SDSS-II: Determination of shape and color parameter coefficients for SALT-II fit model
Energy Technology Data Exchange (ETDEWEB)
Dojcsak, L.; Marriner, J.; /Fermilab
2010-08-01
In this study we look at the SALT-II model of Type IA supernova analysis, which determines the distance moduli based on the known absolute standard candle magnitude of the Type IA supernovae. We take a look at the determination of the shape and color parameter coefficients, {alpha} and {beta} respectively, in the SALT-II model with the intrinsic error that is determined from the data. Using the SNANA software package provided for the analysis of Type IA supernovae, we use a standard Monte Carlo simulation to generate data with known parameters to use as a tool for analyzing the trends in the model based on certain assumptions about the intrinsic error. In order to find the best standard candle model, we try to minimize the residuals on the Hubble diagram by calculating the correct shape and color parameter coefficients. We can estimate the magnitude of the intrinsic errors required to obtain results with {chi}{sup 2}/degree of freedom = 1. We can use the simulation to estimate the amount of color smearing as indicated by the data for our model. We find that the color smearing model works as a general estimate of the color smearing, and that we are able to use the RMS distribution in the variables as one method of estimating the correct intrinsic errors needed by the data to obtain the correct results for {alpha} and {beta}. We then apply the resultant intrinsic error matrix to the real data and show our results.
Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models
International Nuclear Information System (INIS)
Mosher, J.; Sako, M.; Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N.; Kessler, R.; Frieman, J. A.; Marriner, J.; Biswas, R.; Kuhlmann, S.; Schneider, D. P.
2014-01-01
We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w input – w recovered ) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.
Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models
Energy Technology Data Exchange (ETDEWEB)
Mosher, J. [Pennsylvania U.; Guy, J. [LBL, Berkeley; Kessler, R. [Chicago U., KICP; Astier, P. [Paris U., VI-VII; Marriner, J. [Fermilab; Betoule, M. [Paris U., VI-VII; Sako, M. [Pennsylvania U.; El-Hage, P. [Paris U., VI-VII; Biswas, R. [Argonne; Pain, R. [Paris U., VI-VII; Kuhlmann, S. [Argonne; Regnault, N. [Paris U., VI-VII; Frieman, J. A. [Fermilab; Schneider, D. P. [Penn State U.
2014-08-29
We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.
A Parameter Study for Modeling Mg ii h and k Emission during Solar Flares
Energy Technology Data Exchange (ETDEWEB)
Rubio da Costa, Fatima [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kleint, Lucia, E-mail: frubio@stanford.edu [University of Applied Sciences and Arts Northwestern Switzerland, 5210, Windisch (Switzerland)
2017-06-20
Solar flares show highly unusual spectra in which the thermodynamic conditions of the solar atmosphere are encoded. Current models are unable to fully reproduce the spectroscopic flare observations, especially the single-peaked spectral profiles of the Mg ii h and k lines. We aim to understand the formation of the chromospheric and optically thick Mg ii h and k lines in flares through radiative transfer calculations. We take a flare atmosphere obtained from a simulation with the radiative hydrodynamic code RADYN as input for a radiative transfer modeling with the RH code. By iteratively changing this model atmosphere and varying thermodynamic parameters such as temperature, electron density, and velocity, we study their effects on the emergent intensity spectra. We reproduce the typical single-peaked Mg ii h and k flare spectral shape and approximate the intensity ratios to the subordinate Mg ii lines by increasing either densities, temperatures, or velocities at the line core formation height range. Additionally, by combining unresolved upflows and downflows up to ∼250 km s{sup −1} within one resolution element, we reproduce the widely broadened line wings. While we cannot unambiguously determine which mechanism dominates in flares, future modeling efforts should investigate unresolved components, additional heat dissipation, larger velocities, and higher densities and combine the analysis of multiple spectral lines.
International Nuclear Information System (INIS)
Kovtonyuk, A.; Petruzzi, A.; D'Auria, F.
2015-01-01
The objective of the Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark is to progress on the issue of the quantification of the uncertainty of the physical models in system thermal-hydraulic codes by considering a concrete case: the physical models involved in the prediction of core reflooding. The PREMIUM benchmark consists of five phases. This report presents the results of Phase II dedicated to the identification of the uncertain code parameters associated with physical models used in the simulation of reflooding conditions. This identification is made on the basis of the Test 216 of the FEBA/SEFLEX programme according to the following steps: - identification of influential phenomena; - identification of the associated physical models and parameters, depending on the used code; - quantification of the variation range of identified input parameters through a series of sensitivity calculations. A procedure for the identification of potentially influential code input parameters has been set up in the Specifications of Phase II of PREMIUM benchmark. A set of quantitative criteria has been as well proposed for the identification of influential IP and their respective variation range. Thirteen participating organisations, using 8 different codes (7 system thermal-hydraulic codes and 1 sub-channel module of a system thermal-hydraulic code) submitted Phase II results. The base case calculations show spread in predicted cladding temperatures and quench front propagation that has been characterized. All the participants, except one, predict a too fast quench front progression. Besides, the cladding temperature time trends obtained by almost all the participants show oscillatory behaviour which may have numeric origins. Adopted criteria for identification of influential input parameters differ between the participants: some organisations used the set of criteria proposed in Specifications 'as is', some modified the quantitative thresholds
Parameter sensitivity study of a Field II multilayer transducer model on a convex transducer
DEFF Research Database (Denmark)
Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten
2009-01-01
A multilayer transducer model for predicting a transducer impulse response has in earlier works been developed and combined with the Field II software. This development was tested on current, voltage, and intensity measurements on piezoceramics discs (Bæk et al. IUS 2008) and a convex 128 element...... ultrasound imaging transducer (Bæk et al. ICU 2009). The model benefits from its 1D simplicity and hasshown to give an amplitude error around 1.7‐2 dB. However, any prediction of amplitude, phase, and attenuation of pulses relies on the accuracy of manufacturer supplied material characteristics, which may...... is a quantitative calibrated model for a complete ultrasound system. This includes a sensitivity study aspresented here.Statement of Contribution/MethodsThe study alters 35 different model parameters which describe a 128 element convex transducer from BK Medical Aps. The changes are within ±20 % of the values...
Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph
2011-12-01
The reliability of biokinetic models is essential for the assessment of internal doses and a radiation risk analysis for the public and occupational workers exposed to radionuclides. In the present study, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. In the first part of the paper, the parameter uncertainty was analyzed for two biokinetic models of zirconium (Zr); one was reported by the International Commission on Radiological Protection (ICRP), and one was developed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU). In the second part of the paper, the parameter uncertainties and distributions of the Zr biokinetic models evaluated in Part I are used as the model inputs for identifying the most influential parameters in the models. Furthermore, the most influential model parameter on the integral of the radioactivity of Zr over 50 y in source organs after ingestion was identified. The results of the systemic HMGU Zr model showed that over the first 10 d, the parameters of transfer rates between blood and other soft tissues have the largest influence on the content of Zr in the blood and the daily urinary excretion; however, after day 1,000, the transfer rate from bone to blood becomes dominant. For the retention in bone, the transfer rate from blood to bone surfaces has the most influence out to the endpoint of the simulation; the transfer rate from blood to the upper larger intestine contributes a lot in the later days; i.e., after day 300. The alimentary tract absorption factor (fA) influences mostly the integral of radioactivity of Zr in most source organs after ingestion.
International Nuclear Information System (INIS)
Kalita, Rupam
2017-01-01
We study to connect all the experimentally undetermined neutrino parameters namely lightest neutrino mass, neutrino CP phases and baryon asymmetry of the Universe within the framework of a model where both type I and type II seesaw mechanisms can contribute to tiny neutrino masses. In this work we study the effects of Dirac and Majorana neutrino phases in the origin of matter-antimatter asymmetry through the mechanism of leptogenesis. Type I seesaw mass matrix considered to a tri-bimaximal (TBM) type neutrino mixing which always gives non zero reactor mixing angle. The type II seesaw mass matrix is then considered in such a way that the necessary deviation from TBM mixing and the best fit values of neutrino parameters can be obtained when both type I and type II seesaw contributions are taken into account. We consider different contribution from type I and type II seesaw mechanism to study the effects of neutrino CP phases in the baryon asymmetry of the universe. We further study to connect all these experimentally undetermined neutrino parameters by considering various contribution of type I and type II seesaw. (author)
Directory of Open Access Journals (Sweden)
F. C. PEIXOTO
1999-09-01
Full Text Available Fragmentation kinetics is employed to model a continuous reactive mixture of alkanes under catalytic cracking conditions. Standard moment analysis techniques are employed, and a dynamic system for the time evolution of moments of the mixture's dimensionless concentration distribution function (DCDF is found. The time behavior of the DCDF is recovered with successive estimations of scaled gamma distributions using the moments time data.
Properties of linear integral equations related to the six-vertex model with disorder parameter II
International Nuclear Information System (INIS)
Boos, Hermann; Göhmann, Frank
2012-01-01
We study certain functions arising in the context of the calculation of correlation functions of the XXZ spin chain and of integrable field theories related to various scaling limits of the underlying six-vertex model. We show that several of these functions that are related to linear integral equations can be obtained by acting with (deformed) difference operators on a master function Φ. The latter is defined in terms of a functional equation and of its asymptotic behavior. Concentrating on the so-called temperature case, we show that these conditions uniquely determine the high-temperature series expansions of the master function. This provides an efficient calculation scheme for the high-temperature expansions of the derived functions as well. (paper)
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)
International Nuclear Information System (INIS)
Herman, M.
2002-04-01
This report summarises the results and recommendations of the third Research Co-ordination Meeting on improving and testing the Reference Input Parameter Library: Phase II. A primary aim of the meeting was to review the achievements of the CRP, to assess the testing of the library and to approve the final contents. Actions were approved that will result in completion of the file and a draft report by the end of February 2002. Full release of the library is scheduled for July 2002. (author)
International Nuclear Information System (INIS)
Herman, M.
2000-09-01
This report summarizes the results and recommendations of the Second Research Coordination Meeting on Testing and Improvement of the Reference Input Parameter Library: Phase II. A primary aim of this meeting was to review progress in the CRP work, to review results of testing the library, to establish the RIPL-2 format and to decide on the contents of the library. The actions were agreed with an aim to complete the project by the end of 2001. Separate abstracts were prepared for 10 individual papers
National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate parameter-varying (PV), aeroservoelastic (ASE)...
International Nuclear Information System (INIS)
Ainsworth, T.L.
1983-01-01
The Δ(1232) plays an important role in determining the properties of nuclear and neutron matter. The effects of the Δ resonance are incorporated explicitly by using a coupled channel formalism. A method for constraining a lowest order variational calculation, appropriate when nucleon internal degrees of freedom are made explicity, is presented. Different N-N potentials were calculated and fit to phase shift data and deuteron properties. The potentials were constructed to test the relative importance of the Δ resonance on nuclear properties. The symmetry energy and incompressibility of nuclear matter are generally reproduced by this calculation. Neutron matter results lead to appealing neutron star models. Fermi liquid parameters for 3 He are calculated with a model that includes both direct and induced terms. A convenient form of the direct interaction is obtained in terms of the parameters. The form of the direct interaction ensures that the forward scattering sum rule (Pauli principle) is obeyed. The parameters are adjusted to fit the experimentally determined F 0 /sup s/, F 0 /sup a/, and F 1 /sup s/ Landau parameters. Higher order Landau parameters are calculated by the self-consistent solution of the equations; comparison to experiment is good. The model also leads to a preferred value for the effective mass of 3 He. Of the three parameters only one shows any dependence on pressure. An exact sum rule is derived relating this parameter to a specific summation of Landau parameters
Czech Academy of Sciences Publication Activity Database
Vinš, Václav; Jäger, A.; Hrubý, Jan; Span, R.
2017-01-01
Roč. 435, March (2017), s. 104-117 ISSN 0378-3812 R&D Projects: GA MŠk(CZ) 7F14466; GA ČR(CZ) GJ15-07129Y Institutional support: RVO:61388998 Keywords : carbon capture and storage * clathrate * parameter fitting Subject RIV: BJ - Thermodynamics Impact factor: 2.473, year: 2016 http://ac.els-cdn.com/S0378381216306069/1-s2.0-S0378381216306069-main.pdf?_tid=7b6bf82c-2f22-11e7-8661-00000aab0f02&acdnat=1493721260_17561db239dd867f17c2ad3bda9a5540
Lika, Konstadia; Kearney, Michael R.; Kooijman, Sebastiaan A. L. M.
2011-11-01
The covariation method for estimating the parameters of the standard Dynamic Energy Budget (DEB) model provides a single-step method of accessing all the core DEB parameters from commonly available empirical data. In this study, we assess the robustness of this parameter estimation procedure and analyse the role of pseudo-data using elasticity coefficients. In particular, we compare the performance of Maximum Likelihood (ML) vs. Weighted Least Squares (WLS) approaches and find that the two approaches tend to converge in performance as the number of uni-variate data sets increases, but that WLS is more robust when data sets comprise single points (zero-variate data). The efficiency of the approach is shown to be high, and the prior parameter estimates (pseudo-data) have very little influence if the real data contain information about the parameter values. For instance, the effects of the pseudo-value for the allocation fraction κ is reduced when there is information for both growth and reproduction, that for the energy conductance is reduced when information on age at birth and puberty is given, and the effects of the pseudo-value for the maturity maintenance rate coefficient are insignificant. The estimation of some parameters (e.g., the zoom factor and the shape coefficient) requires little information, while that of others (e.g., maturity maintenance rate, puberty threshold and reproduction efficiency) require data at several food levels. The generality of the standard DEB model, in combination with the estimation of all of its parameters, allows comparison of species on the basis of parameter values. We discuss a number of preliminary patterns emerging from the present collection of parameter estimates across a wide variety of taxa. We make the observation that the estimated value of the fraction κ of mobilised reserve that is allocated to soma is far away from the value that maximises reproduction. We recognise this as the reason why two very different
International Nuclear Information System (INIS)
Hertelé, Stijn; De Waele, Wim; Denys, Rudi; Verstraete, Matthias
2012-01-01
Contemporary pipeline steels with a yield-to-tensile ratio above 0.80 often show two-stages of strain hardening, which cannot be simultaneously described by the standardized Ramberg–Osgood model. A companion paper (Part I) showed that the recently developed UGent model provides more accurate descriptions than the Ramberg–Osgood model, as it succeeds in describing both strain hardening stages. However, it may be challenging to obtain an optimal model fit in absence of full stress–strain data. This paper discusses on how to find suited parameter values for the UGent model, given a set of measurable tensile test characteristics. The proposed methodology shows good results for an extensive set of investigated experimental stress–strain curves. Next to some common tensile test characteristics, the 1.0% proof stress is needed. The authors therefore encourage the acquisition of this stress during tensile tests. - Highlights: ► An analytical procedure estimates UGent model parameters. ► The procedure requires a set of tensile test characteristics. ► The UGent model performs better than the Ramberg–Osgood model. ► Apart from common characteristics, the 1.0% proof stress is required. ► The authors encourage the acquisition of this 1.0% proof stress.
International Nuclear Information System (INIS)
Kueppers, Christian; Ustohalova, Veronika; Steinhoff, Mathias
2012-01-01
The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.
International Nuclear Information System (INIS)
Macias, Julio; Vargas, Asdrubal
2017-01-01
MIM 1D transport model was successfully applied to simulate the asymmetric behavior observed in three breakthrough curves of tracer tests performed under natural gradient conditions in a phreatic fractured volcanic aquifer. The transport parameters obtained after adjustment with a computer program, suggest that only 50% of the total porosity effectively contributed to the advective-dispersive transport (mobile fraction) and the other 50% behaved as a temporary reservoir for the tracer (immobile fraction). The estimated values of hydraulic properties and MIM model parameters are within the range of values reported by other researchers. It was possible to establish a conceptual and numerical framework to explain the three-tracer tests curves behavior, despite the limitations in quality and quantity of available field information. (author) [es
Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.
2018-03-01
Context. Standard spectroscopic analyses of variable stars are based on hydrostatic 1D model atmospheres. This quasi-static approach has not been theoretically validated. Aim. We aim at investigating the validity of the quasi-static approximation for Cepheid variables. We focus on the spectroscopic determination of the effective temperature Teff, surface gravity log g, microturbulent velocity ξt, and a generic metal abundance log A, here taken as iron. Methods: We calculated a grid of 1D hydrostatic plane-parallel models covering the ranges in effective temperature and gravity that are encountered during the evolution of a 2D time-dependent envelope model of a Cepheid computed with the radiation-hydrodynamics code CO5BOLD. We performed 1D spectral syntheses for artificial iron lines in local thermodynamic equilibrium by varying the microturbulent velocity and abundance. We fit the resulting equivalent widths to corresponding values obtained from our dynamical model for 150 instances in time, covering six pulsational cycles. In addition, we considered 99 instances during the initial non-pulsating stage of the temporal evolution of the 2D model. In the most general case, we treated Teff, log g, ξt, and log A as free parameters, and in two more limited cases, we fixed Teff and log g by independent constraints. We argue analytically that our approach of fitting equivalent widths is closely related to current standard procedures focusing on line-by-line abundances. Results: For the four-parametric case, the stellar parameters are typically underestimated and exhibit a bias in the iron abundance of ≈-0.2 dex. To avoid biases of this type, it is favorable to restrict the spectroscopic analysis to photometric phases ϕph ≈ 0.3…0.65 using additional information to fix the effective temperature and surface gravity. Conclusions: Hydrostatic 1D model atmospheres can provide unbiased estimates of stellar parameters and abundances of Cepheid variables for particular
International Nuclear Information System (INIS)
Haney, S.W.; Fenstermacher, M.E.
1985-01-01
Models of tandem mirror devices operated with a test-cell insert have been used to calculate operating parameters for FPD-II+T, an upgrade of the Fusion Power Demonstration-II device. Two test-cell configurations were considered, one accommodating two 1.5 m blanket test modules and the other having four. To minimize the cost of the upgrade, FPD-II+T utilizes the same coil arrangement and machine dimensions outside of the test cell as FPD-II, and the requirements on the end cell systems have been held near or below those for FPD-II. The maximum achievable test cell wall loading found for the short test-cell was 3.5 MW/m 2 while 6.0 MW/m 2 was obtainable in the long test-cell configuration. The most severe limitation on the achievable wall loading is the upper limit on test-cell beta set by MHD stability calculations. Modification of the shape of the magnetic field in the test-cell by improving the magnet design could raise this beta limit and lead to improved test-cell performance
International Nuclear Information System (INIS)
D'Auvergne, Edward J.; Gooley, Paul R.
2008-01-01
Finding the dynamics of an entire macromolecule is a complex problem as the model-free parameter values are intricately linked to the Brownian rotational diffusion of the molecule, mathematically through the autocorrelation function of the motion and statistically through model selection. The solution to this problem was formulated using set theory as an element of the universal set U-the union of all model-free spaces (d'Auvergne EJ and Gooley PR (2007) Mol BioSyst 3(7), 483-494). The current procedure commonly used to find the universal solution is to initially estimate the diffusion tensor parameters, to optimise the model-free parameters of numerous models, and then to choose the best model via model selection. The global model is then optimised and the procedure repeated until convergence. In this paper a new methodology is presented which takes a different approach to this diffusion seeded model-free paradigm. Rather than starting with the diffusion tensor this iterative protocol begins by optimising the model-free parameters in the absence of any global model parameters, selecting between all the model-free models, and finally optimising the diffusion tensor. The new model-free optimisation protocol will be validated using synthetic data from Schurr JM et al. (1994) J Magn Reson B 105(3), 211-224 and the relaxation data of the bacteriorhodopsin (1-36)BR fragment from Orekhov VY (1999) J Biomol NMR 14(4), 345-356. To demonstrate the importance of this new procedure the NMR relaxation data of the Olfactory Marker Protein (OMP) of Gitti R et al. (2005) Biochem 44(28), 9673-9679 is reanalysed. The result is that the dynamics for certain secondary structural elements is very different from those originally reported
Energy Technology Data Exchange (ETDEWEB)
DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa
2005-04-01
This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.
Gordiyenko, G. I.; Yakovets, A. F.
2017-07-01
The ionospheric F2 peak parameters recorded by a ground-based ionosonde at the midlatitude station Alma-Ata [43.25N, 76.92E] were compared with those obtained using the latest version of the IRI model (http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html). It was found that for the Alma-Ata (Kazakhstan) location, the IRI2012 model describes well the morphology of seasonal and diurnal variations of the ionospheric critical frequency (foF2) and peak density height (hmF2) monthly medians. The model errors in the median foF2 prediction (percentage deviations between the median foF2 values and their model predictions) were found to vary approximately in the range from about -20% to 34% and showed a stable overestimation in the median foF2 values for daytime in January and July and underestimation for day- and nighttime hours in the equinoctial months. The comparison between the ionosonde hmF2 and IRI results clearly showed that the IRI overestimates the nighttime hmF2 values for March and September months, and the difference is up to 30 km. The daytime Alma-Ata hmF2 data were found to be close to the IRI predictions (deviations are approximately ±10-15 km) in winter and equinoctial months, except in July when the observed hmF2 values were much more (from approximately 50-200 km). The comparison between the Alouette foF2 data and IRI predictions showed mixed results. In particular, the Alouette foF2 data showed a tendency to be overestimated for daytime in winter months similar to the ionosonde data; however, the overestimated foF2 values for nighttime in the autumn equinox were in disagreement with the ionosonde observations. There were large deviations between the observed hmF2 values and their model predictions. The largest deviations were found during winter and summer (up to -90 km). The comparison of the Alouette II electron density profiles with those predicted by the adapted IRI2012 model in the altitude range hmF2 of the satellite position showed a great
Photovoltaic module parameters acquisition model
Energy Technology Data Exchange (ETDEWEB)
Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk
2014-09-01
Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.
Photovoltaic module parameters acquisition model
International Nuclear Information System (INIS)
Cibira, Gabriel; Koščová, Marcela
2014-01-01
Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model
Progress on Chinese evaluated nuclear parameter library (CENPL) (II)
International Nuclear Information System (INIS)
Su Zhongdi; Ge Zhigang; Zhou Chunmei
1993-01-01
CENPL collected, evaluated and compiled nuclear basic constants and model parameters. CENPL-1 contain six sub-libraries, they are: (1) Atomic masses and characteristic constants for nuclear ground states; (2) discrete level schemes and branch ratios of γ decay; (3) level density parameters; (4) giant dipole resonance parameters for γ-ray strength function (5) fission barrier parameter; (6) optical model parameters. Their progresses are introduced
International Nuclear Information System (INIS)
Kueppers, Christian; Ustohalova, Veronika
2013-01-01
The risk considerations for a long-term open-state of the radioactive waste storage facility Schacht Asse II include the following issues: description of radio-ecological models for the radionuclide transport in the covering rock formations and determination of the radiation exposure, parameters of the radio-ecological and their variability, Monte-Carlo method application. The results of the modeling calculations include the group short-living radionuclides, long-living radionuclides, radionuclides in the frame of decay chains and sensitivity analyses with respect to the correlation of input data and results.
Plasma parameters for alternate operating modes of TIBER-II
International Nuclear Information System (INIS)
Fenstermacher, M.E.; Devoto, R.S.; Logan, B.G.; Perkins, L.J.
1987-01-01
Parameters for operating points of TIBER-II, different from the baseline steady-state operation, are presented. These results have been generated with the MUMAK tokamak power balance code. Pulsed ignited and high performance steady-state operating points are described. 20 refs
Energy Technology Data Exchange (ETDEWEB)
Kueppers, Christian; Ustohalova, Veronika; Steinhoff, Mathias
2012-05-21
The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.
Laser Welding Process Parameters Optimization Using Variable-Fidelity Metamodel and NSGA-II
Directory of Open Access Journals (Sweden)
Wang Chaochao
2017-01-01
Full Text Available An optimization methodology based on variable-fidelity (VF metamodels and nondominated sorting genetic algorithm II (NSGA-II for laser bead-on-plate welding of stainless steel 316L is presented. The relationships between input process parameters (laser power, welding speed and laser focal position and output responses (weld width and weld depth are constructed by VF metamodels. In VF metamodels, the information from two levels fidelity models are integrated, in which the low-fidelity model (LF is finite element simulation model that is used to capture the general trend of the metamodels, and high-fidelity (HF model which from physical experiments is used to ensure the accuracy of metamodels. The accuracy of the VF metamodel is verified by actual experiments. To slove the optimization problem, NSGA-II is used to search for multi-objective Pareto optimal solutions. The results of verification experiments show that the obtained optimal parameters are effective and reliable.
Mundorff-Shrestha, S A; Featherstone, J D; Eisenberg, A D; Cowles, E; Curzon, M E; Espeland, M A; Shields, C P
1994-01-01
A series of rat caries experiments was carried out to test the relative cariogenic potential and to identify the major carcinogenic elements of 22 popular snack foods. Parameters that were measured included rat caries, number of cariogenic bacteria in plaque, salivary parameters including flow rate, buffering capacity, total protein, lysozyme and amylase content, and composition of test foods including protein, fat, phosphorus, calcium, fluoride, galactose, glucose, total reducing sugar, sucrose, and starch. Many interesting relationships were observed between food components, numbers of plaque bacteria, salivary components, and specific types of carious lesions. Protein, fat, and phosphorus in foods were all associated with inhibition of both sulcal and buccolingual (smooth-surface) caries. Food fluoride was associated with inhibition of buccolingual caries, whereas calcium was related to inhibition of sulcal caries. Glucose, reducing sugar, and sucrose in foods were all related to promotion of both sulcal and smooth-surface caries. The numbers of Streptococcus sobrinus in plaque were associated with promotion of smooth-surface caries only, whereas lactobacilli, non-mutans bacteria, and total viable flora were related to promotion of both smooth-surface and sulcal caries. The salivary flow rate was associated with inhibition of both buccolingual and sulcal caries. Salivary buffering capacity (at pH 7) and salivary lysozyme delivery were associated with inhibition of number and severity of sulcal caries, while the salivary amylase content was related to the promotion of the number of sulcal lesions.
Faroux, S.; Kaptué Tchuenté, A. T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P.
2012-11-01
The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1-km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and NDVI from SPOT/Vegetation yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 Plant Functional Types (PFTs) representing generic vegetation types - principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land - as incorporated by the SVAT model ISBA developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land occupation nomenclatures.
Faroux, S.; Kaptué Tchuenté, A. T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P.
2013-04-01
The overall objective of the present study is to introduce the new ECOCLIMAP-II database for Europe, which is an upgrade for this region of the former initiative, ECOCLIMAP-I, already implemented at global scale. The ECOCLIMAP programme is a dual database at 1 km resolution that includes an ecosystem classification and a coherent set of land surface parameters that are primarily mandatory in meteorological modelling (notably leaf area index and albedo). Hence, the aim of this innovative physiography is to enhance the quality of initialisation and impose some surface attributes within the scope of weather forecasting and climate related studies. The strategy for implementing ECOCLIMAP-II is to depart from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting existing classes into new classes that possess a better regional character by virtue of the climatic environment (latitude, proximity to the sea, topography). The leaf area index (LAI) from MODIS and normalized difference vegetation index (NDVI) from SPOT/Vegetation (a global monitoring system of vegetation) yield the two proxy variables that were considered here in order to perform a multi-year trimmed analysis between 1999 and 2005 using the K-means method. Further, meteorological applications require each land cover type to appear as a partition of fractions of 4 main surface types or tiles (nature, water bodies, sea, urban areas) and, inside the nature tile, fractions of 12 plant functional types (PFTs) representing generic vegetation types - principally broadleaf forest, needleleaf forest, C3 and C4 crops, grassland and bare land - as incorporated by the SVAT model ISBA (Interactions Surface Biosphere Atmosphere) developed at Météo France. This landscape division also forms the cornerstone of a validation exercise. The new ECOCLIMAP-II can be verified with auxiliary land cover products at very fine and coarse resolutions by means of versatile land
Stark parameters of some asymmetrical Si II lines
International Nuclear Information System (INIS)
Ferhat, B; Azzouz, Y; Redon, R; Ripert, M; Lesage, A
2012-01-01
Six lines of SiII are experimentally studied in pulsed plasma generated by Nd :Yag laser breakdown on pure solid silicon target. A set of experimental Stark parameters of asymmetrical lines are measured in temperature range from 14 000 K to 18 000 K (using Boltzmann plot). Calculated values of the electron density (using Griem's formula) vary from 1.7 to 6.1 × 10 23 m −3 . Processed spectral lines are 333.982 nm (3s 2 4p -3s 2 6s) and 397.746 nm, 399.177 nm, 399.801 nm, 401.622 nm (3d' 2 F 0 -4f' 4 G) and (3d' 2 F 0 - 4f' 2 G) of astrophysical interest. Asymmetrical line shapes are synthesized by a sum of two semi-Lorentzian distributions. The obtained fit is in good agreement with the measured spectra.
Radiative parameters for some transitions in Cu(II) and Ag(II) spectrum
International Nuclear Information System (INIS)
Biemont, E.; Blagoev, K.; Campos, J.; Mayo, R.; Malcheva, G.; Ortiz, M.; Quinet, P.
2005-01-01
Radiative parameters for transitions depopulating the levels belonging to the 3d 8 4s 2 configuration of Cu(II) and 4d 9 6s and 4d 9 5d configurations of Ag(II) have been obtained both theoretically and experimentally. On the experimental side, a laser-produced plasma was used as a source of Cu(II) and Ag(II) spectra. The light emitted by the plasma was focused on the input slit of a grating monochromator coupled with a time-resolved optical multichannel analyzer system. Spectral response calibration of the experimental system was made using a deuterium lamp in the wavelength range extending from 200 to 400-bar nm, and a standard tungsten lamp in the range from 350 to 600-bar nm. The transition probabilities were obtained using measured branching fractions and available radiative lifetimes of the corresponding states. On the theoretical side, a relativistic Hartree-Fock (HFR) approach, including core-polarization effects, has been used for the calculations. A reasonable agreement theory-experiment has been observed
Testing of a one dimensional model for Field II calibration
DEFF Research Database (Denmark)
Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten
2008-01-01
Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...
Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.
Henry, R; Tiselj, I; Snoj, L
2015-03-01
New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
Quality assessment for radiological model parameters
International Nuclear Information System (INIS)
Funtowicz, S.O.
1989-01-01
A prototype framework for representing uncertainties in radiological model parameters is introduced. This follows earlier development in this journal of a corresponding framework for representing uncertainties in radiological data. Refinements and extensions to the earlier framework are needed in order to take account of the additional contextual factors consequent on using data entries to quantify model parameters. The parameter coding can in turn feed in to methods for evaluating uncertainties in calculated model outputs. (author)
Evaluation of tomographic ISOCAM Park II gamma camera parameters using Monte Carlo method
International Nuclear Information System (INIS)
Oramas Polo, Ivón
2015-01-01
In this paper the evaluation of tomographic ISOCAM Park II gamma camera parameters was performed using the Monte Carlo code SIMIND. The parameters uniformity, resolution and contrast were evaluated by Jaszczak phantom simulation. In addition the qualitative assessment of the center of rotation was performed. The results of the simulation are compared and evaluated against the specifications of the manufacturer of the gamma camera and taking into account the National Protocol for Quality Control of Nuclear Medicine Instruments of the Cuban Medical Equipment Control Center. A computational Jaszczak phantom model with three different distributions of activity was obtained. They can be used to perform studies with gamma cameras. (author)
Establishing statistical models of manufacturing parameters
International Nuclear Information System (INIS)
Senevat, J.; Pape, J.L.; Deshayes, J.F.
1991-01-01
This paper reports on the effect of pilgering and cold-work parameters on contractile strain ratio and mechanical properties that were investigated using a large population of Zircaloy tubes. Statistical models were established between: contractile strain ratio and tooling parameters, mechanical properties (tensile test, creep test) and cold-work parameters, and mechanical properties and stress-relieving temperature
Robust estimation of hydrological model parameters
Directory of Open Access Journals (Sweden)
A. Bárdossy
2008-11-01
Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.
Chemical Abundances and Physical Parameters of H II Regions in the Magellanic Clouds
Reyes, R. E. C.
The chemical abundances and physical parameters of H II regions are important pa rameters to determine in order to understand how stars and galaxies evolve. The Magellanic Clouds offer us a unique oportunity to persue such studies in low metallicity galaxies. In this contribution we present the results of the photoionization modeling of 5 H II regions in each of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sys tems. Optical data were collected from the literature, complemented by our own observa tions (Carlos Reyes et al. 1998), including UV spectra from the new IUE data ban k and infrared fluxes from the IRAS satellite. The chemical abundances of He, C, N, O, Ne, S, Ar and physical parameters like the densities, the ionized masses, the luminosities, the ionization temperatures , the filling factor and optical depth are determined. A comparison of the abundances of these HII regions with those of typical planetary nebulae and supergiants stars is also presented.
Model parameter updating using Bayesian networks
International Nuclear Information System (INIS)
Treml, C.A.; Ross, Timothy J.
2004-01-01
This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.
On parameter estimation in deformable models
DEFF Research Database (Denmark)
Fisker, Rune; Carstensen, Jens Michael
1998-01-01
Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...
Parameter identification in multinomial processing tree models
Schmittmann, V.D.; Dolan, C.V.; Raijmakers, M.E.J.; Batchelder, W.H.
2010-01-01
Multinomial processing tree models form a popular class of statistical models for categorical data that have applications in various areas of psychological research. As in all statistical models, establishing which parameters are identified is necessary for model inference and selection on the basis
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei
2013-09-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.
PARAMETER ESTIMATION IN BREAD BAKING MODEL
Directory of Open Access Journals (Sweden)
Hadiyanto Hadiyanto
2012-05-01
Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels. Abstrak PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan
Parameter identification in the logistic STAR model
DEFF Research Database (Denmark)
Ekner, Line Elvstrøm; Nejstgaard, Emil
We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th...
Exploiting intrinsic fluctuations to identify model parameters.
Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen
2015-04-01
Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.
Setting Parameters for Biological Models With ANIMO
Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran
2014-01-01
ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions
Parameters and error of a theoretical model
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.; Swiatecki, W.
1986-09-01
We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs
Parameter Estimation of Nonlinear Models in Forestry.
Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.
1999-01-01
Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...
Wind Farm Decentralized Dynamic Modeling With Parameters
DEFF Research Database (Denmark)
Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran
2010-01-01
Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...
Parameter Estimation for Thurstone Choice Models
Energy Technology Data Exchange (ETDEWEB)
Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-24
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.
Systematic parameter inference in stochastic mesoscopic modeling
Energy Technology Data Exchange (ETDEWEB)
Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.
Application of lumped-parameter models
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten
This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse...
Models and parameters for environmental radiological assessments
International Nuclear Information System (INIS)
Miller, C.W.
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base
WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...
African Journals Online (AJOL)
Preferred Customer
Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...
Models and parameters for environmental radiological assessments
Energy Technology Data Exchange (ETDEWEB)
Miller, C W [ed.
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)
Consistent Stochastic Modelling of Meteocean Design Parameters
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Sterndorff, M. J.
2000-01-01
Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...
Models and parameters for environmental radiological assessments
International Nuclear Information System (INIS)
Miller, C.W.
1983-01-01
This article reviews the forthcoming book Models and Parameters for Environmental Radiological Assessments, which presents a unified compilation of models and parameters for assessing the impact on man of radioactive discharges, both routine and accidental, into the environment. Models presented in this book include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Summaries are presented for each of the transport and dosimetry areas previously for each of the transport and dosimetry areas previously mentioned, and details are available in the literature cited. A chapter of example problems illustrates many of the methodologies presented throughout the text. Models and parameters presented are based on the results of extensive literature reviews and evaluations performed primarily by the staff of the Health and Safety Research Division of Oak Ridge National Laboratory
Towards automated diffraction tomography. Part II-Cell parameter determination
International Nuclear Information System (INIS)
Kolb, U.; Gorelik, T.; Otten, M.T.
2008-01-01
Automated diffraction tomography (ADT) allows the collection of three-dimensional (3d) diffraction data sets from crystals down to a size of only few nanometres. Imaging is done in STEM mode, and diffraction data are collected with quasi-parallel beam nanoelectron diffraction (NED). Here, we present a set of developed processing steps necessary for automatic unit-cell parameter determination from the collected 3d diffraction data. Cell parameter determination is done via extraction of peak positions from a recorded data set (called the data reduction path) followed by subsequent cluster analysis of difference vectors. The procedure of lattice parameter determination is presented in detail for a beam-sensitive organic material. Independently, we demonstrate a potential (called the full integration path) based on 3d reconstruction of the reciprocal space visualising special structural features of materials such as partial disorder. Furthermore, we describe new features implemented into the acquisition part
International Nuclear Information System (INIS)
Poma Llantoy, Victor R.; Valderrama Negron, Ana C.
2014-01-01
In this work, the studies were performed to measure the sorption capacity of metal ions Cd (II) and Hg (II) using the specie Eichhornia crassipes (water hyacinth). This study includes assays where the nutrient concentration, the pH and the metal ion concentration were optimized. These tests were carried out at room temperature and with aqueous solutions of Cd (II), Hg (II), in which the samples of Eichhornia crassipes were placed. To confirm the removal of these metals, the waste solutions after the treatment with the Water Hyacinth species were treated using the method APHA 3030-e. However, Eichhornia crassipes samples were treated using the EPA 200.3 method. The concentration of Cd (II) was determined by an ICP-OES spectrometer and Hg (II), by an atomic absorption spectrophotometer. The results showed: Optimal dosage 1 mL of A and 0,5 mL of B, optimum pH 5, optimum concentration of Cd (II) and Hg (II) 5 mg/L for each ion. With these parameters, it was started the removal of 5 mg/L of the metal ions contained in 1 L of solution. Being the percentages of sorption 16,56% for Cd (II) and 15,6% for Hg (II) after a period of 7 days. (author)
The mobilisation model and parameter sensitivity
International Nuclear Information System (INIS)
Blok, B.M.
1993-12-01
In the PRObabillistic Safety Assessment (PROSA) of radioactive waste in a salt repository one of the nuclide release scenario's is the subrosion scenario. A new subrosion model SUBRECN has been developed. In this model the combined effect of a depth-dependent subrosion, glass dissolution, and salt rise has been taken into account. The subrosion model SUBRECN and the implementation of this model in the German computer program EMOS4 is presented. A new computer program PANTER is derived from EMOS4. PANTER models releases of radionuclides via subrosion from a disposal site in a salt pillar into the biosphere. For uncertainty and sensitivity analyses the new subrosion model Latin Hypercube Sampling has been used for determine the different values for the uncertain parameters. The influence of the uncertainty in the parameters on the dose calculations has been investigated by the following sensitivity techniques: Spearman Rank Correlation Coefficients, Partial Rank Correlation Coefficients, Standardised Rank Regression Coefficients, and the Smirnov Test. (orig./HP)
Source term modelling parameters for Project-90
International Nuclear Information System (INIS)
Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.
1992-04-01
This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)
Analysis of Modeling Parameters on Threaded Screws.
Energy Technology Data Exchange (ETDEWEB)
Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.
Parameter Estimation of Spacecraft Fuel Slosh Model
Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles
2004-01-01
Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
Model comparisons and genetic and environmental parameter ...
African Journals Online (AJOL)
arc
Model comparisons and genetic and environmental parameter estimates of growth and the ... breeding strategies and for accurate breeding value estimation. The objectives ...... Sci. 23, 72-76. Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2003.
The rho-parameter in supersymmetric models
International Nuclear Information System (INIS)
Lim, C.S.; Inami, T.; Sakai, N.
1983-10-01
The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)
A lumped parameter model of plasma focus
International Nuclear Information System (INIS)
Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro
1999-01-01
A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)
One parameter model potential for noble metals
International Nuclear Information System (INIS)
Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.
1981-08-01
A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)
Calibration of discrete element model parameters: soybeans
Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal
2018-05-01
Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.
Parameter optimization for surface flux transport models
Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.
2017-11-01
Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
Constant-parameter capture-recapture models
Brownie, C.; Hines, J.E.; Nichols, J.D.
1986-01-01
Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.
Modelling tourists arrival using time varying parameter
Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.
2017-06-01
The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.
Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.
Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S
2012-10-01
A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. Copyright © 2012 Elsevier Ltd. All rights reserved.
River water quality modelling: II
DEFF Research Database (Denmark)
Shanahan, P.; Henze, Mogens; Koncsos, L.
1998-01-01
The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, QUAL2E and similar models do not address a number of practical problems such as stormwater-flow events, nonpoint source pollution, and transient streamflow. Limitations in model formulation affect the ability to close mass balances, to represent sessile bacteria and other benthic processes......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....
Meyer, Antje; Salewsky, Bastian; Buchmann, Nikolaus; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja
2016-01-01
The length of the chromosome ends, telomeres, is widely accepted as a biomarker of aging. However, the dynamic of the relationship between telomere length and hematopoietic parameters in the normal aging process, which is of particular interest with respect to age-related anemia, is not well understood. We have analyzed the relationship between relative leukocyte telomere length (rLTL) and several hematological parameters in the older group of the Berlin Aging Study II (BASE-II) participants. This paper also compares rLTL between both BASE-II age groups (22-37 and 60-83 years). Genomic DNA was extracted from peripheral blood leukocytes of BASE-II participants and used to determine rLTL by a quantitative PCR protocol. Standard methods were used to determine blood parameters, and the WHO criteria were used to identify anemic participants. Telomere length data were available for 444 younger participants (28.4 ± 3.1 years old; 52% women) and 1,460 older participants (68.2 ± 3.7 years old; 49.4% women). rLTL was significantly shorter in BASE-II participants of the older group (p = 3.7 × 10-12) and in women (p = 4.2 × 10-31). rLTL of older men exhibited a statistically significant, positive partial correlation with mean corpuscular hemoglobin (MCH; p = 0.012) and MCH concentration (p = 0.002). While these correlations were only observed in men, the rLTL of older women was negatively correlated with the number of thrombocytes (p = 0.015) in the same type of analysis. Among all older participants, 6% met the criteria to be categorized as 'anemic'; however, there was no association between anemia and rLTL. In the present study, we have detected isolated correlations between rLTL and hematological parameters; however, in all cases, rLTL explained only a small part of the variation of the analyzed parameters. In disagreement with some other studies showing similar data, we interpret the association between rLTL and some of the hematological parameters studied here to be
The lumped parameter model for fuel pins
Energy Technology Data Exchange (ETDEWEB)
Liu, W S [Ontario Hydro, Toronto, ON (Canada)
1996-12-31
The use of a lumped fuel-pin model in a thermal-hydraulic code is advantageous because of computational simplicity and efficiency. The model uses an averaging approach over the fuel cross section and makes some simplifying assumptions to describe the transient equations for the averaged fuel, fuel centerline and sheath temperatures. It is shown that by introducing a factor in the effective fuel conductivity, the analytical solution of the mean fuel temperature can be modified to simulate the effects of the flux depression in the heat generation rate and the variation in fuel thermal conductivity. The simplified analytical method used in the transient equation is presented. The accuracy of the lumped parameter model has been compared with the results from the finite difference method. (author). 4 refs., 2 tabs., 4 figs.
A shot parameter specification subsystem for automated control of PBFA II accelerator shots
International Nuclear Information System (INIS)
Spiller, J.L.
1987-01-01
The author reports on the shot parameter specification subsystem (SPSS), an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II). This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The author discusses how the PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III. This system is expected to meet the demands of most future machine changes
International Nuclear Information System (INIS)
Sundman, S.
1981-01-01
The static particle model of Part I requires creation of ether proportional to the energy of the particle. It is shown that this ether creation leads to gravitation and a forever expanding universe in agreement with the large-number hypothesis. The age, mass and size of the universe are calculated from atomic constants and G. The model predicts scale-invariance with different scales for gravitational matter, nucleons and electrons. This leads to a fine structure constant decreasing very slowly with time. For each scale there is a different type of dynamic balance governing the expansion of the universe. The model indicates that the universe was initially densely packed with (tau) leptons. It suggests a program for calculating the gravitational constant and the muon-electron mass ratio from other universal constants. Tentative numerological derivation gives these quantities with a higher accuracy than has been achieved experimentally. (Auth.)
Modeling of Parameters of Subcritical Assembly SAD
Petrochenkov, S; Puzynin, I
2005-01-01
The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.
Parameter estimation in fractional diffusion models
Kubilius, Kęstutis; Ralchenko, Kostiantyn
2017-01-01
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...
Modeling Fe II Emission and Revised Fe II (UV) Empirical Templates for the Seyfert 1 Galaxy I Zw 1
Bruhweiler, F.; Verner, E.
2008-03-01
We use the narrow-lined broad-line region (BLR) of the Seyfert 1 galaxy, I Zw 1, as a laboratory for modeling the ultraviolet (UV) Fe II 2100-3050 Å emission complex. We calculate a grid of Fe II emission spectra representative of BLR clouds and compare them with the observed I Zw 1 spectrum. Our predicted spectrum for log [nH/(cm -3) ] = 11.0, log [ΦH/(cm -2 s-1) ] = 20.5, and ξ/(1 km s-1) = 20, using Cloudy and an 830 level model atom for Fe II with energies up to 14.06 eV, gives a better fit to the UV Fe II emission than models with fewer levels. Our analysis indicates (1) the observed UV Fe II emission must be corrected for an underlying Fe II pseudocontinuum; (2) Fe II emission peaks can be misidentified as that of other ions in active galactic nuclei (AGNs) with narrow-lined BLRs possibly affecting deduced physical parameters; (3) the shape of 4200-4700 Å Fe II emission in I Zw 1 and other AGNs is a relative indicator of narrow-line region (NLR) and BLR Fe II emission; (4) predicted ratios of Lyα, C III], and Fe II emission relative to Mg II λ2800 agree with extinction corrected observed I Zw 1 fluxes, except for C IV λ1549 (5) the sensitivity of Fe II emission strength to microturbulence ξ casts doubt on existing relative Fe/Mg abundances derived from Fe II (UV)/Mg II flux ratios. Our calculated Fe II emission spectra, suitable for BLRs in AGNs, are available at http://iacs.cua.edu/people/verner/FeII. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555.
Supo Thermal Model Development II
Energy Technology Data Exchange (ETDEWEB)
Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-07-14
This report describes the continuation of the Computational Fluid Dynamics (CFD) model of the Supo cooling system described in the report, Supo Thermal Model Development1, by Cynthia Buechler. The goal for this report is to estimate the natural convection heat transfer coefficient (HTC) of the system using the CFD results and to compare those results to remaining past operational data. Also, the correlation for determining radiolytic gas bubble size is reevaluated using the larger simulation sample size. The background, solution vessel geometry, mesh, material properties, and boundary conditions are developed in the same manner as the previous report. Although, the material properties and boundary conditions are determined using the appropriate experiment results for each individual power level.
Moose models with vanishing S parameter
International Nuclear Information System (INIS)
Casalbuoni, R.; De Curtis, S.; Dominici, D.
2004-01-01
In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2) L and U(1) Y at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric
Selection of stirling engine parameter and modes of joint operation with the Topaz II
International Nuclear Information System (INIS)
Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.
1996-01-01
In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. copyright 1996 American Institute of Physics
Computational analysis of neutronic parameters of CENM TRIGA Mark II research reactor
International Nuclear Information System (INIS)
El Younoussi, C.; El Bakkari, B.; Boulaich, Y.; Riyach, D.; Otmani, S.; Marrhich, I.; Badri, H.; Htet, A.; Nacir, B.; El Bardouni, T.; Boukhal, H.; Zoubair, M.; Ossama, M.; Chakir, E.
2010-01-01
The CENM TRIGA MARK II reactor is part of the National Center for Energy, Sciences and Nuclear Techniques (CNESTEN). It's a standard design 2MW, natural-convection-cooled reactor with a graphite reflector containing 4 beam tubes and a thermal column. The reactor has several applications in different fields as industry, agriculture, medicine, training and education. In the present work a computational study has been carried out in the framework of neutronic parameters studies of the reactor. A detailed MCNP model that include all elements of the core and surrounding structures has been developed to calculate different parameters of the core (The effective multiplication factor, reactivity experiments comprising control rods worth, excess reactivity and shutdown margin). Further calculations have been carried out to calculate the neutron flux profiles at different locations of the reactor core. The cross sections used are processed from the library provided with MCNP5 and based on the ENDF/B-VII with continuous dependence in energy and special treatment of thermal neutrons in lightweight materials. (author)
Models for setting ATM parameter values
DEFF Research Database (Denmark)
Blaabjerg, Søren; Gravey, A.; Romæuf, L.
1996-01-01
essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper......In ATM networks, a user should negotiate at connection set-up a traffic contract which includes traffic characteristics and requested QoS. The traffic characteristics currently considered are the Peak Cell Rate, the Sustainable Cell Rate, the Intrinsic Burst Tolerance and the Cell Delay Variation...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...
Assessing models for parameters of the Ångström-Prescott formula in China
DEFF Research Database (Denmark)
Liu, Xiaoying; Xu, Yinlong; Zhong, Xiuli
2012-01-01
against the calibrated ones. Models 1, 6 and 7 showed an advantage in keeping the physical meaning of their modeled parameters due to the small magnitude of and the use of the relation of (a + b) versus other variables as a constraint, respectively. All models tended to perform best in zone II and poorest...... () (models 1–2), altitude (model 7), altitude and (model 3), altitude, and latitude (model 4), altitude and latitude (model 5) and annual average air temperature (model 6). It was found that model 7 performed best, followed by models 6, 1, 3, 2 and 4. The better performance of models 7 and 6 and the fact....... This also suggests that applicability of a Rs model is not proportional to its complexity. The common feature of the better performing models suggests that accurate modeling of parameter a is more important than that of b. Therefore, priority should be given to parameter models having higher accuracy for a...
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Maity, Arnab; Carroll, Raymond J.
2013-01-01
PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus
Stark broadening parameters and transition probabilities of persistent lines of Tl II
de Andrés-García, I.; Colón, C.; Fernández-Martínez, F.
2018-05-01
The presence of singly ionized thallium in the stellar atmosphere of the chemically peculiar star χ Lupi was reported by Leckrone et al. in 1999 by analysis of its stellar spectrum obtained with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. Atomic data about the spectral line of 1307.50 Å and about the hyperfine components of the spectral lines of 1321.71 Å and 1908.64 Å were taken from different sources and used to analyse the isotopic abundance of thallium II in the star χ Lupi. From their results the authors concluded that the photosphere of the star presents an anomalous isotopic composition of Tl II. A study of the atomic parameters of Tl II and of the broadening by the Stark effect of its spectral lines (and therefore of the possible overlaps of these lines) can help to clarify the conclusions about the spectral abundance of Tl II in different stars. In this paper we present calculated values of the atomic transition probabilities and Stark broadening parameters for 49 spectral lines of Tl II obtained by using the Cowan code including core polarization effects and the Griem semiempirical approach. Theoretical values of radiative lifetimes for 11 levels (eight with experimental values in the bibliography) are calculated and compared with the experimental values in order to test the quality of our results. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed. Trends of our calculated Stark width for the isoelectronic sequence Tl II-Pb III-Bi IV are also displayed.
Benchmarking of copper(II) LFMM parameters for studying amyloid-β peptides.
Mutter, Shaun T; Deeth, Robert J; Turner, Matthew; Platts, James A
2018-04-01
Ligand field molecular mechanics (LFMM) parameters have been benchmarked for copper (II) bound to the amyloid-β 1-16 peptide fragment. Several density functional theory (DFT) optimised small test models, representative of different possible copper coordination modes, have been used to test the accuracy of the LFMM copper bond lengths and angles, resulting in errors typically less than 0.1 Å and 5°. Ligand field molecular dynamics (LFMD) simulations have been carried out on the copper bound amyloid-β 1-16 peptide and snapshots extracted from the subsequent trajectory. Snapshots have been optimised using DFT and the semi-empirical PM7 method resulting in good agreement against the LFMM calculated geometry. Analysis of substructures within snapshots shows that the larger contribution of geometrical difference, as measured by RMSD, lies within the peptide backbone, arising from differences in DFT and AMBER, and the copper coordination sphere is reproduced well by LFMM. PM7 performs excellently against LFMM with an average RMSD of 0.2 Å over 21 tested snapshots. Further analysis of the LFMD trajectory shows that copper bond lengths and angles have only small deviations from average values, with the exception of a carbonyl moiety from the N-terminus, which can act as a weakly bound fifth ligand.
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Subhamoy; Mandal, Sudip; Banerjee, Dipankar, E-mail: dipu@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)
2017-06-01
The Ca ii K spectroheliograms spanning over a century (1907–2007) from Kodaikanal Solar Observatory, India, have recently been digitized and calibrated. Applying a fully automated algorithm (which includes contrast enhancement and the “Watershed method”) to these data, we have identified the supergranules and calculated the associated parameters, such as scale, circularity, and fractal dimension. We have segregated the quiet and active regions and obtained the supergranule parameters separately for these two domains. In this way, we have isolated the effect of large-scale and small-scale magnetic fields on these structures and find a significantly different behavior of the supergranule parameters over solar cycles. These differences indicate intrinsic changes in the physical mechanism behind the generation and evolution of supergranules in the presence of small-scale and large-scale magnetic fields. This also highlights the need for further studies using solar dynamo theory along with magneto-convection models.
Anisotropic Bianchi II cosmological models with matter and electromagnetic fields
International Nuclear Information System (INIS)
Soares, D.
1978-01-01
A class of solutions of Einstein-Maxwell equations is presented, which corresponds to anisotropic Bianchi II spatially homogeneous cosmological models with perfect fluid and electromagnetic field. A particular model is examined and shown to be unstable for perturbations of the electromagnetic field strength parameter about a particular value. This value defines a limiar unstable case in which the ratio epsilon, of the fluid density to the e.m. energy density is monotonically increasing with a minimum finite value at the singularity. Beyond this limiar, the model has a matter dominated singularity, and a characteristic stage appears where epsilon has a minimum, at a finite time from the singularity. For large times, the models tend to an exact solution for zero electromagnetic field and fluid with p = (1/5)p. Some cosmological features of the models are calculated, as the effect of anisotropy on matter density and expansion time scale factors, as compared to the corresponding Friedmann model [pt
Microbial Communities Model Parameter Calculation for TSPA/SR
International Nuclear Information System (INIS)
D. Jolley
2001-01-01
This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed
IMITATOR II: A Tool for Solving the Good Parameters Problem in Timed Automata
Directory of Open Access Journals (Sweden)
Étienne André
2010-10-01
Full Text Available We present here Imitator II, a new version of Imitator, a tool implementing the "inverse method" for parametric timed automata: given a reference valuation of the parameters, it synthesizes a constraint such that, for any valuation satisfying this constraint, the system behaves the same as under the reference valuation in terms of traces, i.e., alternating sequences of locations and actions. Imitator II also implements the "behavioral cartography algorithm", allowing us to solve the following good parameters problem: find a set of valuations within a given bounded parametric domain for which the system behaves well. We present new features and optimizations of the tool, and give results of applications to various examples of asynchronous circuits and communication protocols.
Models for estimating photosynthesis parameters from in situ production profiles
Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana
2017-12-01
The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of
Diabatic models with transferrable parameters for generalized chemical reactions
International Nuclear Information System (INIS)
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2017-01-01
Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical
Energy Technology Data Exchange (ETDEWEB)
Poludniowski, Gavin G. [Joint Department of Physics, Division of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom and Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Evans, Philip M. [Centre for Vision Speech and Signal Processing (CVSSP), Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)
2013-04-15
Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii) suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size
Error propagation of partial least squares for parameters optimization in NIR modeling.
Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng
2018-03-05
A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.
Error propagation of partial least squares for parameters optimization in NIR modeling
Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng
2018-03-01
A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.
Optimizing incomplete sample designs for item response model parameters
van der Linden, Willem J.
Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with
Parameter Estimates in Differential Equation Models for Chemical Kinetics
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Study on Parameters Modeling of Wind Turbines Using SCADA Data
Directory of Open Access Journals (Sweden)
Yonglong YAN
2014-08-01
Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.
Directory of Open Access Journals (Sweden)
J. Li
2013-08-01
Full Text Available Proper specification of model parameters is critical to the performance of land surface models (LSMs. Due to high dimensionality and parameter interaction, estimating parameters of an LSM is a challenging task. Sensitivity analysis (SA is a tool that can screen out the most influential parameters on model outputs. In this study, we conducted parameter screening for six output fluxes for the Common Land Model: sensible heat, latent heat, upward longwave radiation, net radiation, soil temperature and soil moisture. A total of 40 adjustable parameters were considered. Five qualitative SA methods, including local, sum-of-trees, multivariate adaptive regression splines, delta test and Morris methods, were compared. The proper sampling design and sufficient sample size necessary to effectively screen out the sensitive parameters were examined. We found that there are 2–8 sensitive parameters, depending on the output type, and about 400 samples are adequate to reliably identify the most sensitive parameters. We also employed a revised Sobol' sensitivity method to quantify the importance of all parameters. The total effects of the parameters were used to assess the contribution of each parameter to the total variances of the model outputs. The results confirmed that global SA methods can generally identify the most sensitive parameters effectively, while local SA methods result in type I errors (i.e., sensitive parameters labeled as insensitive or type II errors (i.e., insensitive parameters labeled as sensitive. Finally, we evaluated and confirmed the screening results for their consistency with the physical interpretation of the model parameters.
International Nuclear Information System (INIS)
Qayoom, A.
2012-01-01
Summary: Batch adsorption of Cd (II) onto turmeric powder was conducted as a function of temperature. Nonlinear Langmuir, Freundlich, Dubinin-Radushkevish (D-R) and Temkin equilibrium models were employed. In addition to R 2, five different error functions were used to determine best fit equilibrium isotherm model. It was found that Freundlich isotherm model provided better fit for adsorption data at 298 and 303 K and Langmuir model was suitable for the experimental data obtained at 310 and 313 K. It was found that increase in temperature decreased maximum adsorption capacities, showing that the adsorption of Cd (II) onto turmeric powder is exothermic. Enthalpy values also confirmed the same trend. Entropy values were negative which means that randomness decreased on increasing temperature. Gibbs free energies were non spontaneous at all the temperatures studied. E values were in the range of 2.73-3.23 kJ mol/sup -1/ which indicated that adsorption mechanism is essentially physical. (author)
Parameter Optimisation for the Behaviour of Elastic Models over Time
DEFF Research Database (Denmark)
Mosegaard, Jesper
2004-01-01
Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...
An automatic and effective parameter optimization method for model tuning
Directory of Open Access Journals (Sweden)
T. Zhang
2015-11-01
simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.
Identifying the connective strength between model parameters and performance criteria
Directory of Open Access Journals (Sweden)
B. Guse
2017-11-01
Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria
International Nuclear Information System (INIS)
Uddin, M.N.; Sarker, M.M.; Khan, M.J.H.; Islam, S.M.A.
2010-01-01
The aim of this study is to analyze the neutronic parameters of TRIGA Mark-II research reactor using the chain of NJOY-WIMS-CITATION computer codes based on evaluated nuclear data libraries CENDL-2.2 and JEFF-3.1.1. The nuclear data processing code NJOY99.0 has been employed to generate the 69 group WIMS library for the isotopes of TRIGA core. The cell code WIMSD-5B was used to generate the cross sections in CITATION format and then 3-dimensional diffusion code CITTATION was used to calculate the neutronic parameters of the TRIGA Mark-II research reactor. All the analyses were performed using the 7-group macroscopic cross section library. The CITATION test-runs using different cross section sets based on different models applied in WIMS calculations have shown a strong influence of those models on the final integral parameters. Some of the cells were specially treated with PRIZE options available in WIMSD-5B to take into account the fine structure of the flux gradient in the fuel-reflector interface region. It was observed that two basic parameters, the effective multiplication factor, k eff and the thermal neutron flux, were in good agreement among the calculated results with each other as well as the measured values. The maximum power densities at the hot spot were 1.0446E02 W/cc and 1.0426E02 W/cc for the libraries CENDL-2.2 and JEFF-3.1.1 respectively. The calculated total peaking factors 5.793 and 5.745 were compared to the original SAR value of 5.6325 as well as MCNP result. Consequently, this analysis will be helpful to enhance the neutronic calculations and also be used for the further thermal-hydraulics study of the TRIGA core.
Resuspension parameters for TRAC dispersion model
International Nuclear Information System (INIS)
Langer, G.
1987-01-01
Resuspension factors for the wind erosion of soil contaminated with plutonium are necessary to run the Rocky Flats Plant Terrain Responsive Atmospheric Code (TRAC). The model predicts the dispersion and resulting population dose due to accidental plutonium releases
Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica
International Nuclear Information System (INIS)
Oboh, I.; Aluyor, E.; Audu, T.
2015-01-01
The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R 2 ), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem
Directory of Open Access Journals (Sweden)
Jonathan R Karr
2015-05-01
Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
Modeling Influenza Transmission Using Environmental Parameters
Soebiyanto, Radina P.; Kiang, Richard K.
2010-01-01
Influenza is an acute viral respiratory disease that has significant mortality, morbidity and economic burden worldwide. It infects approximately 5-15% of the world population, and causes 250,000 500,000 deaths each year. The role of environments on influenza is often drawn upon the latitude variability of influenza seasonality pattern. In regions with temperate climate, influenza epidemics exhibit clear seasonal pattern that peak during winter months, but it is not as evident in the tropics. Toward this end, we developed mathematical model and forecasting capabilities for influenza in regions characterized by warm climate Hong Kong (China) and Maricopa County (Arizona, USA). The best model for Hong Kong uses Land Surface Temperature (LST), precipitation and relative humidity as its covariates. Whereas for Maricopa County, we found that weekly influenza cases can be best modelled using mean air temperature as its covariates. Our forecasts can further guides public health organizations in targeting influenza prevention and control measures such as vaccination.
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
Dynamics in the Parameter Space of a Neuron Model
Paulo, C. Rech
2012-06-01
Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.
Advances in Modelling, System Identification and Parameter ...
Indian Academy of Sciences (India)
Authors show, using numerical simulation for two system functions, the improvement in percentage normalized ... of nonlinear systems. The approach is to use multiple linearizing models fitted along the operating trajectories. ... over emphasized in the light of present day high level of research activity in the field of aerospace ...
Higgs potential in the type II seesaw model
International Nuclear Information System (INIS)
Arhrib, A.; Benbrik, R.; Chabab, M.; Rahili, L.; Ramadan, J.; Moultaka, G.; Peyranere, M. C.
2011-01-01
The standard model Higgs sector, extended by one weak gauge triplet of scalar fields with a very small vacuum expectation value, is a very promising setting to account for neutrino masses through the so-called type II seesaw mechanism. In this paper we consider the general renormalizable doublet/triplet Higgs potential of this model. We perform a detailed study of its main dynamical features that depend on five dimensionless couplings and two mass parameters after spontaneous symmetry breaking, and highlight the implications for the Higgs phenomenology. In particular, we determine (i) the complete set of tree-level unitarity constraints on the couplings of the potential and (ii) the exact tree-level boundedness from below constraints on these couplings, valid for all directions. When combined, these constraints delineate precisely the theoretically allowed parameter space domain within our perturbative approximation. Among the seven physical Higgs states of this model, the mass of the lighter (heavier) CP even state h 0 (H 0 ) will always satisfy a theoretical upper (lower) bound that is reached for a critical value μ c of μ (the mass parameter controlling triple couplings among the doublet/triplet Higgses). Saturating the unitarity bounds, we find an upper bound m h 0 or approx. μ c and μ c . In the first regime the Higgs sector is typically very heavy, and only h 0 that becomes SM-like could be accessible to the LHC. In contrast, in the second regime, somewhat overlooked in the literature, most of the Higgs sector is light. In particular, the heaviest state H 0 becomes SM-like, the lighter states being the CP odd Higgs, the (doubly) charged Higgses, and a decoupled h 0 , possibly leading to a distinctive phenomenology at the colliders.
On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling
Bai, Xian-Xu; Xu, Shi-Xu; Cheng, Wei; Qian, Li-Jun
2017-08-01
It is useful to develop an effective biodynamic model of seated human occupants to help understand the human vibration exposure to transportation vehicle vibrations and to help design and improve the anti-vibration devices and/or test dummies. This study proposed and demonstrated a methodology for systematically identifying the best configuration or structure of a 4-degree-of-freedom (4DOF) human vibration model and for its parameter identification. First, an equivalent simplification expression for the models was made. Second, all of the possible 23 structural configurations of the models were identified. Third, each of them was calibrated using the frequency response functions recommended in a biodynamic standard. An improved version of non-dominated sorting genetic algorithm (NSGA-II) based on Pareto optimization principle was used to determine the model parameters. Finally, a model evaluation criterion proposed in this study was used to assess the models and to identify the best one, which was based on both the goodness of curve fits and comprehensive goodness of the fits. The identified top configurations were better than those reported in the literature. This methodology may also be extended and used to develop the models with other DOFs.
Equilibrium modeling of mono and binary sorption of Cu(II and Zn(II onto chitosan gel beads
Directory of Open Access Journals (Sweden)
Nastaj Józef
2016-12-01
Full Text Available The objective of the work are in-depth experimental studies of Cu(II and Zn(II ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II and Zn(II ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II and Zn(II ions (1:1, 1:2, 2:1. Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.
Agricultural and Environmental Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Kaylie Rasmuson; Kurt Rautenstrauch
2003-01-01
This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN
A simulation of water pollution model parameter estimation
Kibler, J. F.
1976-01-01
A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.
Lumped parameter models for the interpretation of environmental tracer data
International Nuclear Information System (INIS)
Maloszewski, P.; Zuber, A.
1996-01-01
Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs
Lumped parameter models for the interpretation of environmental tracer data
Energy Technology Data Exchange (ETDEWEB)
Maloszewski, P [GSF-Inst. for Hydrology, Oberschleissheim (Germany); Zuber, A [Institute of Nuclear Physics, Cracow (Poland)
1996-10-01
Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs.
Parameters modelling of amaranth grain processing technology
Derkanosova, N. M.; Shelamova, S. A.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.
2018-03-01
The article presents a technique that allows calculating the structure of a multicomponent bakery mixture for the production of enriched products, taking into account the instability of nutrient content, and ensuring the fulfilment of technological requirements and, at the same time considering consumer preferences. The results of modelling and analysis of optimal solutions are given by the example of calculating the structure of a three-component mixture of wheat and rye flour with an enriching component, that is, whole-hulled amaranth flour applied to the technology of bread from a mixture of rye and wheat flour on a liquid leaven.
WATGIS: A GIS-Based Lumped Parameter Water Quality Model
Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya
2002-01-01
A Geographic Information System (GIS)Âbased, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogenÂloading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...
A test for the parameters of multiple linear regression models ...
African Journals Online (AJOL)
A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...
The influence of model parameters on catchment-response
International Nuclear Information System (INIS)
Shah, S.M.S.; Gabriel, H.F.; Khan, A.A.
2002-01-01
This paper deals with the study of influence of influence of conceptual rainfall-runoff model parameters on catchment response (runoff). A conceptual modified watershed yield model is employed to study the effects of model-parameters on catchment-response, i.e. runoff. The model is calibrated, using manual parameter-fitting approach, also known as trial and error parameter-fitting. In all, there are twenty one (21) parameters that control the functioning of the model. A lumped parametric approach is used. The detailed analysis was performed on Ling River near Kahuta, having catchment area of 56 sq. miles. The model includes physical parameters like GWSM, PETS, PGWRO, etc. fitting coefficients like CINF, CGWS, etc. and initial estimates of the surface-water and groundwater storages i.e. srosp and gwsp. Sensitivity analysis offers a good way, without repetititious computations, the proper weight and consideration that must be taken when each of the influencing factor is evaluated. Sensitivity-analysis was performed to evaluate the influence of model-parameters on runoff. The sensitivity and relative contributions of model parameters influencing catchment-response are studied. (author)
Identification of ecosystem parameters by SDE-modelling
DEFF Research Database (Denmark)
Stochastic differential equations (SDEs) for ecosystem modelling have attracted increasing attention during recent years. The modelling has mostly been through simulation experiments in order to analyse how system noise propagates through the ordinary differential equation formulation of ecosystem...... models. Estimation of parameters in SDEs is, however, possible by combining Kalman filter techniques and likelihood estimation. By modelling parameters as random walks it is possible to identify linear as well as non-linear interactions between ecosystem components. By formulating a simple linear SDE...
Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds
Directory of Open Access Journals (Sweden)
Indrajeet Chaubey
2010-11-01
Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.
Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.
2011-12-01
A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.
Bayesian estimation of parameters in a regional hydrological model
Directory of Open Access Journals (Sweden)
K. Engeland
2002-01-01
Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis
Brownian motion model with stochastic parameters for asset prices
Ching, Soo Huei; Hin, Pooi Ah
2013-09-01
The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.
International Nuclear Information System (INIS)
Kabra, Kavita; Chaudhary, Rubina; Sawhney, R.L.
2008-01-01
The present study is targeted on solar photocatalytic removal of metal ions from wastewater. Photoreductive deposition and dark adsorption of metal ions Cu(II), Ni(II), Pb(II) and Zn(II), using solar energy irradiated TiO 2 , has been investigated. Citric acid has been used as a hole scavenger. Modeling of metal species has been performed and speciation is used as a tool for discussing the photodeposition trends. Ninety-seven percent reductive deposition was obtained for copper. The deposition values of other metals were significantly low [nickel (36.4%), zinc (22.2%) and lead (41.4%)], indicating that the photocatalytic treatment process, using solar energy, was more suitable for wastewater containing Cu(II) ions. In absence of citric acid, the decreasing order deposition was Cu(II) > Ni(II) > Pb(II) > Zn(II), which proves the theoretical thermodynamic predictions about the metals
Determination of the Corona model parameters with artificial neural networks
International Nuclear Information System (INIS)
Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov
2005-01-01
Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model
Biological parameters for lung cancer in mathematical models of carcinogenesis
International Nuclear Information System (INIS)
Jacob, P.; Jacob, V.
2003-01-01
Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki, British doctors, Colorado Plateau miners, and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h 55 at an intermediate age, and the hazard H? at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. (author)
Learning about physical parameters: the importance of model discrepancy
International Nuclear Information System (INIS)
Brynjarsdóttir, Jenný; O'Hagan, Anthony
2014-01-01
Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)
Spike Neural Models Part II: Abstract Neural Models
Directory of Open Access Journals (Sweden)
Johnson, Melissa G.
2018-02-01
Full Text Available Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF model which is not biologically realistic but does quickly and easily integrate input to produce spikes. Izhikevich's model is based on Hodgkin-Huxley's model but simplified such that it uses only two differentiation equations and four parameters to produce various realistic spike patterns. LIF is based on a standard electrical circuit and contains one equation. Either of these two models, or any of the many other models in literature can be used in a SNN. Choosing a neural model is an important task that depends on the goal of the research and the resources available. Once a model is chosen, network decisions such as connectivity, delay, and sparseness, need to be made. Understanding neural models and how they are incorporated into the network is the first step in creating a SNN.
Spatio-temporal modeling of nonlinear distributed parameter systems
Li, Han-Xiong
2011-01-01
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s
EMPIRE-II statistical model code for nuclear reaction calculations
Energy Technology Data Exchange (ETDEWEB)
Herman, M [International Atomic Energy Agency, Vienna (Austria)
2001-12-15
EMPIRE II is a nuclear reaction code, comprising various nuclear models, and designed for calculations in the broad range of energies and incident particles. A projectile can be any nucleon or Heavy Ion. The energy range starts just above the resonance region, in the case of neutron projectile, and extends up to few hundreds of MeV for Heavy Ion induced reactions. The code accounts for the major nuclear reaction mechanisms, such as optical model (SCATB), Multistep Direct (ORION + TRISTAN), NVWY Multistep Compound, and the full featured Hauser-Feshbach model. Heavy Ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers (BARFIT), moments of inertia (MOMFIT), and {gamma}-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations. The results can be converted into the ENDF-VI format using the accompanying code EMPEND. The package contains the full EXFOR library of experimental data. Relevant EXFOR entries are automatically retrieved during the calculations. Plots comparing experimental results with the calculated ones can be produced using X4TOC4 and PLOTC4 codes linked to the rest of the system through bash-shell (UNIX) scripts. The graphic user interface written in Tcl/Tk is provided. (author)
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
Universally sloppy parameter sensitivities in systems biology models.
Directory of Open Access Journals (Sweden)
Ryan N Gutenkunst
2007-10-01
Full Text Available Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Universally sloppy parameter sensitivities in systems biology models.
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-10-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver
Kang, Ling; Zhou, Liwei
2018-02-01
Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.
Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite
Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.
2013-04-01
Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption
Energy Technology Data Exchange (ETDEWEB)
Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J., E-mail: David.Nicholls@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia)
2014-07-20
In this paper, we use the Mappings photoionization code to explore the physical parameters that impact on the measurement of electron temperature and abundance in H II regions. In our previous paper, we presented observations and measurements of physical properties from the spectra of 17 H II regions in 14 isolated dwarf irregular galaxies from the SIGRID sample. Here, we analyze these observations further, together with three additional published data sets. We explore the effects of optical thickness, electron density, ionization parameter, ionization source, and non-equilibrium effects on the relation between electron temperature and metallicity. We present a standard model that fits the observed data remarkably well at metallicities between one-tenth and 1 solar. We investigate the effects of optically thin H II regions, and show that they can have a considerable effect on the measured electron temperature, and that there is evidence that some of the observed objects are optically thin. We look at the role of the ionization parameter and find that lower ionization parameter values give better fits at higher oxygen abundance. We show that higher pressures combined with low optical depth, and also κ electron energy distributions at low κ values, can generate the apparent high electron temperatures in low-metallicity H II regions, and that the former provides the better fit to observations. We examine the effects of these parameters on the strong line diagnostic methods. We extend this to three-dimensional diagnostic grids to confirm how well the observations are described by the grids.
Modeling and Parameter Estimation of a Small Wind Generation System
Directory of Open Access Journals (Sweden)
Carlos A. Ramírez Gómez
2013-11-01
Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.
NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION
Directory of Open Access Journals (Sweden)
Roman L. Leibov
2017-09-01
Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented
Identification of parameters of discrete-continuous models
International Nuclear Information System (INIS)
Cekus, Dawid; Warys, Pawel
2015-01-01
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible
Identification of parameters of discrete-continuous models
Energy Technology Data Exchange (ETDEWEB)
Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)
2015-03-10
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.
Parameter estimation in stochastic rainfall-runoff models
DEFF Research Database (Denmark)
Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur
2006-01-01
A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...
Some tests for parameter constancy in cointegrated VAR-models
DEFF Research Database (Denmark)
Hansen, Henrik; Johansen, Søren
1999-01-01
Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ......Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations......, and another in which the cointegrating relations are estimated recursively from a likelihood function, where the short-run parameters have been concentrated out. We suggest graphical procedures based on recursively estimated eigenvalues to evaluate the constancy of the long-run parameters in the model...
Incorporating model parameter uncertainty into inverse treatment planning
International Nuclear Information System (INIS)
Lian Jun; Xing Lei
2004-01-01
Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment
Saturne II synchroton injector parameters operation and control: computerization and optimization
International Nuclear Information System (INIS)
Lagniel, J.M.
1983-01-01
The injector control system has been studied, aiming at the beam quality improvement, the increasing of the versatility, and a better machine availability. It has been choosen to realize the three following functions: - acquisition of the principal parameters of the process, so as to control them quickly and to be warned if one of them is wrong (monitoring); - the control of those parameters, one by one or by families (starting, operating point); - the research of an optimal control (on a model or on the process itself) [fr
A method for model identification and parameter estimation
International Nuclear Information System (INIS)
Bambach, M; Heinkenschloss, M; Herty, M
2013-01-01
We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)
Modelling hydrodynamic parameters to predict flow assisted corrosion
International Nuclear Information System (INIS)
Poulson, B.; Greenwell, B.; Chexal, B.; Horowitz, J.
1992-01-01
During the past 15 years, flow assisted corrosion has been a worldwide problem in the power generating industry. The phenomena is complex and depends on environment, material composition, and hydrodynamic factors. Recently, modeling of flow assisted corrosion has become a subject of great importance. A key part of this effort is modeling the hydrodynamic aspects of this issue. This paper examines which hydrodynamic parameter should be used to correlate the occurrence and rate of flow assisted corrosion with physically meaningful parameters, discusses ways of measuring the relevant hydrodynamic parameter, and describes how the hydrodynamic data is incorporated into the predictive model
A distributed approach for parameters estimation in System Biology models
International Nuclear Information System (INIS)
Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.
2009-01-01
Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.
Optimal parameters for the FFA-Beddoes dynamic stall model
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A; Mert, M [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H A [Risoe National Lab., Roskilde (Denmark)
1999-03-01
Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)
Online State Space Model Parameter Estimation in Synchronous Machines
Directory of Open Access Journals (Sweden)
Z. Gallehdari
2014-06-01
The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.
Bates, P. D.; Neal, J. C.; Fewtrell, T. J.
2012-12-01
In this we paper we consider two related questions. First, we address the issue of how much physical complexity is necessary in a model in order to simulate floodplain inundation to within validation data error. This is achieved through development of a single code/multiple physics hydraulic model (LISFLOOD-FP) where different degrees of complexity can be switched on or off. Different configurations of this code are applied to four benchmark test cases, and compared to the results of a number of industry standard models. Second we address the issue of how parameter sensitivity and transferability change with increasing complexity using numerical experiments with models of different physical and geometric intricacy. Hydraulic models are a good example system with which to address such generic modelling questions as: (1) they have a strong physical basis; (2) there is only one set of equations to solve; (3) they require only topography and boundary conditions as input data; and (4) they typically require only a single free parameter, namely boundary friction. In terms of complexity required we show that for the problem of sub-critical floodplain inundation a number of codes of different dimensionality and resolution can be found to fit uncertain model validation data equally well, and that in this situation Occam's razor emerges as a useful logic to guide model selection. We find also find that model skill usually improves more rapidly with increases in model spatial resolution than increases in physical complexity, and that standard approaches to testing hydraulic models against laboratory data or analytical solutions may fail to identify this important fact. Lastly, we find that in benchmark testing studies significant differences can exist between codes with identical numerical solution techniques as a result of auxiliary choices regarding the specifics of model implementation that are frequently unreported by code developers. As a consequence, making sound
AN ANALYTIC MODEL OF DUSTY, STRATIFIED, SPHERICAL H ii REGIONS
Energy Technology Data Exchange (ETDEWEB)
Rodríguez-Ramírez, J. C.; Raga, A. C. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510 D.F., México (Mexico); Lora, V. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Cantó, J., E-mail: juan.rodriguez@nucleares.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-468, 04510 D. F., México (Mexico)
2016-12-20
We study analytically the effect of radiation pressure (associated with photoionization processes and with dust absorption) on spherical, hydrostatic H ii regions. We consider two basic equations, one for the hydrostatic balance between the radiation-pressure components and the gas pressure, and another for the balance among the recombination rate, the dust absorption, and the ionizing photon rate. Based on appropriate mathematical approximations, we find a simple analytic solution for the density stratification of the nebula, which is defined by specifying the radius of the external boundary, the cross section of dust absorption, and the luminosity of the central star. We compare the analytic solution with numerical integrations of the model equations of Draine, and find a wide range of the physical parameters for which the analytic solution is accurate.
Retrospective forecast of ETAS model with daily parameters estimate
Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang
2016-04-01
We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
Kaylie Rasmuson; Kurt Rautenstrauch
2003-06-20
This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.
Parameter Estimates in Differential Equation Models for Population Growth
Winkel, Brian J.
2011-01-01
We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…
Uncertainty in dual permeability model parameters for structured soils
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.
Luminescence model with quantum impact parameter for low energy ions
Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S
2002-01-01
We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.
Agricultural and Environmental Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rasmuson; K. Rautenstrauch
2004-01-01
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters
Determining extreme parameter correlation in ground water models
DEFF Research Database (Denmark)
Hill, Mary Cole; Østerby, Ole
2003-01-01
can go undetected even by experienced modelers. Extreme parameter correlation can be detected using parameter correlation coefficients, but their utility depends on the presence of sufficient, but not excessive, numerical imprecision of the sensitivities, such as round-off error. This work...... investigates the information that can be obtained from parameter correlation coefficients in the presence of different levels of numerical imprecision, and compares it to the information provided by an alternative method called the singular value decomposition (SVD). Results suggest that (1) calculated...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...
Uncertainty of Modal Parameters Estimated by ARMA Models
DEFF Research Database (Denmark)
Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders
1990-01-01
In this paper the uncertainties of identified modal parameters such as eidenfrequencies and damping ratios are assed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the parameters...... by simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been choosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore......, it is shown that the model errors may also contribute significantly to the uncertainty....
SPOTting Model Parameters Using a Ready-Made Python Package.
Directory of Open Access Journals (Sweden)
Tobias Houska
Full Text Available The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool, an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI. We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.
Parameter resolution in two models for cell survival after radiation
International Nuclear Information System (INIS)
Di Cera, E.; Andreasi Bassi, F.; Arcovito, G.
1989-01-01
The resolvability of model parameters for the linear-quadratic and the repair-misrepair models for cell survival after radiation has been studied by Monte Carlo simulations as a function of the number of experimental data points collected in a given dose range and the experimental error. Statistical analysis of the results reveals the range of experimental conditions under which the model parameters can be resolved with sufficient accuracy, and points out some differences in the operational aspects of the two models. (orig.)
Simultaneous inference for model averaging of derived parameters
DEFF Research Database (Denmark)
Jensen, Signe Marie; Ritz, Christian
2015-01-01
Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...
Updating parameters of the chicken processing line model
DEFF Research Database (Denmark)
Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna
2010-01-01
A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate performance of this method in updating parameters...... of the chicken processing line model....
Lumped-parameter Model of a Bucket Foundation
DEFF Research Database (Denmark)
Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten
2009-01-01
efficient model that can be applied in aero-elastic codes for fast evaluation of the dynamic structural response of wind turbines. The target solutions, utilised for calibration of the lumped-parameter models, are obtained by a coupled finite-element/boundaryelement scheme in the frequency domain......, and the quality of the models are tested in the time and frequency domains. It is found that precise results are achieved by lumped-parameter models with two to four internal degrees of freedom per displacement or rotation of the foundation. Further, coupling between the horizontal sliding and rocking cannot...
Lumped-Parameter Models for Windturbine Footings on Layered Ground
DEFF Research Database (Denmark)
Andersen, Lars
The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...
International Nuclear Information System (INIS)
Fossum, Kristian; Mannseth, Trond
2014-01-01
We assess and compare parameter sampling capabilities of one sequential and one simultaneous Bayesian, ensemble-based, joint state-parameter (JS) estimation method. In the companion paper, part I (Fossum and Mannseth 2014 Inverse Problems 30 114002), analytical investigations lead us to propose three claims, essentially stating that the sequential method can be expected to outperform the simultaneous method for weakly nonlinear forward models. Here, we assess the reliability and robustness of these claims through statistical analysis of results from a range of numerical experiments. Samples generated by the two approximate JS methods are compared to samples from the posterior distribution generated by a Markov chain Monte Carlo method, using four approximate measures of distance between probability distributions. Forward-model nonlinearity is assessed from a stochastic nonlinearity measure allowing for sufficiently large model dimensions. Both toy models (with low computational complexity, and where the nonlinearity is fairly easy to control) and two-phase porous-media flow models (corresponding to down-scaled versions of problems to which the JS methods have been frequently applied recently) are considered in the numerical experiments. Results from the statistical analysis show strong support of all three claims stated in part I. (paper)
International Nuclear Information System (INIS)
Spiller, J.L.
1987-01-01
The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes
MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS
Directory of Open Access Journals (Sweden)
G. M. Kukharonak
2011-01-01
Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper. The model allows to observe fuel sprays develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.
Impact of gas puffing location on density control and plasma parameters in TJ-II
International Nuclear Information System (INIS)
Tabares, F.L.; Garcia-Cortes, I.; Estrada, T.; Tafalla, D.; Hidalgo, A.; Ferreira, J.A.; Pastor, I.; Herranz, J.; Ascasibar, E.
2005-01-01
Under pure Electron Cyclotron Resonance Heating (ECRH) conditions in TJ-II plasmas (P<300 kW, 53.2 GHz, 2nd harmonic X-mode, power density < 25 W/m''3), plasma start-up and good density control are obtained only by the proper combination of wall conditions and gas puffing characteristics. Such a control is particularly critical for the optimisation of the NBI power transfer to the target plasmas. The relatively low cut-off limit is easily reached due not only to the unfavourable wall/puffing-fuelling ratio but also due to the steep density profiles developed during the Enhanced Particle Confinement (EPC) modes. These modes are triggered by the gas puffing waveform, and they cannot be achieved for high iota magnetic configurations in TJ-II. Comparative experiments under metallic and boronised wall conditions have shown that the sensitivity of the EPC modes to the puffing rate is at least partially related to the energy balance at the plasma periphery under central heating scenarios. In this work, the impact of gas-fuelling location on the plasma parameters and density control is described. For that purpose, three different fuelling locations have been investigated; broad distribution from a side ports, localized injection from long tubes at different poloidal positions and highly localized injection through a movable limiter. Edge density and temperature profiles from a broad set of diagnostics (atomic beams, reflectometry, Thompson Scattering ECE, etc...) are analysed and compared. It has been found that preventing from transition to the EPC mode is achieved by using slow puffing rates, while neutral penetration into the plasma core can be enhanced for highly localized gas sources. Wall inventory, however, has been found to pl ay a dominant role in the fuelling of the plasma under most conditions. (author)
Seasonal and spatial variation in broadleaf forest model parameters
Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.
2009-04-01
Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2004-09-10
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2004-01-01
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rautenstrauch
2004-09-10
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rautenstrauch
2004-01-01
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Wasiolek, M. A.
2003-01-01
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-06-27
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699
Reflector modelization for neutronic diffusion and parameters identification
International Nuclear Information System (INIS)
Argaud, J.P.
1993-04-01
Physical parameters of neutronic diffusion equations can be adjusted to decrease calculations-measurements errors. The reflector being always difficult to modelize, we choose to elaborate a new reflector model and to use the parameters of this model as adjustment coefficients in the identification procedure. Using theoretical results, and also the physical behaviour of neutronic flux solutions, the reflector model consists then in its replacement by boundary conditions for the diffusion equations on the core only. This theoretical result of non-local operator relations leads then to some discrete approximations by taking into account the multiscaled behaviour, on the core-reflector interface, of neutronic diffusion solutions. The resulting model of this approach is then compared with previous reflector modelizations, and first results indicate that this new model gives the same representation of reflector for the core than previous. (author). 12 refs
Regionalising Parameters of a Conceptual Rainfall-Runoff Model for ...
African Journals Online (AJOL)
IHACRES, a lumped conceptual rainfall-runoff model, was calibrated to six catchments ranging in size from 49km2 to 600 km2 within the upper Tana River basin to obtain a set of model parameters that characterise the hydrological behaviour within the region. Physical catchment attributes indexing topography, soil and ...
Constraint on Parameters of Inverse Compton Scattering Model for ...
Indian Academy of Sciences (India)
B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained. Key words. Pulsar—inverse Compton scattering—emission mechanism. 1. Introduction. Among various kinds of models for pulsar radio emission, the inverse ...
Geometry parameters for musculoskeletal modelling of the shoulder system
Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H
A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of
Rain storm models and the relationship between their parameters
Stol, P.T.
1977-01-01
Rainfall interstation correlation functions can be obtained with the aid of analytic rainfall or storm models. Since alternative storm models have different mathematical formulas, comparison should be based on equallity of parameters like storm diameter, mean rainfall amount, storm maximum or total
Lumped-parameters equivalent circuit for condenser microphones modeling.
Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar
2017-10-01
This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.
A software for parameter estimation in dynamic models
Directory of Open Access Journals (Sweden)
M. Yuceer
2008-12-01
Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.
Determination of appropriate models and parameters for premixing calculations
Energy Technology Data Exchange (ETDEWEB)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-15
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.
Parameter identification in a nonlinear nuclear reactor model using quasilinearization
International Nuclear Information System (INIS)
Barreto, J.M.; Martins Neto, A.F.; Tanomaru, N.
1980-09-01
Parameter identification in a nonlinear, lumped parameter, nuclear reactor model is carried out using discrete output power measurements during the transient caused by an external reactivity change. In order to minimize the difference between the model and the reactor power responses, the parameter promt neutron generation time and a parameter in fuel temperature reactivity coefficient equation are adjusted using quasilinearization. The influences of the external reactivity disturbance, the number and frequency of measurements and the measurement noise level on the method accuracy and rate of convergence are analysed through simulation. Procedures for the design of the identification experiments are suggested. The method proved to be very effective for low level noise measurements. (Author) [pt
Determination of appropriate models and parameters for premixing calculations
International Nuclear Information System (INIS)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-01
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al 2 O 3 ) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested
Condition Parameter Modeling for Anomaly Detection in Wind Turbines
Directory of Open Access Journals (Sweden)
Yonglong Yan
2014-05-01
Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.
Ground level enhancement (GLE) energy spectrum parameters model
Qin, G.; Wu, S.
2017-12-01
We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.
Soil-related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
A. J. Smith
2003-01-01
This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Zhang, Xiangsheng; Pan, Feng
2015-01-01
Aimed at the parameters optimization in support vector machine (SVM) for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO) algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effective...
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Directory of Open Access Journals (Sweden)
Xiangsheng Zhang
2015-01-01
Full Text Available Aimed at the parameters optimization in support vector machine (SVM for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effectiveness of the proposed algorithm.
A Bayesian framework for parameter estimation in dynamical models.
Directory of Open Access Journals (Sweden)
Flávio Codeço Coelho
Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.
A lumped parameter, low dimension model of heat exchanger
International Nuclear Information System (INIS)
Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami
1980-01-01
This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)
Batzias, Dimitris F.; Ifanti, Konstantina
2012-12-01
Process simulation models are usually empirical, therefore there is an inherent difficulty in serving as carriers for knowledge acquisition and technology transfer, since their parameters have no physical meaning to facilitate verification of the dependence on the production conditions; in such a case, a 'black box' regression model or a neural network might be used to simply connect input-output characteristics. In several cases, scientific/mechanismic models may be proved valid, in which case parameter identification is required to find out the independent/explanatory variables and parameters, which each parameter depends on. This is a difficult task, since the phenomenological level at which each parameter is defined is different. In this paper, we have developed a methodological framework under the form of an algorithmic procedure to solve this problem. The main parts of this procedure are: (i) stratification of relevant knowledge in discrete layers immediately adjacent to the layer that the initial model under investigation belongs to, (ii) design of the ontology corresponding to these layers, (iii) elimination of the less relevant parts of the ontology by thinning, (iv) retrieval of the stronger interrelations between the remaining nodes within the revised ontological network, and (v) parameter identification taking into account the most influential interrelations revealed in (iv). The functionality of this methodology is demonstrated by quoting two representative case examples on wastewater treatment.
Reservoir theory, groundwater transit time distributions, and lumped parameter models
International Nuclear Information System (INIS)
Etcheverry, D.; Perrochet, P.
1999-01-01
The relation between groundwater residence times and transit times is given by the reservoir theory. It allows to calculate theoretical transit time distributions in a deterministic way, analytically, or on numerical models. Two analytical solutions validates the piston flow and the exponential model for simple conceptual flow systems. A numerical solution of a hypothetical regional groundwater flow shows that lumped parameter models could be applied in some cases to large-scale, heterogeneous aquifers. (author)
Directory of Open Access Journals (Sweden)
THANH TUNG KHUAT
2017-05-01
Full Text Available Artificial Bee Colony inspired by the foraging behaviour of honey bees is a novel meta-heuristic optimization algorithm in the community of swarm intelligence algorithms. Nevertheless, it is still insufficient in the speed of convergence and the quality of solutions. This paper proposes an approach in order to tackle these downsides by combining the positive aspects of TeachingLearning based optimization and Artificial Bee Colony. The performance of the proposed method is assessed on the software effort estimation problem, which is the complex and important issue in the project management. Software developers often carry out the software estimation in the early stages of the software development life cycle to derive the required cost and schedule for a project. There are a large number of methods for effort estimation in which COCOMO II is one of the most widely used models. However, this model has some restricts because its parameters have not been optimized yet. In this work, therefore, we will present the approach to overcome this limitation of COCOMO II model. The experiments have been conducted on NASA software project dataset and the obtained results indicated that the improvement of parameters provided better estimation capabilities compared to the original COCOMO II model.
SPOTting model parameters using a ready-made Python package
Houska, Tobias; Kraft, Philipp; Breuer, Lutz
2015-04-01
The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for
Modelling of intermittent microwave convective drying: parameter sensitivity
Directory of Open Access Journals (Sweden)
Zhang Zhijun
2017-06-01
Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms
Berhausen, Sebastian; Paszek, Stefan
2016-01-01
In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.
On the role of modeling parameters in IMRT plan optimization
International Nuclear Information System (INIS)
Krause, Michael; Scherrer, Alexander; Thieke, Christian
2008-01-01
The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way
PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II
International Nuclear Information System (INIS)
Chambers, F W; Raymond, B A; Falabella, S; Lee, B S; Richardson, R A; Weir, J T; Davis, H A; Schultze, M E
2005-01-01
To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach
A compact cyclic plasticity model with parameter evolution
DEFF Research Database (Denmark)
Krenk, Steen; Tidemann, L.
2017-01-01
The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...
Climate change decision-making: Model & parameter uncertainties explored
Energy Technology Data Exchange (ETDEWEB)
Dowlatabadi, H.; Kandlikar, M.; Linville, C.
1995-12-31
A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.
On the effect of model parameters on forecast objects
Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott
2018-04-01
Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.
Parameter estimation in nonlinear models for pesticide degradation
International Nuclear Information System (INIS)
Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.
1991-01-01
A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)
Global parameter estimation for thermodynamic models of transcriptional regulation.
Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N
2013-07-15
Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2006-06-05
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2006-01-01
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the
Reopen parameter regions in two-Higgs doublet models
Staub, Florian
2018-01-01
The stability of the electroweak potential is a very important constraint for models of new physics. At the moment, it is standard for Two-Higgs doublet models (THDM), singlet or triplet extensions of the standard model to perform these checks at tree-level. However, these models are often studied in the presence of very large couplings. Therefore, it can be expected that radiative corrections to the potential are important. We study these effects at the example of the THDM type-II and find that loop corrections can revive more than 50% of the phenomenological viable points which are ruled out by the tree-level vacuum stability checks. Similar effects are expected for other extension of the standard model.
The level density parameters for fermi gas model
International Nuclear Information System (INIS)
Zuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi
1986-01-01
Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D D , radiative capture width Γ γ 0 at neutron binding energy and cumulative level number N 0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements
Iterative integral parameter identification of a respiratory mechanics model.
Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey
2012-07-18
Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
Iterative integral parameter identification of a respiratory mechanics model
Directory of Open Access Journals (Sweden)
Schranz Christoph
2012-07-01
Full Text Available Abstract Background Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. Methods An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS patients. Results The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. Conclusion These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
MODELLING BIOPHYSICAL PARAMETERS OF MAIZE USING LANDSAT 8 TIME SERIES
Directory of Open Access Journals (Sweden)
T. Dahms
2016-06-01
Full Text Available Open and free access to multi-frequent high-resolution data (e.g. Sentinel – 2 will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR, the leaf area index (LAI and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD: R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing
Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series
Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik
2016-06-01
Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model
International Nuclear Information System (INIS)
Guezel, Fuat; Yakut, Hakan; Topal, Giray
2008-01-01
In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (k ads ) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (E a ) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (q m and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (ΔH), free energy (ΔG), and entropy (ΔS) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures
Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E
2013-12-01
Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.
X-Parameter Based Modelling of Polar Modulated Power Amplifiers
DEFF Research Database (Denmark)
Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel
2013-01-01
X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....
Identifiability and error minimization of receptor model parameters with PET
International Nuclear Information System (INIS)
Delforge, J.; Syrota, A.; Mazoyer, B.M.
1989-01-01
The identifiability problem and the general framework for experimental design optimization are presented. The methodology is applied to the problem of the receptor-ligand model parameter estimation with dynamic positron emission tomography data. The first attempts to identify the model parameters from data obtained with a single tracer injection led to disappointing numerical results. The possibility of improving parameter estimation using a new experimental design combining an injection of the labelled ligand and an injection of the cold ligand (displacement experiment) has been investigated. However, this second protocol led to two very different numerical solutions and it was necessary to demonstrate which solution was biologically valid. This has been possible by using a third protocol including both a displacement and a co-injection experiment. (authors). 16 refs.; 14 figs
Asymmetric Gepner models II. Heterotic weight lifting
Energy Technology Data Exchange (ETDEWEB)
Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)
2011-05-21
A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E{sub 8} factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.
Asymmetric Gepner models II. Heterotic weight lifting
International Nuclear Information System (INIS)
Gato-Rivera, B.; Schellekens, A.N.
2011-01-01
A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E 8 factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.
Prediction of interest rate using CKLS model with stochastic parameters
International Nuclear Information System (INIS)
Ying, Khor Chia; Hin, Pooi Ah
2014-01-01
The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ (j) of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ (j) , we assume that φ (j) depends on φ (j−m) , φ (j−m+1) ,…, φ (j−1) and the interest rate r j+n at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r j+n+1 of the interest rate at the next time point when the value r j+n of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r j+n+d at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters
Model parameters estimation and sensitivity by genetic algorithms
International Nuclear Information System (INIS)
Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca
2003-01-01
In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The
Prediction of interest rate using CKLS model with stochastic parameters
Energy Technology Data Exchange (ETDEWEB)
Ying, Khor Chia [Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Hin, Pooi Ah [Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor (Malaysia)
2014-06-19
The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.
Mathematical models to predict rheological parameters of lateritic hydromixtures
Directory of Open Access Journals (Sweden)
Gabriel Hernández-Ramírez
2017-10-01
Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.
Averaging models: parameters estimation with the R-Average procedure
Directory of Open Access Journals (Sweden)
S. Noventa
2010-01-01
Full Text Available The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982, can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto & Vicentini, 2007 can be used to estimate the parameters of these models. By the use of multiple information criteria in the model selection procedure, R-Average allows for the identification of the best subset of parameters that account for the data. After a review of the general method, we present an implementation of the procedure in the framework of R-project, followed by some experiments using a Monte Carlo method.
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model
Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.
2016-01-01
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601
Integrating Seasonal Oscillations into Basel II Behavioural Scoring Models
Directory of Open Access Journals (Sweden)
Goran Klepac
2007-09-01
Full Text Available The article introduces a new methodology of temporal influence measurement (seasonal oscillations, temporal patterns for behavioural scoring development purposes. The paper shows how significant temporal variables can be recognised and then integrated into the behavioural scoring models in order to improve model performance. Behavioural scoring models are integral parts of the Basel II standard on Internal Ratings-Based Approaches (IRB. The IRB approach much more precisely reflects individual risk bank profile.A solution of the problem of how to analyze and integrate macroeconomic and microeconomic factors represented in time series into behavioural scorecard models will be shown in the paper by using the REF II model.
Sensitivity Analysis of Uncertainty Parameter based on MARS-LMR Code on SHRT-45R of EBR II
Energy Technology Data Exchange (ETDEWEB)
Kang, Seok-Ju; Kang, Doo-Hyuk; Seo, Jae-Seung [System Engineering and Technology Co., Daejeon (Korea, Republic of); Bae, Sung-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Hae-Yong [Sejong University, Seoul (Korea, Republic of)
2016-10-15
In order to assess the uncertainty quantification of the MARS-LMR code, the code has been improved by modifying the source code to accommodate calculation process required for uncertainty quantification. In the present study, a transient of Unprotected Loss of Flow(ULOF) is selected as typical cases of as Anticipated Transient without Scram(ATWS) which belongs to DEC category. The MARS-LMR input generation for EBR II SHRT-45R and execution works are performed by using the PAPIRUS program. The sensitivity analysis is carried out with Uncertainty Parameter of the MARS-LMR code for EBR-II SHRT-45R. Based on the results of sensitivity analysis, dominant parameters with large sensitivity to FoM are picked out. Dominant parameters selected are closely related to the development process of ULOF event.
Comparisons of criteria in the assessment model parameter optimizations
International Nuclear Information System (INIS)
Liu Xinhe; Zhang Yongxing
1993-01-01
Three criteria (chi square, relative chi square and correlation coefficient) used in model parameter optimization (MPO) process that aims at significant reduction of prediction uncertainties were discussed and compared to each other with the aid of a well-controlled tracer experiment
Revised models and genetic parameter estimates for production and ...
African Journals Online (AJOL)
Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...
Determination of parameters in elasto-plastic models of aluminium.
Meuwissen, M.H.H.; Oomens, C.W.J.; Baaijens, F.P.T.; Petterson, R.; Janssen, J.D.; Sol, H.; Oomens, C.W.J.
1997-01-01
A mixed numerical-experimental method is used to determine parameters in elasto-plastic constitutive models. An aluminium plate of non-standard geometry is mounted in a uniaxial tensile testing machine at which some adjustments are made to carry out shear tests. The sample is loaded and the total
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
2002-01-01
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Do Lumped-Parameter Models Provide the Correct Geometrical Damping?
DEFF Research Database (Denmark)
Andersen, Lars
response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....
Key processes and input parameters for environmental tritium models
International Nuclear Information System (INIS)
Bunnenberg, C.; Taschner, M.; Ogram, G.L.
1994-01-01
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs
Key processes and input parameters for environmental tritium models
Energy Technology Data Exchange (ETDEWEB)
Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)
1994-12-31
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.
Jones, D. O.; Scolnic, D. M.; Riess, A. G.; Rest, A.; Kirshner, R. P.; Berger, E.; Kessler, R.; Pan, Y.-C.; Foley, R. J.; Chornock, R.; Ortega, C. A.; Challis, P. J.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Tonry, J.; Wainscoat, R. J.; Waters, C.; Gall, E. E. E.; Kotak, R.; McCrum, M.; Smartt, S. J.; Smith, K. W.
2018-04-01
We use 1169 Pan-STARRS supernovae (SNe) and 195 low-z (z used to infer unbiased cosmological parameters by using a Bayesian methodology that marginalizes over core-collapse (CC) SN contamination. Our sample contains nearly twice as many SNe as the largest previous SN Ia compilation. Combining SNe with cosmic microwave background (CMB) constraints from Planck, we measure the dark energy equation-of-state parameter w to be ‑0.989 ± 0.057 (stat+sys). If w evolves with redshift as w(a) = w 0 + w a (1 ‑ a), we find w 0 = ‑0.912 ± 0.149 and w a = ‑0.513 ± 0.826. These results are consistent with cosmological parameters from the Joint Light-curve Analysis and the Pantheon sample. We try four different photometric classification priors for Pan-STARRS SNe and two alternate ways of modeling CC SN contamination, finding that no variant gives a w differing by more than 2% from the baseline measurement. The systematic uncertainty on w due to marginalizing over CC SN contamination, {σ }wCC}=0.012, is the third-smallest source of systematic uncertainty in this work. We find limited (1.6σ) evidence for evolution of the SN color-luminosity relation with redshift, a possible systematic that could constitute a significant uncertainty in future high-z analyses. Our data provide one of the best current constraints on w, demonstrating that samples with ∼5% CC SN contamination can give competitive cosmological constraints when the contaminating distribution is marginalized over in a Bayesian framework.
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-09-24
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air
Integrating microbial diversity in soil carbon dynamic models parameters
Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie
2015-04-01
Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. A. Wasiolek
2003-01-01
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the
Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar
2014-03-01
The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.
International Nuclear Information System (INIS)
Stocki, T.J.; Bergman, L.; Tellería, D.M.; Proehl, G.; Amado, V.; Curti, A.; Bonchuk, I.; Boyer, P.; Mourlon, C.; Chyly, P.; Heling, R.; Sági, L.; Kliaus, V.; Krajewski, P.; Latouche, G.; Lauria, D.C.; Newsome, L.; Smith, J.
2011-01-01
In January 2009, the IAEA EMRAS II (Environmental Modelling for Radiation Safety II) program was launched. The goal of the program is to develop, compare and test models for the assessment of radiological impacts to the public and the environment due to radionuclides being released or already existing in the environment; to help countries build and harmonize their capabilities; and to model the movement of radionuclides in the environment. Within EMRAS II, nine working groups are active; this paper will focus on the activities of Working Group 1: Reference Methodologies for Controlling Discharges of Routine Releases. Within this working group environmental transfer and dose assessment models are tested under different scenarios by participating countries and the results compared. This process allows each participating country to identify characteristics of their models that need to be refined. The goal of this working group is to identify reference methodologies for the assessment of exposures to the public due to routine discharges of radionuclides to the terrestrial and aquatic environments. Several different models are being applied to estimate the transfer of radionuclides in the environment for various scenarios. The first phase of the project involves a scenario of nuclear power reactor with a coastal location which routinely (continuously) discharges 60Co, 85Kr, 131I, and 137Cs to the atmosphere and 60Co, 137Cs, and 90Sr to the marine environment. In this scenario many of the parameters and characteristics of the representative group were given to the modelers and cannot be altered. Various models have been used by the different participants in this inter-comparison (PC-CREAM, CROM, IMPACT, CLRP POSEIDON, SYMBIOSE and others). This first scenario is to enable a comparison of the radionuclide transport and dose modelling. These scenarios will facilitate the development of reference methodologies for controlled discharges. (authors)
Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong
2018-05-01
Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p l and p h ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rasmuson; K. Rautenstrauch
2004-09-14
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.
Evaluation of some infiltration models and hydraulic parameters
International Nuclear Information System (INIS)
Haghighi, F.; Gorji, M.; Shorafa, M.; Sarmadian, F.; Mohammadi, M. H.
2010-01-01
The evaluation of infiltration characteristics and some parameters of infiltration models such as sorptivity and final steady infiltration rate in soils are important in agriculture. The aim of this study was to evaluate some of the most common models used to estimate final soil infiltration rate. The equality of final infiltration rate with saturated hydraulic conductivity (Ks) was also tested. Moreover, values of the estimated sorptivity from the Philips model were compared to estimates by selected pedotransfer functions (PTFs). The infiltration experiments used the doublering method on soils with two different land uses in the Taleghan watershed of Tehran province, Iran, from September to October, 2007. The infiltration models of Kostiakov-Lewis, Philip two-term and Horton were fitted to observed infiltration data. Some parameters of the models and the coefficient of determination goodness of fit were estimated using MATLAB software. The results showed that, based on comparing measured and model-estimated infiltration rate using root mean squared error (RMSE), Hortons model gave the best prediction of final infiltration rate in the experimental area. Laboratory measured Ks values gave significant differences and higher values than estimated final infiltration rates from the selected models. The estimated final infiltration rate was not equal to laboratory measured Ks values in the study area. Moreover, the estimated sorptivity factor by Philips model was significantly different to those estimated by selected PTFs. It is suggested that the applicability of PTFs is limited to specific, similar conditions. (Author) 37 refs.
Electro-optical parameters of bond polarizability model for aluminosilicates.
Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam
2006-04-06
Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.
Estimating model parameters in nonautonomous chaotic systems using synchronization
International Nuclear Information System (INIS)
Yang, Xiaoli; Xu, Wei; Sun, Zhongkui
2007-01-01
In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation
Soil-Related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Smith, A. J.
2004-01-01
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This
Soil-Related Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
A. J. Smith
2004-09-09
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure
Mass balance model parameter transferability on a tropical glacier
Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg
2013-04-01
The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer
Constraining statistical-model parameters using fusion and spallation reactions
Directory of Open Access Journals (Sweden)
Charity Robert J.
2011-10-01
Full Text Available The de-excitation of compound nuclei has been successfully described for several decades by means of statistical models. However, such models involve a large number of free parameters and ingredients that are often underconstrained by experimental data. We show how the degeneracy of the model ingredients can be partially lifted by studying different entrance channels for de-excitation, which populate different regions of the parameter space of the compound nucleus. Fusion reactions, in particular, play an important role in this strategy because they ﬁx three out of four of the compound-nucleus parameters (mass, charge and total excitation energy. The present work focuses on ﬁssion and intermediate-mass-fragment emission cross sections. We prove how equivalent parameter sets for fusion-ﬁssion reactions can be resolved using another entrance channel, namely spallation reactions. Intermediate-mass-fragment emission can be constrained in a similar way. An interpretation of the best-ﬁt IMF barriers in terms of the Wigner energies of the nascent fragments is discussed.
Investigation of RADTRAN Stop Model input parameters for truck stops
International Nuclear Information System (INIS)
Griego, N.R.; Smith, J.D.; Neuhauser, K.S.
1996-01-01
RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops
Updated climatological model predictions of ionospheric and HF propagation parameters
International Nuclear Information System (INIS)
Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.
1991-01-01
The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs
Statistical approach for uncertainty quantification of experimental modal model parameters
DEFF Research Database (Denmark)
Luczak, M.; Peeters, B.; Kahsin, M.
2014-01-01
Composite materials are widely used in manufacture of aerospace and wind energy structural components. These load carrying structures are subjected to dynamic time-varying loading conditions. Robust structural dynamics identification procedure impose tight constraints on the quality of modal models...... represent different complexity levels ranging from coupon, through sub-component up to fully assembled aerospace and wind energy structural components made of composite materials. The proposed method is demonstrated on two application cases of a small and large wind turbine blade........ This paper aims at a systematic approach for uncertainty quantification of the parameters of the modal models estimated from experimentally obtained data. Statistical analysis of modal parameters is implemented to derive an assessment of the entire modal model uncertainty measure. Investigated structures...
Influential input parameters for reflood model of MARS code
Energy Technology Data Exchange (ETDEWEB)
Oh, Deog Yeon; Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2012-10-15
Best Estimate (BE) calculation has been more broadly used in nuclear industries and regulations to reduce the significant conservatism for evaluating Loss of Coolant Accident (LOCA). Reflood model has been identified as one of the problems in BE calculation. The objective of the Post BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) program of OECD/NEA is to make progress the issue of the quantification of the uncertainty of the physical models in system thermal hydraulic codes, by considering an experimental result especially for reflood. It is important to establish a methodology to identify and select the parameters influential to the response of reflood phenomena following Large Break LOCA. For this aspect, a reference calculation and sensitivity analysis to select the dominant influential parameters for FEBA experiment are performed.
Four-parameter analytical local model potential for atoms
International Nuclear Information System (INIS)
Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang
2009-01-01
Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)
An Investigation on the Sensitivity of the Parameters of Urban Flood Model
M, A. B.; Lohani, B.; Jain, A.
2015-12-01
Global climatic change has triggered weather patterns which lead to heavy and sudden rainfall in different parts of world. The impact of heavy rainfall is severe especially on urban areas in the form of urban flooding. In order to understand the effect of heavy rainfall induced flooding, it is necessary to model the entire flooding scenario more accurately, which is now becoming possible with the availability of high resolution airborne LiDAR data and other real time observations. However, there is not much understanding on the optimal use of these data and on the effect of other parameters on the performance of the flood model. This study aims at developing understanding on these issues. In view of the above discussion, the aim of this study is to (i) understand that how the use of high resolution LiDAR data improves the performance of urban flood model, and (ii) understand the sensitivity of various hydrological parameters on urban flood modelling. In this study, modelling of flooding in urban areas due to heavy rainfall is carried out considering Indian Institute of Technology (IIT) Kanpur, India as the study site. The existing model MIKE FLOOD, which is accepted by Federal Emergency Management Agency (FEMA), is used along with the high resolution airborne LiDAR data. Once the model is setup it is made to run by changing the parameters such as resolution of Digital Surface Model (DSM), manning's roughness, initial losses, catchment description, concentration time, runoff reduction factor. In order to realize this, the results obtained from the model are compared with the field observations. The parametric study carried out in this work demonstrates that the selection of catchment description plays a very important role in urban flood modelling. Results also show the significant impact of resolution of DSM, initial losses and concentration time on urban flood model. This study will help in understanding the effect of various parameters that should be part of a
Application of parameters space analysis tools for empirical model validation
Energy Technology Data Exchange (ETDEWEB)
Paloma del Barrio, E. [LEPT-ENSAM UMR 8508, Talence (France); Guyon, G. [Electricite de France, Moret-sur-Loing (France)
2004-01-01
A new methodology for empirical model validation has been proposed in the framework of the Task 22 (Building Energy Analysis Tools) of the International Energy Agency. It involves two main steps: checking model validity and diagnosis. Both steps, as well as the underlying methods, have been presented in the first part of the paper. In this part, they are applied for testing modelling hypothesis in the framework of the thermal analysis of an actual building. Sensitivity analysis tools have been first used to identify the parts of the model that can be really tested on the available data. A preliminary diagnosis is then supplied by principal components analysis. Useful information for model behaviour improvement has been finally obtained by optimisation techniques. This example of application shows how model parameters space analysis is a powerful tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison with residuals analysis techniques. (author)
Modeling the distribution of Mg II absorbers around galaxies using background galaxies and quasars
Energy Technology Data Exchange (ETDEWEB)
Bordoloi, R.; Lilly, S. J. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Kacprzak, G. G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, C. W., E-mail: rongmonb@phys.ethz.ch [New Mexico State University, Las Cruces, NM 88003 (United States)
2014-04-01
We present joint constraints on the distribution of Mg II absorption around high redshift galaxies obtained by combining two orthogonal probes, the integrated Mg II absorption seen in stacked background galaxy spectra and the distribution of parent galaxies of individual strong Mg II systems as seen in the spectra of background quasars. We present a suite of models that can be used to predict, for different two- and three-dimensional distributions, how the projected Mg II absorption will depend on a galaxy's apparent inclination, the impact parameter b and the azimuthal angle between the projected vector to the line of sight and the projected minor axis. In general, we find that variations in the absorption strength with azimuthal angles provide much stronger constraints on the intrinsic geometry of the Mg II absorption than the dependence on the inclination of the galaxies. In addition to the clear azimuthal dependence in the integrated Mg II absorption that we reported earlier in Bordoloi et al., we show that strong equivalent width Mg II absorbers (W{sub r} (2796) ≥ 0.3 Å) are also asymmetrically distributed in azimuth around their host galaxies: 72% of the absorbers in Kacprzak et al., and 100% of the close-in absorbers within 35 kpc of the center of their host galaxies, are located within 50° of the host galaxy's projected semi minor axis. It is shown that either composite models consisting of a simple bipolar component plus a spherical or disk component, or a single highly softened bipolar distribution, can well represent the azimuthal dependencies observed in both the stacked spectrum and quasar absorption-line data sets within 40 kpc. Simultaneously fitting both data sets, we find that in the composite model the bipolar cone has an opening angle of ∼100° (i.e., confined to within 50° of the disk axis) and contains about two-thirds of the total Mg II absorption in the system. The single softened cone model has an exponential fall off with
Test models for improving filtering with model errors through stochastic parameter estimation
International Nuclear Information System (INIS)
Gershgorin, B.; Harlim, J.; Majda, A.J.
2010-01-01
The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.
Model parameter learning using Kullback-Leibler divergence
Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan
2018-02-01
In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.
Biosphere modelling for a HLW repository - scenario and parameter variations
International Nuclear Information System (INIS)
Grogan, H.
1985-03-01
In Switzerland high-level radioactive wastes have been considered for disposal in deep-lying crystalline formations. The individual doses to man resulting from radionuclides entering the biosphere via groundwater transport are calculated. The main recipient area modelled, which constitutes the base case, is a broad gravel terrace sited along the south bank of the river Rhine. An alternative recipient region, a small valley with a well, is also modelled. A number of parameter variations are performed in order to ascertain their impact on the doses. Finally two scenario changes are modelled somewhat simplistically, these consider different prevailing climates, namely tundra and a warmer climate than present. In the base case negligibly low doses to man in the long term, resulting from the existence of a HLW repository have been calculated. Cs-135 results in the largest dose (8.4E-7 mrem/y at 6.1E+6 y) while Np-237 gives the largest dose from the actinides (3.6E-8 mrem/y). The response of the model to parameter variations cannot be easily predicted due to non-linear coupling of many of the parameters. However, the calculated doses were negligibly low in all cases as were those resulting from the two scenario variations. (author)
Contaminant transport in aquifers: improving the determination of model parameters
International Nuclear Information System (INIS)
Sabino, C.V.S.; Moreira, R.M.; Lula, Z.L.; Chausson, Y.; Magalhaes, W.F.; Vianna, M.N.
1998-01-01
Parameters conditioning the migration behavior of cesium and mercury are measured with their tracers 137 Cs and 203 Hg in the laboratory, using both batch and column experiments. Batch tests were used to define the sorption isotherm characteristics. Also investigated were the influences of some test parameters, in particular those due to the volume of water to mass of soil ratio (V/m). A provisional relationship between V/m and the distribution coefficient, K d , has been advanced, and a procedure to estimate K d 's valid for environmental values of the ratio V/m has been suggested. Column tests provided the parameters for a transport model. A major problem to be dealt with in such tests is the collimation of the radioactivity probe. Besides mechanically optimizing the collimator, a deconvolution procedure has been suggested and tested, with statistical criteria, to filter off both noise and spurious tracer signals. Correction procedures for the integrating effect introduced by sampling at the exit of columns have also been developed. These techniques may be helpful in increasing the accuracy required in the measurement of parameters conditioning contaminant migration in soils, thus allowing more reliable predictions based on mathematical model applications. (author)
Predictive Models and Computational Toxicology (II IBAMTOX)
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Nyala and Bushbuck II: A Harvesting Model.
Fay, Temple H.; Greeff, Johanna C.
1999-01-01
Adds a cropping or harvesting term to the animal overpopulation model developed in Part I of this article. Investigates various harvesting strategies that might suggest a solution to the overpopulation problem without actually culling any animals. (ASK)
Base Flow Model Validation, Phase II
National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of high-fidelity...
Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.
El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher
2018-01-01
Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.
Propagation channel characterization, parameter estimation, and modeling for wireless communications
Yin, Xuefeng
2016-01-01
Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...
Empirical flow parameters : a tool for hydraulic model validity
Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.
2013-01-01
The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.
Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J
2014-01-01
Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.
The Adsorption of Cd(II on Manganese Oxide Investigated by Batch and Modeling Techniques
Directory of Open Access Journals (Sweden)
Xiaoming Huang
2017-09-01
Full Text Available Manganese (Mn oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999. The adsorption of Cd(II on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd at low pH and inner-sphere surface complexation sites (SOCd+ and (SO2CdOH− species at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface.
Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model
DEFF Research Database (Denmark)
Åberg, Andreas; Widd, Anders; Abildskov, Jens
2016-01-01
be used directly for accurate full-scale transient simulations. The model was validated against full-scale data with an engine following the European Transient Cycle. The validation showed that the predictive capability for nitrogen oxides (NOx) was satisfactory. After re-estimation of the adsorption...... and desorption parameters with full-scale transient data, the fit for both NOx and NH3-slip was satisfactory....
Mathematical models to predict rheological parameters of lateritic hydromixtures
Gabriel Hernández-Ramírez; Arístides A. Legrá-Lobaina; Beatriz Ramírez-Serrano; Liudmila Pérez-García
2017-01-01
The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to...
Mathematical properties and parameter estimation for transit compartment pharmacodynamic models.
Yates, James W T
2008-07-03
One feature of recent research in pharmacodynamic modelling has been the move towards more mechanistically based model structures. However, in all of these models there are common sub-systems, such as feedback loops and time-delays, whose properties and contribution to the model behaviour merit some mathematical analysis. In this paper a common pharmacodynamic model sub-structure is considered: the linear transit compartment. These models have a number of interesting properties as the length of the cascade chain is increased. In the limiting case a pure time-delay is achieved [Milsum, J.H., 1966. Biological Control Systems Analysis. McGraw-Hill Book Company, New York] and the initial behaviour becoming increasingly sensitive to parameter value perturbation. It is also shown that the modelled drug effect is attenuated, though the duration of action is longer. Through this analysis the range of behaviours that such models are capable of reproducing are characterised. The properties of these models and the experimental requirements are discussed in order to highlight how mathematical analysis prior to experimentation can enhance the utility of mathematical modelling.
Estimation Parameters And Modelling Zero Inflated Negative Binomial
Directory of Open Access Journals (Sweden)
Cindy Cahyaning Astuti
2016-11-01
Full Text Available Regression analysis is used to determine relationship between one or several response variable (Y with one or several predictor variables (X. Regression model between predictor variables and the Poisson distributed response variable is called Poisson Regression Model. Since, Poisson Regression requires an equality between mean and variance, it is not appropriate to apply this model on overdispersion (variance is higher than mean. Poisson regression model is commonly used to analyze the count data. On the count data type, it is often to encounteredd some observations that have zero value with large proportion of zero value on the response variable (zero Inflation. Poisson regression can be used to analyze count data but it has not been able to solve problem of excess zero value on the response variable. An alternative model which is more suitable for overdispersion data and can solve the problem of excess zero value on the response variable is Zero Inflated Negative Binomial (ZINB. In this research, ZINB is applied on the case of Tetanus Neonatorum in East Java. The aim of this research is to examine the likelihood function and to form an algorithm to estimate the parameter of ZINB and also applying ZINB model in the case of Tetanus Neonatorum in East Java. Maximum Likelihood Estimation (MLE method is used to estimate the parameter on ZINB and the likelihood function is maximized using Expectation Maximization (EM algorithm. Test results of ZINB regression model showed that the predictor variable have a partial significant effect at negative binomial model is the percentage of pregnant women visits and the percentage of maternal health personnel assisted, while the predictor variables that have a partial significant effect at zero inflation model is the percentage of neonatus visits.
COMPREHENSIVE CHECK MEASUREMENT OF KEY PARAMETERS ON MODEL BELT CONVEYOR
Directory of Open Access Journals (Sweden)
Vlastimil MONI
2013-07-01
Full Text Available Complex measurements of characteristic parameters realised on a long distance model belt conveyor are described. The main objective was to complete and combine the regular measurements of electric power on drives of belt conveyors operated in Czech opencast mines with measurements of other physical quantities and to gain by this way an image of their mutual relations and relations of quantities derived from them. The paper includes a short description and results of the measurements on an experimental model conveyor with a closed material transport way.
Information Theoretic Tools for Parameter Fitting in Coarse Grained Models
Kalligiannaki, Evangelia
2015-01-07
We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.
Surrogate based approaches to parameter inference in ocean models
Knio, Omar
2016-01-06
This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.
Surrogate based approaches to parameter inference in ocean models
Knio, Omar
2016-01-01
This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.
Directory of Open Access Journals (Sweden)
Jong-Wuu Wu
2013-01-01
Full Text Available We propose the weighted moments estimators (WMEs of the location and scale parameters for the extreme value distribution based on the multiply type II censored sample. Simulated mean squared errors (MSEs of best linear unbiased estimator (BLUE and exact MSEs of WMEs are compared to study the behavior of different estimation methods. The results show the best estimator among the WMEs and BLUE under different combinations of censoring schemes.
Mineral vein dynamics modelling (FRACS II)
International Nuclear Information System (INIS)
Urai, J.; Virgo, S.; Arndt, M.
2016-08-01
The Mineral Vein Dynamics Modeling group ''FRACS'' started out as a team of 7 research groups in its first phase and continued with a team of 5 research groups at the Universities of Aachen, Tuebingen, Karlsruhe, Mainz and Glasgow during its second phase ''FRACS 11''. The aim of the group was to develop an advanced understanding of the interplay between fracturing, fluid flow and fracture healing with a special emphasis on the comparison of field data and numerical models. Field areas comprised the Oman mountains in Oman (which where already studied in detail in the first phase), a siliciclastic sequence in the Internal Ligurian Units in Italy (closed to Sestri Levante) and cores of Zechstein carbonates from a Lean Gas reservoir in Northern Germany. Numerical models of fracturing, sealing and interaction with fluid that were developed in phase I where expanded in phase 11. They were used to model small scale fracture healing by crystal growth and the resulting influence on flow, medium scale fracture healing and its influence on successive fracturing and healing, as well as large scale dynamic fluid flow through opening and closing fractures and channels as a function of fluid overpressure. The numerical models were compared with structures in the field and we were able to identify first proxies for mechanical vein-hostrock properties and fluid overpressures versus tectonic stresses. Finally we propose a new classification of stylolites based on numerical models and observations in the Zechstein cores and continued to develop a new stress inversion tool to use stylolites to estimate depth of their formation.
Mineral vein dynamics modelling (FRACS II)
Energy Technology Data Exchange (ETDEWEB)
Urai, J.; Virgo, S.; Arndt, M. [RWTH Aachen (Germany); and others
2016-08-15
The Mineral Vein Dynamics Modeling group ''FRACS'' started out as a team of 7 research groups in its first phase and continued with a team of 5 research groups at the Universities of Aachen, Tuebingen, Karlsruhe, Mainz and Glasgow during its second phase ''FRACS 11''. The aim of the group was to develop an advanced understanding of the interplay between fracturing, fluid flow and fracture healing with a special emphasis on the comparison of field data and numerical models. Field areas comprised the Oman mountains in Oman (which where already studied in detail in the first phase), a siliciclastic sequence in the Internal Ligurian Units in Italy (closed to Sestri Levante) and cores of Zechstein carbonates from a Lean Gas reservoir in Northern Germany. Numerical models of fracturing, sealing and interaction with fluid that were developed in phase I where expanded in phase 11. They were used to model small scale fracture healing by crystal growth and the resulting influence on flow, medium scale fracture healing and its influence on successive fracturing and healing, as well as large scale dynamic fluid flow through opening and closing fractures and channels as a function of fluid overpressure. The numerical models were compared with structures in the field and we were able to identify first proxies for mechanical vein-hostrock properties and fluid overpressures versus tectonic stresses. Finally we propose a new classification of stylolites based on numerical models and observations in the Zechstein cores and continued to develop a new stress inversion tool to use stylolites to estimate depth of their formation.
Kim, Kyung Yong; Lee, Won-Chan
2017-01-01
This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…
Ordinary Mathematical Models in Calculating the Aviation GTE Parameters
Directory of Open Access Journals (Sweden)
E. A. Khoreva
2017-01-01
Full Text Available The paper presents the analytical review results of the ordinary mathematical models of the operating process used to study aviation GTE parameters and characteristics at all stages of its creation and operation. Considers the mathematical models of the zero and the first level, which are mostly used when solving typical problems in calculating parameters and characteristics of engines.Presents a number of practical problems arising in designing aviation GTE for various applications.The application of mathematical models of the zero-level engine can be quite appropriate when the engine is considered as a component in the aircraft system to estimate its calculated individual flight performance or when modeling the flight cycle of the aircrafts of different purpose.The paper demonstrates that introduction of correction functions into the first-level mathematical models in solving typical problems (influence of the Reynolds number, characteristics deterioration of the units during the overhaul period of engine, as well as influence of the flow inhomogeneity at the inlet because of manufacturing tolerance, etc. enables providing a sufficient engineering estimate accuracy to reflect a realistic operating process in the engine and its elements.
NGC1300 dynamics - II. The response models
Kalapotharakos, C.; Patsis, P. A.; Grosbøl, P.
2010-10-01
We study the stellar response in a spectrum of potentials describing the barred spiral galaxy NGC1300. These potentials have been presented in a previous paper and correspond to three different assumptions as regards the geometry of the galaxy. For each potential we consider a wide range of Ωp pattern speed values. Our goal is to discover the geometries and the Ωp supporting specific morphological features of NGC1300. For this purpose we use the method of response models. In order to compare the images of NGC1300 with the density maps of our models, we define a new index which is a generalization of the Hausdorff distance. This index helps us to find out quantitatively which cases reproduce specific features of NGC1300 in an objective way. Furthermore, we construct alternative models following a Schwarzschild-type technique. By this method we vary the weights of the various energy levels, and thus the orbital contribution of each energy, in order to minimize the differences between the response density and that deduced from the surface density of the galaxy, under certain assumptions. We find that the models corresponding to Ωp ~ 16 and 22 kms-1kpc-1 are able to reproduce efficiently certain morphological features of NGC1300, with each one having its advantages and drawbacks. Based on observations collected at the European Southern Observatory, Chile: programme ESO 69.A-0021. E-mail: ckalapot@phys.uoa.gr (CK); patsis@academyofathens.gr (PAP); pgrosbol@eso.org (PG)
Applicability of genetic algorithms to parameter estimation of economic models
Directory of Open Access Journals (Sweden)
Marcel Ševela
2004-01-01
Full Text Available The paper concentrates on capability of genetic algorithms for parameter estimation of non-linear economic models. In the paper we test the ability of genetic algorithms to estimate of parameters of demand function for durable goods and simultaneously search for parameters of genetic algorithm that lead to maximum effectiveness of the computation algorithm. The genetic algorithms connect deterministic iterative computation methods with stochastic methods. In the genteic aůgorithm approach each possible solution is represented by one individual, those life and lifes of all generations of individuals run under a few parameter of genetic algorithm. Our simulations resulted in optimal mutation rate of 15% of all bits in chromosomes, optimal elitism rate 20%. We can not set the optimal extend of generation, because it proves positive correlation with effectiveness of genetic algorithm in all range under research, but its impact is degreasing. The used genetic algorithm was sensitive to mutation rate at most, than to extend of generation. The sensitivity to elitism rate is not so strong.
Simulation modeling and analysis in safety. II
International Nuclear Information System (INIS)
Ayoub, M.A.
1981-01-01
The paper introduces and illustrates simulation modeling as a viable approach for dealing with complex issues and decisions in safety and health. The author details two studies: evaluation of employee exposure to airborne radioactive materials and effectiveness of the safety organization. The first study seeks to define a policy to manage a facility used in testing employees for radiation contamination. An acceptable policy is one that would permit the testing of all employees as defined under regulatory requirements, while not exceeding available resources. The second study evaluates the relationship between safety performance and the characteristics of the organization, its management, its policy, and communication patterns among various functions and levels. Both studies use models where decisions are reached based on the prevailing conditions and occurrence of key events within the simulation environment. Finally, several problem areas suitable for simulation studies are highlighted. (Auth.)
System modeling and simulation at EBR-II
International Nuclear Information System (INIS)
Dean, E.M.; Lehto, W.K.; Larson, H.A.
1986-01-01
The codes being developed and verified using EBR-II data are the NATDEMO, DSNP and CSYRED. NATDEMO is a variation of the Westinghouse DEMO code coupled to the NATCON code previously used to simulate perturbations of reactor flow and inlet temperature and loss-of-flow transients leading to natural convection in EBR-II. CSYRED uses the Continuous System Modeling Program (CSMP) to simulate the EBR-II core, including power, temperature, control-rod movement reactivity effects and flow and is used primarily to model reactivity induced power transients. The Dynamic Simulator for Nuclear Power Plants (DSNP) allows a whole plant, thermal-hydraulic simulation using specific component and system models called from libraries. It has been used to simulate flow coastdown transients, reactivity insertion events and balance-of-plant perturbations
Argonne Bubble Experiment Thermal Model Development II
Energy Technology Data Exchange (ETDEWEB)
Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-07-01
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.
A Review of Distributed Parameter Groundwater Management Modeling Methods
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Parameters of oscillation generation regions in open star cluster models
Danilov, V. M.; Putkov, S. I.
2017-07-01
We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.
Perama, Yasmin Mohd Idris; Siong, Khoo Kok
2018-04-01
A mathematical model comprising 8 compartments were designed to describe the kinetic dissolution of arsenic (As) from water leach purification (WLP) waste samples ingested into the gastrointestinal system. A totally reengineered software system named Simulation, Analysis and Modelling II (SAAM II) was employed to aid in the experimental design and data analysis. As a powerful tool that creates, simulate and analyze data accurately and rapidly, SAAM II computationally creates a system of ordinary differential equations according to the specified compartmental model structure and simulates the solutions based upon the parameter and model inputs provided. The experimental design of in vitro DIN approach was applied to create an artificial gastric and gastrointestinal fluids. These synthetic fluids assay were produced to determine the concentrations of As ingested into the gastrointestinal tract. The model outputs were created based upon the experimental inputs and the recommended fractional transfer rates parameter. As a result, the measured and predicted As concentrations in gastric fluids were much similar against the time of study. In contrast, the concentrations of As in the gastrointestinal fluids were only similar during the first hour and eventually started decreasing until the fifth hours of study between the measured and predicted values. This is due to the loss of As through the fractional transfer rates of q2 compartment to corresponding compartments of q3 and q5 which are involved with excretion and distribution to the whole body, respectively. The model outputs obtained after best fit to the data were influenced significantly by the fractional transfer rates between each compartment. Therefore, a series of compartmental model created with the association of fractional transfer rates parameter with the aid of SAAM II provides better estimation that simulate the kinetic behavior of As ingested into the gastrointestinal system.
da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G
2016-07-08
Process modeling can lead to of advantages such as helping in process control, reducing process costs and product quality improvement. This work proposes a solid-state fermentation distributed parameter model composed by seven differential equations with seventeen parameters to represent the process. Also, parameters estimation with a parameters identifyability analysis (PIA) is performed to build an accurate model with optimum parameters. Statistical tests were made to verify the model accuracy with the estimated parameters considering different assumptions. The results have shown that the model assuming substrate inhibition better represents the process. It was also shown that eight from the seventeen original model parameters were nonidentifiable and better results were obtained with the removal of these parameters from the estimation procedure. Therefore, PIA can be useful to estimation procedure, since it may reduce the number of parameters that can be evaluated. Further, PIA improved the model results, showing to be an important procedure to be taken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:905-917, 2016. © 2016 American Institute of Chemical Engineers.
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...... diameter to water depth ratio and the wave hight to water depth ratio on wave run-up of piles. The measurements should be used to design access platforms on piles....
Tension-compression asymmetry modelling: strategies for anisotropy parameters identification.
Directory of Open Access Journals (Sweden)
Barros Pedro
2016-01-01
Full Text Available This work presents details concerning the strategies and algorithms adopted in the fully implicit FE solver DD3IMP to model the orthotropic behavior of metallic sheets and the procedure for anisotropy parameters identification. The work is focused on the yield criterion developed by Cazacu, Plunkett and Barlat, 2006 [1], which accounts for both tension–compression asymmetry and orthotropic plastic behavior. The anisotropy parameters for a 2090-T3 aluminum alloy are identified accounting, or not, for the tension-compression asymmetry. The numerical simulation of a cup drawing is performed for this material, highlighting the importance of considering tension-compression asymmetry in the prediction of the earing profile, for materials with cubic structure, even if this phenomenon is relatively small.
Parameter Estimation in Stochastic Grey-Box Models
DEFF Research Database (Denmark)
Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay
2004-01-01
An efficient and flexible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Ito stochastic differential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended...... Kalman filter and features maximum likelihood as well as maximum a posteriori estimation on multiple independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software implementation is compared to an existing software tool...... and proves to have better performance both in terms of quality of estimates for nonlinear systems with significant diffusion and in terms of reproducibility. In particular, the new tool provides more accurate and more consistent estimates of the parameters of the diffusion term....
Modelling Technical and Economic Parameters in Selection of Manufacturing Devices
Directory of Open Access Journals (Sweden)
Naqib Daneshjo
2017-11-01
Full Text Available Sustainable science and technology development is also conditioned by continuous development of means of production which have a key role in structure of each production system. Mechanical nature of the means of production is complemented by controlling and electronic devices in context of intelligent industry. A selection of production machines for a technological process or technological project has so far been practically resolved, often only intuitively. With regard to increasing intelligence, the number of variable parameters that have to be considered when choosing a production device is also increasing. It is necessary to use computing techniques and decision making methods according to heuristic methods and more precise methodological procedures during the selection. The authors present an innovative model for optimization of technical and economic parameters in the selection of manufacturing devices for industry 4.0.
Automated parameter estimation for biological models using Bayesian statistical model checking.
Hussain, Faraz; Langmead, Christopher J; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram; Jha, Sumit K
2015-01-01
Probabilistic models have gained widespread acceptance in the systems biology community as a useful way to represent complex biological systems. Such models are developed using existing knowledge of the structure and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data. A key bottleneck in building such models is that some system variables cannot be measured experimentally. These variables are incorporated into the model as numerical parameters. Determining values of these parameters that justify existing experiments and provide reliable predictions when model simulations are performed is a key research problem. Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel parameter estimation algorithm by discovering the amount and schedule of doses of bacterial lipopolysaccharide that guarantee a set of observed clinical outcomes with high probability. We synthesized values of twenty-eight unknown parameters such that the parameterized model instantiated with these parameter values satisfies four specifications describing the dynamic behavior of the model. We have developed a new algorithmic technique for discovering parameters in complex stochastic models of biological systems given behavioral specifications written in a formal mathematical logic. Our algorithm uses Bayesian model checking, sequential hypothesis testing, and stochastic optimization to automatically synthesize parameters of probabilistic biological models.
PEP-II vacuum system pressure profile modeling using EXCEL
International Nuclear Information System (INIS)
Nordby, M.; Perkins, C.
1994-06-01
A generic, adaptable Microsoft EXCEL program to simulate molecular flow in beam line vacuum systems is introduced. Modeling using finite-element approximation of the governing differential equation is discussed, as well as error estimation and program capabilities. The ease of use and flexibility of the spreadsheet-based program is demonstrated. PEP-II vacuum system models are reviewed and compared with analytical models
Identification of grid model parameters using synchrophasor measurements
Energy Technology Data Exchange (ETDEWEB)
Boicea, Valentin; Albu, Mihaela [Politehnica University of Bucharest (Romania)
2012-07-01
Presently a critical element of the energy networks is represented by the active distribution grids, where generation intermittency and controllable loads contribute to a stochastic varability of the quantities characterizing the grid operation. The capability of controlling the electrical energy transfer is also limited by the incomplete knowledge of the detailed electrical model of each of the grid components. Asset management in distribution grids has to consider dynamic loads, while high loading of network sections might already have degraded some of the assets. Moreover, in case of functional microgrids, all elements need to be modelled accurately and an appropriate measurement layer enabling online control needs to be deployed. In this paper a method for online identification of the actual parameter values in grid electrical models is proposed. Laboratory results validating the proposed method are presented. (orig.)
Dynamic systems models new methods of parameter and state estimation
2016-01-01
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...
Luminescence model with quantum impact parameter for low energies
International Nuclear Information System (INIS)
Cruz G, H.S.; Michaelian, K.; Galindo U, S.; Martinez D, A.; Belmont M, E.
2000-01-01
The analytical model of induced light production in scintillator materials by energetic ions proposed by Michaelian and Menchaca (M-M) adjusts very well the luminescence substance data in a wide energy interval of the incident ions (10-100 MeV). However at low energies, that is, under to 10 MeV, the experimental deviations of the predictions of M-M model, show that the causes may be certain physical effects, all they important at low energies, which were not considered. We have modified lightly the M-M model using the basic fact that the Quantum mechanics gives to a different limit for the quantum impact parameter instead of the classic approximation. (Author)
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min
2017-09-28
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong
2017-01-01
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849
Optimization of Experimental Model Parameter Identification for Energy Storage Systems
Directory of Open Access Journals (Sweden)
Rosario Morello
2013-09-01
Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.
Bayesian parameter estimation for stochastic models of biological cell migration
Dieterich, Peter; Preuss, Roland
2013-08-01
Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.
Model parameters for representative wetland plant functional groups
Williams, Amber S.; Kiniry, James R.; Mushet, David M.; Smith, Loren M.; McMurry, Scott T.; Attebury, Kelly; Lang, Megan; McCarty, Gregory W.; Shaffer, Jill A.; Effland, William R.; Johnson, Mari-Vaughn V.
2017-01-01
Wetlands provide a wide variety of ecosystem services including water quality remediation, biodiversity refugia, groundwater recharge, and floodwater storage. Realistic estimation of ecosystem service benefits associated with wetlands requires reasonable simulation of the hydrology of each site and realistic simulation of the upland and wetland plant growth cycles. Objectives of this study were to quantify leaf area index (LAI), light extinction coefficient (k), and plant nitrogen (N), phosphorus (P), and potassium (K) concentrations in natural stands of representative plant species for some major plant functional groups in the United States. Functional groups in this study were based on these parameters and plant growth types to enable process-based modeling. We collected data at four locations representing some of the main wetland regions of the United States. At each site, we collected on-the-ground measurements of fraction of light intercepted, LAI, and dry matter within the 2013–2015 growing seasons. Maximum LAI and k variables showed noticeable variations among sites and years, while overall averages and functional group averages give useful estimates for multisite simulation modeling. Variation within each species gives an indication of what can be expected in such natural ecosystems. For P and K, the concentrations from highest to lowest were spikerush (Eleocharis macrostachya), reed canary grass (Phalaris arundinacea), smartweed (Polygonum spp.), cattail (Typha spp.), and hardstem bulrush (Schoenoplectus acutus). Spikerush had the highest N concentration, followed by smartweed, bulrush, reed canary grass, and then cattail. These parameters will be useful for the actual wetland species measured and for the wetland plant functional groups they represent. These parameters and the associated process-based models offer promise as valuable tools for evaluating environmental benefits of wetlands and for evaluating impacts of various agronomic practices in
Application of a free parameter model to plastic scintillation samples
Energy Technology Data Exchange (ETDEWEB)
Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)
2011-08-21
In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.
Lumped-parameter fuel rod model for rapid thermal transients
International Nuclear Information System (INIS)
Perkins, K.R.; Ramshaw, J.D.
1975-07-01
The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company
Model atmospheres and parameters of central stars of planetary nebulae
International Nuclear Information System (INIS)
Patriarchi, P.; Cerruti-sola, M.; Perinotto, M.
1989-01-01
Non-LTE hydrogen and helium model atmospheres have been obtained for temperatures and gravities relevant to the central stars of planetary nebulae. Low-resolution and high-resolution observations obtained by the IUE satellite have been used along with optical data to determine Zanstra temperatures of the central stars of NGC 1535, NGC 6210, NGC 7009, IC 418, and IC 4593. Comparison of the observed stellar continuum of these stars with theoretical results allowed further information on the stellar temperature to be derived. The final temperatures are used to calculate accurate stellar parameters. 62 refs
Modelled basic parameters for semi-industrial irradiation plant design
International Nuclear Information System (INIS)
Mangussi, J.
2009-01-01
The basic parameters of an irradiation plant design are the total activity, the product uniformity ratio and the efficiency process. The target density, the minimum dose required and the throughput depends on the use to which the irradiator will be put at. In this work, a model for calculating the specific dose rate at several depths in an infinite homogeneous medium produced by a slab source irradiator is presented. The product minimum dose rate for a set of target thickness is obtained. The design method steps are detailed and an illustrative example is presented. (author)
Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator
Directory of Open Access Journals (Sweden)
CONSTANTINESCU, F.
2011-02-01
Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.
Robust and efficient parameter estimation in dynamic models of biological systems.
Gábor, Attila; Banga, Julio R
2015-10-29
Dynamic modelling provides a systematic framework to understand function in biological systems. Parameter estimation in nonlinear dynamic models remains a very challenging inverse problem due to its nonconvexity and ill-conditioning. Associated issues like overfitting and local solutions are usually not properly addressed in the systems biology literature despite their importance. Here we present a method for robust and efficient parameter estimation which uses two main strategies to surmount the aforementioned difficulties: (i) efficient global optimization to deal with nonconvexity, and (ii) proper regularization methods to handle ill-conditioning. In the case of regularization, we present a detailed critical comparison of methods and guidelines for properly tuning them. Further, we show how regularized estimations ensure the best trade-offs between bias and variance, reducing overfitting, and allowing the incorporation of prior knowledge in a systematic way. We illustrate the performance of the presented method with seven case studies of different nature and increasing complexity, considering several scenarios of data availability, measurement noise and prior knowledge. We show how our method ensures improved estimations with faster and more stable convergence. We also show how the calibrated models are more generalizable. Finally, we give a set of simple guidelines to apply this strategy to a wide variety of calibration problems. Here we provide a parameter estimation strategy which combines efficient global optimization with a regularization scheme. This method is able to calibrate dynamic models in an efficient and robust way, effectively fighting overfitting and allowing the incorporation of prior information.
Visual imagery and the user model applied to fuel handling at EBR-II
Energy Technology Data Exchange (ETDEWEB)
Brown-VanHoozer, S.A.
1995-06-01
The material presented in this paper is based on two studies involving visual display designs and the user`s perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ``comfort parameters`` and ``perspective reality`` of the user`s model of the world. In developing visual displays for the EBR-II fuel handling system, the focus would be to incorporate the comfort parameters that overlap from each of the representation systems: visual, auditory and kinesthetic then incorporate the comfort parameters of the most prominent group of the population, and last, blend in the other two representational system comfort parameters. The focus of this informal study was to use the techniques of meta-modeling and synesthesia to develop a virtual environment that closely resembled the operator`s perspective of the fuel handling system of Argonne`s Experimental Breeder Reactor - II. An informal study was conducted using NLP as the behavioral model in a v reality (VR) setting.
Visual imagery and the user model applied to fuel handling at EBR-II
International Nuclear Information System (INIS)
Brown-VanHoozer, S.A.
1995-01-01
The material presented in this paper is based on two studies involving visual display designs and the user's perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ''comfort parameters'' and ''perspective reality'' of the user's model of the world. In developing visual displays for the EBR-II fuel handling system, the focus would be to incorporate the comfort parameters that overlap from each of the representation systems: visual, auditory and kinesthetic then incorporate the comfort parameters of the most prominent group of the population, and last, blend in the other two representational system comfort parameters. The focus of this informal study was to use the techniques of meta-modeling and synesthesia to develop a virtual environment that closely resembled the operator's perspective of the fuel handling system of Argonne's Experimental Breeder Reactor - II. An informal study was conducted using NLP as the behavioral model in a v reality (VR) setting
Empirically modelled Pc3 activity based on solar wind parameters
Directory of Open Access Journals (Sweden)
B. Heilig
2010-09-01
Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through
Modelling of bio-optical parameters of open ocean waters
Directory of Open Access Journals (Sweden)
Vadim N. Pelevin
2001-12-01
Full Text Available An original method for estimating the concentration of chlorophyll pigments, absorption of yellow substance and absorption of suspended matter without pigments and yellow substance in detritus using spectral diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance data has been applied to sea waters of different types in the open ocean (case 1. Using the effective numerical single parameter classification with the water type optical index m as a parameter over the whole range of the open ocean waters, the calculations have been carried out and the light absorption spectra of sea waters tabulated. These spectra are used to optimize the absorption models and thus to estimate the concentrations of the main admixtures in sea water. The value of m can be determined from direct measurements of the downward irradiance attenuation coefficient at 500 nm or calculated from remote sensing data using the regressions given in the article. The sea water composition can then be readily estimated from the tables given for any open ocean area if that one parameter m characterizing the basin is known.
Application of regression model on stream water quality parameters
International Nuclear Information System (INIS)
Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.
2012-01-01
Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)
International Nuclear Information System (INIS)
Huang Chenggang; Chen Xiaoyan; Guan Xiaofeng
2002-01-01
Objective: To analyse the curve of Insulin Release Test (IRT) about the patients whit type II diabetes, to evaluate β-cell function and the sensitivity of body to Insulin using Insulin Release Index (IRI) and Insulin Sensitivity Index (ISI), and to probe the value for clinical therapy. Methods: 1) Have a IRT of 396 cases with type II diabetes and 17 normal bodies and acquire the IRT curve, 2) Design the count methods about IRI and ISI, IRI = Ins max/Ins FBI x Δ Ins max/T max (minute), ISI=(Ins max-Ins FBI)/(Ins 180'-Ins FBI), 3) Compare IRI Changes of before and after treatment for 12 cases with no insulin release and 9 cases with less insulin release. Results: IRT curve type (No release type 21.0%, less release type 33.3%, peak delay type 36.9%, high insulin type 6.0%, release delay type 2.8%); respective IRI, ISI compared to normal, P<0.01; IRI of before and after treatment with insulin P<0.01. Conclusions: IRT Curve combining IRI and ISI can reflect accurately β-cell function with type II diabetes and the sensitivity of body to insulin, Also it has some reference value for clinical therapy
Directory of Open Access Journals (Sweden)
Xiao-meng Song
2013-01-01
Full Text Available Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1 a screening method (Morris for qualitative ranking of parameters, and (2 a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol. First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
Tøndel, Kristin; Niederer, Steven A; Land, Sander; Smith, Nicolas P
2014-05-20
Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input-output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Convergence of surface diffusion parameters with model crystal size
Cohen, Jennifer M.; Voter, Arthur F.
1994-07-01
A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.
A distributed parameter wire model for transient electrical discharges
International Nuclear Information System (INIS)
Maier, W.B. II; Kadish, A.; Sutherland, C.D.; Robiscoe, R.T.
1990-01-01
A model for freely propagating transient electrical discharges, such as lightning and punch-through arcs, is developed in this paper. We describe the electromagnetic fields by Maxwell's equations and we represent the interaction of electric fields with the medium to produce current by ∂J/∂t=ω 2 (E-E*J)/4π, where ω and E* are parameters characteristic of the medium, J≡current density, and J≡J/|J|. We illustrate the properties of this model for small-diameter, guided, cylindrically symmetric discharges. Analytic, numerical, and approximate solutions are given for special cases. The model describes, in a new and comprehensive fashion, certain macroscopic discharge properties, such as threshold behavior, quenching and reignition, path tortuosity, discharge termination with nonzero charge density remaining along the discharge path, and other experimentally observed discharge phenomena. Fields, current densities, and charge densities are quantitatively determined from given boundary and initial conditions. We suggest that many macroscopic discharge properties are properly explained by the model as electromagnetic phenomena, and we discuss extensions of the model to include chemistry, principally ionization and recombination
International Nuclear Information System (INIS)
Jie Binbin; Sah Chihtang
2011-01-01
Low-frequency and high-frequency Capacitance—Voltage (C—V) curves of Metal—Oxide—Semiconductor Capacitors (MOSC), including electron and hole trapping at the dopant donor and acceptor impurities, are presented to illustrate giant trapping capacitances, from > 0.01C OX to > 10C OX . Five device and materials parameters are varied for fundamental trapping parameter characterization, and electrical and optical signal processing applications. Parameters include spatially constant concentration of the dopant-donor-impurity electron trap, N DD , the ground state electron trapping energy level depth measured from the conduction band edge, E C –E D , the degeneracy of the trapped electron at the ground state, g D , the device temperature, T, and the gate oxide thickness, x OX . (invited papers)
Standard model parameters and the search for new physics
International Nuclear Information System (INIS)
Marciano, W.J.
1988-04-01
In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs
Computing Models of CDF and D0 in Run II
International Nuclear Information System (INIS)
Lammel, S.
1997-05-01
The next collider run of the Fermilab Tevatron, Run II, is scheduled for autumn of 1999. Both experiments, the Collider Detector at Fermilab (CDF) and the D0 experiment are being modified to cope with the higher luminosity and shorter bunchspacing of the Tevatron. New detector components, higher event complexity, and an increased data volume require changes from the data acquisition systems up to the analysis systems. In this paper we present a summary of the computing models of the two experiments for Run II
Computing Models of CDF and D0 in Run II
International Nuclear Information System (INIS)
Lammel, S.
1997-01-01
The next collider run of the Fermilab Tevatron, Run II, is scheduled for autumn of 1999. Both experiments, the Collider Detector at Fermilab (CDF) and the D0 experiment are being modified to cope with the higher luminosity and shorter bunch spacing of the Tevatron. New detector components, higher event complexity, and an increased data volume require changes from the data acquisition systems up to the analysis systems. In this paper we present a summary of the computing models of the two experiments for Run II
Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby
2013-12-01
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.
Trong, T.Q.; Arendonk, van J.A.M.; Komen, J.
2013-01-01
Harvest weight is the main trait in Nile tilapia (Oreochromis niloticus) breeding programmes. The effects of selection for harvest weight on female reproductive traits are unknown. In this paper we estimate genetic parameters for reproductive traits and their correlation with harvest weight using
Cenarro, A. J.; Peletier, R. F.; Sanchez-Blazquez, P.; Selam, S. O.; Toloba, E.; Cardiel, N.; Falcon-Barroso, J.; Gorgas, J.; Jimenez-Vicente, J.; Vazdekis, A.
2007-01-01
We present a homogeneous set of stellar atmospheric parameters (T-eff, log g, [Fe/H]) for MILES, a new spectral stellar library covering the range lambda lambda 3525-7500 angstrom at 2.3 angstrom (FWHM) spectral resolution. The library consists of 985 stars spanning a large range in atmospheric
DEFF Research Database (Denmark)
Jungersen, Gregers; Jensen, L; Rask, M.R.
2002-01-01
. six sheep abortions, two pigs. one cat and one fox were examined for their virulence to young mice by less dramatic parameters. Clinical disease of inoculated mice, directly evidenced by reduced weight gain, was correlated to increase in serum level of haptoglobin and level of specific antibodies...
High speed acquisition of multi-parameter data using a Macintosh II CX
International Nuclear Information System (INIS)
Berno, A.; Vogel, J.S.; Caffee, M.
1990-08-01
Accelerator mass spectrometry systems based on >3MV tandem accelerators often use multi-anode ionization detectors and/or time-of-flight detectors to identify individual isotopes through multi-parameter analysis. A Macintosh llcx has been programmed to collect AMS data from a CAMAC-implemented analyzer and to display the histogrammed individual parameters and a double-parameter array. The computer-CAMAC connection is through a Nu-Bus to CAMAC dataway interface which allows direct addressing to all functions and locations in the crate. The asynchronous data from counting the rare isotope is sorted into a CAMAC memory module by a list sequence controller. Isotope switching is controlled by a one-cycle timing generator. A rate-dependent amount of time is used to transfer the data from the memory module at the end of each timing cycle. The present configuration uses 10 to 75 ms for rates of 500--10000 cps. Parameter analysis occurs during the rest of the 520 ms data collection cycle. Completed measurements of the isotope concentrations of each sample are written to files which are compatible with standard Macintosh databases or other processing programs. The system is inexpensive and operates at speeds comparable to those obtainable using larger computers
Performance Analysis of Different NeQuick Ionospheric Model Parameters
Directory of Open Access Journals (Sweden)
WANG Ningbo
2017-04-01
Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.
Exploring parameter constraints on quintessential dark energy: The exponential model
International Nuclear Information System (INIS)
Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael
2008-01-01
We present an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their 'w 0 -w a ' parametrization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which cannot be distinguished from a cosmological constant at DETF 'Stage 2', and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3σ
Kozak, J; Paluch, J; Węgrzecka, A; Kozak, M; Wieczorek, M; Kochana, J; Kościelniak, P
2016-02-01
Spectrophotometric sequential injection system (SI) is proposed to automate the method of simultaneous determination of Fe(II) and Fe(III) on the basis of parameters of a single peak. In the developed SI system, sample and mixture of reagents (1,10-phenanthroline and sulfosalicylic acid) are introduced into a vessel, where in an acid environment (pH≅3) appropriate compounds of Fe(II) and Fe(III) with 1,10-phenanthroline and sulfosalicylic acid are formed, respectively. Then, in turn, air, sample, EDTA and sample again, are introduced into a holding coil. After the flow reversal, a segment of air is removed from the system by an additional valve and as EDTA replaces sulfosalicylic acid forming a more stable colorless compound with Fe(III), a complex signal is registered. Measurements are performed at wavelength 530 nm. The absorbance measured at minimum of the negative peak and the area or the absorbance measured at maximum of the signal can be used as measures corresponding to Fe(II) and Fe(III) concentrations, respectively. The time of the peak registration is about 2 min. Two-component calibration has been applied to analysis. Fe(II) and Fe(III) can be determined within the concentration ranges of 0.04-4.00 and 0.1-5.00 mg L(-1), with precision less than 2.8% and 1.7% (RSD), respectively and accuracy better than 7% (RE). The detection limit is 0.04 and 0.09 mg L(-1) for Fe(II) and Fe(III), respectively. The method was applied to analysis of artesian water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Shifei Yuan
2015-07-01
Full Text Available Accurate estimation of model parameters and state of charge (SoC is crucial for the lithium-ion battery management system (BMS. In this paper, the stability of the model parameters and SoC estimation under measurement uncertainty is evaluated by three different factors: (i sampling periods of 1/0.5/0.1 s; (ii current sensor precisions of ±5/±50/±500 mA; and (iii voltage sensor precisions of ±1/±2.5/±5 mV. Firstly, the numerical model stability analysis and parametric sensitivity analysis for battery model parameters are conducted under sampling frequency of 1–50 Hz. The perturbation analysis is theoretically performed of current/voltage measurement uncertainty on model parameter variation. Secondly, the impact of three different factors on the model parameters and SoC estimation was evaluated with the federal urban driving sequence (FUDS profile. The bias correction recursive least square (CRLS and adaptive extended Kalman filter (AEKF algorithm were adopted to estimate the model parameters and SoC jointly. Finally, the simulation results were compared and some insightful findings were concluded. For the given battery model and parameter estimation algorithm, the sampling period, and current/voltage sampling accuracy presented a non-negligible effect on the estimation results of model parameters. This research revealed the influence of the measurement uncertainty on the model parameter estimation, which will provide the guidelines to select a reasonable sampling period and the current/voltage sensor sampling precisions in engineering applications.
ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA
Sjogren, W. L.
1994-01-01
The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.
Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling
Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.
2017-12-01
Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.
[South American camelids in Switzerland. II. Reference values for blood parameters].
Hengrave Burri, I; Tschudi, P; Martig, J; Liesegang, A; Meylan, M
2005-08-01
In order to establish reference values for blood parameters of South American camelids in Switzerland, 273 blood samples were collected from 141 llamas and 132 alpacas. These animals were classified in three categories (young animals blood cell count, white blood cell count, electrolytes, metabolites and enzymes). Significant differences between llamas and alpacas were evident for 26 parameters. This study also showed that differences between young animals, females and males must be taken into consideration. A comparison of blood values with the results of fecal analysis for parasite eggs showed that an infestation with Dicrocoelium dendriticum was associated with elevated activity of two liver enzymes (GLDH and gamma-GT) in the serum. In contrast, no differences were found in the results of blood analyses between animals shedding eggs of gastrointestinal strongyles or not.
Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial
Directory of Open Access Journals (Sweden)
A. Robinson
2011-04-01
Full Text Available Using a new approach to force an ice sheet model, we performed an ensemble of simulations of the Greenland Ice Sheet evolution during the last two glacial cycles, with emphasis on the Eemian Interglacial. This ensemble was generated by perturbing four key parameters in the coupled regional climate-ice sheet model and by introducing additional uncertainty in the prescribed "background" climate change. The sensitivity of the surface melt model to climate change was determined to be the dominant driver of ice sheet instability, as reflected by simulated ice sheet loss during the Eemian Interglacial period. To eliminate unrealistic parameter combinations, constraints from present-day and paleo information were applied. The constraints include (i the diagnosed present-day surface mass balance partition between surface melting and ice discharge at the margin, (ii the modeled present-day elevation at GRIP; and (iii the modeled elevation reduction at GRIP during the Eemian. Using these three constraints, a total of 360 simulations with 90 different model realizations were filtered down to 46 simulations and 20 model realizations considered valid. The paleo constraint eliminated more sensitive melt parameter values, in agreement with the surface mass balance partition assumption. The constrained simulations resulted in a range of Eemian ice loss of 0.4–4.4 m sea level equivalent, with a more likely range of about 3.7–4.4 m sea level if the GRIP δ^{18}O isotope record can be considered an accurate proxy for the precipitation-weighted annual mean temperatures.
Parameter estimation and hypothesis testing in linear models
Koch, Karl-Rudolf
1999-01-01
The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...
Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters
Directory of Open Access Journals (Sweden)
Adeniyi Ganiyu Adeogun
2015-10-01
Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain. Keywords: Inundation, DEM, Sensitivity analysis, Model coupling, Flooding
Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.
2012-12-01
Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root
Evaluation of the perceptual grouping parameter in the CTVA model
Directory of Open Access Journals (Sweden)
Manuel Cortijo
2005-01-01
Full Text Available The CODE Theory of Visual Attention (CTVA is a mathematical model explaining the effects of grouping by proximity and distance upon reaction times and accuracy of response with regard to elements in the visual display. The predictions of the theory agree quite acceptably in one and two dimensions (CTVA-2D with the experimental results (reaction times and accuracy of response. The difference between reaction-times for the compatible and incompatible responses, known as the responsecompatibility effect, is also acceptably predicted, except at small distances and high number of distractors. Further results using the same paradigm at even smaller distances have been now obtained, showing greater discrepancies. Then, we have introduced a method to evaluate the strength of sensory evidence (eta parameter, which takes grouping by similarity into account and minimizes these discrepancies.
Nakashima, Takahiro
2006-01-01
The functional specification of mean-standard deviation approach is examined under location and scale parameter condition. Firstly, the full set of restrictions imposed on the mean-standard deviation function under the location and scale parameter condition are made clear. Secondly, the examination based on the restrictions mentioned in the previous sentence derives the new properties of the mean-standard deviation function on the applicability of additive separability and the curvature of ex...
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification
Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.
2016-11-01
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.
Directory of Open Access Journals (Sweden)
Lezhnin Sergey
2017-01-01
Full Text Available The two-temperature model of the outflow from a vessel with initial supercritical parameters of medium has been realized. The model uses thermodynamic non-equilibrium relaxation approach to describe phase transitions. Based on a new asymptotic model for computing the relaxation time, the outflow of water with supercritical initial pressure and super- and subcritical temperatures has been calculated.
Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model
International Nuclear Information System (INIS)
Huangfu, Yigeng; Gao, Fei; Abbas-Turki, Abdeljalil; Bouquain, David; Miraoui, Abdellatif
2013-01-01
Highlights: • A multiphysics, 1D, dynamic SOFC model is developed. • The presented model is validated experimentally in eight different operating conditions. • Electrochemical and thermal dynamic transient time expressions are given in explicit forms. • Parameter sensitivity is discussed for different semi-empirical parameters in the model. - Abstract: In this paper, a multiphysics solid oxide fuel cell (SOFC) dynamic model is developed by using a one dimensional (1D) modeling approach. The dynamic effects of double layer capacitance on the electrochemical domain and the dynamic effect of thermal capacity on thermal domain are thoroughly considered. The 1D approach allows the model to predict the non-uniform distributions of current density, gas pressure and temperature in SOFC during its operation. The developed model has been experimentally validated, under different conditions of temperature and gas pressure. Based on the proposed model, the explicit time constant expressions for different dynamic phenomena in SOFC have been given and discussed in detail. A parameters sensitivity study has also been performed and discussed by using statistical Multi Parameter Sensitivity Analysis (MPSA) method, in order to investigate the impact of parameters on the modeling accuracy
Directory of Open Access Journals (Sweden)
Obradović-Đuričić Kosovka
2005-01-01
Full Text Available This paper is a continuing evaluation of dental and facial parameters in the estimation of aesthetic characteristic of fixed restorations. First of all, attention is paid to the phenomenon describing the tooth tissue's characteristics (transiucency, opalescence, and transparency. The paper also discusses tooth color as a special occurrence, the position of the lower lip line as well as the symmetry of the smile. In addition to these fundamental objective criteria, the paper also deals with subjective criteria (tooth arrangement and position, variation in tooth form, and relative crown length, which play a part in the successful aesthetic integration of fixed restorations.
Dynamical analysis of a cubic Liénard system with global parameters (II)
Chen, Hebai; Chen, Xingwu
2016-06-01
In this paper, we continue to study the global dynamics of a cubic Liénard system for global parameters in the case of three equilibria to follow (2015 Nonlinearity 28 3535-62), which deals with the case of two equilibria. We first analyse qualitative properties of all equilibria and judge the existences of limit cycles and homoclinic loops and their numbers. Then we obtain the bifurcation diagram and all phase portraits as our main results. Based on these results, in the case of three equilibria a positive answer to conjecture 3.2 of (1998 Nonlinearity 11 1505-19), which is about the existence of some function whose graph is exactly the surface of double limit cycles, is obtained. Moreover, a parameter region for the nonexistence of figure-eight loops is given theoretically to compensate for previous numerical results and is illustrated numerically. Supported by NSFC 11471228, 11572263, the Fundamental Research Funds for the Central Universities and Cultivation Foundation of Excellent Doctoral Dissertation of Southwest Jiaotong University (2015).
Theoretical models for Type I and Type II supernova
International Nuclear Information System (INIS)
Woosley, S.E.; Weaver, T.A.
1985-01-01
Recent theoretical progress in understanding the origin and nature of Type I and Type II supernovae is discussed. New Type II presupernova models characterized by a variety of iron core masses at the time of collapse are presented and the sensitivity to the reaction rate 12 C(α,γ) 16 O explained. Stars heavier than about 20 M/sub solar/ must explode by a ''delayed'' mechanism not directly related to the hydrodynamical core bounce and a subset is likely to leave black hole remnants. The isotopic nucleosynthesis expected from these massive stellar explosions is in striking agreement with the sun. Type I supernovae result when an accreting white dwarf undergoes a thermonuclear explosion. The critical role of the velocity of the deflagration front in determining the light curve, spectrum, and, especially, isotopic nucleosynthesis in these models is explored. 76 refs., 8 figs
Sensitivity of numerical dispersion modeling to explosive source parameters
International Nuclear Information System (INIS)
Baskett, R.L.; Cederwall, R.T.
1991-01-01
The calculation of downwind concentrations from non-traditional sources, such as explosions, provides unique challenges to dispersion models. The US Department of Energy has assigned the Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) the task of estimating the impact of accidental radiological releases to the atmosphere anywhere in the world. Our experience includes responses to over 25 incidents in the past 16 years, and about 150 exercises a year. Examples of responses to explosive accidents include the 1980 Titan 2 missile fuel explosion near Damascus, Arkansas and the hydrogen gas explosion in the 1986 Chernobyl nuclear power plant accident. Based on judgment and experience, we frequently estimate the source geometry and the amount of toxic material aerosolized as well as its particle size distribution. To expedite our real-time response, we developed some automated algorithms and default assumptions about several potential sources. It is useful to know how well these algorithms perform against real-world measurements and how sensitive our dispersion model is to the potential range of input values. In this paper we present the algorithms we use to simulate explosive events, compare these methods with limited field data measurements, and analyze their sensitivity to input parameters. 14 refs., 7 figs., 2 tabs
Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model
International Nuclear Information System (INIS)
Schindler, R.E.
1996-09-01
The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes
Search for non-standard model signatures in the WZ/ZZ final state at CDF run II
Energy Technology Data Exchange (ETDEWEB)
Norman, Matthew [Univ. of California, San Diego, CA (United States)
2009-01-01
This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb ^{-1} of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high š. Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.
Search for non-standard model signatures in the WZ/ZZ final state at CDF Run II
International Nuclear Information System (INIS)
Norman, Matthew
2009-01-01
This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high (cflx s). Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.
International Nuclear Information System (INIS)
Baryshev, Yu.V.; Morozov, V.N.
1988-01-01
It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases
Directory of Open Access Journals (Sweden)
Ruixian Fang
2016-09-01
Full Text Available This work uses the adjoint sensitivity model of the counter-flow cooling tower derived in the accompanying PART I to obtain the expressions and relative numerical rankings of the sensitivities, to all model parameters, of the following model responses: (i outlet air temperature; (ii outlet water temperature; (iii outlet water mass flow rate; and (iv air outlet relative humidity. These sensitivities are subsequently used within the “predictive modeling for coupled multi-physics systems” (PM_CMPS methodology to obtain explicit formulas for the predicted optimal nominal values for the model responses and parameters, along with reduced predicted standard deviations for the predicted model parameters and responses. These explicit formulas embody the assimilation of experimental data and the “calibration” of the model’s parameters. The results presented in this work demonstrate that the PM_CMPS methodology reduces the predicted standard deviations to values that are smaller than either the computed or the experimentally measured ones, even for responses (e.g., the outlet water flow rate for which no measurements are available. These improvements stem from the global characteristics of the PM_CMPS methodology, which combines all of the available information simultaneously in phase-space, as opposed to combining it sequentially, as in current data assimilation procedures.
An Analysis Plan for the ARCOMS II (Armor Combat Operations Model Support II) Experiment.
1983-06-01
In order to facilitate Armor Combat Modeling, the data analysis shculd focus upon the methods which transform the data intc descriptive or predictive ...discussed in Chapter III tc predict the Farameter for probability of detection in time ŕt. This should be compared with the results of the N.4gh -t Vision...J 6A 46.) I-I 0 f U-CL 0~ z o -Z 06 09 03 v 0 0 SJldnYS 10 ON Ipgr Cp o LSTm n at emn itgas 4AA rI z ;A (AZ - 090.0 UlA0 -O ON 404 Fiur CAd &P CC
Assigning probability distributions to input parameters of performance assessment models
Energy Technology Data Exchange (ETDEWEB)
Mishra, Srikanta [INTERA Inc., Austin, TX (United States)
2002-02-01
This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available.
Assigning probability distributions to input parameters of performance assessment models
International Nuclear Information System (INIS)
Mishra, Srikanta
2002-02-01
This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available
CSIR Research Space (South Africa)
Debnath, S
2014-01-01
Full Text Available Removal performances of Cd(II) and Cu(II) from water was investigated using agglomerated nanoparticle of hydrous titanium(IV) oxide (NTO) packed fixed bed. The parameters varied were the bed depth, flow rate and feed solution concentrations...
Das, Sanskriti; Ray, Alak
2017-12-01
We show how dense, compact, discrete shells of circumstellar gas immediately outside of red supergiants affect the optical light curves of Type II-P/II-L supernovae (SNe), using the example of SN 2013ej. Earlier efforts in the literature had used an artificial circumstellar medium (CSM) stitched to the surface of an evolved star that had not gone through a phase of late-stage heavy mass loss, which, in essence, is the original source of the CSM. In contrast, we allow enhanced mass-loss rate from the modeled star during the 16O and 28Si burning stages and construct the CSM from the resulting mass-loss history in a self-consistent way. Once such evolved pre-SN stars are exploded, we find that the models with early interaction between the shock and the dense CSM reproduce light curves far better than those without that mass loss and, hence, having no nearby dense CSM. The required explosion energy for the progenitors with a dense CSM is reduced by almost a factor of two compared to those without the CSM. Our model, with a more realistic CSM profile and presupernova and explosion parameters, fits observed data much better throughout the rise, plateau, and radioactive tail phases as compared to previous studies. This points to an intermediate class of supernovae between Type II-P/II-L and Type II-n SNe with the characteristics of simultaneous UV and optical peak, slow decline after peak, and a longer plateau.
GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling
International Nuclear Information System (INIS)
Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas
2015-01-01
Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and
Energy Technology Data Exchange (ETDEWEB)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.
El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.
2014-10-01
Keeping in view that some metal complexes are found to be more potent than their parent drugs, therefore, our present paper aimed to synthesized Cd(II), Hg(II) and Pb(II) complexes of paracetamol (Para) anti-inflammatory drug. Paracetamol complexes with general formula [M(Para)2(H2O)2]·nH2O have been synthesized and characterized on the basis of elemental analysis, conductivity, IR and thermal (TG/DTG), 1H NMR, electronic spectral studies. The conductivity data of these complexes have non-electrolytic nature. Comparative antimicrobial (bacteria and fungi) behaviors and molecular weights of paracetamol with their complexes have been studied. In vivo the antihepatotoxicity effect and some liver function parameters levels (serum total protein, ALT, AST, and LDH) were measured. Hematological parameters and liver antioxidant capacities of both Para and their complexes were performed. The Cd2+ + Para complex was recorded amelioration of antioxidant capacities in liver homogenates compared to other Para complexes treated groups.
House thermal model parameter estimation method for Model Predictive Control applications
van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria
In this paper we investigate thermal network models with different model orders applied to various Dutch low-energy house types with high and low interior thermal mass and containing floor heating. Parameter estimations are performed by using data from TRNSYS simulations. The paper discusses results
An improved robust model predictive control for linear parameter-varying input-output models
Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.
2018-01-01
This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal
Seven-parameter statistical model for BRDF in the UV band.
Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua
2012-05-21
A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.
Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery
Surasani, V.; Li, L.
2011-12-01
Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.
Parameter and State Estimator for State Space Models
Directory of Open Access Journals (Sweden)
Ruifeng Ding
2014-01-01
Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.
Demonstrations in Solute Transport Using Dyes: Part II. Modeling.
Butters, Greg; Bandaranayake, Wije
1993-01-01
A solution of the convection-dispersion equation is used to describe the solute breakthrough curves generated in the demonstrations in the companion paper. Estimation of the best fit model parameters (solute velocity, dispersion, and retardation) is illustrated using the method of moments for an example data set. (Author/MDH)
Time-varying parameter models for catchments with land use change: the importance of model structure
Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid
2018-05-01
Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
Time-varying parameter models for catchments with land use change: the importance of model structure
Directory of Open Access Journals (Sweden)
S. Pathiraja
2018-05-01
Full Text Available Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2 in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
Uncertainty of Modal Parameters Estimated by ARMA Models
DEFF Research Database (Denmark)
Jensen, Jakob Laigaard; Brincker, Rune; Rytter, Anders
In this paper the uncertainties of identified modal parameters such as eigenfrequencies and damping ratios are assessed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the param...
Modeling phoneme perception. II: A model of stop consonant discrimination.
van Hessen, A J; Schouten, M E
1992-10-01
Combining elements from two existing theories of speech sound discrimination, dual process theory (DPT) and trace context theory (TCT), a new theory, called phoneme perception theory, is proposed, consisting of a long-term phoneme memory, a context-coding memory, and a trace memory, each with its own time constants. This theory is tested by means of stop-consonant discrimination data in which interstimulus interval (ISI; values of 100, 300, and 2000 ms) is an important variable. It is shown that discrimination in which labeling plays an important part (2IFC and AX between category) benefits from increased ISI, whereas discrimination in which only sensory traces are compared (AX within category), decreases with increasing ISI. The theory is also tested on speech discrimination data from the literature in which ISI is a variable [Pisoni, J. Acoust. Soc. Am. 36, 277-282 (1964); Cowan and Morse, J. Acoust. Soc. Am. 79, 500-507 (1986)]. It is concluded that the number of parameters in trace context theory is not sufficient to account for most speech-sound discrimination data and that a few additional assumptions are needed, such as a form of sublabeling, in which subjects encode the quality of a stimulus as a member of a category, and which requires processing time.
Yu, Xiao-Lan; He, Yong
2017-06-05
Box-Behnken design was advantageous to parameters optimization of differential pulse anodic stripping voltammetry (DPASV) for the analysis of lead(II) with its high efficiency and accuracy. Five Box-Behnken designs were designed and conducted in the electrolyte of 0.1 mol/L acetate buffer and 0.1 mol/L HCl without the removal of oxygen. Significant parameters and interactions in each electrolyte were found (P-value Box-Behnken designs in parameters optimization of DPASV for lead(II) determination regardless of the electrolyte kinds.
van Hirtum, Annemie; Lopez, Ines; Hirschberg, Abraham; Pelorson, Xavier
2003-01-01
In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is
Hirtum, van A.; Lopez Arteaga, I.; Hirschberg, A.; Pelorson, X.
2003-01-01
In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is
A Note on the Item Information Function of the Four-Parameter Logistic Model
Magis, David
2013-01-01
This article focuses on four-parameter logistic (4PL) model as an extension of the usual three-parameter logistic (3PL) model with an upper asymptote possibly different from 1. For a given item with fixed item parameters, Lord derived the value of the latent ability level that maximizes the item information function under the 3PL model. The…
Shunted-Josephson-junction model. II. The nonautonomous case
DEFF Research Database (Denmark)
Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.
1977-01-01
The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance....... The mathematical discussion makes use of the phase-space representation of the solutions to the differential equation. The behavior of the trajectories in phase space is described for different characteristic regions in parameter space and the associated features of the junction IV curve to be expected are pointed...... out. The main objective is to provide a qualitative understanding of the junction behavior, to clarify which kinds of properties may be derived from the shunted-junction model, and to specify the relative arrangement of the important domains in the parameter-space decomposition....
Good Models Gone Bad: Quantifying and Predicting Parameter-Induced Climate Model Simulation Failures
Lucas, D. D.; Klein, R.; Tannahill, J.; Brandon, S.; Covey, C. C.; Domyancic, D.; Ivanova, D. P.
2012-12-01
Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Statistical analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation failures of the Parallel Ocean Program (POP2). About 8.5% of our POP2 runs failed for numerical reasons at certain combinations of parameter values. We apply support vector machine (SVM) classification from the fields of pattern recognition and machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. The SVM classifiers readily predict POP2 failures in an independent validation ensemble, and are subsequently used to determine the causes of the failures via a global sensitivity analysis. Four parameters related to ocean mixing and viscosity are identified as the major sources of POP2 failures. Our method can be used to improve the robustness of complex scientific models to parameter perturbations and to better steer UQ ensembles. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013 (UCRL LLNL-ABS-569112).
International Nuclear Information System (INIS)
Grosenick, Dirk; Wabnitz, Heidrun; Moesta, K Thomas; Mucke, Joerg; Schlag, Peter M; Rinneberg, Herbert
2005-01-01
Within a clinical trial on scanning time-domain optical mammography reported on in a companion publication (part I), craniocaudal and mediolateral projection optical mammograms were recorded from 154 patients, suspected of having breast cancer. Here we report on in vivo optical properties of the subset of 87 histologically validated carcinomas which were visible in optical mammograms recorded at two or three near-infrared wavelengths. Tumour absorption and reduced scattering coefficients were derived from distributions of times of flight of photons recorded at the tumour site employing the model of diffraction of photon density waves by a spherical inhomogeneity, located in an otherwise homogeneous tissue slab. Effective tumour radii, taken from pathology, and tumour location along the compression direction, deduced from off-axis optical scans of the tumour region, were included in the analysis as prior knowledge, if available. On average, tumour absorption coefficients exceeded those of surrounding healthy breast tissue by a factor of about 2.5 (670 nm), whereas tumour reduced scattering coefficients were larger by about 20% (670 nm). From absorption coefficients at 670 nm and 785 nm total haemoglobin concentration and blood oxygen saturation were deduced for tumours and surrounding healthy breast tissue. Apart from a few outliers total haemoglobin concentration was observed to be systematically larger in tumours compared to healthy breast tissue. In contrast, blood oxygen saturation was found to be a poor discriminator for tumours and healthy breast tissue; both median values of blood oxygen saturation are the same within their statistical uncertainties. However, the ratio of total haemoglobin concentration over blood oxygen saturation further improves discrimination between tumours and healthy breast tissue. For 29 tumours detected in optical mammograms recorded at three wavelengths (670 nm, 785 nm, 843 nm or 884 nm), scatter power was derived from transport
Directory of Open Access Journals (Sweden)
Rudiati Evi Masithoh
2013-03-01
Full Text Available Artificial neural networks (ANN was used to predict the quality parameters of tomato, i.e. Brix, citric acid, total carotene, and vitamin C. ANN was developed from Red Green Blue (RGB image data of tomatoes measured using a developed computer vision system (CVS. Qualitative analysis of tomato compositions were obtained from laboratory experiments. ANN model was based on a feedforward backpropagation network with different training functions, namely gradient descent (traingd, gradient descent with the resilient backpropagation (trainrp, Broyden, Fletcher, Goldfrab and Shanno (BFGS quasi-Newton (trainbfg, as well as Levenberg Marquardt (trainlm. The network structure using logsig and linear (purelin activation function at the hidden and output layer, respectively, and using the trainlm as a training function resulted in the best performance. Correlation coefficient (r of training and validation process were 0.97 - 0.99 and 0.92 - 0.99, whereas the MAE values ranged from 0.01 to 0.23 and 0.03 to 0.59, respectively. Keywords: Artificial neural network, trainlm, tomato, RGB Jaringan syaraf tiruan (JST digunakan untuk memprediksi parameter kualitas tomat, yaitu Brix, asam sitrat, karoten total, dan vitamin C. JST dikembangkan dari data Red Green Blue (RGB citra tomat yang diukur menggunakan computer vision system. Data kualitas tomat diperoleh dari analisis di laboratorium. Struktur model JST didasarkan pada jaringan feedforward backpropagation dengan berbagai fungsi pelatihan, yaitu gradient descent (traingd, gradient descent dengan resilient backpropagation (trainrp, Broyden, Fletcher, Goldfrab dan Shanno (BFGS quasi-Newton (trainbfg, serta Levenberg Marquardt (trainlm. Fungsi pelatihan yang terbaik adalah menggunakan trainlm, serta pada struktur jaringan digunakan fungsi aktivasi logsig pada lapisan tersembunyi dan linier (purelin pada lapisan keluaran. dengan 1000 epoch. Nilai koefisien korelasi (r pada tahap pelatihan dan validasi
Connecting Global to Local Parameters in Barred Galaxy Models
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Key words. Galaxies: barred—orbits—global and local parameters. .... series near the stable Lagrange point L1, which coincides with the origin. Doing so, .... Toomre, A. 1981, In: The Structure and Evolution of Normal Galaxies, (eds) S. M. Fall,.
Checking the new IRI model: The bottomside B parameters
International Nuclear Information System (INIS)
Mosert, M.; Buresova, D.; Miro, G.; Lazo, B.; Ezquer, R.
2003-01-01
Electron density profiles obtained at Pruhonice (50.0, 15.0), El Arenosillo (37.1, 353.2) and Havana (23, 278) were used to check the bottom-side B parameters BO (thickness parameter) and B1 (shape parameter) predicted by the new IRI - 2000 version. The electron density profiles were derived from ionograms using the ARP technique. The data base includes daytime and nighttime ionograms recorded under different seasonal and solar activity conditions. Comparisons with IRI predictions were also done. The analysis shows that: a) The parameter B1 given by IRI 2000 reproduces better the observed ARP values than the IRI-90 version and b) The observed BO values are in general well reproduced by both IRI versions: IRI-90 and IRI-2000. (author)
Checking the new IRI model The bottomside B parameters
Mosert, M; Ezquer, R; Lazo, B; Miro, G
2002-01-01
Electron density profiles obtained at Pruhonice (50.0, 15.0), El Arenosillo (37.1, 353.2) and Havana (23, 278) were used to check the bottom-side B parameters BO (thickness parameter) and B1 (shape parameter) predicted by the new IRI - 2000 version. The electron density profiles were derived from ionograms using the ARP technique. The data base includes daytime and nighttime ionograms recorded under different seasonal and solar activity conditions. Comparisons with IRI predictions were also done. The analysis shows that: a) The parameter B1 given by IRI 2000 reproduces better the observed ARP values than the IRI-90 version and b) The observed BO values are in general well reproduced by both IRI versions: IRI-90 and IRI-2000.
Venkateswarlu, R.; Sreenivas, K.
2014-06-01
The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.
Neutrinoless double beta decay in type I+II seesaw models
Energy Technology Data Exchange (ETDEWEB)
Borah, Debasish [Department of Physics, Tezpur University,Tezpur-784028 (India); Dasgupta, Arnab [Institute of Physics, Sachivalaya Marg,Bhubaneshwar-751005 (India)
2015-11-30
We study neutrinoless double beta decay in left-right symmetric extension of the standard model with type I and type II seesaw origin of neutrino masses. Due to the enhanced gauge symmetry as well as extended scalar sector, there are several new physics sources of neutrinoless double beta decay in this model. Ignoring the left-right gauge boson mixing and heavy-light neutrino mixing, we first compute the contributions to neutrinoless double beta decay for type I and type II dominant seesaw separately and compare with the standard light neutrino contributions. We then repeat the exercise by considering the presence of both type I and type II seesaw, having non-negligible contributions to light neutrino masses and show the difference in results from individual seesaw cases. Assuming the new gauge bosons and scalars to be around a TeV, we constrain different parameters of the model including both heavy and light neutrino masses from the requirement of keeping the new physics contribution to neutrinoless double beta decay amplitude below the upper limit set by the GERDA experiment and also satisfying bounds from lepton flavor violation, cosmology and colliders.
International Nuclear Information System (INIS)
Ivo, Kljenak; Miroslav, Babic; Borut, Mavko
2007-01-01
The possibility of simulating adequately the flow circulation within a nuclear power plant containment using a lumped-parameter code is considered. An experiment on atmosphere mixing and stratification, which was performed in the containment experimental facility TOSQAN at IRSN (Institute of Radioprotection and Nuclear Safety) in Saclay (France), was simulated with the CFD (Computational Fluid Dynamics) code CFX4 and the lumped-parameter code CONTAIN. During some phases of the experiment, steady states were achieved by keeping the boundary conditions constant. Two steady states during which natural convection was the dominant gas flow mechanism were simulated independently. The nodalization of the lumped-parameter model was based on the flow pattern, simulated with the CFD code. The simulation with the lumped-parameter code predicted basically the same flow circulation patterns within the experimental vessel as the simulation with the CFD code did. (authors)
Adaptive Detection and Parameter Estimation for Multidimensional Signal Models
1989-04-19
first of Equations (3-3), it follows that H = fH (3-12) p BpP Moreover, with the help of Equations (Al-8) of Appendix I and Equation (3-6). we find that...7-29) 127 Substituting these results, we find that II + ZBSBBZB +Y T- YJ =+ Zi~t ÷ B SBR ZBI By introducing the definitions -t +BS1 ZB V E Y Ct
He, L; Huang, G H; Lu, H W
2010-04-15
Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes. 2009 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
He, L., E-mail: li.he@ryerson.ca [Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Huang, G.H. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); College of Urban Environmental Sciences, Peking University, Beijing 100871 (China); Lu, H.W. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)
2010-04-15
Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the 'true' ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes.
Parameter sensitivity and uncertainty analysis for a storm surge and wave model
Directory of Open Access Journals (Sweden)
L. A. Bastidas
2016-09-01
Full Text Available Development and simulation of synthetic hurricane tracks is a common methodology used to estimate hurricane hazards in the absence of empirical coastal surge and wave observations. Such methods typically rely on numerical models to translate stochastically generated hurricane wind and pressure forcing into coastal surge and wave estimates. The model output uncertainty associated with selection of appropriate model parameters must therefore be addressed. The computational overburden of probabilistic surge hazard estimates is exacerbated by the high dimensionality of numerical surge and wave models. We present a model parameter sensitivity analysis of the Delft3D model for the simulation of hazards posed by Hurricane Bob (1991 utilizing three theoretical wind distributions (NWS23, modified Rankine, and Holland. The sensitive model parameters (of 11 total considered include wind drag, the depth-induced breaking γB, and the bottom roughness. Several parameters show no sensitivity (threshold depth, eddy viscosity, wave triad parameters, and depth-induced breaking αB and can therefore be excluded to reduce the computational overburden of probabilistic surge hazard estimates. The sensitive model parameters also demonstrate a large number of interactions between parameters and a nonlinear model response. While model outputs showed sensitivity to several parameters, the ability of these parameters to act as tuning parameters for calibration is somewhat limited as proper model calibration is strongly reliant on accurate wind and pressure forcing data. A comparison of the model performance with forcings from the different wind models is also presented.
Galindo-Garre, Francisca; Hidalgo, María Dolores; Guilera, Georgina; Pino, Oscar; Rojo, J Emilio; Gómez-Benito, Juana
2015-03-01
The World Health Organization Disability Assessment Schedule II (WHO-DAS II) is a multidimensional instrument developed for measuring disability. It comprises six domains (getting around, self-care, getting along with others, life activities and participation in society). The main purpose of this paper is the evaluation of the psychometric properties for each domain of the WHO-DAS II with parametric and non-parametric Item Response Theory (IRT) models. A secondary objective is to assess whether the WHO-DAS II items within each domain form a hierarchy of invariantly ordered severity indicators of disability. A sample of 352 patients with a schizophrenia spectrum disorder is used in this study. The 36 items WHO-DAS II was administered during the consultation. Partial Credit and Mokken scale models are used to study the psychometric properties of the questionnaire. The psychometric properties of the WHO-DAS II scale are satisfactory for all the domains. However, we identify a few items that do not discriminate satisfactorily between different levels of disability and cannot be invariantly ordered in the scale. In conclusion the WHO-DAS II can be used to assess overall disability in patients with schizophrenia, but some domains are too general to assess functionality in these patients because they contain items that are not applicable to this pathology. Copyright © 2014 John Wiley & Sons, Ltd.
Avalanche weak layer shear fracture parameters from the cohesive crack model
McClung, David
2014-05-01
Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0
Energy Technology Data Exchange (ETDEWEB)
Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-08-01
Sandia National Laboratories (SNL) has conducted an uncertainty analysi s (UA) on the Fukushima Daiichi unit (1F1) accident progression wit h the MELCOR code. Volume I of the 1F1 UA discusses the physical modeling details and time history results of the UA. Volume II of the 1F1 UA discusses the statistical viewpoint. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). The goal of this work was to perform a focused evaluation of uncertainty in core damage progression behavior and its effect on key figures - of - merit (e.g., hydrogen production, fraction of intact fuel, vessel lower head failure) and in doing so assess the applicability of traditional sensitivity analysis techniques .
New trends in parameter identification for mathematical models
Leitão, Antonio; Zubelli, Jorge
2018-01-01
The Proceedings volume contains 16 contributions to the IMPA conference “New Trends in Parameter Identification for Mathematical Models”, Rio de Janeiro, Oct 30 – Nov 3, 2017, integrating the “Chemnitz Symposium on Inverse Problems on Tour”. This conference is part of the “Thematic Program on Parameter Identification in Mathematical Models” organized at IMPA in October and November 2017. One goal is to foster the scientific collaboration between mathematicians and engineers from the Brazialian, European and Asian communities. Main topics are iterative and variational regularization methods in Hilbert and Banach spaces for the stable approximate solution of ill-posed inverse problems, novel methods for parameter identification in partial differential equations, problems of tomography , solution of coupled conduction-radiation problems at high temperatures, and the statistical solution of inverse problems with applications in physics.
Energy Technology Data Exchange (ETDEWEB)
Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Gebhardt, Sascha [RWTH Aachen University, Virtual Reality Group, IT Center, Seffenter Weg 23, 52074 Aachen (Germany); Kuhlen, Torsten [Forschungszentrum Jülich GmbH, Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Wilhelm-Johnen-Straße, 52425 Jülich (Germany); Schulz, Wolfgang [Fraunhofer, ILT Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)
2016-06-08
In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.
Energy Technology Data Exchange (ETDEWEB)
Hansen, Jakob [KISTI,Daejeon 305-806 (Korea, Republic of); Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,Taipei 10617, Taiwan (China)
2015-09-07
We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no mass inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.
Simple inflationary quintessential model. II. Power law potentials
de Haro, Jaume; Amorós, Jaume; Pan, Supriya
2016-09-01
The present work is a sequel of our previous work [Phys. Rev. D 93, 084018 (2016)] which depicted a simple version of an inflationary quintessential model whose inflationary stage was described by a Higgs-type potential and the quintessential phase was responsible due to an exponential potential. Additionally, the model predicted a nonsingular universe in past which was geodesically past incomplete. Further, it was also found that the model is in agreement with the Planck 2013 data when running is allowed. But, this model provides a theoretical value of the running which is far smaller than the central value of the best fit in ns , r , αs≡d ns/d l n k parameter space where ns, r , αs respectively denote the spectral index, tensor-to-scalar ratio and the running of the spectral index associated with any inflationary model, and consequently to analyze the viability of the model one has to focus in the two-dimensional marginalized confidence level in the allowed domain of the plane (ns,r ) without taking into account the running. Unfortunately, such analysis shows that this model does not pass this test. However, in this sequel we propose a family of models runs by a single parameter α ∈[0 ,1 ] which proposes another "inflationary quintessential model" where the inflation and the quintessence regimes are respectively described by a power law potential and a cosmological constant. The model is also nonsingular although geodesically past incomplete as in the cited model. Moreover, the present one is found to be more simple compared to the previous model and it is in excellent agreement with the observational data. In fact, we note that, unlike the previous model, a large number of the models of this family with α ∈[0 ,1/2 ) match with both Planck 2013 and Planck 2015 data without allowing the running. Thus, the properties in the current family of models compared to its past companion justify its need for a better cosmological model with the successive
Modelling of the PROTO-II crossover network
International Nuclear Information System (INIS)
Proulx, G.A.; Lackner, H.; Spence, P.; Wright, T.P.
1985-01-01
In order to drive a double ring, symmetrically fed bremsstrahlung diode, the PROTO II accelerator was redesigned. The radially converging triplate water line was reconfigured to drive two radial converging triplate lines in parallel. The four output lines were connected to the two input lines via an electrically enclosed tubular crossover network. Low-voltage Time Domain Reflectrometry (TDR) experiments were conducted on a full scale water immersed model of one section of the crossover network as an aid in this design. A lumped element analysis of the power flow through the network was inadequate in explaining the observed wave transmission and reflection characteristics. A more detailed analysis was performed with a circuit code in which we considered both localized lump-element and transmission line features of the crossover network. Experimental results of the model tests are given and compared with the circuit simulations. 7 figs
System modeling of spent fuel transfers at EBR-II
International Nuclear Information System (INIS)
Imel, G.R.; Houshyar, A.
1994-01-01
The unloading of spent fuel from the Experimental Breeder Reactor-II (EBR-II) for interim storage and subsequent processing in the Fuel Cycle Facility (FCF) is a multi-stage process, involving complex operations at a minimum of four different facilities at the Argonne National Laboratory-West (ANL-W) site. Each stage typically has complicated handling and/or cooling equipment that must be periodically maintained, leading to both planned and unplanned downtime. A program was initiated in October, 1993 to replace the 330 depleted uranium blanket subassemblies (S/As) with stainless steel reflectors. Routine operation of the reactor for fuels performance and materials testing occurred simultaneously in FY 1994 with the blanket unloading. In the summer of 1994, Congress dictated the October 1, 1994 shutdown of EBR-2. Consequently, all blanket S/As and fueled drivers will be removed from the reactor tank and replaced with stainless steel assemblies (which are needed to maintain a precise configuration within the grid so that the under sodium fuel handling equipment can function). A system modeling effort was conducted to determine the means to achieve the objective for the blanket and fuel unloading program, which under the current plan requires complete unloading of the primary tank of all fueled assemblies in 2 1/2 years. A simulation model of the fuel handling system at ANL-W was developed and used to analyze different unloading scenarios; the model has provided valuable information about required resources and modifications to equipment and procedures. This paper reports the results of this modeling effort
Temporal variation and scaling of parameters for a monthly hydrologic model
Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang
2018-03-01
The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.
Zener Diode Compact Model Parameter Extraction Using Xyce-Dakota Optimization.
Energy Technology Data Exchange (ETDEWEB)
Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilcox, Ian Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandoval, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reza, Shahed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
This report presents a detailed process for compact model parameter extraction for DC circuit Zener diodes. Following the traditional approach of Zener diode parameter extraction, circuit model representation is defined and then used to capture the different operational regions of a real diode's electrical behavior. The circuit model contains 9 parameters represented by resistors and characteristic diodes as circuit model elements. The process of initial parameter extraction, the identification of parameter values for the circuit model elements, is presented in a way that isolates the dependencies between certain electrical parameters and highlights both the empirical nature of the extraction and portions of the real diode physical behavior which of the parameters are intended to represent. Optimization of the parameters, a necessary part of a robost parameter extraction process, is demonstrated using a 'Xyce-Dakota' workflow, discussed in more detail in the report. Among other realizations during this systematic approach of electrical model parameter extraction, non-physical solutions are possible and can be difficult to avoid because of the interdependencies between the different parameters. The process steps described are fairly general and can be leveraged for other types of semiconductor device model extractions. Also included in the report are recommendations for experiment setups for generating optimum dataset for model extraction and the Parameter Identification and Ranking Table (PIRT) for Zener diodes.
Importance of hydrological parameters in contaminant transport modeling in a terrestrial environment
International Nuclear Information System (INIS)
Tsuduki, Katsunori; Matsunaga, Takeshi
2007-01-01
A grid type multi-layered distributed parameter model for calculating discharge in a watershed was described. Model verification with our field observation resulted in different sets of hydrological parameter values, all of which reproduced the observed discharge. The effect of those varied hydrological parameters on contaminant transport calculation was examined and discussed by simulation of event water transfer. (author)
Cognitive Models of Risky Choice: Parameter Stability and Predictive Accuracy of Prospect Theory
Glockner, Andreas; Pachur, Thorsten
2012-01-01
In the behavioral sciences, a popular approach to describe and predict behavior is cognitive modeling with adjustable parameters (i.e., which can be fitted to data). Modeling with adjustable parameters allows, among other things, measuring differences between people. At the same time, parameter estimation also bears the risk of overfitting. Are…
Parameter Selection and Performance Analysis of Mobile Terminal Models Based on Unity3D
Institute of Scientific and Technical Information of China (English)
KONG Li-feng; ZHAO Hai-ying; XU Guang-mei
2014-01-01
Mobile platform is now widely seen as a promising multimedia service with a favorable user group and market prospect. To study the influence of mobile terminal models on the quality of scene roaming, a parameter setting platform of mobile terminal models is established to select the parameter selection and performance index on different mobile platforms in this paper. This test platform is established based on model optimality principle, analyzing the performance curve of mobile terminals in different scene models and then deducing the external parameter of model establishment. Simulation results prove that the established test platform is able to analyze the parameter and performance matching list of a mobile terminal model.
Van Dyke, Michael B.
2013-01-01
Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.
A practical approach to parameter estimation applied to model predicting heart rate regulation
DEFF Research Database (Denmark)
Olufsen, Mette; Ottesen, Johnny T.
2013-01-01
Mathematical models have long been used for prediction of dynamics in biological systems. Recently, several efforts have been made to render these models patient specific. One way to do so is to employ techniques to estimate parameters that enable model based prediction of observed quantities....... Knowledge of variation in parameters within and between groups of subjects have potential to provide insight into biological function. Often it is not possible to estimate all parameters in a given model, in particular if the model is complex and the data is sparse. However, it may be possible to estimate...... a subset of model parameters reducing the complexity of the problem. In this study, we compare three methods that allow identification of parameter subsets that can be estimated given a model and a set of data. These methods will be used to estimate patient specific parameters in a model predicting...
Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann
2012-11-01
We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.
Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters
Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes
2017-04-01
A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.
Information Theoretic Tools for Parameter Fitting in Coarse Grained Models
Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A.; Plechac, Petr
2015-01-01
We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics
Kinetic models and parameters estimation study of biomass and ...
African Journals Online (AJOL)
compaq
2017-01-11
Jan 11, 2017 ... Unstructured models were proposed using the logistic equation for growth, the ... analysis of variance (ANOVA) was also used to validate the proposed models. ... production but their choice depends on the cost and the.
Numerical Modeling of Piezoelectric Transducers Using Physical Parameters
Cappon, H.; Keesman, K.J.
2012-01-01
Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and
Local sensitivity analyses and identifiable parameter subsets were used to describe numerical constraints of a hypoxia model for bottom waters of the northern Gulf of Mexico. The sensitivity of state variables differed considerably with parameter changes, although most variables ...
International Nuclear Information System (INIS)
Harish, V.S.K.V.; Kumar, Arun
2016-01-01
Highlights: • A BES model based on 1st principles is developed and solved numerically. • Parameters of lumped capacitance model are fitted using the proposed optimization routine. • Validations are showed for different types of building construction elements. • Step response excitations for outdoor air temperature and relative humidity are analyzed. - Abstract: Different control techniques together with intelligent building technology (Building Automation Systems) are used to improve energy efficiency of buildings. In almost all control projects, it is crucial to have building energy models with high computational efficiency in order to design and tune the controllers and simulate their performance. In this paper, a set of partial differential equations are formulated accounting for energy flow within the building space. These equations are then solved as conventional finite difference equations using Crank–Nicholson scheme. Such a model of a higher order is regarded as a benchmark model. An optimization algorithm has been developed, depicted through a flowchart, which minimizes the sum squared error between the step responses of the numerical and the optimal model. Optimal model of the construction element is nothing but a RC-network model with the values of Rs and Cs estimated using the non-linear time invariant constrained optimization routine. The model is validated with comparing the step responses with other two RC-network models whose parameter values are selected based on a certain criteria. Validations are showed for different types of building construction elements viz., low, medium and heavy thermal capacity elements. Simulation results show that the optimal model closely follow the step responses of the numerical model as compared to the responses of other two models.
Parameter estimation for LLDPE gas-phase reactor models
Directory of Open Access Journals (Sweden)
G. A. Neumann
2007-06-01
Full Text Available Product development and advanced control applications require models with good predictive capability. However, in some cases it is not possible to obtain good quality phenomenological models due to the lack of data or the presence of important unmeasured effects. The use of empirical models requires less investment in modeling, but implies the need for larger amounts of experimental data to generate models with good predictive capability. In this work, nonlinear phenomenological and empirical models were compared with respect to their capability to predict the melt index and polymer yield of a low-density polyethylene production process consisting of two fluidized bed reactors connected in series. To adjust the phenomenological model, the optimization algorithms based on the flexible polyhedron method of Nelder and Mead showed the best efficiency. To adjust the empirical model, the PLS model was more appropriate for polymer yield, and the melt index needed more nonlinearity like the QPLS models. In the comparison between these two types of models better results were obtained for the empirical models.
Parameter estimation of electricity spot models from futures prices
Aihara, ShinIchi; Bagchi, Arunabha; Imreizeeq, E.S.N.; Walter, E.
We consider a slight perturbation of the Schwartz-Smith model for the electricity futures prices and the resulting modified spot model. Using the martingale property of the modified price under the risk neutral measure, we derive the arbitrage free model for the spot and futures prices. We estimate
Gas ultracentrifuge separative parameters modeling using hybrid neural networks
International Nuclear Information System (INIS)
Crus, Maria Ursulina de Lima
2005-01-01
A hybrid neural network is developed for the calculation of the separative performance of an ultracentrifuge. A feed forward neural network is trained to estimate the internal flow parameters of a gas ultracentrifuge, and then these parameters are applied in the diffusion equation. For this study, a 573 experimental data set is used to establish the relation between the separative performance and the controlled variables. The process control variables considered are: the feed flow rate F, the cut θ and the product pressure Pp. The mechanical arrangements consider the radial waste scoop dimension, the rotating baffle size D s and the axial feed location Z E . The methodology was validated through the comparison of the calculated separative performance with experimental values. This methodology may be applied to other processes, just by adapting the phenomenological procedures. (author)
Observational tests for H II region models - A 'champagne party'
Energy Technology Data Exchange (ETDEWEB)
Alloin, D; Tenorio-Tagle, G
1979-09-01
Observations of several neighboring H II regions associated with a molecular cloud were performed in order to test the champagne model of H II region-molecular cloud interaction leading to the supersonic expansion of molecular cloud gas. Nine different positions in the Gum 61 nebula were observed using an image dissector scanner attached to a 3.6-m telescope, and it is found that the area corresponds to a low excitation, high density nebula, with electron densities ranging between 1400 and 2800/cu cm and larger along the boundary of the ionized gas. An observed increase in pressure and density located in an interior region of the nebula is interpreted in terms of an area between two rarefaction waves generated together with a strong isothermal shock, responsible for the champagne-like streaming, by a pressure discontinuity between the ionized molecular cloud in which star formation takes place and the intercloud gas. It is noted that a velocity field determination would provide the key in understanding the evolution of such a region.
Directory of Open Access Journals (Sweden)
O.A. Awopeju
2017-12-01
Full Text Available The study investigated the invariance properties of one, two and three parame-ter logistic item response theory models. It examined the best fit among one parameter logistic (1PL, two-parameter logistic (2PL and three-parameter logistic (3PL IRT models for SSCE, 2008 in Mathematics. It also investigated the degree of invariance of the IRT models based item difficulty parameter estimates in SSCE in Mathematics across different samples of examinees and examined the degree of invariance of the IRT models based item discrimination estimates in SSCE in Mathematics across different samples of examinees. In order to achieve the set objectives, 6000 students (3000 males and 3000 females were drawn from the population of 35262 who wrote the 2008 paper 1 Senior Secondary Certificate Examination (SSCE in Mathematics organized by National Examination Council (NECO. The item difficulty and item discrimination parameter estimates from CTT and IRT were tested for invariance using BLOG MG 3 and correlation analysis was achieved using SPSS version 20. The research findings were that two parameter model IRT item difficulty and discrimination parameter estimates exhibited invariance property consistently across different samples and that 2-parameter model was suitable for all samples of examinees unlike one-parameter model and 3-parameter model.
ADAPTIVE PARAMETER ESTIMATION OF PERSON RECOGNITION MODEL IN A STOCHASTIC HUMAN TRACKING PROCESS
W. Nakanishi; T. Fuse; T. Ishikawa
2015-01-01
This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation ...
Entropy Parameter M in Modeling a Flow Duration Curve
Directory of Open Access Journals (Sweden)
Yu Zhang
2017-12-01
Full Text Available A flow duration curve (FDC is widely used for predicting water supply, hydropower, environmental flow, sediment load, and pollutant load. Among different methods of constructing an FDC, the entropy-based method, developed recently, is appealing because of its several desirable characteristics, such as simplicity, flexibility, and statistical basis. This method contains a parameter, called entropy parameter M, which constitutes the basis for constructing the FDC. Since M is related to the ratio of the average streamflow to the maximum streamflow which, in turn, is related to the drainage area, it may be possible to determine M a priori and construct an FDC for ungauged basins. This paper, therefore, analyzed the characteristics of M in both space and time using streamflow data from 73 gauging stations in the Brazos River basin, Texas, USA. Results showed that the M values were impacted by reservoir operation and possibly climate change. The values were fluctuating, but relatively stable, after the operation of the reservoirs. Parameter M was found to change inversely with the ratio of average streamflow to the maximum streamflow. When there was an extreme event, there occurred a jump in the M value. Further, spatially, M had a larger value if the drainage area was small.
Optimization of process parameters through GRA, TOPSIS and RSA models
Directory of Open Access Journals (Sweden)
Suresh Nipanikar
2018-01-01
Full Text Available This article investigates the effect of cutting parameters on the surface roughness and flank wear during machining of titanium alloy Ti-6Al-4V ELI( Extra Low Interstitial in minimum quantity lubrication environment by using PVD TiAlN insert. Full factorial design of experiment was used for the machining 2 factors 3 levels and 2 factors 2 levels. Turning parameters studied were cutting speed (50, 65, 80 m/min, feed (0.08, 0.15, 0.2 mm/rev and depth of cut 0.5 mm constant. The results show that 44.61 % contribution of feed and 43.57 % contribution of cutting speed on surface roughness also 53.16 % contribution of cutting tool and 26.47 % contribution of cutting speed on tool flank wear. Grey relational analysis and TOPSIS method suggest the optimum combinations of machining parameters as cutting speed: 50 m/min, feed: 0.8 mm/rev., cutting tool: PVD TiAlN, cutting fluid: Palm oi
Monoenergetic electron parameters in a spheroid bubble model
Sattarian, H.; Sh., Rahmatallahpur; Tohidi, T.
2013-02-01
A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model. The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons ΔE/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions. As a result, the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.
Monoenergetic electron parameters in a spheroid bubble model
International Nuclear Information System (INIS)
Sattarian, H.; Rahmatallahpur, Sh.; Tohidi, T.
2013-01-01
A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model. The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons ΔE/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions. As a result, the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model. (physics of gases, plasmas, and electric discharges)
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Origin and structures of solar eruptions II: Magnetic modeling
Guo, Yang; Cheng, Xin; Ding, MingDe
2017-07-01
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.
Weibull Parameters Estimation Based on Physics of Failure Model
DEFF Research Database (Denmark)
Kostandyan, Erik; Sørensen, John Dalsgaard
2012-01-01
Reliability estimation procedures are discussed for the example of fatigue development in solder joints using a physics of failure model. The accumulated damage is estimated based on a physics of failure model, the Rainflow counting algorithm and the Miner’s rule. A threshold model is used...... for degradation modeling and failure criteria determination. The time dependent accumulated damage is assumed linearly proportional to the time dependent degradation level. It is observed that the deterministic accumulated damage at the level of unity closely estimates the characteristic fatigue life of Weibull...
An approach to measure parameter sensitivity in watershed hydrologic modeling
U.S. Environmental Protection Agency — Abstract Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier...
DEFF Research Database (Denmark)
Suárez, Carlos Gómez; Reigosa, Paula Diaz; Iannuzzo, Francesco
2016-01-01
An original tool for parameter extraction of PSpice models has been released, enabling a simple parameter identification. A physics-based IGBT model is used to demonstrate that the optimization tool is capable of generating a set of parameters which predicts the steady-state and switching behavio...
Research on mouse model of grade II corneal alkali burn
Directory of Open Access Journals (Sweden)
Jun-Qiang Bai
2016-04-01
Full Text Available AIM: To choose appropriate concentration of sodium hydroxide (NaOH solution to establish a stable and consistent corneal alkali burn mouse model in grade II. METHODS: The mice (n=60 were randomly divided into four groups and 15 mice each group. Corneal alkali burns were induced by placing circle filter paper soaked with NaOH solutions on the right central cornea for 30s. The concentrations of NaOH solutions of groups A, B, C, and D were 0.1 mol/L, 0.15 mol/L , 0.2 mol/L, and 1.0 mol/L respectively. Then these corneas were irrigated with 20 mL physiological saline (0.9% NaCl. On day 7 postburn, slit lamp microscope was used to observe corneal opacity, corneal epithelial sodium fluorescein staining positive rate, incidence of corneal ulcer and corneal neovascularization, meanwhile pictures of the anterior eyes were taken. Cirrus spectral domain optical coherence tomography was used to scan cornea to observe corneal epithelial defect and corneal ulcer. RESULTS: Corneal opacity scores ( were not significantly different between the group A and group B (P=0.097. Incidence of corneal ulcer in group B was significantly higher than that in group A (P=0.035. Incidence of corneal ulcer and perforation rate in group B was lower than that in group C. Group C and D had corneal neovascularization, and incidence of corneal neovascularization in group D was significantly higher than that in group C (P=0.000. CONCLUSION: Using 0.15 mol/L NaOH can establish grade II mouse model of corneal alkali burns.
Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag
Energy Technology Data Exchange (ETDEWEB)
Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping
2013-02-07
The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.
Xie, Tian; Chen, Xiao; Fang, Jingqin; Kang, Houyi; Xue, Wei; Tong, Haipeng; Cao, Peng; Wang, Sumei; Yang, Yizeng; Zhang, Weiguo
2018-04-01
Presurgical glioma grading by dynamic contrast-enhanced MRI (DCE-MRI) has unresolved issues. The aim of this study was to investigate the ability of textural features derived from pharmacokinetic model-based or model-free parameter maps of DCE-MRI in discriminating between different grades of gliomas, and their correlation with pathological index. Retrospective. Forty-two adults with brain gliomas. 3.0T, including conventional anatomic sequences and DCE-MRI sequences (variable flip angle T1-weighted imaging and three-dimensional gradient echo volumetric imaging). Regions of interest on the cross-sectional images with maximal tumor lesion. Five commonly used textural features, including Energy, Entropy, Inertia, Correlation, and Inverse Difference Moment (IDM), were generated. All textural features of model-free parameters (initial area under curve [IAUC], maximal signal intensity [Max SI], maximal up-slope [Max Slope]) could effectively differentiate between grade II (n = 15), grade III (n = 13), and grade IV (n = 14) gliomas (P textural features, Entropy and IDM, of four DCE-MRI parameters, including Max SI, Max Slope (model-free parameters), vp (Extended Tofts), and vp (Patlak) could differentiate grade III and IV gliomas (P textural features of any DCE-MRI parameter maps could discriminate between subtypes of grade II and III gliomas (P features revealed relatively lower inter-observer agreement. No significant correlation was found between microvascular density and textural features, compared with a moderate correlation found between cellular proliferation index and those features. Textural features of DCE-MRI parameter maps displayed a good ability in glioma grading. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1099-1111. © 2017 International Society for Magnetic Resonance in Medicine.
Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue
2018-06-01
Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.
Parameter Estimation and Prediction of a Nonlinear Storage Model: an algebraic approach
Doeswijk, T.G.; Keesman, K.J.
2005-01-01
Generally, parameters that are nonlinear in system models are estimated by nonlinear least-squares optimization algorithms. In this paper, if a nonlinear discrete-time model with a polynomial quotient structure in input, output, and parameters, a method is proposed to re-parameterize the model such
An Application of a Multidimensional Extension of the Two-Parameter Logistic Latent Trait Model.
McKinley, Robert L.; Reckase, Mark D.
A latent trait model is described that is appropriate for use with tests that measure more than one dimension, and its application to both real and simulated test data is demonstrated. Procedures for estimating the parameters of the model are presented. The research objectives are to determine whether the two-parameter logistic model more…
Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.
2015-05-01
Context. The knowledge of accurate values of effective temperature, surface gravity, and luminosity of stars in open clusters is very important not only to derive cluster distances and ages but also to discuss the stellar structure and evolution. Unfortunately, stellar parameters are still very scarce. Aims: Our goal is to study five open clusters to derive stellar parameters of the B and Be star population and discuss the cluster properties. In a near future, we intend to gather a statistically relevant samples of Be stars to discuss their origin and evolution. Methods: We use the Barbier-Chalonge-Divan spectrophotometric system, based on the study of low-resolution spectra around the Balmer discontinuity, since it is independent of the interstellar and circumstellar extinction and provides accurate Hertzsprung-Russell diagrams and stellar parameters. Results: We determine stellar fundamental parameters, such as effective temperatures, surface gravities, spectral types, luminosity classes, absolute and bolometric magnitudes and colour gradient excesses of the stars in the field of Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025. Additional information, mainly masses and ages of cluster stellar populations, is obtained using stellar evolution models. In most cases, stellar fundamental parameters have been derived for the first time. We also discuss the derived cluster properties of reddening, age and distance. Conclusions: Collinder 223 cluster parameters are overline{E(B-V) = 0.25 ± 0.03} mag and overline{(mv - M_v)0 = 11.21 ± 0.25} mag. In Hogg 16, we clearly distinguish two groups of stars (Hogg 16a and Hogg 16b) with very different mean true distance moduli (8.91 ± 0.26 mag and 12.51 ± 0.38 mag), mean colour excesses (0.26 ± 0.03 mag and 0.63 ± 0.08 mag), and spectral types (B early-type and B late-/A-type stars, respectively). The farthest group could be merged with Collinder 272. NGC 2645 is a young cluster (age between 40 Myr and 69 Myr. In
Digital Modulation Identification Model Using Wavelet Transform and Statistical Parameters
Directory of Open Access Journals (Sweden)
P. Prakasam
2008-01-01
Full Text Available A generalized modulation identification scheme is developed and presented. With the help of this scheme, the automatic modulation classification and recognition of wireless communication signals with a priori unknown parameters are possible effectively. The special features of the procedure are the possibility to adapt it dynamically to nearly all modulation types, and the capability to identify. The developed scheme based on wavelet transform and statistical parameters has been used to identify M-ary PSK, M-ary QAM, GMSK, and M-ary FSK modulations. The simulated results show that the correct modulation identification is possible to a lower bound of 5 dB. The identification percentage has been analyzed based on the confusion matrix. When SNR is above 5 dB, the probability of detection of the proposed system is more than 0.968. The performance of the proposed scheme has been compared with existing methods and found it will identify all digital modulation schemes with low SNR.
Heavy particle track structure parameters for biophysical modelling
International Nuclear Information System (INIS)
Watt, D.E.
1994-01-01
Averaged values of physical track structure parameters are important in radiobiology and radiological protection for the expression of damage mechanisms and for quantifying radiation effects. To provide a ready reference, tables of relevant quantities have been compiled for heavy charged particles in liquid water. The full tables will be published elsewhere but here illustrative examples are given of the trends for the most important quantities. In the tables, data are given for 74 types of heavy charged particle ranging from protons to uranium ions at specific energies between 0.1 keV/u and 1 GeV/u. Aggregate effects in liquid water are taken into account implicitly in the calculations. Results are presented for instantaneous particle energies and for averages over the charged particle equilibrium spectrum. The latter are of special relevance to radiation dosimetry. Quality parameters calculated are: β 2 ; z 2 /β 2 ; linear primary ionisation and the mean free path between ionisations; LET; track and dose-restricted LET with 100 eV cut-off; relative variances; delta-ray energies and ranges; ion energies and ranges and kerma factors. Here, the procedures used in the calculations are indicated. Representative results are shown in graphical form. The role of the physical track properties is discussed with regard to optimisation of the design of experiments intended to elucidate biological damage mechanisms in mammalian cells and their relevance to radiological protection. ((orig.))
Scale problems in assessment of hydrogeological parameters of groundwater flow models
Nawalany, Marek; Sinicyn, Grzegorz
2015-09-01
An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.
Scale problems in assessment of hydrogeological parameters of groundwater flow models
Directory of Open Access Journals (Sweden)
Nawalany Marek
2015-09-01
Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.
Life system modeling and intelligent computing. Pt. II. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Li, Kang; Irwin, George W. (eds.) [Belfast Queen' s Univ. (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Fei, Minrui; Jia, Li [Shanghai Univ. (China). School of Mechatronical Engineering and Automation
2010-07-01
This book is part II of a two-volume work that contains the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2010 and the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, held in Wuxi, China, in September 2010. The 194 revised full papers presented were carefully reviewed and selected from over 880 submissions and recommended for publication by Springer in two volumes of Lecture Notes in Computer Science (LNCS) and one volume of Lecture Notes in Bioinformatics (LNBI). This particular volume of Lecture Notes in Computer Science (LNCS) includes 55 papers covering 7 relevant topics. The 56 papers in this volume are organized in topical sections on advanced evolutionary computing theory and algorithms; advanced neural network and fuzzy system theory and algorithms; modeling and simulation of societies and collective behavior; biomedical signal processing, imaging, and visualization; intelligent computing and control in distributed power generation systems; intelligent methods in power and energy infrastructure development; intelligent modeling, monitoring, and control of complex nonlinear systems. (orig.)
International Nuclear Information System (INIS)
Mbagwu, J.S.C.
1994-05-01
Among the many models developed for monitoring the infiltration process those of Philip and Kostiakov have been studied in detail because of their simplicity and the ease of estimating their fitting parameters. The important soil physical factors influencing the fitting parameters in these infiltration models are reported in this study. The results of the study show that the single most important soil property affecting the fitting parameters in these models is the effective porosity. 36 refs, 2 figs, 5 tabs
Simultaneous Parameters Identifiability and Estimation of an E. coli Metabolic Network Model
Directory of Open Access Journals (Sweden)
Kese Pontes Freitas Alberton
2015-01-01
Full Text Available This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.
Comparison of parameter estimation algorithms in hydrological modelling
DEFF Research Database (Denmark)
Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan
2006-01-01
Local search methods have been applied successfully in calibration of simple groundwater models, but might fail in locating the optimum for models of increased complexity, due to the more complex shape of the response surface. Global search algorithms have been demonstrated to perform well......-Marquardt-Levenberg algorithm (implemented in the PEST software), when applied to a steady-state and a transient groundwater model. The results show that PEST can have severe problems in locating the global optimum and in being trapped in local regions of attractions. The global SCE procedure is, in general, more effective...... and provides a better coverage of the Pareto optimal solutions at a lower computational cost....
Hydrological model parameter dimensionality is a weak measure of prediction uncertainty
Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.
2015-04-01
This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.
Personalization of models with many model parameters: an efficient sensitivity analysis approach.
Donders, W P; Huberts, W; van de Vosse, F N; Delhaas, T
2015-10-01
Uncertainty quantification and global sensitivity analysis are indispensable for patient-specific applications of models that enhance diagnosis or aid decision-making. Variance-based sensitivity analysis methods, which apportion each fraction of the output uncertainty (variance) to the effects of individual input parameters or their interactions, are considered the gold standard. The variance portions are called the Sobol sensitivity indices and can be estimated by a Monte Carlo (MC) approach (e.g., Saltelli's method [1]) or by employing a metamodel (e.g., the (generalized) polynomial chaos expansion (gPCE) [2, 3]). All these methods require a large number of model evaluations when estimating the Sobol sensitivity indices for models with many parameters [4]. To reduce the computational cost, we introduce a two-step approach. In the first step, a subset of important parameters is identified for each output of interest using the screening method of Morris [5]. In the second step, a quantitative variance-based sensitivity analysis is performed using gPCE. Efficient sampling strategies are introduced to minimize the number of model runs required to obtain the sensitivity indices for models considering multiple outputs. The approach is tested using a model that was developed for predicting post-operative flows after creation of a vascular access for renal failure patients. We compare the sensitivity indices obtained with the novel two-step approach with those obtained from a reference analysis that applies Saltelli's MC method. The two-step approach was found to yield accurate estimates of the sensitivity indices at two orders of magnitude lower computational cost. Copyright © 2015 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil; Bishnoi, Narsi R.; Singh, Namita
2010-01-01
The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R 2 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties ΔG o , ΔH o , ΔE o and ΔS o by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Bishnoi, Narsi R., E-mail: nrbishnoi@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Singh, Namita [Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)
2010-02-15
The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R{sup 2} 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties {Delta}G{sup o}, {Delta}H{sup o}, {Delta}E{sup o} and {Delta}S{sup o} by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.
Development of simple kinetic models and parameter estimation for ...
African Journals Online (AJOL)
PANCHIGA
2016-09-28
Sep 28, 2016 ... estimation for simulation of recombinant human serum albumin ... and recombinant protein production by P. pastoris without requiring complex models. Key words: ..... SDS-PAGE and showed the same molecular size as.
Heuristic Sensitivity Analysis for Baker's Yeast Model Parameters
Leão, Celina P.; Soares, Filomena O.
2004-01-01
The baker's yeast, essentially composed by living cells of Saccharomyces cerevisiae, used in the bread making and beer industries as a microorganism, has an important industrial role. The simulation procedure represents then a necessary tool to understand clearly the baker's yeast fermentation process. The use of mathematical models based on mass balance equations requires the knowledge of the reaction kinetics, thermodynamics, and transport and physical properties. Models may be more or less...
A practical method to assess model sensitivity and parameter uncertainty in C cycle models
Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy
2015-04-01
The carbon cycle combines multiple spatial and temporal scales, from minutes to hours for the chemical processes occurring in plant cells to several hundred of years for the exchange between the atmosphere and the deep ocean and finally to millennia for the formation of fossil fuels. Together with our knowledge of the transformation processes involved in the carbon cycle, many Earth Observation systems are now available to help improving models and predictions using inverse modelling techniques. A generic inverse problem consists in finding a n-dimensional state vector x such that h(x) = y, for a given N-dimensional observation vector y, including random noise, and a given model h. The problem is well posed if the three following conditions hold: 1) there exists a solution, 2) the solution is unique and 3) the solution depends continuously on the input data. If at least one of these conditions is violated the problem is said ill-posed. The inverse problem is often ill-posed, a regularization method is required to replace the original problem with a well posed problem and then a solution strategy amounts to 1) constructing a solution x, 2) assessing the validity of the solution, 3) characterizing its uncertainty. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Intercomparison experiments have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF) to estimate model parameters and initial carbon stocks for DALEC using eddy covariance measurements of net ecosystem exchange of CO2 and leaf area index observations. Most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary
Parameter estimation of component reliability models in PSA model of Krsko NPP
International Nuclear Information System (INIS)
Jordan Cizelj, R.; Vrbanic, I.
2001-01-01
In the paper, the uncertainty analysis of component reliability models for independent failures is shown. The present approach for parameter estimation of component reliability models in NPP Krsko is presented. Mathematical approaches for different types of uncertainty analyses are introduced and used in accordance with some predisposed requirements. Results of the uncertainty analyses are shown in an example for time-related components. As the most appropriate uncertainty analysis proved the Bayesian estimation with the numerical estimation of a posterior, which can be approximated with some appropriate probability distribution, in this paper with lognormal distribution.(author)
EMF 7 model comparisons: key relationships and parameters
Energy Technology Data Exchange (ETDEWEB)
Hickman, B.G.
1983-12-01
A simplified textbook model of aggregate demand and supply interprets the similarities and differences in the price and income responses of the various EMF 7 models to oil and policy shocks. The simplified model is a marriage of Hicks' classic IS-LM formulation of the Keynesian theory of effective demand with a rudimentary model of aggregate supply, combining a structural Phillips curve for wage determination and a markup theory of price determination. The reduced-form income equation from the fix-price IS-LM model is used to define an aggregate demand (AD) locus in P-Y space, showing alternative pairs of the implicit GNP deflator and real GNP which would simultaneously satisfy the saving-investment identity and the condition for money market equilibrium. An aggregate supply (AS) schedule is derived by a similar reduction of relations between output and labor demand, unemployment and wage inflation, and the wage-price-productivity nexus governing markup pricing. Given a particular econometric model it is possible to derive IS and LM curves algebraically. The resulting locuses would show alternative combinations of interest rate and real income which equilibrate real income identity on the IS side and the demand and supply of money on the LM side. By further substitution the reduced form fix-price income relation could be obtained for direct quantification of the AD locus. The AS schedule is obtainable by algebraic reduction of the structural supply side equations.
Directory of Open Access Journals (Sweden)
Nishida Yayoi
2012-05-01
Full Text Available Abstract Background Both angiotensin II type I receptor blockers (ARBs and calcium channel blockers (CCBs are widely used antihypertensive drugs. Many clinical studies have demonstrated and compared the organ-protection effects and adverse events of these drugs. However, few large-scale studies have focused on the effect of these drugs as monotherapy on laboratory parameters. We evaluated and compared the effects of ARB and CCB monotherapy on clinical laboratory parameters in patients with concomitant hypertension and type 2 diabetes mellitus. Methods We used data from the Clinical Data Warehouse of Nihon University School of Medicine obtained between Nov 1, 2004 and July 31, 2011, to identify cohorts of new ARB users (n = 601 and propensity-score matched new CCB users (n = 601, with concomitant mild to moderate hypertension and type 2 diabetes mellitus. We used a multivariate-adjusted regression model to adjust for differences between ARB and CCB users, and compared laboratory parameters including serum levels of triglyceride (TG, total cholesterol (TC, non-fasting blood glucose, hemoglobin A1c (HbA1c, sodium, potassium, creatinine, alanine aminotransferase (ALT, aspartate aminotransferase (AST, gamma-glutamyltransferase (GGT, hemoglobin and hematocrit, and white blood cell (WBC, red blood cell (RBC and platelet (PLT counts up to 12 months after the start of ARB or CCB monotherapy. Results We found a significant reduction of serum TC, HbA1c, hemoglobin and hematocrit and RBC count and a significant increase of serum potassium in ARB users, and a reduction of serum TC and hemoglobin in CCB users, from the baseline period to the exposure period. The reductions of RBC count, hemoglobin and hematocrit in ARB users were significantly greater than those in CCB users. The increase of serum potassium in ARB users was significantly greater than that in CCB users. Conclusions Our study suggested that hematological adverse effects and
Solving seismological problems using sgraph program: II-waveform modeling
International Nuclear Information System (INIS)
Abdelwahed, Mohamed F.
2012-01-01
One of the seismological programs to manipulate seismic data is SGRAPH program. It consists of integrated tools to perform advanced seismological techniques. SGRAPH is considered a new system for maintaining and analyze seismic waveform data in a stand-alone Windows-based application that manipulate a wide range of data formats. SGRAPH was described in detail in the first part of this paper. In this part, I discuss the advanced techniques including in the program and its applications in seismology. Because of the numerous tools included in the program, only SGRAPH is sufficient to perform the basic waveform analysis and to solve advanced seismological problems. In the first part of this paper, the application of the source parameters estimation and hypocentral location was given. Here, I discuss SGRAPH waveform modeling tools. This paper exhibits examples of how to apply the SGRAPH tools to perform waveform modeling for estimating the focal mechanism and crustal structure of local earthquakes.
Unified model of current-hadronic interactions. II
International Nuclear Information System (INIS)
Moffat, J.W.; Wright, A.C.D.
1975-01-01
An analytic model of current-hadronic interactions is used to make predictions which are compared with recent data for vector-meson electroproduction and for the spin density matrix of photoproduced rho 0 mesons. The rho 0 and ω electroproduction cross sections are predicted to behave differently as the mass of the virtual photon varies; the diffraction peak broadens with increasing -q 2 at fixed ν and narrows with increasing energy. The predicted rho 0 density matrix elements do not possess the approximate s-channel helicity conservation seen experimentally. The model is continued to the inclusive electron-positron annihilation region, where parameter-free predictions are given for the inclusive prosess e + + e - → p + hadrons. The annihilation structure functions are found to have nontrivial scale-invariance limits. By using total cross-section data for e + e - annihilation into hardrons, we predict the mean multiplicity for the production of nucleons
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
Directory of Open Access Journals (Sweden)
Thomas M. Vlasic
2016-08-01
Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
Energy Technology Data Exchange (ETDEWEB)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal H3A 0C5 (Canada)
2016-08-15
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.
2016-08-01
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.
Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean
Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.
2011-12-01
Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling
Energy Technology Data Exchange (ETDEWEB)
Villani, Mattia, E-mail: villani@fi.infn.it [Sezione INFN di Firenze, Polo Scientifico Via Sansone 1, 50019, Sesto Fiorentino (Italy)
2014-06-01
We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.
Estimations of parameters in Pareto reliability model in the presence of masked data
International Nuclear Information System (INIS)
Sarhan, Ammar M.
2003-01-01
Estimations of parameters included in the individual distributions of the life times of system components in a series system are considered in this paper based on masked system life test data. We consider a series system of two independent components each has a Pareto distributed lifetime. The maximum likelihood and Bayes estimators for the parameters and the values of the reliability of the system's components at a specific time are obtained. Symmetrical triangular prior distributions are assumed for the unknown parameters to be estimated in obtaining the Bayes estimators of these parameters. Large simulation studies are done in order: (i) explain how one can utilize the theoretical results obtained; (ii) compare the maximum likelihood and Bayes estimates obtained of the underlying parameters; and (iii) study the influence of the masking level and the sample size on the accuracy of the estimates obtained
Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.
2016-11-01
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
International Nuclear Information System (INIS)
Bakkari, B. El; Nacir, B.; El Younoussi, C.; Boulaich, Y.; Riyach, I.; Otmani, S.; Marcih, I.; Elbadri, H.; El Bardouni, T; Merroun, O.; Boukhal, H.; Zoubair, M.; Htet, A.; Chakir, M.
2010-01-01
The 2-MW TRIGA MARK II research reactor at Centre National de l'Energie, des Sciences et des Techniques Nucleaires (CNESTEN) achieved initial criticality on May 2, 2007 with 71 fuel elements. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower and training and production of radioisotopes for their use in agriculture, industry and medicine. This work aims to study the time-dependent neutronics parameters of the TRIGA reactor for elaborating and planning of an in-core fuel management strategy to maximize the utilization of the TRIGA fluxes, using a new elaborated burnup computer code called 'BUCAL1'. The code can be used to aid in analysis, prediction, and optimization of fuel burnup performance in a nuclear reactor. It was developed to incorporate the neutron absorption tally/reaction information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The use of Monte Carlo method and punctual cross section data characterizing the MCNP code allows an accurate simulation of neutron life cycle in the reactor, and the integration of data on the entire energy spectrum, thus a more accurate estimation of results than deterministic code can do. Also, for the purpose of this study, a full-model of the TRIGA reactor was developed using the MCNP5 code. The validation of the MCNP model of the TRIGA reactor was made by benchmarking the reactivity experiments. (author)
Description of the hexadecapole deformation parameter in the sdg interacting boson model
International Nuclear Information System (INIS)
Liu Yuxin; Sun Di; Wang Jiajun; Han Qizhi
1998-01-01
The hexadecapole deformation parameter β 4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacting boson model. An explicit relation between the geometric hexadecapole deformation parameter β 4 and the intrinsic deformation parameters ε 4 , ε 2 are obtained. The deformation parameters β 4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β 4 systematics as well as the SU(3) limit
Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model
Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi
1998-04-01
The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.
Dynamics of a neuron model in different two-dimensional parameter-spaces
International Nuclear Information System (INIS)
Rech, Paulo C.
2011-01-01
We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades. - Research highlights: → We report parameter-spaces obtained for the Hindmarsh-Rose neuron model. → Regardless of the combination of parameters, a typical scenario is preserved. → The scenario presents a comb-shaped chaotic region immersed in a periodic region. → Periodic regions near the chaotic region are in period-adding bifurcation cascades.
Dynamics of a neuron model in different two-dimensional parameter-spaces
Rech, Paulo C.
2011-03-01
We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.
Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.
Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza
2015-09-15
The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.
On unified field theories, dynamical torsion and geometrical models: II
International Nuclear Information System (INIS)
Cirilo-Lombardo, D.J.
2011-01-01
We analyze in this letter the same space-time structure as that presented in our previous reference (Part. Nucl, Lett. 2010. V.7, No.5. P.299-307), but relaxing now the condition a priori of the existence of a potential for the torsion. We show through exact cosmological solutions from this model, where the geometry is Euclidean RxO 3 ∼ RxSU(2), the relation between the space-time geometry and the structure of the gauge group. Precisely this relation is directly connected with the relation of the spin and torsion fields. The solution of this model is explicitly compared with our previous ones and we find that: i) the torsion is not identified directly with the Yang-Mills type strength field, ii) there exists a compatibility condition connected with the identification of the gauge group with the geometric structure of the space-time: this fact leads to the identification between derivatives of the scale factor a with the components of the torsion in order to allow the Hosoya-Ogura ansatz (namely, the alignment of the isospin with the frame geometry of the space-time), and iii) of two possible structures of the torsion the 'tratorial' form (the only one studied here) forbid wormhole configurations, leading only to cosmological instanton space-time in eternal expansion
Parameter estimation in stochastic mammogram model by heuristic optimization techniques.
Selvan, S.E.; Xavier, C.C.; Karssemeijer, N.; Sequeira, J.; Cherian, R.A.; Dhala, B.Y.
2006-01-01
The appearance of disproportionately large amounts of high-density breast parenchyma in mammograms has been found to be a strong indicator of the risk of developing breast cancer. Hence, the breast density model is popular for risk estimation or for monitoring breast density change in prevention or
Dynamics of 'abc' and 'qd' constant parameters induction generator model
DEFF Research Database (Denmark)
Fajardo-R, L.A.; Medina, A.; Iov, F.
2009-01-01
In this paper, parametric sensibility effects on dynamics of the induction generator in the presence of local perturbations are investigated. The study is conducted in a 3x2 MW wind park dealing with abc, qd0 and qd reduced order, induction generator model respectively, and with fluxes as state...
Parameter interdependence and succes of skeletal muscle modelling
Huijing, P.A.J.B.M.
1995-01-01
In muscle and movement modelling it is almost invariably assumed that force actually exerted is determined by several independent factors. This review considers the fact that length force characteristics are not a relatively fixed property of muscle but should be considered the product of a
Development of simple kinetic models and parameter estimation for ...
African Journals Online (AJOL)
In order to describe and predict the growth and expression of recombinant proteins by using a genetically modified Pichia pastoris, we developed a number of unstructured models based on growth kinetic equation, fed-batch mass balance and the assumptions of constant cell and protein yields. The growth of P. pastoris on ...
A Parameter Estimation Method for Dynamic Computational Cognitive Models
Thilakarathne, D.J.
2015-01-01
A dynamic computational cognitive model can be used to explore a selected complex cognitive phenomenon by providing some features or patterns over time. More specifically, it can be used to simulate, analyse and explain the behaviour of such a cognitive phenomenon. It generates output data in the
Continuum model for masonry: Parameter estimation and validation
Lourenço, P.B.; Rots, J.G.; Blaauwendraad, J.
1998-01-01
A novel yield criterion that includes different strengths along each material axis is presented. The criterion includes two different fracture energies in tension and two different fracture energies in compression. The ability of the model to represent the inelastic behavior of orthotropic materials
Varying parameter models to accommodate dynamic promotion effects
Foekens, E.W.; Leeflang, P.S.H.; Wittink, D.R.
1999-01-01
The purpose of this paper is to examine the dynamic effects of sales promotions. We create dynamic brand sales models (for weekly store-level scanner data) by relating store intercepts and a brand's own price elasticity to a measure of the cumulated previous price discounts - amount and time - for
Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials
DEFF Research Database (Denmark)
Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2010-01-01
Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing both discrete and continuous variables). On the other hand, estimating an MTE from data has turned out to be a difficul...
Winkler's single-parameter subgrade model from the perspective of ...
African Journals Online (AJOL)
... tensor are taken into consideration, whereas the shear stresses are intentionally dropped with the purpose of providing a useful perspective, with which Winkler's model and its associated coefficient of subgrade reaction can be viewed. The formulation takes into account the variation of the elasticity modulus with depth.
A sEMG model with experimentally based simulation parameters.
Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P
2010-01-01
A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.
Positioning performance of the NTCM model driven by GPS Klobuchar model parameters
Hoque, Mohammed Mainul; Jakowski, Norbert; Berdermann, Jens
2018-03-01
Users of the Global Positioning System (GPS) utilize the Ionospheric Correction Algorithm (ICA) also known as Klobuchar model for correcting ionospheric signal delay or range error. Recently, we developed an ionosphere correction algorithm called NTCM-Klobpar model for single frequency GNSS applications. The model is driven by a parameter computed from GPS Klobuchar model and consecutively can be used instead of the GPS Klobuchar model for ionospheric corrections. In the presented work we compare the positioning solutions obtained using NTCM-Klobpar with those using the Klobuchar model. Our investigation using worldwide ground GPS data from a quiet and a perturbed ionospheric and geomagnetic activity period of 17 days each shows that the 24-hour prediction performance of the NTCM-Klobpar is better than the GPS Klobuchar model in global average. The root mean squared deviation of the 3D position errors are found to be about 0.24 and 0.45 m less for the NTCM-Klobpar compared to the GPS Klobuchar model during quiet and perturbed condition, respectively. The presented algorithm has the potential to continuously improve the accuracy of GPS single frequency mass market devices with only little software modification.