Exploiting intrinsic fluctuations to identify model parameters.
Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen
2015-04-01
Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.
Identifying the connective strength between model parameters and performance criteria
Directory of Open Access Journals (Sweden)
B. Guse
2017-11-01
Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria
Identifiability and error minimization of receptor model parameters with PET
International Nuclear Information System (INIS)
Delforge, J.; Syrota, A.; Mazoyer, B.M.
1989-01-01
The identifiability problem and the general framework for experimental design optimization are presented. The methodology is applied to the problem of the receptor-ligand model parameter estimation with dynamic positron emission tomography data. The first attempts to identify the model parameters from data obtained with a single tracer injection led to disappointing numerical results. The possibility of improving parameter estimation using a new experimental design combining an injection of the labelled ligand and an injection of the cold ligand (displacement experiment) has been investigated. However, this second protocol led to two very different numerical solutions and it was necessary to demonstrate which solution was biologically valid. This has been possible by using a third protocol including both a displacement and a co-injection experiment. (authors). 16 refs.; 14 figs
Nienałtowski, Karol; Włodarczyk, Michał; Lipniacki, Tomasz; Komorowski, Michał
2015-09-29
Compared to engineering or physics problems, dynamical models in quantitative biology typically depend on a relatively large number of parameters. Progress in developing mathematics to manipulate such multi-parameter models and so enable their efficient interplay with experiments has been slow. Existing solutions are significantly limited by model size. In order to simplify analysis of multi-parameter models a method for clustering of model parameters is proposed. It is based on a derived statistically meaningful measure of similarity between groups of parameters. The measure quantifies to what extend changes in values of some parameters can be compensated by changes in values of other parameters. The proposed methodology provides a natural mathematical language to precisely communicate and visualise effects resulting from compensatory changes in values of parameters. As a results, a relevant insight into identifiability analysis and experimental planning can be obtained. Analysis of NF-κB and MAPK pathway models shows that highly compensative parameters constitute clusters consistent with the network topology. The method applied to examine an exceptionally rich set of published experiments on the NF-κB dynamics reveals that the experiments jointly ensure identifiability of only 60% of model parameters. The method indicates which further experiments should be performed in order to increase the number of identifiable parameters. We currently lack methods that simplify broadly understood analysis of multi-parameter models. The introduced tools depict mutually compensative effects between parameters to provide insight regarding role of individual parameters, identifiability and experimental design. The method can also find applications in related methodological areas of model simplification and parameters estimation.
Local sensitivity analyses and identifiable parameter subsets were used to describe numerical constraints of a hypoxia model for bottom waters of the northern Gulf of Mexico. The sensitivity of state variables differed considerably with parameter changes, although most variables ...
The identifiability of parameters in a water quality model of the Biebrza River, Poland
Perk, van der M.; Bierkens, M.F.P.
1997-01-01
The identifiability of model parameters of a steady state water quality model of the Biebrza River and the resulting variation in model results was examined by applying the Monte Carlo method which combines calibration, identifiability analysis, uncertainty analysis, and sensitivity analysis. The
DEFF Research Database (Denmark)
Ottosen, T. B.; Ketzel, Matthias; Skov, H.
2016-01-01
Mathematical models are increasingly used in environmental science thus increasing the importance of uncertainty and sensitivity analyses. In the present study, an iterative parameter estimation and identifiability analysis methodology is applied to an atmospheric model – the Operational Street...... of the identifiability analysis, showed that some model parameters were significantly more sensitive than others. The application of the determined optimal parameter values was shown to successfully equilibrate the model biases among the individual streets and species. It was as well shown that the frequentist approach...
Petersen, Britta; Gernaey, Krist; Devisscher, Martijn; Dochain, Denis; Vanrolleghem, Peter A
2003-07-01
The first step in the estimation of parameters of models applied for data interpretation should always be an investigation of the identifiability of the model parameters. In this study the structural identifiability of the model parameters of Monod-based activated sludge models (ASM) was studied. In an illustrative example it was assumed that respirometric (dissolved oxygen or oxygen uptake rates) and titrimetric (cumulative proton production) measurements were available for the characterisation of nitrification. Two model structures, including the presence and absence of significant growth for description of long- and short-term experiments, respectively, were considered. The structural identifiability was studied via the series expansion methods. It was proven that the autotrophic yield becomes uniquely identifiable when combined respirometric and titrimetric data are assumed for the characterisation of nitrification. The most remarkable result of the study was, however, that the identifiability results could be generalised by applying a set of ASM1 matrix based generalisation rules. It appeared that the identifiable parameter combinations could be predicted directly based on the knowledge of the process model under study (in ASM1-like matrix representation), the measured variables and the biodegradable substrate considered. This generalisation reduces the time-consuming task of deriving the structurally identifiable model parameters significantly and helps the user to obtain these directly without the necessity to go too deeply into the mathematical background of structural identifiability.
Brouwer, Andrew F; Meza, Rafael; Eisenberg, Marisa C
2017-03-01
Many cancers are understood to be the product of multiple somatic mutations or other rate-limiting events. Multistage clonal expansion (MSCE) models are a class of continuous-time Markov chain models that capture the multi-hit initiation-promotion-malignant-conversion hypothesis of carcinogenesis. These models have been used broadly to investigate the epidemiology of many cancers, assess the impact of carcinogen exposures on cancer risk, and evaluate the potential impact of cancer prevention and control strategies on cancer rates. Structural identifiability (the analysis of the maximum parametric information available for a model given perfectly measured data) of certain MSCE models has been previously investigated. However, structural identifiability is a theoretical property and does not address the limitations of real data. In this study, we use pancreatic cancer as a case study to examine the practical identifiability of the two-, three-, and four-stage clonal expansion models given age-specific cancer incidence data using a numerical profile-likelihood approach. We demonstrate that, in the case of the three- and four-stage models, several parameters that are theoretically structurally identifiable, are, in practice, unidentifiable. This result means that key parameters such as the intermediate cell mutation rates are not individually identifiable from the data and that estimation of those parameters, even if structurally identifiable, will not be stable. We also show that products of these practically unidentifiable parameters are practically identifiable, and, based on this, we propose new reparameterizations of the model hazards that resolve the parameter estimation problems. Our results highlight the importance of identifiability to the interpretation of model parameter estimates.
Shariati, M M; Korsgaard, I R; Sorensen, D
2009-04-01
Markov chain Monte Carlo (MCMC) enables fitting complex hierarchical models that may adequately reflect the process of data generation. Some of these models may contain more parameters than can be uniquely inferred from the distribution of the data, causing non-identifiability. The reaction norm model with unknown covariates (RNUC) is a model in which unknown environmental effects can be inferred jointly with the remaining parameters. The problem of identifiability of parameters at the level of the likelihood and the associated behaviour of MCMC chains were discussed using the RNUC as an example. It was shown theoretically that when environmental effects (covariates) are considered as random effects, estimable functions of the fixed effects, (co)variance components and genetic effects are identifiable as well as the environmental effects. When the environmental effects are treated as fixed and there are other fixed factors in the model, the contrasts involving environmental effects, the variance of environmental sensitivities (genetic slopes) and the residual variance are the only identifiable parameters. These different identifiability scenarios were generated by changing the formulation of the model and the structure of the data and the models were then implemented via MCMC. The output of MCMC sampling schemes was interpreted in the light of the theoretical findings. The erratic behaviour of the MCMC chains was shown to be associated with identifiability problems in the likelihood, despite propriety of posterior distributions, achieved by arbitrarily chosen uniform (bounded) priors. In some cases, very long chains were needed before the pattern of behaviour of the chain may signal the existence of problems. The paper serves as a warning concerning the implementation of complex models where identifiability problems can be difficult to detect a priori. We conclude that it would be good practice to experiment with a proposed model and to understand its features
Identifying the effects of parameter uncertainty on the reliability of riverbank stability modelling
Samadi, A.; Amiri-Tokaldany, E.; Darby, S. E.
2009-05-01
Bank retreat is a key process in fluvial dynamics affecting a wide range of physical, ecological and socioeconomic issues in the fluvial environment. To predict the undesirable effects of bank retreat and to inform effective measures to prevent it, a wide range of bank stability models have been presented in the literature. These models typically express bank stability by defining a factor of safety as the ratio of driving and resisting forces acting on the incipient failure block. These forces are affected by a range of controlling factors that include such aspects as the bank profile (bank height and angle), the geotechnical properties of the bank materials, as well as the hydrological status of the riverbanks. In this paper we evaluate the extent to which uncertainties in the parameterization of these controlling factors feed through to influence the reliability of the resulting bank stability estimate. This is achieved by employing a simple model of riverbank stability with respect to planar failure (which is the most common type of bank stability model) in a series of sensitivity tests and Monte Carlo analyses to identify, for each model parameter, the range of values that induce significant changes in the simulated factor of safety. These identified parameter value ranges are compared to empirically derived parameter uncertainties to determine whether they are likely to confound the reliability of the resulting bank stability calculations. Our results show that parameter uncertainties are typically high enough that the likelihood of generating unreliable predictions is typically very high (> ˜ 80% for predictions requiring a precision of < ± 15%). Because parameter uncertainties are derived primarily from the natural variability of the parameters, rather than measurement errors, much more careful attention should be paid to field sampling strategies, such that the parameter uncertainties and consequent prediction unreliabilities can be quantified more
A modified Leslie-Gower predator-prey interaction model and parameter identifiability
Tripathi, Jai Prakash; Meghwani, Suraj S.; Thakur, Manoj; Abbas, Syed
2018-01-01
In this work, bifurcation and a systematic approach for estimation of identifiable parameters of a modified Leslie-Gower predator-prey system with Crowley-Martin functional response and prey refuge is discussed. Global asymptotic stability is discussed by applying fluctuation lemma. The system undergoes into Hopf bifurcation with respect to parameters intrinsic growth rate of predators (s) and prey reserve (m). The stability of Hopf bifurcation is also discussed by calculating Lyapunov number. The sensitivity analysis of the considered model system with respect to all variables is performed which also supports our theoretical study. To estimate the unknown parameter from the data, an optimization procedure (pseudo-random search algorithm) is adopted. System responses and phase plots for estimated parameters are also compared with true noise free data. It is found that the system dynamics with true set of parametric values is similar to the estimated parametric values. Numerical simulations are presented to substantiate the analytical findings.
Sagoo, Navjit; Valdes, Paul; Flecker, Rachel; Gregoire, Lauren J
2013-10-28
Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4.
Humbird, Kelli; Peterson, J. Luc; Brandon, Scott; Field, John; Nora, Ryan; Spears, Brian
2016-10-01
Next-generation supercomputer architecture and in-transit data analysis have been used to create a large collection of 2-D ICF capsule implosion simulations. The database includes metrics for approximately 60,000 implosions, with x-ray images and detailed physics parameters available for over 20,000 simulations. To map and explore this large database, surrogate models for numerous quantities of interest are built using supervised machine learning algorithms. Response surfaces constructed using the predictive capabilities of the surrogates allow for continuous exploration of parameter space without requiring additional simulations. High performing regions of the input space are identified to guide the design of future experiments. In particular, a model for the yield built using a random forest regression algorithm has a cross validation score of 94.3% and is consistently conservative for high yield predictions. The model is used to search for robust volumes of parameter space where high yields are expected, even given variations in other input parameters. Surrogates for additional quantities of interest relevant to ignition are used to further characterize the high yield regions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-697277.
Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.
2017-12-01
Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.
DEFF Research Database (Denmark)
Shariati, M M; Korsgaard, I R; Sorensen, D
2009-01-01
as an example. It was shown theoretically that when environmental effects (covariates) are considered as random effects, estimable functions of the fixed effects, (co)variance components and genetic effects are identifiable as well as the environmental effects. When the environmental effects are treated...... model with unknown covariates (RNUC) is a model in which unknown environmental effects can be inferred jointly with the remaining parameters. The problem of identifiability of parameters at the level of the likelihood and the associated behaviour of MCMC chains were discussed using the RNUC...
Toward the Analysis of JWST Exoplanet Spectra: Identifying Troublesome Model Parameters
Baudino, Jean-Loup; Mollière, Paul; Venot, Olivia; Tremblin, Pascal; Bézard, Bruno; Lagage, Pierre-Olivier
2017-12-01
Given the forthcoming launch of the James Webb Space Telescope (JWST), which will allow observing exoplanet atmospheres with unprecedented signal-to-noise ratio, spectral coverage, and spatial resolution, the uncertainties in the atmosphere modeling used to interpret the data need to be assessed. As the first step, we compare three independent 1D radiative-convective models: ATMO, Exo-REM, and petitCODE. We identify differences in physical and chemical processes that are taken into account thanks to a benchmark protocol we have developed. We study the impact of these differences on the analysis of observable spectra. We show the importance of selecting carefully relevant molecular linelists to compute the atmospheric opacity. Indeed, differences between spectra calculated with Hitran and ExoMol exceed the expected uncertainties of future JWST observations. We also show the limits of the precision of the models due to uncertainties on alkali and molecule lineshape, which induce spectral effects that are also larger than the expected JWST uncertainties. We compare two chemical models, Exo-REM and Venot Chemical Code, which do not lead to significant differences in the emission or transmission spectra. We discuss the observational consequences of using equilibrium or out-of-equilibrium chemistry and the major impact of phosphine, detectable with the JWST. Each of the models has benefited from the benchmarking activity and has been updated. The protocol developed in this paper and the online results can constitute a test case for other models.
Parameter non-identifiability of the Gyllenberg-Webb ODE model.
Hartung, Niklas
2014-01-01
An ODE model introduced by Gyllenberg and Webb (Growth Develop Aging 53:25-33, 1989) describes tumour growth in terms of the dynamics between proliferating and quiescent cell states. The passage from one state to another and vice versa is modelled by two functions r0 and ri depending on the total tumour size. As these functions do not represent any observable quantities, they have to be identified from the observations. In this paper we show that there is an infinite number of pairs (r0, ri) corresponding to the same solution of the ODE system and the functions (r0, ri) will be classified in terms of this equivalence. Surprisingly, the technique used for this classification permits a uniqueness proof of the solution of the ODE model in a non-Lipschitz case. The reasoning can be widened to a more general setting including an extension of the Gyllenberg-Webb model with a nonlinear birth rate. The relevance of this result is discussed in a preclinical application scenario.
Identifying parameter regions for multistationarity
DEFF Research Database (Denmark)
Conradi, Carsten; Feliu, Elisenda; Mincheva, Maya
2017-01-01
is the avoidance of numerical analysis and parameter sampling. The procedure consists of a number of steps. Each of these steps might be addressed algorithmically using various computer programs and available software, or manually. We demonstrate our procedure on several models of gene transcription and cell...
Directory of Open Access Journals (Sweden)
Nicolette Meshkat
Full Text Available Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI is the primary question, usually understood as knowing which of P unknown biomodel parameters p1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O biodata. It is not widely appreciated that the same database also can provide quantitative information about the structurally unidentifiable (not quantifiable subset, in the form of explicit algebraic relationships among unidentifiable pi. Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest from new I-O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI problem for a practical class of ordinary differential equation (ODE systems biology models, as a user-friendly and universally-accessible web application (app-COMBOS. Users provide the structural ODE and output measurement models in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-uniquely SI model parameters, and-importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also provides the maximum number of different solutions, with important practical implications. The behind-the-scenes symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It's illustrated and validated here for models of moderate
Directory of Open Access Journals (Sweden)
Brian A. Johnson
2018-01-01
Full Text Available The advent of very high resolution (VHR satellite imagery and the development of Geographic Object-Based Image Analysis (GEOBIA have led to many new opportunities for fine-scale land cover mapping, especially in urban areas. Image segmentation is an important step in the GEOBIA framework, so great time/effort is often spent to ensure that computer-generated image segments closely match real-world objects of interest. In the remote sensing community, segmentation is frequently performed using the multiresolution segmentation (MRS algorithm, which is tuned through three user-defined parameters (the scale, shape/color, and compactness/smoothness parameters. The scale parameter (SP is the most important parameter and governs the average size of generated image segments. Existing automatic methods to determine suitable SPs for segmentation are scene-specific and often computationally intensive, so an approach to estimating appropriate SPs that is generalizable (i.e., not scene-specific could speed up the GEOBIA workflow considerably. In this study, we attempted to identify generalizable SPs for five common urban land cover types (buildings, vegetation, roads, bare soil, and water through meta-analysis and nonlinear regression tree (RT modeling. First, we performed a literature search of recent studies that employed GEOBIA for urban land cover mapping and extracted the MRS parameters used, the image properties (i.e., spatial and radiometric resolutions, and the land cover classes mapped. Using this data extracted from the literature, we constructed RT models for each land cover class to predict suitable SP values based on the: image spatial resolution, image radiometric resolution, shape/color parameter, and compactness/smoothness parameter. Based on a visual and quantitative analysis of results, we found that for all land cover classes except water, relatively accurate SPs could be identified using our RT modeling results. The main advantage of our
Samadi, A.; Amiri-Tokaldany, E.; Davoudi, M. H.; Darby, S. E.
2011-11-01
Composite river banks consist of a basal layer of non-cohesive material overlain by a cohesive layer of fine-grained material. In such banks, fluvial erosion of the lower, non-cohesive, layer typically occurs at a much higher rate than erosion of the upper part of the bank. Consequently, such banks normally develop a cantilevered bank profile, with bank retreat of the upper part of the bank taking place predominantly by the failure of these cantilevers. To predict the undesirable impacts of this type of bank retreat, a number of bank stability models have been presented in the literature. These models typically express bank stability by defining a factor of safety as the ratio of resisting and driving forces acting on the incipient failure block. These forces are affected by a range of controlling factors that include such aspects as the overhanging block geometry, and the geotechnical properties of the bank materials. In this paper, we introduce a new bank stability relation (for shear-type cantilever failures) that considers the hydrological status of cantilevered riverbanks, while beam-type failures are analyzed using a previously proposed relation. We employ these stability models to evaluate the effects of parameter uncertainty on the reliability of riverbank stability modeling of overhanging banks. This is achieved by employing a simple model of overhanging failure with respect to shear and beam failure mechanisms in a series of sensitivity tests and Monte Carlo analyses to identify, for each model parameter, the range of values that induce significant changes in the simulated factor of safety. The results show that care is required in parameterising (i) the geometrical shape of the overhanging-block and (ii) the bank material cohesion and unit weight, as predictions of bank stability are sensitive to variations of these factors.
Zhang, Yong; Sun, HongGuang; Lu, Bingqing; Garrard, Rhiannon; Neupauer, Roseanna M.
2017-09-01
Backward models have been applied for four decades by hydrologists to identify the source of pollutants undergoing Fickian diffusion, while analytical tools are not available for source identification of super-diffusive pollutants undergoing decay. This technical note evaluates analytical solutions for the source location and release time of a decaying contaminant undergoing super-diffusion using backward probability density functions (PDFs), where the forward model is the space fractional advection-dispersion equation with decay. Revisit of the well-known MADE-2 tracer test using parameter analysis shows that the peak backward location PDF can predict the tritium source location, while the peak backward travel time PDF underestimates the tracer release time due to the early arrival of tracer particles at the detection well in the maximally skewed, super-diffusive transport. In addition, the first-order decay adds additional skewness toward earlier arrival times in backward travel time PDFs, resulting in a younger release time, although this impact is minimized at the MADE-2 site due to tritium's half-life being relatively longer than the monitoring period. The main conclusion is that, while non-trivial backward techniques are required to identify pollutant source location, the pollutant release time can and should be directly estimated given the speed of the peak resident concentration for super-diffusive pollutants with or without decay.
Identifying crucial parameter correlations maintaining bursting activity.
Directory of Open Access Journals (Sweden)
Anca Doloc-Mihu
2014-06-01
Full Text Available Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA to each of these four groups. PCA identified a set of three maximal conductances (leak current, [Formula: see text]Leak; a persistent K current, [Formula: see text]K2; and of a persistent Na+ current, [Formula: see text]P that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of [Formula: see text]Leak, [Formula: see text]K2, and [Formula: see text]P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)
Machado, Vinicius Cunha; Lafuente, Javier; Baeza, Juan Antonio
2014-07-01
The present work developed a model for the description of a full-scale wastewater treatment plant (WWTP) (Manresa, Catalonia, Spain) for further plant upgrades based on the systematic parameter calibration of the activated sludge model 2d (ASM2d) using a methodology based on the Fisher information matrix. The influent was characterized for the application of the ASM2d and the confidence interval of the calibrated parameters was also assessed. No expert knowledge was necessary for model calibration and a huge available plant database was converted into more useful information. The effect of the influent and operating variables on the model fit was also studied using these variables as calibrating parameters and keeping the ASM2d kinetic and stoichiometric parameters, which traditionally are the calibration parameters, at their default values. Such an "inversion" of the traditional way of model fitting allowed evaluating the sensitivity of the main model outputs regarding the influent and the operating variables changes. This new approach is able to evaluate the capacity of the operational variables used by the WWTP feedback control loops to overcome external disturbances in the influent and kinetic/stoichiometric model parameters uncertainties. In addition, the study of the influence of operating variables on the model outputs provides useful information to select input and output variables in decentralized control structures.
DEFF Research Database (Denmark)
Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist
2011-01-01
This study presents the development and application of a systematic model-based framework for bioprocess optimization, evaluated on a cellulosic ethanol production case study. The implementation of the framework involves the use of dynamic simulations, sophisticated uncertainty analysis (Monte...
Linking Item Response Model Parameters.
van der Linden, Wim J; Barrett, Michelle D
2016-09-01
With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of test equating scores on different test forms. This paper argues, however, that the use of item response models does not require any test score equating. Instead, it involves the necessity of parameter linking due to a fundamental problem inherent in the formal nature of these models-their general lack of identifiability. More specifically, item response model parameters need to be linked to adjust for the different effects of the identifiability restrictions used in separate item calibrations. Our main theorems characterize the formal nature of these linking functions for monotone, continuous response models, derive their specific shapes for different parameterizations of the 3PL model, and show how to identify them from the parameter values of the common items or persons in different linking designs.
Two statistics for evaluating parameter identifiability and error reduction
Doherty, John; Hunt, Randall J.
2009-01-01
Two statistics are presented that can be used to rank input parameters utilized by a model in terms of their relative identifiability based on a given or possible future calibration dataset. Identifiability is defined here as the capability of model calibration to constrain parameters used by a model. Both statistics require that the sensitivity of each model parameter be calculated for each model output for which there are actual or presumed field measurements. Singular value decomposition (SVD) of the weighted sensitivity matrix is then undertaken to quantify the relation between the parameters and observations that, in turn, allows selection of calibration solution and null spaces spanned by unit orthogonal vectors. The first statistic presented, "parameter identifiability", is quantitatively defined as the direction cosine between a parameter and its projection onto the calibration solution space. This varies between zero and one, with zero indicating complete non-identifiability and one indicating complete identifiability. The second statistic, "relative error reduction", indicates the extent to which the calibration process reduces error in estimation of a parameter from its pre-calibration level where its value must be assigned purely on the basis of prior expert knowledge. This is more sophisticated than identifiability, in that it takes greater account of the noise associated with the calibration dataset. Like identifiability, it has a maximum value of one (which can only be achieved if there is no measurement noise). Conceptually it can fall to zero; and even below zero if a calibration problem is poorly posed. An example, based on a coupled groundwater/surface-water model, is included that demonstrates the utility of the statistics. ?? 2009 Elsevier B.V.
Identifiability in stochastic models
1992-01-01
The problem of identifiability is basic to all statistical methods and data analysis, occurring in such diverse areas as Reliability Theory, Survival Analysis, and Econometrics, where stochastic modeling is widely used. Mathematics dealing with identifiability per se is closely related to the so-called branch of ""characterization problems"" in Probability Theory. This book brings together relevant material on identifiability as it occurs in these diverse fields.
Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy
2017-04-01
Parameter estimation is a major concern in hydrological modeling, which may limit the use of complex simulators with a large number of parameters. To support the selection of parameters to include in or exclude from the calibration process, Global Sensitivity Analysis (GSA) is widely applied in modeling practices. Based on the results of GSA, the influential and the non-influential parameters are identified (i.e. parameters screening). Nevertheless, the choice of the screening threshold below which parameters are considered non-influential is a critical issue, which has recently received more attention in GSA literature. In theory, the sensitivity index of a non-influential parameter has a value of zero. However, since numerical approximations, rather than analytical solutions, are utilized in GSA methods to calculate the sensitivity indices, small but non-zero indices may be obtained for the indices of non-influential parameters. In order to assess the threshold that identifies non-influential parameters in GSA methods, we propose to calculate the sensitivity index of a "dummy parameter". This dummy parameter has no influence on the model output, but will have a non-zero sensitivity index, representing the error due to the numerical approximation. Hence, the parameters whose indices are above the sensitivity index of the dummy parameter can be classified as influential, whereas the parameters whose indices are below this index are within the range of the numerical error and should be considered as non-influential. To demonstrated the effectiveness of the proposed "dummy parameter approach", 26 parameters of a Soil and Water Assessment Tool (SWAT) model are selected to be analyzed and screened, using the variance-based Sobol' and moment-independent PAWN methods. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. Moreover, the calculation does not even require additional model evaluations for the Sobol
Sparse Linear Identifiable Multivariate Modeling
DEFF Research Database (Denmark)
Henao, Ricardo; Winther, Ole
2011-01-01
In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...... Bayesian hierarchy for sparse models using slab and spike priors (two-component δ-function and continuous mixtures), non-Gaussian latent factors and a stochastic search over the ordering of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated...... computational complexity. We attribute this mainly to the stochastic search strategy used, and to parsimony (sparsity and identifiability), which is an explicit part of the model. We propose two extensions to the basic i.i.d. linear framework: non-linear dependence on observed variables, called SNIM (Sparse Non-linear...
Response model parameter linking
Barrett, M.L.D.
2015-01-01
With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of equating observed scores on different test forms. This thesis argues, however, that the use of item response models does not require
Parameter trajectory analysis to identify treatment effects of pharmacological interventions.
Directory of Open Access Journals (Sweden)
Christian A Tiemann
Full Text Available The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT, to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR, a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1, a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1
Paris, Adrien; André Garambois, Pierre; Calmant, Stéphane; Paiva, Rodrigo; Walter, Collischonn; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Bonnet, Marie-Paule; Seyler, Frédérique; Monnier, Jérôme
2016-04-01
Estimating river discharge for ungauged river reaches from satellite measurements is not straightforward given the nonlinearity of flow behavior with respect to measurable and non measurable hydraulic parameters. As a matter of facts, current satellite datasets do not give access to key parameters such as river bed topography and roughness. A unique set of almost one thousand altimetry-based rating curves was built by fit of ENVISAT and Jason-2 water stages with discharges obtained from the MGB-IPH rainfall-runoff model in the Amazon basin. These rated discharges were successfully validated towards simulated discharges (Ens = 0.70) and in-situ discharges (Ens = 0.71) and are not mission-dependent. The rating curve writes Q = a(Z-Z0)b*sqrt(S), with Z the water surface elevation and S its slope gained from satellite altimetry, a and b power law coefficient and exponent and Z0 the river bed elevation such as Q(Z0) = 0. For several river reaches in the Amazon basin where ADCP measurements are available, the Z0 values are fairly well validated with a relative error lower than 10%. The present contribution aims at relating the identifiability and the physical meaning of a, b and Z0given various hydraulic and geomorphologic conditions. Synthetic river bathymetries sampling a wide range of rivers and inflow discharges are used to perform twin experiments. A shallow water model is run for generating synthetic satellite observations, and then rating curve parameters are determined for each river section thanks to a MCMC algorithm. Thanks to twin experiments, it is shown that rating curve formulation with water surface slope, i.e. closer from Manning equation form, improves parameter identifiability. The compensation between parameters is limited, especially for reaches with little water surface variability. Rating curve parameters are analyzed for riffle and pools for small to large rivers, different river slopes and cross section shapes. It is shown that the river bed
Biased sampling, over-identified parameter problems and beyond
Qin, Jing
2017-01-01
This book is devoted to biased sampling problems (also called choice-based sampling in Econometrics parlance) and over-identified parameter estimation problems. Biased sampling problems appear in many areas of research, including Medicine, Epidemiology and Public Health, the Social Sciences and Economics. The book addresses a range of important topics, including case and control studies, causal inference, missing data problems, meta-analysis, renewal process and length biased sampling problems, capture and recapture problems, case cohort studies, exponential tilting genetic mixture models etc. The goal of this book is to make it easier for Ph. D students and new researchers to get started in this research area. It will be of interest to all those who work in the health, biological, social and physical sciences, as well as those who are interested in survey methodology and other areas of statistical science, among others. .
Directory of Open Access Journals (Sweden)
Tavarekere N Nagaraja
Full Text Available Increased efficacy of radiotherapy (RT 4-8 h after Cilengitide treatment has been reported. We hypothesized that the effects of Cilengitide on tumor transvascular transfer parameters might underlie, and thus predict, this potentiation. Athymic rats with orthotopic U251 glioma were studied at ~21 days after implantation using dynamic contrast-enhanced (DCE-MRI. Vascular parameters, viz: plasma volume fraction (v(p, forward volume transfer constant (K(trans and interstitial volume fraction (v(e of a contrast agent, were determined in tumor vasculature once before, and again in cohorts 2, 4, 8, 12 and 24 h after Cilengitide administration (4 mg/kg; N = 31; 6-7 per cohort. Perfusion-fixed brain sections were stained for von Willebrand factor to visualize vascular segments. A comparison of pre- and post-treatment parameters showed that the differences between MR indices before and after Cilengitide treatment pivoted around the 8 h time point, with 2 and 4 h groups showing increases, 12 and 24 h groups showing decreases, and values at the 8 h time point close to the baseline. The vascular parameter differences between group of 2 and 4 h and group of 12 and 24 h were significant for K(trans (p = 0.0001 and v(e (p = 0,0271. Vascular staining showed little variation with time after Cilengitide. The vascular normalization occurring 8 h after Cilengitide treatment coincided with similar previous reports of increased treatment efficacy when RT followed Cilengitide by 8 h. Pharmacological normalization of vasculature has the potential to increase sensitivity to RT. Evaluating acute temporal responses of tumor vasculature to putative anti-angiogenic drugs may help in optimizing their combination with other treatment modalities.
Practical identifiability analysis of a minimal cardiovascular system model.
Pironet, Antoine; Docherty, Paul D; Dauby, Pierre C; Chase, J Geoffrey; Desaive, Thomas
2017-01-17
Parameters of mathematical models of the cardiovascular system can be used to monitor cardiovascular state, such as total stressed blood volume status, vessel elastance and resistance. To do so, the model parameters have to be estimated from data collected at the patient's bedside. This work considers a seven-parameter model of the cardiovascular system and investigates whether these parameters can be uniquely determined using indices derived from measurements of arterial and venous pressures, and stroke volume. An error vector defined the residuals between the simulated and reference values of the seven clinically available haemodynamic indices. The sensitivity of this error vector to each model parameter was analysed, as well as the collinearity between parameters. To assess practical identifiability of the model parameters, profile-likelihood curves were constructed for each parameter. Four of the seven model parameters were found to be practically identifiable from the selected data. The remaining three parameters were practically non-identifiable. Among these non-identifiable parameters, one could be decreased as much as possible. The other two non-identifiable parameters were inversely correlated, which prevented their precise estimation. This work presented the practical identifiability analysis of a seven-parameter cardiovascular system model, from limited clinical data. The analysis showed that three of the seven parameters were practically non-identifiable, thus limiting the use of the model as a monitoring tool. Slight changes in the time-varying function modeling cardiac contraction and use of larger values for the reference range of venous pressure made the model fully practically identifiable. Copyright © 2017. Published by Elsevier B.V.
Improved identifiability of myocardial material parameters by an energy-based cost function.
Nasopoulou, Anastasia; Shetty, Anoop; Lee, Jack; Nordsletten, David; Rinaldi, C Aldo; Lamata, Pablo; Niederer, Steven
2017-06-01
Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were [Formula: see text] and [Formula: see text] ([Formula: see text], [Formula: see text], [Formula: see text]) for the HF cases and [Formula: see text] and [Formula: see text] ([Formula: see text], [Formula: see text], [Formula: see text]) for the healthy case.
Ebola Virus Infection Modelling and Identifiability Problems
Directory of Open Access Journals (Sweden)
Van-Kinh eNguyen
2015-04-01
Full Text Available The recent outbreaks of Ebola virus (EBOV infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4, basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently neededto tackle this lethal disease. Mathematical modelling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modelling approach to unravel the interaction between EBOV and the host cells isstill missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells in EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parametersin viral infections kinetics is the key contribution of this work, paving the way for future modelling work on EBOV infection.
Spatio-temporal modeling of nonlinear distributed parameter systems
Li, Han-Xiong
2011-01-01
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s
A Note on the Identifiability of Generalized Linear Mixed Models
DEFF Research Database (Denmark)
Labouriau, Rodrigo
2014-01-01
I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity ...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization...
Identifiability Results for Several Classes of Linear Compartment Models.
Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa
2015-08-01
Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.
IDENTIFIABILITY VERSUS HETEROGENEITY IN GROUNDWATER MODELING SYSTEMS
Directory of Open Access Journals (Sweden)
A M BENALI
2003-06-01
Full Text Available Review of history matching of reservoirs parameters in groundwater flow raises the problem of identifiability of aquifer systems. Lack of identifiability means that there exists parameters to which the heads are insensitive. From the guidelines of the study of the homogeneous case, we inspect the identifiability of the distributed transmissivity field of heterogeneous groundwater aquifers. These are derived from multiple realizations of a random function Y = log T whose probability distribution function is normal. We follow the identifiability of the autocorrelated block transmissivities through the measure of the sensitivity of the local derivatives DTh = (∂hi ∕ ∂Tj computed for each sample of a population N (0; σY, αY. Results obtained from an analysis of Monte Carlo type suggest that the more a system is heterogeneous, the less it is identifiable.
Incremental parameter estimation of kinetic metabolic network models
Directory of Open Access Journals (Sweden)
Jia Gengjie
2012-11-01
Full Text Available Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE. Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified. Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates exceeds that of metabolites (chemical species. Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.
Robust estimation of hydrological model parameters
Directory of Open Access Journals (Sweden)
A. Bárdossy
2008-11-01
Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.
Model parameter updating using Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Treml, C. A. (Christine A.); Ross, Timothy J.
2004-01-01
This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.
On parameter estimation in deformable models
DEFF Research Database (Denmark)
Fisker, Rune; Carstensen, Jens Michael
1998-01-01
Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...
Directory of Open Access Journals (Sweden)
Johanna M Walz
Full Text Available Vascular endothelial growth factor-A (VEGF-A is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements.Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT / CTAD, cannula (butterfly vs. neonatal, type of centrifuge (swing-out vs. fixed-angle, time before and after centrifugation, filling level (completely filled vs. half-filled tubes and analyzing method (ELISA vs. multiplex bead array. Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model.The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes.VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples.
Walz, Johanna M; Boehringer, Daniel; Deissler, Heidrun L; Faerber, Lothar; Goepfert, Jens C; Heiduschka, Peter; Kleeberger, Susannah M; Klettner, Alexa; Krohne, Tim U; Schneiderhan-Marra, Nicole; Ziemssen, Focke; Stahl, Andreas
2016-01-01
Vascular endothelial growth factor-A (VEGF-A) is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements. Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center) twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT / CTAD), cannula (butterfly vs. neonatal), type of centrifuge (swing-out vs. fixed-angle), time before and after centrifugation, filling level (completely filled vs. half-filled tubes) and analyzing method (ELISA vs. multiplex bead array). Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model. The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes. VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples.
Identifying the important factors in simulation models with many factors
Bettonvil, B.; Kleijnen, J.P.C.
1994-01-01
Simulation models may have many parameters and input variables (together called factors), while only a few factors are really important (parsimony principle). For such models this paper presents an effective and efficient screening technique to identify and estimate those important factors. The
Parameter identification in the logistic STAR model
DEFF Research Database (Denmark)
Ekner, Line Elvstrøm; Nejstgaard, Emil
We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th......We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter...
Structural identifiability analysis of a cardiovascular system model.
Pironet, Antoine; Dauby, Pierre C; Chase, J Geoffrey; Docherty, Paul D; Revie, James A; Desaive, Thomas
2016-05-01
The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical and experimental studies. However, this cardiovascular system model (and others derived from it) are not identifiable from any output set. In this work, two such cases of structural non-identifiability are first presented. These cases occur when the model output set only contains a single type of information (pressure or volume). A specific output set is thus chosen, mixing pressure and volume information and containing only a limited number of clinically available measurements. Then, by manipulating the model equations involving these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally globally identifiable. A further simplification is made, assuming known cardiac valve resistances. Because of the poor practical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six-chamber cardiovascular system model is structurally identifiable from an even smaller dataset. As a consequence, parameter values computed from limited but well-chosen datasets are theoretically unique. This means that the parameter identification procedure can safely be performed on the model from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jonathan R Karr
2015-05-01
Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei
2013-09-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Application of lumped-parameter models
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil. Subsequently, the assembly of the dynamic stiffness matrix for the foundation is considered, and the solution for obtaining the steady state response, when using lumped-parameter models is given. (au)
A method for model identification and parameter estimation
International Nuclear Information System (INIS)
Bambach, M; Heinkenschloss, M; Herty, M
2013-01-01
We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)
CHAMP: Changepoint Detection Using Approximate Model Parameters
2014-06-01
form (with independent emissions or otherwise), in which parameter estimates are available via means such as maximum likelihood fit, MCMC , or sample ...counterparts, including the ability to generate a full posterior distribution over changepoint locations and offering a natural way to incorporate prior... sample consensus method. Our modifications also remove a significant restriction on model definition when detecting parameter changes within a single
Setting Parameters for Biological Models With ANIMO
Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran
2014-01-01
ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions
Parameters and error of a theoretical model
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.; Swiatecki, W.
1986-09-01
We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs
Application of lumped-parameter models
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten
This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse......This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1...
Setting Parameters for Biological Models With ANIMO
Directory of Open Access Journals (Sweden)
Stefano Schivo
2014-03-01
Full Text Available ANIMO (Analysis of Networks with Interactive MOdeling is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions between biological entities in form of a graph, while the parameters determine the speed of occurrence of such interactions. When a mismatch is observed between the behavior of an ANIMO model and experimental data, we want to update the model so that it explains the new data. In general, the topology of a model can be expanded with new (known or hypothetical nodes, and enables it to match experimental data. However, the unrestrained addition of new parts to a model causes two problems: models can become too complex too fast, to the point of being intractable, and too many parts marked as "hypothetical" or "not known" make a model unrealistic. Even if changing the topology is normally the easier task, these problems push us to try a better parameter fit as a first step, and resort to modifying the model topology only as a last resource. In this paper we show the support added in ANIMO to ease the task of expanding the knowledge on biological networks, concentrating in particular on the parameter settings.
Dimensionality reduction of RKHS model parameters.
Taouali, Okba; Elaissi, Ilyes; Messaoud, Hassani
2015-07-01
This paper proposes a new method to reduce the parameter number of models developed in the Reproducing Kernel Hilbert Space (RKHS). In fact, this number is equal to the number of observations used in the learning phase which is assumed to be high. The proposed method entitled Reduced Kernel Partial Least Square (RKPLS) consists on approximating the retained latent components determined using the Kernel Partial Least Square (KPLS) method by their closest observation vectors. The paper proposes the design and the comparative study of the proposed RKPLS method and the Support Vector Machines on Regression (SVR) technique. The proposed method is applied to identify a nonlinear Process Trainer PT326 which is a physical process available in our laboratory. Moreover as a thermal process with large time response may help record easily effective observations which contribute to model identification. Compared to the SVR technique, the results from the proposed RKPLS method are satisfactory. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Parameter Estimation for Thurstone Choice Models
Energy Technology Data Exchange (ETDEWEB)
Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-24
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.
DEFF Research Database (Denmark)
Sin, Gürkan; Meyer, Anne S.; Gernaey, Krist
2010-01-01
The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done in the ori......The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done...
Modelling and parameter estimation of dynamic systems
Raol, JR; Singh, J
2004-01-01
Parameter estimation is the process of using observations from a system to develop mathematical models that adequately represent the system dynamics. The assumed model consists of a finite set of parameters, the values of which are calculated using estimation techniques. Most of the techniques that exist are based on least-square minimization of error between the model response and actual system response. However, with the proliferation of high speed digital computers, elegant and innovative techniques like filter error method, H-infinity and Artificial Neural Networks are finding more and mor
Models and parameters for environmental radiological assessments
Energy Technology Data Exchange (ETDEWEB)
Miller, C W [ed.
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)
Consistent Stochastic Modelling of Meteocean Design Parameters
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Sterndorff, M. J.
2000-01-01
Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...
Models and parameters for environmental radiological assessments
International Nuclear Information System (INIS)
Miller, C.W.
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base
Identifying motifs in folktales using topic models
Karsdorp, F.; Bosch, A.P.J. van den
2013-01-01
With the undertake of various folktale digitalization initiatives, the need for computational aids to explore these collections is increasing. In this paper we compare Labeled LDA (L-LDA) to a simple retrieval model on the task of identifying motifs in folktales. We show that both methods are well
Glover, K.; Willems, J. C.
1973-01-01
Consider the situation in which the unknown parameters of a stationary linear system may be parametrized by a set of unknown parameters. The question thus arises of when such a set of parameters can be uniquely identified on the basis of observed data. This problem is considered here both in the case of input and output observations and in the case of output observations in the presence of a white noise input. Conditions for local identifiability are derived for both situations and a sufficient condition for global identifiability is given for the former situation, i.e., when simultaneous input and output observations are available.
Source term modelling parameters for Project-90
International Nuclear Information System (INIS)
Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.
1992-04-01
This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)
Advances in Modelling, System Identification and Parameter ...
Indian Academy of Sciences (India)
models determined from flight test data by using parameter estimation methods find extensive use in design/modification of flight control systems, high fidelity flight simulators and evaluation of handling qualitites of aircraft and rotorcraft. R K Mehra et al present new algorithms and results for flutter tests and adaptive notching ...
A lumped parameter model of plasma focus
International Nuclear Information System (INIS)
Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro
1999-01-01
A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)
One parameter model potential for noble metals
International Nuclear Information System (INIS)
Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.
1981-08-01
A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)
Parameter optimization for surface flux transport models
Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.
2017-11-01
Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
Fadly, Romi; Dewi, Citra
2014-01-01
This research aims to compare the 14 transformation parameters between ITRF from computation result using the Helmert 14-parameter models with IERS standard parameters. The transforma- tion parameters are calculated from the coordinates and velocities of ITRF05 to ITRF00 epoch 2000.00, and from ITRF08 to ITRF05 epoch 2005.00 for respectively transformation models. The transformation parameters are compared to the IERS standard parameters, then tested the signifi- cance of the d...
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
Kaylie Rasmuson; Kurt Rautenstrauch
2003-06-20
This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.
Constant-parameter capture-recapture models
Brownie, C.; Hines, J.E.; Nichols, J.D.
1986-01-01
Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.
Aqueous Electrolytes: Model Parameters and Process Simulation
DEFF Research Database (Denmark)
Thomsen, Kaj
This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer ...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented.......This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...
A software for parameter estimation in dynamic models
Directory of Open Access Journals (Sweden)
M. Yuceer
2008-12-01
Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.
Joint Dynamics Modeling and Parameter Identification for Space Robot Applications
Directory of Open Access Journals (Sweden)
Adenilson R. da Silva
2007-01-01
Full Text Available Long-term mission identification and model validation for in-flight manipulator control system in almost zero gravity with hostile space environment are extremely important for robotic applications. In this paper, a robot joint mathematical model is developed where several nonlinearities have been taken into account. In order to identify all the required system parameters, an integrated identification strategy is derived. This strategy makes use of a robust version of least-squares procedure (LS for getting the initial conditions and a general nonlinear optimization method (MCS—multilevel coordinate search—algorithm to estimate the nonlinear parameters. The approach is applied to the intelligent robot joint (IRJ experiment that was developed at DLR for utilization opportunity on the International Space Station (ISS. The results using real and simulated measurements have shown that the developed algorithm and strategy have remarkable features in identifying all the parameters with good accuracy.
Modelling tourists arrival using time varying parameter
Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.
2017-06-01
The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.
Soil-related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
A. J. Smith
2003-01-01
This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash
Parameter estimation and model selection in computational biology.
Directory of Open Access Journals (Sweden)
Gabriele Lillacci
2010-03-01
Full Text Available A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.
Lumped Parameters Model of a Crescent Pump
Directory of Open Access Journals (Sweden)
Massimo Rundo
2016-10-01
Full Text Available This paper presents the lumped parameters model of an internal gear crescent pump with relief valve, able to estimate the steady-state flow-pressure characteristic and the pressure ripple. The approach is based on the identification of three variable control volumes regardless of the number of gear teeth. The model has been implemented in the commercial environment LMS Amesim with the development of customized components. Specific attention has been paid to the leakage passageways, some of them affected by the deformation of the cover plate under the action of the delivery pressure. The paper reports the finite element method analysis of the cover for the evaluation of the deflection and the validation through a contactless displacement transducer. Another aspect described in this study is represented by the computational fluid dynamics analysis of the relief valve, whose results have been used for tuning the lumped parameters model. Finally, the validation of the entire model of the pump is presented in terms of steady-state flow rate and of pressure oscillations.
Singh, R.; Archfield, S.A.; Wagener, T.
2014-01-01
Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2004-01-01
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2004-09-10
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rautenstrauch
2004-01-01
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rautenstrauch
2004-09-10
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.
Modeling of Parameters of Subcritical Assembly SAD
Petrochenkov, S; Puzynin, I
2005-01-01
The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.
Parameter estimation in fractional diffusion models
Kubilius, Kęstutis; Ralchenko, Kostiantyn
2017-01-01
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...
Moose models with vanishing S parameter
International Nuclear Information System (INIS)
Casalbuoni, R.; De Curtis, S.; Dominici, D.
2004-01-01
In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2) L and U(1) Y at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric
Simulation of the right-angle car collision based on identified parameters
Kostek, R.; Aleksandrowicz, P.
2017-10-01
This article presents an influence of contact parameters on the collision pattern of vehicles. In this case a crash of two Fiat Cinquecentos with perpendicular median planes was simulated. The first vehicle was driven with a speed 50 km/h and crashed into the other one, standing still. It is a typical collision at junctions. For the first simulation, the default parameters of the V-SIM simulation program were assumed and then the parameters identified from the crash test of a Fiat Cinquecento, published by ADAC (Allgemeiner Deutscher Automobil-Club) were used. Various post-impact movements were observed for both simulations, which demonstrates a sensitivity of the simulation results to the assumed parameters. Applying the default parameters offered by the program can lead to inadequate evaluation of the collision part due to its only approximate reconstruction, which in consequence, influences the court decision. It was demonstrated how complex it is to reconstruct the pattern of the vehicles’ crash and what problems are faced by expert witnesses who tend to use default parameters.
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Wasiolek, M. A.
2003-01-01
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-06-27
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699
On the identifiability of inertia parameters of planar Multi-Body Space Systems
Nabavi-Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher
2018-04-01
This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.
On the role of modeling parameters in IMRT plan optimization
International Nuclear Information System (INIS)
Krause, Michael; Scherrer, Alexander; Thieke, Christian
2008-01-01
The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way
Models for setting ATM parameter values
DEFF Research Database (Denmark)
Blaabjerg, Søren; Gravey, A.; Romæuf, L.
1996-01-01
presents approximate methods and discusses their applicability. We then discuss the problem of obtaining traffic characteristic values for a connection that has crossed a series of switching nodes. This problem is particularly relevant for the traffic contract components corresponding to ICIs...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...... essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper...
Thermal Model Parameter Identification of a Lithium Battery
Directory of Open Access Journals (Sweden)
Dirk Nissing
2017-01-01
Full Text Available The temperature of a Lithium battery cell is important for its performance, efficiency, safety, and capacity and is influenced by the environmental temperature and by the charging and discharging process itself. Battery Management Systems (BMS take into account this effect. As the temperature at the battery cell is difficult to measure, often the temperature is measured on or nearby the poles of the cell, although the accuracy of predicting the cell temperature with those quantities is limited. Therefore a thermal model of the battery is used in order to calculate and estimate the cell temperature. This paper uses a simple RC-network representation for the thermal model and shows how the thermal parameters are identified using input/output measurements only, where the load current of the battery represents the input while the temperatures at the poles represent the outputs of the measurement. With a single measurement the eight model parameters (thermal resistances, electric contact resistances, and heat capacities can be determined using the method of least-square. Experimental results show that the simple model with the identified parameters fits very accurately to the measurements.
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. A. Wasiolek
2003-01-01
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-09-24
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air
Dengue human infection model performance parameters.
Endy, Timothy P
2014-06-15
Dengue is a global health problem and of concern to travelers and deploying military personnel with development and licensure of an effective tetravalent dengue vaccine a public health priority. The dengue viruses (DENVs) are mosquito-borne flaviviruses transmitted by infected Aedes mosquitoes. Illness manifests across a clinical spectrum with severe disease characterized by intravascular volume depletion and hemorrhage. DENV illness results from a complex interaction of viral properties and host immune responses. Dengue vaccine development efforts are challenged by immunologic complexity, lack of an adequate animal model of disease, absence of an immune correlate of protection, and only partially informative immunogenicity assays. A dengue human infection model (DHIM) will be an essential tool in developing potential dengue vaccines or antivirals. The potential performance parameters needed for a DHIM to support vaccine or antiviral candidates are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DEFF Research Database (Denmark)
Lauridsen, Jonas; Sekunda, André Krabdrup; Santos, Ilmar
2015-01-01
the LFT matrices represent the mapping of the uncertainties in and out of the full and reduced FE system matrices. Scaling the LFT matrices easily leads to the amplitudes of the uncertainty parameters., Youla Parametrization method is applied to transform the identification problem into an open...... for model-based control design and fast identification., The paper elucidates how nodal parametric uncertainties, which are easily represented in the full FE coordinate system, can be represented in the new coordinate system of the reduced model. The uncertainty is described as a single column vector...... of the system matrix A of the full FE model while it is represented as several elements spread over multiple rows and columns of the system matrix of the reduced model. The parametric uncertainty, for both the full and reduced FE model, is represented using Linear Fractional Transformation (LFT). In this way...
Local sensitivity analysis of a distributed parameters water quality model
International Nuclear Information System (INIS)
Pastres, R.; Franco, D.; Pecenik, G.; Solidoro, C.; Dejak, C.
1997-01-01
A local sensitivity analysis is presented of a 1D water-quality reaction-diffusion model. The model describes the seasonal evolution of one of the deepest channels of the lagoon of Venice, that is affected by nutrient loads from the industrial area and heat emission from a power plant. Its state variables are: water temperature, concentrations of reduced and oxidized nitrogen, Reactive Phosphorous (RP), phytoplankton, and zooplankton densities, Dissolved Oxygen (DO) and Biological Oxygen Demand (BOD). Attention has been focused on the identifiability and the ranking of the parameters related to primary production in different mixing conditions
Soil-Related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Smith, A. J.
2004-01-01
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This
Soil-Related Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
A. J. Smith
2004-09-09
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure
Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E
2013-12-01
Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.
Identifying nonproportional covariates in the Cox model
Czech Academy of Sciences Publication Activity Database
Kraus, David
2008-01-01
Roč. 37, č. 4 (2008), s. 617-625 ISSN 0361-0926 R&D Projects: GA AV ČR(CZ) IAA101120604; GA MŠk(CZ) 1M06047; GA ČR(CZ) GD201/05/H007 Institutional research plan: CEZ:AV0Z10750506 Keywords : Cox model * goodness of fit * proportional hazards assumption * time-varying coefficients Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.324, year: 2008
Liem, I S; Kammerlander, C; Suhm, N; Blauth, M; Roth, T; Gosch, M; Hoang-Kim, A; Mendelson, D; Zuckerman, J; Leung, F; Burton, J; Moran, C; Parker, M; Giusti, A; Pioli, G; Goldhahn, J; Kates, S L
2013-11-01
Osteoporotic fractures are an increasing problem in the world due to the ageing of the population. Different models of orthogeriatric co-management are currently in use worldwide. These models differ for instance by the health-care professional who has the responsibility for care in the acute and early rehabilitation phases. There is no international consensus regarding the best model of care and which outcome parameters should be used to evaluate these models. The goal of this project was to identify which outcome parameters and assessment tools should be used to measure and compare outcome changes that can be made by the implementation of orthogeriatric co-management models and to develop recommendations about how and when these outcome parameters should be measured. It was not the purpose of this study to describe items that might have an impact on the outcome but cannot be influenced such as age, co-morbidities and cognitive impairment at admission. Based on a review of the literature on existing orthogeriatric co-management evaluation studies, 14 outcome parameters were evaluated and discussed in a 2-day meeting with panellists. These panellists were selected based on research and/or clinical expertise in hip fracture management and a common interest in measuring outcome in hip fracture care. We defined 12 objective and subjective outcome parameters and how they should be measured: mortality, length of stay, time to surgery, complications, re-admission rate, mobility, quality of life, pain, activities of daily living, medication use, place of residence and costs. We could not recommend an appropriate tool to measure patients' satisfaction and falls. We defined the time points at which these outcome parameters should be collected to be at admission and discharge, 30 days, 90 days and 1 year after admission. Twelve objective and patient-reported outcome parameters were selected to form a standard set for the measurement of influenceable outcome of patients
Eisenberg, Marisa C; Jain, Harsh V
2017-10-27
Mathematical modeling has a long history in the field of cancer therapeutics, and there is increasing recognition that it can help uncover the mechanisms that underlie tumor response to treatment. However, making quantitative predictions with such models often requires parameter estimation from data, raising questions of parameter identifiability and estimability. Even in the case of structural (theoretical) identifiability, imperfect data and the resulting practical unidentifiability of model parameters can make it difficult to infer the desired information, and in some cases, to yield biologically correct inferences and predictions. Here, we examine parameter identifiability and estimability using a case study of two compartmental, ordinary differential equation models of cancer treatment with drugs that are cell cycle-specific (taxol) as well as non-specific (oxaliplatin). We proceed through model building, structural identifiability analysis, parameter estimation, practical identifiability analysis and its biological implications, as well as alternative data collection protocols and experimental designs that render the model identifiable. We use the differential algebra/input-output relationship approach for structural identifiability, and primarily the profile likelihood approach for practical identifiability. Despite the models being structurally identifiable, we show that without consideration of practical identifiability, incorrect cell cycle distributions can be inferred, that would result in suboptimal therapeutic choices. We illustrate the usefulness of estimating practically identifiable combinations (in addition to the more typically considered structurally identifiable combinations) in generating biologically meaningful insights. We also use simulated data to evaluate how the practical identifiability of the model would change under alternative experimental designs. These results highlight the importance of understanding the underlying mechanisms
Directory of Open Access Journals (Sweden)
R. P. Lepping
2010-08-01
Full Text Available This study is motivated by the unusually low number of magnetic clouds (MCs that are strictly identified within interplanetary coronal mass ejections (ICMEs, as observed at 1 AU; this is usually estimated to be around 30% or lower. But a looser definition of MCs may significantly increase this percentage. Another motivation is the unexpected shape of the occurrence distribution of the observers' "closest approach distances" (measured from a MC's axis, and called CA which drops off somewhat rapidly as |CA| (in % of MC radius approaches 100%, based on earlier studies. We suggest, for various geometrical and physical reasons, that the |CA|-distribution should be somewhere between a uniform one and the one actually observed, and therefore the 30% estimate should be higher. So we ask, When there is a failure to identify a MC within an ICME, is it occasionally due to a large |CA| passage, making MC identification more difficult, i.e., is it due to an event selection effect? In attempting to answer this question we examine WIND data to obtain an accurate distribution of the number of MCs vs. |CA| distance, whether the event is ICME-related or not, where initially a large number of cases (N=98 are considered. This gives a frequence distribution that is far from uniform, confirming earlier studies. This along with the fact that there are many ICME identification-parameters that do not depend on |CA| suggest that, indeed an MC event selection effect may explain at least part of the low ratio of (No. MCs/(No. ICMEs. We also show that there is an acceptable geometrical and physical consistency in the relationships for both average "normalized" magnetic field intensity change and field direction change vs. |CA| within a MC, suggesting that our estimates of |CA|, BO (magnetic field intensity on the axis, and choice of a proper "cloud coordinate" system (all needed in the analysis are acceptably accurate. Therefore, the MC fitting model (Lepping et al., 1990
Achleitner, S; Rinderer, M; Kirnbauer, R
2009-01-01
For the Tyrolean part of the river Inn, a hybrid model for flood forecast has been set up and is currently in its test phase. The system is a hybrid system which comprises of a hydraulic 1D model for the river Inn, and the hydrological models HQsim (Rainfall-runoff-discharge model) and the snow and ice melt model SES for modeling the rainfall runoff form non-glaciated and glaciated tributary catchment respectively. Within this paper the focus is put on the hydrological modeling of the totally 49 connected non-glaciated catchments realized with the software HQsim. In the course of model calibration, the identification of the most sensitive parameters is important aiming at an efficient calibration procedure. The indicators used for explaining the parameter sensitivities were chosen specifically for the purpose of flood forecasting. Finally five model parameters could be identified as being sensitive for model calibration when aiming for a well calibrated model for flood conditions. In addition two parameters were identified which are sensitive in situations where the snow line plays an important role.
Sample Size and Item Parameter Estimation Precision When Utilizing the One-Parameter "Rasch" Model
Custer, Michael
2015-01-01
This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…
Models for estimating photosynthesis parameters from in situ production profiles
Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana
2017-12-01
The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of
Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby
2013-12-01
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.
Global identifiability of linear compartmental models--a computer algebra algorithm.
Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C
1998-01-01
A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.
Modelling spatial-temporal and coordinative parameters in swimming.
Seifert, L; Chollet, D
2009-07-01
This study modelled the changes in spatial-temporal and coordinative parameters through race paces in the four swimming strokes. The arm and leg phases in simultaneous strokes (butterfly and breaststroke) and the inter-arm phases in alternating strokes (crawl and backstroke) were identified by video analysis to calculate the time gaps between propulsive phases. The relationships among velocity, stroke rate, stroke length and coordination were modelled by polynomial regression. Twelve elite male swimmers swam at four race paces. Quadratic regression modelled the changes in spatial-temporal and coordinative parameters with velocity increases for all four strokes. First, the quadratic regression between coordination and velocity showed changes common to all four strokes. Notably, the time gaps between the key points defining the beginning and end of the stroke phases decreased with increases in velocity, which led to decreases in glide times and increases in the continuity between propulsive phases. Conjointly, the quadratic regression among stroke rate, stroke length and velocity was similar to the changes in coordination, suggesting that these parameters may influence coordination. The main practical application for coaches and scientists is that ineffective time gaps can be distinguished from those that simply reflect an individual swimmer's profile by monitoring the glide times within a stroke cycle. In the case of ineffective time gaps, targeted training could improve the swimmer's management of glide time.
Optimizing incomplete sample designs for item response model parameters
van der Linden, Willem J.
Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with
Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.
2014-01-01
Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.
Study on Parameters Modeling of Wind Turbines Using SCADA Data
Directory of Open Access Journals (Sweden)
Yonglong YAN
2014-08-01
Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.
Parameter and Uncertainty Estimation in Groundwater Modelling
DEFF Research Database (Denmark)
Jensen, Jacob Birk
The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... was applied.Capture zone modelling was conducted on a synthetic stationary 3-dimensional flow problem involving river, surface and groundwater flow. Simulated capture zones were illustrated as likelihood maps and compared with a deterministic capture zones derived from a reference model. The results showed...
WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...
African Journals Online (AJOL)
Preferred Customer
SUBGRADE MODELING. Asrat Worku. Department of ... The models give consistently larger stiffness for the Winkler springs as compared to previously proposed similar continuum-based models that ignore the lateral stresses. ...... (ν = 0.25 and E = 40MPa); (b) a medium stiff clay (ν = 0.45 and E = 50MPa). In contrast to this, ...
Simple Model for Identifying Critical Regions in Atrial Fibrillation
Christensen, Kim; Manani, Kishan A.; Peters, Nicholas S.
2015-01-01
Atrial fibrillation (AF) is the most common abnormal heart rhythm and the single biggest cause of stroke. Ablation, destroying regions of the atria, is applied largely empirically and can be curative but with a disappointing clinical success rate. We design a simple model of activation wave front propagation on an anisotropic structure mimicking the branching network of heart muscle cells. This integration of phenomenological dynamics and pertinent structure shows how AF emerges spontaneously when the transverse cell-to-cell coupling decreases, as occurs with age, beyond a threshold value. We identify critical regions responsible for the initiation and maintenance of AF, the ablation of which terminates AF. The simplicity of the model allows us to calculate analytically the risk of arrhythmia and express the threshold value of transversal cell-to-cell coupling as a function of the model parameters. This threshold value decreases with increasing refractory period by reducing the number of critical regions which can initiate and sustain microreentrant circuits. These biologically testable predictions might inform ablation therapies and arrhythmic risk assessment.
Sensitivity analysis for the study of influential parameters in tyre models
Kiébré, Rimyaledgo; Anstett-Collin, Floriane; Basset, Michel
2011-01-01
International audience; This paper studies two tyre models, the Fiala model and the Pacejka model. Both models are nonlinear and depend on parameters which must be identified from measurement data. A major problem is to efficiently prepare and plan the experiments. It is necessary to determine the parameters which have the greatest influence on the model output, and account for the output uncertainty which must be reduced. Therefore, the methodology presented here will help to carry out a var...
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification
Clark, D Angus; Nuttall, Amy K; Bowles, Ryan P
2018-01-01
Latent change score models (LCS) are conceptually powerful tools for analyzing longitudinal data (McArdle & Hamagami, 2001). However, applications of these models typically include constraints on key parameters over time. Although practically useful, strict invariance over time in these parameters is unlikely in real data. This study investigates the robustness of LCS when invariance over time is incorrectly imposed on key change-related parameters. Monte Carlo simulation methods were used to explore the impact of misspecification on parameter estimation, predicted trajectories of change, and model fit in the dual change score model, the foundational LCS. When constraints were incorrectly applied, several parameters, most notably the slope (i.e., constant change) factor mean and autoproportion coefficient, were severely and consistently biased, as were regression paths to the slope factor when external predictors of change were included. Standard fit indices indicated that the misspecified models fit well, partly because mean level trajectories over time were accurately captured. Loosening constraint improved the accuracy of parameter estimates, but estimates were more unstable, and models frequently failed to converge. Results suggest that potentially common sources of misspecification in LCS can produce distorted impressions of developmental processes, and that identifying and rectifying the situation is a challenge.
Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.
2012-12-01
Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root
Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model
DEFF Research Database (Denmark)
Åberg, Andreas; Widd, Anders; Abildskov, Jens
2016-01-01
A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests...
Optimization of Experimental Model Parameter Identification for Energy Storage Systems
Directory of Open Access Journals (Sweden)
Rosario Morello
2013-09-01
Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.
International Nuclear Information System (INIS)
Rout, S.; Mishra, D.G.; Ravi, P.M.; Tripathi, R.M.
2016-01-01
Tritium is one of the radionuclides likely to get released to the environment from Pressurized Heavy Water Reactors. Environmental models are extensively used to quantify the complex environmental transport processes of radionuclides and also to assess the impact to the environment. Model parameters exerting the significant influence on model results are identified through a sensitivity analysis (SA). SA is the study of how the variation (uncertainty) in the output of a mathematical model can be apportioned, qualitatively or quantitatively, to different sources of variation in the input parameters. This study was designed to identify the sensitive model parameters of specific activity model (TRS 1616, IAEA) for environmental transfer of 3 H following release to air and then to vegetation and animal products. Model includes parameters such as air to soil transfer factor (CRs), Tissue Free Water 3 H to Organically Bound 3 H ratio (Rp), Relative humidity (RH), WCP (fractional water content) and WEQp (water equivalent factor) any change in these parameters leads to change in 3 H level in vegetation and animal products consequently change in dose due to ingestion. All these parameters are function of climate and/or plant which change with time, space and species. Estimation of these parameters at every time is a time consuming and also required sophisticated instrumentation. Therefore it is necessary to identify the sensitive parameters and freeze the values of least sensitive parameters at constant values for more accurate estimation of 3 H dose in short time for routine assessment
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling
Bai, Xian-Xu; Xu, Shi-Xu; Cheng, Wei; Qian, Li-Jun
2017-08-01
It is useful to develop an effective biodynamic model of seated human occupants to help understand the human vibration exposure to transportation vehicle vibrations and to help design and improve the anti-vibration devices and/or test dummies. This study proposed and demonstrated a methodology for systematically identifying the best configuration or structure of a 4-degree-of-freedom (4DOF) human vibration model and for its parameter identification. First, an equivalent simplification expression for the models was made. Second, all of the possible 23 structural configurations of the models were identified. Third, each of them was calibrated using the frequency response functions recommended in a biodynamic standard. An improved version of non-dominated sorting genetic algorithm (NSGA-II) based on Pareto optimization principle was used to determine the model parameters. Finally, a model evaluation criterion proposed in this study was used to assess the models and to identify the best one, which was based on both the goodness of curve fits and comprehensive goodness of the fits. The identified top configurations were better than those reported in the literature. This methodology may also be extended and used to develop the models with other DOFs.
Estimation of Parameters in Latent Class Models with Constraints on the Parameters.
Paulson, James A.
This paper reviews the application of the EM Algorithm to marginal maximum likelihood estimation of parameters in the latent class model and extends the algorithm to the case where there are monotone homogeneity constraints on the item parameters. It is shown that the EM algorithm can be used to obtain marginal maximum likelihood estimates of the…
Identifiability in N-mixture models: a large-scale screening test with bird data.
Kéry, Marc
2018-02-01
Binomial N-mixture models have proven very useful in ecology, conservation, and monitoring: they allow estimation and modeling of abundance separately from detection probability using simple counts. Recently, doubts about parameter identifiability have been voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The corresponding multinomial N-mixture models had no problems. Parameter estimates under Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifiability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but were unaffected by whether the models did or did not include covariates. Hence, binomial N-mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In contrast, NB mixtures were often unidentifiable, which is worrying since these were often selected by Akaike's information criterion. Identifiability of binomial N-mixture models should always be checked. If problems are found, simpler models, integrated models that combine different observation models or the use of external information via informative priors or penalized likelihoods, may help. © 2017 by the Ecological Society of America.
The Effect of Nondeterministic Parameters on Shock-Associated Noise Prediction Modeling
Dahl, Milo D.; Khavaran, Abbas
2010-01-01
Engineering applications for aircraft noise prediction contain models for physical phenomenon that enable solutions to be computed quickly. These models contain parameters that have an uncertainty not accounted for in the solution. To include uncertainty in the solution, nondeterministic computational methods are applied. Using prediction models for supersonic jet broadband shock-associated noise, fixed model parameters are replaced by probability distributions to illustrate one of these methods. The results show the impact of using nondeterministic parameters both on estimating the model output uncertainty and on the model spectral level prediction. In addition, a global sensitivity analysis is used to determine the influence of the model parameters on the output, and to identify the parameters with the least influence on model output.
An approach to adjustment of relativistic mean field model parameters
Directory of Open Access Journals (Sweden)
Bayram Tuncay
2017-01-01
Full Text Available The Relativistic Mean Field (RMF model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs of 58Ni and 208Pb have been found in agreement with the literature values.
A simulation of water pollution model parameter estimation
Kibler, J. F.
1976-01-01
A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.
Lumped parameter models for the interpretation of environmental tracer data
International Nuclear Information System (INIS)
Maloszewski, P.; Zuber, A.
1996-01-01
Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs
A test for the parameters of multiple linear regression models ...
African Journals Online (AJOL)
A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...
WATGIS: A GIS-Based Lumped Parameter Water Quality Model
Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya
2002-01-01
A Geographic Information System (GIS)Âbased, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogenÂloading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...
Exploring the interdependencies between parameters in a material model.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew; Fermen-Coker, Muge
2014-01-01
A method is investigated to reduce the number of numerical parameters in a material model for a solid. The basis of the method is to detect interdependencies between parameters within a class of materials of interest. The method is demonstrated for a set of material property data for iron and steel using the Johnson-Cook plasticity model.
Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds
Directory of Open Access Journals (Sweden)
Indrajeet Chaubey
2010-11-01
Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.
Bayesian estimation of parameters in a regional hydrological model
Directory of Open Access Journals (Sweden)
K. Engeland
2002-01-01
Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis
Piecewise Model and Parameter Obtainment of Governor Actuator in Turbine
Directory of Open Access Journals (Sweden)
Jie Zhao
2015-01-01
Full Text Available The governor actuators in some heat-engine plants have nonlinear valves. This nonlinearity of valves may lead to the inaccuracy of the opening and closing time constants calculated based on the whole segment fully open and fully close experimental test curves of the valve. An improved mathematical model of the turbine governor actuator is proposed to reflect the nonlinearity of the valve, in which the main and auxiliary piecewise opening and closing time constants instead of the fixed oil motive opening and closing time constants are adopted to describe the characteristics of the actuator. The main opening and closing time constants are obtained from the linear segments of the whole fully open and close curves. The parameters of proportional integral derivative (PID controller are identified based on the small disturbance experimental tests of the valve. Then the auxiliary opening and closing time constants and the piecewise opening and closing valve points are determined by the fully open/close experimental tests. Several testing functions are selected to compare genetic algorithm and particle swarm optimization algorithm (GA-PSO with other basic intelligence algorithms. The effectiveness of the piecewise linear model and its parameters are validated by practical power plant case studies.
Brownian motion model with stochastic parameters for asset prices
Ching, Soo Huei; Hin, Pooi Ah
2013-09-01
The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.
Behmanesh, Iman; Moaveni, Babak
2016-07-01
This paper presents a Hierarchical Bayesian model updating framework to account for the effects of ambient temperature and excitation amplitude. The proposed approach is applied for model calibration, response prediction and damage identification of a footbridge under changing environmental/ambient conditions. The concrete Young's modulus of the footbridge deck is the considered updating structural parameter with its mean and variance modeled as functions of temperature and excitation amplitude. The identified modal parameters over 27 months of continuous monitoring of the footbridge are used to calibrate the updating parameters. One of the objectives of this study is to show that by increasing the levels of information in the updating process, the posterior variation of the updating structural parameter (concrete Young's modulus) is reduced. To this end, the calibration is performed at three information levels using (1) the identified modal parameters, (2) modal parameters and ambient temperatures, and (3) modal parameters, ambient temperatures, and excitation amplitudes. The calibrated model is then validated by comparing the model-predicted natural frequencies and those identified from measured data after deliberate change to the structural mass. It is shown that accounting for modeling error uncertainties is crucial for reliable response prediction, and accounting only the estimated variability of the updating structural parameter is not sufficient for accurate response predictions. Finally, the calibrated model is used for damage identification of the footbridge.
Estimation of shape model parameters for 3D surfaces
DEFF Research Database (Denmark)
Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen
2008-01-01
is applied to a database of 3D surfaces from a section of the porcine pelvic bone extracted from 33 CT scans. A leave-one-out validation shows that the parameters of the first 3 modes of the shape model can be predicted with a mean difference within [-0.01,0.02] from the true mean, with a standard deviation......Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D...... surfaces using distance maps, which enables the estimation of model parameters without the requirement of point correspondence. For applications with acquisition limitations such as speed and cost, this formulation enables the fitting of a statistical shape model to arbitrarily sampled data. The method...
Arsenault, Richard; Poissant, Dominique; Brissette, François
2015-11-01
This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.
Determination of the Corona model parameters with artificial neural networks
International Nuclear Information System (INIS)
Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov
2005-01-01
Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model
Some tests for parameter constancy in cointegrated VAR-models
DEFF Research Database (Denmark)
Hansen, Henrik; Johansen, Søren
1999-01-01
Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ...
Empirically modelled Pc3 activity based on solar wind parameters
Directory of Open Access Journals (Sweden)
B. Heilig
2010-09-01
Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through
Determining extreme parameter correlation in ground water models
DEFF Research Database (Denmark)
Hill, Mary Cole; Østerby, Ole
2003-01-01
In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
Modeling and Parameter Estimation of a Small Wind Generation System
Directory of Open Access Journals (Sweden)
Carlos A. Ramírez Gómez
2013-11-01
Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.
Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver
Kang, Ling; Zhou, Liwei
2018-02-01
Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.
Do Lumped-Parameter Models Provide the Correct Geometrical Damping?
DEFF Research Database (Denmark)
Andersen, Lars
2007-01-01
This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines......-parameter models with respect to the prediction of the maximum response during excitation and the geometrical damping related to free vibrations of a footing....
Identifiability of Model Properties in Over-Parameterized Model Classes
DEFF Research Database (Denmark)
Jaeger, Manfred
2013-01-01
Classical learning theory is based on a tight linkage between hypothesis space (a class of function on a domain X), data space (function-value examples (x, f(x))), and the space of queries for the learned model (predicting function values for new examples x). However, in many learning scenarios......: the identification of temporal logic properties of probabilistic automata learned from sequence data, the identification of causal dependencies in probabilistic graphical models, and the transfer of probabilistic relational models to new domains....
Process verification of a hydrological model using a temporal parameter sensitivity analysis
M. Pfannerstill; B. Guse; D. Reusser; N. Fohrer
2015-01-01
To ensure reliable results of hydrological models, it is essential that the models reproduce the hydrological process dynamics adequately. Information about simulated process dynamics is provided by looking at the temporal sensitivities of the corresponding model parameters. For this, the temporal dynamics of parameter sensitivity are analysed to identify the simulated hydrological processes. Based on these analyses it can be verified if the simulated hydrological processes ...
Incorporating model parameter uncertainty into inverse treatment planning
International Nuclear Information System (INIS)
Lian Jun; Xing Lei
2004-01-01
Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment
Azam, M.; Rahman, Z.; Talib, F.; Singh, K.J.
2012-01-01
PURPOSE: The purpose of this article is to identify and critically analyze healthcare establishment (HCE) quality parameters described in the literature. It aims to propose an integrated quality model that includes technical quality and associated supportive quality parameters to achieve optimum
A New Statistical Parameter for Identifying the Main Transition Velocities in Bubble Columns.
Nedeltchev, Stoyan; Rabha, Swapna; Hampel, Uwe; Schubert, Markus
2015-11-01
The identification of the main flow regime boundaries in bubble columns is essential since the degrees of mixing and mass and heat transfer vary with the flow regime. In this work, a new statistical parameter was extracted from the time series of the cross-sectional averaged gas holdup. The measurements were performed in bubble columns by means of conductivity wire-mesh sensors at very high sampling frequency. The columns were operated with an air/deionized water system under ambient conditions. As a flow regime indicator, a new dimensionless statistical parameter called "relative maximum number of visits in a region" was introduced. This new parameter is a function of the difference between the maximum numbers of visits in a region, calculated from two different division schemes of the signal range.
Optimal parameters for the FFA-Beddoes dynamic stall model
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A.; Mert, M. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)
1999-03-01
Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)
A distributed approach for parameters estimation in System Biology models
International Nuclear Information System (INIS)
Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.
2009-01-01
Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.
Do Lumped-Parameter Models Provide the Correct Geometrical Damping?
DEFF Research Database (Denmark)
Andersen, Lars
This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation of struct......This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation...... response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...
Parameter estimation for groundwater models under uncertain irrigation data
Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen
2015-01-01
The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.
Transformations among CE–CVM model parameters for ...
Indian Academy of Sciences (India)
Unknown
parameters which exclusively represent interactions of the higher order systems. Such a procedure is presen- ted in detail in this communication. Furthermore, the details of transformations required to express the model parameters in one basis from those defined in another basis for the same system are also presented.
Transformations among CE–CVM model parameters for ...
Indian Academy of Sciences (India)
... of parameters which exclusively represent interactions of the higher order systems. Such a procedure is presented in detail in this communication. Furthermore, the details of transformations required to express the model parameters in one basis from those defined in another basis for the same system are also presented.
Prior distributions for item parameters in IRT models
Matteucci, M.; S. Mignani, Prof.; Veldkamp, Bernard P.
2012-01-01
The focus of this article is on the choice of suitable prior distributions for item parameters within item response theory (IRT) models. In particular, the use of empirical prior distributions for item parameters is proposed. Firstly, regression trees are implemented in order to build informative
An Examination of Two Procedures for Identifying Consequential Item Parameter Drift
Wells, Craig S.; Hambleton, Ronald K.; Kirkpatrick, Robert; Meng, Yu
2014-01-01
The purpose of the present study was to develop and evaluate two procedures flagging consequential item parameter drift (IPD) in an operational testing program. The first procedure was based on flagging items that exhibit a meaningful magnitude of IPD using a critical value that was defined to represent barely tolerable IPD. The second procedure…
Boens, Noël; Van der Auweraer, Mark
2014-02-01
The deterministic identifiability analysis of photophysical models for the kinetics of excited-state processes, assuming errorless time-resolved fluorescence data, can verify whether the model parameters can be determined unambiguously. In this work, we have investigated the identifiability of several uncommon models for time-resolved fluorescence with underlying distributions of rate constants which lead to non-exponential decays. The mathematical functions used here for the description of non-exponential fluorescence decays are the stretched exponential or Kohlrausch function, the Becquerel function, the Förster type energy transfer function, decay functions associated with exponential, Gaussian and uniform distributions of rate constants, a decay function with extreme sub-exponential behavior, the Mittag-Leffler function and Heaviside's function. It is shown that all the models are uniquely identifiable, which means that for each specific model there exists a single parameter set that describes its associated fluorescence δ-response function.
Stephen W. Boyd; Richard W. Butler; Wolfgang Haider
1995-01-01
This paper identifies the following criteria as indicators for ecotourism suitability within a Northern Ontario context: naturalness, wildlife, cultural heritage, landscape and community. A methodology is proposed which uses Geographical Information Systems (GIS) to identify ecotourism sites by linking criteria deemed important with actual landscape characteristics of...
Retrospective forecast of ETAS model with daily parameters estimate
Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang
2016-04-01
We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.
An Application Of Receptor Modeling To Identify Airborne Particulate ...
African Journals Online (AJOL)
An Application Of Receptor Modeling To Identify Airborne Particulate Sources In Lagos, Nigeria. FS Olise, OK Owoade, HB Olaniyi. Abstract. There have been no clear demarcations between industrial and residential areas of Lagos with focus on industry as the major source. There is need to identify potential source types in ...
Stochastic hyperelastic modeling considering dependency of material parameters
Caylak, Ismail; Penner, Eduard; Dridger, Alex; Mahnken, Rolf
2018-03-01
This paper investigates the uncertainty of a hyperelastic model by treating random material parameters as stochastic variables. For its stochastic discretization a polynomial chaos expansion (PCE) is used. An important aspect in our work is the consideration of stochastic dependencies in the stochastic modeling of Ogden's material model. To this end, artificial experiments are generated using the auto-regressive moving average process based on real experiments. The parameter identification for all data provides statistics of Ogden's material parameters, which are subsequently used for stochastic modeling. Stochastic dependencies are incorporated into the PCE using a Nataf transformation from dependent distributed random variables to independent standard normal distributed ones. The representative numerical example shows that our proposed method adequately takes into account the stochastic dependencies of Ogden's material parameters.
A compact cyclic plasticity model with parameter evolution
DEFF Research Database (Denmark)
Krenk, Steen; Tidemann, L.
2017-01-01
by the Armstrong–Frederick model, contained as a special case of the present model for a particular choice of the shape parameter. In contrast to previous work, where shaping the stress-strain loops is derived from multiple internal stress states, this effect is here represented by a single parameter......The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...
Parameter Estimation for the Thurstone Case III Model.
Mackay, David B.; Chaiy, Seoil
1982-01-01
The ability of three estimation criteria to recover parameters of the Thurstone Case V and Case III models from comparative judgment data was investigated via Monte Carlo techniques. Significant differences in recovery are shown to exist. (Author/JKS)
Improved parameter estimation for hydrological models using weighted object functions
Stein, A.; Zaadnoordijk, W.J.
1999-01-01
This paper discusses the sensitivity of calibration of hydrological model parameters to different objective functions. Several functions are defined with weights depending upon the hydrological background. These are compared with an objective function based upon kriging. Calibration is applied to
Structural identifiability of systems biology models: a critical comparison of methods.
Directory of Open Access Journals (Sweden)
Oana-Teodora Chis
Full Text Available Analysing the properties of a biological system through in silico experimentation requires a satisfactory mathematical representation of the system including accurate values of the model parameters. Fortunately, modern experimental techniques allow obtaining time-series data of appropriate quality which may then be used to estimate unknown parameters. However, in many cases, a subset of those parameters may not be uniquely estimated, independently of the experimental data available or the numerical techniques used for estimation. This lack of identifiability is related to the structure of the model, i.e. the system dynamics plus the observation function. Despite the interest in knowing a priori whether there is any chance of uniquely estimating all model unknown parameters, the structural identifiability analysis for general non-linear dynamic models is still an open question. There is no method amenable to every model, thus at some point we have to face the selection of one of the possibilities. This work presents a critical comparison of the currently available techniques. To this end, we perform the structural identifiability analysis of a collection of biological models. The results reveal that the generating series approach, in combination with identifiability tableaus, offers the most advantageous compromise among range of applicability, computational complexity and information provided.
Partial sum approaches to mathematical parameters of some growth models
Korkmaz, Mehmet
2016-04-01
Growth model is fitted by evaluating the mathematical parameters, a, b and c. In this study, the method of partial sums were used. For finding the mathematical parameters, firstly three partial sums were used, secondly four partial sums were used, thirdly five partial sums were used and finally N partial sums were used. The purpose of increasing the partial decomposition is to produce a better phase model which gives a better expected value by minimizing error sum of squares in the interval used.
Parameter estimation in stochastic rainfall-runoff models
DEFF Research Database (Denmark)
Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur
2006-01-01
A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all....... For a comparison the parameters are also estimated by an output error method, where the sum of squared simulation error is minimized. The former methodology is optimal for short-term prediction whereas the latter is optimal for simulations. Hence, depending on the purpose it is possible to select whether...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...
Luminescence model with quantum impact parameter for low energy ions
Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S
2002-01-01
We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.
Agricultural and Environmental Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rasmuson; K. Rautenstrauch
2004-01-01
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters
Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty
Energy Technology Data Exchange (ETDEWEB)
Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.
2004-03-01
The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four
SPOTting Model Parameters Using a Ready-Made Python Package.
Directory of Open Access Journals (Sweden)
Tobias Houska
Full Text Available The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool, an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI. We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.
Simultaneous inference for model averaging of derived parameters
DEFF Research Database (Denmark)
Jensen, Signe Marie; Ritz, Christian
2015-01-01
Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...
Updating parameters of the chicken processing line model
DEFF Research Database (Denmark)
Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna
2010-01-01
A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate performance of this method in updating parameters...... of the chicken processing line model....
Lumped-Parameter Models for Windturbine Footings on Layered Ground
DEFF Research Database (Denmark)
Andersen, Lars
The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...
The use of systems models to identify food waste drivers
Grainger, Matthew James; Aramyan, Lusine; Logatcheva, Katja; Piras, Simone; Righi, Simone; Setti, Marco; Vittuari, Matteo; Stewart, Gavin Bruce
2018-01-01
In developed countries, the largest share of food waste is produced at household level. Most studies on consumers’ food waste use models that identify covariates as significant when in fact they may not be, particularly where these models use many variables. Here, using EU-level Eurobarometer data
Application of Multilevel Logistic Model to Identify Correlates of ...
African Journals Online (AJOL)
Implementation of multilevel model is becoming a common analytic technique over a wide range of disciplines including social and economic sciences. In this paper, an attempt has been made to assess the application of multilevel logistic model for the purpose of identifying the effect of household characteristics on poverty ...
Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan
2012-01-01
Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727
Application of Artificial Bee Colony in Model Parameter Identification of Solar Cells
Directory of Open Access Journals (Sweden)
Rongjie Wang
2015-07-01
Full Text Available The identification of values of solar cell parameters is of great interest for evaluating solar cell performances. The algorithm of an artificial bee colony was used to extract model parameters of solar cells from current-voltage characteristics. Firstly, the best-so-for mechanism was introduced to the original artificial bee colony. Then, a method was proposed to identify parameters for a single diode model and double diode model using this improved artificial bee colony. Experimental results clearly demonstrate the effectiveness of the proposed method and its superior performance compared to other competing methods.
Development of new model for high explosives detonation parameters calculation
Directory of Open Access Journals (Sweden)
Jeremić Radun
2012-01-01
Full Text Available The simple semi-empirical model for calculation of detonation pressure and velocity for CHNO explosives has been developed, which is based on experimental values of detonation parameters. Model uses Avakyan’s method for determination of detonation products' chemical composition, and is applicable in wide range of densities. Compared with the well-known Kamlet's method and numerical model of detonation based on BKW EOS, the calculated values from proposed model have significantly better accuracy.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.
Directory of Open Access Journals (Sweden)
Andrew White
2016-12-01
Full Text Available We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.
Directory of Open Access Journals (Sweden)
Jie Bao
2015-12-01
Full Text Available Effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash–Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA approaches, including analysis of variance based on the generalized linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.
Parameter uncertainty analysis of a biokinetic model of caesium
International Nuclear Information System (INIS)
Li, W.B.; Oeh, U.; Klein, W.; Blanchardon, E.; Puncher, M.; Leggett, R.W.; Breustedt, B.; Nosske, D.; Lopez, M.A.
2015-01-01
Parameter uncertainties for the biokinetic model of caesium (Cs) developed by Leggett et al. were inventoried and evaluated. The methods of parameter uncertainty analysis were used to assess the uncertainties of model predictions with the assumptions of model parameter uncertainties and distributions. Furthermore, the importance of individual model parameters was assessed by means of sensitivity analysis. The calculated uncertainties of model predictions were compared with human data of Cs measured in blood and in the whole body. It was found that propagating the derived uncertainties in model parameter values reproduced the range of bioassay data observed in human subjects at different times after intake. The maximum ranges, expressed as uncertainty factors (UFs) (defined as a square root of ratio between 97.5. and 2.5. percentiles) of blood clearance, whole-body retention and urinary excretion of Cs predicted at earlier time after intake were, respectively: 1.5, 1.0 and 2.5 at the first day; 1.8, 1.1 and 2.4 at Day 10 and 1.8, 2.0 and 1.8 at Day 100; for the late times (1000 d) after intake, the UFs were increased to 43, 24 and 31, respectively. The model parameters of transfer rates between kidneys and blood, muscle and blood and the rate of transfer from kidneys to urinary bladder content are most influential to the blood clearance and to the whole-body retention of Cs. For the urinary excretion, the parameters of transfer rates from urinary bladder content to urine and from kidneys to urinary bladder content impact mostly. The implication and effect on the estimated equivalent and effective doses of the larger uncertainty of 43 in whole-body retention in the later time, say, after Day 500 will be explored in a successive work in the framework of EURADOS. (authors)
Sensor placement for calibration of spatially varying model parameters
Nath, Paromita; Hu, Zhen; Mahadevan, Sankaran
2017-08-01
This paper presents a sensor placement optimization framework for the calibration of spatially varying model parameters. To account for the randomness of the calibration parameters over space and across specimens, the spatially varying parameter is represented as a random field. Based on this representation, Bayesian calibration of spatially varying parameter is investigated. To reduce the required computational effort during Bayesian calibration, the original computer simulation model is substituted with Kriging surrogate models based on the singular value decomposition (SVD) of the model response and the Karhunen-Loeve expansion (KLE) of the spatially varying parameters. A sensor placement optimization problem is then formulated based on the Bayesian calibration to maximize the expected information gain measured by the expected Kullback-Leibler (K-L) divergence. The optimization problem needs to evaluate the expected K-L divergence repeatedly which requires repeated calibration of the spatially varying parameter, and this significantly increases the computational effort of solving the optimization problem. To overcome this challenge, an approximation for the posterior distribution is employed within the optimization problem to facilitate the identification of the optimal sensor locations using the simulated annealing algorithm. A heat transfer problem with spatially varying thermal conductivity is used to demonstrate the effectiveness of the proposed method.
Procedures for parameter estimates of computational models for localized failure
Iacono, C.
2007-01-01
In the last years, many computational models have been developed for tensile fracture in concrete. However, their reliability is related to the correct estimate of the model parameters, not all directly measurable during laboratory tests. Hence, the development of inverse procedures is needed, that
Geometry parameters for musculoskeletal modelling of the shoulder system
Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H
A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of
Zhang, Dengke; Feng, Xue; Cui, Kaiyu; Liu, Fang; Huang, Yidong
2015-01-01
In this work, an explicit formula is deduced for identifying the orbital angular moment (OAM) of vectorial vortex with space-variant state of polarization (SOP). Different to scalar vortex, the OAM of vectorial vortex can be attributed to two parts: 1. the azimuthal gradient of Pancharatnam phase; 2. the product between the azimuthal gradient of orientation angle of SOP and relevant solid angle on the Poincar? sphere. With our formula, a geometrical description for OAM of light beams can be a...
Luo, Chuan; Li, Zhaofu; Wu, Min; Jiang, Kaixia; Chen, Xiaomin; Li, Hengpeng
2017-09-01
Numerous parameters are used to construct the HSPF (Hydrological Simulation Program Fortran) model, which results in significant difficulty in calibrating the model. Parameter sensitivity analysis is an efficient method to identify important model parameters. Through this method, a model's calibration process can be simplified on the basis of understanding the model's structure. This study investigated the sensitivity of the flow and nutrient parameters of HSPF using the DSA (differential sensitivity analysis) method in the Xitiaoxi watershed, China. The results showed that flow was mostly affected by parameters related to groundwater and evapotranspiration, including DEEPFR (fraction of groundwater inflow to deep recharge), LZETP (lower-zone evapotranspiration parameter), and AGWRC (base groundwater recession), and most of the sensitive parameters had negative and nonlinear effects on flow. Additionally, nutrient components were commonly affected by parameters from land processes, including MON-SQOLIM (monthly values limiting storage of water quality in overland flow), MON-ACCUM (monthly values of accumulation), MON-IFLW-CONC (monthly concentration of water quality in interflow), and MON-GRND-CONC (monthly concentration of water quality in active groundwater). Besides, parameters from river systems, KATM20 (unit oxidation rate of total ammonia at 20 °C) had a negative and almost linear effect on ammonia concentration and MALGR (maximal unit algal growth rate for phytoplankton) had a negative and nonlinear effect on ammonia and orthophosphate concentrations. After calibrating these sensitive parameters, our model performed well for simulating flow and nutrient outputs, with R 2 and E NS (Nash-Sutcliffe efficiency) both greater than 0.75 for flow and greater than 0.5 for nutrient components. This study is expected to serve as a valuable complement to the documentation of the HSPF model to help users identify key parameters and provide a reference for performing
Modelling decremental ramps using 2- and 3-parameter "critical power" models.
Morton, R Hugh; Billat, Veronique
2013-01-01
The "Critical Power" (CP) model of human bioenergetics provides a valuable way to identify both limits of tolerance to exercise and mechanisms that underpin that tolerance. It applies principally to cycling-based exercise, but with suitable adjustments for analogous units it can be applied to other exercise modalities; in particular to incremental ramp exercise. It has not yet been applied to decremental ramps which put heavy early demand on the anaerobic energy supply system. This paper details cycling-based bioenergetics of decremental ramps using 2- and 3-parameter CP models. It derives equations that, for an individual of known CP model parameters, define those combinations of starting intensity and decremental gradient which will or will not lead to exhaustion before ramping to zero; and equations that predict time to exhaustion on those decremental ramps that will. These are further detailed with suitably chosen numerical and graphical illustrations. These equations can be used for parameter estimation from collected data, or to make predictions when parameters are known.
Identifying Clusters with Mixture Models that Include Radial Velocity Observations
Czarnatowicz, Alexis; Ybarra, Jason E.
2018-01-01
The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).
Improving the realism of hydrologic model through multivariate parameter estimation
Rakovec, Oldrich; Kumar, Rohini; Attinger, Sabine; Samaniego, Luis
2017-04-01
Increased availability and quality of near real-time observations should improve understanding of predictive skills of hydrological models. Recent studies have shown the limited capability of river discharge data alone to adequately constrain different components of distributed model parameterizations. In this study, the GRACE satellite-based total water storage (TWS) anomaly is used to complement the discharge data with an aim to improve the fidelity of mesoscale hydrologic model (mHM) through multivariate parameter estimation. The study is conducted in 83 European basins covering a wide range of hydro-climatic regimes. The model parameterization complemented with the TWS anomalies leads to statistically significant improvements in (1) discharge simulations during low-flow period, and (2) evapotranspiration estimates which are evaluated against independent (FLUXNET) data. Overall, there is no significant deterioration in model performance for the discharge simulations when complemented by information from the TWS anomalies. However, considerable changes in the partitioning of precipitation into runoff components are noticed by in-/exclusion of TWS during the parameter estimation. A cross-validation test carried out to assess the transferability and robustness of the calibrated parameters to other locations further confirms the benefit of complementary TWS data. In particular, the evapotranspiration estimates show more robust performance when TWS data are incorporated during the parameter estimation, in comparison with the benchmark model constrained against discharge only. This study highlights the value for incorporating multiple data sources during parameter estimation to improve the overall realism of hydrologic model and its applications over large domains. Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016): Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res., 52, http://dx.doi.org/10
Ground level enhancement (GLE) energy spectrum parameters model
Qin, G.; Wu, S.
2017-12-01
We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.
Determination of appropriate models and parameters for premixing calculations
Energy Technology Data Exchange (ETDEWEB)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-15
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.
A Note on the Identifiability of Fixed-Effect 3PL Models.
Wu, Hao
2016-12-01
In this note, we prove that the 3 parameter logistic model with fixed-effect abilities is identified only up to a linear transformation of the ability scale under mild regularity conditions, contrary to the claims in Theorem 2 of San Martín et al. (Psychometrika, 80(2):450-467, 2015a).
Parameter Estimation for Single Diode Models of Photovoltaic Modules
Energy Technology Data Exchange (ETDEWEB)
Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.
2015-03-01
Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.
Modeling Chinese ionospheric layer parameters based on EOF analysis
Yu, You; Wan, Weixing
2016-04-01
Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation co- efficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.
Parameters and variables appearing in repository design models
International Nuclear Information System (INIS)
Curtis, R.H.; Wart, R.J.
1983-12-01
This report defines the parameters and variables appearing in repository design models and presents typical values and ranges of values of each. Areas covered by this report include thermal, geomechanical, and coupled stress and flow analyses in rock. Particular emphasis is given to conductivity, radiation, and convection parameters for thermal analysis and elastic constants, failure criteria, creep laws, and joint properties for geomechanical analysis. The data in this report were compiled to help guide the selection of values of parameters and variables to be used in code benchmarking. 102 references, 33 figures, 51 tables
A lumped parameter, low dimension model of heat exchanger
International Nuclear Information System (INIS)
Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami
1980-01-01
This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)
Control of the SCOLE configuration using distributed parameter models
Hsiao, Min-Hung; Huang, Jen-Kuang
1994-01-01
A continuum model for the SCOLE configuration has been derived using transfer matrices. Controller designs for distributed parameter systems have been analyzed. Pole-assignment controller design is considered easy to implement but stability is not guaranteed. An explicit transfer function of dynamic controllers has been obtained and no model reduction is required before the controller is realized. One specific LQG controller for continuum models had been derived, but other optimal controllers for more general performances need to be studied.
Characterizations of identified sets delivered by structural econometric models
Chesher, Andrew; Rosen, Adam M.
2016-01-01
This paper develops characterizations of identified sets of structures and structural features for complete and incomplete models involving continuous and/or discrete variables. Multiple values of unobserved variables can be associated with particular combinations of observed variables. This can arise when there are multiple sources of heterogeneity, censored or discrete endogenous variables, or inequality restrictions on functions of observed and unobserved variables. The models generalize t...
Model-Based Material Parameter Estimation for Terahertz Reflection Spectroscopy
Kniffin, Gabriel Paul
Many materials such as drugs and explosives have characteristic spectral signatures in the terahertz (THz) band. These unique signatures imply great promise for spectral detection and classification using THz radiation. While such spectral features are most easily observed in transmission, real-life imaging systems will need to identify materials of interest from reflection measurements, often in non-ideal geometries. One important, yet commonly overlooked source of signal corruption is the etalon effect -- interference phenomena caused by multiple reflections from dielectric layers of packaging and clothing likely to be concealing materials of interest in real-life scenarios. This thesis focuses on the development and implementation of a model-based material parameter estimation technique, primarily for use in reflection spectroscopy, that takes the influence of the etalon effect into account. The technique is adapted from techniques developed for transmission spectroscopy of thin samples and is demonstrated using measured data taken at the Northwest Electromagnetic Research Laboratory (NEAR-Lab) at Portland State University. Further tests are conducted, demonstrating the technique's robustness against measurement noise and common sources of error.
Han, Xiao; Gao, Xiguang; Song, Yingdong
2017-10-01
An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.
Directory of Open Access Journals (Sweden)
Paulo Munhoz
2014-06-01
Full Text Available This paper investigates impacts of digital technologies on photographic post-production and image manipulation in information photography. An attempt is made to assess the extent to which ethical codes and conventions are being modified concerning the digital treatment of photographic images. We sought to assess whether one can identify, in the rules of photographic competitions, an embryonic process of establishment of new boundaries as to what constitutes content manipulation and what is acceptable as technical adjustments. We observed that, in a large proportion of cases, competition rules consist of very generic guidelines regarding the acceptable procedures for photo editing, without clear distinctions between technical adjustment and manipulation. Despite such limitations, we conclude that the analysis of photographic competitions can lead to identification of observable regularities that may act as ethical standards in relation to post-production images.
Directory of Open Access Journals (Sweden)
Paulo Munhoz
2014-06-01
Full Text Available This paper investigates impacts of digital technologies on photographic post-production and image manipulation in information photography. An attempt is made to assess the extent to which ethical codes and conventions are being modified concerning the digital treatment of photographic images. We sought to assess whether one can identify, in the rules of photographic competitions, an embryonic process of establishment of new boundaries as to what constitutes content manipulation and what is acceptable as technical adjustments. We observed that, in a large proportion of cases, competition rules consist of very generic guidelines regarding the acceptable procedures for photo editing, without clear distinctions between technical adjustment and manipulation. Despite such limitations, we conclude that the analysis of photographic competitions can lead to identification of observable regularities that may act as ethical standards in relation to post-production images.
Zhang, Dengke; Feng, Xue; Cui, Kaiyu; Liu, Fang; Huang, Yidong
2015-07-10
In this work, an explicit formula is deduced for identifying the orbital angular moment (OAM) of vectorial vortex with space-variant state of polarization (SOP). Different to scalar vortex, the OAM of vectorial vortex can be attributed to two parts: 1. the azimuthal gradient of Pancharatnam phase; 2. the product between the azimuthal gradient of orientation angle of SOP and relevant solid angle on the Poincaré sphere. With our formula, a geometrical description for OAM of light beams can be achieved under the framework of the traditional Poincaré sphere. Numerical simulations for two types of vectorial vortices have been carried on to confirm our presented formula as well as demonstrate the geometrical description of OAM. Furthermore, this work would pave the way for precise characterization of OAM charge of vectorial vortices.
SPOTting model parameters using a ready-made Python package
Houska, Tobias; Kraft, Philipp; Breuer, Lutz
2015-04-01
The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for
Modelling of intermittent microwave convective drying: parameter sensitivity
Directory of Open Access Journals (Sweden)
Zhang Zhijun
2017-06-01
Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Modelling of intermittent microwave convective drying: parameter sensitivity
Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei
2017-06-01
The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms
Berhausen, Sebastian; Paszek, Stefan
2016-01-01
In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.
Muñoz-Tamayo, R; Puillet, L; Daniel, J B; Sauvant, D; Martin, O; Taghipoor, M; Blavy, P
2018-04-01
What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs (stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are (i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling, (ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models. By using illustrative examples that include published
Ratnayake, Nalin A.; Koshimoto, Ed T.; Taylor, Brian R.
2011-01-01
The problem of parameter estimation on hybrid-wing-body type aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aero- dynamic control effectors that act in coplanar motion. This fact adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of system inputs must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, asymmetric, single-surface maneuvers are used to excite multiple axes of aircraft motion simultaneously. Time history reconstructions of the moment coefficients computed by the solved regression models are then compared to each other in order to assess relative model accuracy. The reduced flight-test time required for inner surface parameter estimation using multi-axis methods was found to come at the cost of slightly reduced accuracy and statistical confidence for linear regression methods. Since the multi-axis maneuvers captured parameter estimates similar to both longitudinal and lateral-directional maneuvers combined, the number of test points required for the inner, aileron-like surfaces could in theory have been reduced by 50%. While trends were similar, however, individual parameters as estimated by a multi-axis model were typically different by an average absolute difference of roughly 15-20%, with decreased statistical significance, than those estimated by a single-axis model. The multi-axis model exhibited an increase in overall fit error of roughly 1-5% for the linear regression estimates with respect to the single-axis model, when applied to flight data designed for each, respectively.
Directory of Open Access Journals (Sweden)
Filip Górski
2013-09-01
Full Text Available The paper presents the results of experimental study – part of research of additive technology using thermoplastics as a build material, namely Fused Deposition Modelling (FDM. Aim of the study was to identify the relation between basic parameter of the FDM process – model orientation during manufacturing – and a dimensional accuracy and repeatability of obtained products. A set of samples was prepared – they were manufactured with variable process parameters and they were measured using 3D scanner. Significant differences in accuracy of products of the same geometry, but manufactured with different set of process parameters were observed.
Assessment of Lumped-Parameter Models for Rigid Footings
DEFF Research Database (Denmark)
Andersen, Lars
2010-01-01
The quality of consistent lumped-parameter models of rigid footings is examined. Emphasis is put on the maximum response during excitation and the geometrical damping related to free vibrations. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal...... and vertical translations as well as torsion and rocking, and the necessity of coupling between horizontal sliding and rocking is discussed. Most of the analyses are carried out for hexagonal footings; but in order to generalise the conclusions to a broader variety of footings, comparisons are made...... with the response of circular and square foundations....
Climate change decision-making: Model & parameter uncertainties explored
Energy Technology Data Exchange (ETDEWEB)
Dowlatabadi, H.; Kandlikar, M.; Linville, C.
1995-12-31
A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.
Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes
Guerrero, José-Luis; Pernica, Patricia; Wheater, Howard; Mackay, Murray; Spence, Chris
2017-12-01
Lakes might be sentinels of climate change, but the uncertainty in their main feedback to the atmosphere - heat-exchange fluxes - is often not considered within climate models. Additionally, these fluxes are seldom measured, hindering critical evaluation of model output. Analysis of the Canadian Small Lake Model (CSLM), a one-dimensional integral lake model, was performed to assess its ability to reproduce diurnal and seasonal variations in heat fluxes and the sensitivity of simulated fluxes to changes in model parameters, i.e., turbulent transport parameters and the light extinction coefficient (Kd). A C++ open-source software package, Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), was used to perform sensitivity analysis (SA) and identify the parameters that dominate model behavior. The generalized likelihood uncertainty estimation (GLUE) was applied to quantify the fluxes' uncertainty, comparing daily-averaged eddy-covariance observations to the output of CSLM. Seven qualitative and two quantitative SA methods were tested, and the posterior likelihoods of the modeled parameters, obtained from the GLUE analysis, were used to determine the dominant parameters and the uncertainty in the modeled fluxes. Despite the ubiquity of the equifinality issue - different parameter-value combinations yielding equivalent results - the answer to the question was unequivocal: Kd, a measure of how much light penetrates the lake, dominates sensible and latent heat fluxes, and the uncertainty in their estimates is strongly related to the accuracy with which Kd is determined. This is important since accurate and continuous measurements of Kd could reduce modeling uncertainty.
An Asymmetric Hysteresis Model and Parameter Identification Method for Piezoelectric Actuator
Directory of Open Access Journals (Sweden)
Haichen Qin
2014-01-01
Full Text Available Hysteresis behaviour degrades the positioning accuracy of PZT actuator for ultrahigh-precision positioning applications. In this paper, a corrected hysteresis model based on Bouc-Wen model for modelling the asymmetric hysteresis behaviour of PZT actuator is established by introducing an input bias φ and an asymmetric factor ΔΦ into the standard Bouc-Wen hysteresis model. A modified particle swarm optimization (MPSO algorithm is established and realized to identify and optimize the model parameters. Feasibility and effectiveness of MPSO are proved by experiment and numerical simulation. The research results show that the corrected hysteresis model can represent the asymmetric hysteresis behaviour of the PZT actuator more accurately than the noncorrected hysteresis model based on the Bouc-Wen model. The MPSO parameter identification method can effectively identify the parameters of the corrected and noncorrected hysteresis models. Some cases demonstrate the corrected hysteresis model and the MPSO parameter identification method can be used to model smart materials and structure systems with the asymmetric hysteresis behaviour.
Energy Technology Data Exchange (ETDEWEB)
Dai, Heng [Pacific Northwest National Laboratory, Richland Washington USA; Ye, Ming [Department of Scientific Computing, Florida State University, Tallahassee Florida USA; Walker, Anthony P. [Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge Tennessee USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA
2017-04-01
Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averaging methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.
Parameter estimation in nonlinear models for pesticide degradation
International Nuclear Information System (INIS)
Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.
1991-01-01
A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2006-01-01
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2006-06-05
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This
The level density parameters for fermi gas model
International Nuclear Information System (INIS)
Zuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi
1986-01-01
Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D D , radiative capture width Γ γ 0 at neutron binding energy and cumulative level number N 0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements
X-Parameter Based Modelling of Polar Modulated Power Amplifiers
DEFF Research Database (Denmark)
Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel
2013-01-01
X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....
Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens
Hokes, Filip; Kral, Petr; Husek, Martin; Kala, Jiri
2017-10-01
Identification of a concrete material model parameters using optimization is based on a calculation of a difference between experimentally measured and numerically obtained data. Measure of the difference can be formulated via root mean squared error that is often used for determination of accuracy of a mathematical model in the field of meteorology or demography. The quality of the identified parameters is, however, determined not only by right choice of an objective function but also by the source experimental data. One of the possible way is to use load-displacement curves from three-point bending tests that were performed on concrete specimens. This option shows the significance of modulus of elasticity, tensile strength and specific fracture energy. Another possible option is to use experimental data from compact tension test. It is clear that the response in the second type of test is also dependent on the above mentioned material parameters. The question is whether the parameters identified within three-point bending test and within compact tension test will reach the same values. The presented article brings the numerical study of inverse identification of material model parameters from experimental data measured during compact tension tests. The article also presents utilization of the modified sensitivity analysis that calculates the sensitivity of the material model parameters for different parts of loading curve. The main goal of the article is to describe the process of inverse identification of parameters for plasticity-based material model of concrete and prepare data for future comparison with identified values of the material model parameters from different type of fracture tests.
Prediction of interest rate using CKLS model with stochastic parameters
Energy Technology Data Exchange (ETDEWEB)
Ying, Khor Chia [Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Hin, Pooi Ah [Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor (Malaysia)
2014-06-19
The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.
Model parameters estimation and sensitivity by genetic algorithms
International Nuclear Information System (INIS)
Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca
2003-01-01
In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.
Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W
2015-07-23
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.
Parameter dependence and outcome dependence in dynamical models for state vector reduction
International Nuclear Information System (INIS)
Ghirardi, G.C.; Grassi, R.; Butterfield, J.; Fleming, G.N.
1993-01-01
The authors apply the distinction between parameter independence and outcome independence to the linear and nonlinear models of a recent nonrelativistic theory of continuous state vector reduction. It is shown that in the nonlinear model there is a set of realizations of the stochastic process that drives the state vector reduction for which parameter independence is violated for parallel spin components in the EPR-Bohm setup. Such a set has an appreciable probability of occurrence (∼ 1/2). On the other hand, the linear model exhibits only extremely small parameter dependence effects. Some specific features of the models are investigated and it is recalled that, as has been pointed out recently, to be able to speak of definite outcomes (or equivalently of possessed objective elements of reality) at finite times, the criteria for their attribution to physical systems must be slightly changed. The concluding section is devoted to a detailed discussion of the difficulties met when attempting to take, as a starting point for the formulation of a relativistic theory, a nonrelativistic scheme which exhibits parameter dependence. Here the authors derive a theorem which identifies the precise sense in which the occurrence of parameter dependence forbids a genuinely relativistic generalization. Finally, the authors show how the appreciable parameter dependence of the nonlinear model gives rise to problems with relativity, while the extremely weak parameter dependence of the linear model does not give rise to any difficulty, provided the appropriate criteria for the attribution of definite outcomes are taken into account. 19 refs
Investigation of land use effects on Nash model parameters
Niazi, Faegheh; Fakheri Fard, Ahmad; Nourani, Vahid; Goodrich, David; Gupta, Hoshin
2015-04-01
Flood forecasting is of great importance in hydrologic planning, hydraulic structure design, water resources management and sustainable designs like flood control and management. Nash's instantaneous unit hydrograph is frequently used for simulating hydrological response in natural watersheds. Urban hydrology is gaining more attention due to population increases and associated construction escalation. Rapid development of urban areas affects the hydrologic processes of watersheds by decreasing soil permeability, flood base flow, lag time and increase in flood volume, peak runoff rates and flood frequency. In this study the influence of urbanization on the significant parameters of the Nash model have been investigated. These parameters were calculated using three popular methods (i.e. moment, root mean square error and random sampling data generation), in a small watershed consisting of one natural sub-watershed which drains into a residentially developed sub-watershed in the city of Sierra Vista, Arizona. The results indicated that for all three methods, the lag time, which is product of Nash parameters "K" and "n", in the natural sub-watershed is greater than the developed one. This logically implies more storage and/or attenuation in the natural sub-watershed. The median K and n parameters derived from the three methods using calibration events were tested via a set of verification events. The results indicated that all the three method have acceptable accuracy in hydrograph simulation. The CDF curves and histograms of the parameters clearly show the difference of the Nash parameter values between the natural and developed sub-watersheds. Some specific upper and lower percentile values of the median of the generated parameters (i.e. 10, 20 and 30 %) were analyzed to future investigates the derived parameters. The model was sensitive to variations in the value of the uncertain K and n parameter. Changes in n are smaller than K in both sub-watersheds indicating
Revised models and genetic parameter estimates for production and ...
African Journals Online (AJOL)
Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...
Transformations among CE–CVM model parameters for ...
Indian Academy of Sciences (India)
In the development of thermodynamic databases for multicomponent systems using the cluster expansion–cluster variation methods, we need to have a consistent procedure for expressing the model parameters (CECs) of a higher order system in terms of those of the lower order subsystems and to an independent set of ...
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Comparison of parameter estimation algorithms in hydrological modelling
DEFF Research Database (Denmark)
Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan
2006-01-01
for these types of models, although at a more expensive computational cost. The main purpose of this study is to investigate the performance of a global and a local parameter optimization algorithm, respectively, the Shuffled Complex Evolution (SCE) algorithm and the gradient-based Gauss...
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
2002-01-01
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Constraint on Parameters of Inverse Compton Scattering Model for ...
Indian Academy of Sciences (India)
J. Astrophys. Astr. (2011) 32, 299–300 c Indian Academy of Sciences. Constraint on Parameters of Inverse Compton Scattering Model for PSR B2319+60. H. G. Wang. ∗. & M. Lv. Center for Astrophysics,Guangzhou University, Guangzhou, China. ∗ e-mail: cosmic008@yahoo.com.cn. Abstract. Using the multifrequency radio ...
Integrating microbial diversity in soil carbon dynamic models parameters
Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie
2015-04-01
Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten
Azam, Mohammad; Rahman, Zillur; Talib, Faisal; Singh, K J
2012-01-01
The purpose of this article is to identify and critically analyze healthcare establishment (HCE) quality parameters described in the literature. It aims to propose an integrated quality model that includes technical quality and associated supportive quality parameters to achieve optimum patient satisfaction. The authors use an extensive in-depth healthcare quality literature review, discerning gaps via a critical analysis in relation to their overall impact on patient management, while identifying an integrated quality model acceptable to hospital staff. The article provides insights into contemporary HCE quality parameters by critically analyzing relevant literature. It also evolves and proposes an integrated HCE-quality model. Owing to HCE confidentiality, especially regarding patient data, information cannot be accessed. The integrated quality model parameters have practical utility for healthcare service managers. However, further studies may be required to refine and integrate newer parameters to ensure continuous quality improvement. This article adds a new perspective to understanding quality parameters and suggests an integrated quality model that has practical value for maintaining HCE service quality to benefit many stakeholders.
Identifying fMRI Model Violations with Lagrange Multiplier Tests
Cassidy, Ben; Long, Christopher J; Rae, Caroline; Solo, Victor
2013-01-01
The standard modeling framework in Functional Magnetic Resonance Imaging (fMRI) is predicated on assumptions of linearity, time invariance and stationarity. These assumptions are rarely checked because doing so requires specialised software, although failure to do so can lead to bias and mistaken inference. Identifying model violations is an essential but largely neglected step in standard fMRI data analysis. Using Lagrange Multiplier testing methods we have developed simple and efficient procedures for detecting model violations such as non-linearity, non-stationarity and validity of the common Double Gamma specification for hemodynamic response. These procedures are computationally cheap and can easily be added to a conventional analysis. The test statistic is calculated at each voxel and displayed as a spatial anomaly map which shows regions where a model is violated. The methodology is illustrated with a large number of real data examples. PMID:22542665
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rasmuson; K. Rautenstrauch
2004-09-14
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.
Estimating model parameters in nonautonomous chaotic systems using synchronization
International Nuclear Information System (INIS)
Yang, Xiaoli; Xu, Wei; Sun, Zhongkui
2007-01-01
In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation
Drosophila Cancer Models Identify Functional Differences between Ret Fusions
Directory of Open Access Journals (Sweden)
Sarah Levinson
2016-09-01
Full Text Available We generated and compared Drosophila models of RET fusions CCDC6-RET and NCOA4-RET. Both RET fusions directed cells to migrate, delaminate, and undergo EMT, and both resulted in lethality when broadly expressed. In all phenotypes examined, NCOA4-RET was more severe than CCDC6-RET, mirroring their effects on patients. A functional screen against the Drosophila kinome and a library of cancer drugs found that CCDC6-RET and NCOA4-RET acted through different signaling networks and displayed distinct drug sensitivities. Combining data from the kinome and drug screens identified the WEE1 inhibitor AZD1775 plus the multi-kinase inhibitor sorafenib as a synergistic drug combination that is specific for NCOA4-RET. Our work emphasizes the importance of identifying and tailoring a patient’s treatment to their specific RET fusion isoform and identifies a multi-targeted therapy that may prove effective against tumors containing the NCOA4-RET fusion.
Space geodetic techniques for global modeling of ionospheric peak parameters
Alizadeh, M. Mahdi; Schuh, Harald; Schmidt, Michael
The rapid development of new technological systems for navigation, telecommunication, and space missions which transmit signals through the Earth’s upper atmosphere - the ionosphere - makes the necessity of precise, reliable and near real-time models of the ionospheric parameters more crucial. In the last decades space geodetic techniques have turned into a capable tool for measuring ionospheric parameters in terms of Total Electron Content (TEC) or the electron density. Among these systems, the current space geodetic techniques, such as Global Navigation Satellite Systems (GNSS), Low Earth Orbiting (LEO) satellites, satellite altimetry missions, and others have found several applications in a broad range of commercial and scientific fields. This paper aims at the development of a three-dimensional integrated model of the ionosphere, by using various space geodetic techniques and applying a combination procedure for computation of the global model of electron density. In order to model ionosphere in 3D, electron density is represented as a function of maximum electron density (NmF2), and its corresponding height (hmF2). NmF2 and hmF2 are then modeled in longitude, latitude, and height using two sets of spherical harmonic expansions with degree and order 15. To perform the estimation, GNSS input data are simulated in such a way that the true position of the satellites are detected and used, but the STEC values are obtained through a simulation procedure, using the IGS VTEC maps. After simulating the input data, the a priori values required for the estimation procedure are calculated using the IRI-2012 model and also by applying the ray-tracing technique. The estimated results are compared with F2-peak parameters derived from the IRI model to assess the least-square estimation procedure and moreover, to validate the developed maps, the results are compared with the raw F2-peak parameters derived from the Formosat-3/Cosmic data.
Personalization of models with many model parameters: an efficient sensitivity analysis approach.
Donders, W P; Huberts, W; van de Vosse, F N; Delhaas, T
2015-10-01
Uncertainty quantification and global sensitivity analysis are indispensable for patient-specific applications of models that enhance diagnosis or aid decision-making. Variance-based sensitivity analysis methods, which apportion each fraction of the output uncertainty (variance) to the effects of individual input parameters or their interactions, are considered the gold standard. The variance portions are called the Sobol sensitivity indices and can be estimated by a Monte Carlo (MC) approach (e.g., Saltelli's method [1]) or by employing a metamodel (e.g., the (generalized) polynomial chaos expansion (gPCE) [2, 3]). All these methods require a large number of model evaluations when estimating the Sobol sensitivity indices for models with many parameters [4]. To reduce the computational cost, we introduce a two-step approach. In the first step, a subset of important parameters is identified for each output of interest using the screening method of Morris [5]. In the second step, a quantitative variance-based sensitivity analysis is performed using gPCE. Efficient sampling strategies are introduced to minimize the number of model runs required to obtain the sensitivity indices for models considering multiple outputs. The approach is tested using a model that was developed for predicting post-operative flows after creation of a vascular access for renal failure patients. We compare the sensitivity indices obtained with the novel two-step approach with those obtained from a reference analysis that applies Saltelli's MC method. The two-step approach was found to yield accurate estimates of the sensitivity indices at two orders of magnitude lower computational cost. Copyright © 2015 John Wiley & Sons, Ltd.
Mass balance model parameter transferability on a tropical glacier
Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg
2013-04-01
The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer
Investigation of RADTRAN Stop Model input parameters for truck stops
International Nuclear Information System (INIS)
Griego, N.R.; Smith, J.D.; Neuhauser, K.S.
1996-01-01
RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops
Four-parameter analytical local model potential for atoms
International Nuclear Information System (INIS)
Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang
2009-01-01
Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)
Improving the transferability of hydrological model parameters under changing conditions
Huang, Yingchun; Bárdossy, András
2014-05-01
Hydrological models are widely utilized to describe catchment behaviors with observed hydro-meteorological data. Hydrological process may be considered as non-stationary under the changing climate and land use conditions. An applicable hydrological model should be able to capture the essential features of the target catchment and therefore be transferable to different conditions. At present, many model applications based on the stationary assumptions are not sufficient for predicting further changes or time variability. The aim of this study is to explore new model calibration methods in order to improve the transferability of model parameters. To cope with the instability of model parameters calibrated on catchments in non-stationary conditions, we investigate the idea of simultaneously calibration on streamflow records for the period with dissimilar climate characteristics. In additional, a weather based weighting function is implemented to adjust the calibration period to future trends. For regions with limited data and ungauged basins, the common calibration was applied by using information from similar catchments. Result shows the model performance and transfer quantity could be well improved via common calibration. This model calibration approach will be used to enhance regional water management and flood forecasting capabilities.
Objective Tuning of Model Parameters in CAM5 Across Different Spatial Resolutions
Bulaevskaya, V.; Lucas, D. D.
2014-12-01
Parameterizations of physical processes in climate models are highly dependent on the spatial and temporal resolution and must be tuned for each resolution under consideration. At high spatial resolutions, objective methods for parameter tuning are computationally prohibitive. Our work has focused on calibrating parameters in the Community Atmosphere Model 5 (CAM5) for three spatial resolutions: 1, 2, and 4 degrees. Using perturbed-parameter ensembles and uncertainty quantification methodology, we have identified input parameters that minimize discrepancies of energy fluxes simulated by CAM5 across the three resolutions and with respect to satellite observations. We are also beginning to exploit the parameter-resolution relationships to objectively tune parameters in a high-resolution version of CAM5 by leveraging cheaper, low-resolution simulations and statistical models. We will present our approach to multi-resolution climate model parameter tuning, as well as the key findings. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported from the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System.
Parameters in dynamic models of complex traits are containers of missing heritability.
Directory of Open Access Journals (Sweden)
Yunpeng Wang
Full Text Available Polymorphisms identified in genome-wide association studies of human traits rarely explain more than a small proportion of the heritable variation, and improving this situation within the current paradigm appears daunting. Given a well-validated dynamic model of a complex physiological trait, a substantial part of the underlying genetic variation must manifest as variation in model parameters. These parameters are themselves phenotypic traits. By linking whole-cell phenotypic variation to genetic variation in a computational model of a single heart cell, incorporating genotype-to-parameter maps, we show that genome-wide association studies on parameters reveal much more genetic variation than when using higher-level cellular phenotypes. The results suggest that letting such studies be guided by computational physiology may facilitate a causal understanding of the genotype-to-phenotype map of complex traits, with strong implications for the development of phenomics technology.
Queue-based modelling and detection of parameters involved in stroke outcome
DEFF Research Database (Denmark)
Vilic, Adnan; Petersen, John Asger; Wienecke, Troels
2017-01-01
We designed a queue-based model, and investigated which parameters are of importance when predicting stroke outcome. Medical record forms have been collected for 57 ischemic stroke patients, including medical history and vital sign measurement along with neurological scores for the first twenty-f......, where outcome for patients were 36.75 ± 10.99. The queue-based model integrating multiple linear regression shows promising results for automatic selection of significant medically relevant parameters.......-four hours of admission. The importance of each parameter is identified using multiple regression combined with a circular queue to iteratively fit outcome. Out of 39 parameters, the model isolated 14 which combined could estimate outcome with a root mean square error of 1.69 on the Scandinavian Stroke Scale...
Directory of Open Access Journals (Sweden)
N Monjezi
2017-10-01
Full Text Available Introduction Planning and scheduling of farming mechanized operations is very important. If the operation is not performed on time, yield will be reduced. Also for sugarcane, any delay in crop planting and harvesting operations reduces the yield. The most useful priority setting method for agricultural projects is the analytic hierarchy process (AHP. So, this article presents an introductry application manner of the Analytical Hierarchy Process (AHP as a mostly common method of setting agricultural projects priorities. Analytic Hierarchy process (AHP is a decision making algorithm developed by Dr. Saatyin 1980. It has many applications as documented in Decision Support System literature. Currently, this technique is widely used in complicated management decision makings which AHP was preferred from other established methodologies as it does not demand prior knowledge of the utility function; it is based on a hierarchy of criteria and attributes reflecting the understanding of the problem, and finally, because it allows relative and absolute comparisons, thus making this method a very robust tool. The purpose of this research is to identify and prioritize the effective parameters on lack of timeliness of operations of sugarcane production using AHP in Khuzestan province of Iran. Materials and Methods The effective parameters effecting on lack of timeliness of operations have been defined based on expert’s opinions. A questionnaire and personal interviews have formed the basis of this research. The study was applied to a panel of qualified informants made up of fourteen experts. Those interviewed were distributed in Sugarcane Development and By-products Company in 2013-2014. Then, by using the Analytical hierarchy process, a questionnaire was designed for defining the weight and importance of parameters affecting on lack of timeliness of operations. For this method of evaluation, three main criteria considered were yield criteria, cost criteria
International Nuclear Information System (INIS)
Andersen, Erlend K.F.; Hole, Knut Håkon; Lund, Kjersti V.; Sundfør, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik
2012-01-01
Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile–time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile–time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile–time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile–time interval of nRSI was associated with progression-free survival. Conclusions: The percentile–time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.
Directory of Open Access Journals (Sweden)
Zhiqiang GENG
2014-01-01
Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.
Compartmental analysis of dynamic nuclear medicine data: models and identifiability
Delbary, Fabrice; Garbarino, Sara; Vivaldi, Valentina
2016-12-01
Compartmental models based on tracer mass balance are extensively used in clinical and pre-clinical nuclear medicine in order to obtain quantitative information on tracer metabolism in the biological tissue. This paper is the first of a series of two that deal with the problem of tracer coefficient estimation via compartmental modelling in an inverse problem framework. Specifically, here we discuss the identifiability problem for a general n-dimension compartmental system and provide uniqueness results in the case of two-compartment and three-compartment compartmental models. The second paper will utilize this framework in order to show how nonlinear regularization schemes can be applied to obtain numerical estimates of the tracer coefficients in the case of nuclear medicine data corresponding to brain, liver and kidney physiology.
Modeling extreme events: Sample fraction adaptive choice in parameter estimation
Neves, Manuela; Gomes, Ivette; Figueiredo, Fernanda; Gomes, Dora Prata
2012-09-01
When modeling extreme events there are a few primordial parameters, among which we refer the extreme value index and the extremal index. The extreme value index measures the right tail-weight of the underlying distribution and the extremal index characterizes the degree of local dependence in the extremes of a stationary sequence. Most of the semi-parametric estimators of these parameters show the same type of behaviour: nice asymptotic properties, but a high variance for small values of k, the number of upper order statistics to be used in the estimation, and a high bias for large values of k. This shows a real need for the choice of k. Choosing some well-known estimators of those parameters we revisit the application of a heuristic algorithm for the adaptive choice of k. The procedure is applied to some simulated samples as well as to some real data sets.
Robust linear parameter varying induction motor control with polytopic models
Directory of Open Access Journals (Sweden)
Dalila Khamari
2013-01-01
Full Text Available This paper deals with a robust controller for an induction motor which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI based approach and robust Lyapunov feedback controller are associated. This new approach is related to the fact that the synthesis of a linear parameter varying (LPV feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic model because of speed and rotor resistance affine dependence their values can be estimated on line during systems operations. The simulation results are presented to confirm the effectiveness of the proposed approach where robustness stability and high performances have been achieved over the entire operating range of the induction motor.
Model parameter learning using Kullback-Leibler divergence
Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan
2018-02-01
In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.
Biosphere modelling for a HLW repository - scenario and parameter variations
International Nuclear Information System (INIS)
Grogan, H.
1985-03-01
In Switzerland high-level radioactive wastes have been considered for disposal in deep-lying crystalline formations. The individual doses to man resulting from radionuclides entering the biosphere via groundwater transport are calculated. The main recipient area modelled, which constitutes the base case, is a broad gravel terrace sited along the south bank of the river Rhine. An alternative recipient region, a small valley with a well, is also modelled. A number of parameter variations are performed in order to ascertain their impact on the doses. Finally two scenario changes are modelled somewhat simplistically, these consider different prevailing climates, namely tundra and a warmer climate than present. In the base case negligibly low doses to man in the long term, resulting from the existence of a HLW repository have been calculated. Cs-135 results in the largest dose (8.4E-7 mrem/y at 6.1E+6 y) while Np-237 gives the largest dose from the actinides (3.6E-8 mrem/y). The response of the model to parameter variations cannot be easily predicted due to non-linear coupling of many of the parameters. However, the calculated doses were negligibly low in all cases as were those resulting from the two scenario variations. (author)
Utilising temperature differences as constraints for estimating parameters in a simple climate model
International Nuclear Information System (INIS)
Bodman, Roger W; Karoly, David J; Enting, Ian G
2010-01-01
Simple climate models can be used to estimate the global temperature response to increasing greenhouse gases. Changes in the energy balance of the global climate system are represented by equations that necessitate the use of uncertain parameters. The values of these parameters can be estimated from historical observations, model testing, and tuning to more complex models. Efforts have been made at estimating the possible ranges for these parameters. This study continues this process, but demonstrates two new constraints. Previous studies have shown that land-ocean temperature differences are only weakly correlated with global mean temperature for natural internal climate variations. Hence, these temperature differences provide additional information that can be used to help constrain model parameters. In addition, an ocean heat content ratio can also provide a further constraint. A pulse response technique was used to identify relative parameter sensitivity which confirmed the importance of climate sensitivity and ocean vertical diffusivity, but the land-ocean warming ratio and the land-ocean heat exchange coefficient were also found to be important. Experiments demonstrate the utility of the land-ocean temperature difference and ocean heat content ratio for setting parameter values. This work is based on investigations with MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change) as the simple climate model.
Shabani, Farzin; Kumar, Lalit
2014-01-01
Using CLIMEX and the Taguchi Method, a process-based niche model was developed to estimate potential distributions of Phoenix dactylifera L. (date palm), an economically important crop in many counties. Development of the model was based on both its native and invasive distribution and validation was carried out in terms of its extensive distribution in Iran. To identify model parameters having greatest influence on distribution of date palm, a sensitivity analysis was carried out. Changes in suitability were established by mapping of regions where the estimated distribution changed with parameter alterations. This facilitated the assessment of certain areas in Iran where parameter modifications impacted the most, particularly in relation to suitable and highly suitable locations. Parameter sensitivities were also evaluated by the calculation of area changes within the suitable and highly suitable categories. The low temperature limit (DV2), high temperature limit (DV3), upper optimal temperature (SM2) and high soil moisture limit (SM3) had the greatest impact on sensitivity, while other parameters showed relatively less sensitivity or were insensitive to change. For an accurate fit in species distribution models, highly sensitive parameters require more extensive research and data collection methods. Results of this study demonstrate a more cost effective method for developing date palm distribution models, an integral element in species management, and may prove useful for streamlining requirements for data collection in potential distribution modeling for other species as well. PMID:24722140
Directory of Open Access Journals (Sweden)
Farzin Shabani
Full Text Available Using CLIMEX and the Taguchi Method, a process-based niche model was developed to estimate potential distributions of Phoenix dactylifera L. (date palm, an economically important crop in many counties. Development of the model was based on both its native and invasive distribution and validation was carried out in terms of its extensive distribution in Iran. To identify model parameters having greatest influence on distribution of date palm, a sensitivity analysis was carried out. Changes in suitability were established by mapping of regions where the estimated distribution changed with parameter alterations. This facilitated the assessment of certain areas in Iran where parameter modifications impacted the most, particularly in relation to suitable and highly suitable locations. Parameter sensitivities were also evaluated by the calculation of area changes within the suitable and highly suitable categories. The low temperature limit (DV2, high temperature limit (DV3, upper optimal temperature (SM2 and high soil moisture limit (SM3 had the greatest impact on sensitivity, while other parameters showed relatively less sensitivity or were insensitive to change. For an accurate fit in species distribution models, highly sensitive parameters require more extensive research and data collection methods. Results of this study demonstrate a more cost effective method for developing date palm distribution models, an integral element in species management, and may prove useful for streamlining requirements for data collection in potential distribution modeling for other species as well.
Contaminant transport in aquifers: improving the determination of model parameters
International Nuclear Information System (INIS)
Sabino, C.V.S.; Moreira, R.M.; Lula, Z.L.; Chausson, Y.; Magalhaes, W.F.; Vianna, M.N.
1998-01-01
Parameters conditioning the migration behavior of cesium and mercury are measured with their tracers 137 Cs and 203 Hg in the laboratory, using both batch and column experiments. Batch tests were used to define the sorption isotherm characteristics. Also investigated were the influences of some test parameters, in particular those due to the volume of water to mass of soil ratio (V/m). A provisional relationship between V/m and the distribution coefficient, K d , has been advanced, and a procedure to estimate K d 's valid for environmental values of the ratio V/m has been suggested. Column tests provided the parameters for a transport model. A major problem to be dealt with in such tests is the collimation of the radioactivity probe. Besides mechanically optimizing the collimator, a deconvolution procedure has been suggested and tested, with statistical criteria, to filter off both noise and spurious tracer signals. Correction procedures for the integrating effect introduced by sampling at the exit of columns have also been developed. These techniques may be helpful in increasing the accuracy required in the measurement of parameters conditioning contaminant migration in soils, thus allowing more reliable predictions based on mathematical model applications. (author)
Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.
2011-12-01
A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.
HOM study and parameter calculation of the TESLA cavity model
Zeng, Ri-Hua; Gerigk Frank; Wang Guang-Wei; Wegner Rolf; Liu Rong; Schuh Marcel
2010-01-01
The Superconducting Proton Linac (SPL) is the project for a superconducting, high current H-accelerator at CERN. To find dangerous higher order modes (HOMs) in the SPL superconducting cavities, simulation and analysis for the cavity model using simulation tools are necessary. The. existing TESLA 9-cell cavity geometry data have been used for the initial construction of the models in HFSS. Monopole, dipole and quadrupole modes have been obtained by applying different symmetry boundaries on various cavity models. In calculation, scripting language in HFSS was used to create scripts to automatically calculate the parameters of modes in these cavity models (these scripts are also available in other cavities with different cell numbers and geometric structures). The results calculated automatically are then compared with the values given in the TESLA paper. The optimized cavity model with the minimum error will be taken as the base for further simulation of the SPL cavities.
Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.
El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher
2018-01-01
Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.
The definition of input parameters for modelling of energetic subsystems
Directory of Open Access Journals (Sweden)
Ptacek M.
2013-06-01
Full Text Available This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.
The definition of input parameters for modelling of energetic subsystems
Ptacek, M.
2013-06-01
This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.
Propagation channel characterization, parameter estimation, and modeling for wireless communications
Yin, Xuefeng
2016-01-01
Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...
Empirical flow parameters : a tool for hydraulic model validity
Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.
2013-01-01
The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.
Identifying and modeling the structural discontinuities of human interactions
Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo
2017-04-01
The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales.
Kim, J R; Ko, J H; Lee, J J; Kim, S H; Park, T J; Kim, C W; Woo, H J
2006-01-01
The aim of this study was to suggest a sensitivity analysis technique that can reliably predict effluent quality and minimize calibration efforts without being seriously affected by influent composition and parameter uncertainty in the activated sludge models No. 1 (ASM1) and No. 3 (ASM3) with a settling model. The parameter sensitivities for ASM1 and ASM3 were analyzed by three techniques such as SVM-Slope, RVM-SlopeMA, and RVM-AreaCRF. The settling model parameters were also considered. The selected highly sensitive parameters were estimated with a genetic algorithm, and the simulation results were compared as deltaEQ. For ASM1, the SVM-Slope technique proved to be an acceptable approach because it identified consistent sensitive parameter sets and presented smaller deltaEQ under every tested condition. For ASM3, no technique identified consistently sensitive parameters under different conditions. This phenomenon was regarded as the reflection of the high sensitivity of the ASM3 parameters. But it should be noted that the SVM-Slope technique presented reliable deltaEQ under every influent condition. Moreover, it was the simplest and easiest methodology for coding and quantification among those tested. Therefore, it was concluded that the SVM-Slope technique could be a reasonable approach for both ASM1 and ASM3.
Directory of Open Access Journals (Sweden)
Kottner R.
2013-12-01
Full Text Available Adhesively bonded joints can be numerically simulated using the cohesive crack model. The critical strain energy release rate and the critical opening displacement are the parameters which must be known when cohesive elements in MSC.Marc software are used. In this work, the parameters of two industrial adhesives Hunstman Araldite 2021 and Gurit Spabond 345 for bonding of epoxy composites are identified. Double Cantilever Beam (DCB and End Notched Flexure (ENF test data were used for the identification. The critical opening displacements were identified using an optimization algorithm where the tests and their numerical simulations were compared.
Directory of Open Access Journals (Sweden)
H. C. Winsemius
2006-01-01
Full Text Available Variations of water stocks in the upper Zambezi river basin have been determined by 2 different hydrological modelling approaches. The purpose was to provide preliminary terrestrial storage estimates in the upper Zambezi, which will be compared with estimates derived from the Gravity Recovery And Climate Experiment (GRACE in a future study. The first modelling approach is GIS-based, distributed and conceptual (STREAM. The second approach uses Lumped Elementary Watersheds identified and modelled conceptually (LEW. The STREAM model structure has been assessed using GLUE (Generalized Likelihood Uncertainty Estimation a posteriori to determine parameter identifiability. The LEW approach could, in addition, be tested for model structure, because computational efforts of LEW are low. Both models are threshold models, where the non-linear behaviour of the Zambezi river basin is explained by a combination of thresholds and linear reservoirs. The models were forced by time series of gauged and interpolated rainfall. Where available, runoff station data was used to calibrate the models. Ungauged watersheds were generally given the same parameter sets as their neighbouring calibrated watersheds. It appeared that the LEW model structure could be improved by applying GLUE iteratively. Eventually, it led to better identifiability of parameters and consequently a better model structure than the STREAM model. Hence, the final model structure obtained better represents the true hydrology. After calibration, both models show a comparable efficiency in representing discharge. However the LEW model shows a far greater storage amplitude than the STREAM model. This emphasizes the storage uncertainty related to hydrological modelling in data-scarce environments such as the Zambezi river basin. It underlines the need and potential for independent observations of terrestrial storage to enhance our understanding and modelling capacity of the hydrological processes. GRACE
Lumped-parameter Model of a Bucket Foundation
DEFF Research Database (Denmark)
Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten
2009-01-01
As an alternative to gravity footings or pile foundations, offshore wind turbines at shallow water can be placed on a bucket foundation. The present analysis concerns the development of consistent lumped-parameter models for this type of foundation. The aim is to formulate a computationally effic...... be disregarded without significant loss of accuracy. Finally, special attention is drawn to the influence of the skirt stiffness, i.e. whether the embedded part of the caisson is rigid or flexible....
Identifying fast-onset antidepressants using rodent models.
Ramaker, M J; Dulawa, S C
2017-05-01
Depression is a leading cause of disability worldwide and a major contributor to the burden of suicide. A major limitation of classical antidepressants is that 2-4 weeks of continuous treatment is required to elicit therapeutic effects, prolonging the period of depression, disability and suicide risk. Therefore, the development of fast-onset antidepressants is crucial. Preclinical identification of fast-onset antidepressants requires animal models that can accurately predict the delay to therapeutic onset. Although several well-validated assay models exist that predict antidepressant potential, few thoroughly tested animal models exist that can detect therapeutic onset. In this review, we discuss and assess the validity of seven rodent models currently used to assess antidepressant onset: olfactory bulbectomy, chronic mild stress, chronic forced swim test, novelty-induced hypophagia (NIH), novelty-suppressed feeding (NSF), social defeat stress, and learned helplessness. We review the effects of classical antidepressants in these models, as well as six treatments that possess fast-onset antidepressant effects in the clinic: electroconvulsive shock therapy, sleep deprivation, ketamine, scopolamine, GLYX-13 and pindolol used in conjunction with classical antidepressants. We also discuss the effects of several compounds that have yet to be tested in humans but have fast-onset antidepressant-like effects in one or more of these antidepressant onset sensitive models. These compounds include selective serotonin (5-HT) 2C receptor antagonists, a 5-HT 4 receptor agonist, a 5-HT 7 receptor antagonist, NMDA receptor antagonists, a TREK-1 receptor antagonist, mGluR antagonists and (2R,6R)-HNK. Finally, we provide recommendations for identifying fast-onset antidepressants using rodent behavioral models and molecular approaches.
Modeling Water Quality Parameters Using Data-driven Methods
Directory of Open Access Journals (Sweden)
Shima Soleimani
2017-02-01
Full Text Available Introduction: Surface water bodies are the most easily available water resources. Increase use and waste water withdrawal of surface water causes drastic changes in surface water quality. Water quality, importance as the most vulnerable and important water supply resources is absolutely clear. Unfortunately, in the recent years because of city population increase, economical improvement, and industrial product increase, entry of pollutants to water bodies has been increased. According to that water quality parameters express physical, chemical, and biological water features. So the importance of water quality monitoring is necessary more than before. Each of various uses of water, such as agriculture, drinking, industry, and aquaculture needs the water with a special quality. In the other hand, the exact estimation of concentration of water quality parameter is significant. Material and Methods: In this research, first two input variable models as selection methods (namely, correlation coefficient and principal component analysis were applied to select the model inputs. Data processing is consisting of three steps, (1 data considering, (2 identification of input data which have efficient on output data, and (3 selecting the training and testing data. Genetic Algorithm-Least Square Support Vector Regression (GA-LSSVR algorithm were developed to model the water quality parameters. In the LSSVR method is assumed that the relationship between input and output variables is nonlinear, but by using a nonlinear mapping relation can create a space which is named feature space in which relationship between input and output variables is defined linear. The developed algorithm is able to gain maximize the accuracy of the LSSVR method with auto LSSVR parameters. Genetic algorithm (GA is one of evolutionary algorithm which automatically can find the optimum coefficient of Least Square Support Vector Regression (LSSVR. The GA-LSSVR algorithm was employed to
A procedure for determining parameters of a simplified ligament model.
Barrett, Jeff M; Callaghan, Jack P
2018-01-03
A previous mathematical model of ligament force-generation treated their behavior as a population of collagen fibres arranged in parallel. When damage was ignored in this model, an expression for ligament force in terms of the deflection, x, effective stiffness, k, mean collagen slack length, μ, and the standard deviation of slack lengths, σ, was obtained. We present a simple three-step method for determining the three model parameters (k, μ, and σ) from force-deflection data: (1) determine the equation of the line in the linear region of this curve, its slope is k and its x -intercept is -μ; (2) interpolate the force-deflection data when x is -μ to obtain F 0 ; (3) calculate σ with the equation σ=2πF 0 /k. Results from this method were in good agreement to those obtained from a least-squares procedure on experimental data - all falling within 6%. Therefore, parameters obtained using the proposed method provide a systematic way of reporting ligament parameters, or for obtaining an initial guess for nonlinear least-squares. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Claudia Kratzenstein
2013-07-01
Full Text Available We investigate the Oneshot Optimization strategy introduced by Hamdi and Griewank for the applicability and efficiency to identify parameters in models of the earth's climate system. Parameters of a box model of the North Atlantic Thermohaline Circulation are optimized with respect to the fit of model output to data given by another model of intermediate complexity. Since the model is run into a steady state by a pseudo time-stepping, efficient techniques are necessary to avoid extensive recomputations or storing when using gradient-based local optimization algorithms. The Oneshot approach simultaneously updates state, adjoint and parameter values. For the required partial derivatives, the algorithmic/automatic differentiation tool TAF was used. Numerical results are compared to results obtained by the BFGS-quasi-Newton method.
Kim, Kyung Yong; Lee, Won-Chan
2017-01-01
This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…
Surrogate based approaches to parameter inference in ocean models
Knio, Omar
2016-01-06
This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.
Information Theoretic Tools for Parameter Fitting in Coarse Grained Models
Kalligiannaki, Evangelia
2015-01-07
We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.
FRIGA, a new approach to identify isotopes and hypernuclei in n -body transport models
Le Fèvre, A.; Leifels, Y.; Aichelin, J.; Hartnack, Ch.; Kireyev, V.; Bratkovskaya, E.
2017-11-01
We present a new algorithm to identify fragments in computer simulations of relativistic heavy-ion collisions. It is based on the simulated annealing technique and can be applied to n -body transport models like the Quantum Molecular Dynamics. This new approach is able to predict isotope yields as well as hypernucleus production. In order to illustrate its predicting power, we confront this new method to experimental data, and show the sensitivity on the parameters which govern the cluster formation.
Jordan, Petr; Kerdok, Amy E; Howe, Robert D; Socrate, Simona
2011-04-01
We describe a modeling methodology intended as a preliminary step in the identification of appropriate constitutive frameworks for the time-dependent response of biological tissues. The modeling approach comprises a customizable rheological network of viscous and elastic elements governed by user-defined 1D constitutive relationships. The model parameters are identified by iterative nonlinear optimization, minimizing the error between experimental and model-predicted structural (load-displacement) tissue response under a specific mode of deformation. We demonstrate the use of this methodology by determining the minimal rheological arrangement, constitutive relationships, and model parameters for the structural response of various soft tissues, including ex vivo perfused porcine liver in indentation, ex vivo porcine brain cortical tissue in indentation, and ex vivo human cervical tissue in unconfined compression. Our results indicate that the identified rheological configurations provide good agreement with experimental data, including multiple constant strain rate load/unload tests and stress relaxation tests. Our experience suggests that the described modeling framework is an efficient tool for exploring a wide array of constitutive relationships and rheological arrangements, which can subsequently serve as a basis for 3D constitutive model development and finite-element implementations. The proposed approach can also be employed as a self-contained tool to obtain simplified 1D phenomenological models of the structural response of biological tissue to single-axis manipulations for applications in haptic technologies.
Directory of Open Access Journals (Sweden)
Guang-zhou Chen
2015-01-01
Full Text Available Parameter identification plays a crucial role for simulating and using model. This paper firstly carried out the sensitivity analysis of the 2-chlorophenol oxidation model in supercritical water using the Monte Carlo method. Then, to address the nonlinearity of the model, two improved differential search (DS algorithms were proposed to carry out the parameter identification of the model. One strategy is to adopt the Latin hypercube sampling method to replace the uniform distribution of initial population; the other is to combine DS with simplex method. The results of sensitivity analysis reveal the sensitivity and the degree of difficulty identified for every model parameter. Furthermore, the posteriori probability distribution of parameters and the collaborative relationship between any two parameters can be obtained. To verify the effectiveness of the improved algorithms, the optimization performance of improved DS in kinetic parameter estimation is studied and compared with that of the basic DS algorithm, differential evolution, artificial bee colony optimization, and quantum-behaved particle swarm optimization. And the experimental results demonstrate that the DS with the Latin hypercube sampling method does not present better performance, while the hybrid methods have the advantages of strong global search ability and local search ability and are more effective than the other algorithms.
Moolenaar, H.E.; Selten, F.M.
2004-01-01
Climate models contain numerous parameters for which the numeric values are uncertain. In the context of climate simulation and prediction, a relevant question is what range of climate outcomes is possible given the range of parameter uncertainties. Which parameter perturbation changes the climate
Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred
2013-12-31
There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.
Identification of Constitutive Parameters Using Inverse Strategy Coupled to an ANN Model
International Nuclear Information System (INIS)
Aguir, H.; Chamekh, A.; BelHadjSalah, H.; Hambli, R.
2007-01-01
This paper deals with the identification of material parameters using an inverse strategy. In the classical methods, the inverse technique is generally coupled with a finite element code which leads to a long computing time. In this work an inverse strategy coupled with an ANN procedure is proposed. This method has the advantage of being faster than the classical one. To validate this approach an experimental plane tensile and bulge tests are used in order to identify material behavior. The ANN model is trained from finite element simulations of the two tests. In order to reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure to identify material parameters for the AISI304. The identified material parameters are the hardening curve and the anisotropic coefficients
Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.
2016-04-01
Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.
Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina
2010-04-01
DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site http://www.dei.unipd.it/ approximately pia/. 2010 Elsevier Ltd. All rights reserved.
Comparison of parameter estimation algorithms in hydrological modelling
DEFF Research Database (Denmark)
Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan
2006-01-01
Local search methods have been applied successfully in calibration of simple groundwater models, but might fail in locating the optimum for models of increased complexity, due to the more complex shape of the response surface. Global search algorithms have been demonstrated to perform well...... for these types of models, although at a more expensive computational cost. The main purpose of this study is to investigate the performance of a global and a local parameter optimization algorithm, respectively, the Shuffled Complex Evolution (SCE) algorithm and the gradient-based Gauss......-Marquardt-Levenberg algorithm (implemented in the PEST software), when applied to a steady-state and a transient groundwater model. The results show that PEST can have severe problems in locating the global optimum and in being trapped in local regions of attractions. The global SCE procedure is, in general, more effective...
Directory of Open Access Journals (Sweden)
Man Zhu
2017-03-01
Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.
Local overfishing may be avoided by examining parameters of a spatio-temporal model.
Carson, Stuart; Shackell, Nancy; Mills Flemming, Joanna
2017-01-01
Spatial erosion of stock structure through local overfishing can lead to stock collapse because fish often prefer certain locations, and fisheries tend to focus on those locations. Fishery managers are challenged to maintain the integrity of the entire stock and require scientific approaches that provide them with sound advice. Here we propose a Bayesian hierarchical spatio-temporal modelling framework for fish abundance data to estimate key parameters that define spatial stock structure: persistence (similarity of spatial structure over time), connectivity (coherence of temporal pattern over space), and spatial variance (variation across the seascape). The consideration of these spatial parameters in the stock assessment process can help identify the erosion of structure and assist in preventing local overfishing. We use Atlantic cod (Gadus morhua) in eastern Canada as a case study an examine the behaviour of these parameters from the height of the fishery through its collapse. We identify clear signals in parameter behaviour under circumstances of destructive stock erosion as well as for recovery of spatial structure even when combined with a non-recovery in abundance. Further, our model reveals the spatial pattern of areas of high and low density persists over the 41 years of available data and identifies the remnant patches. Models of this sort are crucial to recovery plans if we are to identify and protect remaining sources of recolonization for Atlantic cod. Our method is immediately applicable to other exploited species.
Flare parameters inferred from a 3D loop model database
Cuambe, Valente A.; Costa, J. E. R.; Simões, P. J. A.
2018-04-01
We developed a database of pre-calculated flare images and spectra exploring a set of parameters which describe the physical characteristics of coronal loops and accelerated electron distribution. Due to the large number of parameters involved in describing the geometry and the flaring atmosphere in the model used (Costa et al. 2013), we built a large database of models (˜250 000) to facilitate the flare analysis. The geometry and characteristics of non-thermal electrons are defined on a discrete grid with spatial resolution greater than 4 arcsec. The database was constructed based on general properties of known solar flares and convolved with instrumental resolution to replicate the observations from the Nobeyama radio polarimeter (NoRP) spectra and Nobeyama radio-heliograph (NoRH) brightness maps. Observed spectra and brightness distribution maps are easily compared with the modelled spectra and images in the database, indicating a possible range of solutions. The parameter search efficiency in this finite database is discussed. Eight out of ten parameters analysed for one thousand simulated flare searches were recovered with a relative error of less than 20 per cent on average. In addition, from the analysis of the observed correlation between NoRH flare sizes and intensities at 17 GHz, some statistical properties were derived. From these statistics the energy spectral index was found to be δ ˜ 3, with non-thermal electron densities showing a peak distribution ⪅107 cm-3, and Bphotosphere ⪆2000 G. Some bias for larger loops with heights as great as ˜2.6 × 109 cm, and looptop events were noted. An excellent match of the spectrum and the brightness distribution at 17 and 34 GHz of the 2002 May 31 flare, is presented as well.
Parameter and uncertainty estimation for mechanistic, spatially explicit epidemiological models
Finger, Flavio; Schaefli, Bettina; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea
2014-05-01
Epidemiological models can be a crucially important tool for decision-making during disease outbreaks. The range of possible applications spans from real-time forecasting and allocation of health-care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. Our spatially explicit, mechanistic models for cholera epidemics have been successfully applied to several epidemics including, the one that struck Haiti in late 2010 and is still ongoing. Calibration and parameter estimation of such models represents a major challenge because of properties unusual in traditional geoscientific domains such as hydrology. Firstly, the epidemiological data available might be subject to high uncertainties due to error-prone diagnosis as well as manual (and possibly incomplete) data collection. Secondly, long-term time-series of epidemiological data are often unavailable. Finally, the spatially explicit character of the models requires the comparison of several time-series of model outputs with their real-world counterparts, which calls for an appropriate weighting scheme. It follows that the usual assumption of a homoscedastic Gaussian error distribution, used in combination with classical calibration techniques based on Markov chain Monte Carlo algorithms, is likely to be violated, whereas the construction of an appropriate formal likelihood function seems close to impossible. Alternative calibration methods, which allow for accurate estimation of total model uncertainty, particularly regarding the envisaged use of the models for decision-making, are thus needed. Here we present the most recent developments regarding methods for parameter and uncertainty estimation to be used with our mechanistic, spatially explicit models for cholera epidemics, based on informal measures of goodness of fit.
Kahl, Gunnar M; Sidorenko, Yury; Gottesbüren, Bernhard
2015-04-01
As an option for higher-tier leaching assessment of pesticides in Europe according to FOCUS, pesticide properties can be estimated from lysimeter studies by inversely fitting parameter values (substance half-life DT50 and sorption coefficient to organic matter kom ). The aim of the study was to identify adequate methods for inverse modelling. Model parameters for the PEARL (Pesticide Emission Assessment at Regional and Local scales) model were estimated with different inverse optimisation algorithms - the Levenberg-Marquardt (LM), PD_MS2 (PEST Driver Multiple Starting Points 2) and SCEM (Shuffled Complex Evolution Metropolis) algorithms. Optimisation of crop factors and hydraulic properties was found to be an ill-posed problem, and all algorithms failed to identify reliable global minima for the hydrological parameters. All algorithms performed equally well in estimating pesticide sorption and degradation parameters. SCEM was in most cases the only algorithm that reliably calculated uncertainties. The most reliable approach for finding the best parameter set in the stepwise approach of optimising evapotranspiration, soil hydrology and pesticide parameters was to run only SCEM or a combined approach with more than one algorithm using the best fit of each step for further processing. PD_MS2 was well suited to a quick parameter search. The linear parameter uncertainty intervals estimated by LM and PD_MS2 were usually larger than by the non-linear method used by SCEM. With the suggested methods, parameter optimisation, together with reliable estimation of uncertainties, is possible also for relatively complex systems. © 2014 Society of Chemical Industry.
Deloule, Francoise
A machine shop design based on the Merise method is derived. The parameters of the physical system are identified and evaluated. Modeling and simulation are used as complementary methods to solve the problems created by the simultaneous variation of a large number of parameters. The specifications of machines and other elements implementing the flexible shop are obtained. A structured process to optimize the utilization of modeling and simulation is presented. It is shown that for given criteria the solution is close to the optimum.
A review of distributed parameter groundwater management modeling methods
Gorelick, Steven M.
1983-01-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Some notes on unobserved parameters (frailties) in reliability modeling
International Nuclear Information System (INIS)
Cha, Ji Hwan; Finkelstein, Maxim
2014-01-01
Unobserved random quantities (frailties) often appear in various reliability problems especially when dealing with the failure rates of items from heterogeneous populations. As the failure rate is a conditional characteristic, the distributions of these random quantities, similar to Bayesian approaches, are updated in accordance with the corresponding survival information. At some instances, apart from a statistical meaning, frailties can have also useful interpretations describing the underlying lifetime model. We discuss and clarify these issues in reliability context and present and analyze several meaningful examples. We consider the proportional hazards model with a random factor; the stress–strength model, where the unobserved strength of a system can be viewed as frailty; a parallel system with a random number of components and, finally, the first passage time problem for the Wiener process with random parameters. - Highlights: • We discuss and clarify the notion of frailty in reliability context and present and analyze several meaningful examples. • The paper provides a new insight and general perspective on reliability models with unobserved parameters. • The main message of the paper is well illustrated by several meaningful examples and emphasized by detailed discussion
Using SMAP to identify structural errors in hydrologic models
Crow, W. T.; Reichle, R. H.; Chen, F.; Xia, Y.; Liu, Q.
2017-12-01
Despite decades of effort, and the development of progressively more complex models, there continues to be underlying uncertainty regarding the representation of basic water and energy balance processes in land surface models. Soil moisture occupies a central conceptual position between atmosphere forcing of the land surface and resulting surface water fluxes. As such, direct observations of soil moisture are potentially of great value for identifying and correcting fundamental structural problems affecting these models. However, to date, this potential has not yet been realized using satellite-based retrieval products. Using soil moisture data sets produced by the NASA Soil Moisture Active/Passive mission, this presentation will explore the use of the remotely-sensed soil moisture data products as a constraint to reject certain types of surface runoff parameterizations within a land surface model. Results will demonstrate that the precision of the SMAP Level 4 Surface and Root-Zone soil moisture product allows for the robust sampling of correlation statistics describing the true strength of the relationship between pre-storm soil moisture and subsequent storm-scale runoff efficiency (i.e., total storm flow divided by total rainfall both in units of depth). For a set of 16 basins located in the South-Central United States, we will use these sampled correlations to demonstrate that so-called "infiltration-excess" runoff parameterizations under predict the importance of pre-storm soil moisture for determining storm-scale runoff efficiency. To conclude, we will discuss prospects for leveraging this insight to improve short-term hydrologic forecasting and additional avenues for SMAP soil moisture products to provide process-level insight for hydrologic modelers.
Hydrological Modelling and Parameter Identification for Green Roof
Lo, W.; Tung, C.
2012-12-01
Green roofs, a multilayered system covered by plants, can be used to replace traditional concrete roofs as one of various measures to mitigate the increasing stormwater runoff in the urban environment. Moreover, facing the high uncertainty of the climate change, the present engineering method as adaptation may be regarded as improper measurements; reversely, green roofs are unregretful and flexible, and thus are rather important and suitable. The related technology has been developed for several years and the researches evaluating the stormwater reduction performance of green roofs are ongoing prosperously. Many European counties, cities in the U.S., and other local governments incorporate green roof into the stormwater control policy. Therefore, in terms of stormwater management, it is necessary to develop a robust hydrologic model to quantify the efficacy of green roofs over different types of designs and environmental conditions. In this research, a physical based hydrologic model is proposed to simulate water flowing process in the green roof system. In particular, the model adopts the concept of water balance, bringing a relatively simple and intuitive idea. Also, the research compares the two methods in the surface water balance calculation. One is based on Green-Ampt equation, and the other is under the SCS curve number calculation. A green roof experiment is designed to collect weather data and water discharge. Then, the proposed model is verified with these observed data; furthermore, the parameters using in the model are calibrated to find appropriate values in the green roof hydrologic simulation. This research proposes a simple physical based hydrologic model and the measures to determine parameters for the model.
Norgaard, Trine; Moldrup, Per; Olsen, Preben; Vendelboe, Anders L; Iversen, Bo V; Greve, Mogens H; Kjaer, Jeanne; de Jonge, Lis W
2013-01-01
Preferential flow and particle-facilitated transport through macropores contributes significantly to the transport of strongly sorbing substances such as pesticides and phosphorus. The aim of this study was to perform a field-scale characterization of basic soil physical properties like clay and organic carbon content and investigate whether it was possible to relate these to derived structural parameters such as bulk density and conservative tracer parameters and to actual particle and phosphorus leaching patterns obtained from laboratory leaching experiments. Sixty-five cylindrical soil columns of 20-cm height and 20-cm diameter and bulk soil were sampled from the topsoil in a 15-m × 15-m grid in an agricultural loamy field. Highest clay contents and highest bulk densities were found in the northern part of the field. Leaching experiments with a conservative tracer showed fast 5% tracer arrival times and high tracer recovery percentages from columns sampled from the northern part of the field, and the leached mass of particles and particulate phosphorus was also largest from this area. Strong correlations were obtained between 5% tracer arrival time, tracer recovery, and bulk density, indicating that a few well-aligned and better connected macropores might change the hydraulic conductivity between the macropores and the soil matrix, triggering an onset of preferential flow at lower rain intensities compared with less compacted soil. Overall, a comparison mapping of basic and structural characteristics including soil texture, bulk density, dissolved tracer, particle and phosphorus transport parameters identified the northern one-third of the field as a zone with higher leaching risk. This risk assessment based on parameter mapping from measurements on intact samples was in good agreement with 9 yr of pesticide detections in two horizontal wells and with particle and phosphorus leaching patterns from a distributed, shallow drainage pipe system across the field
A parameter network and model pyramid for managing technical information flow
International Nuclear Information System (INIS)
Sinnock, S.; Hartman, H.A.
1994-01-01
Prototypes of information management tools have been developed that can help communicate the technical basis for nuclear waste disposal to a broad audience of program scientists and engineers, project managers, and informed observers from stakeholder organizations. These tools include system engineering concepts, parameter networks expressed as influence diagrams, associated model hierarchies, and a relational database. These tools are used to express relationships among data-collection parameters, model input parameters, model output parameters, systems requirements, physical elements of a system description, and functional analysis of the contribution of physical elements and their associated parameters in satisfying the system requirements. By organizing parameters, models, physical elements, functions, and requirements in a visually reviewable network and a relational database the severe communication challenges facing participants in the nuclear waste dialog can be addressed. The network identifies the influences that data collected in the field have on measures of repository suitability, providing a visual, traceable map that clarifies the role of data and models in supporting conclusions about repository suitability. The map allows conclusions to be traced directly to the underlying parameters and models. Uncertainty in these underlying elements can be exposed to open review in the context of the effects uncertainty has on judgements about suitability. A parameter network provides a stage upon which an informed social dialog about the technical merits of a nuclear waste repository can be conducted. The basis for such dialog must be that stage, if decisions about repository suitability are to be based on a repository's ability to meet requirements embodied in laws and regulations governing disposal of nuclear wastes
Modelling Technical and Economic Parameters in Selection of Manufacturing Devices
Directory of Open Access Journals (Sweden)
Naqib Daneshjo
2017-11-01
Full Text Available Sustainable science and technology development is also conditioned by continuous development of means of production which have a key role in structure of each production system. Mechanical nature of the means of production is complemented by controlling and electronic devices in context of intelligent industry. A selection of production machines for a technological process or technological project has so far been practically resolved, often only intuitively. With regard to increasing intelligence, the number of variable parameters that have to be considered when choosing a production device is also increasing. It is necessary to use computing techniques and decision making methods according to heuristic methods and more precise methodological procedures during the selection. The authors present an innovative model for optimization of technical and economic parameters in the selection of manufacturing devices for industry 4.0.
Estimasi Parameter Item dan Latent Class dengan Model Dina untuk Diagnosis Kesulitan Belajar
Directory of Open Access Journals (Sweden)
- Kusaeri
2013-07-01
Full Text Available Abstract: Estimation of Item Parameter and Latent Class with DINA Model to Diagnose Learning Difficulties. This study aims to estimate item parameter of diagnostic test developed with DINA model and identify attribute profiles of each test participant. The instrument of this study was diagnostic test using multiple choice format with 4 options. The data were analyzed using Mplus software, R program and ITEMAN. The results show that out of 8 items measuring social arithmetic and comparison, there was on ly one item that had low guessing and slip parameter. The study also found that basic operation and concept in arithmetic and verbal questions were problematic f or most students. Abstrak: Estimasi Parameter Item dan Latent Class dengan Model DINA untuk Diagnosis Kesulitan Belajar. Penelitian ini bertujuan untuk mengestimasi parameter item dari tes diagnostik yang dikembangkan dengan model DINA dan mengidentifikasi profil atribut setiap peserta tes. Instrumen penelitian ini berupa tes diagnostik berbentuk pilihan ganda dengan 4 pilihan jawaban. Data dianalisis dengan menggunakan software Mplus, program R dan ITEMAN. Hasil penelitian menunjukkan bahwa dari 8 item yang mengukur materi aritmetika sosial dan perbandingan, hanya ada satu item dengan parameter guessing dan slip rendah. Temuan lain operasi dan konsep dasar dalam aritmetika serta soal bentuk verbal masih menjadi m asalah bagi sebagian besar siswa.
Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.
Cuba, Christian E; Valle, Alexander R; Ayala-Charca, Giancarlo; Villota, Elizabeth R; Coronado, Alberto M
2015-09-01
Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.
A Model to Identify Sarcopenia in Patients With Cirrhosis.
Tandon, Puneeta; Low, Gavin; Mourtzakis, Marina; Zenith, Laura; Myers, Robert P; Abraldes, Juan G; Shaheen, Abdel Aziz M; Qamar, Hina; Mansoor, Nadia; Carbonneau, Michelle; Ismond, Kathleen; Mann, Sumeer; Alaboudy, Alshimaa; Ma, Mang
2016-10-01
The severe depletion of muscle mass at the third lumbar vertebral level (sarcopenia) is a marker of malnutrition and is independently associated with mortality in patients with cirrhosis. Instead of monitoring sarcopenia by cross-sectional imaging, we investigated whether ultrasound-based measurements of peripheral muscle mass, measures of muscle function, along with nutritional factors, are associated with severe loss of muscle mass. We performed a prospective study of 159 outpatients with cirrhosis (56% male; mean age, 58 ± 10 years; mean model for end-stage liver disease score, 10 ± 3; 60% Child-Pugh class A) evaluated at the Cirrhosis Care Clinic at the University of Alberta Hospital from March 2011 through September 2012. Lumbar skeletal muscle indices were determined by computed tomography or magnetic resonance imaging. We collected clinical data and data on patients' body composition, nutrition, and thigh muscle thickness (using ultrasound analysis). We also measured mid-arm muscle circumference, mid-arm circumference, hand grip, body mass index, and serum level of albumin; patients were evaluated using the subjective global assessment scale. Findings from these analyses were compared with those from cross-sectional imaging, for each sex, using logistic regression analysis. Based on cross-sectional imaging analysis, 43% of patients had sarcopenia (57% of men and 25% of women). Results from the subjective global assessment, serum level of albumin, and most nutritional factors were significantly associated with sarcopenia. We used multivariate analysis to develop a model to identify patients with sarcopenia, and developed a nomogram based on body mass index and thigh muscle thickness for patients of each sex. Our model identified men with sarcopenia with an area under the receiver operating characteristic curve value of 0.78 and women with sarcopenia with an area under the receiver operating characteristic curve value of 0.89. In a prospective study of
Dynamic systems models new methods of parameter and state estimation
2016-01-01
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...
Parameter Estimation for a Class of Lifetime Models
Directory of Open Access Journals (Sweden)
Xinyang Ji
2014-01-01
Full Text Available Our purpose in this paper is to present a better method of parametric estimation for a bivariate nonlinear regression model, which takes the performance indicator of rubber aging as the dependent variable and time and temperature as the independent variables. We point out that the commonly used two-step method (TSM, which splits the model and estimate parameters separately, has limitation. Instead, we apply the Marquardt’s method (MM to implement parametric estimation directly for the model and compare these two methods of parametric estimation by random simulation. Our results show that MM has better effect of data fitting, more reasonable parametric estimates, and smaller prediction error compared with TSM.
The parameter space of Cubic Galileon models for cosmic acceleration
Bellini, Emilio
2013-01-01
We use recent measurements of the expansion history of the universe to place constraints on the parameter space of cubic Galileon models. This gives strong constraints on the Lagrangian of these models. Most dynamical terms in the Galileon Lagrangian are constraint to be small and the acceleration is effectively provided by a constant term in the scalar potential, thus reducing, effectively, to a LCDM model for current acceleration. The effective equation of state is indistinguishable from that of a cosmological constant w = -1 and the data constraint it to have no temporal variations of more than at the few % level. The energy density of the Galileon can contribute only to about 10% of the acceleration energy density, being the other 90% a cosmological constant term. This demonstrates how useful direct measurements of the expansion history of the universe are at constraining the dynamical nature of dark energy.
Rheumatoid arthritis: identifying and characterising polymorphisms using rat models
2016-01-01
ABSTRACT Rheumatoid arthritis is a chronic inflammatory joint disorder characterised by erosive inflammation of the articular cartilage and by destruction of the synovial joints. It is regulated by both genetic and environmental factors, and, currently, there is no preventative treatment or cure for this disease. Genome-wide association studies have identified ∼100 new loci associated with rheumatoid arthritis, in addition to the already known locus within the major histocompatibility complex II region. However, together, these loci account for only a modest fraction of the genetic variance associated with this disease and very little is known about the pathogenic roles of most of the risk loci identified. Here, we discuss how rat models of rheumatoid arthritis are being used to detect quantitative trait loci that regulate different arthritic traits by genetic linkage analysis and to positionally clone the underlying causative genes using congenic strains. By isolating specific loci on a fixed genetic background, congenic strains overcome the challenges of genetic heterogeneity and environmental interactions associated with human studies. Most importantly, congenic strains allow functional experimental studies be performed to investigate the pathological consequences of natural genetic polymorphisms, as illustrated by the discovery of several major disease genes that contribute to arthritis in rats. We discuss how these advances have provided new biological insights into arthritis in humans. PMID:27736747
Analysis of Model Parameters for a Polymer Filtration Simulator
Directory of Open Access Journals (Sweden)
N. Brackett-Rozinsky
2011-01-01
Full Text Available We examine a simulation model for polymer extrusion filters and determine its sensitivity to filter parameters. The simulator is a three-dimensional, time-dependent discretization of a coupled system of nonlinear partial differential equations used to model fluid flow and debris transport, along with statistical relationships that define debris distributions and retention probabilities. The flow of polymer fluid, and suspended debris particles, is tracked to determine how well a filter performs and how long it operates before clogging. A filter may have multiple layers, characterized by thickness, porosity, and average pore diameter. In this work, the thickness of each layer is fixed, while the porosities and pore diameters vary for a two-layer and three-layer study. The effects of porosity and average pore diameter on the measures of filter quality are calculated. For the three layer model, these effects are tested for statistical significance using analysis of variance. Furthermore, the effects of each pair of interacting parameters are considered. This allows the detection of complexity, where in changing two aspects of a filter together may generate results substantially different from what occurs when those same aspects change separately. The principal findings indicate that the first layer of a filter is the most important.
Applying Atmospheric Measurements to Constrain Parameters of Terrestrial Source Models
Hyer, E. J.; Kasischke, E. S.; Allen, D. J.
2004-12-01
Quantitative inversions of atmospheric measurements have been widely applied to constrain atmospheric budgets of a range of trace gases. Experiments of this type have revealed persistent discrepancies between 'bottom-up' and 'top-down' estimates of source magnitudes. The most common atmospheric inversion uses the absolute magnitude as the sole parameter for each source, and returns the optimal value of that parameter. In order for atmospheric measurements to be useful for improving 'bottom-up' models of terrestrial sources, information about other properties of the sources must be extracted. As the density and quality of atmospheric trace gas measurements improve, examination of higher-order properties of trace gas sources should become possible. Our model of boreal forest fire emissions is parameterized to permit flexible examination of the key uncertainties in this source. Using output from this model together with the UM CTM, we examined the sensitivity of CO concentration measurements made by the MOPITT instrument to various uncertainties in the boreal source: geographic distribution of burned area, fire type (crown fires vs. surface fires), and fuel consumption in above-ground and ground-layer fuels. Our results indicate that carefully designed inversion experiments have the potential to help constrain not only the absolute magnitudes of terrestrial sources, but also the key uncertainties associated with 'bottom-up' estimates of those sources.
Bayesian parameter estimation for stochastic models of biological cell migration
Dieterich, Peter; Preuss, Roland
2013-08-01
Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.
Application of a free parameter model to plastic scintillation samples
Energy Technology Data Exchange (ETDEWEB)
Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)
2011-08-21
In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.
Microbial Communities Model Parameter Calculation for TSPA/SR
Energy Technology Data Exchange (ETDEWEB)
D. Jolley
2001-07-16
This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.
Microbial Communities Model Parameter Calculation for TSPA/SR
International Nuclear Information System (INIS)
D. Jolley
2001-01-01
This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed
Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes
Directory of Open Access Journals (Sweden)
J.-L. Guerrero
2017-12-01
Full Text Available Lakes might be sentinels of climate change, but the uncertainty in their main feedback to the atmosphere – heat-exchange fluxes – is often not considered within climate models. Additionally, these fluxes are seldom measured, hindering critical evaluation of model output. Analysis of the Canadian Small Lake Model (CSLM, a one-dimensional integral lake model, was performed to assess its ability to reproduce diurnal and seasonal variations in heat fluxes and the sensitivity of simulated fluxes to changes in model parameters, i.e., turbulent transport parameters and the light extinction coefficient (Kd. A C++ open-source software package, Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE, was used to perform sensitivity analysis (SA and identify the parameters that dominate model behavior. The generalized likelihood uncertainty estimation (GLUE was applied to quantify the fluxes' uncertainty, comparing daily-averaged eddy-covariance observations to the output of CSLM. Seven qualitative and two quantitative SA methods were tested, and the posterior likelihoods of the modeled parameters, obtained from the GLUE analysis, were used to determine the dominant parameters and the uncertainty in the modeled fluxes. Despite the ubiquity of the equifinality issue – different parameter-value combinations yielding equivalent results – the answer to the question was unequivocal: Kd, a measure of how much light penetrates the lake, dominates sensible and latent heat fluxes, and the uncertainty in their estimates is strongly related to the accuracy with which Kd is determined. This is important since accurate and continuous measurements of Kd could reduce modeling uncertainty.
EXTRACTION OF SPATIAL PARAMETERS FROM CLASSIFIED LIDAR DATA AND AERIAL PHOTOGRAPH FOR SOUND MODELING
Directory of Open Access Journals (Sweden)
S. Biswas
2012-07-01
Full Text Available Prediction of outdoor sound levels in 3D space is important for noise management, soundscaping etc. Sound levels at outdoor can be predicted using sound propagation models which need terrain parameters. The existing practices of incorporating terrain parameters into models are often limited due to inadequate data or inability to determine accurate sound transmission paths through a terrain. This leads to poor accuracy in modelling. LIDAR data and Aerial Photograph (or Satellite Images provide opportunity to incorporate high resolution data into sound models. To realize this, identification of building and other objects and their use for extraction of terrain parameters are fundamental. However, development of a suitable technique, to incorporate terrain parameters from classified LIDAR data and Aerial Photograph, for sound modelling is a challenge. Determination of terrain parameters along various transmission paths of sound from sound source to a receiver becomes very complex in an urban environment due to the presence of varied and complex urban features. This paper presents a technique to identify the principal paths through which sound transmits from source to receiver. Further, the identified principal paths are incorporated inside the sound model for sound prediction. Techniques based on plane cutting and line tracing are developed for determining principal paths and terrain parameters, which use various information, e.g., building corner and edges, triangulated ground, tree points and locations of source and receiver. The techniques developed are validated through a field experiment. Finally efficacy of the proposed technique is demonstrated by developing a noise map for a test site.
Modelled basic parameters for semi-industrial irradiation plant design
International Nuclear Information System (INIS)
Mangussi, J.
2009-01-01
The basic parameters of an irradiation plant design are the total activity, the product uniformity ratio and the efficiency process. The target density, the minimum dose required and the throughput depends on the use to which the irradiator will be put at. In this work, a model for calculating the specific dose rate at several depths in an infinite homogeneous medium produced by a slab source irradiator is presented. The product minimum dose rate for a set of target thickness is obtained. The design method steps are detailed and an illustrative example is presented. (author)
Lumped-parameter fuel rod model for rapid thermal transients
International Nuclear Information System (INIS)
Perkins, K.R.; Ramshaw, J.D.
1975-07-01
The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company
Taming Many-Parameter BSM Models with Bayesian Neural Networks
Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.
2017-09-01
The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.
Bayesian analysis of inflation: Parameter estimation for single field models
International Nuclear Information System (INIS)
Mortonson, Michael J.; Peiris, Hiranya V.; Easther, Richard
2011-01-01
Future astrophysical data sets promise to strengthen constraints on models of inflation, and extracting these constraints requires methods and tools commensurate with the quality of the data. In this paper we describe ModeCode, a new, publicly available code that computes the primordial scalar and tensor power spectra for single-field inflationary models. ModeCode solves the inflationary mode equations numerically, avoiding the slow roll approximation. It is interfaced with CAMB and CosmoMC to compute cosmic microwave background angular power spectra and perform likelihood analysis and parameter estimation. ModeCode is easily extendable to additional models of inflation, and future updates will include Bayesian model comparison. Errors from ModeCode contribute negligibly to the error budget for analyses of data from Planck or other next generation experiments. We constrain representative single-field models (φ n with n=2/3, 1, 2, and 4, natural inflation, and 'hilltop' inflation) using current data, and provide forecasts for Planck. From current data, we obtain weak but nontrivial limits on the post-inflationary physics, which is a significant source of uncertainty in the predictions of inflationary models, while we find that Planck will dramatically improve these constraints. In particular, Planck will link the inflationary dynamics with the post-inflationary growth of the horizon, and thus begin to probe the ''primordial dark ages'' between TeV and grand unified theory scale energies.
Pulungan, Ditho Ardiansyah
2017-03-31
In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.
Analysis report for WIPP colloid model constraints and performance assessment parameters
Energy Technology Data Exchange (ETDEWEB)
Mariner, Paul E.; Sassani, David Carl
2014-03-01
An analysis of the Waste Isolation Pilot Plant (WIPP) colloid model constraints and parameter values was performed. The focus of this work was primarily on intrinsic colloids, mineral fragment colloids, and humic substance colloids, with a lesser focus on microbial colloids. Comments by the US Environmental Protection Agency (EPA) concerning intrinsic Th(IV) colloids and Mg-Cl-OH mineral fragment colloids were addressed in detail, assumptions and data used to constrain colloid model calculations were evaluated, and inconsistencies between data and model parameter values were identified. This work resulted in a list of specific conclusions regarding model integrity, model conservatism, and opportunities for improvement related to each of the four colloid types included in the WIPP performance assessment.
Modelling of bio-optical parameters of open ocean waters
Directory of Open Access Journals (Sweden)
Vadim N. Pelevin
2001-12-01
Full Text Available An original method for estimating the concentration of chlorophyll pigments, absorption of yellow substance and absorption of suspended matter without pigments and yellow substance in detritus using spectral diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance data has been applied to sea waters of different types in the open ocean (case 1. Using the effective numerical single parameter classification with the water type optical index m as a parameter over the whole range of the open ocean waters, the calculations have been carried out and the light absorption spectra of sea waters tabulated. These spectra are used to optimize the absorption models and thus to estimate the concentrations of the main admixtures in sea water. The value of m can be determined from direct measurements of the downward irradiance attenuation coefficient at 500 nm or calculated from remote sensing data using the regressions given in the article. The sea water composition can then be readily estimated from the tables given for any open ocean area if that one parameter m characterizing the basin is known.
Application of regression model on stream water quality parameters
International Nuclear Information System (INIS)
Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.
2012-01-01
Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations
Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.
2016-01-01
The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and
Thyer, Mark; Kavetski, Dmitri; Evin, Guillaume; Kuczera, George; Renard, Ben; McInerney, David
2015-04-01
All scientific and statistical analysis, particularly in natural sciences, is based on approximations and assumptions. For example, the calibration of hydrological models using approaches such as Nash-Sutcliffe efficiency and/or simple least squares (SLS) objective functions may appear to be 'assumption-free'. However, this is a naïve point of view, as SLS assumes that the model residuals (residuals=observed-predictions) are independent, homoscedastic and Gaussian. If these assumptions are poor, parameter inference and model predictions will be correspondingly poor. An essential step in model development is therefore to verify the assumptions and approximations made in the modeling process. Diagnostics play a key role in verifying modeling assumptions. An important advantage of the formal Bayesian approach is that the modeler is required to make the assumptions explicit. Specialized diagnostics can then be developed and applied to test and verify their assumptions. This paper presents a suite of statistical and modeling diagnostics that can be used by environmental modelers to test their modeling calibration assumptions and diagnose model deficiencies. Three major types of diagnostics are presented: Residual Diagnostics Residual diagnostics are used to test whether the assumptions of the residual error model within the likelihood function are compatible with the data. This includes testing for statistical independence, homoscedasticity, unbiasedness, Gaussianity and any distributional assumptions. Parameter Uncertainty and MCMC Diagnostics An important part of Bayesian analysis is assess parameter uncertainty. Markov Chain Monte Carlo (MCMC) methods are a powerful numerical tool for estimating these uncertainties. Diagnostics based on posterior parameter distributions can be used to assess parameter identifiability, interactions and correlations. This provides a very useful tool for detecting and remedying model deficiencies. In addition, numerical diagnostics are
Convergence of surface diffusion parameters with model crystal size
Cohen, Jennifer M.; Voter, Arthur F.
1994-07-01
A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.
Diabatic models with transferrable parameters for generalized chemical reactions
Reimers, Jeffrey R.; McKemmish, Laura K.; McKenzie, Ross H.; Hush, Noel S.
2017-05-01
Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical
Standard model parameters and the search for new physics
International Nuclear Information System (INIS)
Marciano, W.J.
1988-04-01
In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs
International Nuclear Information System (INIS)
Singh, Lakhwinder; Aggarwal, M. L.; Khan, R. A.
2012-01-01
The attempt of this paper is to present an effective approach for the optimization of the shot peening process of welded AISI 304 austenitic stainless steel with multi performance characteristics using Grey relational analysis (GRA) based on Taguchi orthogonal array. Twenty-seven experimental runs are performed to determine best process parameters level. An analysis of variance (ANOVA) is carried out to identify significant peening parameters. The response tables are obtained for analyzing the optimal levels of shot peening parameters and major factors that affect the quality function. The multiple performance characteristics including tensile strength, surface hardness and surface roughness are the quality functions considered for the optimization. Further mathematical models are developed using regression analysis for the tensile strength, surface hardness and surface roughness. It will be very helpful to the engineers in deciding the levels of the shot peening parameters for desired performance characteristics
Assessment of parameter regionalization methods for modeling flash floods in China
Ragettli, Silvan; Zhou, Jian; Wang, Haijing
2017-04-01
catchments resulted in good model performance (NSE > 0.5) in 10 and medium performance (NSE > 0.2) in 3 catchments. Optimal model parameters proofed to be relatively insensitive to different HRU configurations. This suggests that dominant controls on hydrologic parameter transfer can potentially be identified based on catchment attributes describing meteorological, geological or landscape characteristics. Parameter regionalization based on a principal component analysis (PCA) nearest neighbor search (using all available catchment attributes) resulted in a 54% success rate in transferring optimal parameter sets and still yielding acceptable model performance. Data from more catchments are required to further increase the parameter transferability success rate or to develop regionalization strategies for individual parameters.
Parameter-free methods distinguish Wnt pathway models and guide design of experiments
MacLean, Adam L.
2015-02-17
The canonical Wnt signaling pathway, mediated by β-catenin, is crucially involved in development, adult stem cell tissue maintenance, and a host of diseases including cancer. We analyze existing mathematical models of Wnt and compare them to a new Wnt signaling model that targets spatial localization; our aim is to distinguish between the models and distill biological insight from them. Using Bayesian methods we infer parameters for each model from mammalian Wnt signaling data and find that all models can fit this time course. We appeal to algebraic methods (concepts from chemical reaction network theory and matroid theory) to analyze the models without recourse to specific parameter values. These approaches provide insight into aspects of Wnt regulation: the new model, via control of shuttling and degradation parameters, permits multiple stable steady states corresponding to stem-like vs. committed cell states in the differentiation hierarchy. Our analysis also identifies groups of variables that should be measured to fully characterize and discriminate between competing models, and thus serves as a guide for performing minimal experiments for model comparison.
Reimer, Joscha; Piwonski, Jaroslaw; Slawig, Thomas
2016-04-01
The statistical significance of any model-data comparison strongly depends on the quality of the used data and the criterion used to measure the model-to-data misfit. The statistical properties (such as mean values, variances and covariances) of the data should be taken into account by choosing a criterion as, e.g., ordinary, weighted or generalized least squares. Moreover, the criterion can be restricted onto regions or model quantities which are of special interest. This choice influences the quality of the model output (also for not measured quantities) and the results of a parameter estimation or optimization process. We have estimated the parameters of a three-dimensional and time-dependent marine biogeochemical model describing the phosphorus cycle in the ocean. For this purpose, we have developed a statistical model for measurements of phosphate and dissolved organic phosphorus. This statistical model includes variances and correlations varying with time and location of the measurements. We compared the obtained estimations of model output and parameters for different criteria. Another question is if (and which) further measurements would increase the model's quality at all. Using experimental design criteria, the information content of measurements can be quantified. This may refer to the uncertainty in unknown model parameters as well as the uncertainty regarding which model is closer to reality. By (another) optimization, optimal measurement properties such as locations, time instants and quantities to be measured can be identified. We have optimized such properties for additional measurement for the parameter estimation of the marine biogeochemical model. For this purpose, we have quantified the uncertainty in the optimal model parameters and the model output itself regarding the uncertainty in the measurement data using the (Fisher) information matrix. Furthermore, we have calculated the uncertainty reduction by additional measurements depending on time
2013-01-01
Background Parameter estimation from experimental data is critical for mathematical modeling of protein regulatory networks. For realistic networks with dozens of species and reactions, parameter estimation is an especially challenging task. In this study, we present an approach for parameter estimation that is effective in fitting a model of the budding yeast cell cycle (comprising 26 nonlinear ordinary differential equations containing 126 rate constants) to the experimentally observed phenotypes (viable or inviable) of 119 genetic strains carrying mutations of cell cycle genes. Results Starting from an initial guess of the parameter values, which correctly captures the phenotypes of only 72 genetic strains, our parameter estimation algorithm quickly improves the success rate of the model to 105–111 of the 119 strains. This success rate is comparable to the best values achieved by a skilled modeler manually choosing parameters over many weeks. The algorithm combines two search and optimization strategies. First, we use Latin hypercube sampling to explore a region surrounding the initial guess. From these samples, we choose ∼20 different sets of parameter values that correctly capture wild type viability. These sets form the starting generation of differential evolution that selects new parameter values that perform better in terms of their success rate in capturing phenotypes. In addition to producing highly successful combinations of parameter values, we analyze the results to determine the parameters that are most critical for matching experimental outcomes and the most competitive strains whose correct outcome with a given parameter vector forces numerous other strains to have incorrect outcomes. These “most critical parameters” and “most competitive strains” provide biological insights into the model. Conversely, the “least critical parameters” and “least competitive strains” suggest ways to reduce the computational complexity of the
Performance Analysis of Different NeQuick Ionospheric Model Parameters
Directory of Open Access Journals (Sweden)
WANG Ningbo
2017-04-01
Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.
Exploring parameter constraints on quintessential dark energy: The exponential model
International Nuclear Information System (INIS)
Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael
2008-01-01
We present an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their 'w 0 -w a ' parametrization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which cannot be distinguished from a cosmological constant at DETF 'Stage 2', and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3σ
Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve
Directory of Open Access Journals (Sweden)
Fengxiang Chen
2014-01-01
Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.
Parameter survey of a rib stiffened wooden floor using sinus modes model
DEFF Research Database (Denmark)
Sjökvist, Lars-Göran; Brunskog, Jonas; Jacobsen, Finn
2008-01-01
of the sound insulation for lightweight buildings have the possibility to speed up the development of new techniques and in the end give tenants better quality of life. This study uses Fourier sinus series to calculate the vibrations on a rib stiffened plate. The beams are modelled as line forces and moments...... that reacts onto the plate vibrations. A parameter study is performed with the aim to identify the most important parameters and their behaviour. The preliminary results show that the attenuation of the system is by far most evident in the direction across the beams. The influence from the basic input...
Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling
Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.
2017-12-01
Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.
Cella, Matteo; Bishara, Anthony J; Medin, Evelina; Swan, Sarah; Reeder, Clare; Wykes, Til
2014-11-01
Converging research suggests that individuals with schizophrenia show a marked impairment in reinforcement learning, particularly in tasks requiring flexibility and adaptation. The problem has been associated with dopamine reward systems. This study explores, for the first time, the characteristics of this impairment and how it is affected by a behavioral intervention-cognitive remediation. Using computational modelling, 3 reinforcement learning parameters based on the Wisconsin Card Sorting Test (WCST) trial-by-trial performance were estimated: R (reward sensitivity), P (punishment sensitivity), and D (choice consistency). In Study 1 the parameters were compared between a group of individuals with schizophrenia (n = 100) and a healthy control group (n = 50). In Study 2 the effect of cognitive remediation therapy (CRT) on these parameters was assessed in 2 groups of individuals with schizophrenia, one receiving CRT (n = 37) and the other receiving treatment as usual (TAU, n = 34). In Study 1 individuals with schizophrenia showed impairment in the R and P parameters compared with healthy controls. Study 2 demonstrated that sensitivity to negative feedback (P) and reward (R) improved in the CRT group after therapy compared with the TAU group. R and P parameter change correlated with WCST outputs. Improvements in R and P after CRT were associated with working memory gains and reduction of negative symptoms, respectively. Schizophrenia reinforcement learning difficulties negatively influence performance in shift learning tasks. CRT can improve sensitivity to reward and punishment. Identifying parameters that show change may be useful in experimental medicine studies to identify cognitive domains susceptible to improvement. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Basavaraj, C. K.; Vishwas, M.
2016-09-01
This paper discusses the process parameters for fused deposition modelling (FDM). Layer thickness, Orientation angle and shell thickness are the process variables considered for studies. Ultimate tensile strength, dimensional accuracy and manufacturing time are the response parameters. For number of experimental runs the taguchi's L9 orthogonal array is used. Taguchis S/N ratio was used to identify a set of process parameters which give good results for respective response characteristics. Effectiveness of each parameter is investigated by using analysis of variance. The material used for the studies of process parameter is Nylon.
The electronic disability record: purpose, parameters, and model use case.
Tulu, Bengisu; Horan, Thomas A
2009-01-01
The active engagement of consumers is an important factor in achieving widespread success of health information systems. The disability community represents a major segment of the healthcare arena, with more than 50 million Americans experiencing some form of disability. In keeping with the "consumer-driven" approach to e-health systems, this paper considers the distinctive aspects of electronic and personal health record use by this segment of society. Drawing upon the information shared during two national policy forums on this topic, the authors present the concept of Electronic Disability Records (EDR). The authors outline the purpose and parameters of such records, with specific attention to its ability to organize health and financial data in a manner that can be used to expedite the disability determination process. In doing so, the authors discuss its interaction with Electronic Health Records (EHR) and Personal Health Records (PHR). The authors then draw upon these general parameters to outline a model use case for disability determination and discuss related implications for disability health management. The paper further reports on the subsequent considerations of these and related deliberations by the American Health Information Community (AHIC).
Recommended Parameter Values for INEEL Subsurface Disposal Area Source Release Modeling
Energy Technology Data Exchange (ETDEWEB)
Riley, Robert G.; Lopresti, Charles A.
2004-06-23
The purpose of this report is to summarize 1) associated information and values for key release model parameters (i.e., best estimate, minimum and maximum) obtained where possible from published experimental data, 2) a structure for selection of sensitivity tests cases that can be used to identify test cases, and 3) recommended test cases for selected contaminants of potential concern to assess remedy effectiveness against a no-treatment base case.
The S-parameter in Holographic Technicolor Models
Agashe, Kaustubh; Grojean, Christophe; Reece, Matthew
2007-01-01
We study the S parameter, considering especially its sign, in models of electroweak symmetry breaking (EWSB) in extra dimensions, with fermions localized near the UV brane. Such models are conjectured to be dual to 4D strong dynamics triggering EWSB. The motivation for such a study is that a negative value of S can significantly ameliorate the constraints from electroweak precision data on these models, allowing lower mass scales (TeV or below) for the new particles and leading to easier discovery at the LHC. We first extend an earlier proof of S>0 for EWSB by boundary conditions in arbitrary metric to the case of general kinetic functions for the gauge fields or arbitrary kinetic mixing. We then consider EWSB in the bulk by a Higgs VEV showing that S is positive for arbitrary metric and Higgs profile, assuming that the effects from higher-dimensional operators in the 5D theory are sub-leading and can therefore be neglected. For the specific case of AdS_5 with a power law Higgs profile, we also show that S ~ ...
Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model
Zhao, Song-Feng; Huang, Fang; Wang, Guo-Li; Zhou, Xiao-Xin
2016-03-01
We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov–Popov–Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province
Sound propagation and absorption in foam - A distributed parameter model.
Manson, L.; Lieberman, S.
1971-01-01
Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.
Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters
Directory of Open Access Journals (Sweden)
Adeniyi Ganiyu Adeogun
2015-10-01
Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain.
Directory of Open Access Journals (Sweden)
Lezhnin Sergey
2017-01-01
Full Text Available The two-temperature model of the outflow from a vessel with initial supercritical parameters of medium has been realized. The model uses thermodynamic non-equilibrium relaxation approach to describe phase transitions. Based on a new asymptotic model for computing the relaxation time, the outflow of water with supercritical initial pressure and super- and subcritical temperatures has been calculated.
Identifiability of Baranyi model and comparison with empirical ...
African Journals Online (AJOL)
In addition, performance of the Baranyi model was compared with those of the empirical modified Gompertz and logistic models and Huang models. Higher values of R2, modeling efficiency and lower absolute values of mean bias error, root mean square error, mean percentage error and chi-square were obtained with ...
Parameter identification in a generalized time-harmonic Rayleigh damping model for elastography.
Directory of Open Access Journals (Sweden)
Elijah E W Van Houten
Full Text Available The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological interpretations.
Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc
2014-09-15
Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.
Huberts, W; de Jonge, C; van der Linden, W P M; Inda, M A; Passera, K; Tordoir, J H M; van de Vosse, F N; Bosboom, E M H
2013-06-01
Decision-making in vascular access surgery for hemodialysis can be supported by a pulse wave propagation model that is able to simulate pressure and flow changes induced by the creation of a vascular access. To personalize such a model, patient-specific input parameters should be chosen. However, the number of input parameters that can be measured in clinical routine is limited. Besides, patient data are compromised with uncertainty. Incomplete and uncertain input data will result in uncertainties in model predictions. In part A, we analyzed how the measurement uncertainty in the input propagates to the model output by means of a sensitivity analysis. Of all 73 input parameters, 16 parameters were identified to be worthwhile to measure more accurately and 51 could be fixed within their measurement uncertainty range, but these latter parameters still needed to be measured. Here, we present a methodology for assessing the model input parameters that can be taken constant and therefore do not need to be measured. In addition, a method to determine the value of this parameter is presented. For the pulse wave propagation model applied to vascular access surgery, six patient-specific datasets were analyzed and it was found that 47 out of 73 parameters can be fixed on a generic value. These model parameters are not important for personalization of the wave propagation model. Furthermore, we were able to determine a generic value for 37 of the 47 fixable model parameters. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Bodmer, James E; English, Anthony; Brady, Megan; Blackwell, Ken; Haxhinasto, Kari; Fotedar, Sunaina; Borgman, Kurt; Bai, Er-Wei; Moy, Alan B
2005-09-01
Transendothelial impedance across an endothelial monolayer grown on a microelectrode has previously been modeled as a repeating pattern of disks in which the electrical circuit consists of a resistor and capacitor in series. Although this numerical model breaks down barrier function into measurements of cell-cell adhesion, cell-matrix adhesion, and membrane capacitance, such solution parameters can be inaccurate without understanding model stability and error. In this study, we have evaluated modeling stability and error by using a chi(2) evaluation and Levenberg-Marquardt nonlinear least-squares (LM-NLS) method of the real and/or imaginary data in which the experimental measurement is compared with the calculated measurement derived by the model. Modeling stability and error were dependent on current frequency and the type of experimental data modeled. Solution parameters of cell-matrix adhesion were most susceptible to modeling instability. Furthermore, the LM-NLS method displayed frequency-dependent instability of the solution parameters, regardless of whether the real or imaginary data were analyzed. However, the LM-NLS method identified stable and reproducible solution parameters between all types of experimental data when a defined frequency spectrum of the entire data set was selected on the basis of a criterion of minimizing error. The frequency bandwidth that produced stable solution parameters varied greatly among different data types. Thus a numerical model based on characterizing transendothelial impedance as a resistor and capacitor in series and as a repeating pattern of disks is not sufficient to characterize the entire frequency spectrum of experimental transendothelial impedance.
Probing the dynamics of identified neurons with a data-driven modeling approach.
Directory of Open Access Journals (Sweden)
Thomas Nowotny
2008-07-01
Full Text Available In controlling animal behavior the nervous system has to perform within the operational limits set by the requirements of each specific behavior. The implications for the corresponding range of suitable network, single neuron, and ion channel properties have remained elusive. In this article we approach the question of how well-constrained properties of neuronal systems may be on the neuronal level. We used large data sets of the activity of isolated invertebrate identified cells and built an accurate conductance-based model for this cell type using customized automated parameter estimation techniques. By direct inspection of the data we found that the variability of the neurons is larger when they are isolated from the circuit than when in the intact system. Furthermore, the responses of the neurons to perturbations appear to be more consistent than their autonomous behavior under stationary conditions. In the developed model, the constraints on different parameters that enforce appropriate model dynamics vary widely from some very tightly controlled parameters to others that are almost arbitrary. The model also allows predictions for the effect of blocking selected ionic currents and to prove that the origin of irregular dynamics in the neuron model is proper chaoticity and that this chaoticity is typical in an appropriate sense. Our results indicate that data driven models are useful tools for the in-depth analysis of neuronal dynamics. The better consistency of responses to perturbations, in the real neurons as well as in the model, suggests a paradigm shift away from measuring autonomous dynamics alone towards protocols of controlled perturbations. Our predictions for the impact of channel blockers on the neuronal dynamics and the proof of chaoticity underscore the wide scope of our approach.
METHODOLOGY FOR THE ESTIMATION OF PARAMETERS, OF THE MODIFIED BOUC-WEN MODEL
Directory of Open Access Journals (Sweden)
Tomasz HANISZEWSKI
2015-03-01
Full Text Available Bouc-Wen model is theoretical formulation that allows to reflect real hysteresis loop of modeled object. Such object is for example a wire rope, which is present on equipment of crane lifting mechanism. Where adopted modified version of the model has nine parameters. Determination of such a number of parameters is complex and problematic issue. In this article are shown the methodology to identify and sample results of numerical simulations. The results were compared with data obtained on the basis of laboratory tests of ropes [3] and on their basis it was found that there is compliance between results and there is possibility to apply in dynamic systems containing in their structures wire ropes [4].
The importance of variables and parameters in radiolytic chemical kinetics modeling
International Nuclear Information System (INIS)
Piepho, M.G.; Turner, P.J.; Reimus, P.W.
1989-01-01
Many of the pertinent radiochemical reactions are not completely understood, and most of the associated rate constants are poorly characterized. To help identify the important radiochemical reactions, rate constants, species, and environmental conditions, an importance theory code, SWATS (Sensitivitiy With Adjoint Theory-Sparse version)-LOOPCHEM, has been developed for the radiolytic chemical kinetics model in the radiolysis code LOOPCHEM. The LOOPCHEM code calculates the concentrations of various species in a radiolytic field over time. The SWATS-LOOPCHEM code efficiently calculates: the importance (relative to a defined response of interest) of each species concentration over time, the sensitivity of each parameter of interest, and the importance of each equation in the radiolysis model. The calculated results will be used to guide future experimental and modeling work for determining the importance of radiolysis on waste package performance. A demonstration (the importance of selected concentrations and the sensitivities of selected parameters) of the SWATS-LOOPCHEM code is provided for illustrative purposes
Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model
International Nuclear Information System (INIS)
Schindler, R.E.
1996-09-01
The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes
Testing for parameter instability across different modeling frameworks
Calvori, Francesco; Creal, Drew; Koopman, Siem Jan; Lucas, André
2017-01-01
We develop a new parameter instability test that generalizes the seminal ARCHLagrange Multiplier test of Engle (1982) for a constant variance against the alternative of autoregressive conditional heteroskedasticity to settings with nonlinear timevarying parameters and non-Gaussian distributions. We
Directory of Open Access Journals (Sweden)
Megan A Cummins
2014-03-01
Full Text Available Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP. The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz and fast (2 Hz rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of
Statistical osteoporosis models using composite finite elements: a parameter study.
Wolfram, Uwe; Schwen, Lars Ole; Simon, Ulrich; Rumpf, Martin; Wilke, Hans-Joachim
2009-09-18
Osteoporosis is a widely spread disease with severe consequences for patients and high costs for health care systems. The disease is characterised by a loss of bone mass which induces a loss of mechanical performance and structural integrity. It was found that transverse trabeculae are thinned and perforated while vertical trabeculae stay intact. For understanding these phenomena and the mechanisms leading to fractures of trabecular bone due to osteoporosis, numerous researchers employ micro-finite element models. To avoid disadvantages in setting up classical finite element models, composite finite elements (CFE) can be used. The aim of the study is to test the potential of CFE. For that, a parameter study on numerical lattice samples with statistically simulated, simplified osteoporosis is performed. These samples are subjected to compression and shear loading. Results show that the biggest drop of compressive stiffness is reached for transverse isotropic structures losing 32% of the trabeculae (minus 89.8% stiffness). The biggest drop in shear stiffness is found for an isotropic structure also losing 32% of the trabeculae (minus 67.3% stiffness). The study indicates that losing trabeculae leads to a worse drop of macroscopic stiffness than thinning of trabeculae. The results further demonstrate the advantages of CFEs for simulating micro-structured samples.
Beaulieu, Alexandre; Bossé, Dominick; Micheau, Philippe; Avoine, Olivier; Praud, Jean-Paul; Walti, Hervé
2012-02-01
This study presents a methodology for applying the forced-oscillation technique in total liquid ventilation. It mainly consists of applying sinusoidal volumetric excitation to the respiratory system, and determining the transfer function between the delivered flow rate and resulting airway pressure. The investigated frequency range was f ∈ [0.05, 4] Hz at a constant flow amplitude of 7.5 mL/s. The five parameters of a fractional order lung model, the existing "5-parameter constant-phase model," were identified based on measured impedance spectra. The identification method was validated in silico on computer-generated datasets and the overall process was validated in vitro on a simplified single-compartment mechanical lung model. In vivo data on ten newborn lambs suggested the appropriateness of a fractional-order compliance term to the mechanical impedance to describe the low-frequency behavior of the lung, but did not demonstrate the relevance of a fractional-order inertance term. Typical respiratory system frequency response is presented together with statistical data of the measured in vivo impedance model parameters. This information will be useful for both the design of a robust pressure controller for total liquid ventilators and the monitoring of the patient's respiratory parameters during total liquid ventilation treatment. © 2011 IEEE
Inference of reactive transport model parameters using a Bayesian multivariate approach
Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick
2014-08-01
Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.
Optimization of Allelic Combinations Controlling Parameters of a Peach Quality Model.
Quilot-Turion, Bénédicte; Génard, Michel; Valsesia, Pierre; Memmah, Mohamed-Mahmoud
2016-01-01
Process-based models are effective tools to predict the phenotype of an individual in different growing conditions. Combined with a quantitative trait locus (QTL) mapping approach, it is then possible to predict the behavior of individuals with any combinations of alleles. However the number of simulations to explore the realm of possibilities may become infinite. Therefore, the use of an efficient optimization algorithm to intelligently explore the search space becomes imperative. The optimization algorithm has to solve a multi-objective problem, since the phenotypes of interest are usually a complex of traits, to identify the individuals with best tradeoffs between those traits. In this study we proposed to unroll such a combined approach in the case of peach fruit quality described through three targeted traits, using a process-based model with seven parameters controlled by QTL. We compared a current approach based on the optimization of the values of the parameters with a more evolved way to proceed which consists in the direct optimization of the alleles controlling the parameters. The optimization algorithm has been adapted to deal with both continuous and combinatorial problems. We compared the spaces of parameters obtained with different tactics and the phenotype of the individuals resulting from random simulations and optimization in these spaces. The use of a genetic model enabled the restriction of the dimension of the parameter space toward more feasible combinations of parameter values, reproducing relationships between parameters as observed in a real progeny. The results of this study demonstrated the potential of such an approach to refine the solutions toward more realistic ideotypes. Perspectives of improvement are discussed.
Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich
2018-04-01
Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated
Mente, Carsten; Prade, Ina; Brusch, Lutz; Breier, Georg; Deutsch, Andreas
2011-07-01
Lattice-gas cellular automata (LGCAs) can serve as stochastic mathematical models for collective behavior (e.g. pattern formation) emerging in populations of interacting cells. In this paper, a two-phase optimization algorithm for global parameter estimation in LGCA models is presented. In the first phase, local minima are identified through gradient-based optimization. Algorithmic differentiation is adopted to calculate the necessary gradient information. In the second phase, for global optimization of the parameter set, a multi-level single-linkage method is used. As an example, the parameter estimation algorithm is applied to a LGCA model for early in vitro angiogenic pattern formation.
Assigning probability distributions to input parameters of performance assessment models
International Nuclear Information System (INIS)
Mishra, Srikanta
2002-02-01
This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available
Assigning probability distributions to input parameters of performance assessment models
Energy Technology Data Exchange (ETDEWEB)
Mishra, Srikanta [INTERA Inc., Austin, TX (United States)
2002-02-01
This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available.
MATHEMATICAL MODELING OF FLOW PARAMETERS FOR SINGLE WIND TURBINE
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available It is known that on the territory of the Russian Federation the construction of several large wind farms is planned. The tasks connected with design and efficiency evaluation of wind farm work are in demand today. One of the possible directions in design is connected with mathematical modeling. The method of large eddy simulation developed within the direction of computational hydrodynamics allows to reproduce unsteady structure of the flow in details and to determine various integrated values. The calculation of work for single wind turbine installation by means of large eddy simulation and Actuator Line Method along the turbine blade is given in this work. For problem definition the numerical method in the form of a box was considered and the adapted unstructured grid was used.The mathematical model included the main equations of continuity and momentum equations for incompressible fluid. The large-scale vortex structures were calculated by means of integration of the filtered equations. The calculation was carried out with Smagorinsky model for determination of subgrid scale turbulent viscosity. The geometrical parametersof wind turbine were set proceeding from open sources in the Internet.All physical values were defined at center of computational cell. The approximation of items in equations was ex- ecuted with the second order of accuracy for time and space. The equations for coupling velocity and pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values on each time step was equal to 18. So, the resources of a high performance cluster were required.As a result of flow calculation in wake for the three-bladed turbine average and instantaneous values of velocity, pressure, subgrid kinetic energy and turbulent viscosity, components of subgrid stress tensor were worked out. The re- ceived results matched the known results of experiments and numerical simulation, testify the opportunity
GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling
International Nuclear Information System (INIS)
Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas
2015-01-01
Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and
Directory of Open Access Journals (Sweden)
Violaine Dulau
Full Text Available Photo-identification surveys of Indo-Pacific bottlenose dolphins were conducted from 2009 to 2014 off Reunion Island (55°E33'/21°S07', in the Indian Ocean. Robust Design models were applied to produce the most reliable estimate of population abundance and survival rate, while accounting for temporary emigration from the survey area (west coast. The sampling scheme consisted of a five-month (June-October sampling period in each year of the study. The overall population size at Reunion was estimated to be 72 individuals (SE = 6.17, 95%CI = 61-85, based on a random temporary emigration (γ" of 0.096 and a proportion of 0.70 (SE = 0.03 distinct individuals. The annual survival rate was 0.93 (±0.018 SE, 95%CI = 0.886-0.958 and was constant over time and between sexes. Models considering gender groups indicated different movement patterns between males and females. Males showed null or quasi-null temporary emigration (γ" = γ' < 0.01, while females showed a random temporary emigration (γ" of 0.10, suggesting that a small proportion of females was outside the survey area during each primary sampling period. Sex-specific temporary migration patterns were consistent with movement and residency patterns observed in other areas. The Robust Design approach provided an appropriate sampling scheme for deriving island-associated population parameters, while allowing to restrict survey effort both spatially (i.e. west coast only and temporally (five months per year. Although abundance and survival were stable over the six years, the small population size of fewer than 100 individuals suggested that this population is highly vulnerable. Priority should be given to reducing any potential impact of human activity on the population and its habitat.
Schelling's Segregation Model: Parameters, scaling, and aggregation
Directory of Open Access Journals (Sweden)
Abhinav Singh
2009-09-01
Full Text Available Thomas Schelling proposed a simple spatial model to illustrate how, even with relatively mild assumptions on each individual's nearest neighbor preferences, an integrated city would likely unravel to a segregated city, even if all individuals prefer integration. This agent based lattice model has become quite influential amongst social scientists, demographers, and economists. Aggregation relates to individuals coming together to form groups and Schelling equated global aggregation with segregation. Many authors assumed that the segregation which Schelling observed in simulations on very small cities persists for larger, realistic size cities. We describe how different measures could be used to quantify the segregation and unlock its dependence on city size, disparate neighbor comfortability threshold, and population density. We identify distinct scales of global aggregation, and show that the striking global aggregation Schelling observed is strictly a small city phenomenon. We also discover several scaling laws for the aggregation measures. Along the way we prove that as the Schelling model evolves, the total perimeter of the interface between the different agents decreases, which provides a useful analytical tool to study the evolution.
Parameter Estimation of Dynamic Multi-zone Models for Livestock Indoor Climate Control
DEFF Research Database (Denmark)
Wu, Zhuang; Stoustrup, Jakob; Heiselberg, Per
2008-01-01
and winter at a real scale livestock building in Denmark. The obtained comparative results between the measured data and the simulated output confirm that a very simple multi-zone model can capture the salient dynamical features of the climate dynamics which are needed for control purposes......., the livestock, the ventilation system and the building on the dynamic performance of indoor climate. Some significant parameters employed in the climate model as well as the airflow interaction between each conceptual zone are identified with the use of experimental time series data collected during spring...
DEFF Research Database (Denmark)
Harremoës, P.; Madsen, H.
1999-01-01
Where is the balance between simplicity and complexity in model prediction of urban drainage structures? The calibration/verification approach to testing of model performance gives an exaggerated sense of certainty. Frequently, the model structure and the parameters are not identifiable by calibr...... and to incorporate that in the design, operation and control of urban drainage structures. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....
International Nuclear Information System (INIS)
Alfimov, A V; Aryslanova, E M; Chivilikhin, S A
2016-01-01
This work proposes an explicit analytical model for the surface potential of a colloidal nano-agglomerate. The model predicts that when an agglomerate reaches a certain critical size, its surface potential becomes independent of the agglomerate radius. The model also provides a method for identifying and quantifying the solute-indifferent charge in nanocolloids, that allows to assess the stability of toxicologically significant parameters of the system. (paper)
Construction and Research of System Identifiable Mathematical Models
Robertas Janickas
2011-01-01
Paper discusses about control and data acquisition, processing, visualization, which must be adapted to the investigation and examination of identification process. A description of the device, the functionality and customization possibilities are presented. The relevant experimental model and its characteristics are obtained for measurement, control results using this model.Article in Lithuanian
Construction and Research of System Identifiable Mathematical Models
Directory of Open Access Journals (Sweden)
Robertas Janickas
2011-08-01
Full Text Available Paper discusses about control and data acquisition, processing, visualization, which must be adapted to the investigation and examination of identification process. A description of the device, the functionality and customization possibilities are presented. The relevant experimental model and its characteristics are obtained for measurement, control results using this model.Article in Lithuanian
House thermal model parameter estimation method for Model Predictive Control applications
van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria
In this paper we investigate thermal network models with different model orders applied to various Dutch low-energy house types with high and low interior thermal mass and containing floor heating. Parameter estimations are performed by using data from TRNSYS simulations. The paper discusses results
Ecohydrological model parameter selection for stream health evaluation.
Woznicki, Sean A; Nejadhashemi, A Pouyan; Ross, Dennis M; Zhang, Zhen; Wang, Lizhu; Esfahanian, Abdol-Hossein
2015-04-01
Variable selection is a critical step in development of empirical stream health prediction models. This study develops a framework for selecting important in-stream variables to predict four measures of biological integrity: total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, family index of biotic integrity (FIBI), Hilsenhoff biotic integrity (HBI), and fish index of biotic integrity (IBI). Over 200 flow regime and water quality variables were calculated using the Hydrologic Index Tool (HIT) and Soil and Water Assessment Tool (SWAT). Streams of the River Raisin watershed in Michigan were grouped using the Strahler stream classification system (orders 1-3 and orders 4-6), k-means clustering technique (two clusters: C1 and C2), and all streams (one grouping). For each grouping, variable selection was performed using Bayesian variable selection, principal component analysis, and Spearman's rank correlation. Following selection of best variable sets, models were developed to predict the measures of biological integrity using adaptive-neuro fuzzy inference systems (ANFIS), a technique well-suited to complex, nonlinear ecological problems. Multiple unique variable sets were identified, all which differed by selection method and stream grouping. Final best models were mostly built using the Bayesian variable selection method. The most effective stream grouping method varied by health measure, although k-means clustering and grouping by stream order were always superior to models built without grouping. Commonly selected variables were related to streamflow magnitude, rate of change, and seasonal nitrate concentration. Each best model was effective in simulating stream health observations, with EPT taxa validation R2 ranging from 0.67 to 0.92, FIBI ranging from 0.49 to 0.85, HBI from 0.56 to 0.75, and fish IBI at 0.99 for all best models. The comprehensive variable selection and modeling process proposed here is a robust method that extends our
Sadiqi, Said; Verlaan, Jorrit Jan; Lehr, A. M.; Dvorak, Marcel F.; Kandziora, Frank; Rajasekaran, S.; Schnake, Klaus J.; Vaccaro, Alexander R.; Oner, F. C.
2016-01-01
STUDY DESIGN.: International web-based survey OBJECTIVE.: To identify clinical and radiological parameters that spine surgeons consider most relevant when evaluating clinical and functional outcomes of subaxial cervical spine trauma patients. SUMMARY OF BACKGROUND DATA.: While an outcome instrument
Geomagnetically induced currents in Uruguay: Sensitivity to modelling parameters
Caraballo, R.
2016-11-01
According to the traditional wisdom, geomagnetically induced currents (GIC) should occur rarely at mid-to-low latitudes, but in the last decades a growing number of reports have addressed their effects on high-voltage (HV) power grids at mid-to-low latitudes. The growing trend to interconnect national power grids to meet regional integration objectives, may lead to an increase in the size of the present energy transmission networks to form a sort of super-grid at continental scale. Such a broad and heterogeneous super-grid can be exposed to the effects of large GIC if appropriate mitigation actions are not taken into consideration. In the present study, we present GIC estimates for the Uruguayan HV power grid during severe magnetic storm conditions. The GIC intensities are strongly dependent on the rate of variation of the geomagnetic field, conductivity of the ground, power grid resistances and configuration. Calculated GIC are analysed as functions of these parameters. The results show a reasonable agreement with measured data in Brazil and Argentina, thus confirming the reliability of the model. The expansion of the grid leads to a strong increase in GIC intensities in almost all substations. The power grid response to changes in ground conductivity and resistances shows similar results in a minor extent. This leads us to consider GIC as a non-negligible phenomenon in South America. Consequently, GIC must be taken into account in mid-to-low latitude power grids as well.
Paudel, Atmika; Panthee, Suresh; Urai, Makoto; Hamamoto, Hiroshi; Ohwada, Tomohiko; Sekimizu, Kazuhisa
2018-01-25
Poor pharmacokinetic parameters are a major reason for the lack of therapeutic activity of some drug candidates. Determining the pharmacokinetic parameters of drug candidates at an early stage of development requires an inexpensive animal model with few associated ethical issues. In this study, we used the silkworm infection model to perform structure-activity relationship studies of an antimicrobial agent, GPI0039, a novel nitrofuran dichloro-benzyl ester, and successfully identified compound 5, a nitrothiophene dichloro-benzyl ester, as a potent antimicrobial agent with superior therapeutic activity in the silkworm infection model. Further, we compared the pharmacokinetic parameters of compound 5 with a nitrothiophene benzyl ester lacking chlorine, compound 7, that exerted similar antimicrobial activity but had less therapeutic activity in silkworms, and examined the metabolism of these antimicrobial agents in human liver fractions in vitro. Compound 5 had appropriate pharmacokinetic parameters, such as an adequate half-life, slow clearance, large area under the curve, low volume of distribution, and long mean residence time, compared with compound 7, and was slowly metabolized by human liver fractions. These findings suggest that the therapeutic effectiveness of an antimicrobial agent in the silkworms reflects appropriate pharmacokinetic properties.
Modelling intelligence-led policing to identify its potential
Hengst-Bruggeling, M. den; Graaf, H.A.L.M. de; Scheepstal, P.G.M. van
2014-01-01
lntelligence-led policing is a concept of policing that has been applied throughout the world. Despite some encouraging reports, the effect of intelligence-led policing is largely unknown. This paper presents a method with which it is possible to identify intelligence-led policing's potential to
Parameter and State Estimator for State Space Models
Directory of Open Access Journals (Sweden)
Ruifeng Ding
2014-01-01
Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.
Parameter and state estimator for state space models.
Ding, Ruifeng; Zhuang, Linfan
2014-01-01
This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.
Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1
Langenbrunner, B.; Neelin, J. D.
2017-09-01
Global climate models (GCMs) are examples of high-dimensional input-output systems, where model output is a function of many variables, and an update in model physics commonly improves performance in one objective function (i.e., measure of model performance) at the expense of degrading another. Here concepts from multiobjective optimization in the engineering literature are used to investigate parameter sensitivity and optimization in the face of such trade-offs. A metamodeling technique called cut high-dimensional model representation (cut-HDMR) is leveraged in the context of multiobjective optimization to improve GCM simulation of the tropical Pacific climate, focusing on seasonal precipitation, column water vapor, and skin temperature. An evolutionary algorithm is used to solve for Pareto fronts, which are surfaces in objective function space along which trade-offs in GCM performance occur. This approach allows the modeler to visualize trade-offs quickly and identify the physics at play. In some cases, Pareto fronts are small, implying that trade-offs are minimal, optimal parameter value choices are more straightforward, and the GCM is well-functioning. In all cases considered here, the control run was found not to be Pareto-optimal (i.e., not on the front), highlighting an opportunity for model improvement through objectively informed parameter selection. Taylor diagrams illustrate that these improvements occur primarily in field magnitude, not spatial correlation, and they show that specific parameter updates can improve fields fundamental to tropical moist processes—namely precipitation and skin temperature—without significantly impacting others. These results provide an example of how basic elements of multiobjective optimization can facilitate pragmatic GCM tuning processes.
THREE-PARAMETER CREEP DAMAGE CONSTITUTIVE MODEL AND ITS APPLICATION IN HYDRAULIC TUNNELLING
Luo Gang; Chen Liang
2016-01-01
Rock deformation is a time-dependent process, generally referred to as rheology. Especially for soft rock strata, design and construction of tunnel shall take full account of rheological properties of adjoining rocks. Based on classic three-parameter HK model (generalized Kelvin model), this paper proposes a three-parameter H-K damage model of which parameters attenuate with increase of equivalent strain, provides attenuation equation of model parameters in the first, second and third stage o...
International Nuclear Information System (INIS)
Laemmer, H.; Diegele, E.
2000-01-01
The thermoviscoplastic model of finite deformation thermoviscoplasticity, presented in 1997, and the identification of material parameters as given in 1998 was applied to two benchmark exercises within the REVISA (Reactor Vessel Integrity in Severe Accidents) project in 1999. Starting from a simplified version of the theory which only includes the kinematic hardening assumption new sets of parameters were identified for 16MND5 reactor pressure vessel steel from simple tensile and creep tests. The model implemented in the ABAQUS finite element code was applied to two exercises. The first was a benchmark exercise which follows the loading conditions of the RUPTURE experiment number 15 as performed at CEA. The numerical analysis was compared to the experimental data. The second example was a scenario of small hot spot and external cooling by radiation. (orig.) [de
Directory of Open Access Journals (Sweden)
M. F. Loutre
2011-05-01
Full Text Available Many sources of uncertainty limit the accuracy of climate projections. Among them, we focus here on the parameter uncertainty, i.e. the imperfect knowledge of the values of many physical parameters in a climate model. Therefore, we use LOVECLIM, a global three-dimensional Earth system model of intermediate complexity and vary several parameters within a range based on the expert judgement of model developers. Nine climatic parameter sets and three carbon cycle parameter sets are selected because they yield present-day climate simulations coherent with observations and they cover a wide range of climate responses to doubled atmospheric CO_{2} concentration and freshwater flux perturbation in the North Atlantic. Moreover, they also lead to a large range of atmospheric CO_{2} concentrations in response to prescribed emissions. Consequently, we have at our disposal 27 alternative versions of LOVECLIM (each corresponding to one parameter set that provide very different responses to some climate forcings. The 27 model versions are then used to illustrate the range of responses provided over the recent past, to compare the time evolution of climate variables over the time interval for which they are available (the last few decades up to more than one century and to identify the outliers and the "best" versions over that particular time span. For example, between 1979 and 2005, the simulated global annual mean surface temperature increase ranges from 0.24 °C to 0.64 °C, while the simulated increase in atmospheric CO_{2} concentration varies between 40 and 50 ppmv. Measurements over the same period indicate an increase in global annual mean surface temperature of 0.45 °C (Brohan et al., 2006 and an increase in atmospheric CO_{2} concentration of 44 ppmv (Enting et al., 1994; GLOBALVIEW-CO2, 2006. Only a few parameter sets yield simulations that reproduce the observed key variables of the climate system over the last
Identifying Objective and Subjective Words via Topic Modeling.
Wang, Hanqi; Wu, Fei; Lu, Weiming; Yang, Yi; Li, Xi; Li, Xuelong; Zhuang, Yueting
2018-03-01
It is observed that distinct words in a given document have either strong or weak ability in delivering facts (i.e., the objective sense) or expressing opinions (i.e., the subjective sense) depending on the topics they associate with. Motivated by the intuitive assumption that different words have varying degree of discriminative power in delivering the objective sense or the subjective sense with respect to their assigned topics, a model named as dentified bjective- ubjective latent Dirichlet allocation (LDA) ( osLDA) is proposed in this paper. In the osLDA model, the simple Pólya urn model adopted in traditional topic models is modified by incorporating it with a probabilistic generative process, in which the novel "Bag-of-Discriminative-Words" (BoDW) representation for the documents is obtained; each document has two different BoDW representations with regard to objective and subjective senses, respectively, which are employed in the joint objective and subjective classification instead of the traditional Bag-of-Topics representation. The experiments reported on documents and images demonstrate that: 1) the BoDW representation is more predictive than the traditional ones; 2) osLDA boosts the performance of topic modeling via the joint discovery of latent topics and the different objective and subjective power hidden in every word; and 3) osLDA has lower computational complexity than supervised LDA, especially under an increasing number of topics.
IDENTIFYING CANCER SPECIFIC METABOLIC SIGNATURES USING CONSTRAINT-BASED MODELS.
Schultz, A; Mehta, S; Hu, C W; Hoff, F W; Horton, T M; Kornblau, S M; Qutub, A A
2017-01-01
Cancer metabolism differs remarkably from the metabolism of healthy surrounding tissues, and it is extremely heterogeneous across cancer types. While these metabolic differences provide promising avenues for cancer treatments, much work remains to be done in understanding how metabolism is rewired in malignant tissues. To that end, constraint-based models provide a powerful computational tool for the study of metabolism at the genome scale. To generate meaningful predictions, however, these generalized human models must first be tailored for specific cell or tissue sub-types. Here we first present two improved algorithms for (1) the generation of these context-specific metabolic models based on omics data, and (2) Monte-Carlo sampling of the metabolic model ux space. By applying these methods to generate and analyze context-specific metabolic models of diverse solid cancer cell line data, and primary leukemia pediatric patient biopsies, we demonstrate how the methodology presented in this study can generate insights into the rewiring differences across solid tumors and blood cancers.
CONSTRUCTION MODELS OF ANTROPOMETRIC AND DERMATOGLIPHIC PARAMETERS OF THE FACILITY
Directory of Open Access Journals (Sweden)
Novikova A.O.
2017-12-01
Full Text Available The scientific work is devoted to the analysis of constitutional and morpho - functional parameters of a person. The relevance of the chosen topic is substantiated, the problem of determining the functional state of a person, in particular the level of health, is analyzed. Correlation analysis of anthropometric parameters of a person and dermatoglyphic signs of a person is carried out.
Behavioural Pattern of Invertibility Parameter of Arima Model ...
African Journals Online (AJOL)
It was deduced that behaviour of invertibility parameter πidepends on the order of autoregressive part (p), the order of integrated part (d), positive and negative values of moving average parameter (ϑ). Journal of the Nigerian Association of Mathematical Physics, Volume 19 (November, 2011), pp 591 – 606 ...
A Note on the Item Information Function of the Four-Parameter Logistic Model
Magis, David
2013-01-01
This article focuses on four-parameter logistic (4PL) model as an extension of the usual three-parameter logistic (3PL) model with an upper asymptote possibly different from 1. For a given item with fixed item parameters, Lord derived the value of the latent ability level that maximizes the item information function under the 3PL model. The…
Identifying Model-Based Reconfiguration Goals through Functional Deficiencies
Benazera, Emmanuel; Trave-Massuyes, Louise
2004-01-01
Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.
A preliminary model to identify low-risk MBA applicants
Directory of Open Access Journals (Sweden)
CA Bisschoff
2014-08-01
The reliability of the discriminant function rates favourably with 71% (MBA in 3 years, 62% (MBA in 4 years and 83% (dropping out of the programme being categorised correctly by the respective discriminant functions. Being a preliminary model, its predictive capabilities need to be verified in practice before it can be implemented as tool to render assistance in MBA admissions. The value of this research lies in the fact that it constitutes a model that could be employed and improved as a predictive tool in an environment where very limited predictive tools exist. Therefore, although it is by no means a tried and tested model, it sets the scene by supplying a scientific base from which incremental improvements could result.
Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.
2013-01-01
Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283
Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter
Directory of Open Access Journals (Sweden)
Lei Zhang
2014-05-01
Full Text Available Ultracapacitors (UCs are the focus of increasing attention in electric vehicle and renewable energy system applications due to their excellent performance in terms of power density, efficiency, and lifespan. Modeling and parameterization of UCs play an important role in model-based regulation and management for a reliable and safe operation. In this paper, an equivalent circuit model template composed of a bulk capacitor, a second-order capacitance-resistance network, and a series resistance, is employed to represent the dynamics of UCs. The extended Kalman Filter is then used to recursively estimate the model parameters in the Dynamic Stress Test (DST on a specially established test rig. The DST loading profile is able to emulate the practical power sinking and sourcing of UCs in electric vehicles. In order to examine the accuracy of the identified model, a Hybrid Pulse Power Characterization test is carried out. The validation result demonstrates that the recursively calibrated model can precisely delineate the dynamic voltage behavior of UCs under the discrepant loading condition, and the online identification approach is thus capable of extracting the model parameters in a credible and robust manner.
Development and parameter identification of a visco-hyperelastic model for the periodontal ligament.
Huang, Huixiang; Tang, Wencheng; Tan, Qiyan; Yan, Bin
2017-04-01
The present study developed and implemented a new visco-hyperelastic model that is capable of predicting the time-dependent biomechanical behavior of the periodontal ligament. The constitutive model has been implemented into the finite element package ABAQUS by means of a user-defined material subroutine (UMAT). The stress response is decomposed into two constitutive parts in parallel which are a hyperelastic and a time-dependent viscoelastic stress response. In order to identify the model parameters, the indentation equation based on V-W hyperelastic model and the indentation creep model are developed. Then the parameters are determined by fitting them to the corresponding nanoindentation experimental data of the PDL. The nanoindentation experiment was simulated by finite element analysis to validate the visco-hyperelastic model. The simulated results are in good agreement with the experimental data, which demonstrates that the visco-hyperelastic model developed is able to accurately predict the time-dependent mechanical behavior of the PDL. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modelling discontinuous well log signal to identify lithological ...
Indian Academy of Sciences (India)
In this paper, we have proposed anew wavelet transform-based algorithm to model the abrupt discontinuous changes from well log databy taking care of nonstationary characteristics of the signal. Prior to applying the algorithm on thegeophysical well data, we analyzed the distribution of wavelet coefficients using synthetic ...
Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith
2018-01-02
Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour
Neural Models: An Option to Estimate Seismic Parameters of Accelerograms
Alcántara, L.; García, S.; Ovando-Shelley, E.; Macías, M. A.
2014-12-01
Seismic instrumentation for recording strong earthquakes, in Mexico, goes back to the 60´s due the activities carried out by the Institute of Engineering at Universidad Nacional Autónoma de México. However, it was after the big earthquake of September 19, 1985 (M=8.1) when the project of seismic instrumentation assumes a great importance. Currently, strong ground motion networks have been installed for monitoring seismic activity mainly along the Mexican subduction zone and in Mexico City. Nevertheless, there are other major regions and cities that can be affected by strong earthquakes and have not yet begun their seismic instrumentation program or this is still in development.Because of described situation some relevant earthquakes (e.g. Huajuapan de León Oct 24, 1980 M=7.1, Tehuacán Jun 15, 1999 M=7 and Puerto Escondido Sep 30, 1999 M= 7.5) have not been registered properly in some cities, like Puebla and Oaxaca, and that were damaged during those earthquakes. Fortunately, the good maintenance work carried out in the seismic network has permitted the recording of an important number of small events in those cities. So in this research we present a methodology based on the use of neural networks to estimate significant duration and in some cases the response spectra for those seismic events. The neural model developed predicts significant duration in terms of magnitude, epicenter distance, focal depth and soil characterization. Additionally, for response spectra we used a vector of spectral accelerations. For training the model we selected a set of accelerogram records obtained from the small events recorded in the strong motion instruments installed in the cities of Puebla and Oaxaca. The final results show that neural networks as a soft computing tool that use a multi-layer feed-forward architecture provide good estimations of the target parameters and they also have a good predictive capacity to estimate strong ground motion duration and response spectra.
An ecohydraulic model to identify and monitor moapa dace habitat
Hatten, James R.; Batt, Thomas R.; Scoppettone, Gayton G.; Dixon, Christopher J.
2013-01-01
Moapa dace (Moapa coriacea) is a critically endangered thermophilic minnow native to the Muddy River ecosystem in southeastern Nevada, USA. Restricted to temperatures between 26.0 and 32.0°C, these fish are constrained to the upper two km of the Muddy River and several small tributaries fed by warm springs. Habitat alterations, nonnative species invasion, and water withdrawals during the 20th century resulted in a drastic decline in the dace population and in 1979 the Moapa Valley National Wildlife Refuge (Refuge) was created to protect them. The goal of our study was to determine the potential effects of reduced surface flows that might result from groundwater pumping or water diversions on Moapa dace habitat inside the Refuge. We accomplished our goal in several steps. First, we conducted snorkel surveys to determine the locations of Moapa dace on three warm-spring tributaries of the Muddy River. Second, we conducted hydraulic simulations over a range of flows with a two-dimensional hydrodynamic model. Third, we developed a set of Moapa dace habitat models with logistic regression and a geographic information system. Fourth, we estimated Moapa dace habitat over a range of flows (plus or minus 30% of base flow). Our spatially explicit habitat models achieved classification accuracies between 85% and 91%, depending on the snorkel survey and creek. Water depth was the most significant covariate in our models, followed by substrate, Froude number, velocity, and water temperature. Hydraulic simulations showed 2-11% gains in dace habitat when flows were increased by 30%, and 8-32% losses when flows were reduced by 30%. To ensure the health and survival of Moapa dace and the Muddy River ecosystem, groundwater and surface-water withdrawals and diversions need to be carefully monitored, while fully implementing a proactive conservation strategy.
An ecohydraulic model to identify and monitor Moapa dace habitat.
Directory of Open Access Journals (Sweden)
James R Hatten
Full Text Available Moapa dace (Moapa coriacea is a critically endangered thermophilic minnow native to the Muddy River ecosystem in southeastern Nevada, USA. Restricted to temperatures between 26.0 and 32.0 °C, these fish are constrained to the upper two km of the Muddy River and several small tributaries fed by warm springs. Habitat alterations, nonnative species invasion, and water withdrawals during the 20th century resulted in a drastic decline in the dace population and in 1979 the Moapa Valley National Wildlife Refuge (Refuge was created to protect them. The goal of our study was to determine the potential effects of reduced surface flows that might result from groundwater pumping or water diversions on Moapa dace habitat inside the Refuge. We accomplished our goal in several steps. First, we conducted snorkel surveys to determine the locations of Moapa dace on three warm-spring tributaries of the Muddy River. Second, we conducted hydraulic simulations over a range of flows with a two-dimensional hydrodynamic model. Third, we developed a set of Moapa dace habitat models with logistic regression and a geographic information system. Fourth, we estimated Moapa dace habitat over a range of flows (plus or minus 30% of base flow. Our spatially explicit habitat models achieved classification accuracies between 85% and 91%, depending on the snorkel survey and creek. Water depth was the most significant covariate in our models, followed by substrate, Froude number, velocity, and water temperature. Hydraulic simulations showed 2-11% gains in dace habitat when flows were increased by 30%, and 8-32% losses when flows were reduced by 30%. To ensure the health and survival of Moapa dace and the Muddy River ecosystem, groundwater and surface-water withdrawals and diversions need to be carefully monitored, while fully implementing a proactive conservation strategy.
Directory of Open Access Journals (Sweden)
Bańka Stanisław
2015-12-01
Full Text Available The paper presents algorithms for parameter identification of linear vessel models being in force for the current operating point of a ship. Advantages and disadvantages of gradient and genetic algorithms in identifying the model parameters are discussed. The study is supported by presentation of identification results for a nonlinear model of a drilling vessel.
DEFF Research Database (Denmark)
Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen
2014-01-01
Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D......) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution...
Checking the new IRI model The bottomside B parameters
Mosert, M; Ezquer, R; Lazo, B; Miro, G
2002-01-01
Electron density profiles obtained at Pruhonice (50.0, 15.0), El Arenosillo (37.1, 353.2) and Havana (23, 278) were used to check the bottom-side B parameters BO (thickness parameter) and B1 (shape parameter) predicted by the new IRI - 2000 version. The electron density profiles were derived from ionograms using the ARP technique. The data base includes daytime and nighttime ionograms recorded under different seasonal and solar activity conditions. Comparisons with IRI predictions were also done. The analysis shows that: a) The parameter B1 given by IRI 2000 reproduces better the observed ARP values than the IRI-90 version and b) The observed BO values are in general well reproduced by both IRI versions: IRI-90 and IRI-2000.
Modeling and Dynamic Properties of a Four-Parameter Zener Model Vibration Isolator
Directory of Open Access Journals (Sweden)
Wen-ku Shi
2016-01-01
Full Text Available To install high-performance isolators in a limited installation space, a novel passive isolator based on the four-parameter Zener model is proposed. The proposed isolator consists of three major parts, namely, connecting structure, sealing construction, and upper and lower cavities, all of which are enclosed by four segments of metal bellows with the same diameter. The equivalent stiffness and damping model of the isolator are derived from the dynamic stiffness of the isolation system. Experiments are conducted, and the experiment error is analyzed. Test results verify the validity of the model. Theoretical analysis and numerical simulation reveal that the stiffness and damping of the isolator have multiple properties with different exciting amplitudes and structural parameters. In consideration of the design of the structural parameter, the effects of exciting amplitude, damp channel diameter, equivalent cylinder diameter of cavities, sum of the stiffness of the bellows at the end of the isolator, and length of damp channel on the dynamic properties of the isolator are discussed comprehensively. A design method based on the parameter sensitivity of the isolator’s design parameter is proposed. Thus, the novel isolator can be practically applied to engineering and provide a significant contribution in the field.
Talakokula, Visalakshi; Bhalla, Suresh; Gupta, Ashok
2018-01-01
Concrete is the most widely used material in civil engineering construction. Its life begins when the hydration process is activated after mixing the cement granulates with water. In this paper, a non-dimensional hydration parameter, obtained from piezoelectric ceramic (PZT) patches bonded to rebars embedded inside concrete, is employed to monitor the early age hydration of concrete. The non-dimensional hydration parameter is derived from the equivalent stiffness determined from the piezo-impedance transducers using the electro-mechanical impedance (EMI) technique. The focus of the study is to monitor the hydration process of cementitious materials commencing from the early hours and continue till 28 days using single non-dimensional parameter. The experimental results show that the proposed piezo-based non-dimensional hydration parameter is very effective in monitoring the early age hydration, as it has been derived from the refined structural impedance parameters, obtained by eliminating the PZT contribution, and using both the real and imaginary components of the admittance signature.
Proposal for the Use of a New Parameter in the Composite Road Traffic Model
Boroiu, A.; Tabacu, I.; Boroiu, A. A.; Neagu, E.; Vieru, I.
2017-10-01
Comparative analysis of the models used in the literature for the fundamental traffic diagram reveals that the improvement of these models can only be achieved by taking into account the vehicle tracking models. Given that it is of great interest to model the relation between density and speed, to identify the conditions in which maximum flow can be achieved with a high operating speed and safely. For the non-homogeneous traffic, met in our country due to the lack of highways, the model describing the minimum range of vehicles was developed based on the relation of the minimum distance between vehicles taking into account the difference between the vehicle braking modes. Finally it is explained the maximum volume of traffic according to a parameter that includes the decelerations of the two vehicles, which determined the proposed use of this new concept in road traffic theory. This has made it possible to conclude that in the case of non-homogeneous traffic the volume increases only to a certain speed value, then decreases, while in the case of homogeneous traffic the volume continues to increase to a limit value. The paper argues the necessity of using this new parameter for road traffic models.
Parameter identification and model validation for the piezoelectric actuator in an inertia motor
International Nuclear Information System (INIS)
Hunstig, Matthias; Hemsel, Tobias
2010-01-01
Piezoelectric inertia motors make use of the inertia of a slider to drive the slider by friction contact in a series of small steps which are generally composed of a stick phase and a slip phase. If the best electrical drive signal for the piezoelectric actuator in an inertia motor is to be determined, its dynamical behaviour must be known. A classic dynamic lumped parameter model for piezoelectric actuators is valid only in resonance and, therefore, is not suitable for modelling the actuator in an inertia motor. A reduced dynamic model is used instead. Its parameters are identified using a step response measurement. This model is used to predict the movement of the actuator in response to a velocity-optimized signal introduced in a separate contribution. Results show that the model cannot represent the dynamical characteristics of the actuator completely. For determining voltage signals that let piezoelectric actuators follow a calculated movement pattern exactly, the model can, therefore, only be used with limitations.
Identifying missing dictionary entries with frequency-conserving context models.
Williams, Jake Ryland; Clark, Eric M; Bagrow, James P; Danforth, Christopher M; Dodds, Peter Sheridan
2015-10-01
In an effort to better understand meaning from natural language texts, we explore methods aimed at organizing lexical objects into contexts. A number of these methods for organization fall into a family defined by word ordering. Unlike demographic or spatial partitions of data, these collocation models are of special importance for their universal applicability. While we are interested here in text and have framed our treatment appropriately, our work is potentially applicable to other areas of research (e.g., speech, genomics, and mobility patterns) where one has ordered categorical data (e.g., sounds, genes, and locations). Our approach focuses on the phrase (whether word or larger) as the primary meaning-bearing lexical unit and object of study. To do so, we employ our previously developed framework for generating word-conserving phrase-frequency data. Upon training our model with the Wiktionary, an extensive, online, collaborative, and open-source dictionary that contains over 100000 phrasal definitions, we develop highly effective filters for the identification of meaningful, missing phrase entries. With our predictions we then engage the editorial community of the Wiktionary and propose short lists of potential missing entries for definition, developing a breakthrough, lexical extraction technique and expanding our knowledge of the defined English lexicon of phrases.
Perez, Jose G.; Parks, Russel, A.; Lazor, Daniel R.
2012-01-01
The slosh dynamics of propellant tanks can be represented by an equivalent mass-pendulum-dashpot mechanical model. The parameters of this equivalent model, identified as slosh mechanical model parameters, are slosh frequency, slosh mass, and pendulum hinge point location. They can be obtained by both analysis and testing for discrete fill levels. Anti-slosh baffles are usually needed in propellant tanks to control the movement of the fluid inside the tank. Lateral slosh testing, involving both random excitation testing and free-decay testing, are performed to validate the slosh mechanical model parameters and the damping added to the fluid by the anti-slosh baffles. Traditional modal analysis procedures were used to extract the parameters from the experimental data. Test setup of sub-scale tanks will be described. A comparison between experimental results and analysis will be presented.
Parameter sensitivity and uncertainty analysis for a storm surge and wave model
Directory of Open Access Journals (Sweden)
L. A. Bastidas
2016-09-01
Full Text Available Development and simulation of synthetic hurricane tracks is a common methodology used to estimate hurricane hazards in the absence of empirical coastal surge and wave observations. Such methods typically rely on numerical models to translate stochastically generated hurricane wind and pressure forcing into coastal surge and wave estimates. The model output uncertainty associated with selection of appropriate model parameters must therefore be addressed. The computational overburden of probabilistic surge hazard estimates is exacerbated by the high dimensionality of numerical surge and wave models. We present a model parameter sensitivity analysis of the Delft3D model for the simulation of hazards posed by Hurricane Bob (1991 utilizing three theoretical wind distributions (NWS23, modified Rankine, and Holland. The sensitive model parameters (of 11 total considered include wind drag, the depth-induced breaking γB, and the bottom roughness. Several parameters show no sensitivity (threshold depth, eddy viscosity, wave triad parameters, and depth-induced breaking αB and can therefore be excluded to reduce the computational overburden of probabilistic surge hazard estimates. The sensitive model parameters also demonstrate a large number of interactions between parameters and a nonlinear model response. While model outputs showed sensitivity to several parameters, the ability of these parameters to act as tuning parameters for calibration is somewhat limited as proper model calibration is strongly reliant on accurate wind and pressure forcing data. A comparison of the model performance with forcings from the different wind models is also presented.
DEFF Research Database (Denmark)
Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist
2011-01-01
This study presents the development of a systematic modelling framework for identification of the most critical variables and parameters under uncertainty, evaluated on a lignocellulosic ethanol production case study. The systematic framework starts with: (1) definition of the objectives; (2....... Sensitivity analysis employs the standardized regression coefficient (SRC) method, which provides a global sensitivity measure, βi, thereby showing how much each parameter contributes to the variance (uncertainty) of the model predictions. Thus, identifying the most critical parameters involved in the process......, suitable for further analysis of the bioprocess. The uncertainty and sensitivity analysis identified the following most critical variables and parameters involved in the lignocellulosic ethanol production case study. For the operating cost, the enzyme loading showed the strongest impact, while reaction...
DEFF Research Database (Denmark)
Darula, Radoslav; Stein, George Juraj; Kallesøe, Carsten Skovmose
2012-01-01
Electromechanical systems for vibration control exhibit complex non-linear behaviour. Therefore advanced mathematical tools and appropriate simplifications are required for their modelling. To properly understand the dynamics of such a non-linear system, it is necessary to identify the parameters....... The electric circuit is closed with a shunt resistance connected to the electromagnet. The current induced in the circuit generates additional alternating magnetic force. This force counteracts the original vibration and damps it. In this way the coupled electro-magneto-mechanical system suppresses the forced...
New trends in parameter identification for mathematical models
Leitão, Antonio; Zubelli, Jorge
2018-01-01
The Proceedings volume contains 16 contributions to the IMPA conference “New Trends in Parameter Identification for Mathematical Models”, Rio de Janeiro, Oct 30 – Nov 3, 2017, integrating the “Chemnitz Symposium on Inverse Problems on Tour”. This conference is part of the “Thematic Program on Parameter Identification in Mathematical Models” organized at IMPA in October and November 2017. One goal is to foster the scientific collaboration between mathematicians and engineers from the Brazialian, European and Asian communities. Main topics are iterative and variational regularization methods in Hilbert and Banach spaces for the stable approximate solution of ill-posed inverse problems, novel methods for parameter identification in partial differential equations, problems of tomography , solution of coupled conduction-radiation problems at high temperatures, and the statistical solution of inverse problems with applications in physics.
Temporal variation and scaling of parameters for a monthly hydrologic model
Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang
2018-03-01
The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.
Importance of hydrological parameters in contaminant transport modeling in a terrestrial environment
International Nuclear Information System (INIS)
Tsuduki, Katsunori; Matsunaga, Takeshi
2007-01-01
A grid type multi-layered distributed parameter model for calculating discharge in a watershed was described. Model verification with our field observation resulted in different sets of hydrological parameter values, all of which reproduced the observed discharge. The effect of those varied hydrological parameters on contaminant transport calculation was examined and discussed by simulation of event water transfer. (author)
Zener Diode Compact Model Parameter Extraction Using Xyce-Dakota Optimization.
Energy Technology Data Exchange (ETDEWEB)
Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilcox, Ian Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandoval, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reza, Shahed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
This report presents a detailed process for compact model parameter extraction for DC circuit Zener diodes. Following the traditional approach of Zener diode parameter extraction, circuit model representation is defined and then used to capture the different operational regions of a real diode's electrical behavior. The circuit model contains 9 parameters represented by resistors and characteristic diodes as circuit model elements. The process of initial parameter extraction, the identification of parameter values for the circuit model elements, is presented in a way that isolates the dependencies between certain electrical parameters and highlights both the empirical nature of the extraction and portions of the real diode physical behavior which of the parameters are intended to represent. Optimization of the parameters, a necessary part of a robost parameter extraction process, is demonstrated using a 'Xyce-Dakota' workflow, discussed in more detail in the report. Among other realizations during this systematic approach of electrical model parameter extraction, non-physical solutions are possible and can be difficult to avoid because of the interdependencies between the different parameters. The process steps described are fairly general and can be leveraged for other types of semiconductor device model extractions. Also included in the report are recommendations for experiment setups for generating optimum dataset for model extraction and the Parameter Identification and Ranking Table (PIRT) for Zener diodes.
Van Dyke, Michael B.
2013-01-01
Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.
Directory of Open Access Journals (Sweden)
Eroboghene H Otete
Full Text Available INTRODUCTION: Mathematical modelling of Clostridium difficile infection dynamics could contribute to the optimisation of strategies for its prevention and control. The objective of this systematic review was to summarise the available literature specifically identifying the quantitative parameters required for a compartmental mathematical model of Clostridium difficile transmission. METHODS: Six electronic healthcare databases were searched and all screening, data extraction and study quality assessments were undertaken in duplicate. Results were synthesised using a narrative approach. RESULTS: Fifty-four studies met the inclusion criteria. Reproduction numbers for hospital based epidemics were described in two studies with a range from 0.55 to 7. Two studies provided consistent data on incubation periods. For 62% of cases, symptoms occurred in less than 4 weeks (3-28 days after infection. Evidence on contact patterns was identified in four studies but with limited data reported for populating a mathematical model. Two studies, including one without clinically apparent donor-recipient pairs, provided information on serial intervals for household or ward contacts, showing transmission intervals of <1 week in ward based contacts compared to up to 2 months for household contacts. Eight studies reported recovery rates of between 75%-100% for patients who had been treated with either metronidazole or vancomycin. Forty-nine studies gave recurrence rates of between 3% and 49% but were limited by varying definitions of recurrence. No study was found which specifically reported force of infection or net reproduction numbers. CONCLUSIONS: There is currently scant literature overtly citing estimates of the parameters required to inform the quantitative modelling of Clostridium difficile transmission. Further high quality studies to investigate transmission parameters are required, including through review of published epidemiological studies where these
Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach
Chiara D'Autilia, Maria; Sgura, Ivonne; Bozzini, Benedetto
2017-12-01
In this paper we consider a parameter identification problem (PIP) for data oscillating in time, that can be described in terms of the dynamics of some ordinary differential equation (ODE) model, resulting in an optimization problem constrained by the ODEs. In problems with this type of data structure, simple application of the direct method of control theory (discretize-then-optimize) yields a least-squares cost function exhibiting multiple ‘low’ minima. Since in this situation any optimization algorithm is liable to fail in the approximation of a good solution, here we propose a Fourier regularization approach that is able to identify an iso-frequency manifold {{ S}} of codimension-one in the parameter space \
Parameter optimization method for the water quality dynamic model based on data-driven theory.
Liang, Shuxiu; Han, Songlin; Sun, Zhaochen
2015-09-15
Parameter optimization is important for developing a water quality dynamic model. In this study, we applied data-driven method to select and optimize parameters for a complex three-dimensional water quality model. First, a data-driven model was developed to train the response relationship between phytoplankton and environmental factors based on the measured data. Second, an eight-variable water quality dynamic model was established and coupled to a physical model. Parameter sensitivity analysis was investigated by changing parameter values individually in an assigned range. The above results served as guidelines for the control parameter selection and the simulated result verification. Finally, using the data-driven model to approximate the computational water quality model, we employed the Particle Swarm Optimization (PSO) algorithm to optimize the control parameters. The optimization routines and results were analyzed and discussed based on the establishment of the water quality model in Xiangshan Bay (XSB). Copyright © 2015 Elsevier Ltd. All rights reserved.
A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model
Energy Technology Data Exchange (ETDEWEB)
Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y
2011-10-27
Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.
Constructing Approximate Confidence Intervals for Parameters with Structural Equation Models
Cheung, Mike W. -L.
2009-01-01
Confidence intervals (CIs) for parameters are usually constructed based on the estimated standard errors. These are known as Wald CIs. This article argues that likelihood-based CIs (CIs based on likelihood ratio statistics) are often preferred to Wald CIs. It shows how the likelihood-based CIs and the Wald CIs for many statistics and psychometric…
Transformations among CE–CVM model parameters for ...
Indian Academy of Sciences (India)
Unknown
(CECs) of a higher order system in terms of those of the lower order subsystems and to an independent set of parameters which exclusively represent interactions of the higher order systems. Such a procedure is presen- ted in detail in this communication. Furthermore, the details of transformations required to express the ...
Directory of Open Access Journals (Sweden)
Li Wang
2017-02-01
Full Text Available The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO algorithm that is based on random perturbation (RP-PSO. The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.
Identification of relaxation parameter of a physical model of vein from fluid transient experiment
Directory of Open Access Journals (Sweden)
Hromádka David
2014-03-01
Full Text Available This paper presents a new fluid transient inflation experiment applied on a physical model of vein (short latex tube, 5mm diameter. Aim of experiments is assessment of wall viscous behaviour from attenuated pulsation of the tested sample. Experimental data obtained from dynamic test are compared with numerical simulation and a viscoelastic parameter of Haslach constitutive model is identified. It is verified that the viscoelasticity of wall has a greater impact to the damping of pulsation than the viscosity of water filling the sample and the attached capillary. Volume of sample depends on internal pressure measured by a pressure transducer. The maximum dissipation constitutive model of viscoelastic wall sample was employed for description of viscoelastic behaviour. Frequency of natural oscillation of pressure is determined by inertia of water column within the tested sample and attached capillary and by the tested specimen stiffness. The pressure pulsations are initiated by a sudden pressure drop at water surface.
DEFF Research Database (Denmark)
Nørgaard, Trine; Møldrup, Per; Olsen, Preben
2013-01-01
Preferential flow and particle-facilitated transport through macropores contributes significantly to the transport of strongly sorbing substances such as pesticides and phosphorus. The aim of this study was to perform a field-scale characterization of basic soil physical properties like clay...... and organic carbon content and investigate whether it was possible to relate these to derived structural parameters such as bulk density and conservative tracer parameters and to actual particle and phosphorus leaching patterns obtained from laboratory leaching experiments. Sixty-five cylindrical soil columns...... arrival times and high tracer recovery percentages from columns sampled from the northern part of the field, and the leached mass of particles and particulate phosphorus was also largest from this area. Strong correlations were obtained between 5% tracer arrival time, tracer recovery, and bulk density...
Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters
Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes
2017-04-01
A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.
Konno, S.; Mita, A.
2014-03-01
Recently, the demand of the building spaces to respond to increase of single aged households and the diversification of life style is increasing. Smart house is one of them, but it is difficult for them to be changed and renovated. Therefore, we suggest Biofied builing. In biofied building, we use a mobile robot to get concious and unconcious information about residents and try to make it more secure and comfort builing spaces by realizing the intraction between residents and builing spaces. Walking parameters are one of the most important unconscious information about residents. They are an indicator of autonomy of elderly, and changes of stride length and walking speed may be pridictive of a future fall and a cognitive impairment. By observing their walking and informing residents their walking state, they can forestall such dangers and it helps them to live more securely and autonomously. Many methods to estimate walking parameters have been studied. The famous ones are to use accelerometers and a motion capture camera. Walking parameters estimated by them are high precise but the sensors are attached to a human body in these method and it can make human's walk different from the original walk. Furthermore, some elderly feel it to invade them. In this work, Kinect which can get information about human untouchably was used on the mobile robot. A stride time, stride length, and walking speed were estimated from the back view of human by following him or her. Evaluation was done for 10m, 5m, 4m, and 3m in whole walking. As a result, the proposal system can estimate walking parameters of the walk more than 3m.
Sugihara, Toshio; Yokoyama, Akihiko; Izena, Atsushi
In this study, adaptive PSS using measurable state variables at generator buses is developed. The PSS parameters are tuned based on eigenvalue analysis for a low-order simple linear model of each generator obtained by identification. The low-order model consists of block diagram of PSS and relationship from output of PSS to input of PSS with limited variables which are identified by least squares method using ΔPe and Δω measured at each generator bus. The identification for the PSS parameter tuning is repeated. The PSS parameters are tuned every second to keep power system stable. Digital simulations for transient stability analysis are carried out for IEEJ WEST 10-machine system model. It is made clear that the stability is improved only when dominant oscillation is identified at generator bus.
Spatial modeling of limnological parameters in a solar saltwork of northeastern Brazil
Directory of Open Access Journals (Sweden)
Diógenes Félix da Silva Costa
2015-03-01
Full Text Available AimIn this research, we aimed to model limnological parameters in the Salina Unidos (Macau-Brazil using GIS technology. We hypothesized that in solar saltworks, the geochemical characteristics of the brines (i.e. the strong solution of salts vary considerably through the salt ponds circuit, in which drastic changes can damage the entire salt production.MethodsGeochemical parameters were monitored in seven sampling points distributed along the salt ponds circuit, during a complete cycle of salt production, i.e., from January to December 2007. The open source software Spring 5.1.6 was used to build, store, analyze and model the spatial distribution of the parameters.ResultsWe identified a spatial gradient of the salinity and temperature, with values increasing from evaporation ponds to concentration ponds, showing a relationship with the salt production. The parameters, depth, dissolved oxygen concentrations and total dissolved reactive phosphorus showed a decrease from the evaporation ponds towards the concentration ponds. Among the dissolved inorganic nitrogen forms analyzed (NH3-, NO2- and NO3-, nitrate was the predominant, namely in the concentration ponds, where it reached the highest concentrations. The concentration of chlorophyll awas higher in the initial and intermediate evaporation ponds, showing a distinct dynamics of in relation to other environmental variables.ConclusionsThe increased concentration of the analyzed limnological parameters, from the evaporation ponds towards the concentration ponds, evidenced a heterogeneous distribution varying significantly with season. The geochemical spatialization of brine, as illustrated by GIS approach, is very important for the conservation of these environments because this spatial heterogeneity can provide a high diversity of habitat types. This spatial analysis proved to be a practical tool for an adequate management of solar saltworks considering the environmental (ecosystem and the socio
Directory of Open Access Journals (Sweden)
Xingjian Wang
2016-01-01
Full Text Available Attainment of high-performance motion/velocity control objectives for the Direct-Drive Rotary (DDR torque motor should fully consider practical nonlinearities in controller design, such as dynamic friction. The LuGre model has been widely utilized to describe nonlinear friction behavior; however, parameter identification for the LuGre model remains a challenge. A new dynamic friction parameter identification method for LuGre model is proposed in this study. Static parameters are identified through a series of constant velocity experiments, while dynamic parameters are obtained through a presliding process. Novel evolutionary algorithm (NEA is utilized to increase identification accuracy. Experimental results gathered from the identification experiments conducted in the study for a practical DDR torque motor control system validate the effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
O.A. Awopeju
2017-12-01
Full Text Available The study investigated the invariance properties of one, two and three parame-ter logistic item response theory models. It examined the best fit among one parameter logistic (1PL, two-parameter logistic (2PL and three-parameter logistic (3PL IRT models for SSCE, 2008 in Mathematics. It also investigated the degree of invariance of the IRT models based item difficulty parameter estimates in SSCE in Mathematics across different samples of examinees and examined the degree of invariance of the IRT models based item discrimination estimates in SSCE in Mathematics across different samples of examinees. In order to achieve the set objectives, 6000 students (3000 males and 3000 females were drawn from the population of 35262 who wrote the 2008 paper 1 Senior Secondary Certificate Examination (SSCE in Mathematics organized by National Examination Council (NECO. The item difficulty and item discrimination parameter estimates from CTT and IRT were tested for invariance using BLOG MG 3 and correlation analysis was achieved using SPSS version 20. The research findings were that two parameter model IRT item difficulty and discrimination parameter estimates exhibited invariance property consistently across different samples and that 2-parameter model was suitable for all samples of examinees unlike one-parameter model and 3-parameter model.
Numerical Modeling of Piezoelectric Transducers Using Physical Parameters
Cappon, H.; Keesman, K.J.
2012-01-01
Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and
Development of simple kinetic models and parameter estimation for ...
African Journals Online (AJOL)
PANCHIGA
2016-09-28
Sep 28, 2016 ... by methanol. In this study, the unstructured models based on growth kinetic equation, fed-batch mass balance and constancy of cell and protein yields were developed and constructed following the substrates, glycerol and methanol. The growth model on glycerol is mostly published while the growth model ...
Parameter study of a model for NOx emissions from PFBC
DEFF Research Database (Denmark)
Jensen, Anker Degn; Johnsson, Jan Erik
1996-01-01
Simulations with a mathematical model of a pressurized bubbling fluidized bed combustor (PFBC) combined with a kinetic model for NO formation and reduction are presented and discussed. The kinetic model for NO formation and reduction considers NO and NH3 as the fixed nitrogen species, and include...
Kinetic models and parameters estimation study of biomass and ...
African Journals Online (AJOL)
The growth kinetics and modeling of ethanol production from inulin by Pichia caribbica (KC977491) were studied in a batch system. Unstructured models were proposed using the logistic equation for growth, the Luedeking-Piret equation for ethanol production and modified Leudeking-Piret model for substrate consumption.
Kinetic models and parameters estimation study of biomass and ...
African Journals Online (AJOL)
compaq
2017-01-11
Jan 11, 2017 ... The growth kinetics and modeling of ethanol production from inulin by Pichia caribbica (KC977491) were studied in a batch system. Unstructured models were proposed using the logistic equation for growth, the Luedeking-Piret equation for ethanol production and modified Leudeking-Piret model for.
Parameter estimation of electricity spot models from futures prices
Aihara, ShinIchi; Bagchi, Arunabha; Imreizeeq, E.S.N.; Walter, E.
We consider a slight perturbation of the Schwartz-Smith model for the electricity futures prices and the resulting modified spot model. Using the martingale property of the modified price under the risk neutral measure, we derive the arbitrage free model for the spot and futures prices. We estimate
Gas ultracentrifuge separative parameters modeling using hybrid neural networks
International Nuclear Information System (INIS)
Crus, Maria Ursulina de Lima
2005-01-01
A hybrid neural network is developed for the calculation of the separative performance of an ultracentrifuge. A feed forward neural network is trained to estimate the internal flow parameters of a gas ultracentrifuge, and then these parameters are applied in the diffusion equation. For this study, a 573 experimental data set is used to establish the relation between the separative performance and the controlled variables. The process control variables considered are: the feed flow rate F, the cut θ and the product pressure Pp. The mechanical arrangements consider the radial waste scoop dimension, the rotating baffle size D s and the axial feed location Z E . The methodology was validated through the comparison of the calculated separative performance with experimental values. This methodology may be applied to other processes, just by adapting the phenomenological procedures. (author)
Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares
Grauer, Jared A.; Morelli, Eugene A.
2016-01-01
A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.
Order parameter model for unstable multilane traffic flow
Lubashevsky, Ihor A.; Mahnke, Reinhard
1999-01-01
We discuss a phenomenological approach to the description of unstable vehicle motion on multilane highways that explains in a simple way the observed sequence of the phase transitions "free flow -> synchronized motion -> jam" as well as the hysteresis in the transition "free flow synchronized motion". We introduce a new variable called order parameter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to the "many-body" effects in the ...
Connecting Global to Local Parameters in Barred Galaxy Models
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
The velocity and the angular velocity units are 10 km/s and 10 km/s/kpc, respectively while G is equal to unity. Our test particle is a star of mass = 1. Therefore, the energy unit (per unit mass) is 100(km/s)2. In these units the values of the parameters are α = 12 kpc,b = 2,cb = 1.5 kpc,Md = 9500 and Mb = 3000. It is evident that ...
Entropy Parameter M in Modeling a Flow Duration Curve
Directory of Open Access Journals (Sweden)
Yu Zhang
2017-12-01
Full Text Available A flow duration curve (FDC is widely used for predicting water supply, hydropower, environmental flow, sediment load, and pollutant load. Among different methods of constructing an FDC, the entropy-based method, developed recently, is appealing because of its several desirable characteristics, such as simplicity, flexibility, and statistical basis. This method contains a parameter, called entropy parameter M, which constitutes the basis for constructing the FDC. Since M is related to the ratio of the average streamflow to the maximum streamflow which, in turn, is related to the drainage area, it may be possible to determine M a priori and construct an FDC for ungauged basins. This paper, therefore, analyzed the characteristics of M in both space and time using streamflow data from 73 gauging stations in the Brazos River basin, Texas, USA. Results showed that the M values were impacted by reservoir operation and possibly climate change. The values were fluctuating, but relatively stable, after the operation of the reservoirs. Parameter M was found to change inversely with the ratio of average streamflow to the maximum streamflow. When there was an extreme event, there occurred a jump in the M value. Further, spatially, M had a larger value if the drainage area was small.
Optimization of process parameters through GRA, TOPSIS and RSA models
Directory of Open Access Journals (Sweden)
Suresh Nipanikar
2018-01-01
Full Text Available This article investigates the effect of cutting parameters on the surface roughness and flank wear during machining of titanium alloy Ti-6Al-4V ELI( Extra Low Interstitial in minimum quantity lubrication environment by using PVD TiAlN insert. Full factorial design of experiment was used for the machining 2 factors 3 levels and 2 factors 2 levels. Turning parameters studied were cutting speed (50, 65, 80 m/min, feed (0.08, 0.15, 0.2 mm/rev and depth of cut 0.5 mm constant. The results show that 44.61 % contribution of feed and 43.57 % contribution of cutting speed on surface roughness also 53.16 % contribution of cutting tool and 26.47 % contribution of cutting speed on tool flank wear. Grey relational analysis and TOPSIS method suggest the optimum combinations of machining parameters as cutting speed: 50 m/min, feed: 0.8 mm/rev., cutting tool: PVD TiAlN, cutting fluid: Palm oi
A Fuzzy Computing Model for Identifying Polarity of Chinese Sentiment Words
Directory of Open Access Journals (Sweden)
Bingkun Wang
2015-01-01
Full Text Available With the spurt of online user-generated contents on web, sentiment analysis has become a very active research issue in data mining and natural language processing. As the most important indicator of sentiment, sentiment words which convey positive and negative polarity are quite instrumental for sentiment analysis. However, most of the existing methods for identifying polarity of sentiment words only consider the positive and negative polarity by the Cantor set, and no attention is paid to the fuzziness of the polarity intensity of sentiment words. In order to improve the performance, we propose a fuzzy computing model to identify the polarity of Chinese sentiment words in this paper. There are three major contributions in this paper. Firstly, we propose a method to compute polarity intensity of sentiment morphemes and sentiment words. Secondly, we construct a fuzzy sentiment classifier and propose two different methods to compute the parameter of the fuzzy classifier. Thirdly, we conduct extensive experiments on four sentiment words datasets and three review datasets, and the experimental results indicate that our model performs better than the state-of-the-art methods.
A Fuzzy Computing Model for Identifying Polarity of Chinese Sentiment Words.
Wang, Bingkun; Huang, Yongfeng; Wu, Xian; Li, Xing
2015-01-01
With the spurt of online user-generated contents on web, sentiment analysis has become a very active research issue in data mining and natural language processing. As the most important indicator of sentiment, sentiment words which convey positive and negative polarity are quite instrumental for sentiment analysis. However, most of the existing methods for identifying polarity of sentiment words only consider the positive and negative polarity by the Cantor set, and no attention is paid to the fuzziness of the polarity intensity of sentiment words. In order to improve the performance, we propose a fuzzy computing model to identify the polarity of Chinese sentiment words in this paper. There are three major contributions in this paper. Firstly, we propose a method to compute polarity intensity of sentiment morphemes and sentiment words. Secondly, we construct a fuzzy sentiment classifier and propose two different methods to compute the parameter of the fuzzy classifier. Thirdly, we conduct extensive experiments on four sentiment words datasets and three review datasets, and the experimental results indicate that our model performs better than the state-of-the-art methods.
DEFF Research Database (Denmark)
Suárez, Carlos Gómez; Reigosa, Paula Diaz; Iannuzzo, Francesco
2016-01-01
An original tool for parameter extraction of PSpice models has been released, enabling a simple parameter identification. A physics-based IGBT model is used to demonstrate that the optimization tool is capable of generating a set of parameters which predicts the steady-state and switching behavior...
Energy Technology Data Exchange (ETDEWEB)
Boyd, S.W.; Butler, R.W.; Haider, W.
1995-12-31
Describes a methodology for identifying ecotourism destination sites based first on determining the criteria and attributes of ecotourism, and secondly by matching the value range of these criteria to the region`s resource base inventory. The paper discusses problems in defining ecotourism and in identifying linkages between this and other forms of tourism and related environmental management concepts in the context of explaining difficulties in selecting appropriate ecotourism criteria. Elements of ecotourism suitable to northern Ontario area also presented along with the criteria and the methodology, which is based on the use of geographic information systems technology. A final section addresses implications of the methodology for resource managers and tourism operators.
Chapman, Michael S; Trzynka, Andrew; Chapman, Brynmor K
2013-04-01
When refining the fit of component atomic structures into electron microscopic reconstructions, use of a resolution-dependent atomic density function makes it possible to jointly optimize the atomic model and imaging parameters of the microscope. Atomic density is calculated by one-dimensional Fourier transform of atomic form factors convoluted with a microscope envelope correction and a low-pass filter, allowing refinement of imaging parameters such as resolution, by optimizing the agreement of calculated and experimental maps. A similar approach allows refinement of atomic displacement parameters, providing indications of molecular flexibility even at low resolution. A modest improvement in atomic coordinates is possible following optimization of these additional parameters. Methods have been implemented in a Python program that can be used in stand-alone mode for rigid-group refinement, or embedded in other optimizers for flexible refinement with stereochemical restraints. The approach is demonstrated with refinements of virus and chaperonin structures at resolutions of 9 through 4.5 Å, representing regimes where rigid-group and fully flexible parameterizations are appropriate. Through comparisons to known crystal structures, flexible fitting by RSRef is shown to be an improvement relative to other methods and to generate models with all-atom rms accuracies of 1.5-2.5 Å at resolutions of 4.5-6 Å. Copyright © 2013 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Rajendrana C.
2017-01-01
Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.
An approach to measure parameter sensitivity in watershed hydrologic modeling
U.S. Environmental Protection Agency — Abstract Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier...
Weibull Parameters Estimation Based on Physics of Failure Model
DEFF Research Database (Denmark)
Kostandyan, Erik; Sørensen, John Dalsgaard
2012-01-01
Reliability estimation procedures are discussed for the example of fatigue development in solder joints using a physics of failure model. The accumulated damage is estimated based on a physics of failure model, the Rainflow counting algorithm and the Miner’s rule. A threshold model is used...... for degradation modeling and failure criteria determination. The time dependent accumulated damage is assumed linearly proportional to the time dependent degradation level. It is observed that the deterministic accumulated damage at the level of unity closely estimates the characteristic fatigue life of Weibull...
Parameter Estimation and Prediction of a Nonlinear Storage Model: an algebraic approach
Doeswijk, T.G.; Keesman, K.J.
2005-01-01
Generally, parameters that are nonlinear in system models are estimated by nonlinear least-squares optimization algorithms. In this paper, if a nonlinear discrete-time model with a polynomial quotient structure in input, output, and parameters, a method is proposed to re-parameterize the model such
Identification of the 1PL Model with Guessing Parameter: Parametric and Semi-Parametric Results
San Martin, Ernesto; Rolin, Jean-Marie; Castro, Luis M.
2013-01-01
In this paper, we study the identification of a particular case of the 3PL model, namely when the discrimination parameters are all constant and equal to 1. We term this model, 1PL-G model. The identification analysis is performed under three different specifications. The first specification considers the abilities as unknown parameters. It is…
Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende
2014-01-01
Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.
El Habachi, Aimad; Moissenet, Florent; Duprey, Sonia; Cheze, Laurence; Dumas, Raphaël
2015-07-01
Sensitivity analysis is a typical part of biomechanical models evaluation. For lower limb multi-body models, sensitivity analyses have been mainly performed on musculoskeletal parameters, more rarely on the parameters of the joint models. This study deals with a global sensitivity analysis achieved on a lower limb multi-body model that introduces anatomical constraints at the ankle, tibiofemoral, and patellofemoral joints. The aim of the study was to take into account the uncertainty of parameters (e.g. 2.5 cm on the positions of the skin markers embedded in the segments, 5° on the orientation of hinge axis, 2.5 mm on the origin and insertion of ligaments) using statistical distributions and propagate it through a multi-body optimisation method used for the computation of joint kinematics from skin markers during gait. This will allow us to identify the most influential parameters on the minimum of the objective function of the multi-body optimisation (i.e. the sum of the squared distances between measured and model-determined skin marker positions) and on the joint angles and displacements. To quantify this influence, a Fourier-based algorithm of global sensitivity analysis coupled with a Latin hypercube sampling is used. This sensitivity analysis shows that some parameters of the motor constraints, that is to say the distances between measured and model-determined skin marker positions, and the kinematic constraints are highly influencing the joint kinematics obtained from the lower limb multi-body model, for example, positions of the skin markers embedded in the shank and pelvis, parameters of the patellofemoral hinge axis, and parameters of the ankle and tibiofemoral ligaments. The resulting standard deviations on the joint angles and displacements reach 36° and 12 mm. Therefore, personalisation, customisation or identification of these most sensitive parameters of the lower limb multi-body models may be considered as essential.
Connecting Global to Local Parameters in Barred Galaxy Models
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Abstract. We present connections between global and local parame- ters in a realistic dynamical model, describing motion in a barred galaxy. Expanding the global model in the vicinity of a stable Lagrange point, we find the potential of a two-dimensional perturbed harmonic oscillator, which describes local motion near the ...
Mathematical modelling in blood coagulation : simulation and parameter estimation
W.J.H. Stortelder (Walter); P.W. Hemker (Piet); H.C. Hemker
1997-01-01
textabstractThis paper describes the mathematical modelling of a part of the blood coagulation mechanism. The model includes the activation of factor X by a purified enzyme from Russel's Viper Venom (RVV), factor V and prothrombin, and also comprises the inactivation of the products formed. In this
Metodology of identification parameters of models control objects of automatic trailing system
Directory of Open Access Journals (Sweden)
I.V. Zimchuk
2017-04-01
Full Text Available The determining factor for the successful solution of the problem of synthesis of optimal control systems of different processes are adequacy of mathematical model of control object. In practice, the options can differ from the objects taken priori, causing a need to clarification of them. In this context, the article presents the results of the development and application of methods parameters identification of mathematical models of control object of automatic trailing system. The stated problem in the article is solved provided that control object is fully controlled and observed, and a differential equation of control object is known a priori. The coefficients of this equation to be determined. Identifying quality criterion is to minimize the integral value of squared error of identification. The method is based on a description of the dynamics of the object in space state. Equation of identification synthesized using the vector-matrix representation of model. This equation describes the interconnection of coefficients of matrix state and control with inputs and outputs of object. The initial data for calculation are the results of experimental investigation of the reaction of phase coordinates of control object at a typical input signal. The process of calculating the model parameters is reduced to solving the system of equations of the first order each. Application the above approach is illustrated in the example identification of coefficients transfer function of control object first order. Results of digital simulation are presented, they are confirming the justice of set out mathematical calculations. The approach enables to do the identification of models of one-dimensional and multidimensional objects and does not require a large amount of calculation for its implementation. The order of identified model is limited capabilities of measurement phase coordinates of corresponding control object. The practical significance of the work is
Energy Technology Data Exchange (ETDEWEB)
Stefane, Wania [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Mecanica; Morooka, Celso K. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Dept. de Engenharia de Petroleo. Centro de Estudos de Petroleo; Pezzi Filho, Mario [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). E and P. ENGP/IPMI/ES; Matt, Cyntia G.C.; Franciss, Ricardo [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)
2009-12-19
The discovery of offshore fields in ultra deep water and the presence of reservoirs located in great depths below the seabed requires innovative solutions for offshore oil production systems. Many riser configurations have emerged as economically viable technological solutions for these scenarios. Therefore the study and the development of methodologies applied to riser design and procedures to calculate and to dimension production risers, taken into account the effects of mete ocean conditions, such as waves, current and platform motion in the fatigue failure is fundamental. The random nature of these conditions as well as the mechanical characteristics of the riser components are critical to a probabilistic treatment to ensure the greatest reliability for risers and minimum risks associated to different aspects of the operation like the safety of the installation, economical concerns and the environment. The current work presents a procedure of the identification and the assessment of main parameters of risk when considering fatigue failure. Static and dynamic behavior of Steel Catenary Riser (SCR) under the effects of mete ocean conditions and uncertainties related to total cumulative damage (Miner-Palmgren's rule) are taken into account. The methodology adopted is probabilistic and the approach is analytical. The procedure is based on the First Order Reliability Method (FORM) which usually presents low computational effort and acceptable accuracy. The procedure suggested is applied for two practical cases, one using data available from the literature and the second with data collected from an actual Brazilian offshore field operation. For both cases, results of the probability of failure due to fatigue were obtained for different locations along the SCR length connected to a semi-submersible platform. From these results, the sensitivity of the probability of failure due to fatigue for a SCR could be verified, and the most effective parameter could also be
Study of Λ parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions
International Nuclear Information System (INIS)
Shigemitsu, J.; Kogut, J.B.
1981-01-01
The spin system analogues of recent studies of the string tension and Λ parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the Λ parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the Λ parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are done for all N and the constants of proportionality between the gap and the Λ parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N → infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models
Parameters extraction for the one-diode model of a solar cell
Sabadus, Andreea; Mihailetchi, Valentin; Paulescu, Marius
2017-12-01
This paper is focused on the numerical algorithms for solving the one-diode model of a crystalline solar cell. Numerical experiments show that, generally, the algorithms reproduce accurately the I-V characteristics while the modeled parameters (the diode saturation current, serial resistance and the diode ideality factor) experience a large dispersion. The question arising here is: which is the correct set of the modeled parameters? In order to address this issue, the extracted parameters are compared with the measured ones for a silicon solar cell produced at ISC Konstanz. An attempt to solve numerically the one-diode model for accurate parameters extraction is discussed.
National Research Council Canada - National Science Library
Sznaier, Mario
2001-01-01
.... In this chapter we propose a suboptimal regulator for nonlinear parameter varying, control affine systems based upon the combination of model predictive and control Lyapunov function techniques...
Error propagation of partial least squares for parameters optimization in NIR modeling
Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng
2018-03-01
A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.
Parameter estimation of component reliability models in PSA model of Krsko NPP
International Nuclear Information System (INIS)
Jordan Cizelj, R.; Vrbanic, I.
2001-01-01
In the paper, the uncertainty analysis of component reliability models for independent failures is shown. The present approach for parameter estimation of component reliability models in NPP Krsko is presented. Mathematical approaches for different types of uncertainty analyses are introduced and used in accordance with some predisposed requirements. Results of the uncertainty analyses are shown in an example for time-related components. As the most appropriate uncertainty analysis proved the Bayesian estimation with the numerical estimation of a posterior, which can be approximated with some appropriate probability distribution, in this paper with lognormal distribution.(author)
Multi-Scale Parameter Identification of Lithium-Ion Battery Electric Models Using a PSO-LM Algorithm
Directory of Open Access Journals (Sweden)
Wen-Jing Shen
2017-03-01
Full Text Available This paper proposes a multi-scale parameter identification algorithm for the lithium-ion battery (LIB electric model by using a combination of particle swarm optimization (PSO and Levenberg-Marquardt (LM algorithms. Two-dimensional Poisson equations with unknown parameters are used to describe the potential and current density distribution (PDD of the positive and negative electrodes in the LIB electric model. The model parameters are difficult to determine in the simulation due to the nonlinear complexity of the model. In the proposed identification algorithm, PSO is used for the coarse-scale parameter identification and the LM algorithm is applied for the fine-scale parameter identification. The experiment results show that the multi-scale identification not only improves the convergence rate and effectively escapes from the stagnation of PSO, but also overcomes the local minimum entrapment drawback of the LM algorithm. The terminal voltage curves from the PDD model with the identified parameter values are in good agreement with those from the experiments at different discharge/charge rates.
International Nuclear Information System (INIS)
Evenson, D.E.; Prickett, T.A.; Showalter, P.A.
1979-07-01
The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive isotopes of neptunium, americium, uranium, and plutonium along with many highly radioactive fission products. A concern with this form of waste disposal is the possibility of ground-water flow occurring in the salt beds and endangering water supplies and the public health. Specifically, the research investigated the processes involved in the movement of radioactive wastes from the repository site by groundwater flow. Since the radioactive waste canisters also generate heat, temperature is an important factor. Among the processes affecting movement of radioactive wastes from a repository site in a salt bed are thermal conduction, groundwater movement, ion exchange, radioactive decay, dissolution and precipitation of salt, dispersion and diffusion, adsorption, and thermomigration. In addition, structural changes in the salt beds as a result of temperature changes are important. Based upon the half-lives of the radioactive wastes, he period of concern is on the order of a million years. As a result, major geologic phenomena that could affect both the salt bed and groundwater flow in the salt beds was considered. These phenomena include items such as volcanism, faulting, erosion, glaciation, and the impact of meteorites. CDM reviewed all of the critical processes involved in regional groundwater movement of radioactive wastes and identified and described the parameters that must be included to mathematically model their behavior. In addition, CDM briefly reviewed available echniques to measure these parameters