobuci, Jaime Araujo

    2015-01-01

    A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre’s polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield (PSi) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used in...

  17. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  18. Modelling of bio-optical parameters of open ocean waters

    Directory of Open Access Journals (Sweden)

    Vadim N. Pelevin

    2001-12-01

    Full Text Available An original method for estimating the concentration of chlorophyll pigments, absorption of yellow substance and absorption of suspended matter without pigments and yellow substance in detritus using spectral diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance data has been applied to sea waters of different types in the open ocean (case 1. Using the effective numerical single parameter classification with the water type optical index m as a parameter over the whole range of the open ocean waters, the calculations have been carried out and the light absorption spectra of sea waters tabulated. These spectra are used to optimize the absorption models and thus to estimate the concentrations of the main admixtures in sea water. The value of m can be determined from direct measurements of the downward irradiance attenuation coefficient at 500 nm or calculated from remote sensing data using the regressions given in the article. The sea water composition can then be readily estimated from the tables given for any open ocean area if that one parameter m characterizing the basin is known.

  19. Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model

    Directory of Open Access Journals (Sweden)

    Radde Nicole

    2009-11-01

    Full Text Available Abstract Background Feed composition has a large impact on the growth of animals, particularly marine fish. We have developed a quantitative dynamic model that can predict the growth and body composition of marine fish for a given feed composition over a timespan of several months. The model takes into consideration the effects of environmental factors, particularly temperature, on growth, and it incorporates detailed kinetics describing the main metabolic processes (protein, lipid, and central metabolism known to play major roles in growth and body composition. Results For validation, we compared our model's predictions with the results of several experimental studies. We showed that the model gives reliable predictions of growth, nutrient utilization (including amino acid retention, and body composition over a timespan of several months, longer than most of the previously developed predictive models. Conclusion We demonstrate that, despite the difficulties involved, multiscale models in biology can yield reasonable and useful results. The model predictions are reliable over several timescales and in the presence of strong temperature fluctuations, which are crucial factors for modeling marine organism growth. The model provides important improvements over existing models.

  20. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    Directory of Open Access Journals (Sweden)

    Tashkova Katerina

    2011-10-01

    Full Text Available Abstract Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA, particle-swarm optimization (PSO, and differential evolution (DE, as well as a local-search derivative-based algorithm 717 (A717 to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE clearly and significantly outperform the local derivative-based method (A717. Among the three meta-heuristics, differential evolution (DE performs best in terms of the objective function, i.e., reconstructing the output, and in terms of

  1. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    Science.gov (United States)

    2011-01-01

    Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These

  2. A New Extension of the Binomial Error Model for Responses to Items of Varying Difficulty in Educational Testing and Attitude Surveys.

    Directory of Open Access Journals (Sweden)

    James A Wiley

    Full Text Available We put forward a new item response model which is an extension of the binomial error model first introduced by Keats and Lord. Like the binomial error model, the basic latent variable can be interpreted as a probability of responding in a certain way to an arbitrarily specified item. For a set of dichotomous items, this model gives predictions that are similar to other single parameter IRT models (such as the Rasch model but has certain advantages in more complex cases. The first is that in specifying a flexible two-parameter Beta distribution for the latent variable, it is easy to formulate models for randomized experiments in which there is no reason to believe that either the latent variable or its distribution vary over randomly composed experimental groups. Second, the elementary response function is such that extensions to more complex cases (e.g., polychotomous responses, unfolding scales are straightforward. Third, the probability metric of the latent trait allows tractable extensions to cover a wide variety of stochastic response processes.

  3. The influence of joint parameters on normal fault evolution and geometry: a parameter study using analogue modeling

    Science.gov (United States)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.

    2017-04-01

    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small

  4. Convergence of surface diffusion parameters with model crystal size

    Science.gov (United States)

    Cohen, Jennifer M.; Voter, Arthur F.

    1994-07-01

    A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.

  5. Diabatic models with transferrable parameters for generalized chemical reactions

    Science.gov (United States)

    Reimers, Jeffrey R.; McKemmish, Laura K.; McKenzie, Ross H.; Hush, Noel S.

    2017-05-01

    Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical

  6. Accurate gradually varied flow model for water surface profile in circular channels

    Directory of Open Access Journals (Sweden)

    Ali R. Vatankhah

    2013-12-01

    Full Text Available The paper presents an accurate approximation of the Froude number (F for circular channels which is part of the gradually varied flow (GVF equation. The proposed approximation is developed using optimization technique to minimize the relative error between the exact and estimated values, resulting in a maximum error of 0.6% compared with 14% for the existing approximate method. The approximate F is used in the governing GVF equation to develop an exact analytical solution of this equation using the concept of simplest partial fractions. A comparison of the proposed and approximate solutions for backwater length shows that the error of the existing approximate solution could reach up to 30% for large normal flow depths.

  7. Piecewise Model and Parameter Obtainment of Governor Actuator in Turbine

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available The governor actuators in some heat-engine plants have nonlinear valves. This nonlinearity of valves may lead to the inaccuracy of the opening and closing time constants calculated based on the whole segment fully open and fully close experimental test curves of the valve. An improved mathematical model of the turbine governor actuator is proposed to reflect the nonlinearity of the valve, in which the main and auxiliary piecewise opening and closing time constants instead of the fixed oil motive opening and closing time constants are adopted to describe the characteristics of the actuator. The main opening and closing time constants are obtained from the linear segments of the whole fully open and close curves. The parameters of proportional integral derivative (PID controller are identified based on the small disturbance experimental tests of the valve. Then the auxiliary opening and closing time constants and the piecewise opening and closing valve points are determined by the fully open/close experimental tests. Several testing functions are selected to compare genetic algorithm and particle swarm optimization algorithm (GA-PSO with other basic intelligence algorithms. The effectiveness of the piecewise linear model and its parameters are validated by practical power plant case studies.

  8. Standard model parameters and the search for new physics

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1988-04-01

    In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs

  9. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Science.gov (United States)

    Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...

  10. Time-Varying Combinations of Bayesian Dynamic Models and Equity Momentum Strategies

    NARCIS (Netherlands)

    N. Basturk (Nalan); S. Grassi (Stefano); L.F. Hoogerheide (Lennart); H.K. van Dijk (Herman)

    2016-01-01

    markdownabstractA novel dynamic asset-allocation approach is proposed where portfolios as well as portfolio strategies are updated at every decision period based on their past performance. For modeling, a general class of models is specified that combines a dynamic factor and a vector autoregressive

  11. Time-varying boundaries for diffusion models of decision making and response time

    NARCIS (Netherlands)

    Zhang, S.; Lee, M.D.; Vandekerckhove, J.; Maris, G.; Wagenmakers, E.-J.

    2014-01-01

    Diffusion models are widely-used and successful accounts of the time course of two-choice decision making. Most diffusion models assume constant boundaries, which are the threshold levels of evidence that must be sampled from a stimulus to reach a decision. We summarize theoretical results from

  12. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  13. Optimization of Saturn paraboloid magnetospheric field model parameters using Cassini equatorial magnetic field data

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2016-07-01

    Full Text Available The paraboloid model of Saturn's magnetosphere describes the magnetic field as being due to the sum of contributions from the internal field of the planet, the ring current, and the tail current, all contained by surface currents inside a magnetopause boundary which is taken to be a paraboloid of revolution about the planet-Sun line. The parameters of the model have previously been determined by comparison with data from a few passes through Saturn's magnetosphere in compressed and expanded states, depending on the prevailing dynamic pressure of the solar wind. Here we significantly expand such comparisons through examination of Cassini magnetic field data from 18 near-equatorial passes that span wide ranges of local time, focusing on modelling the co-latitudinal field component that defines the magnetic flux passing through the equatorial plane. For 12 of these passes, spanning pre-dawn, via noon, to post-midnight, the spacecraft crossed the magnetopause during the pass, thus allowing an estimate of the concurrent subsolar radial distance of the magnetopause R1 to be made, considered to be the primary parameter defining the scale size of the system. The best-fit model parameters from these passes are then employed to determine how the parameters vary with R1, using least-squares linear fits, thus providing predictive model parameters for any value of R1 within the range. We show that the fits obtained using the linear approximation parameters are of the same order as those for the individually selected parameters. We also show that the magnetic flux mapping to the tail lobes in these models is generally in good accord with observations of the location of the open-closed field line boundary in Saturn's ionosphere, and the related position of the auroral oval. We then investigate the field data on six passes through the nightside magnetosphere, for which the spacecraft did not cross the magnetopause, such that in this case we compare the

  14. Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle.

    Science.gov (United States)

    Canaza-Cayo, Ali William; Lopes, Paulo Sávio; da Silva, Marcos Vinicius Gualberto Barbosa; de Almeida Torres, Robledo; Martins, Marta Fonseca; Arbex, Wagner Antonio; Cobuci, Jaime Araujo

    2015-10-01

    A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre's polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield (PSi) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used indicated RRM employing the Legendre's polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from -0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from -0.98 to 1.00, respectively. The use of PS7 would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits.

  15. Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle

    Directory of Open Access Journals (Sweden)

    Ali William Canaza-Cayo

    2015-10-01

    Full Text Available A total of 32,817 test-day milk yield (TDMY records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM using Legendre’s polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield (PSi and the genetic trend of 305-day milk yield (305MY were evaluated. The fit quality criteria used indicated RRM employing the Legendre’s polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from −0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from −0.98 to 1.00, respectively. The use of PS7 would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits.

  16. Detecting memory and structure in human navigation patterns using Markov chain models of varying order.

    Directory of Open Access Journals (Sweden)

    Philipp Singer

    Full Text Available One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work.

  17. Time-varying disaster risk models: An empirical assessment of the Rietz-Barro hypothesis

    DEFF Research Database (Denmark)

    Irarrazabal, Alfonso; Parra-Alvarez, Juan Carlos

    This paper revisits the fit of disaster risk models where a representative agent has recursive preferences and the probability of a macroeconomic disaster changes over time. We calibrate the model as in Wachter (2013) and perform two sets of tests to assess the empirical performance of the model ...... and hence to reduce the Sharpe Ratio, a lower elasticity of substitution generates a more reasonable level for the equity risk premium and for the volatility of the government bond returns without compromising the ability of the price-dividend ratio to predict excess returns....

  18. Performance Analysis of Different NeQuick Ionospheric Model Parameters

    Directory of Open Access Journals (Sweden)

    WANG Ningbo

    2017-04-01

    Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.

  19. Exploring parameter constraints on quintessential dark energy: The exponential model

    International Nuclear Information System (INIS)

    Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael

    2008-01-01

    We present an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their 'w 0 -w a ' parametrization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which cannot be distinguished from a cosmological constant at DETF 'Stage 2', and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3σ

  20. Simulating Dynamic Network Models and Adolescent Smoking: The Impact of Varying Peer Influence and Peer Selection.

    Science.gov (United States)

    Lakon, Cynthia M; Hipp, John R; Wang, Cheng; Butts, Carter T; Jose, Rupa

    2015-12-01

    We used a stochastic actor-based approach to examine the effect of peer influence and peer selection--the propensity to choose friends who are similar--on smoking among adolescents. Data were collected from 1994 to 1996 from 2 schools involved in the National Longitudinal Study of Adolescent to Adult Health, with respectively 2178 and 976 students, and different levels of smoking. Our experimental manipulations of the peer influence and selection parameters in a simulation strategy indicated that stronger peer influence decreased school-level smoking. In contrast to the assumption that a smoker may induce a nonsmoker to begin smoking, adherence to antismoking norms may result in an adolescent nonsmoker inducing a smoker to stop smoking and reduce school-level smoking.

  1. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  2. Links between the charge model and bonded parameter force constants in biomolecular force fields

    Science.gov (United States)

    Cerutti, David S.; Debiec, Karl T.; Case, David A.; Chong, Lillian T.

    2017-10-01

    The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α -helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α -helices in simulations of a β -hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop

  3. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J. [Pennsylvania U.; Guy, J. [LBL, Berkeley; Kessler, R. [Chicago U., KICP; Astier, P. [Paris U., VI-VII; Marriner, J. [Fermilab; Betoule, M. [Paris U., VI-VII; Sako, M. [Pennsylvania U.; El-Hage, P. [Paris U., VI-VII; Biswas, R. [Argonne; Pain, R. [Paris U., VI-VII; Kuhlmann, S. [Argonne; Regnault, N. [Paris U., VI-VII; Frieman, J. A. [Fermilab; Schneider, D. P. [Penn State U.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  4. A model for calculating the quantum potential for time-varying multi-slit systems

    CERN Document Server

    Bracken, P

    2003-01-01

    A model is proposed and applied to the single and double slit experiments. The model is designed to take into account a change in the experimental setup. This includes opening and closing the slits in some way, or by introducing some object which can be thought of as having a perturbing effect on the space-time background. The single and double slits could be closed simultaneously or one after the other in such a way as to transform from one arrangement to the other. The model consists in using modified free particle propagators in such a way that the required integrals for calculating the overall wave function can be calculated. It is supposed that these constants reflect the ambient structure as the experimental situation is modified, and might be calculable with regard to a more fundamental theory.

  5. Numerical modeling of sandwich panel response to ballistic loading - energy balance for varying impactor geometries

    DEFF Research Database (Denmark)

    Kepler, Jørgen Asbøl; Hansen, Michael Rygaard

    2007-01-01

    A sandwich panel is described by an axisymmetric lumped mass- spring model. The panel compliance is simplified, considering only core shear deformation uniformly distributed across the core thickness. Transverse penetrating impact is modeled for impactors of diameters comparable to the panel thic...... between the impactor and the panel during penetration. The force histories are selected from a primary criterion of conservation of linear momentum in the impactor-panel system, and evaluated according to agreement with the total measured energy balance....... thickness but significantly smaller than panel length dimensions. Experimental data for the total loss in impactor kinetic energy and momentum and estimated damage energy are described. For a selection of impactor tip shapes, the numerical model is used to evaluate different simplified force histories...

  6. Nitric oxide levels in the aqueous humor vary in different ocular hypertension experimental models

    Directory of Open Access Journals (Sweden)

    Da-Wen Lu

    2014-12-01

    Full Text Available This study investigated the relationships among intraocular pressure (IOP, nitric oxide (NO levels, and aqueous flow rates in experimental ocular hypertension models. A total of 75 rabbits were used. One of four different materials [i.e., α-chymotrypsin, latex microspheres (Polybead, red blood cell ghosts, or sodium hyaluronate (Healon GV] was injected into the eyes of the 15 animals in each experimental group; the remaining 15 rabbits were reserved for a control group. The IOP changes in the five groups were recorded on postinduction Days 1–3, Day 7, Day 14, Day 30, Day 60, Day 90, and Day 120. On postinduction Day 7, the dynamics and NO levels in the aqueous humor were recorded. Significant IOP elevations were induced by α-chymotrypsin (p < 0.01 and Polybead (p < 0.01 on each postinduction day. In the red blood cell ghosts model, significant elevations (p < 0.01 were found on postinduction Days 1–3; Healon GV significantly elevated IOP (p < 0.01 on postinduction Day 1 and Day 2. On postinduction Day 7, the aqueous humor NO levels increased significantly in the models of α-chymotrypsin, Polybead, and red blood cell ghosts (all p < 0.01, while the aqueous flow rates were significantly reduced in the models of α-chymotrypsin and Polybead (p < 0.005. Persistent ocular hypertension models were induced with α-chymotrypsin and Polybead in the rabbits. The Polybead model exhibited the characteristic of an increased aqueous humor NO level, similar to human eyes with acute angle-closure glaucoma and neovascular glaucoma.

  7. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root

  8. A flexible, interactive software tool for fitting the parameters of neuronal models

    Directory of Open Access Journals (Sweden)

    Péter eFriedrich

    2014-07-01

    Full Text Available The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problem of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting

  9. Ecohydrological model parameter selection for stream health evaluation.

    Science.gov (United States)

    Woznicki, Sean A; Nejadhashemi, A Pouyan; Ross, Dennis M; Zhang, Zhen; Wang, Lizhu; Esfahanian, Abdol-Hossein

    2015-04-01

    Variable selection is a critical step in development of empirical stream health prediction models. This study develops a framework for selecting important in-stream variables to predict four measures of biological integrity: total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, family index of biotic integrity (FIBI), Hilsenhoff biotic integrity (HBI), and fish index of biotic integrity (IBI). Over 200 flow regime and water quality variables were calculated using the Hydrologic Index Tool (HIT) and Soil and Water Assessment Tool (SWAT). Streams of the River Raisin watershed in Michigan were grouped using the Strahler stream classification system (orders 1-3 and orders 4-6), k-means clustering technique (two clusters: C1 and C2), and all streams (one grouping). For each grouping, variable selection was performed using Bayesian variable selection, principal component analysis, and Spearman's rank correlation. Following selection of best variable sets, models were developed to predict the measures of biological integrity using adaptive-neuro fuzzy inference systems (ANFIS), a technique well-suited to complex, nonlinear ecological problems. Multiple unique variable sets were identified, all which differed by selection method and stream grouping. Final best models were mostly built using the Bayesian variable selection method. The most effective stream grouping method varied by health measure, although k-means clustering and grouping by stream order were always superior to models built without grouping. Commonly selected variables were related to streamflow magnitude, rate of change, and seasonal nitrate concentration. Each best model was effective in simulating stream health observations, with EPT taxa validation R2 ranging from 0.67 to 0.92, FIBI ranging from 0.49 to 0.85, HBI from 0.56 to 0.75, and fish IBI at 0.99 for all best models. The comprehensive variable selection and modeling process proposed here is a robust method that extends our

  10. The electronic disability record: purpose, parameters, and model use case.

    Science.gov (United States)

    Tulu, Bengisu; Horan, Thomas A

    2009-01-01

    The active engagement of consumers is an important factor in achieving widespread success of health information systems. The disability community represents a major segment of the healthcare arena, with more than 50 million Americans experiencing some form of disability. In keeping with the "consumer-driven" approach to e-health systems, this paper considers the distinctive aspects of electronic and personal health record use by this segment of society. Drawing upon the information shared during two national policy forums on this topic, the authors present the concept of Electronic Disability Records (EDR). The authors outline the purpose and parameters of such records, with specific attention to its ability to organize health and financial data in a manner that can be used to expedite the disability determination process. In doing so, the authors discuss its interaction with Electronic Health Records (EHR) and Personal Health Records (PHR). The authors then draw upon these general parameters to outline a model use case for disability determination and discuss related implications for disability health management. The paper further reports on the subsequent considerations of these and related deliberations by the American Health Information Community (AHIC).

  11. Slab detachment in laterally varying subduction zones: 3-D numerical modeling

    NARCIS (Netherlands)

    Duretz, T.; Gerya, T.V.; Spakman, W.|info:eu-repo/dai/nl/074103164

    Understanding the three-dimensional (3-D) dynamics of subduction-collision systems is a longstanding challenge in geodynamics. We investigate the impact of slab detachment in collision systems that are subjected to along-trench variations. High-resolution thermomechanical numerical models,

  12. A Gradually Varied Approach to Model Turbidity Currents in Submarine Channels

    Science.gov (United States)

    Bolla Pittaluga, M.; Frascati, A.; Falivene, O.

    2018-01-01

    We develop a one-dimensional model to describe the dynamics of turbidity current flowing in submarine channels. We consider the flow as a steady state polydisperse suspension accounting for water detrainment from the clear water-turbid interface, for spatial variations of the channel width and for water and sediment lateral overspill from the channel levees. Moreover, we account for sediment exchange with the bed extending the model to deal with situations where the current meets a nonerodible bed. Results show that when water detrainment is accounted for, the flow thickness becomes approximately constant proceeding downstream. Similarly, in the presence of channel levees, the flow tends to adjust to channel relief through the lateral loss of water and sediment. As more mud is spilled above the levees relative to sand, the flow becomes more sand rich proceeding downstream when lateral overspill is present. Velocity and flow thickness predicted by the model are then validated by showing good agreement with laboratory observations. Finally, the model is applied to the Monterey Canyon bathymetric data matching satisfactorily the December 2002 event field measurements and predicting a runout length consistent with observations.

  13. Modeling complex flow structures and drag around a submerged plant of varied posture

    Science.gov (United States)

    Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.

    2017-04-01

    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

  14. A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology

    Science.gov (United States)

    Al-Husseini, Amal

    In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers

  15. A stochastic model of reactive solute transport with time-varying velocity in a heterogeneous aquifer

    Science.gov (United States)

    Kabala, Z. J.; Sposito, Garrison

    1991-03-01

    The cumulant expansion method, used previously by Sposito and Barry (1987) to derive an ensemble average transport equation for a tracer moving in a heterogeneous aquifer, is generalized to the case of a reactive solute that can adsorb linearly and undergo first-order decay. In the process we also generalize the Van Kampen (1987) result for the cumulant expansion of a multiplicative stochastic differential equation containing a time-dependent sure matrix. The resulting partial differential equation exhibits terms with field-scale coefficients that are analogous to those in the corresponding nonstochastic local-scale transport equation. There are also new terms in the third- and fourth-order spatial derivatives of the ensemble average concentration. It is demonstrated that the effective solute velocity for the aqueous concentration, not that for the total concentration (aqueous plus sorbed), is relevant for a field-scale description of solute transport. The field-scale effective solute velocity, dispersion coefficient, retardation factor, and first-order decay parameters, unlike their local-scale counterparts, are time-dependent because of autocorrelations and cross correlations among the random local solute velocity, retardation factor, and first-order decay constant. It is shown also that negative cross correlations between the random tracer solute velocity and the inverse of the local retardation factor may produce both enhanced dispersion and a temporal growth in the field-scale retardation factor. These effects are possible in any heterogeneous aquifer for which a stochastic description of aquifer spatial variability is appropriate.

  16. The S-parameter in Holographic Technicolor Models

    CERN Document Server

    Agashe, Kaustubh; Grojean, Christophe; Reece, Matthew

    2007-01-01

    We study the S parameter, considering especially its sign, in models of electroweak symmetry breaking (EWSB) in extra dimensions, with fermions localized near the UV brane. Such models are conjectured to be dual to 4D strong dynamics triggering EWSB. The motivation for such a study is that a negative value of S can significantly ameliorate the constraints from electroweak precision data on these models, allowing lower mass scales (TeV or below) for the new particles and leading to easier discovery at the LHC. We first extend an earlier proof of S>0 for EWSB by boundary conditions in arbitrary metric to the case of general kinetic functions for the gauge fields or arbitrary kinetic mixing. We then consider EWSB in the bulk by a Higgs VEV showing that S is positive for arbitrary metric and Higgs profile, assuming that the effects from higher-dimensional operators in the 5D theory are sub-leading and can therefore be neglected. For the specific case of AdS_5 with a power law Higgs profile, we also show that S ~ ...

  17. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    Science.gov (United States)

    Zhao, Song-Feng; Huang, Fang; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov–Popov–Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  18. Sound propagation and absorption in foam - A distributed parameter model.

    Science.gov (United States)

    Manson, L.; Lieberman, S.

    1971-01-01

    Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.

  19. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  20. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters

    Directory of Open Access Journals (Sweden)

    Adeniyi Ganiyu Adeogun

    2015-10-01

    Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain.

  1. Modeling the outflow of liquid with initial supercritical parameters using the relaxation model for condensation

    Directory of Open Access Journals (Sweden)

    Lezhnin Sergey

    2017-01-01

    Full Text Available The two-temperature model of the outflow from a vessel with initial supercritical parameters of medium has been realized. The model uses thermodynamic non-equilibrium relaxation approach to describe phase transitions. Based on a new asymptotic model for computing the relaxation time, the outflow of water with supercritical initial pressure and super- and subcritical temperatures has been calculated.

  2. Time-Varying Scheme for Noncentralized Model Predictive Control of Large-Scale Systems

    Directory of Open Access Journals (Sweden)

    Alfredo Núñez

    2015-01-01

    Full Text Available The noncentralized model predictive control (NC-MPC framework in this paper refers to any distributed, hierarchical, or decentralized model predictive controller (or a combination of them the structure of which can change over time and the control actions of which are not obtained based on a centralized computation. Within this framework, we propose suitable online methods to decide which information is shared and how this information is used between the different local predictive controllers operating in a decentralized, distributed, and/or hierarchical way. Evaluating all the possible structures of the NC-MPC controller leads to a combinatorial optimization problem. Therefore, we also propose heuristic reduction methods, to keep the number of NC-MPC problems tractable to be solved. To show the benefits of the proposed framework, a case study of a set of coupled water tanks is presented.

  3. Objective estimation of spatially variable parameters of epidemic type aftershock sequence model: Application to California

    Science.gov (United States)

    Nandan, Shyam; Ouillon, Guy; Wiemer, Stefan; Sornette, Didier

    2017-07-01

    The Epidemic Type Aftershock Sequence (ETAS) model is widely employed to model the spatiotemporal distribution of earthquakes, generally using spatially invariant parameters. We propose an efficient method for the estimation of spatially varying parameters, using the expectation maximization (EM) algorithm and spatial Voronoi tessellation ensembles. We use the Bayesian information criterion (BIC) to rank inverted models given their likelihood and complexity and select the best models to finally compute an ensemble model at any location. Using a synthetic catalog, we also check that the proposed method correctly inverts the known parameters. We apply the proposed method to earthquakes included in the Advanced National Seismic System catalog that occurred within the time period 1981-2015 in a spatial polygon around California. The results indicate significant spatial variation of the ETAS parameters. We find that the efficiency of earthquakes to trigger future ones (quantified by the branching ratio) positively correlates with surface heat flow. In contrast, the rate of earthquakes triggered by far-field tectonic loading or background seismicity rate shows no such correlation, suggesting the relevance of triggering possibly through fluid-induced activation. Furthermore, the branching ratio and background seismicity rate are found to be uncorrelated with hypocentral depths, indicating that the seismic coupling remains invariant of hypocentral depths in the study region. Additionally, triggering seems to be mostly dominated by small earthquakes. Consequently, the static stress change studies should not only focus on the Coulomb stress changes caused by specific moderate to large earthquakes but also account for the secondary static stress changes caused by smaller earthquakes.

  4. Numerical modeling of sandwich panel response to ballistic loading - energy balance for varying impactor geometries

    DEFF Research Database (Denmark)

    Kepler, Jørgen Asbøl; Hansen, Michael Rygaard

    2007-01-01

    thickness but significantly smaller than panel length dimensions. Experimental data for the total loss in impactor kinetic energy and momentum and estimated damage energy are described. For a selection of impactor tip shapes, the numerical model is used to evaluate different simplified force histories...... between the impactor and the panel during penetration. The force histories are selected from a primary criterion of conservation of linear momentum in the impactor-panel system, and evaluated according to agreement with the total measured energy balance....

  5. Estimating Nitrogen Loss across Varying Flow Regimes in a Southeastern Floodplain Using a Multidimensional Ecohydraulic Model

    Science.gov (United States)

    Jones, C.; Scott, D.; Noe, G. B.; Harvey, J. W.

    2011-12-01

    Excess nitrogen (N) flux from the landscape to riverine systems has led to the degradation of many downstream water bodies. Hypoxic zones in both the Gulf of Mexico and Chesapeake Bay can be attributed to the increase in anthropogenic N sources during the last century. Typically, the majority of N flux occurs during flood events. Floodplains act as buffers during these periods of inundation, providing critical ecosystem services such as flood peak attenuation, depositional zones for the removal of sediments and contaminants, and biological hotspots for nutrient transformation. Specifically, regions of overbank inundation and backwater promote steep redox gradients at the sediment-water interface, leading to N removal through denitrification. In many Southeastern floodplains, it appears that this process is limited by the amount of N transported into hydraulically connected regions, making the duration of the hydroperiod (i.e. residence time) the driving force behind N removal. Therefore, in the face of a changing climate, it is imperative that we explore the relationships between changes in flow regime and nutrient retention/removal in our floodplains. In this study, these processes are examined within a Southeastern floodplain using a dynamically linked 1D-2D hydrodynamic model. A 12 km reach of the Tangipahoa River, located in Southeastern Louisiana, was selected for this study. Channel and floodplain bathymetry was developed using a combination of surveyed data and high resolution LIDAR while the boundary conditions were established using stream gauges at the inlet/outlet of the reach. Floodplain stage was recorded at multiple locations and was used to validate model results. Nitrogen removal/retention was modeled using the simplified assumption of a first order decay mechanism. Results from this model were used to correlate changes in flow regime (i.e. flood frequency and duration) to nitrogen removal.

  6. Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Kukačka, Jiří

    2015-01-01

    Roč. 15, č. 6 (2015), s. 959-973 ISSN 1469-7688 R&D Projects: GA ČR GA402/09/0965; GA ČR GA13-32263S EU Projects: European Commission 612955 - FINMAP Institutional support: RVO:67985556 Keywords : Stochastic cusp catastrophe model * Realized volatility * Bifurcations * Stock market crash Subject RIV: AH - Economics Impact factor: 0.794, year: 2015 http://library.utia.cas.cz/separaty/2014/E/barunik-0434202.pdf

  7. Stabilization strategies of a general nonlinear car-following model with varying reaction-time delay of the drivers.

    Science.gov (United States)

    Li, Shukai; Yang, Lixing; Gao, Ziyou; Li, Keping

    2014-11-01

    In this paper, the stabilization strategies of a general nonlinear car-following model with reaction-time delay of the drivers are investigated. The reaction-time delay of the driver is time varying and bounded. By using the Lyapunov stability theory, the sufficient condition for the existence of the state feedback control strategy for the stability of the car-following model is given in the form of linear matrix inequality, under which the traffic jam can be well suppressed with respect to the varying reaction-time delay. Moreover, by considering the external disturbance for the running cars, the robust state feedback control strategy is designed, which ensures robust stability and a smaller prescribed H∞ disturbance attenuation level for the traffic flow. Numerical examples are given to illustrate the effectiveness of the proposed methods. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. On the Use of Maps and Models in Conservation and Resource Management (Warning: Results May Vary

    Directory of Open Access Journals (Sweden)

    Vincent Lecours

    2017-09-01

    Full Text Available Conservation planning and management typically require accurate and spatially explicit data at scales that are relevant for conservation objectives. In marine conservation, these data are often combined with spatial analytical techniques to produce marine habitat maps. While marine habitat mapping is increasingly used to inform conservation efforts, this field is still relatively young and its methods are rapidly evolving. Because conservation efforts do not always specify standards or guidelines for the production of habitat maps, results can vary dramatically. As representations of real environmental characteristics, habitat maps are highly sensitive to how they are produced. In this review paper, I present four concepts that are known to cause variation in spatial representation and prediction of habitats: the methodology used, the quality and scale of the data, and the choice of variables in regards to fitness for use. I then discuss the potential antinomy associated with the use of habitat maps in conservation: while habitat maps have become an invaluable tool to inform and assist decision-making, maps of the same area built using different methods and data may provide dissimilar representations, thus providing different information and possibly leading to different decisions. Exploring the theories and methods that have proved effective in terrestrial conservation and the spatial sciences, and how they can be integrated in marine habitat mapping practices, could help improve maps used to support marine conservation efforts and result in more reliable products to inform conservation decisions. Having a strong, consistent, transparent, repeatable, and science-based protocol for data collection and mapping is essential for effectively supporting decision-makers in developing conservation and management plans. The development of user-friendly tools to assist in the application of such protocol is crucial to a widespread improvement in

  9. CT in acute stroke: improved detection of dense intracranial arteries by varying window parameters and performing a thin-slice helical scan

    International Nuclear Information System (INIS)

    Gadda, D.; Vannucchi, L.; Niccolai, F.; Neri, A.T.; Carmignani, L.; Pacini, P.

    2002-01-01

    We evaluated the possibility of improving detection of a dense intracranial artery on CT in acute stroke by narrowing window width, varying window level and performing a thin-slice helical scan for the circle of Willis, in some cases followed by postprocessing maximum-intensity projections. We carried out 32 examinations of 31 patients with a documented cerebral ischaemic attack, performing cranial CT within 6 h of the onset of symptoms. Patients with intracranial haemorrhage were excluded, as were patients who went on to thrombolytic therapy. Varying window width and centre level on standard 5 mm thick contiguous axial slices, we detected a dense proximal middle cerebral artery (MCA) in a higher proportion of patients. A 1.1 mm thick helical scan through the circle of Willis improved recognition of a dense distal horizontal segment and the temporoinsular branches of the MCA and of a dense posterior cerebral artery. (orig.)

  10. Hydrological modeling in alpine catchments: sensing the critical parameters towards an efficient model calibration.

    Science.gov (United States)

    Achleitner, S; Rinderer, M; Kirnbauer, R

    2009-01-01

    For the Tyrolean part of the river Inn, a hybrid model for flood forecast has been set up and is currently in its test phase. The system is a hybrid system which comprises of a hydraulic 1D model for the river Inn, and the hydrological models HQsim (Rainfall-runoff-discharge model) and the snow and ice melt model SES for modeling the rainfall runoff form non-glaciated and glaciated tributary catchment respectively. Within this paper the focus is put on the hydrological modeling of the totally 49 connected non-glaciated catchments realized with the software HQsim. In the course of model calibration, the identification of the most sensitive parameters is important aiming at an efficient calibration procedure. The indicators used for explaining the parameter sensitivities were chosen specifically for the purpose of flood forecasting. Finally five model parameters could be identified as being sensitive for model calibration when aiming for a well calibrated model for flood conditions. In addition two parameters were identified which are sensitive in situations where the snow line plays an important role.

  11. Misspecification in Latent Change Score Models: Consequences for Parameter Estimation, Model Evaluation, and Predicting Change.

    Science.gov (United States)

    Clark, D Angus; Nuttall, Amy K; Bowles, Ryan P

    2018-01-01

    Latent change score models (LCS) are conceptually powerful tools for analyzing longitudinal data (McArdle & Hamagami, 2001). However, applications of these models typically include constraints on key parameters over time. Although practically useful, strict invariance over time in these parameters is unlikely in real data. This study investigates the robustness of LCS when invariance over time is incorrectly imposed on key change-related parameters. Monte Carlo simulation methods were used to explore the impact of misspecification on parameter estimation, predicted trajectories of change, and model fit in the dual change score model, the foundational LCS. When constraints were incorrectly applied, several parameters, most notably the slope (i.e., constant change) factor mean and autoproportion coefficient, were severely and consistently biased, as were regression paths to the slope factor when external predictors of change were included. Standard fit indices indicated that the misspecified models fit well, partly because mean level trajectories over time were accurately captured. Loosening constraint improved the accuracy of parameter estimates, but estimates were more unstable, and models frequently failed to converge. Results suggest that potentially common sources of misspecification in LCS can produce distorted impressions of developmental processes, and that identifying and rectifying the situation is a challenge.

  12. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy.

    Science.gov (United States)

    D'Amour, James; Magagna-Poveda, Alejandra; Moretto, Jillian; Friedman, Daniel; LaFrancois, John J; Pearce, Patrice; Fenton, Andre A; MacLusky, Neil J; Scharfman, Helen E

    2015-07-01

    In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Performance Optimizing Multi-Objective Adaptive Control with Time-Varying Model Reference Modification

    Science.gov (United States)

    Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2017-01-01

    This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.

  14. Models of quality-adjusted life years when health varies over time

    DEFF Research Database (Denmark)

    Hansen, Kristian Schultz; Østerdal, Lars Peter Raahave

    2006-01-01

    time tradeoff (TTO) and standard gamble (SG) scores. We investigate deterministic and probabilistic models and consider five different families of discounting functions in all. The second part of the paper discusses four issues recurrently debated in the literature. This discussion includes questioning...... the SG method as the gold standard for estimation of the health state index, reexamining the role of the constantproportional tradeoff condition, revisiting the problem of double discounting of QALYs, and suggesting that it is not a matter of choosing between TTO and SG procedures as the combination...

  15. Models of Quality-Adjusted Life Years when Health varies over Time: Survey and Analysis

    DEFF Research Database (Denmark)

    Hansen, Kristian Schultz; Østerdal, Lars Peter

    2006-01-01

    time trade-off (TTO) and standard gamble (SG) scores. We investigate deterministic and probabilistic models and consider five different families of discounting functions in all. This discussion includes questioning the SG method as the gold standard of the health state index, re-examining the role...... of the constant-proportional trade-off condition, revisiting the problem of double discounting of QALYs, and suggesting that it is not a matter of choosing between TTO and SG procedures as the combination of these two can be used to disentangle risk aversion from discounting. We find that caution must be taken...

  16. Modelling antecedents of blood donation motivation among non-donors of varying age and education.

    Science.gov (United States)

    Lemmens, K P H; Abraham, C; Ruiter, R A C; Veldhuizen, I J T; Dehing, C J G; Bos, A E R; Schaalma, H P

    2009-02-01

    Understanding blood donation motivation among non-donors is prerequisite to effective recruitment. Two studies explored the psychological antecedents of blood donation motivation and the generalisability of a model of donation motivation across groups differing in age and educational level. An older well-educated population and a younger less well-educated population were sampled. The studies assessed the role of altruism, fear of blood/needles and donation-specific cognitions including attitudes and normative beliefs derived from an extended theory of planned behaviour (TPB). Across both samples, results showed that affective attitude, subjective norm, descriptive norm, and moral norm were the most important correlates of blood donation intentions. Self-efficacy was more important among the younger less well-educated group. Altruism was related to donation motivation but only indirectly through moral norm. Similarly, fear of blood/needles only had an indirect effect on motivation through affective attitude and self-efficacy. Additional analyses with the combined data set found no age or education moderation effects, suggesting that this core model of donation-specific cognitions can be used to inform future practical interventions recruiting new blood donors in the general population.

  17. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1996-09-01

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes

  18. Testing for parameter instability across different modeling frameworks

    NARCIS (Netherlands)

    Calvori, Francesco; Creal, Drew; Koopman, Siem Jan; Lucas, André

    2017-01-01

    We develop a new parameter instability test that generalizes the seminal ARCHLagrange Multiplier test of Engle (1982) for a constant variance against the alternative of autoregressive conditional heteroskedasticity to settings with nonlinear timevarying parameters and non-Gaussian distributions. We

  19. Statistical osteoporosis models using composite finite elements: a parameter study.

    Science.gov (United States)

    Wolfram, Uwe; Schwen, Lars Ole; Simon, Ulrich; Rumpf, Martin; Wilke, Hans-Joachim

    2009-09-18

    Osteoporosis is a widely spread disease with severe consequences for patients and high costs for health care systems. The disease is characterised by a loss of bone mass which induces a loss of mechanical performance and structural integrity. It was found that transverse trabeculae are thinned and perforated while vertical trabeculae stay intact. For understanding these phenomena and the mechanisms leading to fractures of trabecular bone due to osteoporosis, numerous researchers employ micro-finite element models. To avoid disadvantages in setting up classical finite element models, composite finite elements (CFE) can be used. The aim of the study is to test the potential of CFE. For that, a parameter study on numerical lattice samples with statistically simulated, simplified osteoporosis is performed. These samples are subjected to compression and shear loading. Results show that the biggest drop of compressive stiffness is reached for transverse isotropic structures losing 32% of the trabeculae (minus 89.8% stiffness). The biggest drop in shear stiffness is found for an isotropic structure also losing 32% of the trabeculae (minus 67.3% stiffness). The study indicates that losing trabeculae leads to a worse drop of macroscopic stiffness than thinning of trabeculae. The results further demonstrate the advantages of CFEs for simulating micro-structured samples.

  20. Modelling optical scattering artefacts for varying pathlength in a gel dosimeter phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bosi, Stephen G [Department of Radiation Oncology, Prince of Wales Hospita