Determination of the Corona model parameters with artificial neural networks
International Nuclear Information System (INIS)
Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov
2005-01-01
Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model
Determination of parameters in elasto-plastic models of aluminium.
Meuwissen, M.H.H.; Oomens, C.W.J.; Baaijens, F.P.T.; Petterson, R.; Janssen, J.D.; Sol, H.; Oomens, C.W.J.
1997-01-01
A mixed numerical-experimental method is used to determine parameters in elasto-plastic constitutive models. An aluminium plate of non-standard geometry is mounted in a uniaxial tensile testing machine at which some adjustments are made to carry out shear tests. The sample is loaded and the total
Determination of appropriate models and parameters for premixing calculations
Energy Technology Data Exchange (ETDEWEB)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-15
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.
Determination of appropriate models and parameters for premixing calculations
International Nuclear Information System (INIS)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-01
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al 2 O 3 ) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested
Determining extreme parameter correlation in ground water models
DEFF Research Database (Denmark)
Hill, Mary Cole; Østerby, Ole
2003-01-01
can go undetected even by experienced modelers. Extreme parameter correlation can be detected using parameter correlation coefficients, but their utility depends on the presence of sufficient, but not excessive, numerical imprecision of the sensitivities, such as round-off error. This work...... investigates the information that can be obtained from parameter correlation coefficients in the presence of different levels of numerical imprecision, and compares it to the information provided by an alternative method called the singular value decomposition (SVD). Results suggest that (1) calculated...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...
Contaminant transport in aquifers: improving the determination of model parameters
International Nuclear Information System (INIS)
Sabino, C.V.S.; Moreira, R.M.; Lula, Z.L.; Chausson, Y.; Magalhaes, W.F.; Vianna, M.N.
1998-01-01
Parameters conditioning the migration behavior of cesium and mercury are measured with their tracers 137 Cs and 203 Hg in the laboratory, using both batch and column experiments. Batch tests were used to define the sorption isotherm characteristics. Also investigated were the influences of some test parameters, in particular those due to the volume of water to mass of soil ratio (V/m). A provisional relationship between V/m and the distribution coefficient, K d , has been advanced, and a procedure to estimate K d 's valid for environmental values of the ratio V/m has been suggested. Column tests provided the parameters for a transport model. A major problem to be dealt with in such tests is the collimation of the radioactivity probe. Besides mechanically optimizing the collimator, a deconvolution procedure has been suggested and tested, with statistical criteria, to filter off both noise and spurious tracer signals. Correction procedures for the integrating effect introduced by sampling at the exit of columns have also been developed. These techniques may be helpful in increasing the accuracy required in the measurement of parameters conditioning contaminant migration in soils, thus allowing more reliable predictions based on mathematical model applications. (author)
Application of genetic algorithm in radio ecological models parameter determination
Energy Technology Data Exchange (ETDEWEB)
Pantelic, G. [Institute of Occupatioanl Health and Radiological Protection ' Dr Dragomir Karajovic' , Belgrade (Serbia)
2006-07-01
The method of genetic algorithms was used to determine the biological half-life of 137 Cs in cow milk after the accident in Chernobyl. Methodologically genetic algorithms are based on the fact that natural processes tend to optimize themselves and therefore this method should be more efficient in providing optimal solutions in the modeling of radio ecological and environmental events. The calculated biological half-life of 137 Cs in milk is (32 {+-} 3) days and transfer coefficient from grass to milk is (0.019 {+-} 0.005). (authors)
Application of genetic algorithm in radio ecological models parameter determination
International Nuclear Information System (INIS)
Pantelic, G.
2006-01-01
The method of genetic algorithms was used to determine the biological half-life of 137 Cs in cow milk after the accident in Chernobyl. Methodologically genetic algorithms are based on the fact that natural processes tend to optimize themselves and therefore this method should be more efficient in providing optimal solutions in the modeling of radio ecological and environmental events. The calculated biological half-life of 137 Cs in milk is (32 ± 3) days and transfer coefficient from grass to milk is (0.019 ± 0.005). (authors)
Determination of Parameters to Model Seafarers’ Supply in Latvia
Directory of Open Access Journals (Sweden)
Roberts Gailitis
2014-06-01
Full Text Available The Automatic Identification System (AIS is an important maritime safety device, which is populous in inland rivers. Compared with that in open sea, the Package Error Rate (PER of AIS in inland river has increased sharply due to its complex environment. With the help of hardware in loop simulation, it is possible to make statistical calculation on the PER under a given field strength and describe the data by quadratic rational fraction. Meanwhile, in the three dimensional software environments, the signal field strength is able to be calculated by the ray tracking method, which exhausts all the possible propagation paths, including direct way, reflection, diffractions, and the other medium attenuation matters. Beyond that, in the model, the propagation geography information in inland rivers is required to be simplified in some way, or the computation of the ray tracking is too hard to get. The paper set the Changjiang Wuhan channel as the field testing region, and all the deviations are less than 5% in sunny weather, which proves the method accurate and effective.
Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters
Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes
2017-04-01
A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.
International Nuclear Information System (INIS)
Oezyurt, N.N.
2002-01-01
Groundwater's residence time distribution is an important information to identify the transport mechanism in aquifer systems. In the absence or scarcity of geometric, hydraulic and geohydrologic data needed to describe a flow system, lumped parameter models, that handle the flow system as a whole, exist as an alternative to determine the residence time distribution. Lumped parametre models comprise of idealized models of piston and well-mixed flow and their combinations. Aquifer properties such as, dead volume and by-pass flow can also be included in these models. With the aid of these models, conceptual aquifer models can be tested and residence time distribution of groundwater can be determined
Determining Rheological Parameters of Generalized Yield-Power-Law Fluid Model
Directory of Open Access Journals (Sweden)
Stryczek Stanislaw
2004-09-01
Full Text Available The principles of determining rheological parameters of drilling muds described by a generalized yield-power-law are presented in the paper. Functions between tangent stresses and shear rate are given. The conditions of laboratory measurements of rheological parameters of generalized yield-power-law fluids are described and necessary mathematical relations for rheological model parameters given. With the block diagrams, the methodics of numerical solution of these relations has been presented. Rheological parameters of an exemplary drilling mud have been calculated with the use of this numerical program.
Determination of modeling parameters for power IGBTs under pulsed power conditions
Energy Technology Data Exchange (ETDEWEB)
Dale, Gregory E [Los Alamos National Laboratory; Van Gordon, Jim A [U. OF MISSOURI; Kovaleski, Scott D [U. OF MISSOURI
2010-01-01
While the power insulated gate bipolar transistor (IGRT) is used in many applications, it is not well characterized under pulsed power conditions. This makes the IGBT difficult to model for solid state pulsed power applications. The Oziemkiewicz implementation of the Hefner model is utilized to simulate IGBTs in some circuit simulation software packages. However, the seventeen parameters necessary for the Oziemkiewicz implementation must be known for the conditions under which the device will be operating. Using both experimental and simulated data with a least squares curve fitting technique, the parameters necessary to model a given IGBT can be determined. This paper presents two sets of these seventeen parameters that correspond to two different models of power IGBTs. Specifically, these parameters correspond to voltages up to 3.5 kV, currents up to 750 A, and pulse widths up to 10 {micro}s. Additionally, comparisons of the experimental and simulated data will be presented.
Directory of Open Access Journals (Sweden)
S. I. Bartsev
2015-06-01
Full Text Available A possible method for experimental determination of parameters of the previously proposed continual mathematical model of soil organic matter transformation is theoretically considered in this paper. The previously proposed by the authors continual model of soil organic matter transformation, based on using the rate of matter transformation as a continual scale of its recalcitrance, describes the transformation process phenomenologically without going into detail of microbiological mechanisms of transformation. Thereby simplicity of the model is achieved. The model is represented in form of one differential equation in firstorder partial derivatives, which has an analytical solution in elementary functions. The model equation contains a small number of empirical parameters which generally characterize environmental conditions where the matter transformation process occurs and initial properties of the plant litter. Given the values of these parameters, it is possible to calculate dynamics of soil organic matter stocks and its distribution over transformation rate. In the present study, possible approaches for determination of the model parameters are considered and a simple method of their experimental measurement is proposed. An experiment of an incubation of chemically homogeneous samples in soil and multiple sequential measurement of the sample mass loss with time is proposed. An equation of time dynamics of mass loss of incubated homogeneous sample is derived from the basic assumption of the presented soil organic matter transformation model. Thus, fitting by the least squares method the parameters of sample mass loss curve calculated according the proposed mass loss dynamics equation allows to determine the parameters of the general equation of soil organic transformation model.
Artificial Neural Network model for the determination of GSM Rxlevel from atmospheric parameters
Directory of Open Access Journals (Sweden)
Julia Ofure Eichie
2017-04-01
Full Text Available Accurate received signal level (Rxlevel values are useful for mobile telecommunication network planning. Rxlevel is affected by the dynamics of the atmosphere through which it propagates. Adequate knowledge of the prevailing atmospheric conditions in an environment is essential for proper network planning. However most of the existing GSM received signal determination model are function of distance between point of signal reception and transmitting site thus necessitating the development of a model that involve the use of atmospheric parameters in the determination of received GSM signal level. In this paper, a three stage approach was used in the development of the model using some atmospheric parameters such as atmospheric temperature, relative humidity and dew point. The selected and easily measurable atmospheric parameters were used as input parameters in developing two new models for computing the Rxlevel of GSM signal using a three-step approach. Data acquisition and pre-processing serves as the first stage and formulation of ANN design and the development of parametric model for the Rxlevel using ANN synaptic weights form the second stage of the proposed approach. The third stage involves the use of ANN weight and bias values, and network architecture in the development of the model equation. In evaluating the performance of the proposed models, network parameters were varied and the results obtained using mean squared error (MSE as performance measure showed the developed model with 33 neurons in the hidden layer and tansig activation, function in both the hidden and output layers as the optimal model with least MSE value of 0.056. Thus showing that the developed model has an acceptable accuracy value as demonstrated from comparison of results with actual measured values.
Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin
2017-10-01
To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may
Determination of HCME 3-D parameters using a full ice-cream cone model
Na, Hyeonock; Moon, Yong-Jae; Lee, Harim
2016-05-01
It is very essential to determine three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) for space weather forecast. Several cone models (e.g., an elliptical cone model, an ice-cream cone model, an asymmetric cone model) have been examined to estimate these parameters. In this study, we investigate which cone type is close to a halo CME morphology using 26 CMEs: halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From cone shape parameters of these CMEs such as their front curvature, we find that near full ice-cream cone type CMEs are much closer to observations than shallow ice-cream cone type CMEs. Thus we develop a new cone model in which a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3-D parameters from our method are similar to those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data. We are developing a general ice-cream cone model whose front shape is a free parameter determined by observations.
Improving fault image by determination of optimum seismic survey parameters using ray-based modeling
Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali
2018-06-01
In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.
SDSS-II: Determination of shape and color parameter coefficients for SALT-II fit model
Energy Technology Data Exchange (ETDEWEB)
Dojcsak, L.; Marriner, J.; /Fermilab
2010-08-01
In this study we look at the SALT-II model of Type IA supernova analysis, which determines the distance moduli based on the known absolute standard candle magnitude of the Type IA supernovae. We take a look at the determination of the shape and color parameter coefficients, {alpha} and {beta} respectively, in the SALT-II model with the intrinsic error that is determined from the data. Using the SNANA software package provided for the analysis of Type IA supernovae, we use a standard Monte Carlo simulation to generate data with known parameters to use as a tool for analyzing the trends in the model based on certain assumptions about the intrinsic error. In order to find the best standard candle model, we try to minimize the residuals on the Hubble diagram by calculating the correct shape and color parameter coefficients. We can estimate the magnitude of the intrinsic errors required to obtain results with {chi}{sup 2}/degree of freedom = 1. We can use the simulation to estimate the amount of color smearing as indicated by the data for our model. We find that the color smearing model works as a general estimate of the color smearing, and that we are able to use the RMS distribution in the variables as one method of estimating the correct intrinsic errors needed by the data to obtain the correct results for {alpha} and {beta}. We then apply the resultant intrinsic error matrix to the real data and show our results.
Neuert, Mark A C; Dunning, Cynthia E
2013-09-01
Strain energy-based adaptive material models are used to predict bone resorption resulting from stress shielding induced by prosthetic joint implants. Generally, such models are governed by two key parameters: a homeostatic strain-energy state (K) and a threshold deviation from this state required to initiate bone reformation (s). A refinement procedure has been performed to estimate these parameters in the femur and glenoid; this study investigates the specific influences of these parameters on resulting density distributions in the distal ulna. A finite element model of a human ulna was created using micro-computed tomography (µCT) data, initialized to a homogeneous density distribution, and subjected to approximate in vivo loading. Values for K and s were tested, and the resulting steady-state density distribution compared with values derived from µCT images. The sensitivity of these parameters to initial conditions was examined by altering the initial homogeneous density value. The refined model parameters selected were then applied to six additional human ulnae to determine their performance across individuals. Model accuracy using the refined parameters was found to be comparable with that found in previous studies of the glenoid and femur, and gross bone structures, such as the cortical shell and medullary canal, were reproduced. The model was found to be insensitive to initial conditions; however, a fair degree of variation was observed between the six specimens. This work represents an important contribution to the study of changes in load transfer in the distal ulna following the implementation of commercial orthopedic implants.
Equation-free analysis of agent-based models and systematic parameter determination
Thomas, Spencer A.; Lloyd, David J. B.; Skeldon, Anne C.
2016-12-01
Agent based models (ABM)s are increasingly used in social science, economics, mathematics, biology and computer science to describe time dependent systems in circumstances where a description in terms of equations is difficult. Yet few tools are currently available for the systematic analysis of ABM behaviour. Numerical continuation and bifurcation analysis is a well-established tool for the study of deterministic systems. Recently, equation-free (EF) methods have been developed to extend numerical continuation techniques to systems where the dynamics are described at a microscopic scale and continuation of a macroscopic property of the system is considered. To date, the practical use of EF methods has been limited by; (1) the over-head of application-specific implementation; (2) the laborious configuration of problem-specific parameters; and (3) large ensemble sizes (potentially) leading to computationally restrictive run-times. In this paper we address these issues with our tool for the EF continuation of stochastic systems, which includes algorithms to systematically configuration problem specific parameters and enhance robustness to noise. Our tool is generic and can be applied to any 'black-box' simulator and determines the essential EF parameters prior to EF analysis. Robustness is significantly improved using our convergence-constraint with a corrector-repeat (C3R) method. This algorithm automatically detects outliers based on the dynamics of the underlying system enabling both an order of magnitude reduction in ensemble size and continuation of systems at much higher levels of noise than classical approaches. We demonstrate our method with application to several ABM models, revealing parameter dependence, bifurcation and stability analysis of these complex systems giving a deep understanding of the dynamical behaviour of the models in a way that is not otherwise easily obtainable. In each case we demonstrate our systematic parameter determination stage for
Use of multilevel modeling for determining optimal parameters of heat supply systems
Stennikov, V. A.; Barakhtenko, E. A.; Sokolov, D. V.
2017-07-01
The problem of finding optimal parameters of a heat-supply system (HSS) is in ensuring the required throughput capacity of a heat network by determining pipeline diameters and characteristics and location of pumping stations. Effective methods for solving this problem, i.e., the method of stepwise optimization based on the concept of dynamic programming and the method of multicircuit optimization, were proposed in the context of the hydraulic circuit theory developed at Melentiev Energy Systems Institute (Siberian Branch, Russian Academy of Sciences). These methods enable us to determine optimal parameters of various types of piping systems due to flexible adaptability of the calculation procedure to intricate nonlinear mathematical models describing features of used equipment items and methods of their construction and operation. The new and most significant results achieved in developing methodological support and software for finding optimal parameters of complex heat supply systems are presented: a new procedure for solving the problem based on multilevel decomposition of a heat network model that makes it possible to proceed from the initial problem to a set of interrelated, less cumbersome subproblems with reduced dimensionality; a new algorithm implementing the method of multicircuit optimization and focused on the calculation of a hierarchical model of a heat supply system; the SOSNA software system for determining optimum parameters of intricate heat-supply systems and implementing the developed methodological foundation. The proposed procedure and algorithm enable us to solve engineering problems of finding the optimal parameters of multicircuit heat supply systems having large (real) dimensionality, and are applied in solving urgent problems related to the optimal development and reconstruction of these systems. The developed methodological foundation and software can be used for designing heat supply systems in the Central and the Admiralty regions in
Determination of the Nonlinearity Parameter in the TNM Model of Structural Recovery
Bari, Rozana; Simon, Sindee
Structural recovery of non-equilibrium glassy materials takes place by evolution of volume and enthalpy as the glass attempts to reach to equilibrium. Structural recovery is nonlinear, nonexponential, and depends on thermal history and the process can be described by phenomenological models of structural recovery, such as the Tool-Narayanaswamy-Moynihan (TNM) and the Kovacs-Aklonis-Hutchinson-Ramos (KAHR) models. The goal of the present work is to analyze methods to determine the nonlinearity parameter x and activation energy Δh/R. The methods to determine x includes the inflectional analysis, time-temperature superposition, and two-step temperature jump methods. The activation energy Δh/R can also be obtained by the first two methods. The TNM model is used to simulate structural recovery data, which are then used to test the accuracy of the methods to determine x and Δh/R, with a particular interest in data obtained after cooling at high rates as can be obtained in the Flash DSC. The nonlinearity parameter x by the inflectional analysis and two-step temperature methods are accurate for exponential recovery. However, for real systems with nonexponential relaxation, methods to determine x are not reliable. The activation energy is well estimated by both the time-temperature superposition and inflectional analysis methods, with the former being slightly better.
Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries
DEFF Research Database (Denmark)
Saeed Madani, Seyed; Schaltz, Erik; Kær, Søren Knudsen
2018-01-01
This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid...... on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs) and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific...... and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact...
Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries
Directory of Open Access Journals (Sweden)
Seyed Saeed Madani
2018-04-01
Full Text Available This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific heat capacity, entropic heat coefficient, and thermal conductivity in order to design suitable thermal management system.
López, Iván; Borzacconi, Liliana
2010-10-01
A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.
Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew
2014-03-01
A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.
Directory of Open Access Journals (Sweden)
Jun Li
2017-01-01
Full Text Available Considering the fact that the original two-parameter LCM model can only be used to investigate rainfall losses during the runoff period because the initial abstraction is not included, the LCM model was redefined as a three-parameter model, including the initial abstraction coefficient λ, the initial abstraction Ia, and the rainfall loss coefficient R. The improved LCM model is superior to the original two-parameter model, which only includes r and R, where r is the initial rainfall loss index and can be calculated with λ using the Soil Conservation Service curve number (SCS-CN method, with r=1/(1+λ. The trial method was used to determine the parameter values of the improved LCM model at the watershed scale for 15 flood events in the Hongde Basin in China. The results show that larger r values are associated with smaller R values, and the parameter R ranges widely from 0.5 to 2.0. In order to improve the practicability of the LCM model, r=0.833 with λ=0.2 is reasonable for simplifying calculation. When the LCM model is applied to arid and semi-arid regions, rainfall without yielding runoff should be deducted from the total rainfall for more accurate estimation of rainfall-runoff.
Black hole algorithm for determining model parameter in self-potential data
Sungkono; Warnana, Dwa Desa
2018-01-01
Analysis of self-potential (SP) data is increasingly popular in geophysical method due to its relevance in many cases. However, the inversion of SP data is often highly nonlinear. Consequently, local search algorithms commonly based on gradient approaches have often failed to find the global optimum solution in nonlinear problems. Black hole algorithm (BHA) was proposed as a solution to such problems. As the name suggests, the algorithm was constructed based on the black hole phenomena. This paper investigates the application of BHA to solve inversions of field and synthetic self-potential (SP) data. The inversion results show that BHA accurately determines model parameters and model uncertainty. This indicates that BHA is highly potential as an innovative approach for SP data inversion.
Cosmological-model-parameter determination from satellite-acquired type Ia and IIP Supernova Data
International Nuclear Information System (INIS)
Podariu, Silviu; Nugent, Peter; Ratra, Bharat
2000-01-01
We examine the constraints that satellite-acquired Type Ia and IIP supernova apparent magnitude versus redshift data will place on cosmological model parameters in models with and without a constant or time-variable cosmological constant lambda. High-quality data which could be acquired in the near future will result in tight constraints on these parameters. For example, if all other parameters of a spatially-flat model with a constant lambda are known, the supernova data should constrain the non-relativistic matter density parameter omega to better than 1 (2, 0.5) at 1 sigma with neutral (worst case, best case) assumptions about data quality
Determination of CME 3D parameters based on a new full ice-cream cone model
Na, Hyeonock; Moon, Yong-Jae
2017-08-01
In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (ρmean=Mtotal/Vcone) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. From the power-law relationship between CME mean density and its height, we estimate CME mean densities at 20 solar radii (Rs). We will compare the CME densities at 20 Rs with their corresponding ICME densities.
Inverse modeling for the determination of hydrogeological parameters of a two-phase system
International Nuclear Information System (INIS)
Finsterle, S.
1993-02-01
Investigations related to the disposal of radioactive wastes in Switzerland consider formations containing natural gas as potential rocks for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas-related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that related field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows identification of key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gas test performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., refs
Inverse modeling for the determination of hydrogeological parameters of a two-phase system
International Nuclear Information System (INIS)
Finsterle, S.
1993-01-01
Investigations related to the disposal of radioactive wastes in Switzerland are dealing with formations containing natural gas as potential host rock for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that relates field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows to identify key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gastest performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., 100 refs
Determining the Walker exponent and developing a modified Smith-Watson-Topper parameter model
Energy Technology Data Exchange (ETDEWEB)
Lv, Zhiqiang; Huang, Hong Zhong; Wang, Hai Kun; Gao, Huiying; Zuo, Fang Jun [University of Electronic Science and Technology of China, Chengdu (China)
2016-03-15
Mean stress effects significantly influence the fatigue life of components. In general, tensile mean stresses are known to reduce the fatigue life of components, whereas compressive mean stresses are known to increase it. To date, various methods that account for mean stress effects have been studied. In this research, considering the high accuracy of mean stress correction and the difficulty in obtaining the material parameter of the Walker method, a practical method is proposed to describe the material parameter of this method. The test data of various materials are then used to verify the proposed practical method. Furthermore, by applying the Walker material parameter and the Smith-Watson-Topper (SWT) parameter, a modified strain-life model is developed to consider sensitivity to mean stress of materials. In addition, three sets of experimental fatigue data from super alloy GH4133, aluminum alloy 7075-T651, and carbon steel are used to estimate the accuracy of the proposed model. A comparison is also made between the SWT parameter method and the proposed strainlife model. The proposed strain-life model provides more accurate life prediction results than the SWT parameter method.
Effect of caffeine intake on critical power model parameters determined on a cycle ergometer
Directory of Open Access Journals (Sweden)
Marcus Vinicius Machado
2010-01-01
Full Text Available The aim of this study was to evaluate the effect of caffeine intake on critical power model parameters determined on a cycle ergometer. Eight male subjects participated in this study. A double-blind protocol consisting of the intake of pure caffeine (6 mg/kg or placebo (maltodextrin 60 min before testing was used. Subjects were submitted to four constant-load tests on a cycle ergometer. These tests were conducted randomly in the caffeine and placebo groups [checar] at intensities of 80, 90, 100 and 110% maximum power at a rate of 70 rpm until exhaustion to determine the critical power. As a criterion for stopping the test was adopted any rate fall without recovery by more than five seconds. The critical power and anaerobic work capacity were obtained by nonlinear regression and fitting of the curve to a hyperbolic power-time model. The Shapiro-Wilk test and paired Student t-test were used for statistical analysis. No significant differences in critical power were observed between the caffeine and placebo groups (192.9 ± 31.3 vs 197.7 ± 29.4 W, respectively. The anaerobic work capacity was significantly higher in the caffeine group (20.1 ± 5.2 vs 16.3 ± 4.2 W, p< 0.01. A high association (r2 was observed between the caffeine and placebo conditions (0.98 ± 0.02 and 0.99 ± 0.0, respectively. We conclude that caffeine intake did not improve critical power performance but increased anaerobic work capacity by influencing performance at loads of higher intensity and shorter duration.
Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart
2016-04-01
Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.
DeSmitt, Holly J; Domire, Zachary J
2016-12-01
Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.
Pozzobon, Victor; Perre, Patrick
2018-01-21
This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Kornienko, V.T.
1991-01-01
A method is suggested to estimate microstructural non-uniformity of deformation in metals by means of modelling. This method includes measurement of deformation in metals by small-dimensioned dividing grid cells as well as calculation of parameters by means of model representation of microdeformation distribution. It is shown that the method of modelling gives an opportunity to objectively estimate deformation non-uniformity in metals irrespective of the selected dimension of a dividing grid cells. New structural characteristics: base and wave of variations, reflecting a degree of dividing or uniting grains in metals according to the non-uniformity of deformation are introduced
Hamdaoui, Oualid; Naffrechoux, Emmanuel
2007-08-17
The adsorption equilibrium isotherms of five phenolic compounds from aqueous solutions onto granular activated carbon (GAC) were studied and modeled. Phenol (Ph), 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP), and 2,4,6-trichlorophenol (TCP) were chosen for the adsorption tests. To predict the adsorption isotherms and to determine the characteristic parameters for process design, seven isotherm models: Langmuir (five linear forms), Freundlich, Elovich, Temkin, Fowler-Guggenheim, Kiselev, and Hill-de Boer models were applied to experimental data. The results reveal that the adsorption isotherm models fitted the data in the order: Fowler-Guggenheim>Hill-de Boer>Temkin>Freundlich>Kiselev>Langmuir isotherms. Adsorption isotherms modeling shows that the interaction of phenolic compounds with activated carbon surface is localized monolayer adsorption, that is adsorbed molecules are adsorbed at definite, localized sites. Each site can accommodate only one molecule. The interaction among adsorbed molecules is repulsive and there is no association between them, adsorption is carried out on energetically different sites and is an exothermic process. Uptake of phenols increases in the order Ph<2-CP<4-CP
Study of vector boson decay and determination of the Standard Model parameters at hadronic colliders
International Nuclear Information System (INIS)
Amidei, D.
1991-01-01
The power of the detectors and the datasets at hadronic colliders begins to allow measurement of the electroweak parameters with a precision that confronts the perturbative corrections to the theory. Recent measurements of M z , M w , and sin θ w by CDF and UA2 are reviewed, with some emphasis on how experimental precision is achieved, and some discussion of the import for the specifications of the Standard Model. 14 refs., 10 figs., 4 tabs
Directory of Open Access Journals (Sweden)
Serkan Toros
Full Text Available Abstract In recent years, the studies on the enhancement of the prediction capability of the sheet metal forming simulations have increased remarkably. Among the used models in the finite element simulations, the yield criteria and hardening models have a great importance for the prediction of the formability and springback. The required model parameters are determined by using the several test results, i.e. tensile, compression, biaxial stretching tests (bulge test and cyclic tests (tension-compression. In this study, the Yoshida-Uemori (combined isotropic and kinematic hardening model is used to determine the performance of the springback prediction. The model parameters are determined by the optimization processes of the cyclic test by finite element simulations. However, in the study besides the cyclic tests, the model parameters are also evaluated by the optimization process of both cyclic and V-die bending simulations. The springback angle predictions with the model parameters obtained by the optimization of both cyclic and V-die bending simulations are found to mimic the experimental results in a better way than those obtained from only cyclic tests. However, the cyclic simulation results are found to be close enough to the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)
Modelling and determination of the kinetic parameters of the pyrolysis of Dichrostachys cinerea
International Nuclear Information System (INIS)
Abreu Naranjo, Reinier; Romero Romero, Osvaldo
2011-01-01
In the present study were analyzed biomass samples of Dichrostachys cinerea, commonly known in Cuba as marabou, by thermogravimetric method at various heating rates of devolatilization in nitrogen atmosphere at 5, 10 and 20 C min-1. On the kinetic analysis was used a mechanism of three independent reactions of order 1, generally attributed to three chief components of this kind of lignocellulose materials, hemicelluloses, cellulose and lignin. The values of activation energy, pre-exponential factor and contribution factor were similar to those reported in previous research for this type of biomass. The proposed model predicts with acceptable correlation the experimental and calculated curves of the decomposition of D. cinerea, with a deviation factor less than 5% for the temperature range studied. On the other hand, the kinetic parameters of the thermal decomposition coupled at equations of transport phenomena are essential to optimize the design and use of biomass thermochemical conversion processes, hence the importance of the research. (author)
Determination of rock fracture parameters from crack models for failure in compression
International Nuclear Information System (INIS)
Kemeny, J.M.; Cook, N.G.W.
1987-01-01
Micromechanical models for axial splitting and for shear faulting are used to investigate parameters associated with rock fracture under compressive stresses. The fracture energies to create splitting fractures and shear faults are calculated using laboratory triaxial data. These energies are compared with the fracture energies for the propagation of microcracks that coalesce to form the larger scale fractures. It is found that for Westerly granite, the energies to create splitting fractures and shear faults are about three orders of magnitude greater than the energy needed to drive the tensile microcracks, due to the large amount of subsidiary crack surface area created in forming the larger scale fractures. A similar scale effect can be expected when extrapolating the laboratory results to field scale problems
Directory of Open Access Journals (Sweden)
Felipe Barbosa Mangueira
2012-12-01
Full Text Available Models based on the continuous damage theory present good responses in representing the nonlinear behavior of reinforced concrete structures with loss of strength and stiffness of the material. However, damage theory is rarely employed in the analysis of masonry structures and numerical simulations are currently performed mostly by Finite Element Method formulations. A computational program was designed to determine the numerical parameters of a damage model of the physical properties of masonry components, solid clay brick and mortar. The model was formulated based on the composition of tensile and compressive surface strengths in the plane stress state. The numerical parameters, the corresponding curves of the activation surfaces and the evolution of the surfaces are presented. The results were fed into the computational program based on the Boundary Element Method (BEM for the simulation of masonry walls, and two types of masonry were simulated. The results confirm the good performance of the model and the program based on the BEM.
International Nuclear Information System (INIS)
Kim, Sang Tae; Jang, Seong Soo
2001-01-01
The static and fatigue tests have been carried out to verify the validity of a generalized residual strength degradation model. And a new method of parameter determination in the model is verified experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron. It is shown that the correlation between the experimental results and the theoretical prediction on the statistical distribution of fatigue life by using the proposed method is very reasonable. Furthermore, it is found that the correlation between the theoretical prediction and the experimental results of fatigue life in case of tension-tension fatigue data in composite material appears to be reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than maximum likelihood method and minimization technique
International Nuclear Information System (INIS)
Araujo Paiva, J.A. de.
1981-03-01
The development of a simplified experimental model for investigation of nuclear techniques to determine the solid phase parameters in gas-solid flows is presented. A method for the measurement of the solid phase residence time inside a chemical reactor of the type utilised in the cracking process of catalytic fluids is described. An appropriate radioactive labelling technique of the solid phase and the construction of an eletronic timing circuit were the principal stages in the definition of measurement technique. (Author) [pt
Directory of Open Access Journals (Sweden)
O. V. Fomin
2013-10-01
Full Text Available Purpose. Presentation of features and example of the use of the offered determination algorithm of optimum geometrical parameters for the components of freight cars on the basis of the generalized mathematical models, which is realized using computer. Methodology. The developed approach to search for optimal geometrical parameters can be described as the determination of optimal decision of the selected set of possible variants. Findings. The presented application example of the offered algorithm proved its operation capacity and efficiency of use. Originality. The determination procedure of optimal geometrical parameters for freight car components on the basis of the generalized mathematical models was formalized in the paper. Practical value. Practical introduction of the research results for universal open cars allows one to reduce container of their design and accordingly to increase the carrying capacity almost by100 kg with the improvement of strength characteristics. Taking into account the mass of their park this will provide a considerable economic effect when producing and operating. The offered approach is oriented to the distribution of the software packages (for example Microsoft Excel, which are used by technical services of the most enterprises, and does not require additional capital investments (acquisitions of the specialized programs and proper technical staff training. This proves the correctness of the research direction. The offered algorithm can be used for the solution of other optimization tasks on the basis of the generalized mathematical models.
International Nuclear Information System (INIS)
Pahle, T.; Koehler, R.; Souffrant, W.B.; Gebhardt, G.; Matkowitz, R.; Hartig, W.
1983-01-01
Two female pigs (25 kg live weight) received a continuous infusion of 15 N-glycine and 15 N-lysine solutions, resp., for 45 h and for further 72 h unlabelled amino acid solutions. The main protein and energy sources, however, were administered orally. The time course of the 15 N level and the differential urinary N excretion were determined from blood urea and urine. For the demonstration of synthesis and decay rates of the total body protein a mathematical model has been developed. The suitability of 15 N-lysine and 15 N-glycine for the determination of N metabolism parameters is discussed
Energy Technology Data Exchange (ETDEWEB)
Pahle, T; Koehler, R; Souffrant, W B; Gebhardt, G [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin; Matkowitz, R; Hartig, W [Bezirkskrankenhaus Leipzig (German Democratic Republic). Chirurgische Klinik
1983-01-01
Two female pigs (25 kg live weight) received a continuous infusion of /sup 15/N-glycine and /sup 15/N-lysine solutions, resp., for 45 h and for further 72 h unlabelled amino acid solutions. The main protein and energy sources, however, were administered orally. The time course of the /sup 15/N level and the differential urinary N excretion were determined from blood urea and urine. For the demonstration of synthesis and decay rates of the total body protein a mathematical model has been developed. The suitability of /sup 15/N-lysine and /sup 15/N-glycine for the determination of N metabolism parameters is discussed.
Energy Technology Data Exchange (ETDEWEB)
Steglich, D. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung
1999-07-01
For the determination of material parameters in micromechanical damage models the mechanical behaviour of representative volume elements of a two-phase material has been investigated and the phase morphology quantified by microstructural analysis. The material parameters have been successfully correlated to microstructural quantities and a prediction of the damage behaviour of structures is performed. Special emphasis is given to the model of Gurson, Tvergaard and Needleman, which has been used to predict the macroscopic behaviour of smooth tensile test specimens and the fracture resistance curves of bending specimens for two different materials, a nodular cast iron and a particle reinforced aluminium compound. (orig.) [German] Zur Bestimmung der Materialparameter in mikromechanischen Schaedigungsmodellen werden repraesentative Strukturelemente eines Werkstoffes untersucht und die Morphologie eines zweiphasigen Gefueges durch quantitative Gefuegeanalyse beschrieben. Mit dieser Strategie gelingen eine Identifikation der im Modell enthaltenen Parameter sowie die Vorhersage des Versagensverhaltens von Strukturen. Als mikromechanisches Materialmodell wird hauptsaechlich das Modell von Gurson, Tvergaard und Needleman verwendet. Seine Anwendbarkeit zur Vorhersage des globalen Verhaltens von glatten Zugproben und zur Simulation von Risswiderstandskurven wird bei zwei verschiedenen Werkstoffen gezeigt, einen Gusseisen und einem Aluminium-Verbundwerkstoff. (orig.)
Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.
2018-03-01
Context. Standard spectroscopic analyses of variable stars are based on hydrostatic 1D model atmospheres. This quasi-static approach has not been theoretically validated. Aim. We aim at investigating the validity of the quasi-static approximation for Cepheid variables. We focus on the spectroscopic determination of the effective temperature Teff, surface gravity log g, microturbulent velocity ξt, and a generic metal abundance log A, here taken as iron. Methods: We calculated a grid of 1D hydrostatic plane-parallel models covering the ranges in effective temperature and gravity that are encountered during the evolution of a 2D time-dependent envelope model of a Cepheid computed with the radiation-hydrodynamics code CO5BOLD. We performed 1D spectral syntheses for artificial iron lines in local thermodynamic equilibrium by varying the microturbulent velocity and abundance. We fit the resulting equivalent widths to corresponding values obtained from our dynamical model for 150 instances in time, covering six pulsational cycles. In addition, we considered 99 instances during the initial non-pulsating stage of the temporal evolution of the 2D model. In the most general case, we treated Teff, log g, ξt, and log A as free parameters, and in two more limited cases, we fixed Teff and log g by independent constraints. We argue analytically that our approach of fitting equivalent widths is closely related to current standard procedures focusing on line-by-line abundances. Results: For the four-parametric case, the stellar parameters are typically underestimated and exhibit a bias in the iron abundance of ≈-0.2 dex. To avoid biases of this type, it is favorable to restrict the spectroscopic analysis to photometric phases ϕph ≈ 0.3…0.65 using additional information to fix the effective temperature and surface gravity. Conclusions: Hydrostatic 1D model atmospheres can provide unbiased estimates of stellar parameters and abundances of Cepheid variables for particular
International Nuclear Information System (INIS)
ZERBO Issa
2010-01-01
A bibliographic study on the techniques of characterization of silicon solar cell, diodes, massifs and silicon wafer are presented. The influence of the modulation frequency and recombination in volume and in surface phenomena of on the profiles of carriers' densities, photocurrent and photovoltage has been put in evidence. The study of surface recombination velocities permitted to show that the bi facial silicon solar cell of Back Surface Field type behaves like an ohmic contacts solar cell for modulation frequencies above 40 khz. pplicability in frequency dynamic regime in the frequency range [0 - 40 khz] of three techniques of steady state recombination parameters determination is shown. A technique of diffusion length determination, in the range of (200 Hz - 40 khz] is proposed. It rests on the measurement of the short circuit current phase that is compared with the theoretical curve of short circuit current phase. The intersection of the experimental short circuit current phase and the theoretical curve of short circuit current phase permits to get the minority carriers effective diffusion length. An equivalent electric model of a solar cell in frequency dynamic regime is proposed. A study in modelling of the bi facial solar cell shunt resistance and space charge zone capacity is led from a determination method of these parameters proposed in steady state. (Author [fr
Tosun, Ismail
2012-03-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.
Directory of Open Access Journals (Sweden)
İsmail Tosun
2012-03-01
Full Text Available The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R and four three-parameter (Redlich-Peterson (R-P, Sips, Toth and Khan isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2 of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°, enthalpy (∆H° and entropy (∆S° of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.
Kayumov, R. A.; Muhamedova, I. Z.; Tazyukov, B. F.; Shakirzjanov, F. R.
2018-03-01
In this paper, based on the analysis of some experimental data, a study and selection of hereditary models of deformation of reinforced polymeric composite materials, such as organic plastic, carbon plastic and a matrix of film-fabric composite, was pursued. On the basis of an analysis of a series of experiments it has been established that organo-plastic samples behave like viscoelastic bodies. It is shown that for sufficiently large load levels, the behavior of the material in question should be described by the relations of the nonlinear theory of heredity. An attempt to describe the process of deformation by means of linear relations of the theory of heredity leads to large discrepancies between the experimental and calculated deformation values. The use of the theory of accumulation of micro-damages leads to much better description of the experimental results. With the help of the hierarchical approach, a good approximation of the experimental values was successful only in the first three sections of loading.
Fast determination of plasma parameters
International Nuclear Information System (INIS)
Wijnands, T.J.; Parlange, F.; Joffrin, E.
1995-01-01
Fast analysis of diagnostic signals of a tokamak discharge is demonstrated by using 4 fundamentally different techniques. A comparison between Function Parametrization (FP), Canonical Correlation Analysis (CCA) and a particular Neural Network (NN) configuration known as the Multi Layer Perceptron (MLP) is carried out, thereby taking a unique linear model based on a Singular Value Decomposition (SVD) as a reference. The various techniques provide all functional representations of characteristic plasma parameters in terms of the values of the measurements and are based on an analysis of a large, experimentally achieved database. A brief mathematical description of the various techniques is given, followed by two particular applications to Tore Supra diagnostic data. The first problem is concerned with the identification of the plasma boundary parameters using the poloidal field and differential poloidal flux measurements. A second application involves the interpretation of line integrated data from the multichannel interfero-polarimeter to obtain the central value of the safety factor. (author) 4 refs.; 3 figs
Directory of Open Access Journals (Sweden)
Frank Hubenthal
2012-07-01
Full Text Available The morphology of small gold particles prepared by Volmer–Weber growth on sapphire substrates have been investigated by two different characterization techniques. First, by non-extensive atomic force microscopy (AFM in combination with optical spectroscopy and modeling of the optical properties using a theoretical model, recently developed in our group. Second, by extensive transmission electron microscopy (TEM. Comparing the results obtained with both techniques demonstrate that for small gold nanoparticles within the quasistatic limit, the morphological properties can be precisely determined by an appropriate theoretical modeling of the optical properties in combination with simple AFM measurements. The apparent mean axial ratio of the nanoparticles, i.e., the axial ratio that corresponds to the center frequency of the ensemble plasmon resonance, is obtained easily from the extinction spectrum. The mean size is determined by the nanoparticle number density and the amount of deposited material, measured by AFM and a quartz micro balance, respectively. To extract the most probable axial ratio of the nanoparticle ensemble, i.e., the axial ratio that corresponds to the most probable nanoparticle size in the ensemble, we apply the new theoretical model, which allows to extract the functional dependence of the nanoparticle shape on its size. The morphological parameters obtained with this procedure will be afterwards compared to extensive TEM measurements. The results obtained with both techniques yield excellent agreement. For example, the lateral dimensions of the nanoparticles after deposition of 15.2 × 1015 atoms/cm2 of gold has been compared. While a mean lateral diameter of (13 ± 2 nm has been extracted from AFM, optical spectroscopy and modeling, a value of (12 ± 2 nm is derived from TEM. The consistency of the results demonstrate the precision of our new model. Moreover, since our theoretical model allows to extract the functional
Directory of Open Access Journals (Sweden)
Križan Peter
2018-01-01
Full Text Available The main aim of this paper is to present the design of experiment (DOE and evaluation methodology for this experimental plan in order to determine the parameters effect of biomass densification process on final solid biofuels quality. One of the recovery possibilities for waste biomass raw materials is production of solid biofuels. Using a variety combination of influencing variables can be improve the final quality of solid biofuels. Raw biomass material variables influence, especially (type of raw material, particle size, moisture content, compression pressure and compression temperature can be recognized during the production of solid biofuels. Their effect can be seen through the quality indicators; especially mentioned variables significantly influence the mechanical quality indicators of solid biofuels. In this experimental research authors would like to investigate properties and behaviour of wood raw waste biomass during densification. This contribution discusses the analysis and design of experimental process, its individual steps and their subsequent DOE leading to the development of a mathematical model that will describe this process. This paper also presents the research findings regarding the effect of influencing variables on final density of solid biofuels during densification. Aim of the experimental process is to determine the mutual interaction between solid biofuels density and influencing variables during densification. Effect of compression pressure, compression temperature, moisture content and particle size on solid biofuels density from wood sawdust was determined.
Directory of Open Access Journals (Sweden)
Gholamreza Raisali
2008-06-01
Full Text Available Introduction: The use of low energy isotopes such as 103 Pd in brachytherapy for the treatment of cancers such as prostate, eye, head, neck, breast and cervix is increasing. In this regard, different models of Pd- 103 seeds have been designed and manufactured at the Agricultural, Medical and Industrial Research School (AMIRS of Atomic Energy Organization of Iran. In this research, the dosimetric parameters of the second model of Pd-103 seed manufactured at AMIRS have been calculated and measured. Materials and Methods: The dosimetric parameters of the second Pd-103 seed manufactured at AMIRS were determined according to TG-43U1 protocol using Monte Carlo calculations (MCNP4C computer code and measurements performed using TLD-GR200A dosimeters in a Perspex phantom. The parameters include dose rate constant, geometry function, radial dose function, anisotropy function, anisotropy factor and anisotropy constant. Results: It was found that by using MCNP4C code the calculated dose rate constant in water and Perspex was 0.706±0.001 and 0.501±0.001 cGyh -1 U -1 , respectively. Using the calculated geometry function, the radial dose function and the anisotropy function were determined by experimental and theoretical methods in water and Perspex phantom. Also, the calculated value of anisotropy constant in water was equal to 0.88. Discussion and Conclusion: A discrepancy of less than 10% between the calculated and the measured values indicates a reasonable agreement between the simulation and the measurement method. Also, the dosimetric parameters of this seed have been compared to the dosimetric parameters of the first Pd-103 seed manufactured at AMIRS and some other seeds. The obtained results indicate that the seeds manufactured at AMIRS
Directory of Open Access Journals (Sweden)
Dariusz Zdebik
2015-01-01
Full Text Available This paper presents a method for calibration of activated sludge model with the use of computer program BioWin. Computer scheme has been developed on the basis of waste water treatment plant operating in the sequential – flow technology. For calibration of the activated sludge model data of influent and treated effluent from the existing object were used. As a result of conducted analysis was a change in biokinetic model and kinetic parameters parameters of wastewater treatment facilities. The presented method of study of the selected parameters impact on the activated sludge biokinetic model (including autotrophs maximum growth rate, the share of organic slurry in suspension general operational, efficiency secondary settling tanks can be used for conducting simulation studies of other treatment plants.
Determining Spacecraft Reaction Wheel Friction Parameters
Sarani, Siamak
2009-01-01
Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.
Energy Technology Data Exchange (ETDEWEB)
Raynal, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-06-15
A general description of beams of polarized particles in nuclear reactions is studied; the various choices necessary to define the polarization parameters are discussed with regard to their consequences. The frequent occurrence of symmetry plane yields a set of relations among these parameters. The range of these parameters is studied in particular for a beam of particles of spin 1 and with a symmetry plane. Nuclear reactions involving two bodies are described in terms of the helicity formalism. With the use of the adopted set of polarization parameters, the polarization of the final state is studied for a given polarization in the initial state. An optical model for deuterons may consist of a scalar term, an L.S potential and tensor potentials built with the distance between the deuteron and the nucleus, its angular momentum or its relative momentum. Calculations have been made with the first two tensor potentials. Many authors have calculated a potential for deuterons starting from the nucleon-nucleus potential. These calculations are redone taking into account both the S and D waves of the deuteron. The various terms of the potential have been calculated with a set of different intrinsic wave functions. The use of a potential not limited to scalar form yields good fits for cross-sections with nuclear radii which are greater than those necessary with a purely central potential. The experimental results obtained at Saclay for the polarization of deuterons elastically scattered by Ca are not compatible with the existence of an important tensor potential; they can be accounted for by an L.S coupling potential independent of the central potential but with very small radii. (author) [French] La description de faisceaux do particules polarisees dans les reactions nucleaires est etudiee de facon generale; les choix necessaires pour definir les parametres de polarisation sont discutes en fonction de leurs consequences. L'existence tres frequente d'un plan de symetrie
International Nuclear Information System (INIS)
Pfeifle, T.W.; Mellegard, K.D.; Munson, D.E.
1992-10-01
The modified Munson-Dawson (M-D) constitutive model that describes the creep behavior of salt will be used in performance assessment calculations to assess compliance of the Waste Isolation Pilot Plant (WIPP) facility with requirements governing the disposal of nuclear waste. One of these standards requires that the uncertainty of future states of the system, material model parameters, and data be addressed in the performance assessment models. This paper presents a method in which measurement uncertainty and the inherent variability of the material are characterized by treating the M-D model parameters as random variables. The random variables can be described by appropriate probability distribution functions which then can be used in Monte Carlo or structural reliability analyses. Estimates of three random variables in the M-D model were obtained by fitting a scalar form of the model to triaxial compression creep data generated from tests of WIPP salt. Candidate probability distribution functions for each of the variables were then fitted to the estimates and their relative goodness-of-fit tested using the Kolmogorov-Smirnov statistic. A sophisticated statistical software package obtained from BMDP Statistical Software, Inc. was used in the M-D model fitting. A separate software package, STATGRAPHICS, was used in fitting the candidate probability distribution functions to estimates of the variables. Skewed distributions, i.e., lognormal and Weibull, were found to be appropriate for the random variables analyzed
Determination of electrodebiles parameters of quark b
International Nuclear Information System (INIS)
Chamizo Llatas, M.
1995-01-01
In the present work we analyze the process e e→ bb with the data collected during 1991 and 1992 by the Z,3 detector situated in the LEP e es torage-ring (CERN). From the measurements of the cross-sections and the charge asymmetry we determine the parameters of the b quark in the framework of the Standard Model. Finally, we parametrize the possible deviations from the model an obtain upper and lower. limits for the mass of the t quark. (Author) 23 refs
Gholamreza Raisali; Mahdi Sadeghi; Vahideh Ataeinia; Arjang Shahvar; Maryam Ghasemi Ghonchehnazi
2008-01-01
Introduction: The use of low energy isotopes such as 103 Pd in brachytherapy for the treatment of cancers such as prostate, eye, head, neck, breast and cervix is increasing. In this regard, different models of Pd- 103 seeds have been designed and manufactured at the Agricultural, Medical and Industrial Research School (AMIRS) of Atomic Energy Organization of Iran. In this research, the dosimetric parameters of the second model of Pd-103 seed manufactured at AMIRS have been ca...
Directory of Open Access Journals (Sweden)
B. Likozar
2012-09-01
Full Text Available Mathematical models for a batch process were developed to predict concentration distributions for an active ingredient (vancomycin adsorption on a representative hydrophobic-molecule adsorbent, using differently diluted crude fermentation broth with cells as the feedstock. The kinetic parameters were estimated using the maximization of the coefficient of determination by a heuristic algorithm. The parameters were estimated for each fermentation broth concentration using four concentration distributions at initial vancomycin concentrations of 4.96, 1.17, 2.78, and 5.54 g l−¹. In sequence, the models and their parameters were validated for fermentation broth concentrations of 0, 20, 50, and 100% (v/v by calculating the coefficient of determination for each concentration distribution at the corresponding initial concentration. The applicability of the validated models for process optimization was investigated by using the models as process simulators to optimize the two process efficiencies.
International Nuclear Information System (INIS)
Romdhani, Ibtissem
2014-01-01
As part of developing its nuclear infrastructure base, the National Science and Technology Center Nuclear (CNSTN) examines the technical feasibility of setting up a new installation of subcritical assembly. Our study focuses on determining the neutron parameters of a nuclear zero power reactor based on Monte Carlo simulation MCNP. The objective of the simulation is to model the installation, determine the effective multiplication factor, and spatial distribution of neutron flux.
Energy Technology Data Exchange (ETDEWEB)
Todorov, T
1993-05-01
This thesis describes the determination of the electroweak parameters from the measurements of the total hadronic cross-section by the DELPHI experiment at LEP-I. The analysed data was taken in the years 1991 and 1992; a previous analysis of the data taken in 1990 is included in the final fits. The first part of the thesis describes the interest of the measurement of the Z{sup 0} resonance parameters in the framework of the Standard Model as well as their implications for alternative models. The Standard Model predictions are described in some detail, and their precision is estimated. Then follows a brief description of the LEP collider, of the measurement of the collision energy, and of the experimental setup. A chapter is devoted to the description of the luminosity measurement, essential for the determination of total cross-sections. The measurement of the hadronic cross-section (event selection, study of backgrounds, study of sources of systematic uncertainties) is described in detail in the next chapter. Then follows a description of the method of the extraction of the resonance parameters, and a discussion of the uncertainties in their determination. The values obtained are interpreted in the framework of the Standard Model, as well as in the framework of some more general theories. Finally, the event generator for hadron production in two-photon collisions is described in the appendix. (author). 69 refs., 51 figs., 9 tabs., 1 ann.
Directory of Open Access Journals (Sweden)
G. Baroni
2010-02-01
Full Text Available Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still debated. However, we may wonder how the uncertainty in soil hydraulic parameters relates to the uncertainty of the selected modelling approach. We performed an intensive monitoring study during the cropping season of a 10 ha maize field in Northern Italy. The data were used to: i compare different methods for determining soil hydraulic parameters and ii evaluate the effect of the uncertainty in these parameters on different variables (i.e. evapotranspiration, average water content in the root zone, flux at the bottom boundary of the root zone simulated by two hydrological models of different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. We employed five direct and indirect methods to determine soil hydraulic parameters for each horizon of the experimental profile. Two methods were based on a parameter optimization of: a laboratory measured retention and hydraulic conductivity data and b field measured retention and hydraulic conductivity data. The remaining three methods were based on the application of widely used Pedo-Transfer Functions: c Rawls and Brakensiek, d HYPRES, and e ROSETTA. Simulations were performed using meteorological, irrigation and crop data measured at the experimental site during the period June – October 2006. Results showed a wide range of soil hydraulic parameter values generated with the different methods, especially for the saturated hydraulic conductivity K_{sat} and the shape parameter α of the van Genuchten curve. This is reflected in a variability of
Determination of complex microcalorimeter parameters with impedance measurements
International Nuclear Information System (INIS)
Saab, T.; Bandler, S.R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Lindeman, M.A.; Porter, F.S.; Sadleir, J.
2006-01-01
The proper understanding and modeling of a microcalorimeter's response requires accurate knowledge of a handful of parameters, such as C, G, α. While a few of these parameters are directly determined from the IV characteristics, some others, notoriously the heat capacity (C) and α, appear in degenerate combinations in most measurable quantities. The consideration of a complex microcalorimeter leads to an added ambiguity in the determination of the parameters. In general, the dependence of the microcalorimeter's complex impedance on these various parameters varies with frequency. This dependence allows us to determine individual parameters by fitting the prediction of the microcalorimeter model to impedance data. In this paper we describe efforts at characterizing the Goddard X-ray microcalorimeters. With the parameters determined by this method, we compare the pulse shape and noise spectra predictions to data taken with the same devices
Integral data analysis for resonance parameters determination
International Nuclear Information System (INIS)
Larson, N.M.; Leal, L.C.; Derrien, H.
1997-09-01
Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications
International Nuclear Information System (INIS)
Vallejos, G.; Ponce Caballero, C.; Quintal Franco, C.; Mendez Novelo, R.
2009-01-01
The main objective of this study was to assess the portions of plug flow and death zones using tracer tests by empiric models as Wolf-Resnick and Dispersion in evaluate bed-packed reactors with horizontal subsurface flow, as a model of a constructed wetland. In order to assess the hydraulic behavior of systems such as packed-bed reactors and constructed wetlands both of subsurface flow, it is necessary to study and evaluate them modifying some variables while others remain constant. As well it is important to use mathematical models to describe, as precise as possible, the different phenomenon inside the systems, in such a way that these models bring information in an integral way to predict the behavior of the systems. (Author)
Czech Academy of Sciences Publication Activity Database
Zlámal, P.; Jiroušek, Ondřej; Kytýř, Daniel; Doktor, Tomáš
2013-01-01
Roč. 58, č. 2 (2013), s. 157-171 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : elasto-visco-plastic-damage model * FEM * nanoindentation * trabecular bone Subject RIV: FI - Traumatology, Orthopedics http://journal.it.cas.cz/index.php?stranka= contents
White, M J; Parker, M A
2005-01-01
We address the problem of mass measurements of supersymmetric particles at the Large Hadron Collider, using the ATLAS detector as an example. By using Markov Chain sampling techniques to combine standard measurements of kinematic edges in the invariant mass distributions of decay products with a measurement of a missing $p_T$ cross-section, we show that the precision of mass measurements at the LHC can be dramatically improved, even when we do not assume that we have measured the kinematic endpoints precisely, or that we have identified exactly which particles are involved in the decay chain causing the endpoints. The generality of the technique is demonstrated in a preliminary investigation of a non-universal SUGRA model, in which we relax the requirements of mSUGRA by breaking the degeneracy of the GUT scale gaugino masses. The model studied is compatible with the WMAP limits on dark matter relic density.
Directory of Open Access Journals (Sweden)
Jiahua Wang
2018-01-01
Full Text Available The traditional Chinese food Fuzhu is a dried soy protein-lipid film formed during the heating of soymilk. This study investigates whether a simple and accurate model can nondestructively determine the quality parameters of intact Fuzhu. The diffused reflectance spectra (1000–2499 nm of intact Fuzhu were collected by a commercial near-infrared (NIR spectrometer. Among various preprocessing methods, the derivative by wavelet transform method optimally enhanced the characteristic signals of Fuzhu spectra. Uninformative variable elimination based on Monte Carlo (MC-UVE, random frog (RF, and competitive adaptive reweighted sampling (CARS were proposed to select key variables for partial least squares (PLS calculation. The strong performance of the developed models is attributed to the high ratios of prediction to deviation values (3.32–3.51 for protein, 3.62–3.89 for lipid, and 4.27–4.55 for moisture. The prediction set was used to assess the performances of the best models of protein (CARS-PLS, lipid (RF-PLS, and moisture (CARS-PLS, which resulted in greater coefficients of determination of 0.958, 0.966, and 0.976, respectively, and lower root mean square errors of prediction of 0.656%, 0.442%, and 0.123%, respectively. Combined with chemometrics methods, the NIR technique is promising for simultaneous testing of quality parameters of intact Fuzhu.
Photovoltaic module parameters acquisition model
Energy Technology Data Exchange (ETDEWEB)
Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk
2014-09-01
Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.
Photovoltaic module parameters acquisition model
International Nuclear Information System (INIS)
Cibira, Gabriel; Koščová, Marcela
2014-01-01
Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model
Real-Time Determination of Solar Cell Parameters
Hassan Ali, Mohamed; Rabhi, Abdelhamid; Haddad, Sofiane; El Hajjaji, Ahmed
2017-11-01
The extraction of solar cell parameters is a difficult task but is an important step in the assessment procedure of solar cells and panels. This work presents numerical methods for determining these parameters and compares their performances under different solar irradiances when they are implemented in an equivalent electrical circuit model with one or two diodes. To obtain a fast convergence rate in real-time applications, the fractional-order Darwinian particle swarm optimization (FODPSO) method is used through experimental data collected from a platform of photovoltaic (PV) energy installed near the modeling, information and systems laboratory at Amiens, France. The results showed that the one-diode model is less representative than the two-diode model. Furthermore, it is envisaged that the proposed FODPSO-based extraction method is more effective in modeling with two diodes. This will allow real-time determination of solar cells parameters and consequently will help to select the most suitable PV model.
Parameters and error of a theoretical model
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.; Swiatecki, W.
1986-09-01
We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs
Method for Determining the Time Parameter
Directory of Open Access Journals (Sweden)
K. P. Baslyk
2014-01-01
Full Text Available This article proposes a method for calculating one of the characteristics that represents the flight program of the first stage of ballistic rocket i.e. time parameter of the program of attack angle.In simulation of placing the payload for the first stage, a program of flight is used which consists of three segments, namely a vertical climb of the rocket, a segment of programmed reversal by attack angle, and a segment of gravitational reversal with zero angle of attack.The programed reversal by attack angle is simulated as a rapidly decreasing and increasing function. This function depends on the attack angle amplitude, time and time parameter.If the projected and ballistic parameters and the amplitude of attack angle were determined this coefficient is calculated based the constraint that the rocket velocity is equal to 0.8 from the sound velocity (0,264 km/sec when the angle of attack becomes equal to zero. Such constraint is transformed to the nonlinear equation, which can be solved using a Newton method.The attack angle amplitude value is unknown for the design analysis. Exceeding some maximum admissible value for this parameter may lead to excessive trajectory collapsing (foreshortening, which can be identified as an arising negative trajectory angle.Consequently, therefore it is necessary to compute the maximum value of the attack angle amplitude with the following constraints: a trajectory angle is positive during the entire first stage flight and the rocket velocity is equal to 0,264 km/sec by the end of program of angle attack. The problem can be formulated as a task of the nonlinear programming, minimization of the modified Lagrange function, which is solved using the multipliers method.If multipliers and penalty parameter are constant the optimization problem without constraints takes place. Using the determined coordinate descent method allows solving the problem of modified Lagrange function of unconstrained minimization with fixed
A determination of electroweak parameters at HERA
H1 Collaboration; Aktas, A.; Andreev, V.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D. P.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; de Roeck, A.; Desch, K.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y. H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kückens, J.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sedlák, K.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, M.; Usik, A.; Utkin, D.; Valkár, S.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2006-01-01
Using the deep inelastic ep and ep charged and neutral current scattering cross sections previously published, a combined electroweak and QCD analysis is performed to determine electroweak parameters accounting for their correlation with parton distributions. The data used have been collected by the H1 experiment in 1994 2000 and correspond to an integrated luminosity of 117.2 pb. A measurement is obtained of the W propagator mass in charged current ep scattering. The weak mixing angle sinθ is determined in the on-mass-shell renormalisation scheme. A first measurement at HERA is made of the light quark weak couplings to the Z boson and a possible contribution of right-handed isospin components to the weak couplings is investigated.
A Determination of Electroweak Parameters at HERA
Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2006-01-01
Using the deep inelastic e^+p and e^-p charged and neutral current scattering cross sections previously published, a combined electroweak and QCD analysis is performed to determine electroweak parameters accounting for their correlation with parton distributions. The data used have been collected by the H1 experiment in 1994-2000 and correspond to an integrated luminosity of 117.2 pb^{-1}. A measurement is obtained of the W propagator mass in charged current ep scattering. The weak mixing angle sin^2 theta_W is determined in the on-mass-shell renormalisation scheme. A first measurement at HERA is made of the light quark weak couplings to the Z^0 boson and a possible contribution of right-handed isospin components to the weak couplings is investigated.
Energy Technology Data Exchange (ETDEWEB)
Malo, Lison; Doyon, René; Albert, Loïc; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan [Département de physique and Observatoire du Mont-Mégantic, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Riedel, Adric, E-mail: malo@cfht.hawaii.edu, E-mail: doyon@astro.umontreal.ca [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States)
2014-09-01
Based on high-resolution optical spectra obtained with ESPaDOnS at Canada-France-Hawaii Telescope, we determine fundamental parameters (T {sub eff}, R, L {sub bol}, log g, and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of Malo et al., which takes into account the position, proper motion, magnitude, color, radial velocity, and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth magnetic evolutionary models and field stars with the goal of constraining the age of our candidates. We find that, in general, low-mass stars in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main-sequence stars. The Dartmouth magnetic evolutionary models show a good fit to observations of field K and M stars, assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of the β Pictoris moving group, we have re-examined the age inconsistency problem between lithium depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increases the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear lithium depletion boundary from which an age of 26 ± 3 Myr is derived, consistent with previous age estimates based on this method.
Directory of Open Access Journals (Sweden)
Jinshui Zhang
2017-04-01
Full Text Available This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD, to determine optimal parameters for support vector data description (SVDD model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient (C and kernel width (s, in mapping homogeneous specific land cover.
Parameter determination in a groundwater field polluted by radioactive pollutant
International Nuclear Information System (INIS)
Sidauruk, P.; Barokah A; Syafalni; Wibagiyo
1998-01-01
The determination of source location and the corresponding parameters in a contaminated groundwater is very important. To be able to predict the distribution of radioactive contaminant in a contaminated field, the knowledge about the source location and the corresponding parameters is a necessity. The model developed in this paper is based on the fact that the relation between the logarithm of the concentration of the radio active contaminant with the squared coordinate is linear. The contaminant transport parameters as well as the a straight line. In other words, the parameters and the source location are determined in a such way that the linear correlation coefficient between the logarithm of the concentration of the radio active contaminant with the squared coordinate is optimized. The developed model is tested with a synthetic data with a satisfactory results. The synthetic data is generated such that can represent the real field. The synthetic data are generated because the real field data is not available. (authors)
Energy Technology Data Exchange (ETDEWEB)
Yabusaki, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-03-30
Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is just getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides
Energy Technology Data Exchange (ETDEWEB)
Ragozin, A Yu [and others
1994-12-31
Gamma radiation effect on the parameters Gummel-Pun model n-p-n transistors with different resistance of the collector layer is investigated. A method for their determination on the base of vol-ampere characteristics is proposed.
Relativity Parameters Determined from Lunar Laser Ranging
Williams, J. G.; Newhall, X. X.; Dickey, J. O.
1996-01-01
Analysis of 24 years of lunar laser ranging data is used to test the principle of equivalence, geodetic precession, the PPN parameters beta and gamma, and G/G. Recent data can be fitted with a rms scatter of 3 cm. (a) Using the Nordtvedt effect to test the principle of equivalence, it is found that the Moon and Earth accelerate alike in the Sun's field. The relative accelerations match to within 5 x 10(exp -13) . This limit, combined with an independent determination of y from planetary time delay, gives beta. Including the uncertainty due to compositional differences, the parameter beta differs from unity by no more than 0.0014; and, if the weak equivalence principle is satisfied, the difference is no more than 0.0006. (b) Geodetic precession matches its expected 19.2 marc sec/yr rate within 0.7%. This corresponds to a 1% test of gamma. (c) Apart from the Nordtvedt effect, beta and gamma can be tested from their influence on the lunar orbit. It is argued theoretically that the linear combination 0.8(beta) + 1.4(gamma) can be tested at the 1% level of accuracy. For solutions using numerically derived partial derivatives, higher sensitivity is found. Both 6 and y match the values of general relativity to within 0.005, and the linear combination beta+ gamma matches to within 0,003, but caution is advised due to the lack of theoretical understanding of these sensitivities. (d) No evidence for a changing gravitational constant is found, with absolute value of G/G less than or equal to 8 x lO(exp -12)/yr. There is significant sensitivity to G/G through solar perturbations on the lunar orbit.
Directory of Open Access Journals (Sweden)
Marcus Vinicius Machado
2010-12-01
Full Text Available The aim of this study was to evaluate the effect of caffeine intake on critical power model parameters determined on a cycle ergometer. Eight male subjects participated in this study. A double-blind protocol consisting of the intake of pure caffeine (6 mg/kg or placebo (maltodextrin 60 min before testing was used. Subjects were submitted to four constant-load tests on a cycle ergometer. These tests were conducted randomly in the caffeine and placebo groups [checar] at intensities of 80, 90, 100 and 110% maximum power at a rate of 70 rpm until exhaustion to determine the critical power. As a criterion for stopping the test was adopted any rate fall without recovery by more than five seconds. The critical power and anaerobic work capacity were obtained by nonlinear regression and fitting of the curve to a hyperbolic power-time model. The Shapiro-Wilk test and paired Student t-test were used for statistical analysis. No significant differences in critical power were observed between the caffeine and placebo groups (192.9 ± 31.3 vs 197.7 ± 29.4 W, respectively. The anaerobic work capacity was significantly higher in the caffeine group (20.1 ± 5.2 vs 16.3 ± 4.2 W, p< 0.01. A high association (r2 was observed between the caffeine and placebo conditions (0.98 ± 0.02 and 0.99 ± 0.0, respectively. We conclude that caffeine intake did not improve critical power performance but increased anaerobic work capacity by influencing performance at loads of higher intensity and shorter duration.
Determination of the atrazine migration parameters in Vertisol
Raymundo-Raymundo, E.; Hernandez-Vargas, J.; Nikol'Skii, Yu. N.; Guber, A. K.; Gavi-Reyes, F.; Prado-Pano, B. L.; Figueroa-Sandoval, B.; Mendosa-Hernandez, J. R.
2010-05-01
The parameters of the atrazine migration in columns with undisturbed Vertisol sampled from an irrigated plot in Guanajuato, Mexico were determined. A model of the convection-dispersion transport of the chemical compounds accounting for the decomposition and equilibrium adsorption, which is widely applied for assessing the risk of contamination of natural waters with pesticides, was used. The model parameters were obtained by solving the inverse problem of the transport equation on the basis of laboratory experiments on the transport of the 18O isotope and atrazine in soil columns with an undisturbed structure at three filtration velocities. The model adequately described the experimental data at the individual selection of the parameters for each output curve. Physically unsubstantiated parameters of the atrazine adsorption and degradation were obtained when the parameter of the hydrodynamic dispersion was determined from the data on the 18O migration. The simulation also showed that the use of parameters obtained at water content close to saturation in the calculations for an unsaturated soil resulted in the overestimation of the leaching rate and the maximum concentration of atrazine in the output curve compared to the experimental data.
Impact parameter determination in experimental analysis using neural network
International Nuclear Information System (INIS)
Haddad, F.; David, C.; Freslier, M.; Aichelin, J.; Haddad, F.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Natowitz, J.B.; Wada, R.; Xiao, B.
1997-01-01
A neural network is used to determine the impact parameter in 40 Ca + 40 Ca reactions. The effect of the detection efficiency as well as the model dependence of the training procedure have been studied carefully. An overall improvement of the impact parameter determination of 25 % is obtained using this technique. The analysis of Amphora 40 Ca+ 40 Ca data at 35 MeV per nucleon using a neural network shows two well separated classes of events among the selected 'complete' events. (authors)
Determination of global heart function parameters
International Nuclear Information System (INIS)
Adam, W.E.; Hoffmann, H.; Sigel, H.; Bitter, F.; Nechwatal, W.; Stauch, M.; Ulm Univ.; Freiburg Univ.
1980-01-01
1. ECG-triggered scintigraphy of the interior of the heart (radioactive ventriculography) is a reliable non-invasive technique for the acquisition of the global and regional function of the left ventricle. 2. The most important global parameter is the output function (OF) of the left ventricle. It can be measured exactly. The decrease of the OF under load is typical for coronary insufficience under load, but is not specifically. 3. A movement disturbance on the ground of a KHK is recognized with highest sensitivity at the decrease of the maximum relaxation velocity of the global left-ventricular time-activity characteristic (fast phase of filling). 4. Regional wall movement disturbances can be measured quantitatively by means of viewing the radioactive nucleid ventriculogramm at the display. 5. The quantitative measurement of the regional function needs an extensive analysis of the local time-activity characteristics of a representative coronary cycle. For this the amplitude and phase and the contraction and relaxation velocity of all time-activity characteristics is determined by Fourier analysis and their spatial distribution is drawn (parametric scan). 6. The parametric scans (distribution of amplitude, phase, contraction and relaxation velocities) describe the regional wall movement in detail, the reliability of its quantitative acquisition has to be approved by further investigations. (orig.) [de
Determination of resonance parameters in QCD by functional analysis methods
International Nuclear Information System (INIS)
Ciulli, S.; Geniet, F.; Papadopoulos, N.A.; Schilcher, K.
1988-01-01
A mathematically rigorous method based on functional analysis is used to determine resonance parameters of an amplitude from its given asymptotic expression in the space-like region. This method is checked on a model amplitude where both the asymptotic expression and the exact function are known. This method is then applied to the determination of the mass and the width of the ρ-meson from the corresponding space-like asymptotic QCD expression. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sang, Nguyen Duy, E-mail: ndsang@ctu.edu.vn [College of Rural Development, Can Tho University, Can Tho 270000 (Viet Nam); Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh 700000 (Viet Nam); Van Hung, Nguyen [Nuclear Research Institute, VAEI, Dalat 670000 (Viet Nam); Van Hung, Tran; Hien, Nguyen Quoc [Research and Development Center for Radiation Technology, VAEI, Ho Chi Minh 700000 (Viet Nam)
2017-03-01
Highlights: • TL analysis aims to calculate the kinetic parameters of the chilli powder. • There is difference of the kinetic parameters caused by the difference of radiation doses. • There is difference of the kinetic parameters due to applying GOK model or OTOR one. • The software R is apllied for the first time in TL glow curve analysis of the chilli powder. - Abstract: The kinetic parameters of thermoluminescence (TL) glow peaks of chilli powder irradiated by gamma rays with the different doses of 0, 4 and 8 kGy have been calculated and estimate by computerized glow curve deconvolution (CGCD) method and the R package tgcd by using the TL glow curve data. The kinetic parameters of TL glow peaks (i.e. activation energies (E), order of kinetics (b), trapping and recombination probability coefficients (R) and frequency factors (s)) are fitted by modeled general-orders of kinetics (GOK) and one trap-one recombination (OTOR). The kinetic parameters of the chilli powder are different toward the difference of the sample time-storage, radiation doses, GOK model and OTOR one. The samples spending the shorter period of storage time have the smaller the kinetic parameters values than the samples spending the longer period of storage. The results obtained as comparing the kinetic parameters values of the three samples show that the value of non-irradiated samples are lowest whereas the 4 kGy irradiated-samples’ value are greater than the 8 kGy irradiated-samples’ one time.
Determination of electroweak parameters of the b quark
International Nuclear Information System (INIS)
Chamizo Llatas, M.
1995-01-01
In the present work we analyze the process e+e→ bb with the data collected during 1991 and 1992 by the L 3 detector situated in the LEP e+e-storage-ring (CERN). From the measurements of the crossections and the charge asymmetry we determine the parameters of the b quark in the framework of the Standar Model. Finally, we parametrize the possible deviations from the model an obtain upper and lower limits for the mass of the t quark
The mobilisation model and parameter sensitivity
International Nuclear Information System (INIS)
Blok, B.M.
1993-12-01
In the PRObabillistic Safety Assessment (PROSA) of radioactive waste in a salt repository one of the nuclide release scenario's is the subrosion scenario. A new subrosion model SUBRECN has been developed. In this model the combined effect of a depth-dependent subrosion, glass dissolution, and salt rise has been taken into account. The subrosion model SUBRECN and the implementation of this model in the German computer program EMOS4 is presented. A new computer program PANTER is derived from EMOS4. PANTER models releases of radionuclides via subrosion from a disposal site in a salt pillar into the biosphere. For uncertainty and sensitivity analyses the new subrosion model Latin Hypercube Sampling has been used for determine the different values for the uncertain parameters. The influence of the uncertainty in the parameters on the dose calculations has been investigated by the following sensitivity techniques: Spearman Rank Correlation Coefficients, Partial Rank Correlation Coefficients, Standardised Rank Regression Coefficients, and the Smirnov Test. (orig./HP)
Systematic parameter inference in stochastic mesoscopic modeling
Energy Technology Data Exchange (ETDEWEB)
Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.
Experimental determination of mechanical parameters in sensorless ...
Indian Academy of Sciences (India)
V S S PAVAN KUMAR HARI
pulse width modulation (PWM) selected. The three-phase .... and the simulation and experimental results are presented. ... between 0 and Ts due to the process of PWM. Hence, the .... MATLAB SIMULINK with the machine parameters in.
Heart rate variability as determinism with jump stochastic parameters.
Zheng, Jiongxuan; Skufca, Joseph D; Bollt, Erik M
2013-08-01
We use measured heart rate information (RR intervals) to develop a one-dimensional nonlinear map that describes short term deterministic behavior in the data. Our study suggests that there is a stochastic parameter with persistence which causes the heart rate and rhythm system to wander about a bifurcation point. We propose a modified circle map with a jump process noise term as a model which can qualitatively capture such this behavior of low dimensional transient determinism with occasional (stochastically defined) jumps from one deterministic system to another within a one parameter family of deterministic systems.
Determination of beam characteristic parameters for a linear accelerator
International Nuclear Information System (INIS)
Lima, D.A. de.
1978-01-01
A mechanism to determine electron beam characteristic parameters of a linear accelerator was constructed. The mechanism consists in an electro-calorimeter and an accurate optical densitometer. The following parameters: mean power, mean current, mean energy/particle, pulse Width, pulse amplitude dispersion, and pulse frequency, operating the 2 MeV linear accelerator of CBPF (Brazilian Center pf Physics Researches). The optical isodensity curves of irradiated glass lamellae were obtained, providing information about focus degradation penetration direction in material and the reach of particle. The point to point dose distribution in the material from optical density curves were obtained, using a semi empirical and approached model. (M.C.K.) [pt
Determination of adsorption parameters in numerical simulation for polymer flooding
Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu
2018-02-01
A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.
Calibration of discrete element model parameters: soybeans
Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal
2018-05-01
Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.
Suitability of obstetric ultrasonographic parameters in determining ...
African Journals Online (AJOL)
Objective: A prospective study aimed at assessing the suitability of Biparietal Diameter (BPD), Femoral Length (FL), Transverse abdominal Diameter (TAD) and Composite value by ultrasonography, in determining foetal or gestational age derived by last menstrual period (LMP) in our environment was undertaken.
Farahani, N Darestani; Davani, F Abbasi
2015-10-01
This investigation is about plasma modeling for the control of vertical instabilities in Damavand tokamak. This model is based on online magnetic measurement. The algebraic equation defining the vertical position in this model is based on instantaneous force-balance. Two parameters in this equation, including decay index, n, and lambda, Λ, have been considered as functions of time-varying poloidal field coil currents and plasma current. Then these functions have been used in a code generated for modeling the open loop response of plasma. The main restriction of the suitability analysis of the model is that the experiments always have to be performed in the presence of a control loop for stabilizing vertical position. As a result, open loop response of the system has been identified from closed loop experimental data by nonlinear neural network identification method. The results of comparison of physical model with identified open loop response from closed loop experiments show root mean square error percentage less than 10%. The results are satisfying that the physical model is useful as a Damavand tokamak vertical movement simulator.
Determination of the TLD-100 physical parameters
International Nuclear Information System (INIS)
Paucar J, J.; Picon C, C.
1998-01-01
This study was realized in the Physics service at the Radiotherapy Department of the National Institute of Neoplasic Diseases in Lima, Peru, it was determined the activation energy, the kinetic order and the frequency factor of the fifth peak of the TLD-100 thermoluminescent spectra using different algorithms. This was carried out in parallel with the implementation and design of a software and an interface associated with the Tl lecturer which allows a semiautomatic control for a thermoluminescent lecturer process. (Author)
Shah, S. M.; Crawshaw, J. P.; Gray, F.; Yang, J.; Boek, E. S.
2017-06-01
In the last decade, the study of fluid flow in porous media has developed considerably due to the combination of X-ray Micro Computed Tomography (micro-CT) and advances in computational methods for solving complex fluid flow equations directly or indirectly on reconstructed three-dimensional pore space images. In this study, we calculate porosity and single phase permeability using micro-CT imaging and Lattice Boltzmann (LB) simulations for 8 different porous media: beadpacks (with bead sizes 50 μm and 350 μm), sandpacks (LV60 and HST95), sandstones (Berea, Clashach and Doddington) and a carbonate (Ketton). Combining the observed porosity and calculated single phase permeability, we shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging. Our study applies the concept of the 'Convex Hull' to calculate the REV by considering the two main macroscopic petrophysical parameters, porosity and single phase permeability, simultaneously. The shape of the hull can be used to identify strong correlation between the parameters or greatly differing convergence rates. To further enhance computational efficiency we note that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size so that only a few small simulations are needed to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.
Alternative parameter determination methods for a PMSG
DEFF Research Database (Denmark)
Kalogiannis, Theodoros; Malz, Elena; Llano, Enrique Muller
2014-01-01
standards. In the other hand a new approach for an alternative stator inductance and inertia measurement is analysed. More precisely, the former is obtained through laboratory work based on the locked rotor test, and the latter through a CAD software based on a 3D model. In order to assess and validate...
Parameter optimization for surface flux transport models
Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.
2017-11-01
Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
Mathematical determination of setup parameters for carcinoma breast cases
International Nuclear Information System (INIS)
Prasad, P.B.L.D.; Suresh, P.; Sridhar, A.
2008-01-01
Determining proper patient set up parameters like IFD, Gantry angles and field width in Ca Breast are prime important to achieve precise treatment. In a center where 3D Treatment Planning Systems (TPS) and simulator are not available to determine the set up parameters, contouring of target region is essential which is time consuming. The mathematical formula described here provides instant patient set up parameters using machine parameters. (author)
Determination of electroweak parameters at the SLC
International Nuclear Information System (INIS)
Torrence, E.
1996-09-01
We present an improved measurement of the left-right cross section asymmetry (A LR ) for Z 0 boson production by e + e - collisions. The measurement was performed at a center-of-mass energy of 91.28 GeV with the SLD detector at the SLAC Linear Collider (SLC) during the 1994-95 running period. The luminosity-weighted average polarization of the SLC electron beam during this run was measured to be (77.23 ± 0.52)%. Using a sample of 93,644 hadronic Z 0 decays, we measure the pole asymmetry A LR 0 to be 0.1512 ± 0.0042(stat.) ± 0.0011(syst.) which is equivalent to an effective weak mixing angle of sin 2 θ W eff = 0.23100 ± 0.00054(stat.) ± 0.00014(syst.). We also present a preliminary direct measurement of the Z 0 -lepton coupling asymmetries A e , A μ , and A τ extracted from the differential cross section observed in leptonic Z 0 decays. We combine these results with our previous A LR measurement to obtain a combined determination of the weak mixing angle sin 2 θ W eff = 0.23061 ± 0.00047
Quantitative Determination of Spring Water Quality Parameters via Electronic Tongue
Directory of Open Access Journals (Sweden)
Noèlia Carbó
2017-12-01
Full Text Available The use of a voltammetric electronic tongue for the quantitative analysis of quality parameters in spring water is proposed here. The electronic voltammetric tongue consisted of a set of four noble electrodes (iridium, rhodium, platinum, and gold housed inside a stainless steel cylinder. These noble metals have a high durability and are not demanding for maintenance, features required for the development of future automated equipment. A pulse voltammetry study was conducted in 83 spring water samples to determine concentrations of nitrate (range: 6.9–115 mg/L, sulfate (32–472 mg/L, fluoride (0.08–0.26 mg/L, chloride (17–190 mg/L, and sodium (11–94 mg/L as well as pH (7.3–7.8. These parameters were also determined by routine analytical methods in spring water samples. A partial least squares (PLS analysis was run to obtain a model to predict these parameter. Orthogonal signal correction (OSC was applied in the preprocessing step. Calibration (67% and validation (33% sets were selected randomly. The electronic tongue showed good predictive power to determine the concentrations of nitrate, sulfate, chloride, and sodium as well as pH and displayed a lower R2 and slope in the validation set for fluoride. Nitrate and fluoride concentrations were estimated with errors lower than 15%, whereas chloride, sulfate, and sodium concentrations as well as pH were estimated with errors below 10%.
An automatic and effective parameter optimization method for model tuning
Directory of Open Access Journals (Sweden)
T. Zhang
2015-11-01
simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.
Determination of cosmological parameters: An introduction for non ...
Indian Academy of Sciences (India)
Then I show how the age of the universe depends on them, followed by the evolution of the scale parameter of the universe for various values of the density parameters. Then I define strategies for measuring them, and show the results for the recent determination of these parameters from measurements on supernovas of ...
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
Quality assessment for radiological model parameters
International Nuclear Information System (INIS)
Funtowicz, S.O.
1989-01-01
A prototype framework for representing uncertainties in radiological model parameters is introduced. This follows earlier development in this journal of a corresponding framework for representing uncertainties in radiological data. Refinements and extensions to the earlier framework are needed in order to take account of the additional contextual factors consequent on using data entries to quantify model parameters. The parameter coding can in turn feed in to methods for evaluating uncertainties in calculated model outputs. (author)
Establishing statistical models of manufacturing parameters
International Nuclear Information System (INIS)
Senevat, J.; Pape, J.L.; Deshayes, J.F.
1991-01-01
This paper reports on the effect of pilgering and cold-work parameters on contractile strain ratio and mechanical properties that were investigated using a large population of Zircaloy tubes. Statistical models were established between: contractile strain ratio and tooling parameters, mechanical properties (tensile test, creep test) and cold-work parameters, and mechanical properties and stress-relieving temperature
Determination of nutritional parameters of yoghurts by FT Raman spectroscopy
Czaja, Tomasz; Baranowska, Maria; Mazurek, Sylwester; Szostak, Roman
2018-05-01
FT-Raman quantitative analysis of nutritional parameters of yoghurts was performed with the help of partial least squares models. The relative standard errors of prediction for fat, lactose and protein determination in the quantified commercial samples equalled to 3.9, 3.2 and 3.6%, respectively. Models based on attenuated total reflectance spectra of the liquid yoghurt samples and of dried yoghurt films collected with the single reflection diamond accessory showed relative standard errors of prediction values of 1.6-5.0% and 2.7-5.2%, respectively, for the analysed components. Despite a relatively low signal-to-noise ratio in the obtained spectra, Raman spectroscopy, combined with chemometrics, constitutes a fast and powerful tool for macronutrients quantification in yoghurts. Errors received for attenuated total reflectance method were found to be relatively higher than those for Raman spectroscopy due to inhomogeneity of the analysed samples.
International Nuclear Information System (INIS)
Dobrichev, V.M.; Raikova, D.V.; Ryabchikova, T.A.; Topil'skaya, G.P.
1989-01-01
It is shown that a blanketed model atmosphere of the Hg-Mn star κ Cnc with T e = 12,800 degree K and log g = 3.7 (Stepien and Muthsam) completely describes the profiles of the lines H α , H γ , and H δ in the spectrum of this star. The synthetic-spectrum method is used to determine the helium abundance in the atmosphere of κ Cnc: He/H = 0.017, this value being almost three times greater than the value obtained earlier for this star by Adelman. The isotope shift of the lines leads to the isotope ratio 3 He/ 4 He = 0.35, and this indicates that there is a process of diffusion separation of the elements in the atmosphere of κ Cnc. 23 refs., 3 figs., 1 tab
Robust estimation of hydrological model parameters
Directory of Open Access Journals (Sweden)
A. Bárdossy
2008-11-01
Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.
Model parameter updating using Bayesian networks
International Nuclear Information System (INIS)
Treml, C.A.; Ross, Timothy J.
2004-01-01
This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.
Determining cosmological parameters with the latest observational data
International Nuclear Information System (INIS)
Xia Junqing; Li Hong; Zhao Gongbo; Zhang Xinmin
2008-01-01
In this paper, we combine the latest observational data, including the WMAP five-year data (WMAP5), BOOMERanG, CBI, VSA, ACBAR, as well as the baryon acoustic oscillations (BAO) and type Ia supernovae (SN) ''union'' compilation (307 sample), and use the Markov Chain Monte Carlo method to determine the cosmological parameters, such as the equation of state (EoS) of dark energy, the curvature of the universe, the total neutrino mass, and the parameters associated with the power spectrum of primordial fluctuations. In a flat universe, we obtain the tight limit on the constant EoS of dark energy as w=-0.977±0.056(stat)±0.057(sys). For the dynamical dark energy models with the time evolving EoS parametrized as w de (a)=w 0 +w 1 (1-a), we find that the best-fit values are w 0 =-1.08 and w 1 =0.368, while the ΛCDM model remains a good fit to the current data. For the curvature of the universe Ω k , our results give -0.012 k de =-1. When considering the dynamics of dark energy, the flat universe is still a good fit to the current data, -0.015 k s ≥1 are excluded at more than 2σ confidence level. However, in the framework of dynamical dark energy models, the allowed region in the parameter space of (n s ,r) is enlarged significantly. Finally, we find no strong evidence for the large running of the spectral index.
On parameter estimation in deformable models
DEFF Research Database (Denmark)
Fisker, Rune; Carstensen, Jens Michael
1998-01-01
Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...
Determination of heterogeneous medium parameters by single fuel element method
International Nuclear Information System (INIS)
Veloso, M.A.F.
1985-01-01
The neutron pulse propagation technique was employed to study an heterogeneous system consisting of a single fuel element placed at the symmetry axis of a large cylindrical D 2 O tank. The response of system for the pulse propagation technique is related to the inverse complex relaxation length of the neutron waves also known as the system dispersion law ρ (ω). Experimental values of ρ (ω) were compared with the ones derived from Fermi age - Diffusion theory. The main purpose of the experiment was to obtain the Feinberg-Galanin thermal constant (γ), which is the logaritmic derivative of the neutron flux at the fuel-moderator interface and a such a main input data for heterogeneous reactor theory calculations. The γ thermal constant was determined as the number giving the best agreement between the theoretical and experimental values of ρ (ω). The simultaneous determination of two among four parameters η,ρ,τ and L s is possible through the intersection of dispersion laws of the pure moderator system and the fuel moderator system. The parameters τ and η were termined by this method. It was shown that the thermal constant γ and the product η ρ can be computed from the real and imaginary parts of the fuel-moderator dispersion law. The results for this evaluation scheme showns a not stable behavior of γ as a function of frequency, a result not foreseen by the theoretical model. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
McFarquhar, Greg [Univ. of Illinois, Urbana, IL (United States)
2015-12-28
We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.
Parameter identification in multinomial processing tree models
Schmittmann, V.D.; Dolan, C.V.; Raijmakers, M.E.J.; Batchelder, W.H.
2010-01-01
Multinomial processing tree models form a popular class of statistical models for categorical data that have applications in various areas of psychological research. As in all statistical models, establishing which parameters are identified is necessary for model inference and selection on the basis
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei
2013-09-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.
PARAMETER ESTIMATION IN BREAD BAKING MODEL
Directory of Open Access Journals (Sweden)
Hadiyanto Hadiyanto
2012-05-01
Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels. Abstrak PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan
Determining "small parameters" for quasi-steady state
Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva
2015-08-01
For a parameter-dependent system of ordinary differential equations we present a systematic approach to the determination of parameter values near which singular perturbation scenarios (in the sense of Tikhonov and Fenichel) arise. We call these special values Tikhonov-Fenichel parameter values. The principal application we intend is to equations that describe chemical reactions, in the context of quasi-steady state (or partial equilibrium) settings. Such equations have rational (or even polynomial) right-hand side. We determine the structure of the set of Tikhonov-Fenichel parameter values as a semi-algebraic set, and present an algorithmic approach to their explicit determination, using Groebner bases. Examples and applications (which include the irreversible and reversible Michaelis-Menten systems) illustrate that the approach is rather easy to implement.
Parameter identification in the logistic STAR model
DEFF Research Database (Denmark)
Ekner, Line Elvstrøm; Nejstgaard, Emil
We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th...
Exploiting intrinsic fluctuations to identify model parameters.
Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen
2015-04-01
Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.
Setting Parameters for Biological Models With ANIMO
Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran
2014-01-01
ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions
Parameter Estimation of Nonlinear Models in Forestry.
Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.
1999-01-01
Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...
Spectroscopic determination of valence band parameters in InP
International Nuclear Information System (INIS)
Lewis, R.A.; Lough, B.C.C.
2003-01-01
Full text: The general form of the Hamiltonian for an electron or hole in a semiconductor has been given by Luttinger. The valence band is characterised by three parameters - γ 1 , γ 2 , γ 3 -now commonly known as the Luttinger parameters. Despite many investigations there is still considerable uncertainty regarding the Luttinger parameters of InP. The situation has been reviewed by Hackenberg et al. These authors themselves sought to determine the Luttinger parameters by hot-electron luminescence and discovered that many Luttinger parameter triplets were consistent with their data. We employ a spectroscopic approach to estimating valence-band parameters in InP. Calculations have been made for both the unperturbed energy levels and the energy levels in a magnetic field of acceptor impurities in semiconductors characterised by different Luttinger parameters. We compare our recent experimental data for the transitions associated with the Zn acceptor impurity in InP in magnetic fields up to 30 T to determine the most appropriate set of valence-band parameters for InP
Genetic algorithm approach to thin film optical parameters determination
International Nuclear Information System (INIS)
Jurecka, S.; Jureckova, M.; Muellerova, J.
2003-01-01
Optical parameters of thin film are important for several optical and optoelectronic applications. In this work the genetic algorithm proposed to solve optical parameters of thin film values. The experimental reflectance is modelled by the Forouhi - Bloomer dispersion relations. The refractive index, the extinction coefficient and the film thickness are the unknown parameters in this model. Genetic algorithm use probabilistic examination of promissing areas of the parameter space. It creates a population of solutions based on the reflectance model and then operates on the population to evolve the best solution by using selection, crossover and mutation operators on the population individuals. The implementation of genetic algorithm method and the experimental results are described too (Authors)
Wind Farm Decentralized Dynamic Modeling With Parameters
DEFF Research Database (Denmark)
Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran
2010-01-01
Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...
Parameter Estimation for Thurstone Choice Models
Energy Technology Data Exchange (ETDEWEB)
Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-24
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.
Determining Mechanical Parameters for Spin in Tennis Strings
DEFF Research Database (Denmark)
Bendtsen, Kaare; Rasmussen, Kasper; Hansen, Martin B.
2015-01-01
The ability to generate spin is a key element for any tennis player. However, the mechanical parameters of tennis strings which contribute to producing spin are poorly understood. This study attempted to determine some of these parameters through a spin test and a tensile test. Nine different...... string types with different gauges, geometry, price and user ratings were tested. The main finding of the study was that the three gauges of MSV Co Focus were able to generate significantly (p
Towards automated diffraction tomography. Part II-Cell parameter determination
International Nuclear Information System (INIS)
Kolb, U.; Gorelik, T.; Otten, M.T.
2008-01-01
Automated diffraction tomography (ADT) allows the collection of three-dimensional (3d) diffraction data sets from crystals down to a size of only few nanometres. Imaging is done in STEM mode, and diffraction data are collected with quasi-parallel beam nanoelectron diffraction (NED). Here, we present a set of developed processing steps necessary for automatic unit-cell parameter determination from the collected 3d diffraction data. Cell parameter determination is done via extraction of peak positions from a recorded data set (called the data reduction path) followed by subsequent cluster analysis of difference vectors. The procedure of lattice parameter determination is presented in detail for a beam-sensitive organic material. Independently, we demonstrate a potential (called the full integration path) based on 3d reconstruction of the reciprocal space visualising special structural features of materials such as partial disorder. Furthermore, we describe new features implemented into the acquisition part
Biological parameters for lung cancer in mathematical models of carcinogenesis
International Nuclear Information System (INIS)
Jacob, P.; Jacob, V.
2003-01-01
Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki, British doctors, Colorado Plateau miners, and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h 55 at an intermediate age, and the hazard H? at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. (author)
Baroni, G.; Facchi, A.; Gandolfi, C.; Ortuani, B.; Horeschi, D.; Dam, van J.C.
2010-01-01
Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still
Systematic and random erros in lattice parameter determinations
International Nuclear Information System (INIS)
Nascimento, E.M.
1980-01-01
A new method is proposed for evaluation of diffraction data used in precise determination of lattice parameters. The method is based on separation and systematic erros on the diffraction angles level, where the randon part of erros is independent on the 0 angle. The separation is enable by assumption that the systematic part of erros depends on the 0 angle linearly. In that situation the high precision in lattice parameters determination is related more to reducing the randon errors content that to the presence of unremoved systematic errors. (Author) [pt
Application of lumped-parameter models
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten
This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse...
Models and parameters for environmental radiological assessments
International Nuclear Information System (INIS)
Miller, C.W.
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base
WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...
African Journals Online (AJOL)
Preferred Customer
Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...
Models and parameters for environmental radiological assessments
Energy Technology Data Exchange (ETDEWEB)
Miller, C W [ed.
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)
Consistent Stochastic Modelling of Meteocean Design Parameters
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Sterndorff, M. J.
2000-01-01
Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...
Models and parameters for environmental radiological assessments
International Nuclear Information System (INIS)
Miller, C.W.
1983-01-01
This article reviews the forthcoming book Models and Parameters for Environmental Radiological Assessments, which presents a unified compilation of models and parameters for assessing the impact on man of radioactive discharges, both routine and accidental, into the environment. Models presented in this book include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Summaries are presented for each of the transport and dosimetry areas previously for each of the transport and dosimetry areas previously mentioned, and details are available in the literature cited. A chapter of example problems illustrates many of the methodologies presented throughout the text. Models and parameters presented are based on the results of extensive literature reviews and evaluations performed primarily by the staff of the Health and Safety Research Division of Oak Ridge National Laboratory
Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds
Directory of Open Access Journals (Sweden)
Indrajeet Chaubey
2010-11-01
Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.
A method for model identification and parameter estimation
International Nuclear Information System (INIS)
Bambach, M; Heinkenschloss, M; Herty, M
2013-01-01
We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
A neutron balance approach in critical parameter determination
International Nuclear Information System (INIS)
Dall'Osso, Aldo
2008-01-01
The determination of a critical parameter, process known also as criticality or eigenvalue search, is one of the major functionalities in neutronics codes. The determination of the critical boron concentration or the critical control rod position are two examples. Classical procedures used to solve this problem are based on the iterative Newton-Raphson method where the value of the parameter is changed until the eigenvalue matches the target. We present here a different approach where an equation, derived from the neutron balance, is set and the critical parameter is the unknown. Solving this equation is equivalent to solve an eigenvalue problem where the critical parameter is the eigenvalue. It is also shown that this approach can be seen as an application of inverse perturbation theory. This method reduces considerably the computation time in situations where changes on the critical parameter make a high distortion on the flux distribution, as it is the case of the control rods. Some numerical examples illustrate the performances and the gain in stability in cases of simultaneous control of criticality and axial offset of the power distribution. The application to the determination of the critical uranium enrichment in a transport code is also presented. The simplicity of the method makes its implementation in fuel bundle lattice and reactor codes very easy
Source term modelling parameters for Project-90
International Nuclear Information System (INIS)
Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.
1992-04-01
This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)
Ammonia emission from organic pig houses determined with local parameters
Aarnink, A.J.A.; Hol, J.M.G.; Ogink, N.W.M.
2016-01-01
The objective of this study was to determine the ammonia emissions from houses for growing-finishing pigs with an outside yard. While regular emission measurements are not possible in these open systems another approach was used. Local parameters were measured and used in an existing NH3 emission
On the determination of the mutual exclusion statistics parameter
Indian Academy of Sciences (India)
On the determination of the mutual exclusion statistics parameter. SAPTARSHI MANDAL. Department of Theoretical Physics, Indian Association for the Cultivation of Science,. 2A&2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India. E-mail: mandal.saptarshi1@gmail.com. MS received 7 September 2012; revised ...
Density profiles of supernova matter and determination of neutrino parameters
Chiu, Shao-Hsuan
2007-08-01
The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.
DEFF Research Database (Denmark)
Jain, Maulik; Andersen, Ole Baltazar; Dall, Jørgen
2013-01-01
The project deals with sea surface height and gravity field determination in open ocean using Cryosat-2 LRM data. A three parameter model is being used to find the retracking offset for sea surface height determination. The estimates from the three parameter model are further improved upon by using...... a two parameter model. The sea surface heights thus obtained are used to develop sea surface height anomalies which are further processed to give gravity fields. Retracker performance evaluation is done using sea surface height anomaly and gravity field anomaly....
Analysis of Modeling Parameters on Threaded Screws.
Energy Technology Data Exchange (ETDEWEB)
Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.
Parameter Estimation of Spacecraft Fuel Slosh Model
Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles
2004-01-01
Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.
MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS
Directory of Open Access Journals (Sweden)
G. M. Kukharonak
2011-01-01
Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper. The model allows to observe fuel sprays develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.
A distributed approach for parameters estimation in System Biology models
International Nuclear Information System (INIS)
Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.
2009-01-01
Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.
Directory of Open Access Journals (Sweden)
Carlos R. de Mello
2005-03-01
Full Text Available Com este trabalho, objetiva-se a geração de modelos matemáticos para predição dos 4 parâmetros da equação de van Genuchten (tetaR, tetaS, alfa e n e para a umidade correspondente à capacidade de campo em função dos atributos areia, argila, matéria orgânica e densidade do solo, ambas de fácil e rotineira determinação em laboratório, além da profundidade. Coletaram-se 36 amostras não deformadas e deformadas nas profundidades de 0 a 30, 30 a 60 e 60 a 90 cm, em Cambissolo originado de gnaisse, determinando-se as umidades correspondentes às tensões de 2, 6 e 10 kPa em mesa de tensão e as referentes a 33, 100, 500 e 1500 kPa, em câmara de Richards. Para ajuste dos modelos, trabalhou-se com o programa SAS for Windows, com a rotina Proc Reg, e procedimento Backward, para selecionar as variáveis significativamente diferentes de zero num certo nível de probabilidade. Para avaliação dos modelos, consideraram-se o coeficiente de determinação e os erros de predição, tanto para os parâmetros estimados quanto para as umidades geradas pela equação de van Genuchten ajustada com os parâmetros estimados, para cada tensão descrita acima. Constatou-se que os erros foram consideravelmente pequenos, justificando a aplicação dos modelos.This work proposes to adjust mathematical models to predict the parameters of van Genuchten equation (thetaR, thetaS, alpha and n, besides a model to predict the soil moisture corresponding to the field capacity. The models express the equation parameters as dependent variables and sand, clay, organic matter, bulk density and depth as independent variables. All independent variables can be easily and routinely determined in laboratory. The samples were collected at 12 points in and three layers (0-30; 30-60; 60-90 cm of a Cambisol, using a Uhland sampler. The soil moisture at matric potentials of 2, 6 and 10 kPa were determined using a porous plate apparatus and those at matric potentials of 33
Determination of material irradiation parameters. Required accuracies and available methods
International Nuclear Information System (INIS)
Cerles, J.M.; Mas, P.
1978-01-01
In this paper, the author reports some main methods to determine the nuclear parameters of material irradiation in testing reactor (nuclear power, burn-up, fluxes, fluences, ...). The different methods (theoretical or experimental) are reviewed: neutronics measurements and calculations, gamma scanning, thermal balance, ... The required accuracies are reviewed: they are of 3-5% on flux, fluences, nuclear power, burn-up, conversion factor, ... These required accuracies are compared with the real accuracies available which are at the present time of order of 5-20% on these parameters
Parameters of importance to determine in geoscientific site studies
International Nuclear Information System (INIS)
Andersson, Johan; Almen, K.E.; Ericsson, L.O.; Karlsson, Fred; Stroem, A.; Fredriksson, Anders; Stanfors, R.
1996-12-01
This report identifies and describes parameters, that may be determined in a site characterization study, for performing functional and safety analyses of a deep rock repository for radioactive wastes. The report discusses data needs for rock engineering and for description of other environmental aspects. It is intended that the report be used as a basis for formulating the criteria of acceptance in evaluating a candidate site. The report describes how different parameters influence the safety function, and how they are evaluated in practice. The logical order of performing measurements, due to the need of in-data and influence on other measurements is also discussed. 65 refs
Determination of fuel irradiation parameters. Required accuracies and available methods
International Nuclear Information System (INIS)
Mas, P.
1977-01-01
This paper reports on the present point of some main methods to determine the nuclear parameters of fuel irradiation in testing reactors (nuclear power, burn up, ...) The different methods (theoretical or experimental) are reviewed: neutron measurements and calculations, gamma scanning, heat balance, ... . The required accuracies are reviewed: they are of 3-5 % on flux, fluences, nuclear power, burn-up, conversion factor. These required accuracies are compared with the real accuracies available which are the present time of order of 5-20 % on these parameters
Incorporating model parameter uncertainty into inverse treatment planning
International Nuclear Information System (INIS)
Lian Jun; Xing Lei
2004-01-01
Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment
Model comparisons and genetic and environmental parameter ...
African Journals Online (AJOL)
arc
Model comparisons and genetic and environmental parameter estimates of growth and the ... breeding strategies and for accurate breeding value estimation. The objectives ...... Sci. 23, 72-76. Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2003.
The rho-parameter in supersymmetric models
International Nuclear Information System (INIS)
Lim, C.S.; Inami, T.; Sakai, N.
1983-10-01
The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)
A lumped parameter model of plasma focus
International Nuclear Information System (INIS)
Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro
1999-01-01
A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)
One parameter model potential for noble metals
International Nuclear Information System (INIS)
Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.
1981-08-01
A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)
Effects of methods of attenuation correction on source parameter determination
Sonley, Eleanor; Abercrombie, Rachel E.
We quantify the effects of using different approaches to model individual earthquake spectra. Applying different approaches can introduce significant variability in the calculated source parameters, even when applied to the same data. To compare large and small earthquake source parameters, the results of multiple studies need to be combined to extend the magnitude range, but the variability introduced by the different approaches hampers the outcome. When studies are combined, there is large uncertainty and large scatter and some systematic differences have been neglected. We model individual earthquake spectra from repeating earthquakes (M˜2) at Parkfield, CA, recorded by a borehole network. We focus on the effects of trade-offs between attenuation (Q) and corner frequency in spectral fitting and the effect of the model shape at the corner frequency on radiated energy. The trade-off between attenuation and corner frequency can increase radiated energy by up to 400% and seismic moment by up to 100%.
A software for parameter estimation in dynamic models
Directory of Open Access Journals (Sweden)
M. Yuceer
2008-12-01
Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.
Fast determination of plasma parameters through function parametrization
International Nuclear Information System (INIS)
Braams, B.J.; Jilge, W.; Lackner, K.
1985-09-01
The method of function parametrization, developed by H. Wind for fast data evaluation in high energy physics, is demonstrated in the context of controlled fusion research. This method relies on a statistical analysis of a large data base of simulated experiments in order to obtain a functional representation for intrinsic physical parameters of a system in terms of the values of the measurements. Rapid determination of characteristic equilibrium parameters of a tokamak discharge is shown to be a particularly indicated application. The method is employed on the ASDEX experiment to determine the following parameters of the plasma: position of the magnetic axis, geometric center, and current center; minor radius, elongation, and area of the plasma column; a normalized safety factor at the plasma boundary; the Shafranov parameter βsub(p)+lsub(i)/2; the flux difference between the plasma boundary and an external reference value; the position of the lower and upper saddle points, and the intersections of the separatrix with the four divertor plates. The relevant measurements consist of three differential poloidal flux measurements, four poloidal field measurements, the current through the multipole shaping coils, and the total plasma current. Function parametrization supplies a very accurate interpretation of these data, which is now used for online data analysis, and is also sufficiently fast to be suitable for real-time control of the plasma. (orig.)
Determination of reactor parameters by single rod experiments
Energy Technology Data Exchange (ETDEWEB)
Raisic, N; Zdravkovic, Z; Ivkovic, M [Department of Reactor Physics and Dynamics, Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)
1969-07-01
A method is developed for the experimental determination of reactor parameters by using an isolated fuel element. The method is based on the consideration of the fuel element as the source and sink of neutrons when placed in a constant neutron field. By measuring the perturbation of the original field produced by insertion of the test fuel element it was possible to determine the fuel element parameters defined by the heterogeneous reactor theory of Feinberg and Galanin as thermal neutron absorption constant {gamma}, and neutron multiplication constant {eta}. Statistical error for one series of measurement amount to 2% in the values of {eta} and {gamma}. The developed method was intended for the analysis of the nuclear characteristics of the fuel element in the stage of its construction and development for a given reactor system. (author)
Determination of electromagnetic absorption parameters by reflection measurements
International Nuclear Information System (INIS)
Vittitoe, C.N.
1975-09-01
The method described is for determining the electromagnetic absorption parameters of a material by measuring the optical reflection from a thick sample. With linearly polarized incident light (both perpendicular to and parallel to the plane of incidence), the ratio of the reflected intensities at three or more angles of incidence offers promise for determining the complex index of refraction of a material for a broad range of parameter values. The method may be applicable to molten materials, such as UO 2 , where high temperatures cause corrosion and containment difficulties. A method is given for extending the data to neighboring frequencies. Use of the method was successful for all portions of the complex index of refraction plane except for small values of the extinction coefficient
Determination of extra trajectory parameters of projectile layout motion
Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.
2017-11-01
The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up
[Microcalorimetric determination of thermochemical parameters of the phosphofructokinase reaction].
Böhme, H J; Schellenberger, W; Hofmann, E
1975-01-01
A calorimetric procedure for determining deltaH, deltaG, deltaS and Keq of a bimolecular reaction with two or more products is described. By using this method the thermodynamic parameters of the phosphofructokinase reaction are determined. At pH 7.0 and 25 degrees C a reaction enthalpy of-6.96kcal/mole was found after correction for the neutralization enthalpy of the buffer and of the enthalpy difference of the magnesium complexes of ATP and ADP, respectively. The free energy of the phosphofructokinase reaction has been found under these conditions to be -3.96kcal/mole.
Tracer techniques for determination of groundwater flow parameters
International Nuclear Information System (INIS)
Drost, W.; Klotz, D.
1988-05-01
The most common one-borehole and multiple borehole methods using tracers for the direct determination of the groundwater flow parameters (velocity of flow, flow direction) and for the indirect determination of characteristic quantities of the aquifer (effective porosity, dispersivity, transmissivity) are presented methodically and their value is documented by practical examples. Especially, the properties of and measuring technique with suitable tracers are considered (e.g. T, Na-24, Cr-51, Co-58, Co-60, Br-82, Tc-99, I-125, I-131, Au-198). (orig./HP) [de
The significance of biometric parameters in determining anterior teeth width
Directory of Open Access Journals (Sweden)
Strajnić Ljiljana
2013-01-01
Full Text Available Background/Aim. An important element of prosthetic treatment of edentulous patients is selecting the size of anterior artificial teeth that will restore the natural harmony of one’s dentolabial structure as well as the whole face. The main objective of this study was to determine the correlation between the inner canthal distance (ICD and interalar width (IAW on one side and the width of both central incisors (CIW, the width of central and lateral incisors (CLIW, the width of anterior teeth (ATW, the width between the canine cusps (CCW, which may be useful in clinical practice. Methods. A total of 89 subjects comprising 23 male and 66 female were studied. Their age ranged from 19 to 34 years with the mean of 25 years. Only the subjects with the preserved natural dentition were included in the sample. All facial and intraoral tooth measurements were made with a Boley Gauge (Buffalo Dental Manufacturing Co., Brooklyn NY, USA having a resolution of 0.1mm. Results. A moderate correlation was established between the interalar width and combined width of anterior teeth and canine cusp width (r = 0.439, r = 0.374. A low correlation was established between the inner canthal distance and the width of anterior teeth and canine cusp width (r = 0.335, r = 0.303. The differences between the two genders were highly significant for all the parameters (p < 0.01. The measured facial distances and width of anterior teeth were higher in men than in women. Conclusion. The results of this study suggest that the examined interalar width and inner canthal distance cannot be considered reliable guidelines in the selection of artificial upper anterior teeth. However, they may be used as a useful additional factor combined with other methods for objective tooth selection. The final decision should be made while working on dentures fitting models with the patient’s consent.
Parameter estimation and determinability analysis applied to Drosophila gap gene circuits
Directory of Open Access Journals (Sweden)
Jaeger Johannes
2008-09-01
Full Text Available Abstract Background Mathematical modeling of real-life processes often requires the estimation of unknown parameters. Once the parameters are found by means of optimization, it is important to assess the quality of the parameter estimates, especially if parameter values are used to draw biological conclusions from the model. Results In this paper we describe how the quality of parameter estimates can be analyzed. We apply our methodology to assess parameter determinability for gene circuit models of the gap gene network in early Drosophila embryos. Conclusion Our analysis shows that none of the parameters of the considered model can be determined individually with reasonable accuracy due to correlations between parameters. Therefore, the model cannot be used as a tool to infer quantitative regulatory weights. On the other hand, our results show that it is still possible to draw reliable qualitative conclusions on the regulatory topology of the gene network. Moreover, it improves previous analyses of the same model by allowing us to identify those interactions for which qualitative conclusions are reliable, and those for which they are ambiguous.
International Nuclear Information System (INIS)
Sidorenko, V.D.
1978-01-01
The equations are discussed for calculating the importance of neutron function in heterogeneous media obtained with the integral transport theory method. The thermalization effect in the thermal range is described using the differential model. The account of neutron slowing-down in the epithermal range is accomplished in the age approximation. The fast range is described in the 3-group approximation. On the basis of the equations derived the share of delayed neutrons and lifetimes of prompt neutrons are calculated and compared with available experimental data. In the thermal range the sensitivity of cross sections to some parameters of the differential model is analyzed for reactor cells typical for WWER type reactor cores. The models and approximations used are found to be adequate for the calculations
Constant-parameter capture-recapture models
Brownie, C.; Hines, J.E.; Nichols, J.D.
1986-01-01
Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.
Determination of combustion parameters using engine crankshaft speed
Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.
2013-07-01
Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.
A proposed method for fast determination of plasma parameters
International Nuclear Information System (INIS)
Braams, B.J.; Lackner, K.
1984-09-01
The method of function parametrization, developed and applied by H. Wind for fast data evaluation in high energy physics, is presented in the context of controlled fusion research. This method relies on statistical analysis of a data base of simulated experiments in order to obtain a functional representation for the intrinsic physical parameters of a system in terms of the values of the measurements. Some variations on Wind's original procedure are suggested. A specific application for tokamak experiments would be the determination of certain global parameters of the plasma, characterizing the current profile, shape of the cross-section, plasma pressure, and the internal inductance. The relevant measurements for this application include values of the poloidal field and flux external to the plasma, and a diamagnetic measurement. These may be combined with other diagnostics, such as electron-cyclotron emission and laser interferometry, in order to obtain also density and temperature profiles. There appears to be a capability for on-line determination of basic physical parameters, in a millisecond timescale on a minicomputer instead of in seconds on a large mainframe. (orig.)
Modelling tourists arrival using time varying parameter
Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.
2017-06-01
The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.
Do Lumped-Parameter Models Provide the Correct Geometrical Damping?
DEFF Research Database (Denmark)
Andersen, Lars
response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....
Determination of reactor parameters by single rod experiments
Energy Technology Data Exchange (ETDEWEB)
Raisic, N; Zdravkovic, Z; Ivkovic, M; Sotic, O [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)
1968-10-15
The objective of this work was to determine experimentally fuel element parameters using an isolated fuel element of arbitrary construction and analyzing the accuracy of their results with the aim to apply them in analysis of reactor system. The approach is based on assumption of heterogeneous reactor theory, 'source-sink' theory. The obtained experimental results have shown the possibility of obtaining data for absorption or production properties of fuel element by analyzing the thermal and epithermal neutron density distributions around a single fuel rod placed in a sufficiently large thermal hole.
Determination of valence band parameters in ZnTe
Energy Technology Data Exchange (ETDEWEB)
Froehlich, D.; Noethe, A.; Reimann, K. (Duesseldorf Univ. (Germany, F.R.). Physikalisches Inst. - Lehrstuhl 2)
1984-10-01
The fine structure of the 2P exciton in ZnTe is studied by two-photon-absorption. The energy splitting into four states, caused by the envelope-hole coupling, allows the determination of the Luttinger parameters ..gamma../sub 2/ and ..gamma../sub 3/, which describe the complex valence band. ..gamma../sub 2/ = 0.8 and ..gamma../sub 3/ = 1.7 are obtained. These values are compared to results of other experiments mainly on 1S excitons.
Lumped-parameters equivalent circuit for condenser microphones modeling.
Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar
2017-10-01
This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.
Determination of kinetic parameters of heterogeneous isotopic exchange reaction
International Nuclear Information System (INIS)
Huang, Ting-Chia; Tsai, Fuan-Nan
1977-01-01
A mathematical model has been proposed for a heterogeneous isotopic exchange reaction which involves film diffusion, surface chemical reaction and intraparticle diffusion. The exchange equation to predict the exchange fraction as a function of time for the spherical particles immersed in a solution of finite volume has been derived. The relations between the exchange fraction and dimensionless time are plotted with xi(=ak sub(f)/KD sub(e)), xi 1 (=K 1 a 2 /D sub(e)) and final fractional uptake as parameters. From the values of the kinetic parameters xi and xi 1 , the relative importance of each limiting step is discussed. Experimental results of the isotopic exchange reaction of calcium ion in both system CaCO 3 (s)/Ca 2+ (aq) and system calcium type resin Dowex 50W-X8/Ca 2+ (aq) are coincident with the theoretical equation proposed in this study. (auth.)
An Aggregated Method for Determining Railway Defects and Obstacle Parameters
Loktev, Daniil; Loktev, Alexey; Stepanov, Roman; Pevzner, Viktor; Alenov, Kanat
2018-03-01
The method of combining algorithms of image blur analysis and stereo vision to determine the distance to objects (including external defects of railway tracks) and the speed of moving objects-obstacles is proposed. To estimate the deviation of the distance depending on the blur a statistical approach, logarithmic, exponential and linear standard functions are used. The statistical approach includes a method of estimating least squares and the method of least modules. The accuracy of determining the distance to the object, its speed and direction of movement is obtained. The paper develops a method of determining distances to objects by analyzing a series of images and assessment of depth using defocusing using its aggregation with stereoscopic vision. This method is based on a physical effect of dependence on the determined distance to the object on the obtained image from the focal length or aperture of the lens. In the calculation of the blur spot diameter it is assumed that blur occurs at the point equally in all directions. According to the proposed approach, it is possible to determine the distance to the studied object and its blur by analyzing a series of images obtained using the video detector with different settings. The article proposes and scientifically substantiates new and improved existing methods for detecting the parameters of static and moving objects of control, and also compares the results of the use of various methods and the results of experiments. It is shown that the aggregate method gives the best approximation to the real distances.
Condition Parameter Modeling for Anomaly Detection in Wind Turbines
Directory of Open Access Journals (Sweden)
Yonglong Yan
2014-05-01
Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.
Critical parameters for isobutane determined by the image analysis
Energy Technology Data Exchange (ETDEWEB)
Masui, G. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Honda, Y. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Uematsu, M. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan)]. E-mail: uematsu@mech.keio.ac.jp
2006-12-15
(p, {rho}, T) Measurements and visual observations of the meniscus for isobutane were carried out carefully in the critical region over the range of temperatures: -15 mK {<=} (T - T {sub c}) {<=} 35 mK, and of densities: -7.5 kg . m{sup -3} {<=} ({rho} - {rho} {sub c}) {<=} 7.5 kg . m{sup -3} by a metal-bellows volumometer with an optical cell. Vapor pressures were also measured at T = (310, 405, 406, 407, and 407.5) K. The critical point of T {sub c} and {rho} {sub c} was determined by the image analysis of the critical opalescence which is proposed in this study. The critical pressure p {sub c} was determined to be the pressure measurement at the critical point. Comparisons of the critical parameters with values given in the literature are presented.
Critical parameters for isobutane determined by the image analysis
International Nuclear Information System (INIS)
Masui, G.; Honda, Y.; Uematsu, M.
2006-01-01
(p, ρ, T) Measurements and visual observations of the meniscus for isobutane were carried out carefully in the critical region over the range of temperatures: -15 mK ≤ (T - T c ) ≤ 35 mK, and of densities: -7.5 kg . m -3 ≤ (ρ - ρ c ) ≤ 7.5 kg . m -3 by a metal-bellows volumometer with an optical cell. Vapor pressures were also measured at T = (310, 405, 406, 407, and 407.5) K. The critical point of T c and ρ c was determined by the image analysis of the critical opalescence which is proposed in this study. The critical pressure p c was determined to be the pressure measurement at the critical point. Comparisons of the critical parameters with values given in the literature are presented
Supersymmetry breaking and dynamical determination of superstring parameters
International Nuclear Information System (INIS)
Casas, J.A.; Munoz, C.; Ross, G.G.
1991-01-01
The characteristics of the effective potentials coming from phenomenologically promising compactified superstring theories are examined, paying special attention to the supersymmetry breaking issue. We briefly review the status and some of the recent work on the subject and present a mechanism for generating the large gauge hierarchy by gaugino condensation effect in the case that the hidden sector possesses more than one condensate. Explicit examples based on orbifold compactification in which this is realized are also given. Minimization of the effective potential not only determines the gauge hierarchy but also fixes other important parameters of the theory, in particular the gauge coupling constant at the unification point and the expectation values of the moduli which give the size and shape of the compactified space. These get raesonable values which may, in turn, lead to a determination of the family mass hierarchy. (orig.)
The lumped parameter model for fuel pins
Energy Technology Data Exchange (ETDEWEB)
Liu, W S [Ontario Hydro, Toronto, ON (Canada)
1996-12-31
The use of a lumped fuel-pin model in a thermal-hydraulic code is advantageous because of computational simplicity and efficiency. The model uses an averaging approach over the fuel cross section and makes some simplifying assumptions to describe the transient equations for the averaged fuel, fuel centerline and sheath temperatures. It is shown that by introducing a factor in the effective fuel conductivity, the analytical solution of the mean fuel temperature can be modified to simulate the effects of the flux depression in the heat generation rate and the variation in fuel thermal conductivity. The simplified analytical method used in the transient equation is presented. The accuracy of the lumped parameter model has been compared with the results from the finite difference method. (author). 4 refs., 2 tabs., 4 figs.
Coffee Bean Grade Determination Based on Image Parameter
Directory of Open Access Journals (Sweden)
F. Ferdiansjah
2011-12-01
Full Text Available Quality standard for coffee as an agriculture commodity in Indonesia uses defect system which is regulated in Standar Nasional Indonesia (SNI for coffee bean, No: 01-2907-1999. In the Defect System standard, coffee bean is classified into six grades, from grade I to grade VI depending on the number of defect found in the coffee bean. Accuracy of this method heavily depends on the experience and the expertise of the human operators. The objective of the research is to develop a system to determine the coffee bean grading based on SNI No: 01-2907-1999. A visual sensor, a webcam connected to a computer, was used for image acquisition of coffee bean image samples, which were placed under uniform illumination of 414.5+2.9 lux. The computer performs feature extraction from parameters of coffee bean image samples in the term of texture (energy, entropy, contrast, homogeneity and color (R mean, G mean, and B mean and determines the grade of coffee bean based on the image parameters by implementing neural network algorithm. The accuracy of system testing for the coffee beans of grade I, II, III, IVA, IVB, V, and VI have the value of 100, 80, 60, 40, 100, 40, and 100%, respectively.
Modeling of Parameters of Subcritical Assembly SAD
Petrochenkov, S; Puzynin, I
2005-01-01
The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.
Automated inference procedure for the determination of cell growth parameters
Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.
2016-01-01
The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.
Parameter estimation in fractional diffusion models
Kubilius, Kęstutis; Ralchenko, Kostiantyn
2017-01-01
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...
Moose models with vanishing S parameter
International Nuclear Information System (INIS)
Casalbuoni, R.; De Curtis, S.; Dominici, D.
2004-01-01
In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2) L and U(1) Y at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric
The application of virtual prototyping methods to determine the dynamic parameters of mobile robot
Kurc, Krzysztof; Szybicki, Dariusz; Burghardt, Andrzej; Muszyńska, Magdalena
2016-04-01
The paper presents methods used to determine the parameters necessary to build a mathematical model of an underwater robot with a crawler drive. The parameters present in the dynamics equation will be determined by means of advanced mechatronic design tools, including: CAD/CAE software andMES modules. The virtual prototyping process is described as well as the various possible uses (design adaptability) depending on the optional accessories added to the vehicle. A mathematical model is presented to show the kinematics and dynamics of the underwater crawler robot, essential for the design stage.
Energy Technology Data Exchange (ETDEWEB)
Savel' ev, S., E-mail: S.Saveliev@lboro.ac.uk [Department of Physics, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Zagoskin, A.M. [Department of Physics, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Omelyanchouk, A.N. [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); B. Verkin Institute for Low Temperature Physics and Engineering, 61103 Kharkov (Ukraine); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2010-10-05
Imagine that you have several sets of two coupled qubits, but you do not know the parameters of their Hamitonians. How to determine these without resorting to the usual spectroscopy approach to the problem? Based on numerical modeling, we show that all the parameters of a system of two coupled qubits can be determined by applying to it an external classical noise and analyzing the Fourier spectrum of the elements of the system's density matrix. In particular, the interlevel spacings as well as the strength and sign of the qubit-qubit coupling can be determined this way.
Determination of Geometric Parameters of Space Steel Constructions
Directory of Open Access Journals (Sweden)
Jitka Suchá
2005-06-01
Full Text Available The paper contains conclusions of the PhD thesis „Accuracy of determination of geometric parameters of space steel construction using geodetic methods“. Generally it is a difficult task with high requirements for the accuracy and reliability of results, i.e. space coordinates of assessed points on a steel construction. A solution of this task is complicated by the effects of atmospheric influences to begin with the temperature, which strongly affects steel constructions. It is desirable to eliminate the influence of the temperature for the evaluation of the geometric parameters. A choice of an efficient geodetic method, which fulfils demanding requirements, is often affected with a constrained place in an immediate neighbourhood of the measured construction. These conditions disable the choice of efficient points configuration of a geodetic micro network, e.g. the for forward intersection. In addition, points of a construction are often hardly accessible and therefore marking is difficult. The space polar method appears efficient owing to the mentioned reasons and its advantages were increased with the implementation of self-adhesive reflex targets for the distance measurement which enable the ermanent marking of measured points already in the course of placing the construction.
Determination of chemical solute transport parameters effecting radiostrontium interbed sediments
International Nuclear Information System (INIS)
Hemming, C.; Bunde, R.L.; Rosentreter, J.J.
1993-01-01
The extent to which radionuclides migrate in an aquifer system is a function of various physical, chemical, and biological processes. A measure of this migration rate is of primary concern when locating suitable storage sites for such species. Parameters including water-rock interactions, infiltration rates, chemical phase modification, and biochemical reactions all affect solute transport. While these different types of chemical reactions can influence solute transport in subsurface waters, distribution coefficients (Kd) can be send to effectively summarize the net chemical factors which dictate transport efficiency. This coefficient describes the partitioning of the solute between the solution and solid phase. Methodology used in determining and interpreting the distribution coefficient for radiostrontium in well characterized sediments will be presented
Real-time determination of confinement parameters in JET
International Nuclear Information System (INIS)
Barana, Oliviero; Joffrin, E.; Murari, A.; Sartori, F.
2003-01-01
The main confinement parameters, like the internal inductance l i and the diamagnetic poloidal beta β DIA , are of particular relevance for a reliable real-time control system of next step tokamaks. These quantities have been obtained at Joint European Torus (JET), with a precision more than satisfactory for real-time applications, through a method, known as BETALI, that uses the Shafranov integrals S 1 , S 2 and S 3 . Since S 1 , S 2 and S 3 are defined on the plasma boundary, a technique, that exploits the real-time boundary code XLOC, has been expressively developed to determine the last closed flux surface (LCFS). BETALI has been verified on several experimental plasma configurations, giving very encouraging results both in the limiter and x-point phase of the discharges. The compatibility with the time restrictions has also been tested successfully. This application has, therefore, been implemented and it has already been used during last JET campaigns
Critical parameters for propane determined by the image analysis
Energy Technology Data Exchange (ETDEWEB)
Honda, Y.; Sato, T. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Uematsu, M. [Center for Multiscale Mechanics and Mechanical Systems, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan)], E-mail: uematsu@mech.keio.ac.jp
2008-02-15
The (p, {rho}, T) measurements and visual observations of the meniscus for propane were carried out carefully in the critical region over the range of temperatures: -60 mK {<=} (T - T{sub c}) {<=} 40 mK and of densities: -4 kg . m{sup -3} {<=} ({rho} - {rho}{sub c}) {<=} 6 kg . m{sup -3} by a metal-bellows volumometer with an optical cell. Vapour pressures were also measured at T = (320.000, 343.132, 369.000, and 369.625) K. The critical point of T{sub c}, {rho}{sub c}, and p{sub c} was determined by the image analysis of the critical opalescence. Comparisons of the critical parameters with values given in the literature are presented.
Critical parameters for propane determined by the image analysis
International Nuclear Information System (INIS)
Honda, Y.; Sato, T.; Uematsu, M.
2008-01-01
The (p, ρ, T) measurements and visual observations of the meniscus for propane were carried out carefully in the critical region over the range of temperatures: -60 mK ≤ (T - T c ) ≤ 40 mK and of densities: -4 kg . m -3 ≤ (ρ - ρ c ) ≤ 6 kg . m -3 by a metal-bellows volumometer with an optical cell. Vapour pressures were also measured at T = (320.000, 343.132, 369.000, and 369.625) K. The critical point of T c , ρ c , and p c was determined by the image analysis of the critical opalescence. Comparisons of the critical parameters with values given in the literature are presented
Determination Of Adaptive Control Parameter Using Fuzzy Logic Controller
Directory of Open Access Journals (Sweden)
Omur Can Ozguney
2017-08-01
Full Text Available The robot industry has developed along with the increasing the use of robots in industry. This has led to increase the studies on robots. The most important part of these studies is that the robots must be work with minimum tracking trajectory error. But it is not easy for robots to track the desired trajectory because of the external disturbances and parametric uncertainty. Therefore adaptive and robust controllers are used to decrease tracking error. The aim of this study is to increase the tracking performance of the robot and minimize the trajectory tracking error. For this purpose adaptive control law for robot manipulator is identified and fuzzy logic controller is applied to find the accurate values for adaptive control parameter. Based on the Lyapunov theory stability of the uncertain system is guaranteed. In this study robot parameters are assumed to be unknown. This controller is applied to a robot model and the results of simulations are given. Controller with fuzzy logic and without fuzzy logic are compared with each other. Simulation results show that the fuzzy logic controller has improved the results.
Determining tumor blood flow parameters from dynamic image measurements
Libertini, Jessica M.
2008-11-01
Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.
Can measurements of electric dipole moments determine the seesaw parameters?
International Nuclear Information System (INIS)
Demir, Durmus A.; Farzan, Yasaman
2005-01-01
In the context of the supersymmetrized seesaw mechanism embedded in the Minimal Supersymmetric Standard Model (MSSM), complex neutrino Yukawa couplings can induce Electric Dipole Moments (EDMs) for the charged leptons, providing an additional route to seesaw parameters. However, the complex neutrino Yukawa matrix is not the only possible source of CP violation. Even in the framework of Constrained MSSM (CMSSM), there are additional sources, usually attributed to the phases of the trilinear soft supersymmetry breaking couplings and the mu-term, which contribute not only to the electron EDM but also to the EDMs of neutron and heavy nuclei. In this work, by combining bounds on various EDMs, we analyze how the sources of CP violation can be discriminated by the present and planned EDM experiments
Study of Parameters that Determine Railway Line Capacity
Directory of Open Access Journals (Sweden)
Josip Kukec
2005-07-01
Full Text Available In this work the study focuses on:- determining the elements required to determine the locationfor the installation of the main signals,- calculated block lengths, and- calculations of optimal head ways, that have not been studiedin detail although they deserve special attention due totheir impact.Generally speaking, the signals are installed in compliancewith the local circumstances, i. e. according to the technicaland technological characteristics and conditions determinedby the traffic places of work they protect.The distribution and length of the blocks depend on: therailway line and its exploitation characteristics, structure andtype of trains that run on the railway line, traffic organisationand signalisation system, as well as technical and exploitationcharacte1istics of the traction vehicles and the rolling stock.What has to be considered is that the minimum section lengthcannot be shorter than the length of the braking distance, i. e.the length of the longest train which runs on the respective railwayline.The study of these parameters is supplemented by the calculationof the reduction in throughput capacity depending on thelack of uniformity in the operation of trains, which, in order tomaintain the design quality of the transportation se1vice, and inthe activities of establishing and implementing the business policyshouldn't be left out nor bypassed.
Models for setting ATM parameter values
DEFF Research Database (Denmark)
Blaabjerg, Søren; Gravey, A.; Romæuf, L.
1996-01-01
essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper......In ATM networks, a user should negotiate at connection set-up a traffic contract which includes traffic characteristics and requested QoS. The traffic characteristics currently considered are the Peak Cell Rate, the Sustainable Cell Rate, the Intrinsic Burst Tolerance and the Cell Delay Variation...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...
Empirical flow parameters : a tool for hydraulic model validity
Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.
2013-01-01
The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.
Determination of resist parameters using the extended Nijboer-Zernike theory
Dirksen, P.; Braat, J.; Janssen, A.J.E.M.; Leeuwestein, A.; Kwinten, H.; Van Steenwinckel, D.
2004-01-01
This study presents an experimental method to determine the resist parameters that are at the origin of a general blurring of the projected aerial image. The resist model includes the effects of diffusion in the horizontal plane and a second cause for image blur that originates from a stochastic
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Sebastiao E.M. de; Padua Guarini, Antonio de [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Souza, Joao A. de; Valgas, Helio M; Pinto, Roberto del Giudice R. [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)
1994-12-31
This work describes the results of the set frequency response tests performed in the generator number 2, 6.9 kV, 25 MVA, of Camargos hydroelectric power plant, CEMIG, and the parameters relatives to determined structures of model. This tests are unpublished in Brazil. (author) 7 refs., 16 figs., 7 tabs.
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Maity, Arnab; Carroll, Raymond J.
2013-01-01
PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus
Field measurement program to determine far field plume dilution parameters
International Nuclear Information System (INIS)
Orth, R.C.; Carter, H.H.; Miyasaki, M.T.
1974-01-01
A description of the techniques used to obtain measurements of temperature, salinity, tidal velocity and tracer concentration required to determine the far field dilution in a shallow estuary is presented. The study was done to characterize the physical hydrography of the Bush River, a tributary estuary of the Chesapeake Bay, which is a possible recipient of the thermal discharge from a proposed power plant consisting of two 850 MWe nuclear generating units. Measurements of temperature and salinity along the axis of the estuary during periods of high and low fresh water inflow were obtained for use in the development of a one-dimensional-segmented transient state model of the estuary. Computer concentrations from the model compared favorably with measured dye concentrations for the same periods of high and low freshwater inflow
SPOTting model parameters using a ready-made Python package
Houska, Tobias; Kraft, Philipp; Breuer, Lutz
2015-04-01
The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for
Determination of transfer parameters in corrugated plates exchangers
International Nuclear Information System (INIS)
Silva Lima Filho, S. da.
1984-01-01
In this work is presented a experimental study about the forced convenction problem in vee-corrugated exchangers, with flow in the transversal sense, and parallel plates exchangers in which the isotermal plate is equivalent to the absobing one and the other plate is adiabatic. Global values of the transfer coefficients were experimentally obtained by application of the Naphthalene Sublimation Technique in accordance with the analogy between heat and mass transfer. The results were expressed in terms of Sh sup(-) /Sc sup(0,4) that according to the analogy is equal the Nu sup(-) / Pr sup(0,4) in function of the Reynolds number. The ratio between the lenght of the channel and the average spacing between plates L/2a was ranged in all the exchangers. Parameters of transfer to angles of 45 0 and 31 0 were determined in the corrugated plates exchangers. The experimental results obtained were analyzed and compared among them. Finally practical applications of these results are presented to heat exchangers with similars geometric characteristics. (Author) [pt
Determination of key parameters of vector multifractal vector fields
Schertzer, D. J. M.; Tchiguirinskaia, I.
2017-12-01
For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).
Determination of astrophysical parameters of quasars within the Gaia mission
Delchambre, L.
2018-01-01
We describe methods designed to determine the astrophysical parameters of quasars based on spectra coming from the red and blue spectrophotometers of the Gaia satellite. These methods principally rely on two already published algorithms that are the weighted principal component analysis and the weighted phase correlation. The presented approach benefits from a fast implementation, an intuitive interpretation as well as strong diagnostic tools on the potential errors that may arise during predictions. The production of a semi-empirical library of spectra as they will be observed by Gaia is also covered and subsequently used for validation purpose. We detail the pre-processing that is necessary in order for these spectra to be fully exploitable by our algorithms along with the procedures that are used to predict the redshifts of the quasars, their continuum slopes, the total equivalent width of their emission lines and whether these are broad absorption line (BAL) quasars or not. Performances of these procedures were assessed in comparison with the extremely randomized trees learning method and were proven to provide better results on the redshift predictions and on the ratio of correctly classified observations though the probability of detection of BAL quasars remains restricted by the low resolution of these spectra as well as by their limited signal-to-noise ratio. Finally, the triggering of some warning flags allows us to obtain an extremely pure subset of redshift predictions where approximately 99 per cent of the observations come along with absolute errors that are below 0.1.
International Nuclear Information System (INIS)
Voi, Dante Luiz; Santos Bastos, Wilma dos
1995-01-01
Subcritical and exponential experiments are important for Reactor Physics integral parameter determinations both to validate and confirm theoretical models for reactor calculations. An exponential and subcritical facility has been constructed to be used on the internal thermal column of the Argonauta reactor at IEN-CNEN- Rio de Janeiro. An experimental research program has been developed for the determination of fundamental reactor constants as buckling, migration areas, resonance escape probabilities, thermal utilization, fast fission and fuel eta factors. (author) 23 refs
Automated parameter estimation for biological models using Bayesian statistical model checking.
Hussain, Faraz; Langmead, Christopher J; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram; Jha, Sumit K
2015-01-01
Probabilistic models have gained widespread acceptance in the systems biology community as a useful way to represent complex biological systems. Such models are developed using existing knowledge of the structure and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data. A key bottleneck in building such models is that some system variables cannot be measured experimentally. These variables are incorporated into the model as numerical parameters. Determining values of these parameters that justify existing experiments and provide reliable predictions when model simulations are performed is a key research problem. Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel parameter estimation algorithm by discovering the amount and schedule of doses of bacterial lipopolysaccharide that guarantee a set of observed clinical outcomes with high probability. We synthesized values of twenty-eight unknown parameters such that the parameterized model instantiated with these parameter values satisfies four specifications describing the dynamic behavior of the model. We have developed a new algorithmic technique for discovering parameters in complex stochastic models of biological systems given behavioral specifications written in a formal mathematical logic. Our algorithm uses Bayesian model checking, sequential hypothesis testing, and stochastic optimization to automatically synthesize parameters of probabilistic biological models.
Model parameter learning using Kullback-Leibler divergence
Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan
2018-02-01
In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.
Evaluation of some infiltration models and hydraulic parameters
International Nuclear Information System (INIS)
Haghighi, F.; Gorji, M.; Shorafa, M.; Sarmadian, F.; Mohammadi, M. H.
2010-01-01
The evaluation of infiltration characteristics and some parameters of infiltration models such as sorptivity and final steady infiltration rate in soils are important in agriculture. The aim of this study was to evaluate some of the most common models used to estimate final soil infiltration rate. The equality of final infiltration rate with saturated hydraulic conductivity (Ks) was also tested. Moreover, values of the estimated sorptivity from the Philips model were compared to estimates by selected pedotransfer functions (PTFs). The infiltration experiments used the doublering method on soils with two different land uses in the Taleghan watershed of Tehran province, Iran, from September to October, 2007. The infiltration models of Kostiakov-Lewis, Philip two-term and Horton were fitted to observed infiltration data. Some parameters of the models and the coefficient of determination goodness of fit were estimated using MATLAB software. The results showed that, based on comparing measured and model-estimated infiltration rate using root mean squared error (RMSE), Hortons model gave the best prediction of final infiltration rate in the experimental area. Laboratory measured Ks values gave significant differences and higher values than estimated final infiltration rates from the selected models. The estimated final infiltration rate was not equal to laboratory measured Ks values in the study area. Moreover, the estimated sorptivity factor by Philips model was significantly different to those estimated by selected PTFs. It is suggested that the applicability of PTFs is limited to specific, similar conditions. (Author) 37 refs.
Noszczyk-Nowak, Agnieszka; Cepiel, Alicja; Janiszewski, Adrian; Pasławski, Robert; Gajek, Jacek; Pasławska, Urszula; Nicpoń, Józef
2016-01-01
Swine are a well-recognized animal model for human cardiovascular diseases. Despite the widespread use of porcine model in experimental electrophysiology, still no reference values for intracardiac electrical activity and conduction parameters determined during an invasive electrophysiology study (EPS) have been developed in this species thus far. The aim of the study was to develop a set of normal values for intracardiac electrical activity and conduction parameters determined during an invasive EPS of swine. The study included 36 healthy domestic swine (24-40 kg body weight). EPS was performed under a general anesthesia with midazolam, propofol and isoflurane. The reference values for intracardiac electrical activity and conduction parameters were calculated as arithmetic means ± 2 standard deviations. The reference values were determined for AH, HV and PA intervals, interatrial conduction time at its own and imposed rhythm, sinus node recovery time (SNRT), corrected sinus node recovery time (CSNRT), anterograde and retrograde Wenckebach points, atrial, atrioventricular node and ventricular refractory periods. No significant correlations were found between body weight and heart rate of the examined pigs and their electrophysiological parameters. The hereby presented reference values can be helpful in comparing the results of various studies, as well as in more accurately estimating the values of electrophysiological parameters that can be expected in a given experiment.
Determination of supersymmetric parameters with neural networks at the large hadron collider
International Nuclear Information System (INIS)
Bornhauser, Nicki
2013-12-01
The LHC is running and in the near future potentially some signs of new physics are measured. In this thesis it is assumed that the underlying theory of such a signal would be identified and that it is some kind of minimal supersymmetric extension of the Standard Model. Generally, the mapping from the measurable observables onto the parameter values of the supersymmetric theory is unknown. Instead, only the opposite direction is known, i.e. for fixed parameters the measurable observables can be computed with some uncertainties. In this thesis, the ability of artifical neural networks to determine this unknown function is demonstrated. At the end of a training process, the created networks are capable to calculate the parameter values with errors for an existing measurement. To do so, at first a set of mostly counting observables is introduced. In the following, the usefulness of these observables for the determination of supersymmetric parameters is checked. This is done by applying them on 283 pairs of parameter sets of a MSSM with 15 parameters. These pairs were found to be indistinguishable at the LHC by another study, even without the consideration of SM background. It can be shown that 260 of these pairs can be discriminated using the introduced observables. Without systematic errors even all pairs can be distinguished. Also with the consideration of SM background still most pairs can be disentangled (282 without and 237 with systematic errors). This result indicates the usefulness of the observables for the direct parameter determination. The performance of neural networks is investigated for four different parameter regions of the CMSSM. With the right set of observables, the neural network approach generally could also be used for any other (non-supersymmetric) theory. In each region, a reference point with around 1,000 events after cuts should be determined in the context of a LHC with a center of mass energy of 14 TeV and an integrated luminosity of 10 fb
Micromachined two dimensional resistor arrays for determination of gas parameters
van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of
Implementation of the Global Parameters Determination in Gaia's Astrometric Solution (AGIS)
Raison, F.; Olias, A.; Hobbs, D.; Lindegren, L.
2010-12-01
Gaia is ESA’s space astrometry mission with a foreseen launch date in early 2012. Its main objective is to perform a stellar census of the 1000 Million brightest objects in our galaxy (completeness to V=20 mag) from which an astrometric catalog of micro-arcsec level accuracy will be constructed. A key element in this endeavor is the Astrometric Global Iterative Solution (AGIS). A core part of AGIS is to determine the accurate spacecraft attitude, geometric instrument calibration and astrometric model parameters for a well-behaved subset of all the objects (the ‘primary stars’). In addition, a small number of global parameters will be estimated, one of these being PPN γ. We present here the implementation of the algorithms dedicated to the determination of the global parameters.
Models for estimating photosynthesis parameters from in situ production profiles
Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana
2017-12-01
The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of
A Review of Distributed Parameter Groundwater Management Modeling Methods
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Parameters of oscillation generation regions in open star cluster models
Danilov, V. M.; Putkov, S. I.
2017-07-01
We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.
Determining frequentist confidence limits using a directed parameter space search
International Nuclear Information System (INIS)
Daniel, Scott F.; Connolly, Andrew J.; Schneider, Jeff
2014-01-01
We consider the problem of inferring constraints on a high-dimensional parameter space with a computationally expensive likelihood function. We propose a machine learning algorithm that maps out the Frequentist confidence limit on parameter space by intelligently targeting likelihood evaluations so as to quickly and accurately characterize the likelihood surface in both low- and high-likelihood regions. We compare our algorithm to Bayesian credible limits derived by the well-tested Markov Chain Monte Carlo (MCMC) algorithm using both multi-modal toy likelihood functions and the seven yr Wilkinson Microwave Anisotropy Probe cosmic microwave background likelihood function. We find that our algorithm correctly identifies the location, general size, and general shape of high-likelihood regions in parameter space while being more robust against multi-modality than MCMC.
Determination of Geometric and Kinematical Parameters of Coronal Mass Ejections Using STEREO Data
Fainshtein, V. G.; Tsivileva, D. M.; Kashapova, L. K.
2010-03-01
We present a new, relatively simple and fast method to determine true geometric and kinematical CME parameters from simultaneous STEREO A, B observations of CMEs. These parameters are the three-dimensional direction of CME propagation, velocity and acceleration of CME front, CME angular sizes and front position depending on time. The method is based on the assumption that CME shape may be described by a modification of so-called ice-cream cone models. The method has been tested for several CMEs.
Determining global parameters of the oscillations of solar-like stars
DEFF Research Database (Denmark)
Mathur, S.; García, R. A.; Régulo, C.
2010-01-01
Context. Helioseismology has enabled us to better understand the solar interior, while also allowing us to better constrain solar models. But now is a tremendous epoch for asteroseismology as space missions dedicated to studying stellar oscillations have been launched within the last years (MOST....... Aims. The goal of this research work is to estimate the global parameters of any solar-like oscillating target in an automatic manner. We want to determine the global parameters of the acoustic modes (large separation, range of excited pressure modes, maximum amplitude, and its corresponding frequency...
Determination of Geometric and Kinematical Parameters of Coronal Mass Ejections Using STEREO Data
International Nuclear Information System (INIS)
Fainshtein, V. G.; Tsivileva, D. M.; Kashapova, L. K.
2010-01-01
We present a new, relatively simple and fast method to determine true geometric and kinematical CME parameters from simultaneous STEREO A, B observations of CMEs. These parameters are the three-dimensional direction of CME propagation, velocity and acceleration of CME front, CME angular sizes and front position depending on time. The method is based on the assumption that CME shape may be described by a modification of so-called ice-cream cone models. The method has been tested for several CMEs.
Parameter determination for quantitative PIXE analysis using genetic algorithms
International Nuclear Information System (INIS)
Aspiazu, J.; Belmont-Moreno, E.
1996-01-01
For biological and environmental samples, PIXE technique is in particular advantage for elemental analysis, but the quantitative analysis implies accomplishing complex calculations that require the knowledge of more than a dozen parameters. Using a genetic algorithm, the authors give here an account of the procedure to obtain the best values for the parameters necessary to fit the efficiency for a X-ray detector. The values for some variables involved in quantitative PIXE analysis, were manipulated in a similar way as the genetic information is treated in a biological process. The authors carried out the algorithm until they reproduce, within the confidence interval, the elemental concentrations corresponding to a reference material
Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model
International Nuclear Information System (INIS)
Schindler, R.E.
1996-09-01
The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes
Determination of power system component parameters using nonlinear dead beat estimation method
Kolluru, Lakshmi
Power systems are considered the most complex man-made wonders in existence today. In order to effectively supply the ever increasing demands of the consumers, power systems are required to remain stable at all times. Stability and monitoring of these complex systems are achieved by strategically placed computerized control centers. State and parameter estimation is an integral part of these facilities, as they deal with identifying the unknown states and/or parameters of the systems. Advancements in measurement technologies and the introduction of phasor measurement units (PMU) provide detailed and dynamic information of all measurements. Accurate availability of dynamic measurements provides engineers the opportunity to expand and explore various possibilities in power system dynamic analysis/control. This thesis discusses the development of a parameter determination algorithm for nonlinear power systems, using dynamic data obtained from local measurements. The proposed algorithm was developed by observing the dead beat estimator used in state space estimation of linear systems. The dead beat estimator is considered to be very effective as it is capable of obtaining the required results in a fixed number of steps. The number of steps required is related to the order of the system and the number of parameters to be estimated. The proposed algorithm uses the idea of dead beat estimator and nonlinear finite difference methods to create an algorithm which is user friendly and can determine the parameters fairly accurately and effectively. The proposed algorithm is based on a deterministic approach, which uses dynamic data and mathematical models of power system components to determine the unknown parameters. The effectiveness of the algorithm is tested by implementing it to identify the unknown parameters of a synchronous machine. MATLAB environment is used to create three test cases for dynamic analysis of the system with assumed known parameters. Faults are
Determination of bubble parameters in two-phase flow
International Nuclear Information System (INIS)
Oliveira Lira, C.A.B. de.
1980-01-01
A development of a probe-detector system for measurement of bubble parameters like size, rise velocity and void fraction in two-phase flow is presented. The method uses an electro resistivity probe and a compact electronic circuit has been developed for obtain this purpose. (author)
Determination of Destress Blasting Effectiveness Using Seismic Source Parameters
Wojtecki, Łukasz; Mendecki, Maciej J.; Zuberek, Wacaław M.
2017-12-01
Underground mining of coal seams in the Upper Silesian Coal Basin is currently performed under difficult geological and mining conditions. The mining depth, dislocations (faults and folds) and mining remnants are responsible for rockburst hazard in the highest degree. This hazard can be minimized by using active rockburst prevention, where destress blastings play an important role. Destress blastings in coal seams aim to destress the local stress concentrations. These blastings are usually performed from the longwall face to decrease the stress level ahead of the longwall. An accurate estimation of active rockburst prevention effectiveness is important during mining under disadvantageous geological and mining conditions, which affect the risk of rockburst. Seismic source parameters characterize the focus of tremor, which may be useful in estimating the destress blasting effects. Investigated destress blastings were performed in coal seam no. 507 during its longwall mining in one of the coal mines in the Upper Silesian Coal Basin under difficult geological and mining conditions. The seismic source parameters of the provoked tremors were calculated. The presented preliminary investigations enable a rapid estimation of the destress blasting effectiveness using seismic source parameters, but further analysis in other geological and mining conditions with other blasting parameters is required.
determination of weibull parameters and analysis of wind power
African Journals Online (AJOL)
HOD
shape parameter (k) and the scale factor(c) were obtained to be 6.7 m/s and 4.3 m/s, 0.91 MW and 0.25 MW, K~ 5.4 and. 2.1, and c ... China, the forecast is not different as the report of the ..... Distribution for Wind Energy Analysis”, J. Wind Eng.
Optimizing incomplete sample designs for item response model parameters
van der Linden, Willem J.
Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with
An Application of a Multidimensional Extension of the Two-Parameter Logistic Latent Trait Model.
McKinley, Robert L.; Reckase, Mark D.
A latent trait model is described that is appropriate for use with tests that measure more than one dimension, and its application to both real and simulated test data is demonstrated. Procedures for estimating the parameters of the model are presented. The research objectives are to determine whether the two-parameter logistic model more…
Parameter Estimates in Differential Equation Models for Chemical Kinetics
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Application of a free parameter model to plastic scintillation samples
Energy Technology Data Exchange (ETDEWEB)
Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)
2011-08-21
In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.
Determination of performance parameters of vertical axis wind turbines in wind tunnel
Directory of Open Access Journals (Sweden)
Nguyen Van Bang
2017-01-01
Full Text Available The paper deals with the determination of the performance parameters of a small vertical axis wind turbines (VAWT, which operate by the utilization of drag forces acting on the blades of the turbine. The performance was evaluated by investigating the electrical power output and torque moment of the wind machine. Measurements were performed on the full-scale model and the experimental data are assessed and compared to other types of wind turbines, with respect to its purpose.
Study on Parameters Modeling of Wind Turbines Using SCADA Data
Directory of Open Access Journals (Sweden)
Yonglong YAN
2014-08-01
Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.
Model atmospheres and parameters of central stars of planetary nebulae
International Nuclear Information System (INIS)
Patriarchi, P.; Cerruti-sola, M.; Perinotto, M.
1989-01-01
Non-LTE hydrogen and helium model atmospheres have been obtained for temperatures and gravities relevant to the central stars of planetary nebulae. Low-resolution and high-resolution observations obtained by the IUE satellite have been used along with optical data to determine Zanstra temperatures of the central stars of NGC 1535, NGC 6210, NGC 7009, IC 418, and IC 4593. Comparison of the observed stellar continuum of these stars with theoretical results allowed further information on the stellar temperature to be derived. The final temperatures are used to calculate accurate stellar parameters. 62 refs
Research and determination of process parameters of milk lactose hydrolysis
Калинина, Елена Дмитриевна; Коваленко, Александр Владимирович
2014-01-01
The researches of enzymatic milk lactose hydrolysis by using the β - galactosidase enzyme are given in the paper. For carrying out a lactose hydrolysis, two β-galactosidase enzyme preparations GODO-YNL2 and Neolactase are offered. For setting lactose hydrolysis parameters, the influence of a pH medium, temperature, enzyme preparation doses, the duration of hydrolyzing the milk lactose affected by the β- galactosidase enzyme preparations, was studied. In terms of effectiveness, adaptability an...
EXPERIMENTAL DETERMINATION OF DOUBLE VIBE FUNCTION PARAMETERS IN DIESEL ENGINES WITH BIODIESEL
Directory of Open Access Journals (Sweden)
Radivoje B Pešić
2010-01-01
Full Text Available A zero-dimensional, one zone model of engine cycle for steady-state regimes of engines and a simplified procedure for indicator diagrams analysis have been developed at the Laboratory for internal combustion engines, fuels and lubricants of the Faculty of Mechanical Engineering in Kragujevac. In addition to experimental research, thermodynamic modeling of working process of diesel engine with direct injection has been presented in this paper. The simplified procedure for indicator diagrams analysis has been applied, also. The basic problem, a selection of shape parameters of double Vibe function used for modeling the engine operation process, has been solved. The influence of biodiesel fuel and engine working regimes on the start of combustion, combustion duration and shape parameter of double Vibe was determined by a least square fit of experimental heat release curve.
International Nuclear Information System (INIS)
Joonhong Ahn; Atsuyuki Suzuki
1993-01-01
This paper presents results of a mathematical analysis for performance of the engineered barriers of high-level radioactive waste repositories. The main body of the mathematical model developed in this study is mass transport of actinides in a bentonite region. In an analysis of actinide transport, radioactive decay chain and effects of low solubilities must be taken into account. In many previous models for mass transport in engineered barriers including radioactive decay chain, however, boundary conditions at the interface between the waste form and the bentonite region cannot be determined flexibly. In some models, solubility-limited boundary condition is assumed for all the members in a chain. In order to investigate what are key radionuclides and parameters that control performance of engineered barriers of a geologic repository, we must evaluate mass transport with the source boundary condition determined by a detailed analysis on mass transfer at the boundary. In this study, we developed a mathematical model, which can determine whether the inner boundary condition is solubility-limited or congruent release, based on a mathematical analysis for mass transfer at the glass dissolution location, and how long the solubility-limited boundary condition applies. Based on the mathematical model, we point out radionuclides and parameters that have primary influences on the performance of a repository, and investigate a reasonable strategy for coupling geologic disposal and partitioning of those key radionuclides from the standpoint of reducing hazard of geologic disposal. (authors). 4 tabs., 2 figs., 8 refs
Estimation Parameters And Modelling Zero Inflated Negative Binomial
Directory of Open Access Journals (Sweden)
Cindy Cahyaning Astuti
2016-11-01
Full Text Available Regression analysis is used to determine relationship between one or several response variable (Y with one or several predictor variables (X. Regression model between predictor variables and the Poisson distributed response variable is called Poisson Regression Model. Since, Poisson Regression requires an equality between mean and variance, it is not appropriate to apply this model on overdispersion (variance is higher than mean. Poisson regression model is commonly used to analyze the count data. On the count data type, it is often to encounteredd some observations that have zero value with large proportion of zero value on the response variable (zero Inflation. Poisson regression can be used to analyze count data but it has not been able to solve problem of excess zero value on the response variable. An alternative model which is more suitable for overdispersion data and can solve the problem of excess zero value on the response variable is Zero Inflated Negative Binomial (ZINB. In this research, ZINB is applied on the case of Tetanus Neonatorum in East Java. The aim of this research is to examine the likelihood function and to form an algorithm to estimate the parameter of ZINB and also applying ZINB model in the case of Tetanus Neonatorum in East Java. Maximum Likelihood Estimation (MLE method is used to estimate the parameter on ZINB and the likelihood function is maximized using Expectation Maximization (EM algorithm. Test results of ZINB regression model showed that the predictor variable have a partial significant effect at negative binomial model is the percentage of pregnant women visits and the percentage of maternal health personnel assisted, while the predictor variables that have a partial significant effect at zero inflation model is the percentage of neonatus visits.
Determination of regional Euler pole parameters for Eastern Austria
Umnig, Elke; Weber, Robert; Schartner, Matthias; Brueckl, Ewald
2017-04-01
The horizontal motion of lithospheric plates can be described as rotations around a rotation axes through the Earth's center. The two possible points where this axes intersects the surface of the Earth are called Euler poles. The rotation is expressed by the Euler parameters in terms of angular velocities together with the latitude and longitude of the Euler pole. Euler parameters were calculated from GPS data for a study area in Eastern Austria. The observation network is located along the Mur-Mürz Valley and the Vienna Basin. This zone is part of the Vienna Transfer Fault, which is the major fault system between the Eastern Alps and the Carpathians. The project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics) investigated intra plate tectonic movements within the Austrian part in order to estimate the seismic hazard. Precise site coordinate time series established from processing 5 years of GPS observations are available for the regional network spanning the years from 2010.0 to 2015.0. Station velocities with respect to the global reference frame ITRF2008 have been computed for 23 sites. The common Euler vector was estimated on base of a subset of reliable site velocities, for stations directly located within the area of interest. In a further step a geokinematic interpretation shall be carried out. Therefore site motions with respect to the Eurasian Plate are requested. To obtain this motion field different variants are conceivable. In a simple approach the mean ITRF2008 velocity of IGS site GRAZ can be adopted as Eurasian rotational velocity. An improved alternative is to calculate site-specific velocity differences between the Euler rotation and the individual site velocities. In this poster presentation the Euler parameters, the residual motion field as well as first geokinematic interpretation results are presented.
Quantitative determination of α and f parameters for κo NAA
International Nuclear Information System (INIS)
Moon, J. H.; Kim, S. H.; Jeong, Y. S.
2002-01-01
Instrumental Neutron Activation Analysis as a representative method of nuclear analytical techniques, has advantages of non-destructive, simultaneous multi-element analysis with the characteristics of absolute measurement. Recently, use of κ o quantitative method which is accurate, convenient and user-friendly has been generalized world-widely. In this study, α and f parameters which is indispensable to implement κ o NAA were experimentally measured at NAA No.1-irradiation hole of HANARO research reactor. In addition, it was intended to apply routine analysis by the establishment of reliable and effective procedure of the measurement
Verifying asteroseismically determined parameters of Kepler stars using Hipparcos parallaxes
DEFF Research Database (Denmark)
Aguirre, Victor Silva; Chaplin, W.J.; Bedding, T.R.
2012-01-01
potential, robust methods for estimating stellar parameters are required and independent verification of the results is mandatory. With this purpose, we present a new technique to obtain stellar properties by coupling asteroseismic analysis with the InfraRed Flux Method. By using two global seismic...... observables and multi-band photometry, the technique allows us to obtain masses, radii, effective temperatures, bolometric fluxes, and hence distances for field stars in a self-consistent manner. We apply our method to 22 solar-like oscillators in the Kepler short-cadence sample, that have accurate Hipparcos...
Determination of the Michel parameter in tau decay
International Nuclear Information System (INIS)
Albrecht, H.; Ehrlichmann, H.; Harder, G.; Krueger, A.; Nau, A.; Nilsson, A.W.; Nippe, A.; Oest, T.; Reidenbach, M.; Schaefer, M.; Schmidt-Parzefall, W.; Schroeder, H.; Schulz, H.D.; Sefkow, F.; Wurth, R.; Appuhn, R.D.; Drescher, A.; Hast, C.; Herrera, G.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Scheck, H.; Schieber, M.; Schweda, G.; Spaan, B.; Walther, A.; Wegener, D.; Britton, D.I.; MacFarlane, D.B.; McLean, K.W.; Patel, P.M.; Tsipolitis, G.; Tzamariudaki, K.; Charlesworth, C.E.K.; Krieger, P.; Kutschke, R.; Orr, R.S.; Parsons, J.A.; Prentice, J.D.; Seidel, S.C.; Yoon, T.S.; Edwards, K.W.; Kapitza, H.; Ruf, T.; Schael, S.; Schubert, K.R.; Strahl, K.; Waldi, R.; Weseler, S.
1990-01-01
Using the ARGUS detector at the DORIS II e + e - storage ring we have studied the electron and muon energy spectra in τ - →e - νanti ν and τ - →μ - νanti ν. The measured value of the Michel parameter, ρ=0.742±0.035±0.020, is in good agreement with a standard V-A coupling at the τ-ν τ -W vertex. Pure V, A and V+A couplings are completely excluded by this measurement. Upper limits have been obtained for two-body tau decays, including final states with a Goldstone boson. (orig.)
Discrete ambiguity resolution and baryon-resonance parameter determination
International Nuclear Information System (INIS)
Chew, D.M; Urban, M.
1978-04-01
A partial-wave analysis was performed on elastic π + p data between 1400 and 2200 MeV, using principles of analyticity (to select and amalgamate data), causality and unitarity together with Barrelet zeros are the resonating waves between 1500 and 1800 MeV examined in detail, and it is shown how a new resolution of the discrete ambiguity gives, for the S31 and D33 resonances, different parameters than found in an earlier resolution using less accurate information. In either case, mass degeneracy of these resonances is observed in agreement with general considerations regarding smooth zero trajectories. 18 references
Directory of Open Access Journals (Sweden)
Héctor Brito Socarrás
2011-02-01
Full Text Available En este trabajo se realiza un breve estudio de los parámetros que intervienen en los modelosmatemáticos de las máquinas asincrónicas, así como la manera de su determinación experimental, loque da la posibilidad de la modelación de una máquina asincrónica cualquiera, de la que no seconozcan sus parámetros. Por último se brindan los valores obtenidos experimentalmente en ellaboratorio de las pruebas de una máquina asincrónica y los resultados que brinda el modelo de ungenerador asincrónico autoexcitado con dichos datos. After a brief study of the parameters which are needed for the formulation of the most frequently usedmathematical models for electrical induction machines, the authors give a way for their experimentaldetermination in order to establish the computer simulation of induction machine whose parameters arepreviously unknown. Finally are given the values of parameters obtained at a case study of an inductionmachine performed in the laboratory, as well as the simulation results of a self-excited inductiongenerator using the above mentioned parameters.
Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization
International Nuclear Information System (INIS)
Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen
2014-01-01
A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)
Parameters of importance to determine during geoscientific site investigation
Energy Technology Data Exchange (ETDEWEB)
Andersson, Johan [QuantiSci AB (Sweden); Almen, K.E. [KEA GEO-Konsult AB (Sweden); Ericsson, Lars O.; Karlsson, Fred; Stroem, A. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Fredriksson, Anders [ADG Grundteknik AB (Sweden); Stanfors, R. [Roy Stanfors Consulting AB (Sweden)
1998-06-01
This document identifies and describes geo-scientific parameters that are of importance in order to carry out performance and safety assessments of a deep repository for spent nuclear fuel, based on the information that can be obtained from a site investigation. The document also discusses data needs for planning and design of the rock works and for description of other environmental aspects. Evaluation of the different parameters is discussed in the document as well. The document was produced by a working group consisting of the authors and various SKB staff and consultants, and comprises a step in the planning of a geo-scientific investigation programme at the sites where site investigations will be conducted. The goals of the work presented in this report can be derived directly from SKBs ongoing RD and D Programme. The programme stipulates that a geo-scientific site investigation programme must be available before a site investigation begins. This programme is supposed to specify the goals, measurement methods and evaluation methodology, as well as the acceptance criteria against which the site is evaluated. It is pointed out that site evaluation is a collective term for an interactive process consisting of different parts 65 refs, 15 figs, 12 tabs
NMR determination of the order parameter in proton and deuteron glasses
International Nuclear Information System (INIS)
Blinc, R.; Dolinsek, J.; Zalar, B.
1989-01-01
The inhomogeneous broadening of the ND + deuteron, O-D--O deuteron and 87 Rb quadrapole perturbed NMR spectra in Rb 0.56 (ND 4 ) 0.44 D 2 PO 4 is used for a direct determination of the Edwards-Anderson pseudo-spin glass order parameter. The data provide strong support for a model where the basic difference between magnetic spin glasses and proton or deuteron glasses is the presence of an inherent random field resulting from substitutional disorder which linearly couples to the O-D--O pseudo spins. In these systems we do not deal with a transition from a paraelectric to a pseudo-spin glass phase but rather with a transition from an ergodic pseudo-spin glass phase with a single order parameter q to a non-ergodic pseudo-spin glass phase with an infinite number of order parameters. (author). 11 refs.; 6 figs
Experimental determination of chosen document elements parameters from raster graphics sources
Directory of Open Access Journals (Sweden)
Jiří Rybička
2010-01-01
Full Text Available Visual appearance of documents and their formal quality is considered to be as important as the content quality. Formal and typographical quality of documents can be evaluated by an automated system that processes raster images of documents. A document is described by a formal model that treats a page as an object and also as a set of elements, whereas page elements include text and graphic object. All elements are described by their parameters depending on elements’ type. For future evaluation, mainly text objects are important. This paper describes the experimental determination of chosen document elements parameters from raster images. Techniques for image processing are used, where an image is represented as a matrix of dots and parameter values are extracted. Algorithms for parameter extraction from raster images were designed and were aimed mainly at typographical parameters like indentation, alignment, font size or spacing. Algorithms were tested on a set of 100 images of paragraphs or pages and provide very good results. Extracted parameters can be directly used for typographical quality evaluation.
Parameter Optimisation for the Behaviour of Elastic Models over Time
DEFF Research Database (Denmark)
Mosegaard, Jesper
2004-01-01
Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...
Identifying the connective strength between model parameters and performance criteria
Directory of Open Access Journals (Sweden)
B. Guse
2017-11-01
Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria
Determination of nuclear tracks parameters on sequentially etched PADC detectors
Horwacik, Tomasz; Bilski, Pawel; Koerner, Christine; Facius, Rainer; Berger, Thomas; Nowak, Tomasz; Reitz, Guenther; Olko, Pawel
Polyallyl Diglycol Carbonate (PADC) detectors find many applications in radiation protection. One of them is the cosmic radiation dosimetry, where PADC detectors measure the linear energy transfer (LET) spectra of charged particles (from protons to heavy ions), supplementing TLD detectors in the role of passive dosemeter. Calibration exposures to ions of known LET are required to establish a relation between parameters of track observed on the detector and LET of particle creating this track. PADC TASTRAK nuclear track detectors were exposed to 12 C and 56 Fe ions of LET in H2 O between 10 and 544 keV/µm. The exposures took place at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan in the frame of the HIMAC research project "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility" (20P-240). Detectors were etched in water solution of NaOH with three different temperatures and for various etching times to observe the appearance of etched tracks, the evolution of their parameters and the stability of the etching process. The applied etching times (and the solution's concentrations and temperatures) were: 48, 72, 96, 120 hours (6.25 N NaOH, 50 O C), 20, 40, 60, 80 hours (6.25 N NaOH, 60 O C) and 8, 12, 16, 20 hours (7N NaOH, 70 O C). The analysis of the detectors involved planimetric (2D) measurements of tracks' entrance ellipses and mechanical measurements of bulk layer thickness. Further track parameters, like angle of incidence, track length and etch rate ratio were then calculated. For certain tracks, results of planimetric measurements and calculations were also compared with results of optical track profile (3D) measurements, where not only the track's entrance ellipse but also the location of the track's tip could be directly measured. All these measurements have been performed with the 2D/3D measurement system at DLR. The collected data allow to create sets of V(LET in H2 O) calibration curves suitable for short, intermediate and
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification
Determination of the parameters for design of flexible plastic tank ...
African Journals Online (AJOL)
The creep and recovery characteristics of the material were determined for the range of loads and temperatures at which the material is likely to be applied. A set of equations was developed from the creep and recovery curves to estimate the values of creep and recovery within the temperature range 30°C - 50°C and for ...
Resuspension parameters for TRAC dispersion model
International Nuclear Information System (INIS)
Langer, G.
1987-01-01
Resuspension factors for the wind erosion of soil contaminated with plutonium are necessary to run the Rocky Flats Plant Terrain Responsive Atmospheric Code (TRAC). The model predicts the dispersion and resulting population dose due to accidental plutonium releases
Determination of gamma ray shielding parameters of rocks and concrete
Obaid, Shamsan S.; Gaikwad, Dhammajyot K.; Pawar, Pravina P.
2018-03-01
Gamma shielding parameters such as mass attenuation coefficient (μ/ρ), effective atomic number (Zeff) and electron density (Neff) have been measured and calculated for rocks and concrete in the energy range 122-1330 keV. The measurements have been carried out at 122, 356, 511, 662, 1170, 1275, 1330 keV gamma ray energies using a gamma spectrometer includes a NaI(Tl) scintillation detector and MCA card. The atomic and electronic cross sections have also been investigated. Experimental and calculated (WinXCom) values were compared, and good agreement has been observed within the experimental error. The obtained results showed that feldspathic basalt, compact basalt, volcanic rock, dolerite and pink granite are more efficient than the sandstone and concrete for gamma ray shielding applications.
Directory of Open Access Journals (Sweden)
Y.O. Uhryn
2017-12-01
Full Text Available Magnetoresistance as a tool of basic parameters determination of minority charge carriers and the ratio of minority charge carriers conductivity to majority ones in solid matter has been considered within the framework of the phenomenological two-band model. The criterion of the application of this model has been found. As examples of these equations usage the conductor, semiconductor and superconductor have been introduced. From the obtained temperature dependences of the aforementioned values in superconductor, a supposition of a deciding role of minority charge carriers in the emergence of superconductivity state has been made.
Energy Technology Data Exchange (ETDEWEB)
Chamizo Llatas, M.
1995-07-01
In the present work we analyze the process e{sup e{yields}}bb with the data collected during 1991 and 1992 by the Z,3 detector situated in the LEP e{sup es}torage-ring (CERN). From the measurements of the cross-sections and the charge asymmetry we determine the parameters of the b quark in the framework of the Standard Model. Finally, we parametrize the possible deviations from the model an obtain upper and lower. limits for the mass of the t quark. (Author) 23 refs.
Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.
2012-12-01
Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root
Directory of Open Access Journals (Sweden)
Jonathan R Karr
2015-05-01
Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
One-loop effects on MSSM parameter determination via chargino production at the LC
Energy Technology Data Exchange (ETDEWEB)
Bharucha, Aoife [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kalinowski, Jan [Warsaw Univ. (Poland). Faculty of Physics; Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Rolbiecki, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); IFT-UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
At a future linear collider very precise measurements, typically with errors of <1%, are expected to be achievable. Such an accuracy gives sensitivity to the quantum corrections, which therefore must be incorporated in theoretical calculations in order to determine the underlying new physics parameters from prospective linear collider measurements. In the context of the chargino-neutralino sector of the minimal supersymmetric standard model, this involves fitting one-loop predictions to prospective measurements of the cross sections, forward-backward asymmetries and of the accessible chargino and neutralino masses. Taking recent results from LHC SUSY and Higgs searches into account we consider three benchmark scenarios, each with characteristic features. Our analysis shows how an accurate determination of the desired parameters is possible, providing in addition access to the stop masses and mixing angle.
One-loop effects on MSSM parameter determination via chargino production at the LC
International Nuclear Information System (INIS)
Bharucha, Aoife; Rolbiecki, Krzysztof
2012-11-01
At a future linear collider very precise measurements, typically with errors of <1%, are expected to be achievable. Such an accuracy gives sensitivity to the quantum corrections, which therefore must be incorporated in theoretical calculations in order to determine the underlying new physics parameters from prospective linear collider measurements. In the context of the chargino-neutralino sector of the minimal supersymmetric standard model, this involves fitting one-loop predictions to prospective measurements of the cross sections, forward-backward asymmetries and of the accessible chargino and neutralino masses. Taking recent results from LHC SUSY and Higgs searches into account we consider three benchmark scenarios, each with characteristic features. Our analysis shows how an accurate determination of the desired parameters is possible, providing in addition access to the stop masses and mixing angle.
Energy Technology Data Exchange (ETDEWEB)
Romero-Gonzalez, J. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Peralta-Videa, J.R. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Rodriguez, E. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Ramirez, S.L. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Gardea-Torresdey, J.L. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States) and Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States)]. E-mail: jgardea@utep.edu
2005-04-15
The temperature dependence of the Cr(VI) bioadsorption and its possible reduction to Cr(III) by Agave lechuguilla biomass were studied. The experimental data obtained in batch experiments at different temperatures were fitted to the Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. The adsorption equilibrium data fitted well with the Freundlich model. The average model parameters calculated from Freundlich's isotherms (adsorption capacity K{sub F} = 4 . 10{sup -2} mol . g{sup -1} and an average adsorption intensity value n = 13.07) showed that A. lechuguilla can be considered as an effective biomaterial for Cr(VI) removal from aqueous solution. Thermodynamic parameters ({delta}G{sup .}, {delta}H{sup .}, and {delta}S{sup .}) for Cr(VI) adsorption determined in the temperature range from (283 to 313) K suggest that a portion of Cr(VI) may be bound to functional groups on the surface of the adsorbent and then reduced to Cr(III). Additionally, the parameters of the Dubinin-Radushkevick equation indicated that the sorption of chromium species onto lechuguilla biomass mainly proceeds through binding surface functional groups.
Determining the optimum process parameter for grinding operations using robust process
Energy Technology Data Exchange (ETDEWEB)
Neseli, Suley Man; Asilturk, Ilhan; Celik, Levent [Univ. of Selcuk, Konya (Turkmenistan)
2012-11-15
We applied combined response surface methodology (RSM) and Taguchi methodology (TM) to determine optimum parameters for minimum surface roughness (Ra) and vibration (Vb) in external cylindrical grinding. First, an experiment was conducted in a CNC cylindrical grinding machine. The TM using L{sup 27} orthogonal array was applied to the design of the experiment. The three input parameters were workpiece revolution, feed rate and depth of cut; the outputs were vibrations and surface roughness. Second, to minimize wheel vibration and surface roughness, two optimized models were developed using computer aided single objective optimization. The experimental and statistical results revealed that the most significant grinding parameter for surface roughness and vibration is workpiece revolution followed by the depth of cut. The predicted values and measured values were fairly close, which indicates 2 ( 94.99 R{sup 2Ra}=and 2 92.73) R{sup 2Vb}=that the developed models can be effectively used to predict surface roughness and vibration in the grinding. The established model for determination of optimal operating conditions shows that a hybrid approach can lead to success of a robust process.
Determining the optimum process parameter for grinding operations using robust process
International Nuclear Information System (INIS)
Neseli, Suley Man; Asilturk, Ilhan; Celik, Levent
2012-01-01
We applied combined response surface methodology (RSM) and Taguchi methodology (TM) to determine optimum parameters for minimum surface roughness (Ra) and vibration (Vb) in external cylindrical grinding. First, an experiment was conducted in a CNC cylindrical grinding machine. The TM using L 27 orthogonal array was applied to the design of the experiment. The three input parameters were workpiece revolution, feed rate and depth of cut; the outputs were vibrations and surface roughness. Second, to minimize wheel vibration and surface roughness, two optimized models were developed using computer aided single objective optimization. The experimental and statistical results revealed that the most significant grinding parameter for surface roughness and vibration is workpiece revolution followed by the depth of cut. The predicted values and measured values were fairly close, which indicates 2 ( 94.99 R 2Ra =and 2 92.73) R 2Vb =that the developed models can be effectively used to predict surface roughness and vibration in the grinding. The established model for determination of optimal operating conditions shows that a hybrid approach can lead to success of a robust process
Determination of toroidal equilibrium parameters from magnetic probe measurements
International Nuclear Information System (INIS)
Brynolf, J.; Eriksson, H.G.; Persson, H.; Hellblom, G.
1992-12-01
A method has been developed by which the poloidal flux function in the vacuum region between the plasma and the external conductors (and the iron core) can be deduced from external magnetic field measurements. The plasma is in equilibrium and the solution is restricted to plasmas without irregularities. The poloidal field components Bθ and B r are measured at different poloidal positions outside the liner and modelled by truncated Fourier series. The Grad-Shafranov equation in the vacuum region is then solved with these modelled values of Bθ and B r as boundary conditions. (authors)
Modeling Influenza Transmission Using Environmental Parameters
Soebiyanto, Radina P.; Kiang, Richard K.
2010-01-01
Influenza is an acute viral respiratory disease that has significant mortality, morbidity and economic burden worldwide. It infects approximately 5-15% of the world population, and causes 250,000 500,000 deaths each year. The role of environments on influenza is often drawn upon the latitude variability of influenza seasonality pattern. In regions with temperate climate, influenza epidemics exhibit clear seasonal pattern that peak during winter months, but it is not as evident in the tropics. Toward this end, we developed mathematical model and forecasting capabilities for influenza in regions characterized by warm climate Hong Kong (China) and Maricopa County (Arizona, USA). The best model for Hong Kong uses Land Surface Temperature (LST), precipitation and relative humidity as its covariates. Whereas for Maricopa County, we found that weekly influenza cases can be best modelled using mean air temperature as its covariates. Our forecasts can further guides public health organizations in targeting influenza prevention and control measures such as vaccination.
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
Determination of 68Ga production parameters by different reactions ...
Indian Academy of Sciences (India)
function of 68Zn(p, n)68Ga reaction was compared with the reported ... 2.1.1 Brief description of nuclear models applied for cross-section calculations ... tion of isotope impurities is not possible by chemical methods, so this reaction is.
Dynamics in the Parameter Space of a Neuron Model
Paulo, C. Rech
2012-06-01
Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.
Advances in Modelling, System Identification and Parameter ...
Indian Academy of Sciences (India)
Authors show, using numerical simulation for two system functions, the improvement in percentage normalized ... of nonlinear systems. The approach is to use multiple linearizing models fitted along the operating trajectories. ... over emphasized in the light of present day high level of research activity in the field of aerospace ...
Convergence of surface diffusion parameters with model crystal size
Cohen, Jennifer M.; Voter, Arthur F.
1994-07-01
A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.
Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation
Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.
1995-01-01
Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be
Determination of molecular parameters by electron collisions and laser techniques
International Nuclear Information System (INIS)
Colon, C.
1989-01-01
In this work a general procedure to study diatomic molecules in intermediate coupling scheme has been developed. This study allows to obtain expressions to calculate molecular line strengths and rotational transition intensities. These results are used in a numerical program to synthetize vibrational and rotational band spectra of any diatomic molecule. With this technique the experimental spectra of the first negative system of N 2 + and the fist positive system of N 2 are reproduced theoretically and it is possible to deduce its electronic transition moments values by comparison. Also the method has been applied to compare the synthetized bands with the experimental spectra of the B O u + -- x 1 Σ g + system of Au 2 and the A 2 Σ--- x 2 π system of OH. From these comparison band intensities and electronic moments can be deduced. The branching ratio method to measure the relative spectral response in the 1100-1560 A o =wavelength range of a vacuum uv monochromator has been used. Relative intensity of rotational lines with origine in a common upper vibrational-rotational level of Warner and Lyman systems of H 2 , have been measured. Also in this work, the deexcitation of the B 3 π + (0 + u ), v'=14 level of I 2 after pulsed laser excitation has been studied. The quenching cross sections by collisions with I 2 , H 2 , CO 2 and CH 4 have been determin-ed. (Author)
Agricultural and Environmental Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Kaylie Rasmuson; Kurt Rautenstrauch
2003-01-01
This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN
Gholami, Raoof; Moradzadeh, Ali; Rasouli, Vamegh; Hanachi, Javid
2014-12-01
Conventionally, high frequency Dipole Shear sonic Imager (DSI) logs are used for anisotropic modeling where fast and slow shear wave's velocities are required. However, the results obtained from a DSI log are restricted to a specific and possibly short interval of the wellbore. The aims of this paper are to use Vertical Seismic Profile (VSP) data and show its application in geomechanical analysis of subsurface layers under anisotropic condition. After processing and separating upgoing and downgoing P- and S-waves, a methodology based Vertical Transverse Isotropic (VTI) condition was presented to determine elastic stiffness parameters. Having stiffness parameters determined, elastic modulus, strength and in-situ stress parameters were estimated and calibrated against the field and core sample data. Although the VSP based geomechanical parameters were calibrated against the real field data, the accuracy of the method cannot be as much as that of the well logs. However, the method presented in this paper may become a very good asset for geomechanical evaluation of the intervals where well log data are not available.
A simulation of water pollution model parameter estimation
Kibler, J. F.
1976-01-01
A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.
Determination of the Performance Parameters of a Spectrophotometer: An Advanced Experiment.
Cope, Virgil W.
1978-01-01
Describes an advanced analytical chemistry laboratory experiment developed for the determination of the performance parameters of a spectrophotometer. Among the parameters are the baseline linearity with wavelength, wavelength accuracy and respectability, stray light, noise level and pen response time. (HM)
Ultrasonic determination of thermodynamic threshold parameters for irreversible cutaneous burns
Cantrell, J. H., Jr.
1982-01-01
In vivo ultrasonic measurements of the depth of conductive cutaneous burns experimentally induced in anesthetized Yorkshire pigs are reported as a function of burn time for the case in which the skin surface temperature is maintained at 100 C. The data are used in the solution of the one-dimensional heat diffusion equation with time-dependent boundary conditions to obtain the threshold temperature and the energy of transformation per unit mass associated with the transition of the tissue from the state of viability to the state of necrosis. The simplicity of the mathematical model and the expediency of the ultrasonic measurements in studies of thermal injury are emphasized.
Determination of the decay parameters of resonant states
International Nuclear Information System (INIS)
Tsoupas, N.
1975-01-01
The partial decay proton widths and the relative phases of six of the resonances in 29 P from excitation energies 5.7 to 7.1 MeV were determined. For this determination the angular distributions of protons scattered inelastically from the first 2 + excited state in 28 Si have been measured at 88 energies between E/sub p/ = 3.0 to 5.2 MeV. The coefficients describing the angular distributions were extracted from the experimental data and plotted as a function of C.M. bombarding energy over the resonance region. In addition triple angular correlations in the spin-flip geometry of the inelastically scattered protons from the 2 + first excited state of 28 Si with the γ-rays resulted from the de-excitation of 28 Si to its ground state were performed over the energy region E/sub p/ = 3.0 to 4.7 MeV. The coefficients describing these triple angular correlations were extracted and plotted versus C.M. bombarding energy. To aid in the analysis the experimental data of another triple angular correlation in the Goldfarb-Seyler geometry between the two radiations as in the spin flip angular correlation were used. Further analysis of the experimental data for the extraction of the partial decay widths and phases proceeded by calculating the theoretical expressions of the coefficients versus energy, using a Breit-Wigner formalism including interference between the resonances. The calculated theoretical coefficients were compared with the experimental ones through an on-line interactive program which permitted visual comparisons of the theoretically calculated coefficients to the experimental coefficients. The partial decay proton widths and the relative phases for six of the resonances will be presented in this dissertation
Lumped parameter models for the interpretation of environmental tracer data
International Nuclear Information System (INIS)
Maloszewski, P.; Zuber, A.
1996-01-01
Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs
Lumped parameter models for the interpretation of environmental tracer data
Energy Technology Data Exchange (ETDEWEB)
Maloszewski, P [GSF-Inst. for Hydrology, Oberschleissheim (Germany); Zuber, A [Institute of Nuclear Physics, Cracow (Poland)
1996-10-01
Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs.
Modelling of bio-optical parameters of open ocean waters
Directory of Open Access Journals (Sweden)
Vadim N. Pelevin
2001-12-01
Full Text Available An original method for estimating the concentration of chlorophyll pigments, absorption of yellow substance and absorption of suspended matter without pigments and yellow substance in detritus using spectral diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance data has been applied to sea waters of different types in the open ocean (case 1. Using the effective numerical single parameter classification with the water type optical index m as a parameter over the whole range of the open ocean waters, the calculations have been carried out and the light absorption spectra of sea waters tabulated. These spectra are used to optimize the absorption models and thus to estimate the concentrations of the main admixtures in sea water. The value of m can be determined from direct measurements of the downward irradiance attenuation coefficient at 500 nm or calculated from remote sensing data using the regressions given in the article. The sea water composition can then be readily estimated from the tables given for any open ocean area if that one parameter m characterizing the basin is known.
Parameters modelling of amaranth grain processing technology
Derkanosova, N. M.; Shelamova, S. A.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.
2018-03-01
The article presents a technique that allows calculating the structure of a multicomponent bakery mixture for the production of enriched products, taking into account the instability of nutrient content, and ensuring the fulfilment of technological requirements and, at the same time considering consumer preferences. The results of modelling and analysis of optimal solutions are given by the example of calculating the structure of a three-component mixture of wheat and rye flour with an enriching component, that is, whole-hulled amaranth flour applied to the technology of bread from a mixture of rye and wheat flour on a liquid leaven.
WATGIS: A GIS-Based Lumped Parameter Water Quality Model
Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya
2002-01-01
A Geographic Information System (GIS)Âbased, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogenÂloading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...
A test for the parameters of multiple linear regression models ...
African Journals Online (AJOL)
A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...
The influence of model parameters on catchment-response
International Nuclear Information System (INIS)
Shah, S.M.S.; Gabriel, H.F.; Khan, A.A.
2002-01-01
This paper deals with the study of influence of influence of conceptual rainfall-runoff model parameters on catchment response (runoff). A conceptual modified watershed yield model is employed to study the effects of model-parameters on catchment-response, i.e. runoff. The model is calibrated, using manual parameter-fitting approach, also known as trial and error parameter-fitting. In all, there are twenty one (21) parameters that control the functioning of the model. A lumped parametric approach is used. The detailed analysis was performed on Ling River near Kahuta, having catchment area of 56 sq. miles. The model includes physical parameters like GWSM, PETS, PGWRO, etc. fitting coefficients like CINF, CGWS, etc. and initial estimates of the surface-water and groundwater storages i.e. srosp and gwsp. Sensitivity analysis offers a good way, without repetititious computations, the proper weight and consideration that must be taken when each of the influencing factor is evaluated. Sensitivity-analysis was performed to evaluate the influence of model-parameters on runoff. The sensitivity and relative contributions of model parameters influencing catchment-response are studied. (author)
Identification of ecosystem parameters by SDE-modelling
DEFF Research Database (Denmark)
Stochastic differential equations (SDEs) for ecosystem modelling have attracted increasing attention during recent years. The modelling has mostly been through simulation experiments in order to analyse how system noise propagates through the ordinary differential equation formulation of ecosystem...... models. Estimation of parameters in SDEs is, however, possible by combining Kalman filter techniques and likelihood estimation. By modelling parameters as random walks it is possible to identify linear as well as non-linear interactions between ecosystem components. By formulating a simple linear SDE...
PLS-NIR determination of five parameters in different types of Chinese rice wine
Yu, Haiyan; Ying, Yibin; Fu, Xiaping; Lu, Huishan
2005-11-01
To evaluate the applicability of near infrared spectroscopy for determination of the five enological parameters (alcoholic degree, pH value, total acid and amino acid nitrogen, °Brix) of Chinese rice wine, transmission spectra were collected in the spectral range from 12500 to 3800 cm-1 in a 1 mm path length rectangular quartz cuvette with air as reference at room temperature. Five calibration equations for the five parameters were established between the reference data and spectra by partial least squares (PLS) regression, separately. The best calibration results were achieved for the determination of alcoholic degree and °Brix. The RPD (ration of the standard deviation of the samples to the SECV) values of the calibration for both alcoholic degree and °Brix were higher than 3 (4.30 and 7.94, respectively), which demonstrated the robustness and power of the calibration models. The determination coefficients (R2) for alcoholic degree and °Brix were 0.987 and 0.991, respectively. The performance of pH, total acid and amino acid nitrogen was not as good as that of alcoholic degree and °Brix. The RPD values for the three parameters were 1.48, 1.85 and 1.82, respectively, and R2 values were 0.964, 0.970 and 0.971, respectively. In validation step, R2 value of the five parameters are all higher than 0.7, especially for alcoholic degree and °Brix (0.968 and 0.956, respectively). The results demonstrated that NIR spectroscopy could be used to predict the concentration of the five enological parameters in Chinese rice wine.
Determining photon energy absorption parameters for different soil samples
International Nuclear Information System (INIS)
Kucuk, Nil; Cakir, Merve; Tumsavas, Zeynal
2013-01-01
The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137 Cs and 60 Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ x 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137 Cs. The effective atomic numbers (Z eff ) and the effective electron densities (N eff ) were determined experimentally and theoretically using the obtained μ s values for the soil samples. Furthermore, the Z eff and N eff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. (author)
Bayesian estimation of parameters in a regional hydrological model
Directory of Open Access Journals (Sweden)
K. Engeland
2002-01-01
Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis
Brownian motion model with stochastic parameters for asset prices
Ching, Soo Huei; Hin, Pooi Ah
2013-09-01
The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.
Energy Technology Data Exchange (ETDEWEB)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.
Experimental determination of dynamic parameters of an industrial robot
Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.
2017-08-01
In an industry increasingly used are industrial robots. Commonly used are two basic methods of programming, on-line programming and off-line programming. In both cases, the programming consists in getting to the selected points record this position, and set the order of movement of the robot, and the introduction of logical tests. Such a program is easy to write, and it is suitable for most industrial applications. Especially when the process is known, respectively slow and unchanging. In this case, the program is being prepared for a universal model of the robot with the appropriate geometry and are checked only collisions. Is not taken into account the dynamics of the robot and how it will really behave while in motion. For this reason, the robot programmed to be tested at a reduced speed, which is raised gradually to the final value. Depending on the complexity of the move and the proximity of the elements it takes a lot of time. It is easy to notice that the robot at different speeds have different trajectories and behaves differently.
Energy Technology Data Exchange (ETDEWEB)
Weissfloch, R
1973-07-15
The fuel elements of high-temperature reactors, coated with pyrolitic carbon and covered with graphite, release fission products like all other fuel elements. Because of safety reasons, the rate of this release has to be kept low and has also to be predictable. Measured values from irradiation tests and from post-irradiation tests about the actual release of different fission products are presented. The physical and chemical mechanism, which determines the release, is extraordinarily complex and in particular not clearly defined. Because of the mentioned reasons, a simplified calculation model was developed, which only considers the release-mechanisms phenomenologically. This calculation model coincides very well in its results with values received in experiments until now. It can be held as an interim state on the way to a complete theory.
International Nuclear Information System (INIS)
Weissfloch, R.
The fuel elements of High-Temperature Reactors, coated with pyrolitic carbon and covered with graphite, release fission products like all other fuel elements. Because of safety reasons the rate of this release has to be kept low and has also to be predictable. Measured values from irradiation tests and from post-irradiation tests about the actual release of different fission products are present. The physical and chemical mechanism, which determines the release, is extraordinarily complex and in particular not clearly defined. Because of the mentioned reasons a simplified calculation model was developed, which only considers the release-mechanisms phenomenologically. This calculation model coincides very well in its results with values received in experiments until now. It can serve as an interim state on the way to a complete theory. (U.S.)
A distributed parameter wire model for transient electrical discharges
International Nuclear Information System (INIS)
Maier, W.B. II; Kadish, A.; Sutherland, C.D.; Robiscoe, R.T.
1990-01-01
A model for freely propagating transient electrical discharges, such as lightning and punch-through arcs, is developed in this paper. We describe the electromagnetic fields by Maxwell's equations and we represent the interaction of electric fields with the medium to produce current by ∂J/∂t=ω 2 (E-E*J)/4π, where ω and E* are parameters characteristic of the medium, J≡current density, and J≡J/|J|. We illustrate the properties of this model for small-diameter, guided, cylindrically symmetric discharges. Analytic, numerical, and approximate solutions are given for special cases. The model describes, in a new and comprehensive fashion, certain macroscopic discharge properties, such as threshold behavior, quenching and reignition, path tortuosity, discharge termination with nonzero charge density remaining along the discharge path, and other experimentally observed discharge phenomena. Fields, current densities, and charge densities are quantitatively determined from given boundary and initial conditions. We suggest that many macroscopic discharge properties are properly explained by the model as electromagnetic phenomena, and we discuss extensions of the model to include chemistry, principally ionization and recombination
Description of the hexadecapole deformation parameter in the sdg interacting boson model
International Nuclear Information System (INIS)
Liu Yuxin; Sun Di; Wang Jiajun; Han Qizhi
1998-01-01
The hexadecapole deformation parameter β 4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacting boson model. An explicit relation between the geometric hexadecapole deformation parameter β 4 and the intrinsic deformation parameters ε 4 , ε 2 are obtained. The deformation parameters β 4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β 4 systematics as well as the SU(3) limit
Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model
Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi
1998-04-01
The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.
Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing
2015-01-01
Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional com...
Learning about physical parameters: the importance of model discrepancy
International Nuclear Information System (INIS)
Brynjarsdóttir, Jenný; O'Hagan, Anthony
2014-01-01
Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)
Spatio-temporal modeling of nonlinear distributed parameter systems
Li, Han-Xiong
2011-01-01
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s
International Nuclear Information System (INIS)
Svoboda, J.; Mori, G.; Prethaler, A.; Fischer, F.D.
2014-01-01
Highlights: • A modeling study for diffusion of hydrogen with traps is presented. • Introduction of a new chemical diffusion coefficient. • Density of traps and average depth of traps can be determined. • Lattice diffusion and sub-surface concentration of atomic hydrogen can be determined. - Abstract: An improved diffusion theory accounting for trapping effects is applied to evaluation of hydrogen permeation experiments performed for pure iron and pearlitic and martensitic steels. The trapping parameters as molar volume and depth of traps are determined by fitting experiments by simulations based on the theory. The concentration-dependent chemical diffusion coefficient of hydrogen is extracted indicating that the trapping effect on diffusion in pure iron and pearlitic steel is negligible. However, it is significant for martensitic steel, for which the chemical diffusion coefficient cannot be considered as concentration-independent as it is established in current standards
Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.
Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid
2015-11-07
Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2). Copyright © 2015 Elsevier Ltd. All rights reserved.
Universally sloppy parameter sensitivities in systems biology models.
Directory of Open Access Journals (Sweden)
Ryan N Gutenkunst
2007-10-01
Full Text Available Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Universally sloppy parameter sensitivities in systems biology models.
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-10-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver
Kang, Ling; Zhou, Liwei
2018-02-01
Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.
Modeling and Parameter Estimation of a Small Wind Generation System
Directory of Open Access Journals (Sweden)
Carlos A. Ramírez Gómez
2013-11-01
Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.
NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION
Directory of Open Access Journals (Sweden)
Roman L. Leibov
2017-09-01
Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented
Vigue, Y.; Lichten, S. M.; Muellerschoen, R. J.; Blewitt, G.; Heflin, M. B.
1993-01-01
Data collected from a worldwide 1992 experiment were processed at JPL to determine precise orbits for the satellites of the Global Positioning System (GPS). A filtering technique was tested to improve modeling of solar-radiation pressure force parameters for GPS satellites. The new approach improves orbit quality for eclipsing satellites by a factor of two, with typical results in the 25- to 50-cm range. The resultant GPS-based estimates for geocentric coordinates of the tracking sites, which include the three DSN sites, are accurate to 2 to 8 cm, roughly equivalent to 3 to 10 nrad of angular measure.
International Nuclear Information System (INIS)
Valcarcel, Lino; Alberro, Nancy; Rodriguez, Maydel; Herrero, Zahily; Borroto, Jorge; Hernandez, Anel; Dominguez, Judith; Derivet, Milagros; Flores, Pedro; Cuesta, Jaime; Griffith, Jose
2011-01-01
The hydrodynamic and morphological parameters (the times of travel, velocities and flowrates of the waters, and the average widths, cross sections and depths) in the middle segment of the river Luyano were determined combining the employment of sodium pertechnectate (Na 99m TcO 4 ) as radiotracer with other conventional techniques. The results were used for the calibration of the expanded Streeter and Phelps model of the river. In the work, the methodology and the main results obtained during the journey realized between the second fortnight of March and the first of April 2009 are presented. (Author)
International Nuclear Information System (INIS)
Guénolé, J; Godet, J; Pizzagalli, L
2010-01-01
The non-dissociated screw dislocation in a model covalent material like silicon is known to exist in three possible stable core configurations. We performed calculations combining the nudged elastic band technique and a semi-empirical description in order to determine mechanisms and activation parameters for transforming one core into another. Our results showed that a glide core is necessarily reconstructed, since the energy barrier for reconstruction is easily overcome by thermal activation. Conversely, a transformation between a shuffle and a glide core appears unlikely at low temperature, which raises questions about the existence of the double-period glide configuration
Identification of parameters of discrete-continuous models
International Nuclear Information System (INIS)
Cekus, Dawid; Warys, Pawel
2015-01-01
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible
Identification of parameters of discrete-continuous models
Energy Technology Data Exchange (ETDEWEB)
Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)
2015-03-10
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus
Directory of Open Access Journals (Sweden)
Dhaundiyal Alok
2018-02-01
Full Text Available A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO, Kissinger-Akahira-Sonuse (KAS and Kissinger, and model-fitting (Coats Redfern. The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.
de Sousa, Kleverson C.; Domingues, Allan C.; Pereira, Pedro P. de S.; Carneiro, Sergio H.; de Morais, Marcus V. G.; Fabro, Adriano T.
2016-06-01
The experimental determination of modal parameters, i.e. natural frequencies, mode shapes and damping ratio, are key in characterizing the dynamic behaviour of structures. Typically, such parameters are obtained from dynamic measurements using one or a set of accelerometers, for response measurements, along with force transducers from an impact hammer or an electrodynamic actuator, i.e. a shaker. However, lightweight structures, commonly applied in the aerospace industry, can be significantly affected by the added mass from accelerometers. Therefore, non-contact measurement techniques, like Laser Doppler Vibrometer (LDV), are a more suitable approach in determining the dynamic characteristics of such structures. In this article, the procedures and results of a modal test for a honeycomb sandwich panel for aerospace applications are presented and discussed. The main objectives of the test are the identification of natural frequencies and mode shapes in order to validate a numerical model, as well as the identification of the damping characteristics of the panel. A validated numerical model will be necessary for future detailed response analysis of the satellite, including vibroacoustic investigations to account for acoustic excitations encountered during launching. The numerical model using homogenised material properties is updated to fit the experimental results and very good agreement between experimental and numerically obtained natural frequencies and mode shapes.
International Nuclear Information System (INIS)
Lee, Jae Hun; Kim, Kwang Seok; Kim, Hyo
2013-01-01
An in-depth study to determine the thermal decomposition kinetics parameters such as the activation energy E_a, the reaction order n, and the pre-exponential factor A of epoxy/carbon fiber composite material has been conducted. We employ not only the modified peak property method that is proposed here, but also the conventional method in analyzing the experimental data, and compare the results to show the performance of the proposed model. The pyrolysis tests for the epoxy/carbon fiber composite materials are conducted by using thermogravimetric analyser at various heating rates. As a result, the best prediction to the experimental data can be obtained by the modified peak property method. Besides, among the methods applied here, the modified peak property method provides most convenient way to recover the parameters: it does not require a curve fitting of the data nor a long iterative computation
Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd
2018-03-01
Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.
Parameter estimation in stochastic rainfall-runoff models
DEFF Research Database (Denmark)
Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur
2006-01-01
A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...
Some tests for parameter constancy in cointegrated VAR-models
DEFF Research Database (Denmark)
Hansen, Henrik; Johansen, Søren
1999-01-01
Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ......Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations......, and another in which the cointegrating relations are estimated recursively from a likelihood function, where the short-run parameters have been concentrated out. We suggest graphical procedures based on recursively estimated eigenvalues to evaluate the constancy of the long-run parameters in the model...
International Nuclear Information System (INIS)
Choi, Yong Won; Lim, Sung Won; Lee, Un Chul; Kim, Man Woong; Kim, Kab; Ryu, Yong Ho
2009-01-01
As a part of development the evaluation system of safety margin effects for degradation of CANDU reactors, it is required that the degradation model represents the distribution of each ageing factor's value during operating year. Unfortunately, it is not easy to make an explicit relation between the RELAP-CANDU parameters and ageing mechanism because of insufficient data and lack of applicable models. So, operating parameter related with ageing is used for range determination of ageing factor. Then, relation between operating parameter and ageing elements is analyzed and ageing constant values for degradation model are determined. Also the other ageing factor is derived for more accurate ageing analysis
Time-varying parameter models for catchments with land use change: the importance of model structure
Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid
2018-05-01
Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
Time-varying parameter models for catchments with land use change: the importance of model structure
Directory of Open Access Journals (Sweden)
S. Pathiraja
2018-05-01
Full Text Available Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2 in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
International Nuclear Information System (INIS)
Tokuhara, K.; Nakata, T.; Murata, I.; Yamashita, K.; Shindo, R.
1991-01-01
This report describes the calculational methods which were employed to determine the temperature coefficients and the kinetic parameters for the safety analysis in the HTTR (High Temperature Engineering Test Reactor). The temperature coefficients (doppler, moderator temperature) and the kinetic parameters (prompt neutron life time; l, effective delayed neutron fraction; β eff) are important for the point model core dynamic analysis and should be evaluated properly. The temperature coefficients were calculated by the whole core model. Doppler coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of fuel temperature. The minimum and the maximum value of the evaluated doppler coefficients in a burnup cycle are -4.6x10 -5 and -1.5x10 -5 ΔK/K/deg. C respectively. The moderator temperature coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of moderator temperature. The minimum and the maximum value of the evaluated moderator temperature coefficients in a burnup cycle are -17.1x10 -5 and 0.99x10 -5 ΔK/K/deg. C respectively. In spite of positive moderator temperature coefficient, the power coefficient is always negative. Therefore the HTTR possesses inherent power-suppressing feed back characteristic in all operating condition. We surveyed the effects of the Xe existence, the control rods existence, the fuel temperature and the region in which the temperature was changed on the moderator temperature coefficients. The kinetic parameters were calculated by the perturbation method with the whole core model. The minimum and the maximum value of the evaluated effective delayed neutron fraction (β eff) are 0.0047 and 0.0065 respectively. These of the evaluated prompt neutron life time (l) are 0.67 and 0.78 ms respectively. We have surveyed the effects of the fuel depletion and the core power level on these parameters, and considered these effects on the kinetic parameters. From
Performance Analysis of Different NeQuick Ionospheric Model Parameters
Directory of Open Access Journals (Sweden)
WANG Ningbo
2017-04-01
Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.
American Society for Testing and Materials. Philadelphia
2005-01-01
1.1 This test method determines the degree of linearity of a photovoltaic device parameter with respect to a test parameter, for example, short-circuit current with respect to irradiance. 1.2 The linearity determined by this test method applies only at the time of testing, and implies no past or future performance level. 1.3 This test method applies only to non-concentrator terrestrial photovoltaic devices. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Modelling hydrodynamic parameters to predict flow assisted corrosion
International Nuclear Information System (INIS)
Poulson, B.; Greenwell, B.; Chexal, B.; Horowitz, J.
1992-01-01
During the past 15 years, flow assisted corrosion has been a worldwide problem in the power generating industry. The phenomena is complex and depends on environment, material composition, and hydrodynamic factors. Recently, modeling of flow assisted corrosion has become a subject of great importance. A key part of this effort is modeling the hydrodynamic aspects of this issue. This paper examines which hydrodynamic parameter should be used to correlate the occurrence and rate of flow assisted corrosion with physically meaningful parameters, discusses ways of measuring the relevant hydrodynamic parameter, and describes how the hydrodynamic data is incorporated into the predictive model
Optimal parameters for the FFA-Beddoes dynamic stall model
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A; Mert, M [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H A [Risoe National Lab., Roskilde (Denmark)
1999-03-01
Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)
Good Models Gone Bad: Quantifying and Predicting Parameter-Induced Climate Model Simulation Failures
Lucas, D. D.; Klein, R.; Tannahill, J.; Brandon, S.; Covey, C. C.; Domyancic, D.; Ivanova, D. P.
2012-12-01
Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Statistical analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation failures of the Parallel Ocean Program (POP2). About 8.5% of our POP2 runs failed for numerical reasons at certain combinations of parameter values. We apply support vector machine (SVM) classification from the fields of pattern recognition and machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. The SVM classifiers readily predict POP2 failures in an independent validation ensemble, and are subsequently used to determine the causes of the failures via a global sensitivity analysis. Four parameters related to ocean mixing and viscosity are identified as the major sources of POP2 failures. Our method can be used to improve the robustness of complex scientific models to parameter perturbations and to better steer UQ ensembles. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013 (UCRL LLNL-ABS-569112).
Parameter sensitivity and uncertainty of the forest carbon flux model FORUG : a Monte Carlo analysis
Energy Technology Data Exchange (ETDEWEB)
Verbeeck, H.; Samson, R.; Lemeur, R. [Ghent Univ., Ghent (Belgium). Laboratory of Plant Ecology; Verdonck, F. [Ghent Univ., Ghent (Belgium). Dept. of Applied Mathematics, Biometrics and Process Control
2006-06-15
The FORUG model is a multi-layer process-based model that simulates carbon dioxide (CO{sub 2}) and water exchange between forest stands and the atmosphere. The main model outputs are net ecosystem exchange (NEE), total ecosystem respiration (TER), gross primary production (GPP) and evapotranspiration. This study used a sensitivity analysis to identify the parameters contributing to NEE uncertainty in the FORUG model. The aim was to determine if it is necessary to estimate the uncertainty of all parameters of a model to determine overall output uncertainty. Data used in the study were the meteorological and flux data of beech trees in Hesse. The Monte Carlo method was used to rank sensitivity and uncertainty parameters in combination with a multiple linear regression. Simulations were run in which parameters were assigned probability distributions and the effect of variance in the parameters on the output distribution was assessed. The uncertainty of the output for NEE was estimated. Based on the arbitrary uncertainty of 10 key parameters, a standard deviation of 0.88 Mg C per year per NEE was found, which was equal to 24 per cent of the mean value of NEE. The sensitivity analysis showed that the overall output uncertainty of the FORUG model could be determined by accounting for only a few key parameters, which were identified as corresponding to critical parameters in the literature. It was concluded that the 10 most important parameters determined more than 90 per cent of the output uncertainty. High ranking parameters included soil respiration; photosynthesis; and crown architecture. It was concluded that the Monte Carlo technique is a useful tool for ranking the uncertainty of parameters of process-based forest flux models. 48 refs., 2 tabs., 2 figs.
Online State Space Model Parameter Estimation in Synchronous Machines
Directory of Open Access Journals (Sweden)
Z. Gallehdari
2014-06-01
The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.
Error propagation of partial least squares for parameters optimization in NIR modeling.
Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng
2018-03-05
A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.
Error propagation of partial least squares for parameters optimization in NIR modeling
Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng
2018-03-01
A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.
Bates, P. D.; Neal, J. C.; Fewtrell, T. J.
2012-12-01
In this we paper we consider two related questions. First, we address the issue of how much physical complexity is necessary in a model in order to simulate floodplain inundation to within validation data error. This is achieved through development of a single code/multiple physics hydraulic model (LISFLOOD-FP) where different degrees of complexity can be switched on or off. Different configurations of this code are applied to four benchmark test cases, and compared to the results of a number of industry standard models. Second we address the issue of how parameter sensitivity and transferability change with increasing complexity using numerical experiments with models of different physical and geometric intricacy. Hydraulic models are a good example system with which to address such generic modelling questions as: (1) they have a strong physical basis; (2) there is only one set of equations to solve; (3) they require only topography and boundary conditions as input data; and (4) they typically require only a single free parameter, namely boundary friction. In terms of complexity required we show that for the problem of sub-critical floodplain inundation a number of codes of different dimensionality and resolution can be found to fit uncertain model validation data equally well, and that in this situation Occam's razor emerges as a useful logic to guide model selection. We find also find that model skill usually improves more rapidly with increases in model spatial resolution than increases in physical complexity, and that standard approaches to testing hydraulic models against laboratory data or analytical solutions may fail to identify this important fact. Lastly, we find that in benchmark testing studies significant differences can exist between codes with identical numerical solution techniques as a result of auxiliary choices regarding the specifics of model implementation that are frequently unreported by code developers. As a consequence, making sound
Retrospective forecast of ETAS model with daily parameters estimate
Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang
2016-04-01
We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
Kaylie Rasmuson; Kurt Rautenstrauch
2003-06-20
This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.
Parameter Estimates in Differential Equation Models for Population Growth
Winkel, Brian J.
2011-01-01
We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…
Uncertainty in dual permeability model parameters for structured soils
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.
Groenendijk, M.; Dolman, A.J.; Ammann, C.; Arneth, A.; Cescatti, A.; Molen, van der M.K.; Moors, E.J.
2011-01-01
Global vegetation models require the photosynthetic parameters, maximum carboxylation capacity (Vcm), and quantum yield (a) to parameterize their plant functional types (PFTs). The purpose of this work is to determine how much the scaling of the parameters from leaf to ecosystem level through a
Luminescence model with quantum impact parameter for low energy ions
Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S
2002-01-01
We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.
Determination of optimal tool parameters for hot mandrel bending of pipe elbows
Tabakajew, Dmitri; Homberg, Werner
2018-05-01
Seamless pipe elbows are important components in mechanical, plant and apparatus engineering. Typically, they are produced by the so-called `Hamburg process'. In this hot forming process, the initial pipes are subsequently pushed over an ox-horn-shaped bending mandrel. The geometric shape of the mandrel influences the diameter, bending radius and wall thickness distribution of the pipe elbow. This paper presents the numerical simulation model of the hot mandrel bending process created to ensure that the optimum mandrel geometry can be determined at an early stage. A fundamental analysis was conducted to determine the influence of significant parameters on the pipe elbow quality. The chosen methods and approach as well as the corresponding results are described in this paper.
Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.
2016-11-01
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
Agricultural and Environmental Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rasmuson; K. Rautenstrauch
2004-01-01
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters
Uncertainty of Modal Parameters Estimated by ARMA Models
DEFF Research Database (Denmark)
Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders
1990-01-01
In this paper the uncertainties of identified modal parameters such as eidenfrequencies and damping ratios are assed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the parameters...... by simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been choosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore......, it is shown that the model errors may also contribute significantly to the uncertainty....
SPOTting Model Parameters Using a Ready-Made Python Package.
Directory of Open Access Journals (Sweden)
Tobias Houska
Full Text Available The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool, an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI. We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.
Parameter resolution in two models for cell survival after radiation
International Nuclear Information System (INIS)
Di Cera, E.; Andreasi Bassi, F.; Arcovito, G.
1989-01-01
The resolvability of model parameters for the linear-quadratic and the repair-misrepair models for cell survival after radiation has been studied by Monte Carlo simulations as a function of the number of experimental data points collected in a given dose range and the experimental error. Statistical analysis of the results reveals the range of experimental conditions under which the model parameters can be resolved with sufficient accuracy, and points out some differences in the operational aspects of the two models. (orig.)
Simultaneous inference for model averaging of derived parameters
DEFF Research Database (Denmark)
Jensen, Signe Marie; Ritz, Christian
2015-01-01
Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...
Updating parameters of the chicken processing line model
DEFF Research Database (Denmark)
Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna
2010-01-01
A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate performance of this method in updating parameters...... of the chicken processing line model....
Lumped-parameter Model of a Bucket Foundation
DEFF Research Database (Denmark)
Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten
2009-01-01
efficient model that can be applied in aero-elastic codes for fast evaluation of the dynamic structural response of wind turbines. The target solutions, utilised for calibration of the lumped-parameter models, are obtained by a coupled finite-element/boundaryelement scheme in the frequency domain......, and the quality of the models are tested in the time and frequency domains. It is found that precise results are achieved by lumped-parameter models with two to four internal degrees of freedom per displacement or rotation of the foundation. Further, coupling between the horizontal sliding and rocking cannot...
Lumped-Parameter Models for Windturbine Footings on Layered Ground
DEFF Research Database (Denmark)
Andersen, Lars
The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...
On unique parameters and unified formal form of hot-wire anemometric sensor model
International Nuclear Information System (INIS)
LigePza, P.
2005-01-01
This note reviews the extensively adopted equations used as models of hot-wire anemometric sensors. An unified formal form of the mathematical model of a hot-wire anemometric sensor with otherwise defined parameters is proposed. Those parameters, static and dynamic, have simple physical interpretation and can be easily determined. They show directly the range of sensor application. They determine the metrological properties of the given sensor in the actual medium. Hence, the parameters' values might be ascribed to each sensor in the given medium and be quoted in manufacturers' catalogues, supplementing the sensor specifications. Because of their simple physical interpretation, those parameters allow the direct comparison of the fundamental metrological properties of various sensors and selection of the optimal sensor for the given research measurement application. The parameters are also useful in modeling complex hot-wire systems
Seasonal and spatial variation in broadleaf forest model parameters
Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.
2009-04-01
Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and
Gmar, Soumaya; Helali, Nawel; Boubakri, Ali; Sayadi, Ilhem Ben Salah; Tlili, Mohamed; Amor, Mohamed Ben
2017-12-01
The aim of this work is to study the desalination of brackish water by electrodialysis (ED). A two level-three factor (23) full factorial design methodology was used to investigate the influence of different physicochemical parameters on the demineralization rate (DR) and the specific power consumption (SPC). Statistical design determines factors which have the important effects on ED performance and studies all interactions between the considered parameters. Three significant factors were used including applied potential, salt concentration and flow rate. The experimental results and statistical analysis show that applied potential and salt concentration are the main effect for DR as well as for SPC. The effect of interaction between applied potential and salt concentration was observed for SPC. A maximum value of 82.24% was obtained for DR under optimum conditions and the best value of SPC obtained was 5.64 Wh L-1. Empirical regression models were also obtained and used to predict the DR and the SPC profiles with satisfactory results. The process was applied for the treatment of real brackish water using the optimal parameters.
A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model
DEFF Research Database (Denmark)
Spann, Robert; Roca, Christophe; Kold, David
2017-01-01
Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...... of parameters was performed in order to get a good model fit to the data. However, not all parameters are identifiable with the given data set and model structure. Sensitivity, identifiability, and uncertainty analysis were completed and a relevant identifiable subset of parameters was determined for a new...
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2004-09-10
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2004-01-01
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])
Bayo, A.; Rodrigo, C.; Barrado, D.; Allard, F.
One of the very first steps astronomers working in stellar physics perform to advance in their studies, is to determine the most common/relevant physical parameters of the objects of study (effective temperature, bolometric luminosity, surface gravity, etc.). Different methodologies exist depending on the nature of the data, intrinsic properties of the objects, etc. One common approach is to compare the observational data with theoretical models passed through some simulator that will leave in the synthetic data the same imprint than the observational data carries, and see what set of parameters reproduce the observations best. Even in this case, depending on the kind of data the astronomer has, the methodology changes slightly. After parameters are published, the community tend to quote, praise and criticize them, sometimes paying little attention on whether the possible discrepancies come from the theoretical models, the data themselves or just the methodology used in the analysis. In this work we perform the simple, yet interesting, exercise of comparing the effective temperatures obtained via SED and more detailed spectral fittings (to the same grid of models), of a sample of well known and characterized young M-type objects members to different star forming regions and show how differences in temperature of up to 350 K can be expected just from the difference in methodology/data used. On the other hand we show how these differences are smaller for colder objects even when the complexity of the fit increases like for example introducing differential extinction. To perform this exercise we benefit greatly from the framework offered by the Virtual Observaotry.
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rautenstrauch
2004-09-10
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rautenstrauch
2004-01-01
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Wasiolek, M. A.
2003-01-01
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-06-27
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699
Directory of Open Access Journals (Sweden)
O. M. Horobchenko
2015-12-01
Full Text Available Purpose. During development of intelligent control systems for locomotive there is a need in the evaluation of the current train situation in the terms of traffic safety. In order to estimate the probability of the development of various emergency situations in to the traffic accidents, it is necessary to determine their complexity. The purpose of this paper is to develop the methodology for determining the complexity of emergency situations during the locomotive operation. Methodology. To achieve this purpose the statistical material of traffic safety violations was accumulated. The causes of violations are divided into groups: technical factors, human factors and external influences. Using the theory of hybrid networks it was obtained a model that gives the output complexity parameter of the emergency situation. Network type: multilayer perceptron with hybrid neurons of the first layer and the sigmoid activation function. The methods of the probability theory were used for the analysis of the results. Findings. The approach to the formalization of manufacturing situations that can only be described linguistically was developed, that allowed to use them as input data to the model for emergency situation. It was established and proved that the exponent of complexity for emergency situation during driving the train is a random quantity and obeys to the normal distribution law. It was obtained the graph of the cumulative distribution function, which identified the areas for safe operation and an increased risk of accident. Originality. It was proposed theoretical basis for determining the complexity of emergency situations in the train work and received the maximum complexity value of emergency situations that can be admitted in the operating conditions. Practical value. Constant monitoring of this value allows not only respond to the threat of danger, but also getting it in numerical form and use it as one of the input parameters for the
Reflector modelization for neutronic diffusion and parameters identification
International Nuclear Information System (INIS)
Argaud, J.P.
1993-04-01
Physical parameters of neutronic diffusion equations can be adjusted to decrease calculations-measurements errors. The reflector being always difficult to modelize, we choose to elaborate a new reflector model and to use the parameters of this model as adjustment coefficients in the identification procedure. Using theoretical results, and also the physical behaviour of neutronic flux solutions, the reflector model consists then in its replacement by boundary conditions for the diffusion equations on the core only. This theoretical result of non-local operator relations leads then to some discrete approximations by taking into account the multiscaled behaviour, on the core-reflector interface, of neutronic diffusion solutions. The resulting model of this approach is then compared with previous reflector modelizations, and first results indicate that this new model gives the same representation of reflector for the core than previous. (author). 12 refs
Regionalising Parameters of a Conceptual Rainfall-Runoff Model for ...
African Journals Online (AJOL)
IHACRES, a lumped conceptual rainfall-runoff model, was calibrated to six catchments ranging in size from 49km2 to 600 km2 within the upper Tana River basin to obtain a set of model parameters that characterise the hydrological behaviour within the region. Physical catchment attributes indexing topography, soil and ...
Constraint on Parameters of Inverse Compton Scattering Model for ...
Indian Academy of Sciences (India)
B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained. Key words. Pulsar—inverse Compton scattering—emission mechanism. 1. Introduction. Among various kinds of models for pulsar radio emission, the inverse ...
Geometry parameters for musculoskeletal modelling of the shoulder system
Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H
A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of
Rain storm models and the relationship between their parameters
Stol, P.T.
1977-01-01
Rainfall interstation correlation functions can be obtained with the aid of analytic rainfall or storm models. Since alternative storm models have different mathematical formulas, comparison should be based on equallity of parameters like storm diameter, mean rainfall amount, storm maximum or total
Intelligent methods for the process parameter determination of plastic injection molding
Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn
2018-03-01
Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.
Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes
Guerrero, José-Luis; Pernica, Patricia; Wheater, Howard; Mackay, Murray; Spence, Chris
2017-12-01
Lakes might be sentinels of climate change, but the uncertainty in their main feedback to the atmosphere - heat-exchange fluxes - is often not considered within climate models. Additionally, these fluxes are seldom measured, hindering critical evaluation of model output. Analysis of the Canadian Small Lake Model (CSLM), a one-dimensional integral lake model, was performed to assess its ability to reproduce diurnal and seasonal variations in heat fluxes and the sensitivity of simulated fluxes to changes in model parameters, i.e., turbulent transport parameters and the light extinction coefficient (Kd). A C++ open-source software package, Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), was used to perform sensitivity analysis (SA) and identify the parameters that dominate model behavior. The generalized likelihood uncertainty estimation (GLUE) was applied to quantify the fluxes' uncertainty, comparing daily-averaged eddy-covariance observations to the output of CSLM. Seven qualitative and two quantitative SA methods were tested, and the posterior likelihoods of the modeled parameters, obtained from the GLUE analysis, were used to determine the dominant parameters and the uncertainty in the modeled fluxes. Despite the ubiquity of the equifinality issue - different parameter-value combinations yielding equivalent results - the answer to the question was unequivocal: Kd, a measure of how much light penetrates the lake, dominates sensible and latent heat fluxes, and the uncertainty in their estimates is strongly related to the accuracy with which Kd is determined. This is important since accurate and continuous measurements of Kd could reduce modeling uncertainty.
A new approach to the extraction of single exponential diode model parameters
Ortiz-Conde, Adelmo; García-Sánchez, Francisco J.
2018-06-01
A new integration method is presented for the extraction of the parameters of a single exponential diode model with series resistance from the measured forward I-V characteristics. The extraction is performed using auxiliary functions based on the integration of the data which allow to isolate the effects of each of the model parameters. A differentiation method is also presented for data with low level of experimental noise. Measured and simulated data are used to verify the applicability of both proposed method. Physical insight about the validity of the model is also obtained by using the proposed graphical determinations of the parameters.
Parameter identification in a nonlinear nuclear reactor model using quasilinearization
International Nuclear Information System (INIS)
Barreto, J.M.; Martins Neto, A.F.; Tanomaru, N.
1980-09-01
Parameter identification in a nonlinear, lumped parameter, nuclear reactor model is carried out using discrete output power measurements during the transient caused by an external reactivity change. In order to minimize the difference between the model and the reactor power responses, the parameter promt neutron generation time and a parameter in fuel temperature reactivity coefficient equation are adjusted using quasilinearization. The influences of the external reactivity disturbance, the number and frequency of measurements and the measurement noise level on the method accuracy and rate of convergence are analysed through simulation. Procedures for the design of the identification experiments are suggested. The method proved to be very effective for low level noise measurements. (Author) [pt
Ground level enhancement (GLE) energy spectrum parameters model
Qin, G.; Wu, S.
2017-12-01
We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.
Determination of sustainable values for the parameters of the construction of residential buildings
Grigoreva, Larisa; Grigoryev, Vladimir
2018-03-01
For the formation of programs for housing construction and planning of capital investments, when developing the strategic planning companies by construction companies, the norms or calculated indicators of the duration of the construction of high-rise residential buildings and multifunctional complexes are mandatory. Determination of stable values of the parameters for the high-rise construction residential buildings provides an opportunity to establish a reasonable duration of construction at the planning and design stages of residential complexes, taking into account the influence of market conditions factors. The concept of the formation of enlarged models for the high-rise construction residential buildings is based on a real mapping in time and space of the most significant redistribution with their organizational and technological interconnection - the preparatory period, the underground part, the above-ground part, external engineering networks, landscaping. The total duration of the construction of a residential building, depending on the duration of each redistribution and the degree of their overlapping, can be determined by one of the proposed four options. At the same time, a unified approach to determining the overall duration of construction on the basis of the provisions of a streamlined construction organization with the testing of results on the example of high-rise residential buildings of the typical I-155B series was developed, and the coefficients for combining the work and the main redevelopment of the building were determined.
Determination of sustainable values for the parameters of the construction of residential buildings
Directory of Open Access Journals (Sweden)
Grigoreva Larisa
2018-01-01
Full Text Available For the formation of programs for housing construction and planning of capital investments, when developing the strategic planning companies by construction companies, the norms or calculated indicators of the duration of the construction of high-rise residential buildings and multifunctional complexes are mandatory. Determination of stable values of the parameters for the high-rise construction residential buildings provides an opportunity to establish a reasonable duration of construction at the planning and design stages of residential complexes, taking into account the influence of market conditions factors. The concept of the formation of enlarged models for the high-rise construction residential buildings is based on a real mapping in time and space of the most significant redistribution with their organizational and technological interconnection - the preparatory period, the underground part, the above-ground part, external engineering networks, landscaping. The total duration of the construction of a residential building, depending on the duration of each redistribution and the degree of their overlapping, can be determined by one of the proposed four options. At the same time, a unified approach to determining the overall duration of construction on the basis of the provisions of a streamlined construction organization with the testing of results on the example of high-rise residential buildings of the typical I-155B series was developed, and the coefficients for combining the work and the main redevelopment of the building were determined.
Application of isotopic information for estimating parameters in Philip infiltration model
Directory of Open Access Journals (Sweden)
Tao Wang
2016-10-01
Full Text Available Minimizing parameter uncertainty is crucial in the application of hydrologic models. Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in the system, provide additional information for parameter estimation, and improve parameter identifiability. This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model. Two approaches to parameter estimation were compared: (a using isotopic information to determine the soil water transmission and then hydrologic information to estimate the soil sorptivity, and (b using hydrologic information to determine the soil water transmission and the soil sorptivity. Results of parameter estimation were verified through a rainfall infiltration experiment in a laboratory under rainfall with constant isotopic compositions and uniform initial soil water content conditions. Experimental results showed that approach (a, using isotopic and hydrologic information, estimated the soil water transmission in the Philip infiltration model in a manner that matched measured values well. The results of parameter estimation of approach (a were better than those of approach (b. It was also found that the analytical precision of hydrogen and oxygen stable isotopes had a significant effect on parameter estimation using isotopic information.
Soil-related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
A. J. Smith
2003-01-01
This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Zhang, Xiangsheng; Pan, Feng
2015-01-01
Aimed at the parameters optimization in support vector machine (SVM) for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO) algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effective...
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Directory of Open Access Journals (Sweden)
Xiangsheng Zhang
2015-01-01
Full Text Available Aimed at the parameters optimization in support vector machine (SVM for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effectiveness of the proposed algorithm.
Estimating Parameters for the PVsyst Version 6 Photovoltaic Module Performance Model
Energy Technology Data Exchange (ETDEWEB)
Hansen, Clifford [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-10-01
We present an algorithm to determine parameters for the photovoltaic module perf ormance model encoded in the software package PVsyst(TM) version 6. Our method operates on current - voltage (I - V) measured over a range of irradiance and temperature conditions. We describe the method and illustrate its steps using data for a 36 cell crystalli ne silicon module. We qualitatively compare our method with one other technique for estimating parameters for the PVsyst(TM) version 6 model .
An accurate method for the determination of unlike potential parameters from thermal diffusion data
International Nuclear Information System (INIS)
El-Geubeily, S.
1997-01-01
A new method is introduced by means of which the unlike intermolecular potential parameters can be determined from the experimental measurements of the thermal diffusion factor as a function of temperature. The method proved to be easy, accurate, and applicable two-, three-, and four-parameter potential functions whose collision integrals are available. The potential parameters computed by this method are found to provide a faith full representation of the thermal diffusion data under consideration. 3 figs., 4 tabs
A Bayesian framework for parameter estimation in dynamical models.
Directory of Open Access Journals (Sweden)
Flávio Codeço Coelho
Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.
A lumped parameter, low dimension model of heat exchanger
International Nuclear Information System (INIS)
Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami
1980-01-01
This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)
Determination of the cell parameters of β-quartz at 1003 K by neutron multiple diffraction
International Nuclear Information System (INIS)
Campos, Luiz Carlos de
2002-01-01
In this work, neutron multiple diffraction (NMD) data was employed for the determination of the parameters a and c of the β-quartz hexagonal cell at 1003 K. An experimental 00.1 β-quartz NMD 'Umweg' pattern has been used for the determinations. During the indexing of the β-quartz pattern it was verified that most of the peaks could be classified as either 'good for the determination of the parameter a' or 'good for the determination of the parameter c'. With such a classification, it became possible to employ an iterative process for the determination of both parameters. To attain this purpose, two methods were developed. The first one, named 'absolute method', used angular azimuthal positions of the peaks, related to the origin of the experimental diagram. The second method, named 'relative method', used azimuthal angular differences between two selected peaks. The values obtained for both parameters, in the two methods employed, were found by applying the angular azimuthal positions, for the first method, and the azimuthal angular differences, for the second method, upon appropriate theoretical indexing diagrams. An iterative process was applied in order to obtain the values of the parameters. In this process, the value obtained for one of the parameters was used in the determination of the other parameter. The process continues until both parameters converge. The iterative process was used in both methods. The relative method proved to be better than the absolute method. The best values of the parameters obtained by the relative method were: a 4.99638 ± 0.00057 angstrom and c = 5.46119 ± 0.00044 angstrom. (author)
Reservoir theory, groundwater transit time distributions, and lumped parameter models
International Nuclear Information System (INIS)
Etcheverry, D.; Perrochet, P.
1999-01-01
The relation between groundwater residence times and transit times is given by the reservoir theory. It allows to calculate theoretical transit time distributions in a deterministic way, analytically, or on numerical models. Two analytical solutions validates the piston flow and the exponential model for simple conceptual flow systems. A numerical solution of a hypothetical regional groundwater flow shows that lumped parameter models could be applied in some cases to large-scale, heterogeneous aquifers. (author)
Four-parameter model for polarization-resolved rough-surface BRDF.
Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D
2011-01-17
A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.
On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling
Bai, Xian-Xu; Xu, Shi-Xu; Cheng, Wei; Qian, Li-Jun
2017-08-01
It is useful to develop an effective biodynamic model of seated human occupants to help understand the human vibration exposure to transportation vehicle vibrations and to help design and improve the anti-vibration devices and/or test dummies. This study proposed and demonstrated a methodology for systematically identifying the best configuration or structure of a 4-degree-of-freedom (4DOF) human vibration model and for its parameter identification. First, an equivalent simplification expression for the models was made. Second, all of the possible 23 structural configurations of the models were identified. Third, each of them was calibrated using the frequency response functions recommended in a biodynamic standard. An improved version of non-dominated sorting genetic algorithm (NSGA-II) based on Pareto optimization principle was used to determine the model parameters. Finally, a model evaluation criterion proposed in this study was used to assess the models and to identify the best one, which was based on both the goodness of curve fits and comprehensive goodness of the fits. The identified top configurations were better than those reported in the literature. This methodology may also be extended and used to develop the models with other DOFs.
Modelling of intermittent microwave convective drying: parameter sensitivity
Directory of Open Access Journals (Sweden)
Zhang Zhijun
2017-06-01
Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms
Berhausen, Sebastian; Paszek, Stefan
2016-01-01
In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.
On the role of modeling parameters in IMRT plan optimization
International Nuclear Information System (INIS)
Krause, Michael; Scherrer, Alexander; Thieke, Christian
2008-01-01
The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way
A compact cyclic plasticity model with parameter evolution
DEFF Research Database (Denmark)
Krenk, Steen; Tidemann, L.
2017-01-01
The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...
Climate change decision-making: Model & parameter uncertainties explored
Energy Technology Data Exchange (ETDEWEB)
Dowlatabadi, H.; Kandlikar, M.; Linville, C.
1995-12-31
A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.
On the effect of model parameters on forecast objects
Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott
2018-04-01
Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.
Directory of Open Access Journals (Sweden)
Jeng-Wen Lin
2009-01-01
Full Text Available This paper proposes a statistical confidence interval based nonlinear model parameter refinement approach for the health monitoring of structural systems subjected to seismic excitations. The developed model refinement approach uses the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a least-squares regression setting. When the parameters' confidence interval covers the zero value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. This newly developed model refinement approach is implemented for the series models of multivariable polynomial expansions: the linear, the Taylor series, and the power series model, leading to a more accurate identification as well as a more controllable design for system vibration control. Because the statistical regression based model refinement approach is intrinsically used to process a “batch” of data and obtain an ensemble average estimation such as the structural stiffness, the Kalman filter and one of its extended versions is introduced to the refined power series model for structural health monitoring.
BAYESIAN PARAMETER ESTIMATION IN A MIXED-ORDER MODEL OF BOD DECAY. (U915590)
We describe a generalized version of the BOD decay model in which the reaction is allowed to assume an order other than one. This is accomplished by making the exponent on BOD concentration a free parameter to be determined by the data. This "mixed-order" model may be ...
Reactivity and kinetic parameters determination in a multiplicative non-stationary system
International Nuclear Information System (INIS)
Minguez, E.
1982-01-01
A revision of several methods used for solving kinetic equations of a neutronic system is considered. Firstly, kinetic equations in general form are analized, before to revise more important aproximations: point-kinetic method; adiabatic; cuasistatic; eigenvalue equations; nodal, modal and systhesis methods; and variational principles for obtaining kinetic equations. Perturbation theory is used to obtain these parameters, with differents eigenvalue equations representatives of the parameter to be calculated. Also, experimental methods have been included in this work, because of importance the parameters can be measured, and related with those obtained by calculations. Finally, adjoint kinetic equations are resolved to obtain the importance function used in weighted reactivity and kinetic parameters determinations. (author)
Determination of material parameters by comparison of 3D simulations and 3D experiments
DEFF Research Database (Denmark)
Zhang, Jin
microstructure and the measured microstructure in a global manner. The proposed method is demonstrated on a simple case to fit two material parameters: the liquid diffusion coefficient and the capillary length of a hypoeutectic Al-Cu alloy, and a complicated case to fit hundreds of material parameters......: the reduced grain boundary mobilities of pure iron. Results show that the proposed method is capable of providing reliable measurements of material parameters that are difficult to measure in traditional ways and can determine many - possibly all relevant - values of material parameters simultaneously...
Determination of a test section parameters for Iris nuclear reactor pressurizer
International Nuclear Information System (INIS)
Silva, Mario A.B. da; Lira, Carlos A.B. de O.
2009-01-01
An integral, modular and medium size nuclear reactor, known as IRIS, is being developed by Westinghouse and by research centers. IRIS is characterized by having most of its components inside the pressure vessel, eliminating the probability of accidents. Due to its integral configuration, there is no spray system for boron homogenization, which may cause power transients. Thus, boron mixing must be investigated. The aim of this paper is to establish the conditions under which a test section has to be built for boron dispersion analysis inside IRIS reactor pressurizer. Through Fractional Scaling Analysis, which is a new methodology of similarity, the main parameters for a test section are obtained. By combining Fractional Scaling Analysis with local scaling for the densimetric Froude number and a previously established volumetric scale factor, the values of recirculation orifices, inlet water temperature, time scale factor and recirculation flow for the test section (model) are determined so that boron distribution is well represented in IRIS reactor pressurizer (prototype). Analytical solutions were used to validate the adopted methodology and when the results simulated in the model are compared to those that characterize the prototype, the agreement for both systems is absolute. The thermal power also influences boron distribution inside the test section. This power is determined by condensation laws in the vapor region and by suitable correlations for free convection. The fractions for rising inlet recirculation water enthalpy and vapor formation are also considered. (author)
Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni
Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.
2018-04-01
Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.
Experimental and analytical determination of stability parameters for a balloon tethered in a wind
Redd, L. T.; Bennett, R. M.; Bland, S. R.
1973-01-01
Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.
Study of the equation of state and determination of molecular parameters of some fluorinated gases
International Nuclear Information System (INIS)
Morizot, Pierre
1972-01-01
Volumetric and dielectric techniques are used to determine non-ideality and molar polarization of UF 6 , MoF 6 , WF 6 and ClF 3 . Comparisons are made between these dielectric non-ideality parameters and those obtained by MAGNUSON and volumetry method. It is demonstrated that dielectric non-ideality parameters are unsettled by an adsorption phenomena on the electrodes. The volumetric second virial coefficients are interpreted with known transport coefficients to determine molecular parameters of the three hexafluorides. Using viscosity data, the existence of a dimerization in the vapor of ClF 3 was demonstrated. Its effect on the observed second virial coefficient was evaluated. (author) [fr
International Nuclear Information System (INIS)
Tashchilova, Eh.M.; Sharovarov, G.A.
1985-01-01
The mathematical model of nonstationary processes in heat exchangers with dissociating coolant at supercritical parameters is given. Its dimensionless criteria are deveped. The effect of NPP regenerator parameters on criteria variation is determined. The proceeding nonstationary processes are estimated qualitatively using the dimensionless parameters. Dynamics of the processes in heat exchangers is described by the energy, mass and moment-of-momentum equations for heating and heated medium taking into account heat accumulation in the heat-transfer wall and distribution of parameters along the length of a heat exchanger
Parameter estimation in nonlinear models for pesticide degradation
International Nuclear Information System (INIS)
Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.
1991-01-01
A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)
Global parameter estimation for thermodynamic models of transcriptional regulation.
Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N
2013-07-15
Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.
Determination of the hexagonal network parameters of the quartz β using neutron multiple diffraction
International Nuclear Information System (INIS)
Campos, L.C.; Parente, C.B.R.; Mazzocchi, V.L.; Helene, O.
2000-01-01
In this work, neutron multiple diffraction is employed for the determination of the parameters a and c of the β-quartz hexagonal cell. This crystalline phase of silica (SiO 2 ) occurs in temperatures between ca. 846 and 1143 K. A β-quartz neutron multiple diffraction pattern has been used in the determinations. This pattern was obtained with a natural quartz single crystal heated to 1003 K. During the indexing of the pattern it was verified that most of the pairs of secondary reflections, which are responsible for the formation of peaks, could be classified as 'good for the determination of a' or 'good for the determination of c'. With this classification, it became possible to employ an iterative method for the determination of both parameters. After 8 cycles of iteration the values found for the parameters were a = 4.9964 +- 0.0018 and c = 5.46268 +- 0.00052 A. (author)
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2006-06-05
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2006-01-01
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the
The level density parameters for fermi gas model
International Nuclear Information System (INIS)
Zuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi
1986-01-01
Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D D , radiative capture width Γ γ 0 at neutron binding energy and cumulative level number N 0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements
Iterative integral parameter identification of a respiratory mechanics model.
Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey
2012-07-18
Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
Iterative integral parameter identification of a respiratory mechanics model
Directory of Open Access Journals (Sweden)
Schranz Christoph
2012-07-01
Full Text Available Abstract Background Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. Methods An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS patients. Results The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. Conclusion These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
Effect of Process Parameters on Friction Model in Computer Simulation of Linear Friction Welding
Directory of Open Access Journals (Sweden)
A. Yamileva
2014-07-01
Full Text Available The friction model is important part of a numerical model of linear friction welding. Its selection determines the accuracy of the results. Existing models employ the classical law of Amonton-Coulomb where the friction coefficient is either constant or linearly dependent on a single parameter. Determination of the coefficient of friction is a time consuming process that requires a lot of experiments. So the feasibility of determinating the complex dependence should be assessing by analysis of effect of approximating law for friction model on simulation results.
Nakayama, Masaki; Katano, Hiroaki; Sato, Haruki
2014-05-01
A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( and ( kg m, respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.
MODELLING BIOPHYSICAL PARAMETERS OF MAIZE USING LANDSAT 8 TIME SERIES
Directory of Open Access Journals (Sweden)
T. Dahms
2016-06-01
Full Text Available Open and free access to multi-frequent high-resolution data (e.g. Sentinel – 2 will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR, the leaf area index (LAI and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD: R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing
Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series
Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik
2016-06-01
Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model
Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E
2013-12-01
Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.
X-Parameter Based Modelling of Polar Modulated Power Amplifiers
DEFF Research Database (Denmark)
Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel
2013-01-01
X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....
Identifiability and error minimization of receptor model parameters with PET
International Nuclear Information System (INIS)
Delforge, J.; Syrota, A.; Mazoyer, B.M.
1989-01-01
The identifiability problem and the general framework for experimental design optimization are presented. The methodology is applied to the problem of the receptor-ligand model parameter estimation with dynamic positron emission tomography data. The first attempts to identify the model parameters from data obtained with a single tracer injection led to disappointing numerical results. The possibility of improving parameter estimation using a new experimental design combining an injection of the labelled ligand and an injection of the cold ligand (displacement experiment) has been investigated. However, this second protocol led to two very different numerical solutions and it was necessary to demonstrate which solution was biologically valid. This has been possible by using a third protocol including both a displacement and a co-injection experiment. (authors). 16 refs.; 14 figs
Determination of kinetic parameters for 123-I thyroid uptake in healthy Japanese
Kusuhara, Hiroyuki; Maeda, Kazuya
2017-09-01
The purpose of this study was to compare the kinetic parameters for iodide thyroid accumulation in Japanese today with previously reported values. We determined the thyroid uptake of 123-I at 24 hours after the oral administration in healthy male Japanese without any diet restriction. The mean value was 16.1±5.4%, which was similar or rather lower than those previously reported in Japan (1958-1972). Kinetic model analysis was conducted to obtain the clearance for thyroid uptake from the blood circulation. The thyroid uptake clearance of 123-I was 0.540±0.073 ml/min, which was almost similar to those reported previously. There is no obvious difference in the thyroid uptake for 24 hours, and kinetic parameters in healthy Japanese for these 50 years. The fraction of distributed to the thyroid gland is lower than the ICRP reference man, and such difference must be taken into consideration to estimate the radiation exposure upon Fukushima accident in Japan.
Prediction of interest rate using CKLS model with stochastic parameters
International Nuclear Information System (INIS)
Ying, Khor Chia; Hin, Pooi Ah
2014-01-01
The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ (j) of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ (j) , we assume that φ (j) depends on φ (j−m) , φ (j−m+1) ,…, φ (j−1) and the interest rate r j+n at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r j+n+1 of the interest rate at the next time point when the value r j+n of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r j+n+d at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters
Model parameters estimation and sensitivity by genetic algorithms
International Nuclear Information System (INIS)
Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca
2003-01-01
In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The
Prediction of interest rate using CKLS model with stochastic parameters
Energy Technology Data Exchange (ETDEWEB)
Ying, Khor Chia [Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Hin, Pooi Ah [Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor (Malaysia)
2014-06-19
The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.
The determination of parameters of the upper atmosphere by the radio-meteor measurements
Shamukov, Damir; Fahrutdinova, Antonina; Nugmanov, Ildus
Study of the parameters of the upper atmosphere on the basis of amplitude-time characteristics of meteor ionization. Together with various methods meteor observations (optical, photographic, visual, spectral, television), the most effective modern method of studying meteors means is radar. The development of modern radar technology allows us to apply this tool to monitor meteors. This method allows to determine the parameters of temperature and atmospheric pressure. Actual issue is the development of methods of determining the coefficient of ambipolar diffusion, pressure, density and temperature of the atmosphere in the meteor zone. Graph of amplitude-time characteristic has the exponential form. This fact allows to determine the coefficient of ambipolar diffusion. New algorithm for estimation of the ambipolar diffusion coefficient based on a set of statistical methods and techniques of digital signal processing. There are decomposition of data on singular values and Prony's method. This method of modeling the sample data as a linear combination of exponential. Prony’s method approximates the amplitude-time characteristics of using a deterministic exponential model. Input data is amplitude-time characteristics of the meteor trail x[1]…x[N]. The method allows to estimate x[n] p-membered exponential model: begin{center} x[n]=Sigma2A_{k}exp[a _{k}(n-1)]Cos[2Pif_{k}(n-1)T+Fi_{k}] (1) end{center} 1<=n<=N, T - time range in seconds, A_{k} and a_{k} - amplitude and damping coefficient, f_{k} and Fi_{k} - frequency and initial phase. The equation describing the decay of radio signal: begin{center} A=A_{0}exp(-16Pi^{2}$D_{a}t/λ (2) ). (2) lambdaλ - radar wavelength. The output of the algorithm - the ambipolar diffusion coefficient values D_{a}. begin{center} T=0.5lnD-T_{0}+mg/2kT_{0} (3) Last equation allows to obtain temperature values using the coefficient of ambipolar diffusion depends on the height.
Mathematical models to predict rheological parameters of lateritic hydromixtures
Directory of Open Access Journals (Sweden)
Gabriel Hernández-Ramírez
2017-10-01
Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.
Averaging models: parameters estimation with the R-Average procedure
Directory of Open Access Journals (Sweden)
S. Noventa
2010-01-01
Full Text Available The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982, can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto & Vicentini, 2007 can be used to estimate the parameters of these models. By the use of multiple information criteria in the model selection procedure, R-Average allows for the identification of the best subset of parameters that account for the data. After a review of the general method, we present an implementation of the procedure in the framework of R-project, followed by some experiments using a Monte Carlo method.
Determination of the hadronic resonance parameters of the Zo boson with DELPHI spectrometers at LEP
International Nuclear Information System (INIS)
Djama, F.
1991-05-01
The work described was achieved on the DELPHI experiment at the LEP e + e - collider. It concerns the determination of the resonance parameters of the Z 0 boson (M z , Γ z and σ o ) through its hadronic decays. The cross-section for the production of quark-antiquark pairs in e + e - collisions was measured at 17 different collision energies close to the resonance peak. At first, a general review of the Standard Model and its predictions for the cross-section of the process e + e - → γ, Z 0 → qantiq are given, followed by a description of the LEP collider and of the DELPHI detector. The different steps of the analysis are then exposed. They concern the luminosity measurement, the selection of the hadronic events and the computation of the experimental cross-sections. Special attention was given to the systematic errors. In order to extract the resonance parameters and to test the Standard Model, the experimental cross-sections were fitted with a theoretical formula which includes the most up-to-date radiative corrections calculations. A three parameter fit gives: M z = 91.183 ± 0.011 (stat) ± 0.02 (LEP) GeV/c 2 Γ z = 2.465 ± 0.020 (stat) ± 0.005 (syst) GeV σ o = 41.92 ± 0.22 (stat) ± 0.33 (syst) ± 0.21 (theo) nb Χ 2 /d.o.f = 8.5/17 - 3. By combining these results with the Standard Model predictions for the leptonic widths, we derived the invisible width of the Z 0 resonance: Γ inv = 486 ± 7 (stat) ± 12 (syst) MeV. This result leads to the following value for the number of the light Dirac neutrino species: N ν = 2.92 ± 0.04 (stat) ± 0.07 (syst). The total and invisible widths were used to derive lower bounds of the masses of new particles predicted either by the Minimal Standard Model (top quark) or by its extensions and alternatives (4 th sequential family, sparticles, excited fermions) [fr
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model
Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.
2016-01-01
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601
Perera, Dimuthu
Diffusion weighted (DW) Imaging is a non-invasive MR technique that provides information about the tissue microstructure using the diffusion of water molecules. The diffusion is generally characterized by the apparent diffusion coefficient (ADC) parametric map. The purpose of this study is to investigate in silico how the calculation of ADC is affected by image SNR, b-values, and the true tissue ADC. Also, to provide optimal parameter combination depending on the percentage accuracy and precision for prostate peripheral region cancer application. Moreover, to suggest parameter choices for any type of tissue, while providing the expected accuracy and precision. In this research DW images were generated assuming a mono-exponential signal model at two different b-values and for known true ADC values. Rician noise of different levels was added to the DWI images to adjust the image SNR. Using the two DWI images, ADC was calculated using a mono-exponential model for each set of b-values, SNR, and true ADC. 40,000 ADC data were collected for each parameter setting to determine the mean and the standard-deviation of the calculated ADC, as well as the percentage accuracy and precision with respect to the true ADC. The accuracy was calculated using the difference between known and calculated ADC. The precision was calculated using the standard-deviation of calculated ADC. The optimal parameters for a specific study was determined when both the percentage accuracy and precision were minimized. In our study, we simulated two true ADCs (ADC 0.00102 for tumor and 0.00180 mm2/s for normal prostate peripheral region tissue). Image SNR was varied from 2 to 100 and b-values were varied from 0 to 2000s/mm2. The results show that the percentage accuracy and percentage precision were minimized with image SNR. To increase SNR, 10 signal-averagings (NEX) were used considering the limitation in total scan time. The optimal NEX combination for tumor and normal tissue for prostate
Calculation of the fermionic determinant in the Schwinger model
International Nuclear Information System (INIS)
Dias, S.A.; Linhares, C.A.
1991-01-01
We compute explicitly the fermionic determinant and the effective action for the generalized Schwinger model in two dimensions and compare it with respective results for the particular cases of the Schwinger, chiral Schwinger and axial Schwinger models. The parameters that signal the ambiguity in the regularization scheme fo the determinant are introduced through the point-splitting method. The Wess-Zumino functional is also obtained and compared with the known expressions for the above-mentioned particular cases. (author)
Comparisons of criteria in the assessment model parameter optimizations
International Nuclear Information System (INIS)
Liu Xinhe; Zhang Yongxing
1993-01-01
Three criteria (chi square, relative chi square and correlation coefficient) used in model parameter optimization (MPO) process that aims at significant reduction of prediction uncertainties were discussed and compared to each other with the aid of a well-controlled tracer experiment
Revised models and genetic parameter estimates for production and ...
African Journals Online (AJOL)
Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
2002-01-01
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Key processes and input parameters for environmental tritium models
International Nuclear Information System (INIS)
Bunnenberg, C.; Taschner, M.; Ogram, G.L.
1994-01-01
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs
Key processes and input parameters for environmental tritium models
Energy Technology Data Exchange (ETDEWEB)
Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)
1994-12-31
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Mori, G.; Prethaler, A.; Fischer, F. D.
2014-01-01
Roč. 82, MAY (2014), s. 93-100 ISSN 0010-938X Institutional support: RVO:68081723 Keywords : Steel * Electrochemical calculation * Modeling studies * Hydrogen permeation * Kinetic parameters Subject RIV: BJ - Thermodynamics Impact factor: 4.422, year: 2014
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-09-24
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air
Integrating microbial diversity in soil carbon dynamic models parameters
Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie
2015-04-01
Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. A. Wasiolek
2003-01-01
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rasmuson; K. Rautenstrauch
2004-09-14
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.
Determination of charged particle beam parameters with taking into account of space charge
International Nuclear Information System (INIS)
Ishkhanov, B.S.; Poseryaev, A.V.; Shvedunov, V.I.
2005-01-01
One describes a procedure to determine the basic parameters of a paraxial axially-symmetric beam of charged particles taking account of space charge contribution. The described procedure is based on application of the general equation for beam envelope. Paper presents data on its convergence and resistance to measurement errors. The position determination error of crossover (stretching) and radius of beam in crossover is maximum 15% , while the emittance determination error depends on emittance and space charge correlation. The introduced procedure was used to determine parameters of the available electron gun 20 keV energy beam with 0.64 A current. The derived results turned to agree closely with the design parameters [ru
Electro-optical parameters of bond polarizability model for aluminosilicates.
Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam
2006-04-06
Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.
Estimating model parameters in nonautonomous chaotic systems using synchronization
International Nuclear Information System (INIS)
Yang, Xiaoli; Xu, Wei; Sun, Zhongkui
2007-01-01
In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation
Soil-Related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Smith, A. J.
2004-01-01
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This
Soil-Related Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
A. J. Smith
2004-09-09
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure
Determining the mechanism and parameters of hydrate formation and loss in glucose.
Scholl, Sarah K; Schmidt, Shelly J
2014-11-01
Water-solid interactions are known to play a major role in the chemical and physical stability of food materials. Despite its extensive use throughout the food industry, the mechanism and parameters of hydrate formation and loss in glucose are not well characterized. Hydrate formation in alpha-anhydrous glucose (α-AG) and hydrate loss in glucose monohydrate (GM) were studied under equilibrium conditions at various relative humidity (RH) values using saturated salt slurries for 1 y. The mechanism of hydrate formation and hydrate loss were determined through mathematical modeling of Dynamic Vapor Sorption data and Raman spectroscopy was used to confirm the mechanisms. The critical temperature for hydrate loss in GM was determined using thermogravimetric analysis (TGA). The moisture sorption profiles of α-AG and GM were also studied under dynamic conditions using an AquaSorp Isotherm Generator. Hydrate formation was observed at and above 68% RH at 25 °C and the conversion of α-AG to GM can best be described as following a nucleation mechanism, however, diffusion and/or geometric contraction mechanisms were also observed by Raman spectroscopy subsequent to the coalescence of initial nucleation sites. Hydrate loss was observed to occur at and below 11% RH at 25 °C during RH storage and at 70 °C during TGA. The conversion of GM to α-AG follows nucleation and diffusion mechanisms. Hydrate formation was evident under dynamic conditions in α-AG and GM prior to deliquescence. This research is the first to report hydrate formation and loss parameters for crystalline α-AG and GM during extended storage at 25 ˚C. © 2014 Institute of Food Technologists®
Mass balance model parameter transferability on a tropical glacier
Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg
2013-04-01
The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer
Oyster Creek cycle 10 nodal model parameter optimization study using PSMS
International Nuclear Information System (INIS)
Dougher, J.D.
1987-01-01
The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed
Parameter Estimation for Traffic Noise Models Using a Harmony Search Algorithm
Directory of Open Access Journals (Sweden)
Deok-Soon An
2013-01-01
Full Text Available A technique has been developed for predicting road traffic noise for environmental assessment, taking into account traffic volume as well as road surface conditions. The ASJ model (ASJ Prediction Model for Road Traffic Noise, 1999, which is based on the sound power level of the noise emitted by the interaction between the road surface and tires, employs regression models for two road surface types: dense-graded asphalt (DGA and permeable asphalt (PA. However, these models are not applicable to other types of road surfaces. Accordingly, this paper introduces a parameter estimation procedure for ASJ-based noise prediction models, utilizing a harmony search (HS algorithm. Traffic noise measurement data for four different vehicle types were used in the algorithm to determine the regression parameters for several road surface types. The parameters of the traffic noise prediction models were evaluated using another measurement set, and good agreement was observed between the predicted and measured sound power levels.
Constraining statistical-model parameters using fusion and spallation reactions
Directory of Open Access Journals (Sweden)
Charity Robert J.
2011-10-01
Full Text Available The de-excitation of compound nuclei has been successfully described for several decades by means of statistical models. However, such models involve a large number of free parameters and ingredients that are often underconstrained by experimental data. We show how the degeneracy of the model ingredients can be partially lifted by studying different entrance channels for de-excitation, which populate different regions of the parameter space of the compound nucleus. Fusion reactions, in particular, play an important role in this strategy because they ﬁx three out of four of the compound-nucleus parameters (mass, charge and total excitation energy. The present work focuses on ﬁssion and intermediate-mass-fragment emission cross sections. We prove how equivalent parameter sets for fusion-ﬁssion reactions can be resolved using another entrance channel, namely spallation reactions. Intermediate-mass-fragment emission can be constrained in a similar way. An interpretation of the best-ﬁt IMF barriers in terms of the Wigner energies of the nascent fragments is discussed.
Chandrasekaran, Arunkumar; Ramachandran, Sethumadhavan; Subbiah, Senthilmurugan
2017-06-01
This paper deals with the pyrolysis of Prosopis juliflora fuelwood using thermogravimetric analysis to determine the kinetic parameters at six different heating rates of 2, 5, 10, 15, 20 and 25°C/min. The activation energy of pyrolysis was calculated using different methods, namely Kissinger, Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall and Friedman model and corresponding calculated activation energy were found to be 164.6, 204, 203.2, and 219.3kJ/mol, respectively for each method. The three-pseudo component model was applied to calculate the following three kinetic parameters: activation energy, pre-exponential factor and order of reaction. The experimental results were validated with model prediction for all the six heating rates. The three-pseudo component model is able to predict experimental results much accurately while considering variable order reaction model (n≠1). Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Wałęga Andrzej
2017-12-01
Full Text Available The aim of the study was to assess the applicability of asymptotic functions for determining the value of CN parameter as a function of precipitation depth in mountain and upland catchments. The analyses were carried out in two catchments: the Rudawa, left tributary of the Vistula, and the Kamienica, right tributary of the Dunajec. The input material included data on precipitation and flows for a multi-year period 1980–2012, obtained from IMGW PIB in Warsaw. Two models were used to determine empirical values of CNobs parameter as a function of precipitation depth: standard Hawkins model and 2-CN model allowing for a heterogeneous nature of a catchment area.
Investigation of RADTRAN Stop Model input parameters for truck stops
International Nuclear Information System (INIS)
Griego, N.R.; Smith, J.D.; Neuhauser, K.S.
1996-01-01
RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops
Updated climatological model predictions of ionospheric and HF propagation parameters
International Nuclear Information System (INIS)
Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.
1991-01-01
The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs
Statistical approach for uncertainty quantification of experimental modal model parameters
DEFF Research Database (Denmark)
Luczak, M.; Peeters, B.; Kahsin, M.
2014-01-01
Composite materials are widely used in manufacture of aerospace and wind energy structural components. These load carrying structures are subjected to dynamic time-varying loading conditions. Robust structural dynamics identification procedure impose tight constraints on the quality of modal models...... represent different complexity levels ranging from coupon, through sub-component up to fully assembled aerospace and wind energy structural components made of composite materials. The proposed method is demonstrated on two application cases of a small and large wind turbine blade........ This paper aims at a systematic approach for uncertainty quantification of the parameters of the modal models estimated from experimentally obtained data. Statistical analysis of modal parameters is implemented to derive an assessment of the entire modal model uncertainty measure. Investigated structures...
Influential input parameters for reflood model of MARS code
Energy Technology Data Exchange (ETDEWEB)
Oh, Deog Yeon; Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2012-10-15
Best Estimate (BE) calculation has been more broadly used in nuclear industries and regulations to reduce the significant conservatism for evaluating Loss of Coolant Accident (LOCA). Reflood model has been identified as one of the problems in BE calculation. The objective of the Post BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) program of OECD/NEA is to make progress the issue of the quantification of the uncertainty of the physical models in system thermal hydraulic codes, by considering an experimental result especially for reflood. It is important to establish a methodology to identify and select the parameters influential to the response of reflood phenomena following Large Break LOCA. For this aspect, a reference calculation and sensitivity analysis to select the dominant influential parameters for FEBA experiment are performed.
Four-parameter analytical local model potential for atoms
International Nuclear Information System (INIS)
Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang
2009-01-01
Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)
Nuclear magnetism of liquid 3He: new determination of the Landau parameter F0a
International Nuclear Information System (INIS)
Goudon, V.
2006-10-01
He 3 is a liquid Fermi model, isotropic, with an attainable Fermi temperature and the interaction between atoms can be controlled by changing the pressure of the liquid. In this document, we present accurate NMR measurements of the nuclear magnetic susceptibility of liquid He 3 as a function of temperature and pressure. The emphasis has been placed on reliable thermometry and on He 3 pressure measurements directly in the cell to increase the measuring range until solidification, and an accurate characterization of the NMR spectrometer. Our measurements give an effective Fermi temperature 5% lower than former results. The Landau parameter F 0 a depends on the effective mass, which is determined by specific heat measurements, and consequently on the temperature scale. The re-analysis of the specific heat measurements with the PLTS-2000 temperature scale yields an effective mass increase of 4.5%. In this document, F 0 a is determined for 2 temperature scales (PLTS-2000 and Greywall). Contrarily to former measurements, the F 0 a density dependence does not show any saturation at high pressures. (author)
International Nuclear Information System (INIS)
Ogawa, Hiromichi; Ohnuki, Toshihiko
1986-07-01
A computer code (MIGSTEM-FIT) has been developed to determine the prediction parameters, retardation factor, water flow velocity, dispersion coefficient, etc., of radionuclide migration in soil layer from the concentration distribution of radionuclide in soil layer or in effluent. In this code, the solution of the predicting equation for radionuclide migration is compared with the concentration distribution measured, and the most adequate values of parameter can be determined by the flexible tolerance method. The validity of finite differential method, which was one of the method to solve the predicting equation, was confirmed by comparison with the analytical solution, and also the validity of fitting method was confirmed by the fitting of the concentration distribution calculated from known parameters. From the examination about the error, it was found that the error of the parameter obtained by using this code was smaller than that of the concentration distribution measured. (author)
International Nuclear Information System (INIS)
Santos, V.A. dos; Dantas, C.C.
1986-01-01
Flow parameters of circulating fluidized bed in a simulated Fluid Catalyst Cracking reactor were determined by means of nuclear methods. The parameters were: residence time, density, inventory, circulation rate and radial distribution, for the catalyst; residence time for the gaseous phase. The nuclear methods where the gamma attenuation and the radiotracer. Two tracer techniques were developed, one for tagging of the catalyst by the 59 Fe as intrinsic tracer and another for tagging of the gaseous phase by the CH 3 82 Br as tracer. A detailed description of each measuring technique for all the investigated parameters is included. To carry out the determination for some of parameters a combination of the two methods was also applied. The results and the nuclear data are given in a table. (Author) [pt
Application of parameters space analysis tools for empirical model validation
Energy Technology Data Exchange (ETDEWEB)
Paloma del Barrio, E. [LEPT-ENSAM UMR 8508, Talence (France); Guyon, G. [Electricite de France, Moret-sur-Loing (France)
2004-01-01
A new methodology for empirical model validation has been proposed in the framework of the Task 22 (Building Energy Analysis Tools) of the International Energy Agency. It involves two main steps: checking model validity and diagnosis. Both steps, as well as the underlying methods, have been presented in the first part of the paper. In this part, they are applied for testing modelling hypothesis in the framework of the thermal analysis of an actual building. Sensitivity analysis tools have been first used to identify the parts of the model that can be really tested on the available data. A preliminary diagnosis is then supplied by principal components analysis. Useful information for model behaviour improvement has been finally obtained by optimisation techniques. This example of application shows how model parameters space analysis is a powerful tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison with residuals analysis techniques. (author)
Test models for improving filtering with model errors through stochastic parameter estimation
International Nuclear Information System (INIS)
Gershgorin, B.; Harlim, J.; Majda, A.J.
2010-01-01
The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.
Analytical method for determining breakdown slip of an induction motor based on of five parameters
Directory of Open Access Journals (Sweden)
Petrović Nenad
2014-01-01
Full Text Available The paper proposes an explicite formula for determining the critical slip value of an induction squirel cage motor based upon five parameters. Three of these parameters - rated slip, rated and breakdown torque are known by catalogue data. Two missing parameters are the arbitrary slip between the rated and critical slip value and the corresponding torque value. These two parameters are to be experimentaly obtained. The breakdown torque value given by catalogue data is usually less accurate than the rated torque value. The proposed formula gives the possibility of analysing the error distribution of the critical slip value obtained from catalogue and measured data in comparison with the values obtained from the mechanical characteristic based on the physical parameters of an induction motor.
Recommendations for the determination of migration parameters by field experiments (tracer tests)
International Nuclear Information System (INIS)
Adam, C.
1989-01-01
The hydrogeologic review and assessment of candidate sites for nuclear power plants includes expertises on the potential subsurface migration of radionuclides in the event of accident conditions. To this end, knowledge of representative migration parameters is required. Detailed recommendations are given for determining such parameters by tracer field tests, for using standardized terminology in their practical conduct as well as for interpreting the data obtained. Also, mention has been made of recent work reported by other authors on this topic. 31 refs. (author)
Influence of the tool construction on determination of iron-grade in parameter P-techniques
International Nuclear Information System (INIS)
Charbucinski, J.
1975-01-01
The results of laboratory tests for utilization of parameter P-technique in gamma-gamma method for the purpose of determination of iron content in an ore have been presented. Measurements were performed in the 4π geometry. The various dependences of the tool response on physical-technical parameters of the tool and the borehole-stratum system have been examined. Optimum construction of the borehole tool has been recommended. (author)
CO 2 laser cutting of MDF . 1. Determination of process parameter settings
Lum, K. C. P.; Ng, S. L.; Black, I.
2000-02-01
This paper details an investigation into the laser processing of medium-density fibreboard (MDF). Part 1 reports on the determination of process parameter settings for the effective cutting of MDF by CO 2 laser, using an established experimental methodology developed to study the interrelationship between and effects of varying laser set-up parameters. Results are presented for both continuous wave (CW) and pulse mode (PM) cutting, and the associated cut quality effects have been commented on.
Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode
International Nuclear Information System (INIS)
Cheng, H.; Scott, K.
2006-01-01
Borohydride oxidation has been investigated using a rotating disk electrode technique. The parameters, such as apparent rate constant, Tafel slope, Levich slope, number of electrons exchanged and reaction order, have been determined. The borohydride ion is oxidised on the gold electrode with an electrochemical rate constant of around 1 cm s -1 at intermediate potentials where side reactions had less effect. Influences of temperature, concentrations of borohydride and supporting electrolyte (NaOH) on the parameters were evaluated
Determination of regional cerebral blood flow curves and parameters by computed γ camera
International Nuclear Information System (INIS)
Zhu Guohong
1988-01-01
Regional CBF curves and parameters were determined in 236 subjects by Sigma 438/MCS 560 computed γ camera. Each subject was given 99m TcO 4 -370 MBq intravenously. Four CBF curves and three parameters were derived by the computer.The results from 39 normal subjects, 22 patients with cerebral embolism, 53 patients with cerebrovascular sclerosis, 56 patients with diseases of cervical vertebrae, 10 patients with concussion and 5 patients with cerebral arteritis were analyzed
THE FIRST DETERMINATION OF THE VISCOSITY PARAMETER IN THE CIRCUMSTELLAR DISK OF A Be STAR
Energy Technology Data Exchange (ETDEWEB)
Carciofi, Alex C.; Bjorkman, Jon E.; Haubois, Xavier [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900, Sao Paulo, SP (Brazil); Otero, Sebastian A. [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Okazaki, Atsuo T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Stefl, Stanislav; Rivinius, Thomas [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Baade, Dietrich, E-mail: carciofi@usp.br, E-mail: jon@physics.utoledo.edu [European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany)
2012-01-15
Be stars possess gaseous circumstellar decretion disks, which are well described using standard {alpha}-disk theory. The Be star 28 CMa recently underwent a long outburst followed by a long period of quiescence, during which the disk dissipated. Here we present the first time-dependent models of the dissipation of a viscous decretion disk. By modeling the rate of decline of the V-band excess, we determine that the viscosity parameter {alpha} = 1.0 {+-} 0.2, corresponding to a mass injection rate M-dot =(3.5{+-}1.3) Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1}. Such a large value of {alpha} suggests that the origin of the turbulent viscosity is an instability in the disk whose growth is limited by shock dissipation. The mass injection rate is more than an order of magnitude larger than the wind mass-loss rate inferred from UV observations, implying that the mass injection mechanism most likely is not the stellar wind, but some other mechanism.
A note on modeling of tumor regression for estimation of radiobiological parameters
International Nuclear Information System (INIS)
Zhong, Hualiang; Chetty, Indrin
2014-01-01
Purpose: Accurate calculation of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on derived parameters. In this study, the authors have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for estimation of radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time T d , half-life of dead cells T r , and cell survival fraction SF D under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models: Chvetsov's model (C-model) and Lim's model (L-model). The C-model and L-model were optimized with the parameter T d fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43 ± 0.08, and the half-life of dead cells averaged over the six patients is 17.5 ± 3.2 days. The parameters T r and SF D optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the T d -fixed C-model, and by 32.1% and 112.3% from those optimized with the T d -fixed L-model, respectively. Conclusions: The Z-model was analytically constructed from the differential equations of cell populations that describe changes in the number of different tumor cells during the course of radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The generated model and its optimization method may help develop high-quality treatment regimens for individual patients
Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.
2017-01-01
Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892
Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing
2016-02-01
Measurements of the acoustic nonlinearity parameter β are frequently made for early detection of damage in various materials. The practical implementation of the measurement technique has been limited to the through-transmission setup for determining the nonlinearity parameter of the second harmonic wave. In this work, a feasibility study is performed to assess the possibility of using pulse-echo methods in determining the nonlinearity parameter β of solids with a stress-free boundary. The multi-Gaussian beam model is developed based on the quasilinear theory of the KZK equation. Simulation results and discussion are presented for the reflected beam fields of the fundamental and second harmonic waves, the uncorrected β behavior and the properties of total correction that incorporate reflection, attenuation and diffraction effects.
Biosphere modelling for a HLW repository - scenario and parameter variations
International Nuclear Information System (INIS)
Grogan, H.
1985-03-01
In Switzerland high-level radioactive wastes have been considered for disposal in deep-lying crystalline formations. The individual doses to man resulting from radionuclides entering the biosphere via groundwater transport are calculated. The main recipient area modelled, which constitutes the base case, is a broad gravel terrace sited along the south bank of the river Rhine. An alternative recipient region, a small valley with a well, is also modelled. A number of parameter variations are performed in order to ascertain their impact on the doses. Finally two scenario changes are modelled somewhat simplistically, these consider different prevailing climates, namely tundra and a warmer climate than present. In the base case negligibly low doses to man in the long term, resulting from the existence of a HLW repository have been calculated. Cs-135 results in the largest dose (8.4E-7 mrem/y at 6.1E+6 y) while Np-237 gives the largest dose from the actinides (3.6E-8 mrem/y). The response of the model to parameter variations cannot be easily predicted due to non-linear coupling of many of the parameters. However, the calculated doses were negligibly low in all cases as were those resulting from the two scenario variations. (author)
Nonlinear System Identification Using Quasi-ARX RBFN Models with a Parameter-Classified Scheme
Directory of Open Access Journals (Sweden)
Lan Wang
2017-01-01
Full Text Available Quasi-linear autoregressive with exogenous inputs (Quasi-ARX models have received considerable attention for their usefulness in nonlinear system identification and control. In this paper, identification methods of quasi-ARX type models are reviewed and categorized in three main groups, and a two-step learning approach is proposed as an extension of the parameter-classified methods to identify the quasi-ARX radial basis function network (RBFN model. Firstly, a clustering method is utilized to provide statistical properties of the dataset for determining the parameters nonlinear to the model, which are interpreted meaningfully in the sense of interpolation parameters of a local linear model. Secondly, support vector regression is used to estimate the parameters linear to the model; meanwhile, an explicit kernel mapping is given in terms of the nonlinear parameter identification procedure, in which the model is transformed from the nonlinear-in-nature to the linear-in-parameter. Numerical and real cases are carried out finally to demonstrate the effectiveness and generalization ability of the proposed method.
Ye, Yong-Jun; Zhang, Yun-Feng; Dai, Xin-Tao; Ding, De-Xin
2017-10-01
The particle size and heaped methods of exhalation media have important effects on physical parameters, such as the free radon production rate, porosity, permeability, and radon diffusion coefficient. However, existing methods for determining those parameters are too complex, and time-consuming. In this study, a novel, systematic determining method was proposed based on nuclide decay, radon diffusion migration theory, and the mass conservation law, and an associated experimental device was designed and manufactured. The parameters of uranium ore heap and sandy soil of radon diffusion coefficient (D), free radon production rate (α), media permeability (k), and porosity (ε) were obtained. At the same time, the practicality of the novel determining method was improved over other methods, with the results showing that accuracy was within the acceptable range of experimental error. This novel method will be of significance for the study of radon migration and exhalation in granulated porous media. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessing robustness of designs for random effects parameters for nonlinear mixed-effects models.
Duffull, Stephen B; Hooker, Andrew C
2017-12-01
Optimal designs for nonlinear models are dependent on the choice of parameter values. Various methods have been proposed to provide designs that are robust to uncertainty in the prior choice of parameter values. These methods are generally based on estimating the expectation of the determinant (or a transformation of the determinant) of the information matrix over the prior distribution of the parameter values. For high dimensional models this can be computationally challenging. For nonlinear mixed-effects models the question arises as to the importance of accounting for uncertainty in the prior value of the variances of the random effects parameters. In this work we explore the influence of the variance of the random effects parameters on the optimal design. We find that the method for approximating the expectation and variance of the likelihood is of potential importance for considering the influence of random effects. The most common approximation to the likelihood, based on a first-order Taylor series approximation, yields designs that are relatively insensitive to the prior value of the variance of the random effects parameters and under these conditions it appears to be sufficient to consider uncertainty on the fixed-effects parameters only.
Chrisstoffels, L.A.J.; Struijk, Wilhelmina; de Jong, Feike; Reinhoudt, David
1996-01-01
This paper describes a time-dependent transport model for carrier assisted cation transport through supported liquid membranes. The model describes the flux of salt as a function of time and two parameters viz. the diffusion coefficient of the cation complex (D), and the extraction constant (Kex).
Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations
Directory of Open Access Journals (Sweden)
H. Nakajima
2006-01-01
Full Text Available Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40g, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.
Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations
Nakajima, H.; Stadler, A. T.
2006-10-01
Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40g, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.
Data-driven techniques to estimate parameters in a rate-dependent ferromagnetic hysteresis model
International Nuclear Information System (INIS)
Hu Zhengzheng; Smith, Ralph C.; Ernstberger, Jon M.
2012-01-01
The quantification of rate-dependent ferromagnetic hysteresis is important in a range of applications including high speed milling using Terfenol-D actuators. There exist a variety of frameworks for characterizing rate-dependent hysteresis including the magnetic model in Ref. , the homogenized energy framework, Preisach formulations that accommodate after-effects, and Prandtl-Ishlinskii models. A critical issue when using any of these models to characterize physical devices concerns the efficient estimation of model parameters through least squares data fits. A crux of this issue is the determination of initial parameter estimates based on easily measured attributes of the data. In this paper, we present data-driven techniques to efficiently and robustly estimate parameters in the homogenized energy model. This framework was chosen due to its physical basis and its applicability to ferroelectric, ferromagnetic and ferroelastic materials.
Development of Health Parameter Model for Risk Prediction of CVD Using SVM
Directory of Open Access Journals (Sweden)
P. Unnikrishnan
2016-01-01
Full Text Available Current methods of cardiovascular risk assessment are performed using health factors which are often based on the Framingham study. However, these methods have significant limitations due to their poor sensitivity and specificity. We have compared the parameters from the Framingham equation with linear regression analysis to establish the effect of training of the model for the local database. Support vector machine was used to determine the effectiveness of machine learning approach with the Framingham health parameters for risk assessment of cardiovascular disease (CVD. The result shows that while linear model trained using local database was an improvement on Framingham model, SVM based risk assessment model had high sensitivity and specificity of prediction of CVD. This indicates that using the health parameters identified using Framingham study, machine learning approach overcomes the low sensitivity and specificity of Framingham model.
Impact parameter determination for 40Ca + 40Ca reactions using a neural network
International Nuclear Information System (INIS)
Haddad, F.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Natowitz, J.B.; Wada, R.; Xiao, B.; David, C.; Freslier, M.; Aichelin, J.
1995-01-01
A neural network is used for the impact parameter determination in 40 Ca + 40 Ca reactions at energies between 35 and 70 AMeV. A special attention is devoted to the effect of experimental constraints such as the detection efficiency. An overall improvement of the impact parameter determination of 25% is obtained with the neural network. The neural network technique is then used in the analysis of the Ca+Ca data at 35 AMeV and allows separation of three different class of events among the selected 'complete' events. (authors). 8 refs., 5 figs
Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.
El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher
2018-01-01
Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.
Propagation channel characterization, parameter estimation, and modeling for wireless communications
Yin, Xuefeng
2016-01-01
Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...
Directory of Open Access Journals (Sweden)
Şeyda Taşar
2015-12-01
Full Text Available The pyrolysis process, which is applied for the aim of producing energy and raw materials which are implemented for the chemical industry from biomass sources, is a thermal conversion process. Determination of the pyrolysis kinetic parameters are important In order to suitable equipment and process design. In this target, in the study the pyrolysis of peanut shells was conducted in a muffle furnace at static atmosphere with temperatures ranging from 300-700 °C. The effects of various parameters on the rate of thermal decomposition rate and the solid yield were determined. The parameters of interest were temperature 300-700 °C, particle size 4-50 mesh, pelletizing, and pelletizing pressure 1.103-5.103 kgf/cm2. Regression coefficients for the total decomposition step were obtained using the thermographs were obtained as a result of the pyrolysis of the peanut shells, and 20 different theoretical model equations that represented the degradation by the Coast-Redfern method. According to regression coefficients of the theoretical model equations, we determined the kinetic model that best represented the degradation. Using this model to represent the degradation, the activation energy (Ea and Arhenius frequency factor ln(A for the total reaction were calculated to be 38.245 kJ/mol and 8.124, respectively.
Shah, S.; Gray, F.; Yang, J.; Crawshaw, J.; Boek, E.
2016-12-01
Advances in 3D pore-scale imaging and computational methods have allowed an exceptionally detailed quantitative and qualitative analysis of the fluid flow in complex porous media. A fundamental problem in pore-scale imaging and modelling is how to represent and model the range of scales encountered in porous media, starting from the smallest pore spaces. In this study, a novel method is presented for determining the representative elementary volume (REV) of a rock for several parameters simultaneously. We calculate the two main macroscopic petrophysical parameters, porosity and single-phase permeability, using micro CT imaging and Lattice Boltzmann (LB) simulations for 14 different porous media, including sandpacks, sandstones and carbonates. The concept of the `Convex Hull' is then applied to calculate the REV for both parameters simultaneously using a plot of the area of the convex hull as a function of the sub-volume, capturing the different scales of heterogeneity from the pore-scale imaging. The results also show that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size suggesting a computationally efficient way to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.