WorldWideScience

Sample records for model parameters derived

  1. Simultaneous inference for model averaging of derived parameters

    DEFF Research Database (Denmark)

    Jensen, Signe Marie; Ritz, Christian

    2015-01-01

    Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...

  2. Global distribution of urban parameters derived from high-resolution global datasets for weather modelling

    Science.gov (United States)

    Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.

    2016-12-01

    Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a

  3. Assessing composition and structure of soft biphasic media from Kelvin-Voigt fractional derivative model parameters

    Science.gov (United States)

    Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.

    2017-03-01

    Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.

  4. IBM parameters derived from realistic shell-model Hamiltonian via Hn-cooling method

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    1997-01-01

    There is a certain influence of non-collective degrees-of-freedom even in lowest-lying states of medium-heavy nuclei. This influence seems to be significant for some of the IBM parameters. In order to take it into account, several renormalization approaches have been applied. It has been shown in the previous studies that the influence of the G-pairs is important, but does not fully account for the fitted values. The influence of the non-collective components may be more serious when we take a realistic effective nucleonic interaction. To incorporate this influence into the IBM parameters, we employ the recently developed H n -cooling method. This method is applied to renormalize the wave functions of the states consisting of the SD-pairs, for the Cr-Fe nuclei. On this ground, the IBM Hamiltonian and transition operators are derived from corresponding realistic shell-model operators, for the Cr-Fe nuclei. Together with some features of the realistic interaction, the effects of the non-SD degrees-of-freedom are presented. (author)

  5. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

    Science.gov (United States)

    Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.

    2016-11-01

    With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

  6. Error estimates for near-Real-Time Satellite Soil Moisture as Derived from the Land Parameter Retrieval Model

    NARCIS (Netherlands)

    Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A.M.

    2011-01-01

    A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from

  7. Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers

    International Nuclear Information System (INIS)

    Slifstein, Mark; Laruelle, Marc

    2001-01-01

    The science of quantitative analysis of PET and SPECT neuroreceptor imaging studies has grown considerably over the past decade. A number of methods have been proposed in which receptor parameter estimation results from fitting data to a model of the underlying kinetics of ligand uptake in the brain. These approaches have come to be collectively known as model-based methods and several have received widespread use. Here, we briefly review the most frequently used methods and examine their strengths and weaknesses. Kinetic modeling is the most direct implementation of the compartment models, but with some tracers accurate input function measurement and good compartment configuration identification can be difficult to obtain. Other methods were designed to overcome some particular vulnerability to error of classical kinetic modeling, but introduced new vulnerabilities in the process. Reference region methods obviate the need for arterial plasma measurement, but are not as robust to violations of the underlying modeling assumptions as methods using the arterial input function. Graphical methods give estimates of V T without the requirement of compartment model specification, but provide a biased estimator in the presence of statistical noise. True equilibrium methods are quite robust, but their use is limited to experiments with tracers that are suitable for constant infusion. In conclusion, there is no universally 'best' method that is applicable to all neuroreceptor imaging studies, and carefully evaluation of model-based methods is required for each radiotracer

  8. Significance of uncertainties derived from settling tank model structure and parameters on predicting WWTP performance - A global sensitivity analysis study

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2011-01-01

    Uncertainty derived from one of the process models – such as one-dimensional secondary settling tank (SST) models – can impact the output of the other process models, e.g., biokinetic (ASM1), as well as the integrated wastewater treatment plant (WWTP) models. The model structure and parameter...... and from the last aerobic bioreactor upstream to the SST (Garrett/hydraulic method). For model structure uncertainty, two one-dimensional secondary settling tank (1-D SST) models are assessed, including a first-order model (the widely used Takács-model), in which the feasibility of using measured...... uncertainty of settler models can therefore propagate, and add to the uncertainties in prediction of any plant performance criteria. Here we present an assessment of the relative significance of secondary settling model performance in WWTP simulations. We perform a global sensitivity analysis (GSA) based...

  9. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter

    2001-01-01

    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters......, and validate the final force field, Alternatives to force field derivation are discussed briefly....

  10. Satellite-derived land surface parameters for mesoscale modelling of the Mexico City basin

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2006-01-01

    Full Text Available Mesoscale meteorological modelling is an important tool to help understand air pollution and heat island effects in urban areas. Accurate wind simulations are difficult to obtain in areas of weak synoptic forcing. Local factors have a dominant role in the circulation and include land surface parameters and their interaction with the atmosphere. This paper examines an episode during the MCMA-2003 field campaign held in the Mexico City Metropolitan Area (MCMA in April of 2003. Because the episode has weak synoptic forcing, there is the potential for the surface heat budget to influence the local meteorology. High resolution satellite observations are used to specify the land use, vegetation fraction, albedo and surface temperature in the MM5 model. Making use of these readily available data leads to improved meteorological simulations in the MCMA, both for the wind circulation patterns and the urban heat island. Replacing values previously obtained from land-use tables with actual measurements removes the number of unknowns in the model and increases the accuracy of the energy budget. In addition to improving the understanding of local meteorology, this sets the stage for the use of advanced urban modules.

  11. Derivation of potential model for LiAlO2 by simple and effective optimization of model parameters

    International Nuclear Information System (INIS)

    Tsuchihira, H.; Oda, T.; Tanaka, S.

    2009-01-01

    Interatomic potentials of LiAlO 2 were constructed by a simple and effective method. In this method, the model function consists of multiple inverse polynomial functions with an exponential truncation function, and parameters in the potential model can be optimized as a solution of simultaneous linear equations. Potential energies obtained by ab initio calculation are used as fitting targets for model parameter optimization. Lattice constants, elastic properties, defect-formation energy, thermal expansions and the melting point were calculated under the constructed potential models. The results showed good agreement with experimental values and ab initio calculation results, which underscores the validity of the presented method.

  12. DCE-MRI of patient-derived xenograft models of uterine cervix carcinoma: associations with parameters of the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Anette Hauge

    2017-11-01

    Full Text Available Abstract Background Abnormalities in the tumor microenvironment are associated with resistance to treatment, aggressive growth, and poor clinical outcome in patients with advanced cervical cancer. The potential of dynamic contrast-enhanced (DCE MRI to assess the microvascular density (MVD, interstitial fluid pressure (IFP, and hypoxic fraction of patient-derived cervical cancer xenografts was investigated in the present study. Methods Four patient-derived xenograft (PDX models of squamous cell carcinoma of the uterine cervix (BK-12, ED-15, HL-16, and LA-19 were subjected to Gd-DOTA-based DCE-MRI using a 7.05 T preclinical scanner. Parametric images of the volume transfer constant (K trans and the fractional distribution volume (v e of the contrast agent were produced by pharmacokinetic analyses utilizing the standard Tofts model. Whole tumor median values of the DCE-MRI parameters were compared with MVD and the fraction of hypoxic tumor tissue, as determined histologically, and IFP, as measured with a Millar catheter. Results Both on the PDX model level and the single tumor level, a significant inverse correlation was found between K trans and hypoxic fraction. The extent of hypoxia was also associated with the fraction of voxels with unphysiological v e values (v e > 1.0. None of the DCE-MRI parameters were related to MVD or IFP. Conclusions DCE-MRI may provide valuable information on the hypoxic fraction of squamous cell carcinoma of the uterine cervix, and thereby facilitate individualized patient management.

  13. Three-parameter modeling of the soil sorption of acetanilide and triazine herbicide derivatives.

    Science.gov (United States)

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2014-02-01

    Herbicides have widely variable toxicity and many of them are persistent soil contaminants. Acetanilide and triazine family of herbicides have widespread use, but increasing interest for the development of new herbicides has been rising to increase their effectiveness and to diminish environmental hazard. The environmental risk of new herbicides can be accessed by estimating their soil sorption (logKoc), which is usually correlated to the octanol/water partition coefficient (logKow). However, earlier findings have shown that this correlation is not valid for some acetanilide and triazine herbicides. Thus, easily accessible quantitative structure-property relationship models are required to predict logKoc of analogues of the these compounds. Octanol/water partition coefficient, molecular weight and volume were calculated and then regressed against logKoc for two series of acetanilide and triazine herbicides using multiple linear regression, resulting in predictive and validated models.

  14. Predicting Collateral Status With Magnetic Resonance Perfusion Parameters: Probabilistic Approach With a Tmax-Derived Prediction Model.

    Science.gov (United States)

    Lee, Mi Ji; Son, Jeong Pyo; Kim, Suk Jae; Ryoo, Sookyung; Woo, Sook-Young; Cha, Jihoon; Kim, Gyeong-Moon; Chung, Chin-Sang; Lee, Kwang Ho; Bang, Oh Young

    2015-10-01

    Good collateral flow is an important predictor for favorable responses to recanalization therapy and successful outcomes after acute ischemic stroke. Magnetic resonance perfusion-weighted imaging (MRP) is widely used in patients with stroke. However, it is unclear whether the perfusion parameters and thresholds would predict collateral status. The present study evaluated the relationship between hypoperfusion severity and collateral status to develop a predictive model for good collaterals using MRP parameters. Patients who were eligible for recanalization therapy that underwent both serial diffusion-weighted imaging and serial MRP were enrolled into the study. A collateral flow map derived from MRP source data was generated through automatic postprocessing. Hypoperfusion severity, presented as proportions of every 2-s Tmax strata to the entire hypoperfusion volume (Tmax≥2 s), was compared between patients with good and poor collaterals. Prediction models for good collaterals were developed with each Tmax strata proportion and cerebral blood volumes. Among 66 patients, 53 showed good collaterals based on MRP-based collateral grading. Although no difference was noted in delays within 16 s, more severe Tmax delays (Tmax16-18 s, Tmax18-22 s, Tmax22-24 s, and Tmax>24 s) were associated with poor collaterals. The probability equation model using Tmax strata proportion demonstrated high predictive power in a receiver operating characteristic analysis (area under the curve=0.9303; 95% confidence interval, 0.8682-0.9924). The probability score was negatively correlated with the volume of infarct growth (P=0.030). Collateral status is associated with more severe Tmax delays than previously defined. The present Tmax severity-weighted model can determine good collaterals and subsequent infarct growth. © 2015 American Heart Association, Inc.

  15. Neural network modelling of antifungal activity of a series of oxazole derivatives based on in silico pharmacokinetic parameters

    Directory of Open Access Journals (Sweden)

    Kovačević Strahinja Z.

    2013-01-01

    Full Text Available In the present paper, the antifungal activity of a series of benzoxazole and oxazolo[ 4,5-b]pyridine derivatives was evaluated against Candida albicans by using quantitative structure-activity relationships chemometric methodology with artificial neural network (ANN regression approach. In vitro antifungal activity of the tested compounds was presented by minimum inhibitory concentration expressed as log(1/cMIC. In silico pharmacokinetic parameters related to absorption, distribution, metabolism and excretion (ADME were calculated for all studied compounds by using PreADMET software. A feedforward back-propagation ANN with gradient descent learning algorithm was applied for modelling of the relationship between ADME descriptors (blood-brain barrier penetration, plasma protein binding, Madin-Darby cell permeability and Caco-2 cell permeability and experimental log(1/cMIC values. A 4-6-1 ANN was developed with the optimum momentum and learning rates of 0.3 and 0.05, respectively. An excellent correlation between experimental antifungal activity and values predicted by the ANN was obtained with a correlation coefficient of 0.9536. [Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. 172014

  16. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  17. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading.

    Science.gov (United States)

    Xie, Tian; Chen, Xiao; Fang, Jingqin; Kang, Houyi; Xue, Wei; Tong, Haipeng; Cao, Peng; Wang, Sumei; Yang, Yizeng; Zhang, Weiguo

    2018-04-01

    Presurgical glioma grading by dynamic contrast-enhanced MRI (DCE-MRI) has unresolved issues. The aim of this study was to investigate the ability of textural features derived from pharmacokinetic model-based or model-free parameter maps of DCE-MRI in discriminating between different grades of gliomas, and their correlation with pathological index. Retrospective. Forty-two adults with brain gliomas. 3.0T, including conventional anatomic sequences and DCE-MRI sequences (variable flip angle T1-weighted imaging and three-dimensional gradient echo volumetric imaging). Regions of interest on the cross-sectional images with maximal tumor lesion. Five commonly used textural features, including Energy, Entropy, Inertia, Correlation, and Inverse Difference Moment (IDM), were generated. All textural features of model-free parameters (initial area under curve [IAUC], maximal signal intensity [Max SI], maximal up-slope [Max Slope]) could effectively differentiate between grade II (n = 15), grade III (n = 13), and grade IV (n = 14) gliomas (P textural features, Entropy and IDM, of four DCE-MRI parameters, including Max SI, Max Slope (model-free parameters), vp (Extended Tofts), and vp (Patlak) could differentiate grade III and IV gliomas (P textural features of any DCE-MRI parameter maps could discriminate between subtypes of grade II and III gliomas (P features revealed relatively lower inter-observer agreement. No significant correlation was found between microvascular density and textural features, compared with a moderate correlation found between cellular proliferation index and those features. Textural features of DCE-MRI parameter maps displayed a good ability in glioma grading. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1099-1111. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Riches, S.F.; Payne, G.S.; Morgan, V.A.; DeSouza, N.M. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, CRUK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Dearnaley, D. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Department of Urology and Department of Academic Radiotherapy, Sutton, Surrey (United Kingdom); Morgan, S. [The Ottawa Hospital Cancer Centre and the University of Ottawa, Division of Radiation Oncology, Ottawa, Ontario (Canada); Partridge, M. [The Institute of Cancer Research, Section of Radiotherapy and Imaging, Sutton, Surrey (United Kingdom); University of Oxford, The Gray Institute for Radiation Oncology and Biology, Oxford (United Kingdom); Livni, N. [Royal Marsden NHS Foundation Trust Chelsea, Department of Histopathology, London (United Kingdom); Ogden, C. [Royal Marsden NHS Foundation Trust Chelsea, Department of Urology, London (United Kingdom)

    2015-05-01

    The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T{sub 2}-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T{sub 2,} Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K{sup trans},K{sub ep},V{sub e}), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. (orig.)

  19. Methodology for deriving hydrogeological input parameters for safety-analysis models - application to fractured crystalline rocks of Northern Switzerland

    International Nuclear Information System (INIS)

    Vomvoris, S.; Andrews, R.W.; Lanyon, G.W.; Voborny, O.; Wilson, W.

    1996-04-01

    Switzerland is one of many nations with nuclear power that is seeking to identify rock types and locations that would be suitable for the underground disposal of nuclear waste. A common challenge among these programs is to provide engineering designers and safety analysts with a reasonably representative hydrogeological input dataset that synthesizes the relevant information from direct field observations as well as inferences and model results derived from those observations. Needed are estimates of the volumetric flux through a volume of rock and the distribution of that flux into discrete pathways between the repository zones and the biosphere. These fluxes are not directly measurable but must be derived based on understandings of the range of plausible hydrogeologic conditions expected at the location investigated. The methodology described in this report utilizes conceptual and numerical models at various scales to derive the input dataset. The methodology incorporates an innovative approach, called the geometric approach, in which field observations and their associated uncertainty, together with a conceptual representation of those features that most significantly affect the groundwater flow regime, were rigorously applied to generate alternative possible realizations of hydrogeologic features in the geosphere. In this approach, the ranges in the output values directly reflect uncertainties in the input values. As a demonstration, the methodology is applied to the derivation of the hydrogeological dataset for the crystalline basement of Northern Switzerland. (author) figs., tabs., refs

  20. Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort

    Energy Technology Data Exchange (ETDEWEB)

    Jerome, Neil P.; Miyazaki, Keiko; Collins, David J.; Orton, Matthew R.; D' Arcy, James A.; Leach, Martin O. [Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London (United Kingdom); Wallace, Toni; Koh, Dow-Mu [Royal Marsden NHS Foundation Trust, Department of Radiology, Sutton, Surrey (United Kingdom); Moreno, Lucas [The Institute of Cancer Research, Paediatric Drug Development Team, Division of Cancer Therapeutics and Clinical Studies, London (United Kingdom); Hospital Nino Jesus, Madrid (Spain); Royal Marsden NHS Foundation Trust, Paediatric Drug Development Unit, Children and Young People' s Unit, Sutton, Surrey (United Kingdom); Pearson, Andrew D.J.; Marshall, Lynley V.; Carceller, Fernando; Zacharoulis, Stergios [The Institute of Cancer Research, Paediatric Drug Development Team, Division of Cancer Therapeutics and Clinical Studies, London (United Kingdom); Royal Marsden NHS Foundation Trust, Paediatric Drug Development Unit, Children and Young People' s Unit, Sutton, Surrey (United Kingdom)

    2017-01-15

    To examine repeatability of parameters derived from non-Gaussian diffusion models in data acquired in children with solid tumours. Paediatric patients (<16 years, n = 17) were scanned twice, 24 h apart, using DWI (6 b-values, 0-1000 mm{sup -2} s) at 1.5 T in a prospective study. Tumour ROIs were drawn (3 slices) and all data fitted using IVIM, stretched exponential, and kurtosis models; percentage coefficients of variation (CV) calculated for each parameter at all ROI histogram centiles, including the medians. The values for ADC, D, DDC{sub α}, α, and DDC{sub K} gave CV < 10 % down to the 5th centile, with sharp CV increases below 5th and above 95th centile. K, f, and D* showed increased CV (>30 %) over the histogram. ADC, D, DDC{sub α}, and DDC{sub K} were strongly correlated (ρ > 0.9), DDC{sub α} and α were not correlated (ρ = 0.083). Perfusion- and kurtosis-related parameters displayed larger, more variable CV across the histogram, indicating observed clinical changes outside of D/DDC in these models should be interpreted with caution. Centiles below 5th for all parameters show high CV and are unreliable as diffusion metrics. The stretched exponential model behaved well for both DDC{sub α} and α, making it a strong candidate for modelling multiple-b-value diffusion imaging data. (orig.)

  1. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  2. A Conceptually Simple Modeling Approach for Jason-1 Sea State Bias Correction Based on 3 Parameters Exclusively Derived from Altimetric Information

    Directory of Open Access Journals (Sweden)

    Nelson Pires

    2016-07-01

    Full Text Available A conceptually simple formulation is proposed for a new empirical sea state bias (SSB model using information retrieved entirely from altimetric data. Nonparametric regression techniques are used, based on penalized smoothing splines adjusted to each predictor and then combined by a Generalized Additive Model. In addition to the significant wave height (SWH and wind speed (U10, a mediator parameter designed by the mean wave period derived from radar altimetry, has proven to improve the model performance in explaining some of the SSB variability, especially in swell ocean regions with medium-high SWH and low U10. A collinear analysis of scaled sea level anomalies (SLA variance differences shows conformity between the proposed model and the established SSB models. The new formulation aims to be a fast, reliable and flexible SSB model, in line with the well-settled SSB corrections, depending exclusively on altimetric information. The suggested method is computationally efficient and capable of generating a stable model with a small training dataset, a useful feature for forthcoming missions.

  3. Manifestation of a neuro-fuzzy model to produce landslide susceptibility map using remote sensing data derived parameters

    Science.gov (United States)

    Pradhan, Biswajeet; Lee, Saro; Buchroithner, Manfred

    Landslides are the most common natural hazards in Malaysia. Preparation of landslide suscep-tibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. In this study, a new attempt is tried to produce landslide susceptibility map of a part of Cameron Valley of Malaysia. This paper develops an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment for landslide susceptibility mapping. To ob-tain the neuro-fuzzy relations for producing the landslide susceptibility map, landslide locations were identified from interpretation of aerial photographs and high resolution satellite images, field surveys and historical inventory reports. Landslide conditioning factors such as slope, plan curvature, distance to drainage lines, soil texture, lithology, and distance to lineament were extracted from topographic, soil, and lineament maps. Landslide susceptible areas were analyzed by the ANFIS model and mapped using the conditioning factors. Furthermore, we applied various membership functions (MFs) and fuzzy relations to produce landslide suscep-tibility maps. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. Results show that, triangular, trapezoidal, and polynomial MFs were the best individual MFs for modelling landslide susceptibility maps (86

  4. Deriving stellar parameters with the SME software package

    Science.gov (United States)

    Piskunov, N.

    2017-09-01

    Photometry and spectroscopy are complementary tools for deriving accurate stellar parameters. Here I present one of the popular packages for stellar spectroscopy called SME with the emphasis on the latest developments and error assessment for the derived parameters.

  5. Parameters and error of a theoretical model

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs

  6. Parameter Estimation of Nonlinear Models in Forestry.

    OpenAIRE

    Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.

    1999-01-01

    Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...

  7. Land use and urban morphology parameters for Vienna required for initialisation of the urban canopy model TEB derived via the concept of "local climate zones"

    Science.gov (United States)

    Trimmel, Heidelinde; Weihs, Philipp; Oswald, Sandro M.; Masson, Valéry; Schoetter, Robert

    2017-04-01

    Urban settlements are generally known for their high fractions of impermeable surfaces, large heat capacity and low humidity compared to rural areas which results in the well known phenomena of urban heat islands. The urbanized areas are growing which can amplify the intensity and frequency of situations with heat stress. The distribution of the urban heat island is not uniform though, because the urban environment is highly diverse regarding its morphology as building heights, building contiguity and configuration of open spaces and trees vary, which cause changes in the aerodynamic resistance for heat transfers and drag coefficients for momentum. Furthermore cities are characterized by highly variable physical surface properties as albedo, emissivity, heat capacity and thermal conductivity. The distribution of the urban heat island is influenced by these morphological and physical parameters as well as the distribution of unsealed soil and vegetation. These aspects influence the urban climate on micro- and mesoscale. For larger Vienna high resolution vector and raster geodatasets were processed to derive land use surface fractions and building morphology parameters on block scale following the methodology of Cordeau (2016). A dataset of building age and typology was cross checked and extended using satellite visual and thermal bands and linked to a database joining building age and typology with typical physical building parameters obtained from different studies (Berger et al. 2012 and Amtmann M and Altmann-Mavaddat N (2014)) and the OIB (Österreichisches Institut für Bautechnik). Using dominant parameters obtained using this high resolution mainly ground based data sets (building height, built area fraction, unsealed fraction, sky view factor) a local climate zone classification was produced using an algorithm. The threshold values were chosen according to Stewart and Oke (2012). This approach is compared to results obtained with the methodology of Bechtel et

  8. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    Science.gov (United States)

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only

  9. Retention of tritium in reference persons: a metabolic model. Derivation of parameters and application of the model to the general public and to workers

    International Nuclear Information System (INIS)

    Galeriu, D; Melintescu, A

    2010-01-01

    Tritium ( 3 H) is a radioactive isotope of hydrogen that is ubiquitous in environmental and biological systems. Following debate on the human health risk from exposure to tritium, there have been claims that the current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) may underestimate tritium doses. A new generic model for tritium in mammals, based on energy metabolism and body composition, together with all its input data, has been described in a recent paper and successfully tested for farm and laboratory mammals. That model considers only dietary intake of tritium and was extended to humans. This paper presents the latest development of the human model with explicit consideration of brain energy metabolism. Model testing with human experimental data on organically bound tritium (OBT) in urine after tritiated water (HTO) or OBT intakes is presented. Predicted absorbed doses show a moderate increase for OBT intakes compared with doses recommended by the ICRP. Infants have higher tritium retention-a factor of 2 longer than the ICRP estimate. The highest tritium concentration is in adipose tissue, which has a very low radiobiological sensitivity. The ranges of uncertainty in retention and doses are investigated. The advantage of the new model is its ability to be applied to the interpretation of bioassay data.

  10. Retention of tritium in reference persons: a metabolic model. Derivation of parameters and application of the model to the general public and to workers

    Energy Technology Data Exchange (ETDEWEB)

    Galeriu, D; Melintescu, A, E-mail: galdan@ifin.nipne.r, E-mail: dangaler@yahoo.co [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 407 Atomistilor Street, Bucharest-Magurele, POB MG-6, RO-077125 (Romania)

    2010-09-15

    Tritium ({sup 3}H) is a radioactive isotope of hydrogen that is ubiquitous in environmental and biological systems. Following debate on the human health risk from exposure to tritium, there have been claims that the current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) may underestimate tritium doses. A new generic model for tritium in mammals, based on energy metabolism and body composition, together with all its input data, has been described in a recent paper and successfully tested for farm and laboratory mammals. That model considers only dietary intake of tritium and was extended to humans. This paper presents the latest development of the human model with explicit consideration of brain energy metabolism. Model testing with human experimental data on organically bound tritium (OBT) in urine after tritiated water (HTO) or OBT intakes is presented. Predicted absorbed doses show a moderate increase for OBT intakes compared with doses recommended by the ICRP. Infants have higher tritium retention-a factor of 2 longer than the ICRP estimate. The highest tritium concentration is in adipose tissue, which has a very low radiobiological sensitivity. The ranges of uncertainty in retention and doses are investigated. The advantage of the new model is its ability to be applied to the interpretation of bioassay data.

  11. An Iterative Method to Derive the Equivalent Centrifugal Compressor Performance at Various Operating Conditions: Part I: Modelling of Suction Parameters Impact

    Directory of Open Access Journals (Sweden)

    Waleed Albusaidi

    2015-08-01

    Full Text Available This paper introduces a new iterative method to predict the equivalent centrifugal compressor performance at various operating conditions. The presented theoretical analysis and empirical correlations provide a novel approach to derive the entire compressor map corresponding to various suction conditions without a prior knowledge of the detailed geometry. The efficiency model was derived to reflect the impact of physical gas properties, Mach number, and flow and work coefficients. One of the main features of the developed technique is the fact that it considers the variation in the gas properties and stage efficiency which makes it appropriate with hydrocarbons. This method has been tested to predict the performance of two multistage centrifugal compressors and the estimated characteristics are compared with the measured data. The carried comparison revealed a good matching with the actual values, including the stable operation region limits. Furthermore, an optimization study was conducted to investigate the influences of suction conditions on the stage efficiency and surge margin. Moreover, a new sort of presentation has been generated to obtain the equivalent performance characteristics for a constant discharge pressure operation at variable suction pressure and temperature working conditions. A further validation is included in part two of this study in order to evaluate the prediction capability of the derived model at various gas compositions.

  12. VLBI-derived troposphere parameters during CONT08

    Science.gov (United States)

    Heinkelmann, R.; Böhm, J.; Bolotin, S.; Engelhardt, G.; Haas, R.; Lanotte, R.; MacMillan, D. S.; Negusini, M.; Skurikhina, E.; Titov, O.; Schuh, H.

    2011-07-01

    Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays ( ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two

  13. Sounding-derived parameters associated with large hail and tornadoes in the Netherlands

    NARCIS (Netherlands)

    Groenemeijer, P.H.; van Delden, A.J.|info:eu-repo/dai/nl/072670703

    2007-01-01

    A study is presented focusing on the potential value of parameters derived from radiosonde data or data from numerical atmospheric models for the forecasting of severe weather associated with convective storms. Parameters have been derived from soundings in the proximity of large hail, tornadoes

  14. Model parameter updating using Bayesian networks

    International Nuclear Information System (INIS)

    Treml, C.A.; Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  15. The Effect of Metal Concentration on the Parameters Derived from Complexometric Titrations of Trace Elements in Seawater—A Model Study

    Directory of Open Access Journals (Sweden)

    Martha Gledhill

    2017-08-01

    Full Text Available In this study we examine the impact of dissolved metal concentrations on the parameters that are commonly determined from complexometric titrations in seawater. We use the non-ideal competitive adsorption (NICA model within the framework of the chemical speciation program visual MINTEQ with iron as a model metal. We demonstrate that dissolved iron concentrations effect the determined parameters for a heterogeneous binding site distribution with a fixed concentration of dissolved organic carbon. The commonly used terms “ligand concentration” and “binding constant” are therefore dependent on metal concentration, so we adopt the terminology suggested by Town and Filella (2000 and use the terms ligand quotient and stability quotient here. The systematic increase in the ligand quotient with dissolved iron concentration likely contributes toward the trend of increasing ligand quotient with dissolved iron concentration observed in field studies, and makes it hard to assign an objective meaning to the parameter. We suggest that calculation of the side reaction coefficient, a parameter that describes the probability that any added metal will be complexed, could be less prone to bias and misinterpretation than calculation of conditional stability and ligand quotients. We explore the impact of experimental design on side reaction coefficients by applying different detection windows, and multiwindow and reverse titration approaches. We identify the method that results in the best estimates of side reaction coefficients over a range of iron concentrations between 0.1 and 1.5 nmol L−1. We find that single window titrations can only reliably estimate side reaction coefficients over a limited range of iron concentrations. Multiwindow titrations provided estimates of side reaction coefficients within the 99% confidence interval of the values calculated directly from the NICA model at all iron concentrations examined here. We recommend that future

  16. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

    Science.gov (United States)

    García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau

    2018-05-01

    This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will

  17. Photovoltaic module parameters acquisition model

    Energy Technology Data Exchange (ETDEWEB)

    Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk

    2014-09-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.

  18. Photovoltaic module parameters acquisition model

    International Nuclear Information System (INIS)

    Cibira, Gabriel; Koščová, Marcela

    2014-01-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model

  19. PARAMETER ESTIMATION IN BREAD BAKING MODEL

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2012-05-01

    Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels.  Abstrak  PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan

  20. The mobilisation model and parameter sensitivity

    International Nuclear Information System (INIS)

    Blok, B.M.

    1993-12-01

    In the PRObabillistic Safety Assessment (PROSA) of radioactive waste in a salt repository one of the nuclide release scenario's is the subrosion scenario. A new subrosion model SUBRECN has been developed. In this model the combined effect of a depth-dependent subrosion, glass dissolution, and salt rise has been taken into account. The subrosion model SUBRECN and the implementation of this model in the German computer program EMOS4 is presented. A new computer program PANTER is derived from EMOS4. PANTER models releases of radionuclides via subrosion from a disposal site in a salt pillar into the biosphere. For uncertainty and sensitivity analyses the new subrosion model Latin Hypercube Sampling has been used for determine the different values for the uncertain parameters. The influence of the uncertainty in the parameters on the dose calculations has been investigated by the following sensitivity techniques: Spearman Rank Correlation Coefficients, Partial Rank Correlation Coefficients, Standardised Rank Regression Coefficients, and the Smirnov Test. (orig./HP)

  1. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  2. Review of the different methods to derive average spacing from resolved resonance parameters sets

    International Nuclear Information System (INIS)

    Fort, E.; Derrien, H.; Lafond, D.

    1979-12-01

    The average spacing of resonances is an important parameter for statistical model calculations, especially concerning non fissile nuclei. The different methods to derive this average value from resonance parameters sets have been reviewed and analyzed in order to tentatively detect their respective weaknesses and propose recommendations. Possible improvements are suggested

  3. Systematic parameter inference in stochastic mesoscopic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

  4. Stochasticity effects on derivation of physical parameters of unresolved star clusters

    OpenAIRE

    de Meulenaer, Philippe; Narbutis, Donatas; Mineikis, Tadas; Vansevičius, Vladas

    2013-01-01

    We developed a method for a fast modeling of broad-band UBVRI integrated magnitudes of unresolved star clusters and used it to derive their physical parameters (age, mass, and extinction). The method was applied on M33 galaxy cluster sample and consistency of ages and masses derived from unresolved observations with the values derived from resolved stellar photometry was demonstrated. We found that interstellar extinction causes minor age-extinction degeneracy for the studied sample due to a ...

  5. Tree survey and allometric models for tiger bush in northern Senegal and comparison with tree parameters derived from high resolution satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Goettsche, Frank-M.; Diop, Doudou

    2011-01-01

    A tree survey and an analysis of high resolution satellite data were performed to characterise the woody vegetation within a 10 x 10 km(2) area around a site located close to the town of Dahra in the semiarid northern part of Senegal. The surveyed parameters were tree species, height, tree crown...

  6. Gaussian Plume Model Parameters for Ground-Level and Elevated Sources Derived from the Atmospheric Diffusion Equation in the Neutral and Stable Conditions

    International Nuclear Information System (INIS)

    Essa, K.S.M.

    2009-01-01

    The analytical solution of the atmospheric diffusion equation for a point source gives the ground-level concentration profiles. It depends on the wind speed ua nd vertical dispersion coefficient σ z expressed by Pasquill power laws. Both σ z and u are functions of downwind distance, stability and source elevation, while for the ground-level emission u is constant. In the neutral and stable conditions, the Gaussian plume model and finite difference numerical methods with wind speed in power law and the vertical dispersion coefficient in exponential law are estimated. This work shows that the estimated ground-level concentrations of the Gaussian model for high-level source and numerical finite difference method are very match fit to the observed ground-level concentrations of the Gaussian model

  7. The Effect of Metal Concentration on the Parameters Derived from Complexometric Titrations of Trace Elements in Seawater—A Model Study

    NARCIS (Netherlands)

    Gledhill, M.; Gerringa, L.J.A.

    2017-01-01

    In this study we examine the impact of dissolved metal concentrations on the parametersthat are commonly determined from complexometric titrations in seawater. We use thenon-ideal competitive adsorption (NICA) model within the framework of the chemicalspeciation program visual MINTEQ with iron as a

  8. Long-term dynamics of radionuclides in semi-natural environments. Derivation of parameters and modelling. Final Report 1996-1999

    Energy Technology Data Exchange (ETDEWEB)

    Belli, M. [Agenzia Nazionale per la Protezione dell' Ambiente, Rome (Italy). Dipt. Stato Ambiente, Controlli e Sistemi Informativi, Unita' Interdipartimentale di Metrologia Ambientale

    2000-07-01

    During the Chernobyl accident large areas of semi-natural ecosystems were affected by radionuclide deposition. Meadows and forests are typical semi-natural ecosystems. Meadows are used extensively in many countries as pastures for cattle, sheep and goats, while forests are important to man since they provide wood, paper, wild berries, mushrooms, game and recreational areas. Post-Chernobyl investigations have shown that dose to man from semi-natural ecosystems is relatively greater than from agricultural systems and that this dose risk persists for the long-term. Predictive models are essential to take long-term decisions on the management of contaminated environment and to identify key processes controlling the dynamics of radionuclides inside the ecosystems. During the period following the atmospheric fallout due to the nuclear weapons testing, few models for some specific semi-natural environments were developed. The applicability of these models to a wide range of semi-natural ecosystem is questionable, because in these complex systems it is more difficult to identify general key processes and to apply to other sites models developed for one site. Studies carried out since the Chernobyl accident have increased the understanding of radionuclide behaviour in semi-natural ecosystems, especially for boreal forests and middle European meadow systems which have been extensively investigated. Data sets have been obtained which describe the distribution and the cycling of radionuclides (especially {sup 137}Cs and {sup 90}Sr) within these systems. However, predictive modelling has largely been restricted to aggregated transfer factors which provide good contamination estimates, but only for the sites from which data have been obtained directly. There was a need to develop models that can be applied to a broad variety of ecosystems. They are needed for dose estimation, countermeasure implementation and environmental management. They should give reliable estimates of the

  9. Long-term dynamics of radionuclides in semi-natural environments. Derivation of parameters and modelling. Final Report 1996-1999

    International Nuclear Information System (INIS)

    Belli, M.

    2000-04-01

    During the Chernobyl accident large areas of semi-natural ecosystems were affected by radionuclide deposition. Meadows and forests are typical semi-natural ecosystems. Meadows are used extensively in many countries as pastures for cattle, sheep and goats, while forests are important to man since they provide wood, paper, wild berries, mushrooms, game and recreational areas. Post-Chernobyl investigations have shown that dose to man from semi-natural ecosystems is relatively greater than from agricultural systems and that this dose risk persists for the long-term. Predictive models are essential to take long-term decisions on the management of contaminated environment and to identify key processes controlling the dynamics of radionuclides inside the ecosystems. During the period following the atmospheric fallout due to the nuclear weapons testing, few models for some specific semi-natural environments were developed. The applicability of these models to a wide range of semi-natural ecosystem is questionable, because in these complex systems it is more difficult to identify general key processes and to apply to other sites models developed for one site. Studies carried out since the Chernobyl accident have increased the understanding of radionuclide behaviour in semi-natural ecosystems, especially for boreal forests and middle European meadow systems which have been extensively investigated. Data sets have been obtained which describe the distribution and the cycling of radionuclides (especially 137 Cs and 90 Sr) within these systems. However, predictive modelling has largely been restricted to aggregated transfer factors which provide good contamination estimates, but only for the sites from which data have been obtained directly. There was a need to develop models that can be applied to a broad variety of ecosystems. They are needed for dose estimation, countermeasure implementation and environmental management. They should give reliable estimates of the behaviour

  10. Optimization of some electrochemical etching parameters for cellulose derivatives

    International Nuclear Information System (INIS)

    Chowdhury, Annis; Gammage, R.B.

    1978-01-01

    Electrochemical etching of fast neutron induced recoil particle tracks in cellulose derivatives and other polymers provides an inexpensive and sensitive means of fast neutron personnel dosimetry. A study of the shape, clarity, and size of the tracks in Transilwrap polycarbonate indicated that the optimum normality of the potassium hydroxide etching solution is 9 N. Optimizations have also been attempted for cellulose nitrate, triacetate, and acetobutyrate with respect to such electrochemical etching parameters as frequency, voltage gradient, and concentration of the etching solution. The measurement of differential leakage currents between the undamaged and the neutron damaged foils aided in the selection of optimum frequencies. (author)

  11. Derivation of cell population kinetic parameters from clinical statistical data (program RAD3)

    International Nuclear Information System (INIS)

    Cohen, L.

    1978-01-01

    Cellular lethality models generally require up to 6 parameters to simulate a clinical course of fractionated radiation therapy and to derive an estimate of the cellular surviving fraction for a given treatment scheme. These parameters are the mean cellular lethal dose, the extrapolation number, the ratio of sublethal to irreparable events, the regeneration rate, the repopulation limit (cell cycles), and a field-size or tumor-volume factor. A computer program (RAD3) was designed to derive best-fitting values for these parameters in relation to available clinical data based on the assumption that if a number of different fractionation schemes yield similar reactions, the cellular surviving fractions will be about equal in each instance. Parameters were derived for a variety of human tissues from which realistic iso-effect functions could be generated

  12. Correlations between skin hydration parameters and corneocyte-derived parameters to characterize skin conditions.

    Science.gov (United States)

    Masaki, Hitoshi; Yamashita, Yuki; Kyotani, Daiki; Honda, Tatsuya; Takano, Kenichi; Tamura, Toshiyasu; Mizutani, Taeko; Okano, Yuri

    2018-03-30

    Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions. © 2018 Wiley Periodicals, Inc.

  13. Orbital parameters of extrasolar planets derived from polarimetry

    Science.gov (United States)

    Fluri, D. M.; Berdyugina, S. V.

    2010-03-01

    Context. Polarimetry of extrasolar planets becomes a new tool for their investigation, which requires the development of diagnostic techniques and parameter case studies. Aims: Our goal is to develop a theoretical model which can be applied to interpret polarimetric observations of extrasolar planets. Here we present a theoretical parameter study that shows the influence of the various involved parameters on the polarization curves. Furthermore, we investigate the robustness of the fitting procedure. We focus on the diagnostics of orbital parameters and the estimation of the scattering radius of the planet. Methods: We employ the physics of Rayleigh scattering to obtain polarization curves of an unresolved extrasolar planet. Calculations are made for two cases: (i) assuming an angular distribution for the intensity of the scattered light as from a Lambert sphere and for polarization as from a Rayleigh-type scatterer; and (ii) assuming that both the intensity and polarization of the scattered light are distributed according to the Rayleigh law. We show that the difference between these two cases is negligible for the shapes of the polarization curves. In addition, we take the size of the host star into account, which is relevant for hot Jupiters orbiting giant stars. Results: We discuss the influence of the inclination of the planetary orbit, the position angle of the ascending node, and the eccentricity on the linearly polarized light curves both in Stokes Q/I and U/I. We also analyze errors that arise from the assumption of a point-like star in numerical modeling of polarization as compared to consistent calculations accounting for the finite size of the host star. We find that errors due to the point-like star approximation are reduced with the size of the orbit, but still amount to about 5% for known hot Jupiters. Recovering orbital parameters from simulated data is shown to be very robust even for very noisy data because the polarization curves react

  14. Aerodynamic Parameters of a UK City Derived from Morphological Data

    Science.gov (United States)

    Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.

    2013-03-01

    Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.

  15. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  16. Derivation of Delaware Bay tidal parameters from space shuttle photography

    International Nuclear Information System (INIS)

    Zheng, Quanan; Yan, Xiaohai; Klemas, V.

    1993-01-01

    The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O 9 m 3 . Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts

  17. Linear elastic properties derivation from microstructures representative of transport parameters.

    Science.gov (United States)

    Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille

    2014-06-01

    It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.

  18. Predicting plant biomass accumulation from image-derived parameters

    Science.gov (United States)

    Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian

    2018-01-01

    Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559

  19. Using sensitivity derivatives for design and parameter estimation in an atmospheric plasma discharge simulation

    International Nuclear Information System (INIS)

    Lange, Kyle J.; Anderson, W. Kyle

    2010-01-01

    The problem of applying sensitivity analysis to a one-dimensional atmospheric radio frequency plasma discharge simulation is considered. A fluid simulation is used to model an atmospheric pressure radio frequency helium discharge with a small nitrogen impurity. Sensitivity derivatives are computed for the peak electron density with respect to physical inputs to the simulation. These derivatives are verified using several different methods to compute sensitivity derivatives. It is then demonstrated how sensitivity derivatives can be used within a design cycle to change these physical inputs so as to increase the peak electron density. It is also shown how sensitivity analysis can be used in conjunction with experimental data to obtain better estimates for rate and transport parameters. Finally, it is described how sensitivity analysis could be used to compute an upper bound on the uncertainty for results from a simulation.

  20. Parameter Estimation of Partial Differential Equation Models.

    Science.gov (United States)

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  1. Geometry parameters for musculoskeletal modelling of the shoulder system

    NARCIS (Netherlands)

    Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H

    A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of

  2. Derivation of the spin-glass order parameter from stochastic thermodynamics

    Science.gov (United States)

    Crisanti, A.; Picco, M.; Ritort, F.

    2018-05-01

    A fluctuation relation is derived to extract the order parameter function q (x ) in weakly ergodic systems. The relation is based on measuring and classifying entropy production fluctuations according to the value of the overlap q between configurations. For a fixed value of q , entropy production fluctuations are Gaussian distributed allowing us to derive the quasi-FDT so characteristic of aging systems. The theory is validated by extracting the q (x ) in various types of glassy models. It might be generally applicable to other nonequilibrium systems and experimental small systems.

  3. Quality assessment for radiological model parameters

    International Nuclear Information System (INIS)

    Funtowicz, S.O.

    1989-01-01

    A prototype framework for representing uncertainties in radiological model parameters is introduced. This follows earlier development in this journal of a corresponding framework for representing uncertainties in radiological data. Refinements and extensions to the earlier framework are needed in order to take account of the additional contextual factors consequent on using data entries to quantify model parameters. The parameter coding can in turn feed in to methods for evaluating uncertainties in calculated model outputs. (author)

  4. Analysis of pressure-flow data in terms of computer-derived urethral resistance parameters.

    Science.gov (United States)

    van Mastrigt, R; Kranse, M

    1995-01-01

    The simultaneous measurement of detrusor pressure and flow rate during voiding is at present the only way to measure or grade infravesical obstruction objectively. Numerous methods have been introduced to analyze the resulting data. These methods differ in aim (measurement of urethral resistance and/or diagnosis of obstruction), method (manual versus computerized data processing), theory or model used, and resolution (continuously variable parameters or a limited number of classes, the so-called monogram). In this paper, some aspects of these fundamental differences are discussed and illustrated. Subsequently, the properties and clinical performance of two computer-based methods for deriving continuous urethral resistance parameters are treated.

  5. Establishing statistical models of manufacturing parameters

    International Nuclear Information System (INIS)

    Senevat, J.; Pape, J.L.; Deshayes, J.F.

    1991-01-01

    This paper reports on the effect of pilgering and cold-work parameters on contractile strain ratio and mechanical properties that were investigated using a large population of Zircaloy tubes. Statistical models were established between: contractile strain ratio and tooling parameters, mechanical properties (tensile test, creep test) and cold-work parameters, and mechanical properties and stress-relieving temperature

  6. Historic Low Wall Detection via Topographic Parameter Images Derived from Fine-Resolution DEM

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2017-11-01

    Full Text Available Coral walls protect vegetation gardens from strong winds that sweep across Xiji Island, Taiwan Strait for half the year. Topographic parameters based on light detection and ranging (LiDAR-based high-resolution digital elevation model (DEM provide obvious correspondence with the expected form of landscape features. The information on slope, curvature, and openness can help identify the location of landscape features. This study applied the automatic landscape line detection to extract historic vegetable garden wall lines from a LiDAR-derived DEM. The three rapid processes used in this study included the derivation of topographic parameters, line extraction, and aggregation. The rules were extracted from a decision tree to check the line detection from multiple topographic parameters. Results show that wall line detection with multiple topographic parameter images is an alternative means of obtaining essential historic wall feature information. Multiple topographic parameters are highly related to low wall feature identification. Furthermore, the accuracy of wall feature detection is 74% compared with manual interpretation. Thus, this study provides rapid wall detection systems with multiple topographic parameters for further historic landscape management.

  7. Biological parameters for lung cancer in mathematical models of carcinogenesis

    International Nuclear Information System (INIS)

    Jacob, P.; Jacob, V.

    2003-01-01

    Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki, British doctors, Colorado Plateau miners, and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h 55 at an intermediate age, and the hazard H? at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. (author)

  8. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  9. Derivation of Dynamic Function Parameters by Area Scanning Techniques

    International Nuclear Information System (INIS)

    Maclntyre, W.J.; Inkley, S.R.; Roth, E.; Drescher, W.P.; Ishii, Y.

    1970-01-01

    This paper describes a functional imaging method for the study of organ function or organ blood flow and its application to the evaluation of lung ventilation and perfusion with 133 Xe. The method is based on area scintigraphy with a scintillation camera, data being accumulated on a 1600-channel analyzer as a 40 x 40 element matrix, transferred to magnetic tape and finally processed by a computer. For the evaluation of lung ventilation, the static distribution of 133 Xe in the lungs after inhalation of oxygen- 133 Xe mixture is recorded as a single matrix during a 20-second period of breath holding. For the evaluation of lung perfusion successive matrices are recorded every 2-4 seconds after intravenous injection of a saline solution of 133 Xe so that the washout of 133 Xe from the lungs may be followed as a function of time. Each element of the matrices is initially subjected to a nine-element smoothing routine. The distribution of ventilation is then derived from the matrix for the static distribution of 133 Xe after its administration by inhalation and the distribution of perfusion from the relative slopes of the curves of disappearance of 133 Xe from the various matrix elements after its administration by injection. The results are displayed as a 40 x 40 element matrix of normalized values or alternatively as an isometric projection of a three—dimensional model in which the x and y coordinates give the spatial reference and the z co-ordinate the relative ventilation or perfusion. Typical results obtained by the method are presented and its advantages over methods which evaluate total organ function discussed. (author)

  10. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...

  11. Identifying the connective strength between model parameters and performance criteria

    Directory of Open Access Journals (Sweden)

    B. Guse

    2017-11-01

    Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria

  12. A new unbiased stochastic derivative estimator for discontinuous sample performances with structural parameters

    NARCIS (Netherlands)

    Peng, Yijie; Fu, Michael C.; Hu, Jian Qiang; Heidergott, Bernd

    In this paper, we propose a new unbiased stochastic derivative estimator in a framework that can handle discontinuous sample performances with structural parameters. This work extends the three most popular unbiased stochastic derivative estimators: (1) infinitesimal perturbation analysis (IPA), (2)

  13. Parameter identification in multinomial processing tree models

    NARCIS (Netherlands)

    Schmittmann, V.D.; Dolan, C.V.; Raijmakers, M.E.J.; Batchelder, W.H.

    2010-01-01

    Multinomial processing tree models form a popular class of statistical models for categorical data that have applications in various areas of psychological research. As in all statistical models, establishing which parameters are identified is necessary for model inference and selection on the basis

  14. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  15. Electro-optical parameters of bond polarizability model for aluminosilicates.

    Science.gov (United States)

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  16. Parameter identification in the logistic STAR model

    DEFF Research Database (Denmark)

    Ekner, Line Elvstrøm; Nejstgaard, Emil

    We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th...

  17. Exploiting intrinsic fluctuations to identify model parameters.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  18. Setting Parameters for Biological Models With ANIMO

    NARCIS (Netherlands)

    Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran

    2014-01-01

    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions

  19. Incorporating model parameter uncertainty into inverse treatment planning

    International Nuclear Information System (INIS)

    Lian Jun; Xing Lei

    2004-01-01

    Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment

  20. Deriving structural forest parameters using airborne laser scanning

    International Nuclear Information System (INIS)

    Morsdorf, F.

    2011-01-01

    Airborne laser scanning is a relatively young and precise technology to directly measure surface elevations. With today's high scanning rates, dense 3-D pointclouds of coordinate triplets (xyz) can be provided, in which many structural aspects of the vegetation are contained. The challenge now is to transform this data, as far as possible automatically, into manageable information relevant to the user. In this paper we present two such methods: the first extracts automatically the geometry of individual trees, with a recognition rate of over 70% and a systematic underestimation of tree height of only 0.6 metres. The second method derives a pixel map of the canopy density from the pointcloud, in which the spatial patterns of vegetation cover are represented. These patterns are relevant for habitat analysis and ecosystem studies. The values derived by this method correlate well with field measurements, giving a measure of certainty (R 2 ) of 0.8. The greatest advantage of airborne laser scanning is that it provides spatially extensive, direct measurements of vegetation structure which show none of the extrapolation errors of spot measurements. A large challenge remains in integrating these new products into the user's processing chains and workflows, be it in the realm of forestry or in that of ecosystem research. (author) [de

  1. A tracer diffusion model derived from microstructure

    International Nuclear Information System (INIS)

    Lehikoinen, Jarmo; Muurinen, Arto; Olin, Markus

    2012-01-01

    of reference, is shown to be given by the ratio of the effective diffusivity to the apparent diffusivity for an assumed non-interacting solute, such as tritiated water. Finally, the utility of the model and derivation of the model parameters are demonstrated with tracer diffusion data from the open literature for compacted bentonite. (authors)

  2. SP_Ace: a new code to derive stellar parameters and elemental abundances

    Science.gov (United States)

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters

  3. Wind Farm Decentralized Dynamic Modeling With Parameters

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran

    2010-01-01

    Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...

  4. Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters

    International Nuclear Information System (INIS)

    Wang Yuan-Yuan; Ding Jian-Hua; Huang Shao-Song; Zhao Ji-Jun; Liu Wen-Bo; Ke Xiao-Qin; Wang Yun-Zhi; Zhang Chi

    2017-01-01

    A series of material parameters are derived from atomistic simulations and implemented into a phase field (PF) model to simulate void evolution in body-centered cubic (bcc) iron subjected to different irradiation doses at different temperatures. The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial. (paper)

  5. Seasonal and spatial variation in broadleaf forest model parameters

    Science.gov (United States)

    Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.

    2009-04-01

    Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and

  6. Application of lumped-parameter models

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse...

  7. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base

  8. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...

  9. Models and parameters for environmental radiological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C W [ed.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  10. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  11. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1983-01-01

    This article reviews the forthcoming book Models and Parameters for Environmental Radiological Assessments, which presents a unified compilation of models and parameters for assessing the impact on man of radioactive discharges, both routine and accidental, into the environment. Models presented in this book include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Summaries are presented for each of the transport and dosimetry areas previously for each of the transport and dosimetry areas previously mentioned, and details are available in the literature cited. A chapter of example problems illustrates many of the methodologies presented throughout the text. Models and parameters presented are based on the results of extensive literature reviews and evaluations performed primarily by the staff of the Health and Safety Research Division of Oak Ridge National Laboratory

  12. Pharmacokinetic parameters derived from dynamic contrast enhanced MRI of cervical cancers predict chemoradiotherapy outcome

    International Nuclear Information System (INIS)

    Andersen, Erlend K.F.; Hole, Knut Håkon; Lund, Kjersti V.; Sundfør, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2013-01-01

    Purpose: To assess the prognostic value of pharmacokinetic parameters derived from pre-chemoradiotherapy dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of cervical cancer patients. Materials and methods: Seventy-eight patients with locally advanced cervical cancer underwent DCE-MRI with Gd-DTPA before chemoradiotherapy. The pharmacokinetic Brix and Tofts models were fitted to contrast enhancement curves in all tumor voxels, providing histograms of several pharmacokinetic parameters (Brix: A Brix , k ep , k el , Tofts: K trans , ν e ). A percentile screening approach including log-rank survival tests was undertaken to identify the clinically most relevant part of the intratumoral parameter distribution. Clinical endpoints were progression-free survival (PFS) and locoregional control (LRC). Multivariate analysis including FIGO stage and tumor volume was used to assess the prognostic significance of the imaging parameters. Results: A Brix , k el , and K trans were significantly (P e was significantly positively correlated with PFS only. k ep showed no association with any endpoint. A Brix was positively correlated with K trans and ν e , and showed the strongest association with endpoint in the log-rank testing. k el and K trans were independent prognostic factors in multivariate analysis with LRC as endpoint. Conclusions: Parameters estimated by pharmacokinetic analysis of DCE-MR images obtained prior to chemoradiotherapy may be used for identifying patients at risk of treatment failure

  13. A Note on the Item Information Function of the Four-Parameter Logistic Model

    Science.gov (United States)

    Magis, David

    2013-01-01

    This article focuses on four-parameter logistic (4PL) model as an extension of the usual three-parameter logistic (3PL) model with an upper asymptote possibly different from 1. For a given item with fixed item parameters, Lord derived the value of the latent ability level that maximizes the item information function under the 3PL model. The…

  14. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  15. Analysis of Modeling Parameters on Threaded Screws.

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  16. Using climate derivatives for assessment of meteorological parameter relationships in RCM and observations

    Science.gov (United States)

    Timuhins, Andrejs; Bethers, Uldis; Bethers, Peteris; Klints, Ilze; Sennikovs, Juris; Frishfelds, Vilnis

    2017-04-01

    In a changing climate it is essential to estimate its impacts on different economic fields. In our study we tried to create a framework for climate change assessment and climate change impact estimation for the territory of Latvia and to create results which are also understandable for non-scientists (stakeholder, media and public). This approach allowed us to more carefully assess the presentation and interpretation of results and their validation, for public viewing. For the presentation of our work a website was created (www.modlab.lv/klimats) containing two types of documents in a unified framework, meteorological parameter analysis of different easily interpretable derivative values. Both of these include analysis of the current situation as well as illustrate the projection for future time periods. Derivate values are calculated using two data sources: the bias corrected regional climate data and meteorological observation data. Derivative documents contain description of derived value, some interesting facts and conclusions. Additionally, all results may be viewed in temporal and spatial graphs and maps, for different time periods as well as different seasons. Bias correction (Sennikovs and Bethers, 2009) for the control period 1961-1990 is applied to RCM data series. Meteorological observation data of the Latvian Environment, Geology, and Meteorology Agency and ENSEMBLES project daily data of 13 RCM runs for the period 1960-2100 are used. All the documents are prepared in python notebooks, which allow for flexible changes. At the moment following derivative values have been published: forest fire risk index, wind energy, phenology (Degree days), road condition (friction, ice conditions), daily minimal meteorological visibility, headache occurrence rate, firs snow date and meteorological parameter analysis: temperature, precipitation, wind speed, relative humidity, and cloudiness. While creating these products RCM ability to represent the actual climate was

  17. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  18. Model comparisons and genetic and environmental parameter ...

    African Journals Online (AJOL)

    arc

    Model comparisons and genetic and environmental parameter estimates of growth and the ... breeding strategies and for accurate breeding value estimation. The objectives ...... Sci. 23, 72-76. Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2003.

  19. The rho-parameter in supersymmetric models

    International Nuclear Information System (INIS)

    Lim, C.S.; Inami, T.; Sakai, N.

    1983-10-01

    The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)

  20. A lumped parameter model of plasma focus

    International Nuclear Information System (INIS)

    Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro

    1999-01-01

    A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)

  1. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  2. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  3. Calibration of discrete element model parameters: soybeans

    Science.gov (United States)

    Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal

    2018-05-01

    Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.

  4. TWO-PARAMETER ISOTHERMS OF METHYL ORANGE SORPTION BY PINECONE DERIVED ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    M. R. Samarghandi ، M. Hadi ، S. Moayedi ، F. Barjasteh Askari

    2009-10-01

    Full Text Available The adsorption of a mono azo dye methyl-orange (MeO onto granular pinecone derived activated carbon (GPAC, from aqueous solutions, was studied in a batch system. Seven two-parameter isotherm models Langmuir, Freundlich, Dubinin-Radushkevic, Temkin, Halsey, Jovanovic and Hurkins-Jura were used to fit the experimental data. The results revealed that the adsorption isotherm models fitted the data in the order of Jovanovic (X2=1.374 > Langmuir > Dubinin-Radushkevic > Temkin > Freundlich > Halsey > Hurkins-Jura isotherms. Adsorption isotherms modeling showed that the interaction of dye with activated carbon surface is localized monolayer adsorption. A comparison of kinetic models was evaluated for the pseudo-second order, Elovich and Lagergren kinetic models. Lagergren first order model was found to agree well with the experimental data (X2=9.231. In order to determine the best-fit isotherm and kinetic models, two error analysis methods of Residual Mean Square Error and Chi-square statistic (X2 were used to evaluate the data.

  5. Large deflection of viscoelastic beams using fractional derivative model

    International Nuclear Information System (INIS)

    Bahranini, Seyed Masoud Sotoodeh; Eghtesad, Mohammad; Ghavanloo, Esmaeal; Farid, Mehrdad

    2013-01-01

    This paper deals with large deflection of viscoelastic beams using a fractional derivative model. For this purpose, a nonlinear finite element formulation of viscoelastic beams in conjunction with the fractional derivative constitutive equations has been developed. The four-parameter fractional derivative model has been used to describe the constitutive equations. The deflected configuration for a uniform beam with different boundary conditions and loads is presented. The effect of the order of fractional derivative on the large deflection of the cantilever viscoelastic beam, is investigated after 10, 100, and 1000 hours. The main contribution of this paper is finite element implementation for nonlinear analysis of viscoelastic fractional model using the storage of both strain and stress histories. The validity of the present analysis is confirmed by comparing the results with those found in the literature.

  6. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  7. Poromechanics Parameters of Fluid-Saturated Chemically Active Fibrous Media Derived from a Micromechanical Approach.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2013-01-01

    The authors have derived macroscale poromechanics parameters for chemically active saturated fibrous media by combining microstructure-based homogenization with Hill's volume averaging. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's Lemmas. The advantage of this approach is that the resultant continuum model assumes a form suited to study porous materials, while retaining the effect of discrete fiber deformation. As a result, the model is able to predict the influence of microscale phenomena such as fiber buckling on the overall behavior, and in particular, on the poromechanics constants. The significance of the approach is demonstrated using the effect of drainage and fiber nonlinearity on monotonic compressive stress-strain behavior. The model predictions conform to the experimental observations for articular cartilage. The method can potentially be extended to other porous materials such as bone, clays, foams, and concrete.

  8. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  9. A 'simple' hybrid model for power derivatives

    International Nuclear Information System (INIS)

    Lyle, Matthew R.; Elliott, Robert J.

    2009-01-01

    This paper presents a method for valuing power derivatives using a supply-demand approach. Our method extends work in the field by incorporating randomness into the base load portion of the supply stack function and equating it with a noisy demand process. We obtain closed form solutions for European option prices written on average spot prices considering two different supply models: a mean-reverting model and a Markov chain model. The results are extensions of the classic Black-Scholes equation. The model provides a relatively simple approach to describe the complicated price behaviour observed in electricity spot markets and also allows for computationally efficient derivatives pricing. (author)

  10. Alien derivatives of the WKB solutions of the Gauss hypergeometric differential equation with a large parameter

    Directory of Open Access Journals (Sweden)

    Mika Tanda

    2015-01-01

    Full Text Available We compute alien derivatives of the WKB solutions of the Gauss hypergeometric differential equation with a large parameter and discuss the singularity structures of the Borel transforms of the WKB solution expressed in terms of its alien derivatives.

  11. Constant-parameter capture-recapture models

    Science.gov (United States)

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  12. Modelling tourists arrival using time varying parameter

    Science.gov (United States)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  13. Statistical approach for uncertainty quantification of experimental modal model parameters

    DEFF Research Database (Denmark)

    Luczak, M.; Peeters, B.; Kahsin, M.

    2014-01-01

    Composite materials are widely used in manufacture of aerospace and wind energy structural components. These load carrying structures are subjected to dynamic time-varying loading conditions. Robust structural dynamics identification procedure impose tight constraints on the quality of modal models...... represent different complexity levels ranging from coupon, through sub-component up to fully assembled aerospace and wind energy structural components made of composite materials. The proposed method is demonstrated on two application cases of a small and large wind turbine blade........ This paper aims at a systematic approach for uncertainty quantification of the parameters of the modal models estimated from experimentally obtained data. Statistical analysis of modal parameters is implemented to derive an assessment of the entire modal model uncertainty measure. Investigated structures...

  14. Simulations of Moscow megacity heat island with the COSMO-CLM model using two different urban canopy schemes and realistic building parameters, derived from OpenStreetMap data

    Science.gov (United States)

    Varentsov, Mikhail; Wouters, Hendrik; Trusilova, Kristina; Samsonov, Timofey; Konstantinov, Pavel

    2017-04-01

    In this study we present the application of the regional climate model COSMO-CLM to simulate urban heat island (UHI) phenomenon for Moscow megacity, which is the biggest agglomeration in Europe (with modern population of more than 17 million people). Significant differences of Moscow from the cities of Western Europe are related with much more continental climate with higher diurnal and annual temperature variations, and with specific building features such as its high density and almost total predominance of high-rise and low-rise blocks of flats on the private low-rise houses. Because of these building and climate features, the UHI of Moscow megacity is stronger than UHIs of many other cities of the similar size, with a mean intensity is about 2 °C and maximum intensity reaching up to 13 °C (Lokoschenko, 2014). Such a pronounced UHI together with the existence of an extensive observation network (more than 50 weather and air quality monitoring stations and few microwave temperature profilers) within the city and its surrounding make Moscow an especially interesting place for urban climate researches and good testbed for urban canopy models. In our numerical experiments, regional climate model firstly was adapted for investigated region with aim to improve quality of its simulations of rural areas. Then, to take into account urban canopy effects on thermal regime of the urbanized areas, we used two different versions of COSMO-CLM model. First is coupled with TEB (Town Energy Balance) single layer urban canopy model (Trusilova, 2013), and second is extended with bulk urban canopy scheme TERRA_URB using the Semi-empircal URban-canopY dependency parametriation SURY (Wouters et. al, 2016). Numerical experiments with these two versions of the model were run with spatial resolution about 1 km for several summer and winter months. To provide specific parameters, required for urban parameterizations, such as urban fraction, building height and street canyon aspect ratio

  15. Parameter estimation in nonlinear models for pesticide degradation

    International Nuclear Information System (INIS)

    Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.

    1991-01-01

    A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)

  16. COMPREHENSIVE CHECK MEASUREMENT OF KEY PARAMETERS ON MODEL BELT CONVEYOR

    Directory of Open Access Journals (Sweden)

    Vlastimil MONI

    2013-07-01

    Full Text Available Complex measurements of characteristic parameters realised on a long distance model belt conveyor are described. The main objective was to complete and combine the regular measurements of electric power on drives of belt conveyors operated in Czech opencast mines with measurements of other physical quantities and to gain by this way an image of their mutual relations and relations of quantities derived from them. The paper includes a short description and results of the measurements on an experimental model conveyor with a closed material transport way.

  17. The lumped parameter model for fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The use of a lumped fuel-pin model in a thermal-hydraulic code is advantageous because of computational simplicity and efficiency. The model uses an averaging approach over the fuel cross section and makes some simplifying assumptions to describe the transient equations for the averaged fuel, fuel centerline and sheath temperatures. It is shown that by introducing a factor in the effective fuel conductivity, the analytical solution of the mean fuel temperature can be modified to simulate the effects of the flux depression in the heat generation rate and the variation in fuel thermal conductivity. The simplified analytical method used in the transient equation is presented. The accuracy of the lumped parameter model has been compared with the results from the finite difference method. (author). 4 refs., 2 tabs., 4 figs.

  18. A New Five-Parameter Fréchet Model for Extreme Values

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan ul Haq

    2017-09-01

    Full Text Available A new five parameter Fréchet model for Extreme Values was proposed and studied. Various mathematical properties including moments, quantiles, and moment generating function were derived. Incomplete moments and probability weighted moments were also obtained. The maximum likelihood method was used to estimate the model parameters. The flexibility of the derived model was accessed using two real data set applications.

  19. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

    Science.gov (United States)

    Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.

    2016-01-01

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601

  20. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  1. Parameter estimation in fractional diffusion models

    CERN Document Server

    Kubilius, Kęstutis; Ralchenko, Kostiantyn

    2017-01-01

    This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...

  2. Derivation of parameters necessary for the evaluation of performance of sites for deep geological repositories with particular reference to bedded salt, Livermore, California. Volume I. Main text

    International Nuclear Information System (INIS)

    Ashby, J.P.; Rawlings, G.E.; Soto, C.A.; Wood, D.F.; Chorley, D.W.

    1979-12-01

    A survey of parameters to be considered in the evaluation of sites for deep geologic nuclear waste repositories is presented. As yet, no comprehensive site selection procedure or performance evaluation approach has been adopted. A basis is provided for the development of parameters by discussing both site selection and performance evaluation. Three major groups of parameters are considered in this report: geologic, mining/rock mechanics, and hydrogeologic. For each type, the role of the parameter in the evaluation of repository sites is discussed. The derivation of the parameter by measurement, correlation, inference, or other method is discussed. Geologic parameters define the framework of the repository site and can be used in development of conceptual models and the prediction of long-term performance. Methods for deriving geological parameters include mapping, surveying, drilling, geophysical investigation, and historical and regional analysis. Rock mechanics/mining parameters are essential for the prediction of short-term performance and the development of initial conditions for modeling of long-term performance. Rock mechanics/mapping parameters can be derived by field or laboratory investigation, correlation, and theoretically or empirically based inference. Hydrogeologic parameters are the most important for assessment of long-term radionuclide confinement, since transport throughout the regional hydrogeologic system is the most likely mode of radionuclide escape from geologic repositories. Hydrogeologic parameters can be derived by hydrogeologic mapping and interpretation, hydrogeologic system modeling, field measurements, and lab tests. Procedures used in determination and statistical evaluation of geologic and rock mechanics parameters are discussed

  3. Derivation of parameters necessary for the evaluation of performance of sites for deep geological repositories with particular reference to bedded salt, Livermore, California. Volume I. Main text

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, J.P.; Rawlings, G.E.; Soto, C.A.; Wood, D.F.; Chorley, D.W.

    1979-12-01

    A survey of parameters to be considered in the evaluation of sites for deep geologic nuclear waste repositories is presented. As yet, no comprehensive site selection procedure or performance evaluation approach has been adopted. A basis is provided for the development of parameters by discussing both site selection and performance evaluation. Three major groups of parameters are considered in this report: geologic, mining/rock mechanics, and hydrogeologic. For each type, the role of the parameter in the evaluation of repository sites is discussed. The derivation of the parameter by measurement, correlation, inference, or other method is discussed. Geologic parameters define the framework of the repository site and can be used in development of conceptual models and the prediction of long-term performance. Methods for deriving geological parameters include mapping, surveying, drilling, geophysical investigation, and historical and regional analysis. Rock mechanics/mining parameters are essential for the prediction of short-term performance and the development of initial conditions for modeling of long-term performance. Rock mechanics/mapping parameters can be derived by field or laboratory investigation, correlation, and theoretically or empirically based inference. Hydrogeologic parameters are the most important for assessment of long-term radionuclide confinement, since transport throughout the regional hydrogeologic system is the most likely mode of radionuclide escape from geologic repositories. Hydrogeologic parameters can be derived by hydrogeologic mapping and interpretation, hydrogeologic system modeling, field measurements, and lab tests. Procedures used in determination and statistical evaluation of geologic and rock mechanics parameters are discussed.

  4. Derivatives of buckling loads and vibration frequencies with respect to stiffness and initial strain parameters

    Science.gov (United States)

    Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon

    1990-01-01

    A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.

  5. Estimating model parameters in nonautonomous chaotic systems using synchronization

    International Nuclear Information System (INIS)

    Yang, Xiaoli; Xu, Wei; Sun, Zhongkui

    2007-01-01

    In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation

  6. Moose models with vanishing S parameter

    International Nuclear Information System (INIS)

    Casalbuoni, R.; De Curtis, S.; Dominici, D.

    2004-01-01

    In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2) L and U(1) Y at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric

  7. Deriving simulators for hybrid Chi models

    NARCIS (Netherlands)

    Beek, van D.A.; Man, K.L.; Reniers, M.A.; Rooda, J.E.; Schiffelers, R.R.H.

    2006-01-01

    The hybrid Chi language is formalism for modeling, simulation and verification of hybrid systems. The formal semantics of hybrid Chi allows the definition of provably correct implementations for simulation, verification and realtime control. This paper discusses the principles of deriving an

  8. Prediction of interest rate using CKLS model with stochastic parameters

    International Nuclear Information System (INIS)

    Ying, Khor Chia; Hin, Pooi Ah

    2014-01-01

    The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ (j) of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ (j) , we assume that φ (j) depends on φ (j−m) , φ (j−m+1) ,…, φ (j−1) and the interest rate r j+n at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r j+n+1 of the interest rate at the next time point when the value r j+n of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r j+n+d at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters

  9. Model parameters estimation and sensitivity by genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca

    2003-01-01

    In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The

  10. Prediction of interest rate using CKLS model with stochastic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Khor Chia [Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Hin, Pooi Ah [Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor (Malaysia)

    2014-06-19

    The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.

  11. Model atmospheres and parameters of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Patriarchi, P.; Cerruti-sola, M.; Perinotto, M.

    1989-01-01

    Non-LTE hydrogen and helium model atmospheres have been obtained for temperatures and gravities relevant to the central stars of planetary nebulae. Low-resolution and high-resolution observations obtained by the IUE satellite have been used along with optical data to determine Zanstra temperatures of the central stars of NGC 1535, NGC 6210, NGC 7009, IC 418, and IC 4593. Comparison of the observed stellar continuum of these stars with theoretical results allowed further information on the stellar temperature to be derived. The final temperatures are used to calculate accurate stellar parameters. 62 refs

  12. Price models for oil derivates in Slovenia

    International Nuclear Information System (INIS)

    Nemac, F.; Saver, A.

    1995-01-01

    In Slovenia, a law is currently applied according to which any change in the price of oil derivatives is subject to the Governmental approval. Following the target of getting closer to the European Union, the necessity has arisen of finding ways for the introduction of liberalization or automated approach to price modifications depending on oscillations of oil derivative prices on the world market and the rate of exchange of the American dollar. It is for this reason that at the Agency for Energy Restructuring we made a study for the Ministry of Economic Affairs and Development regarding this issue. We analysed the possible models for the formation of oil derivative prices for Slovenia. Based on the assessment of experiences of primarily the west European countries, we proposed three models for the price formation for Slovenia. In future, it is expected that the Government of the Republic of Slovenia will make a selection of one of the proposed models to be followed by enforcement of price liberalization. The paper presents two representative models for price formation as used in Austria and Portugal. In the continuation the authors analyse the application of three models that they find suitable for the use in Slovenia. (author)

  13. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  14. Deriving and Constraining 3D CME Kinematic Parameters from Multi-Viewpoint Coronagraph Images

    Science.gov (United States)

    Thompson, B. J.; Mei, H. F.; Barnes, D.; Colaninno, R. C.; Kwon, R.; Mays, M. L.; Mierla, M.; Moestl, C.; Richardson, I. G.; Verbeke, C.

    2017-12-01

    Determining the 3D properties of a coronal mass ejection using multi-viewpoint coronagraph observations can be a tremendously complicated process. There are many factors that inhibit the ability to unambiguously identify the speed, direction and shape of a CME. These factors include the need to separate the "true" CME mass from shock-associated brightenings, distinguish between non-radial or deflected trajectories, and identify asymmetric CME structures. Additionally, different measurement methods can produce different results, sometimes with great variations. Part of the reason for the wide range of values that can be reported for a single CME is due to the difficulty in determining the CME's longitude since uncertainty in the angle of the CME relative to the observing image planes results in errors in the speed and topology of the CME. Often the errors quoted in an individual study are remarkably small when compared to the range of values that are reported by different authors for the same CME. For example, two authors may report speeds of 700 +- 50 km/sec and 500+-50 km/sec for the same CME. Clearly a better understanding of the accuracy of CME measurements, and an improved assessment of the limitations of the different methods, would be of benefit. We report on a survey of CME measurements, wherein we compare the values reported by different authors and catalogs. The survey will allow us to establish typical errors for the parameters that are commonly used as inputs for CME propagation models such as ENLIL and EUHFORIA. One way modelers handle inaccuracies in CME parameters is to use an ensemble of CMEs, sampled across ranges of latitude, longitude, speed and width. The CMEs simulated in order to determine the probability of a "direct hit" and, for the cases with a "hit," derive a range of possible arrival times. Our study will provide improved guidelines for generating CME ensembles that more accurately sample across the range of plausible values.

  15. On the equivalence between the thirring model and a derivative coupling model

    International Nuclear Information System (INIS)

    Gomes, M.; Silva, A.J. da.

    1986-07-01

    The equivalence between the Thirring model and the fermionic sector of the theory of a Dirac field interacting via derivate coupling with two boson fields is analysed. For a certain choice of the parameters the two models have the same fermionic Green functions. (Author) [pt

  16. Models for setting ATM parameter values

    DEFF Research Database (Denmark)

    Blaabjerg, Søren; Gravey, A.; Romæuf, L.

    1996-01-01

    essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper......In ATM networks, a user should negotiate at connection set-up a traffic contract which includes traffic characteristics and requested QoS. The traffic characteristics currently considered are the Peak Cell Rate, the Sustainable Cell Rate, the Intrinsic Burst Tolerance and the Cell Delay Variation...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...

  17. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Maity, Arnab; Carroll, Raymond J.

    2013-01-01

    PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus

  18. Modeling of heat conduction via fractional derivatives

    Science.gov (United States)

    Fabrizio, Mauro; Giorgi, Claudio; Morro, Angelo

    2017-09-01

    The modeling of heat conduction is considered by letting the time derivative, in the Cattaneo-Maxwell equation, be replaced by a derivative of fractional order. The purpose of this new approach is to overcome some drawbacks of the Cattaneo-Maxwell equation, for instance possible fluctuations which violate the non-negativity of the absolute temperature. Consistency with thermodynamics is shown to hold for a suitable free energy potential, that is in fact a functional of the summed history of the heat flux, subject to a suitable restriction on the set of admissible histories. Compatibility with wave propagation at a finite speed is investigated in connection with temperature-rate waves. It follows that though, as expected, this is the case for the Cattaneo-Maxwell equation, the model involving the fractional derivative does not allow the propagation at a finite speed. Nevertheless, this new model provides a good description of wave-like profiles in thermal propagation phenomena, whereas Fourier's law does not.

  19. Estimating crop net primary production using inventory data and MODIS-derived parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  20. 'Generalizability' of a radial-aortic transfer function for the derivation of central aortic waveform parameters.

    Science.gov (United States)

    Hope, Sarah A; Meredith, Ian T; Tay, David; Cameron, James D

    2007-09-01

    Arterial transfer functions (TFs) describe the relationship between the pressure waveform at different arterial sites. Generalized TFs are used to reconstruct central aortic waveforms from non-invasively obtained peripheral waveforms and have been promoted as potentially clinically useful. A limitation is the paucity of information on their 'generalizability' with no information existing on the number of subjects required to construct a satisfactory TF, nor is adequate prospective validation available. We therefore investigated the uniformity of radial-aortic TFs and prospectively estimated the capacity of a generalized TF to reconstruct individual central blood pressure parameters. Ninety-three subjects (64 male) were studied by simultaneous radial applanation and high-fidelity (Millar Mikro-tip catheter) direct measurement of central aortic BP during elective coronary procedures. Subjects were prospectively randomized to either a derivation or validation group. Increasing numbers of individual TFs from the derivation group were averaged to form a generalized TF. There was minimal change with greater than 20 TFs averaged. In the validation group, the error in most reconstructed parameters related to the absolute value of the directly measured parameter [systolic blood pressure (SBP) and pulse pressure, Pcentral aortic SBP and pulse pressure (negatively) and time to peak systole (positively) (all PInclusion of more than 20 individual TFs in the construction of a generalized TF does not improve 'generalizability'. There appear to be systematic errors in derived central pressure waveforms and derived aortic augmentation index is inaccurate compared to the directly measured value.

  1. The derivative based variance sensitivity analysis for the distribution parameters and its computation

    International Nuclear Information System (INIS)

    Wang, Pan; Lu, Zhenzhou; Ren, Bo; Cheng, Lei

    2013-01-01

    The output variance is an important measure for the performance of a structural system, and it is always influenced by the distribution parameters of inputs. In order to identify the influential distribution parameters and make it clear that how those distribution parameters influence the output variance, this work presents the derivative based variance sensitivity decomposition according to Sobol′s variance decomposition, and proposes the derivative based main and total sensitivity indices. By transforming the derivatives of various orders variance contributions into the form of expectation via kernel function, the proposed main and total sensitivity indices can be seen as the “by-product” of Sobol′s variance based sensitivity analysis without any additional output evaluation. Since Sobol′s variance based sensitivity indices have been computed efficiently by the sparse grid integration method, this work also employs the sparse grid integration method to compute the derivative based main and total sensitivity indices. Several examples are used to demonstrate the rationality of the proposed sensitivity indices and the accuracy of the applied method

  2. Spatial probabilistic approach on landslide susceptibility assessment from high resolution sensors derived parameters

    International Nuclear Information System (INIS)

    Aman, S N A; Latif, Z Abd; Pradhan, B

    2014-01-01

    Landslide occurrence depends on various interrelating factors which consequently initiate to massive mass of soil and rock debris that move downhill due to the gravity action. LiDAR has come with a progressive approach in mitigating landslide by permitting the formation of more accurate DEM compared to other active space borne and airborne remote sensing techniques. The objective of this research is to assess the susceptibility of landslide in Ulu Klang area by investigating the correlation between past landslide events with geo environmental factors. A high resolution LiDAR DEM was constructed to produce topographic attributes such as slope, curvature and aspect. These data were utilized to derive second deliverables of landslide parameters such as topographic wetness index (TWI), surface area ratio (SAR) and stream power index (SPI) as well as NDVI generated from IKONOS imagery. Subsequently, a probabilistic based frequency ratio model was applied to establish the spatial relationship between the landslide locations and each landslide related factor. Factor ratings were summed up to obtain Landslide Susceptibility Index (LSI) to construct the landslide susceptibility map

  3. Analysis of deuterium relaxation-derived methyl axis order parameters and correlation with local structure

    International Nuclear Information System (INIS)

    Mittermaier, Anthony; Kay, Lewis E.; Forman-Kay, Julie D.

    1999-01-01

    Methyl axis (S2axis) and backbone NH (S2NH) order parameters derived from eight proteins have been analyzed. Similar distribution profiles for Ala S2axis and S2NH order parameters were observed. A good correlation between the two S2axis values of Val and Leu methyl groups is noted, although differences between order parameters can arise. The relation of S2axis or S2NH to solvent accessibility and packing density has also been investigated. Correlations are weak, likely reflecting the importance of collective, non-local motions in proteins. The lack of correlation between these simple structural parameters and dynamics emphasizes the importance of motional studies to fully characterize proteins

  4. The influence of land surface parameters on energy flux densities derived from remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Tittebrand, A.; Schwiebus, A. [Inst. for Hydrology und Meteorology, TU Dresden (Germany); Berger, F.H. [Observatory Lindenberg, German Weather Service, Lindenberg (Germany)

    2005-04-01

    Knowledge of the vegetation properties surface reflectance, normalised difference vegetation index (NDVI) and leaf area index (LAI) are essential for the determination of the heat and water fluxes between terrestrial ecosystems and the atmosphere. Remote sensing data can be used to derive spatial estimates of the required surface properties. The determination of land surface parameters and their influence on radiant and energy flux densities is investigated with data of different remote sensing systems. Sensitivity studies show the importance of correctly derived land surface properties to estimate the key quantity of the hydrological cycle, the evapotranspiration (L.E), most exactly. In addition to variable parameters like LAI or NDVI there are also parameters which are can not be inferred from satellite data but needed for the Penman-Monteith approach. Fixed values are assumed for these variables because they have little influence on L.E. Data of Landsat-7 ETM+ and NOAA-16 AVHRR are used to show results in different spatial resolution. The satellite derived results are compared with ground truth data provided by the Observatory Lindenberg of the German Weather Service. (orig.)

  5. Pivotal statistics for testing subsets of structural parameters in the IV Regression Model

    NARCIS (Netherlands)

    Kleibergen, F.R.

    2000-01-01

    We construct a novel statistic to test hypothezes on subsets of the structural parameters in anInstrumental Variables (IV) regression model. We derive the chi squared limiting distribution of thestatistic and show that it has a degrees of freedom parameter that is equal to the number ofstructural

  6. CHARACTERIZING LANDSCAPE SPATIAL HETEROGENEITY USING SEMIVARIOGRAM PARAMETERS DERIVED FROM NDVI IMAGES

    Directory of Open Access Journals (Sweden)

    Eduarda Martiniano de Oliveira Silveira

    2017-12-01

    Full Text Available Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index was generated in an area of Brazilian amazon tropical forest (1,000 km².We selected samples (1 x 1 km from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property and range (φ-the length scale of the spatial structures of objects parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA approaches.

  7. Parameter estimation and analysis of an automotive heavy-duty SCR catalyst model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2017-01-01

    A single channel model for a heavy-duty SCR catalyst was derived based on first principles. The model considered heat and mass transfer between the channel gas phase and the wash coat phase. The parameters of the kinetic model were estimated using bench-scale monolith isothermal data. Validation ...

  8. Examining the Functional Specification of Two-Parameter Model under Location and Scale Parameter Condition

    OpenAIRE

    Nakashima, Takahiro

    2006-01-01

    The functional specification of mean-standard deviation approach is examined under location and scale parameter condition. Firstly, the full set of restrictions imposed on the mean-standard deviation function under the location and scale parameter condition are made clear. Secondly, the examination based on the restrictions mentioned in the previous sentence derives the new properties of the mean-standard deviation function on the applicability of additive separability and the curvature of ex...

  9. Optimizing incomplete sample designs for item response model parameters

    NARCIS (Netherlands)

    van der Linden, Willem J.

    Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with

  10. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    Science.gov (United States)

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  11. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    Science.gov (United States)

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  12. Deriving a model for influenza epidemics from historical data.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lefantzi, Sophia

    2011-09-01

    In this report we describe how we create a model for influenza epidemics from historical data collected from both civilian and military societies. We derive the model when the population of the society is unknown but the size of the epidemic is known. Our interest lies in estimating a time-dependent infection rate to within a multiplicative constant. The model form fitted is chosen for its similarity to published models for HIV and plague, enabling application of Bayesian techniques to discriminate among infectious agents during an emerging epidemic. We have developed models for the progression of influenza in human populations. The model is framed as a integral, and predicts the number of people who exhibit symptoms and seek care over a given time-period. The start and end of the time period form the limits of integration. The disease progression model, in turn, contains parameterized models for the incubation period and a time-dependent infection rate. The incubation period model is obtained from literature, and the parameters of the infection rate are fitted from historical data including both military and civilian populations. The calibrated infection rate models display a marked difference in which the 1918 Spanish Influenza pandemic differed from the influenza seasons in the US between 2001-2008 and the progression of H1N1 in Catalunya, Spain. The data for the 1918 pandemic was obtained from military populations, while the rest are country-wide or province-wide data from the twenty-first century. We see that the initial growth of infection in all cases were about the same; however, military populations were able to control the epidemic much faster i.e., the decay of the infection-rate curve is much higher. It is not clear whether this was because of the much higher level of organization present in a military society or the seriousness with which the 1918 pandemic was addressed. Each outbreak to which the influenza model was fitted yields a separate set of

  13. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site.

    Science.gov (United States)

    Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental

  14. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site

    Science.gov (United States)

    Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology

  15. Study on Parameters Modeling of Wind Turbines Using SCADA Data

    Directory of Open Access Journals (Sweden)

    Yonglong YAN

    2014-08-01

    Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.

  16. R[ionuclide transport after the Chernobyl reactor accident and derivation of r[ioecological parameters

    International Nuclear Information System (INIS)

    Bonka, H.

    1998-01-01

    Since due to the nuclear reactor accident in Chernobyl r[ionuclides arrived in the vicinity of Aachen, the enhancement of the local dose rate, the deposition of the different r[ionuclides on ground and vegetation and the transport of the r[ionuclides into the environment were measured. Partly the measurements were continued until today. Very informative time sequences of the specific activity in grass, food, cow's milk, beef, in the different plants, trees, ploughed soil and undisturbed soil, mushrooms, game, in humans etc. resulted. During different private and official journeys in the old Laender of the Federal Republic of Germany surface covering measurements of the 134 Cs and 137 Cs activity deposited on grass land at different places were carried out. These data were implemented into a map on ground contamination in 1986 in Germany, published in 1991 by the Institute for Water, Soil and Air Hygiene of the Federal Public Health Department in Berlin. Transfer factors soil-grass were measured in the whole Federal Republic of Germany analyzing grass samples which were partly taken at the same time. A large amount of r[ioecological parameters could be derived from the different time sequences. These are in particular: The deposition velocity for iodine and particle bound r[ioanuclides on grass and in forests, the rainout coefficient in dependence of the precipitation intensity, the retention factors on grass, the biological half-life time on grass, the transfer factor soil-grass in dependence of time, the transfer factor food-milk during the pasture period and during stable stay, the transfer factor food-beef, the transfer factors in eatable mushrooms, the translocation factor of cesium in cereals etc. A multi-compartment model was developed to calculate the specific Cs activity in cow's milk and beef. The specific activity in milk can be calculated sufficiently exact using a simple single compartment model. The correlation of the specific Cs activity in spruce

  17. Diabatic models with transferrable parameters for generalized chemical reactions

    International Nuclear Information System (INIS)

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2017-01-01

    Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical

  18. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  19. Parameter Optimisation for the Behaviour of Elastic Models over Time

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...

  20. An automatic and effective parameter optimization method for model tuning

    Directory of Open Access Journals (Sweden)

    T. Zhang

    2015-11-01

    simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.

  1. Modeling Anti-HIV Activity of HEPT Derivatives Revisited. Multiregression Models Are Not Inferior Ones

    International Nuclear Information System (INIS)

    Basic, Ivan; Nadramija, Damir; Flajslik, Mario; Amic, Dragan; Lucic, Bono

    2007-01-01

    Several quantitative structure-activity studies for this data set containing 107 HEPT derivatives have been performed since 1997, using the same set of molecules by (more or less) different classes of molecular descriptors. Multivariate Regression (MR) and Artificial Neural Network (ANN) models were developed and in each study the authors concluded that ANN models are superior to MR ones. We re-calculated multivariate regression models for this set of molecules using the same set of descriptors, and compared our results with the previous ones. Two main reasons for overestimation of the quality of the ANN models in previous studies comparing with MR models are: (1) wrong calculation of leave-one-out (LOO) cross-validated (CV) correlation coefficient for MR models in Luco et al., J. Chem. Inf. Comput. Sci. 37 392-401 (1997), and (2) incorrect estimation/interpretation of leave-one-out (LOO) cross-validated and predictive performance and power of ANN models. More precise and fairer comparison of fit and LOO CV statistical parameters shows that MR models are more stable. In addition, MR models are much simpler than ANN ones. For real testing the predictive performance of both classes of models we need more HEPT derivatives, because all ANN models that presented results for external set of molecules used experimental values in optimization of modeling procedure and model parameters

  2. Resuspension parameters for TRAC dispersion model

    International Nuclear Information System (INIS)

    Langer, G.

    1987-01-01

    Resuspension factors for the wind erosion of soil contaminated with plutonium are necessary to run the Rocky Flats Plant Terrain Responsive Atmospheric Code (TRAC). The model predicts the dispersion and resulting population dose due to accidental plutonium releases

  3. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  4. Study on Developing Degradation Model for Nuclear Power Plants With Ageing Elements Affected on Operation Parameter

    International Nuclear Information System (INIS)

    Choi, Yong Won; Lim, Sung Won; Lee, Un Chul; Kim, Man Woong; Kim, Kab; Ryu, Yong Ho

    2009-01-01

    As a part of development the evaluation system of safety margin effects for degradation of CANDU reactors, it is required that the degradation model represents the distribution of each ageing factor's value during operating year. Unfortunately, it is not easy to make an explicit relation between the RELAP-CANDU parameters and ageing mechanism because of insufficient data and lack of applicable models. So, operating parameter related with ageing is used for range determination of ageing factor. Then, relation between operating parameter and ageing elements is analyzed and ageing constant values for degradation model are determined. Also the other ageing factor is derived for more accurate ageing analysis

  5. Modeling Influenza Transmission Using Environmental Parameters

    Science.gov (United States)

    Soebiyanto, Radina P.; Kiang, Richard K.

    2010-01-01

    Influenza is an acute viral respiratory disease that has significant mortality, morbidity and economic burden worldwide. It infects approximately 5-15% of the world population, and causes 250,000 500,000 deaths each year. The role of environments on influenza is often drawn upon the latitude variability of influenza seasonality pattern. In regions with temperate climate, influenza epidemics exhibit clear seasonal pattern that peak during winter months, but it is not as evident in the tropics. Toward this end, we developed mathematical model and forecasting capabilities for influenza in regions characterized by warm climate Hong Kong (China) and Maricopa County (Arizona, USA). The best model for Hong Kong uses Land Surface Temperature (LST), precipitation and relative humidity as its covariates. Whereas for Maricopa County, we found that weekly influenza cases can be best modelled using mean air temperature as its covariates. Our forecasts can further guides public health organizations in targeting influenza prevention and control measures such as vaccination.

  6. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  7. An optimal estimation algorithm to derive Ice and Ocean parameters from AMSR Microwave radiometer observations

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Tonboe, Rasmus T.; Høyer, Jacob

    channels as well as the combination of data from multiple sources such as microwave radiometry, scatterometry and numerical weather prediction. Optimal estimation is data assimilation without a numerical model for retrieving physical parameters from remote sensing using a multitude of available information......Global multispectral microwave radiometer measurements have been available for several decades. However, most current sea ice concentration algorithms still only takes advantage of a very limited subset of the available channels. Here we present a method that allows utilization of all available....... The methodology is observation driven and model innovation is limited to the translation between observation space and physical parameter space Over open water we use a semi-empirical radiative transfer model developed by Meissner & Wentz that estimates the multispectral AMSR brightness temperatures, i...

  8. Dynamics in the Parameter Space of a Neuron Model

    Science.gov (United States)

    Paulo, C. Rech

    2012-06-01

    Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.

  9. ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA

    Science.gov (United States)

    Sjogren, W. L.

    1994-01-01

    The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.

  10. Advances in Modelling, System Identification and Parameter ...

    Indian Academy of Sciences (India)

    Authors show, using numerical simulation for two system functions, the improvement in percentage normalized ... of nonlinear systems. The approach is to use multiple linearizing models fitted along the operating trajectories. ... over emphasized in the light of present day high level of research activity in the field of aerospace ...

  11. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-01-01

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN

  12. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  13. Lumped parameter models for the interpretation of environmental tracer data

    International Nuclear Information System (INIS)

    Maloszewski, P.; Zuber, A.

    1996-01-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs

  14. Lumped parameter models for the interpretation of environmental tracer data

    Energy Technology Data Exchange (ETDEWEB)

    Maloszewski, P [GSF-Inst. for Hydrology, Oberschleissheim (Germany); Zuber, A [Institute of Nuclear Physics, Cracow (Poland)

    1996-10-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs.

  15. Parameters modelling of amaranth grain processing technology

    Science.gov (United States)

    Derkanosova, N. M.; Shelamova, S. A.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.

    2018-03-01

    The article presents a technique that allows calculating the structure of a multicomponent bakery mixture for the production of enriched products, taking into account the instability of nutrient content, and ensuring the fulfilment of technological requirements and, at the same time considering consumer preferences. The results of modelling and analysis of optimal solutions are given by the example of calculating the structure of a three-component mixture of wheat and rye flour with an enriching component, that is, whole-hulled amaranth flour applied to the technology of bread from a mixture of rye and wheat flour on a liquid leaven.

  16. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  17. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  18. The influence of model parameters on catchment-response

    International Nuclear Information System (INIS)

    Shah, S.M.S.; Gabriel, H.F.; Khan, A.A.

    2002-01-01

    This paper deals with the study of influence of influence of conceptual rainfall-runoff model parameters on catchment response (runoff). A conceptual modified watershed yield model is employed to study the effects of model-parameters on catchment-response, i.e. runoff. The model is calibrated, using manual parameter-fitting approach, also known as trial and error parameter-fitting. In all, there are twenty one (21) parameters that control the functioning of the model. A lumped parametric approach is used. The detailed analysis was performed on Ling River near Kahuta, having catchment area of 56 sq. miles. The model includes physical parameters like GWSM, PETS, PGWRO, etc. fitting coefficients like CINF, CGWS, etc. and initial estimates of the surface-water and groundwater storages i.e. srosp and gwsp. Sensitivity analysis offers a good way, without repetititious computations, the proper weight and consideration that must be taken when each of the influencing factor is evaluated. Sensitivity-analysis was performed to evaluate the influence of model-parameters on runoff. The sensitivity and relative contributions of model parameters influencing catchment-response are studied. (author)

  19. Identification of ecosystem parameters by SDE-modelling

    DEFF Research Database (Denmark)

    Stochastic differential equations (SDEs) for ecosystem modelling have attracted increasing attention during recent years. The modelling has mostly been through simulation experiments in order to analyse how system noise propagates through the ordinary differential equation formulation of ecosystem...... models. Estimation of parameters in SDEs is, however, possible by combining Kalman filter techniques and likelihood estimation. By modelling parameters as random walks it is possible to identify linear as well as non-linear interactions between ecosystem components. By formulating a simple linear SDE...

  20. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  1. SITE SPECIFIC REFERENCE PERSON PARAMETERS AND DERIVED CONCENTRATION STANDARDS FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.

    2013-03-14

    The purpose of this report is twofold. The first is to develop a set of behavioral parameters for a reference person specific for the Savannah River Site (SRS) such that the parameters can be used to determine dose to members of the public in compliance with Department of Energy (DOE) Order 458.1 “Radiation Protection of the Public and the Environment.” A reference person is a hypothetical, gender and age aggregation of human physical and physiological characteristics arrived at by international consensus for the purpose of standardizing radiation dose calculations. DOE O 458.1 states that compliance with the annual dose limit of 100 mrem (1 mSv) to a member of the public may be demonstrated by calculating the dose to the maximally exposed individual (MEI) or to a representative person. Historically, for dose compliance, SRS has used the MEI concept, which uses adult dose coefficients and adult male usage parameters. Beginning with the 2012 annual site environmental report, SRS will be using the representative person concept for dose compliance. The dose to a representative person will be based on 1) the SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data, which are documented in this report, 2) the reference person (gender and age averaged) ingestion and inhalation dose coefficients provided in DOE Derived Concentration Technical Standard (DOE-STD-1196-2011), and 3) the external dose coefficients provided in the DC_PAK3 toolbox. The second purpose of this report is to develop SRS-specific derived concentration standards (DCSs) for all applicable food ingestion pathways, ground shine, and water submersion. The DCS is the concentration of a particular radionuclide in water, in air, or on the ground that results in a member of the public receiving 100 mrem (1 mSv) effective dose following continuous exposure for one year. In DOE-STD-1196-2011, DCSs were developed for the ingestion of water, inhalation of

  2. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  3. Brownian motion model with stochastic parameters for asset prices

    Science.gov (United States)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  4. Water saturation in shaly sands: logging parameters from log-derived values

    International Nuclear Information System (INIS)

    Miyairi, M.; Itoh, T.; Okabe, F.

    1976-01-01

    The methods are presented for determining the relation of porosity to formation factor and that of true resistivity of formation to water saturation, which were investigated through the log interpretation of one of the oil and gas fields of northern Japan Sea. The values of the coefficients ''a'' and ''m'' in porosity-formation factor relation are derived from cross-plot of porosity and resistivity of formation corrected by clay content. The saturation exponent ''n'' is determined from cross-plot of porosity and resistivity index on the assumption that the product of porosity and irreducible water saturation is constant. The relation of porosity to irreducible water saturation is also investigated from core analysis. The new logging parameters determined from the methods, a = 1, m = 2, n = 1.4, improved the values of water saturation by 6 percent in average, and made it easy to distinguish the points which belong to the productive zone and ones belonging to the nonproductive zone

  5. Photometric parameter maps of the Moon derived from LROC WAC images

    Science.gov (United States)

    Sato, H.; Robinson, M. S.; Hapke, B. W.; Denevi, B. W.; Boyd, A. K.

    2013-12-01

    Spatially resolved photometric parameter maps were computed from 21 months of Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images. Due to a 60° field-of-view (FOV), the WAC achieves nearly global coverage of the Moon each month with more than 50% overlap from orbit-to-orbit. From the repeat observations at various viewing and illumination geometries, we calculated Hapke bidirectional reflectance model parameters [1] for 1°x1° "tiles" from 70°N to 70°S and 0°E to 360°E. About 66,000 WAC images acquired from February 2010 to October 2011 were converted from DN to radiance factor (I/F) though radiometric calibration, partitioned into gridded tiles, and stacked in a time series (tile-by-tile method [2]). Lighting geometries (phase, incidence, emission) were computed using the WAC digital terrain model (100 m/pixel) [3]. The Hapke parameters were obtained by model fitting against I/F within each tile. Among the 9 parameters of the Hapke model, we calculated 3 free parameters (w, b, and hs) by setting constant values for 4 parameters (Bco=0, hc=1, θ, φ=0) and interpolating 2 parameters (c, Bso). In this simplification, we ignored the Coherent Backscatter Opposition Effect (CBOE) to avoid competing CBOE and Shadow Hiding Opposition Effect (SHOE). We also assumed that surface regolith porosity is uniform across the Moon. The roughness parameter (θ) was set to an averaged value from the equator (× 3°N). The Henyey-Greenstein double lobe function (H-G2) parameter (c) was given by the 'hockey stick' relation [4] (negative correlation) between b and c based on laboratory measurements. The amplitude of SHOE (Bso) was given by the correlation between w and Bso at the equator (× 3°N). Single scattering albedo (w) is strongly correlated to the photometrically normalized I/F, as expected. The c shows an inverse trend relative to b due to the 'hockey stick' relation. The parameter c is typically low for the maria (0.08×0.06) relative to the

  6. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  7. Learning about physical parameters: the importance of model discrepancy

    International Nuclear Information System (INIS)

    Brynjarsdóttir, Jenný; O'Hagan, Anthony

    2014-01-01

    Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)

  8. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  9. Optimizing Performance Parameters of Chemically-Derived Graphene/p-Si Heterojunction Solar Cell.

    Science.gov (United States)

    Batra, Kamal; Nayak, Sasmita; Behura, Sanjay K; Jani, Omkar

    2015-07-01

    Chemically-derived graphene have been synthesized by modified Hummers method and reduced using sodium borohydride. To explore the potential for photovoltaic applications, graphene/p-silicon (Si) heterojunction devices were fabricated using a simple and cost effective technique called spin coating. The SEM analysis shows the formation of graphene oxide (GO) flakes which become smooth after reduction. The absence of oxygen containing functional groups, as observed in FT-IR spectra, reveals the reduction of GO, i.e., reduced graphene oxide (rGO). It was further confirmed by Raman analysis, which shows slight reduction in G-band intensity with respect to D-band. Hall effect measurement confirmed n-type nature of rGO. Therefore, an effort has been made to simu- late rGO/p-Si heterojunction device by using the one-dimensional solar cell capacitance software, considering the experimentally derived parameters. The detail analysis of the effects of Si thickness, graphene thickness and temperature on the performance of the device has been presented.

  10. Preliminary study of reasonableness of important parameters used in deriving OILs for PWR accidents

    International Nuclear Information System (INIS)

    Yongsheng, L.; Shongqi, S.

    2004-01-01

    Institute of nuclear energy technology, Tsinghua university, Beijing , China ,100084 Body of Abstract: This paper introduced the definition of operational intervention level (OIL) and the derived process of default OILs recommended by IAEA firstly. Then the paper focused on the reasonableness of two parameters, R1 and R2, which is assumed in derived process of default OIL1 and OIL2 in a reactor accident. The values of R1 and R2 were calculated by the calculating program of InterRas. The source item for computing includes the accidents PWR described in Wash-1400 and France severe accident source items, and furthermore the meteorological conditions for computing are classified to three classes, which are D stability class, A stability class, and F stability class with the mixing heights of 400 meters and 4 hour exposure to the plume. The wind speed is 3m/s, 2m/s and 1m/s correspond to the stability classes. The results show that the average values of R1 and R2 in the same accident series and different meteorological conditions derived by the calculating program of InterRas are close to the presumptive values. The results also indicated the rationalization of the default OIL1 and OIL2. On the other hand, the calculating results of different accidents have considerable disparity with the presumptive values in different distances and meteorological conditions, but the mutative trends are very well-regulated on distance and meteorological conditions. So the OILs recommended by IAEA are applicable to some specified conditions. At last the paper introduced the method of revising the default OILs in terms of measurement results. (Author)

  11. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  12. Universally sloppy parameter sensitivities in systems biology models.

    Directory of Open Access Journals (Sweden)

    Ryan N Gutenkunst

    2007-10-01

    Full Text Available Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.

  13. Universally sloppy parameter sensitivities in systems biology models.

    Science.gov (United States)

    Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P

    2007-10-01

    Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.

  14. Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver

    Science.gov (United States)

    Kang, Ling; Zhou, Liwei

    2018-02-01

    Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.

  15. Extension of the direct statistical approach to a volume parameter model (non-integer splitting)

    International Nuclear Information System (INIS)

    Burn, K.W.

    1990-01-01

    The Direct Statistical Approach is a rigorous mathematical derivation of the second moment for surface splitting and Russian Roulette games attached to the Monte Carlo modelling of fixed source particle transport. It has been extended to a volume parameter model (involving non-integer ''expected value'' splitting), and then to a cell model. The cell model gives second moment and time functions that have a closed form. This suggests the possibility of two different methods of solution of the optimum splitting/Russian Roulette parameters. (author)

  16. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  17. NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Roman L. Leibov

    2017-09-01

    Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented

  18. Identification of parameters of discrete-continuous models

    International Nuclear Information System (INIS)

    Cekus, Dawid; Warys, Pawel

    2015-01-01

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible

  19. Identification of parameters of discrete-continuous models

    Energy Technology Data Exchange (ETDEWEB)

    Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)

    2015-03-10

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.

  20. Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents

    Energy Technology Data Exchange (ETDEWEB)

    Talantsev, Evgueni [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); Crump, Wayne P.; Tallon, Jeffery L. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)

    2017-12-15

    Key questions for any superconductor include: what is its maximum dissipation-free electrical current (its 'critical current') and can this be used to extract fundamental thermodynamic parameters? Present models focus on depinning of magnetic vortices and implicate materials engineering to maximise pinning performance. But recently we showed that the self-field critical current for thin films is a universal property, independent of microstructure, controlled only by the penetration depth. Here, using an extended BCS-like model, we calculate the penetration depth from the temperature dependence of the superconducting energy gap thus allowing us to fit self-field critical current data. In this way we extract from the T-dependent gap a set of key thermodynamic parameters, the ground-state penetration depth, energy gap and jump in electronic specific heat. Our fits to 79 available data sets, from zinc nanowires to compressed sulphur hydride with critical temperatures of 0.65 to 203 K, respectively, are excellent and the extracted parameters agree well with reported bulk values. Samples include thin films, wires or nanowires of single- or multi-band s-wave and d-wave superconductors of either type I or type II. For multiband or multiphase samples we accurately recover individual band contributions and phase fractions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  2. Parameter estimation of electricity spot models from futures prices

    NARCIS (Netherlands)

    Aihara, ShinIchi; Bagchi, Arunabha; Imreizeeq, E.S.N.; Walter, E.

    We consider a slight perturbation of the Schwartz-Smith model for the electricity futures prices and the resulting modified spot model. Using the martingale property of the modified price under the risk neutral measure, we derive the arbitrage free model for the spot and futures prices. We estimate

  3. Some tests for parameter constancy in cointegrated VAR-models

    DEFF Research Database (Denmark)

    Hansen, Henrik; Johansen, Søren

    1999-01-01

    Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ......Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations......, and another in which the cointegrating relations are estimated recursively from a likelihood function, where the short-run parameters have been concentrated out. We suggest graphical procedures based on recursively estimated eigenvalues to evaluate the constancy of the long-run parameters in the model...

  4. Unsteady Vibration Aerodynamic Modeling and Evaluation of Dynamic Derivatives Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2015-01-01

    Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.

  5. General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems

    International Nuclear Information System (INIS)

    Sun Jun-Wei; Shen Yi; Zhang Guo-Dong; Wang Yan-Feng; Cui Guang-Zhao

    2013-01-01

    According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods. (general)

  6. Vulnerable Derivatives and Good Deal Bounds: A Structural Model

    DEFF Research Database (Denmark)

    Murgoci, Agatha

    2013-01-01

    We price vulnerable derivatives -- i.e. derivatives where the counterparty may default. These are basically the derivatives traded on the over-the-counter (OTC) markets. Default is modeled in a structural framework. The technique employed for pricing is good deal bounds (GDBs). The method imposes...

  7. A method for model identification and parameter estimation

    International Nuclear Information System (INIS)

    Bambach, M; Heinkenschloss, M; Herty, M

    2013-01-01

    We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)

  8. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    International Nuclear Information System (INIS)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-01-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2. (paper)

  9. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    Science.gov (United States)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-04-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2.

  10. Modelling hydrodynamic parameters to predict flow assisted corrosion

    International Nuclear Information System (INIS)

    Poulson, B.; Greenwell, B.; Chexal, B.; Horowitz, J.

    1992-01-01

    During the past 15 years, flow assisted corrosion has been a worldwide problem in the power generating industry. The phenomena is complex and depends on environment, material composition, and hydrodynamic factors. Recently, modeling of flow assisted corrosion has become a subject of great importance. A key part of this effort is modeling the hydrodynamic aspects of this issue. This paper examines which hydrodynamic parameter should be used to correlate the occurrence and rate of flow assisted corrosion with physically meaningful parameters, discusses ways of measuring the relevant hydrodynamic parameter, and describes how the hydrodynamic data is incorporated into the predictive model

  11. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  12. Optimal parameters for the FFA-Beddoes dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A; Mert, M [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H A [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)

  13. Checking the new IRI model: The bottomside B parameters

    International Nuclear Information System (INIS)

    Mosert, M.; Buresova, D.; Miro, G.; Lazo, B.; Ezquer, R.

    2003-01-01

    Electron density profiles obtained at Pruhonice (50.0, 15.0), El Arenosillo (37.1, 353.2) and Havana (23, 278) were used to check the bottom-side B parameters BO (thickness parameter) and B1 (shape parameter) predicted by the new IRI - 2000 version. The electron density profiles were derived from ionograms using the ARP technique. The data base includes daytime and nighttime ionograms recorded under different seasonal and solar activity conditions. Comparisons with IRI predictions were also done. The analysis shows that: a) The parameter B1 given by IRI 2000 reproduces better the observed ARP values than the IRI-90 version and b) The observed BO values are in general well reproduced by both IRI versions: IRI-90 and IRI-2000. (author)

  14. Checking the new IRI model The bottomside B parameters

    CERN Document Server

    Mosert, M; Ezquer, R; Lazo, B; Miro, G

    2002-01-01

    Electron density profiles obtained at Pruhonice (50.0, 15.0), El Arenosillo (37.1, 353.2) and Havana (23, 278) were used to check the bottom-side B parameters BO (thickness parameter) and B1 (shape parameter) predicted by the new IRI - 2000 version. The electron density profiles were derived from ionograms using the ARP technique. The data base includes daytime and nighttime ionograms recorded under different seasonal and solar activity conditions. Comparisons with IRI predictions were also done. The analysis shows that: a) The parameter B1 given by IRI 2000 reproduces better the observed ARP values than the IRI-90 version and b) The observed BO values are in general well reproduced by both IRI versions: IRI-90 and IRI-2000.

  15. Online State Space Model Parameter Estimation in Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Z. Gallehdari

    2014-06-01

    The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.

  16. Microphysically Derived Expressions for Rate-and-State Friction Parameters, a, b, and Dc

    Science.gov (United States)

    Chen, Jianye; Niemeijer, A. R.; Spiers, Christopher J.

    2017-12-01

    Rate-and-state friction (RSF) laws are extensively applied in fault mechanics but have a largely empirical basis reflecting only limited understanding of the underlying physical mechanisms. We recently proposed a microphysical model describing the frictional behavior of a granular fault gouge undergoing deformation in terms of granular flow accompanied by thermally activated creep and intergranular sliding at grain contacts. Numerical solutions reproduced typical experimental results well. Here we extend our model to obtain physically meaningful, analytical expressions for the steady state frictional strength and standard RSF parameters, a, b, and Dc. The frictional strength contains two components, namely, grain boundary friction and friction due to intergranular dilatation. The expressions obtained for a and b linearly reflect the rate dependence of these two terms. Dc scales with slip band thickness and varies only slightly with velocity. The values of a, b, and Dc predicted show quantitative agreement with previous experimental results, and inserting their values into classical RSF laws gives simulated friction behavior that is consistent with the predictions of our numerically implemented model for small departures from steady state. For large velocity steps, the model produces mixed RSF behavior that falls between the Slowness and Slip laws, for example, with an intermediate equivalent slip(-weakening) distance d0. Our model possesses the interesting property not only that a and b are velocity dependent but also that Dc and d0 scale differently from classical RSF models, potentially explaining behaviour seen in many hydrothermal friction experiments and having substantial implications for natural fault friction.

  17. A note on modeling of tumor regression for estimation of radiobiological parameters

    International Nuclear Information System (INIS)

    Zhong, Hualiang; Chetty, Indrin

    2014-01-01

    Purpose: Accurate calculation of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on derived parameters. In this study, the authors have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for estimation of radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time T d , half-life of dead cells T r , and cell survival fraction SF D under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models: Chvetsov's model (C-model) and Lim's model (L-model). The C-model and L-model were optimized with the parameter T d fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43 ± 0.08, and the half-life of dead cells averaged over the six patients is 17.5 ± 3.2 days. The parameters T r and SF D optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the T d -fixed C-model, and by 32.1% and 112.3% from those optimized with the T d -fixed L-model, respectively. Conclusions: The Z-model was analytically constructed from the differential equations of cell populations that describe changes in the number of different tumor cells during the course of radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The generated model and its optimization method may help develop high-quality treatment regimens for individual patients

  18. Complexity, parameter sensitivity and parameter transferability in the modelling of floodplain inundation

    Science.gov (United States)

    Bates, P. D.; Neal, J. C.; Fewtrell, T. J.

    2012-12-01

    In this we paper we consider two related questions. First, we address the issue of how much physical complexity is necessary in a model in order to simulate floodplain inundation to within validation data error. This is achieved through development of a single code/multiple physics hydraulic model (LISFLOOD-FP) where different degrees of complexity can be switched on or off. Different configurations of this code are applied to four benchmark test cases, and compared to the results of a number of industry standard models. Second we address the issue of how parameter sensitivity and transferability change with increasing complexity using numerical experiments with models of different physical and geometric intricacy. Hydraulic models are a good example system with which to address such generic modelling questions as: (1) they have a strong physical basis; (2) there is only one set of equations to solve; (3) they require only topography and boundary conditions as input data; and (4) they typically require only a single free parameter, namely boundary friction. In terms of complexity required we show that for the problem of sub-critical floodplain inundation a number of codes of different dimensionality and resolution can be found to fit uncertain model validation data equally well, and that in this situation Occam's razor emerges as a useful logic to guide model selection. We find also find that model skill usually improves more rapidly with increases in model spatial resolution than increases in physical complexity, and that standard approaches to testing hydraulic models against laboratory data or analytical solutions may fail to identify this important fact. Lastly, we find that in benchmark testing studies significant differences can exist between codes with identical numerical solution techniques as a result of auxiliary choices regarding the specifics of model implementation that are frequently unreported by code developers. As a consequence, making sound

  19. Retrospective forecast of ETAS model with daily parameters estimate

    Science.gov (United States)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  20. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  1. Parameter Estimates in Differential Equation Models for Population Growth

    Science.gov (United States)

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  2. Uncertainty in dual permeability model parameters for structured soils

    Science.gov (United States)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2012-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.

  3. Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach

    DEFF Research Database (Denmark)

    Pauwels, Valentijn; Balenzano, Anna; Satalino, Giuseppe

    2009-01-01

    It is widely recognized that Synthetic Aperture Radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has...... that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through...

  4. Atmospheric circulation and sounding-derived parameters associated with thunderstorm occurrence in Central Europe

    Science.gov (United States)

    Kolendowicz, Leszek; Taszarek, Mateusz; Czernecki, Bartosz

    2017-07-01

    The main objective of this study is to examine the influence of atmospheric circulation patterns and sounding-derived parameters on thunderstorm occurrence in Central Europe. Thunderstorm activity tends to increase as one moves from the north to the south of the research area. Maximal thunderstorm occurrence is observed in the summer months, while between October and March such activity is much lower. Thunderstorms are also more frequent in spring than in autumn. In the warm season, the occurrence of thunderstorm is associated with the presence of a trough associated with a low located over the North Sea and Scandinavia. In the cold season, the synoptic pattern indicates a strong zonal flow from the west with significantly higher horizontal pressure gradient compared to the warm season. Thunderstorms are more likely to form when the boundary layer's mixing ratios are higher than 8 g kg- 1. Deep convection is also more likely to occur when the vertical temperature lapse rates (between 800 and 500 hPa pressure layers) exceed 6 °C km- 1. During the cold season, considerably higher lapse rates are needed to produce thunderstorms. The values obtained for the convective available potential energy indicate that at least 50 J kg- 1 is needed to produce a thunderstorm during wintertime and 125 J kg- 1 during summertime. Cold season thunderstorms are formed with a lower instability but with a more dynamic wind field having an average value of deep layer shear that exceeds 20 ms- 1. The best parameter to distinguish thunderstorm from non-thunderstorm days for both winter and summer months is a combination of the square root of the convective available potential energy multiplied by the deep layer shear.

  5. Luminescence model with quantum impact parameter for low energy ions

    CERN Document Server

    Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S

    2002-01-01

    We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.

  6. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rasmuson; K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters

  7. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    can go undetected even by experienced modelers. Extreme parameter correlation can be detected using parameter correlation coefficients, but their utility depends on the presence of sufficient, but not excessive, numerical imprecision of the sensitivities, such as round-off error. This work...... investigates the information that can be obtained from parameter correlation coefficients in the presence of different levels of numerical imprecision, and compares it to the information provided by an alternative method called the singular value decomposition (SVD). Results suggest that (1) calculated...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...

  8. Uncertainty of Modal Parameters Estimated by ARMA Models

    DEFF Research Database (Denmark)

    Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders

    1990-01-01

    In this paper the uncertainties of identified modal parameters such as eidenfrequencies and damping ratios are assed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the parameters...... by simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been choosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore......, it is shown that the model errors may also contribute significantly to the uncertainty....

  9. PARAMETER ESTIMATION AND MODEL SELECTION FOR INDOOR ENVIRONMENTS BASED ON SPARSE OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    Y. Dehbi

    2017-09-01

    Full Text Available This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  10. Parameter Estimation and Model Selection for Indoor Environments Based on Sparse Observations

    Science.gov (United States)

    Dehbi, Y.; Loch-Dehbi, S.; Plümer, L.

    2017-09-01

    This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  11. Remarks on the microscopic derivation of the collective model

    International Nuclear Information System (INIS)

    Toyoda, T.; Wildermuth, K.

    1984-01-01

    The rotational part of the phenomenological collective model of Bohr and Mottelson and others is derived microscopically, starting with the Schrodinger equation written in projection form and introducing a new set of 'relative Euler angles'. In order to derive the local Schrodinger equation of the collective model, it is assumed that the intrinsic wave functions give strong peaking properties to the overlapping kernels

  12. CONNECTION BETWEEN DYNAMICALLY DERIVED INITIAL MASS FUNCTION NORMALIZATION AND STELLAR POPULATION PARAMETERS

    International Nuclear Information System (INIS)

    McDermid, Richard M.; Cappellari, Michele; Bayet, Estelle; Bureau, Martin; Davies, Roger L.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Duc, Pierre-Alain; Crocker, Alison F.; Davis, Timothy A.; De Zeeuw, P. T.; Emsellem, Eric; Kuntschner, Harald; Khochfar, Sadegh; Krajnović, Davor; Morganti, Raffaella; Oosterloo, Tom; Naab, Thorsten

    2014-01-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS 3D project. We study trends between our dynamically derived IMF normalization α dyn ≡ (M/L) stars /(M/L) Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of α dyn at a given population parameter. As a result, we find weak α dyn -[α/Fe] and α dyn –Age correlations and no significant α dyn –[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis

  13. CONNECTION BETWEEN DYNAMICALLY DERIVED INITIAL MASS FUNCTION NORMALIZATION AND STELLAR POPULATION PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    McDermid, Richard M. [Department of Physics and Astronomy, Macquarie University, Sydney NSW 2109 (Australia); Cappellari, Michele; Bayet, Estelle; Bureau, Martin; Davies, Roger L. [Sub-Department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Alatalo, Katherine [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Blitz, Leo [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Bois, Maxime [Observatoire de Paris, LERMA and CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bournaud, Frédéric; Duc, Pierre-Alain [Laboratoire AIM Paris-Saclay, CEA/IRFU/SAp- CNRS-Université Paris Diderot, F-91191 Gif-sur-Yvette Cedex (France); Crocker, Alison F. [Ritter Astrophysical Observatory, University of Toledo, Toledo, OH 43606 (United States); Davis, Timothy A.; De Zeeuw, P. T.; Emsellem, Eric; Kuntschner, Harald [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Khochfar, Sadegh [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Krajnović, Davor [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Morganti, Raffaella; Oosterloo, Tom [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Naab, Thorsten, E-mail: richard.mcdermid@mq.edu.au [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); and others

    2014-09-10

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS{sup 3D} project. We study trends between our dynamically derived IMF normalization α{sub dyn} ≡ (M/L){sub stars}/(M/L){sub Salp} and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of α{sub dyn} at a given population parameter. As a result, we find weak α{sub dyn}-[α/Fe] and α{sub dyn} –Age correlations and no significant α{sub dyn} –[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  14. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    Science.gov (United States)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2014-09-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  15. SPOTting Model Parameters Using a Ready-Made Python Package.

    Directory of Open Access Journals (Sweden)

    Tobias Houska

    Full Text Available The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool, an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI. We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  16. Parameter resolution in two models for cell survival after radiation

    International Nuclear Information System (INIS)

    Di Cera, E.; Andreasi Bassi, F.; Arcovito, G.

    1989-01-01

    The resolvability of model parameters for the linear-quadratic and the repair-misrepair models for cell survival after radiation has been studied by Monte Carlo simulations as a function of the number of experimental data points collected in a given dose range and the experimental error. Statistical analysis of the results reveals the range of experimental conditions under which the model parameters can be resolved with sufficient accuracy, and points out some differences in the operational aspects of the two models. (orig.)

  17. Updating parameters of the chicken processing line model

    DEFF Research Database (Denmark)

    Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna

    2010-01-01

    A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate performance of this method in updating parameters...... of the chicken processing line model....

  18. Lumped-parameter Model of a Bucket Foundation

    DEFF Research Database (Denmark)

    Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten

    2009-01-01

    efficient model that can be applied in aero-elastic codes for fast evaluation of the dynamic structural response of wind turbines. The target solutions, utilised for calibration of the lumped-parameter models, are obtained by a coupled finite-element/boundaryelement scheme in the frequency domain......, and the quality of the models are tested in the time and frequency domains. It is found that precise results are achieved by lumped-parameter models with two to four internal degrees of freedom per displacement or rotation of the foundation. Further, coupling between the horizontal sliding and rocking cannot...

  19. Lumped-Parameter Models for Windturbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...

  20. Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data

    International Nuclear Information System (INIS)

    Amendola, Luca; Campos, Gabriela Camargo; Rosenfeld, Rogerio

    2007-01-01

    Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling δ between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w DE (z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w DE and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy

  1. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    Science.gov (United States)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  2. Parameter dependence and outcome dependence in dynamical models for state vector reduction

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Grassi, R.; Butterfield, J.; Fleming, G.N.

    1993-01-01

    The authors apply the distinction between parameter independence and outcome independence to the linear and nonlinear models of a recent nonrelativistic theory of continuous state vector reduction. It is shown that in the nonlinear model there is a set of realizations of the stochastic process that drives the state vector reduction for which parameter independence is violated for parallel spin components in the EPR-Bohm setup. Such a set has an appreciable probability of occurrence (∼ 1/2). On the other hand, the linear model exhibits only extremely small parameter dependence effects. Some specific features of the models are investigated and it is recalled that, as has been pointed out recently, to be able to speak of definite outcomes (or equivalently of possessed objective elements of reality) at finite times, the criteria for their attribution to physical systems must be slightly changed. The concluding section is devoted to a detailed discussion of the difficulties met when attempting to take, as a starting point for the formulation of a relativistic theory, a nonrelativistic scheme which exhibits parameter dependence. Here the authors derive a theorem which identifies the precise sense in which the occurrence of parameter dependence forbids a genuinely relativistic generalization. Finally, the authors show how the appreciable parameter dependence of the nonlinear model gives rise to problems with relativity, while the extremely weak parameter dependence of the linear model does not give rise to any difficulty, provided the appropriate criteria for the attribution of definite outcomes are taken into account. 19 refs

  3. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  4. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  5. Local discrete symmetries from superstring derived models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations

  6. Structural and solubility parameter correlations of gelation abilities for dihydroxylated derivatives of long-chain, naturally occurring fatty acids.

    Science.gov (United States)

    Zhang, Mohan; Selvakumar, Sermadurai; Zhang, Xinran; Sibi, Mukund P; Weiss, Richard G

    2015-06-01

    Creating structure-property correlations at different distance scales is one of the important challenges to the rational design of molecular gelators. Here, a series of dihydroxylated derivatives of long-chain fatty acids, derived from three naturally occurring molecules-oleic, erucic and ricinoleic acids-are investigated as gelators of a wide variety of liquids. Conclusions about what constitutes a more (or less!) efficient gelator are based upon analyses of a variety of thermal, structural, molecular modeling, and rheological results. Correlations between the manner of molecular packing in the neat solid or gel states of the gelators and Hansen solubility data from the liquids leads to the conclusion that diol stereochemistry, the number of carbon atoms separating the two hydroxyl groups, and the length of the alkanoic chains are the most important structural parameters controlling efficiency of gel formation for these gelators. Some of the diol gelators are as efficient or even more efficient than the well-known, excellent gelator, (R)-12-hydroxystearic acid; others are much worse. The ability to form extensive intermolecular H-bonding networks along the alkyl chains appears to play a key role in promoting fiber growth and, thus, gelation. In toto, the results demonstrate how the efficiency of gelation can be modulated by very small structural changes and also suggest how other structural modifications may be exploited to create efficient gelators. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models. © 2015 John Wiley & Sons Ltd.

  8. A fractal derivative constitutive model for three stages in granite creep

    Directory of Open Access Journals (Sweden)

    R. Wang

    Full Text Available In this paper, by replacing the Newtonian dashpot with the fractal dashpot and considering damage effect, a new constitutive model is proposed in terms of time fractal derivative to describe the full creep regions of granite. The analytic solutions of the fractal derivative creep constitutive equation are derived via scaling transform. The conventional triaxial compression creep tests are performed on MTS 815 rock mechanics test system to verify the efficiency of the new model. The granite specimen is taken from Beishan site, the most potential area for the China’s high-level radioactive waste repository. It is shown that the proposed fractal model can characterize the creep behavior of granite especially in accelerating stage which the classical models cannot predict. The parametric sensitivity analysis is also conducted to investigate the effects of model parameters on the creep strain of granite. Keywords: Beishan granite, Fractal derivative, Damage evolution, Scaling transformation

  9. Rational Models for Inflation-Linked Derivatives

    DEFF Research Database (Denmark)

    Dam, Henrik; Macrina, Andrea; Skovmand, David

    2018-01-01

    in a multiplicative manner that allows for closed-form pricing of vanilla inflation products suchlike zero-coupon swaps, caps and floors, year-on-year swaps, caps and floors, and the exotic limited price index swap. The model retains the attractive features of a nominal multi-curve interest rate model such as closed...

  10. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  11. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])

  12. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  13. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  14. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception

  15. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M. A.

    2003-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values

  16. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-06-27

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699

  17. Reflector modelization for neutronic diffusion and parameters identification

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Physical parameters of neutronic diffusion equations can be adjusted to decrease calculations-measurements errors. The reflector being always difficult to modelize, we choose to elaborate a new reflector model and to use the parameters of this model as adjustment coefficients in the identification procedure. Using theoretical results, and also the physical behaviour of neutronic flux solutions, the reflector model consists then in its replacement by boundary conditions for the diffusion equations on the core only. This theoretical result of non-local operator relations leads then to some discrete approximations by taking into account the multiscaled behaviour, on the core-reflector interface, of neutronic diffusion solutions. The resulting model of this approach is then compared with previous reflector modelizations, and first results indicate that this new model gives the same representation of reflector for the core than previous. (author). 12 refs

  18. Weather Derivatives and Stochastic Modelling of Temperature

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2011-01-01

    Full Text Available We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

  19. Regionalising Parameters of a Conceptual Rainfall-Runoff Model for ...

    African Journals Online (AJOL)

    IHACRES, a lumped conceptual rainfall-runoff model, was calibrated to six catchments ranging in size from 49km2 to 600 km2 within the upper Tana River basin to obtain a set of model parameters that characterise the hydrological behaviour within the region. Physical catchment attributes indexing topography, soil and ...

  20. Constraint on Parameters of Inverse Compton Scattering Model for ...

    Indian Academy of Sciences (India)

    B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained. Key words. Pulsar—inverse Compton scattering—emission mechanism. 1. Introduction. Among various kinds of models for pulsar radio emission, the inverse ...

  1. Rain storm models and the relationship between their parameters

    NARCIS (Netherlands)

    Stol, P.T.

    1977-01-01

    Rainfall interstation correlation functions can be obtained with the aid of analytic rainfall or storm models. Since alternative storm models have different mathematical formulas, comparison should be based on equallity of parameters like storm diameter, mean rainfall amount, storm maximum or total

  2. Lumped-parameters equivalent circuit for condenser microphones modeling.

    Science.gov (United States)

    Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar

    2017-10-01

    This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.

  3. Directional radiative transfer by SCOPE, SLC and DART using laser scan derived structural forest parameters

    Science.gov (United States)

    Timmermans, Joris; Gastellu-Etchegorry, Jean Philippe; van der Tol, Christiaan; Verhoef, Wout; Vekerdy, Zoltan; Su, Zhongbo

    2017-04-01

    Accurate estimation of the radiative transfer (RT) over vegetation is the corner stone of agricultural and hydrological remote sensing applications. Present remote sensing sensors mostly use traditional optical, thermal and microwave observations. However with these traditional observations characterization of the light efficiency and photosynthetic rate can only be accomplished indirectly. A promising new method of observing these processes is by using the fluorescent emitted radiation. This approach was recently highlighted due to the selection of the FLEX sensor as a future Earth Explorer by the European Space agency (ESA). Several modelling activities have been undertaken to better understand the technical feasibilities of this sensor. Within these studies, the SCOPE model has been chosen as the baseline algorithm. This model combines a detailed RT description of the canopy, using a discrete version of the SAIL model, with a description of photosynthetic processes (by use of the Farquhar/Ball-Berry model). Consequently, this model is capable of simulating simultaneously the biophysical processes and jointly the fluorescent, optical and thermal RT. The SAIL model however is a 1D RT model and consequently provides higher uncertainties with increasing vegetation structures. The main objective of this research is to investigate the limitations of the RT model component of the SCOPE model over complex canopies. In particular the aim of this research is to evaluate the validity for increasingly structural complex canopies', on the bidirectional reflectance distribution functions (BRDF) of these canopies. This was accomplished by evaluating the simulated outgoing radiation from SCOPE/SAIL against simulations of the DART 3D RT model. In total nine different scenarios were simulated with the DART RTM with increasing structural complexity, ranging from the simple 'Plot' scenario to the highly complex 'Multiple Crown' scenario. The canopy parameters are retrieved from a

  4. The infinitesimal model: Definition, derivation, and implications.

    Science.gov (United States)

    Barton, N H; Etheridge, A M; Véber, A

    2017-12-01

    Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence

  5. A variable-order fractal derivative model for anomalous diffusion

    Directory of Open Access Journals (Sweden)

    Liu Xiaoting

    2017-01-01

    Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.

  6. A software for parameter estimation in dynamic models

    Directory of Open Access Journals (Sweden)

    M. Yuceer

    2008-12-01

    Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.

  7. Derivation of radioecological parameters from the long-term emission of iodine-129. Final report

    International Nuclear Information System (INIS)

    Michel, R.; Klipsch, K.; Ernst, T.; Gorny, M.; Jakob, D.; Vahlbruch, J.; Synal, H.A.; Schnabel, C.

    2004-01-01

    In this project, the distribution and behaviour of 129 I and 127 I in the environment and its pathways through the environment to man were comprehensively investigated in order to provide a basis for estimating the radiation exposure to man due to releases of 129 I. To this end, the actual situation in Lower Saxony, Germany, was studied for exemplary regions near to and far from the coast of the North Sea. Accelerator mass spectrometry, radiochemical neutron activation analysis, ion chromatography, and ICP-MS were applied to measure the iodine isotopes, 129 I and P 127 I, in sea-water, air, precipitation, surface and ground waters, soils, plants, animals, foodstuffs, total diet, and human and animal thyroid glands. For air-borne iodine, the speciation as well as the particle size distribution of aerosols was determined. Soil depth profiles were investigated down to depths of 2.5 m in order to study the iodine migration as well as individual surface soil samples to allow for the determination of transfer factors of the iodine isotopes into plants. From the analytical results radioecological parameters for the long-term behaviour of 129 I in the pedo- and biosphere were derived. The iodine isotopes are in severe disequilibrium in the different environmental compartments. The pre-nuclear equilibrium 129 I/ 127 I ratio in the biosphere was determined to be 2.0 x 10 -13 with a geometric standard deviation of 1.39. Today, the environmental isotopic ratios in Northern Germany range from 10 -6 to 10 -10 . The highest ratios are found in North Sea water, the lowest in deep soil samples and ground water. The North Sea appears as the dominant source of air-borne iodine in Northern Germany due to the emissions of European reprocessing plants. The results are discussed with respect to their radiological relevance and in view of the general protection of the environment, i.e. air, water, soil and the biosphere. (orig.)

  8. Determination of appropriate models and parameters for premixing calculations

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan

    2008-03-15

    The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.

  9. Parameter identification in a nonlinear nuclear reactor model using quasilinearization

    International Nuclear Information System (INIS)

    Barreto, J.M.; Martins Neto, A.F.; Tanomaru, N.

    1980-09-01

    Parameter identification in a nonlinear, lumped parameter, nuclear reactor model is carried out using discrete output power measurements during the transient caused by an external reactivity change. In order to minimize the difference between the model and the reactor power responses, the parameter promt neutron generation time and a parameter in fuel temperature reactivity coefficient equation are adjusted using quasilinearization. The influences of the external reactivity disturbance, the number and frequency of measurements and the measurement noise level on the method accuracy and rate of convergence are analysed through simulation. Procedures for the design of the identification experiments are suggested. The method proved to be very effective for low level noise measurements. (Author) [pt

  10. Determination of appropriate models and parameters for premixing calculations

    International Nuclear Information System (INIS)

    Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan

    2008-03-01

    The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al 2 O 3 ) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested

  11. Condition Parameter Modeling for Anomaly Detection in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yonglong Yan

    2014-05-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.

  12. Ground level enhancement (GLE) energy spectrum parameters model

    Science.gov (United States)

    Qin, G.; Wu, S.

    2017-12-01

    We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.

  13. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash

  14. Parameters Optimization and Application to Glutamate Fermentation Model Using SVM

    OpenAIRE

    Zhang, Xiangsheng; Pan, Feng

    2015-01-01

    Aimed at the parameters optimization in support vector machine (SVM) for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO) algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effective...

  15. Parameters Optimization and Application to Glutamate Fermentation Model Using SVM

    Directory of Open Access Journals (Sweden)

    Xiangsheng Zhang

    2015-01-01

    Full Text Available Aimed at the parameters optimization in support vector machine (SVM for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effectiveness of the proposed algorithm.

  16. Silicon Carbide Derived Carbons: Experiments and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Miklos [Georgetown University, Washington DC 20057

    2011-02-28

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this graphitization. The modeling gives firm basis for the slit-pore modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  17. A Bayesian framework for parameter estimation in dynamical models.

    Directory of Open Access Journals (Sweden)

    Flávio Codeço Coelho

    Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.

  18. A lumped parameter, low dimension model of heat exchanger

    International Nuclear Information System (INIS)

    Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami

    1980-01-01

    This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)

  19. Assimilation of Earth rotation parameters into a global ocean model (FESOM)

    Science.gov (United States)

    Androsov, A.; Schröter, J.; Brunnabend, S.; Saynisch, J.

    2012-04-01

    Earth Rotation Parameters (ERP) are used to improve estimates of the ocean circulation and mass budget. GRACE data can be used for verification or for further improvements. The Finite Element Sea-ice Ocean Model (FESOM) is used to simulate weekly ocean circulation and mass variations. The FESOM model is a hydrostatic ocean circulation model with a fully non-linear free surface. It solves the hydrostatic primitive equations with volume (Boussinesq approximation) and mass (Greatbatch correction) conservation. Fresh water exchange with the atmosphere and land is modelled as mass flux. This flux is the weakest part of the mass budget as it is the difference of large and uncertain quantities: evaporation, precipitation and river runoff. All uncertainties included in these parameters are directly reflected in the model results. ERP help in closing the budget in a realistic manner. Our strategy is designed for testing parametric estimation on a weekly basis. First, Oceanographic Earth rotation parameters (OERP) are calculated by subtracting atmospheric and hydrologic estimates from observed ERP. They are compared to OERP derived from a global ocean circulation model. The difference can be inverted to diagnose a correction of the oceanic mass budget. Additionally mass variations measured by GRACE are used for verification. In a second step, the global mass correction parameter, derived by the inversion, is used to improve the fresh water budget of FESOM.

  20. Analysis of the spatial variation in the parameters of the SWAT model with application in Flanders, Northern Belgium

    Directory of Open Access Journals (Sweden)

    G. Heuvelmans

    2004-01-01

    Full Text Available Operational applications of a hydrological model often require the prediction of stream flow in (future time periods without stream flow observations or in ungauged catchments. Data for a case-specific optimisation of model parameters are not available for such applications, so parameters have to be derived from other catchments or time periods. It has been demonstrated that for applications of the SWAT in Northern Belgium, temporal transfers of the parameters have less influence than spatial transfers on the performance of the model. This study examines the spatial variation in parameter optima in more detail. The aim was to delineate zones wherein model parameters can be transferred without a significant loss of model performance. SWAT was calibrated for 25 catchments that are part of eight larger sub-basins of the Scheldt river basin. Two approaches are discussed for grouping these units in zones with a uniform set of parameters: a single parameter approach considering each parameter separately and a parameter set approach evaluating the parameterisation as a whole. For every catchment, the SWAT model was run with the local parameter optima, with the average parameter values for the entire study region (Flanders, with the zones delineated with the single parameter approach and with the zones obtained by the parameter set approach. Comparison of the model performances of these four parameterisation strategies indicates that both the single parameter and the parameter set zones lead to stream flow predictions that are more accurate than if the entire study region were treated as one single zone. On the other hand, the use of zonal average parameter values results in a considerably worse model fit compared to local parameter optima. Clustering of parameter sets gives a more accurate result than the single parameter approach and is, therefore, the preferred technique for use in the parameterisation of ungauged sub-catchments as part of the

  1. Reservoir theory, groundwater transit time distributions, and lumped parameter models

    International Nuclear Information System (INIS)

    Etcheverry, D.; Perrochet, P.

    1999-01-01

    The relation between groundwater residence times and transit times is given by the reservoir theory. It allows to calculate theoretical transit time distributions in a deterministic way, analytically, or on numerical models. Two analytical solutions validates the piston flow and the exponential model for simple conceptual flow systems. A numerical solution of a hypothetical regional groundwater flow shows that lumped parameter models could be applied in some cases to large-scale, heterogeneous aquifers. (author)

  2. Wind gust models derived from field data

    Science.gov (United States)

    Gawronski, W.

    1995-01-01

    Wind data measured during a field experiment were used to verify the analytical model of wind gusts. Good coincidence was observed; the only discrepancy occurred for the azimuth error in the front and back winds, where the simulated errors were smaller than the measured ones. This happened because of the assumption of the spatial coherence of the wind gust model, which generated a symmetric antenna load and, in consequence, a low azimuth servo error. This result indicates a need for upgrading the wind gust model to a spatially incoherent one that will reflect the real gusts in a more accurate manner. In order to design a controller with wind disturbance rejection properties, the wind disturbance should be known at the input to the antenna rate loop model. The second task, therefore, consists of developing a digital filter that simulates the wind gusts at the antenna rate input. This filter matches the spectrum of the measured servo errors. In this scenario, the wind gusts are generated by introducing white noise to the filter input.

  3. A spatial structural derivative model for ultraslow diffusion

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2017-01-01

    Full Text Available This study investigates the ultraslow diffusion by a spatial structural derivative, in which the exponential function ex is selected as the structural function to construct the local structural derivative diffusion equation model. The analytical solution of the diffusion equation is a form of Biexponential distribution. Its corresponding mean squared displacement is numerically calculated, and increases more slowly than the logarithmic function of time. The local structural derivative diffusion equation with the structural function ex in space is an alternative physical and mathematical modeling model to characterize a kind of ultraslow diffusion.

  4. The method for determination of parameters of the phenomenological continual model of soil organic matter transformation

    Directory of Open Access Journals (Sweden)

    S. I. Bartsev

    2015-06-01

    Full Text Available A possible method for experimental determination of parameters of the previously proposed continual mathematical model of soil organic matter transformation is theoretically considered in this paper. The previously proposed by the authors continual model of soil organic matter transformation, based on using the rate of matter transformation as a continual scale of its recalcitrance, describes the transformation process phenomenologically without going into detail of microbiological mechanisms of transformation. Thereby simplicity of the model is achieved. The model is represented in form of one differential equation in first­order partial derivatives, which has an analytical solution in elementary functions. The model equation contains a small number of empirical parameters which generally characterize environmental conditions where the matter transformation process occurs and initial properties of the plant litter. Given the values of these parameters, it is possible to calculate dynamics of soil organic matter stocks and its distribution over transformation rate. In the present study, possible approaches for determination of the model parameters are considered and a simple method of their experimental measurement is proposed. An experiment of an incubation of chemically homogeneous samples in soil and multiple sequential measurement of the sample mass loss with time is proposed. An equation of time dynamics of mass loss of incubated homogeneous sample is derived from the basic assumption of the presented soil organic matter transformation model. Thus, fitting by the least squares method the parameters of sample mass loss curve calculated according the proposed mass loss dynamics equation allows to determine the parameters of the general equation of soil organic transformation model.

  5. SPOTting model parameters using a ready-made Python package

    Science.gov (United States)

    Houska, Tobias; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for

  6. Modelling of intermittent microwave convective drying: parameter sensitivity

    Directory of Open Access Journals (Sweden)

    Zhang Zhijun

    2017-06-01

    Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  7. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  8. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    International Nuclear Information System (INIS)

    Mian, Muhammad Umer; Khir, M. H. Md.; Tang, T. B.; Dennis, John Ojur; Riaz, Kashif; Iqbal, Abid; Bazaz, Shafaat A.

    2015-01-01

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used

  9. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    Energy Technology Data Exchange (ETDEWEB)

    Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B. [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Dennis, John Ojur [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Riaz, Kashif; Iqbal, Abid [Faculty of Electronics Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhaw (Pakistan); Bazaz, Shafaat A. [Department of Computer Science, Center for Advance Studies in Engineering, Islamabad (Pakistan)

    2015-07-22

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.

  10. On the role of modeling parameters in IMRT plan optimization

    International Nuclear Information System (INIS)

    Krause, Michael; Scherrer, Alexander; Thieke, Christian

    2008-01-01

    The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way

  11. The use of quantum chemically derived descriptors for QSAR modelling of reductive dehalogenation of aromatic compounds

    NARCIS (Netherlands)

    Rorije E; Richter J; Peijnenburg WJGM; ECO; IHE Delft

    1994-01-01

    In this study, quantum-chemically derived parameters are developed for a limited number of halogenated aromatic compounds to model the anaerobic reductive dehalogenation reaction rate constants of these compounds. It is shown that due to the heterogeneity of the set of compounds used, no single

  12. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  13. Climate change decision-making: Model & parameter uncertainties explored

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Linville, C.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.

  14. On the effect of model parameters on forecast objects

    Science.gov (United States)

    Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott

    2018-04-01

    Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.

  15. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd. © 2016 John Wiley & Sons Ltd.

  16. Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data

    Science.gov (United States)

    Groenendijk, M.; Dolman, A. J.; Ammann, C.; Arneth, A.; Cescatti, A.; Dragoni, D.; Gash, J. H. C.; Gianelle, D.; Gioli, B.; Kiely, G.; Knohl, A.; Law, B. E.; Lund, M.; Marcolla, B.; van der Molen, M. K.; Montagnani, L.; Moors, E.; Richardson, A. D.; Roupsard, O.; Verbeeck, H.; Wohlfahrt, G.

    2011-12-01

    Global vegetation models require the photosynthetic parameters, maximum carboxylation capacity (Vcm), and quantum yield (α) to parameterize their plant functional types (PFTs). The purpose of this work is to determine how much the scaling of the parameters from leaf to ecosystem level through a seasonally varying leaf area index (LAI) explains the parameter variation within and between PFTs. Using Fluxnet data, we simulate a seasonally variable LAIF for a large range of sites, comparable to the LAIM derived from MODIS. There are discrepancies when LAIF reach zero levels and LAIM still provides a small positive value. We find that temperature is the most common constraint for LAIF in 55% of the simulations, while global radiation and vapor pressure deficit are the key constraints for 18% and 27% of the simulations, respectively, while large differences in this forcing still exist when looking at specific PFTs. Despite these differences, the annual photosynthesis simulations are comparable when using LAIF or LAIM (r2 = 0.89). We investigated further the seasonal variation of ecosystem-scale parameters derived with LAIF. Vcm has the largest seasonal variation. This holds for all vegetation types and climates. The parameter α is less variable. By including ecosystem-scale parameter seasonality we can explain a considerable part of the ecosystem-scale parameter variation between PFTs. The remaining unexplained leaf-scale PFT variation still needs further work, including elucidating the precise role of leaf and soil level nitrogen.

  17. Global parameter estimation for thermodynamic models of transcriptional regulation.

    Science.gov (United States)

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Derivation of a well-posed and multidimensional drift-flux model for boiling flows

    International Nuclear Information System (INIS)

    Gregoire, O.; Martin, M.

    2005-01-01

    In this note, we derive a multidimensional drift-flux model for boiling flows. Within this framework, the distribution parameter is no longer a scalar but a tensor that might account for the medium anisotropy and the flow regime. A new model for the drift-velocity vector is also derived. It intrinsically takes into account the effect of the friction pressure loss on the buoyancy force. On the other hand, we show that most drift-flux models might exhibit a singularity for large void fraction. In order to avoid this singularity, a remedy based on a simplified three field approach is proposed. (authors)

  19. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  20. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  1. Analysis of Drude model using fractional derivatives without singular kernels

    Directory of Open Access Journals (Sweden)

    Jiménez Leonardo Martínez

    2017-11-01

    Full Text Available We report study exploring the fractional Drude model in the time domain, using fractional derivatives without singular kernels, Caputo-Fabrizio (CF, and fractional derivatives with a stretched Mittag-Leffler function. It is shown that the velocity and current density of electrons moving through a metal depend on both the time and the fractional order 0 < γ ≤ 1. Due to non-singular fractional kernels, it is possible to consider complete memory effects in the model, which appear neither in the ordinary model, nor in the fractional Drude model with Caputo fractional derivative. A comparison is also made between these two representations of the fractional derivatives, resulting a considered difference when γ < 0.8.

  2. Modeling phosphorus in the Lake Allatoona watershed using SWAT: I. Developing phosphorus parameter values.

    Science.gov (United States)

    Radcliffe, D E; Lin, Z; Risse, L M; Romeis, J J; Jackson, C R

    2009-01-01

    Lake Allatoona is a large reservoir north of Atlanta, GA, that drains an area of about 2870 km2 scheduled for a phosphorus (P) total maximum daily load (TMDL). The Soil and Water Assessment Tool (SWAT) model has been widely used for watershed-scale modeling of P, but there is little guidance on how to estimate P-related parameters, especially those related to in-stream P processes. In this paper, methods are demonstrated to individually estimate SWAT soil-related P parameters and to collectively estimate P parameters related to stream processes. Stream related parameters were obtained using the nutrient uptake length concept. In a manner similar to experiments conducted by stream ecologists, a small point source is simulated in a headwater sub-basin of the SWAT models, then the in-stream parameter values are adjusted collectively to get an uptake length of P similar to the values measured in the streams in the region. After adjusting the in-stream parameters, the P uptake length estimated in the simulations ranged from 53 to 149 km compared to uptake lengths measured by ecologists in the region of 11 to 85 km. Once the a priori P-related parameter set was developed, the SWAT models of main tributaries to Lake Allatoona were calibrated for daily transport. Models using SWAT P parameters derived from the methods in this paper outperformed models using default parameter values when predicting total P (TP) concentrations in streams during storm events and TP annual loads to Lake Allatoona.

  3. The level density parameters for fermi gas model

    International Nuclear Information System (INIS)

    Zuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi

    1986-01-01

    Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D D , radiative capture width Γ γ 0 at neutron binding energy and cumulative level number N 0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements

  4. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  5. Identifying the effects of parameter uncertainty on the reliability of riverbank stability modelling

    Science.gov (United States)

    Samadi, A.; Amiri-Tokaldany, E.; Darby, S. E.

    2009-05-01

    Bank retreat is a key process in fluvial dynamics affecting a wide range of physical, ecological and socioeconomic issues in the fluvial environment. To predict the undesirable effects of bank retreat and to inform effective measures to prevent it, a wide range of bank stability models have been presented in the literature. These models typically express bank stability by defining a factor of safety as the ratio of driving and resisting forces acting on the incipient failure block. These forces are affected by a range of controlling factors that include such aspects as the bank profile (bank height and angle), the geotechnical properties of the bank materials, as well as the hydrological status of the riverbanks. In this paper we evaluate the extent to which uncertainties in the parameterization of these controlling factors feed through to influence the reliability of the resulting bank stability estimate. This is achieved by employing a simple model of riverbank stability with respect to planar failure (which is the most common type of bank stability model) in a series of sensitivity tests and Monte Carlo analyses to identify, for each model parameter, the range of values that induce significant changes in the simulated factor of safety. These identified parameter value ranges are compared to empirically derived parameter uncertainties to determine whether they are likely to confound the reliability of the resulting bank stability calculations. Our results show that parameter uncertainties are typically high enough that the likelihood of generating unreliable predictions is typically very high (> ˜ 80% for predictions requiring a precision of < ± 15%). Because parameter uncertainties are derived primarily from the natural variability of the parameters, rather than measurement errors, much more careful attention should be paid to field sampling strategies, such that the parameter uncertainties and consequent prediction unreliabilities can be quantified more

  6. Iterative integral parameter identification of a respiratory mechanics model.

    Science.gov (United States)

    Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey

    2012-07-18

    Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  7. Iterative integral parameter identification of a respiratory mechanics model

    Directory of Open Access Journals (Sweden)

    Schranz Christoph

    2012-07-01

    Full Text Available Abstract Background Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. Methods An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS patients. Results The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. Conclusion These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  8. Black Sea's wind wave parameters derived from numerical simulations driven by NCEP/NCAR and NCEP CFSR reanalyses

    Science.gov (United States)

    Gippius, Fedor; Myslenkov, Stanislav; Stoliarova, Elena; Arkhipkin, Victor

    2017-04-01

    This study is focused on typical features of spatiotemporal distribution of wind wave parameters on the Black Sea. These parameters were calculated during two experiments using the third-generation spectral wind wave model SWAN. During the first run a 5x5 km rectangular grid covering the entire Black Sea was used. Forcing parameters - wind speed and direction - were derived from the NCEP/NCAR reanalysis for the period between 1948 and 2010. During the second run high resolution wind fields form the NCEP-CFSR reanalysis were used as forcing for the period from 1979 till 2010. For the period form 2011 till 2015 the second version of this reanalysis was used. The computations were performed on an unstructured computational grid with cell size depending on the sea depth. The distance between grid points varies from 10—15 km in deep-water regions till 500 m in coastal areas. Calculated values of significant wave heights (SWH) obtained during both runs were validated against instrumental measurements data. In the first case we used satellite altimetry data from the AVISO project. It turned out that calculated SWH values are typically lower than observed ones - the deviation between them was 0.3 m on the average, its maximum was of 1.67 m. Therefore, an empirical formula was applied to correct the modeling results obtained during the first experiment. For the second experiment in situ measurements performed by a Datawell buoy installed 7 km off the city Gelendzhik were used for validation. The comparison of measured and modelled values of SWH shows a good agreement between these parameters in this case. No correction was applied to the results of the second experiment. We applied the results of the NCEP/NCAR experiment to assess various features of the wave climate of the entire Black Sea. Thus, maximal SWH are observed in winter and autumn in two areas in the southwestern and northeastern parts of the sea; SWH values in these areas exceed 9 m. To define areas with most

  9. Monoenergetic electron parameters in a spheroid bubble model

    Science.gov (United States)

    Sattarian, H.; Sh., Rahmatallahpur; Tohidi, T.

    2013-02-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model. The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons ΔE/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions. As a result, the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.

  10. Monoenergetic electron parameters in a spheroid bubble model

    International Nuclear Information System (INIS)

    Sattarian, H.; Rahmatallahpur, Sh.; Tohidi, T.

    2013-01-01

    A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model. The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons ΔE/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions. As a result, the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model. (physics of gases, plasmas, and electric discharges)

  11. Parameters Tuning of Model Free Adaptive Control Based on Minimum Entropy

    Institute of Scientific and Technical Information of China (English)

    Chao Ji; Jing Wang; Liulin Cao; Qibing Jin

    2014-01-01

    Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method based on minimum entropy optimization is proposed,and the feature of entropy is used to accurately describe the system uncertainty. For cases of Gaussian stochastic noise and non-Gaussian stochastic noise, an entropy recursive optimization algorithm is derived based on approximate model or identified model. The extensive simulation results show the effectiveness of the minimum entropy optimization for the partial form dynamic linearization based MFAC. The parameters tuned by the minimum entropy optimization index shows stronger stability and more robustness than these tuned by other traditional index,such as integral of the squared error(ISE) or integral of timeweighted absolute error(ITAE), when the system stochastic noise exists.

  12. MODELLING BIOPHYSICAL PARAMETERS OF MAIZE USING LANDSAT 8 TIME SERIES

    Directory of Open Access Journals (Sweden)

    T. Dahms

    2016-06-01

    Full Text Available Open and free access to multi-frequent high-resolution data (e.g. Sentinel – 2 will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR, the leaf area index (LAI and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD: R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing

  13. Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series

    Science.gov (United States)

    Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik

    2016-06-01

    Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model

  14. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.

    Science.gov (United States)

    Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E

    2013-12-01

    Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.

  15. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  16. Identifiability and error minimization of receptor model parameters with PET

    International Nuclear Information System (INIS)

    Delforge, J.; Syrota, A.; Mazoyer, B.M.

    1989-01-01

    The identifiability problem and the general framework for experimental design optimization are presented. The methodology is applied to the problem of the receptor-ligand model parameter estimation with dynamic positron emission tomography data. The first attempts to identify the model parameters from data obtained with a single tracer injection led to disappointing numerical results. The possibility of improving parameter estimation using a new experimental design combining an injection of the labelled ligand and an injection of the cold ligand (displacement experiment) has been investigated. However, this second protocol led to two very different numerical solutions and it was necessary to demonstrate which solution was biologically valid. This has been possible by using a third protocol including both a displacement and a co-injection experiment. (authors). 16 refs.; 14 figs

  17. Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model

    Science.gov (United States)

    Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.

    2018-03-01

    Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2  >  0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.

  18. Mathematical models to predict rheological parameters of lateritic hydromixtures

    Directory of Open Access Journals (Sweden)

    Gabriel Hernández-Ramírez

    2017-10-01

    Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.

  19. Averaging models: parameters estimation with the R-Average procedure

    Directory of Open Access Journals (Sweden)

    S. Noventa

    2010-01-01

    Full Text Available The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982, can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto & Vicentini, 2007 can be used to estimate the parameters of these models. By the use of multiple information criteria in the model selection procedure, R-Average allows for the identification of the best subset of parameters that account for the data. After a review of the general method, we present an implementation of the procedure in the framework of R-project, followed by some experiments using a Monte Carlo method.

  20. Comparisons of criteria in the assessment model parameter optimizations

    International Nuclear Information System (INIS)

    Liu Xinhe; Zhang Yongxing

    1993-01-01

    Three criteria (chi square, relative chi square and correlation coefficient) used in model parameter optimization (MPO) process that aims at significant reduction of prediction uncertainties were discussed and compared to each other with the aid of a well-controlled tracer experiment

  1. Revised models and genetic parameter estimates for production and ...

    African Journals Online (AJOL)

    Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...

  2. Determination of parameters in elasto-plastic models of aluminium.

    NARCIS (Netherlands)

    Meuwissen, M.H.H.; Oomens, C.W.J.; Baaijens, F.P.T.; Petterson, R.; Janssen, J.D.; Sol, H.; Oomens, C.W.J.

    1997-01-01

    A mixed numerical-experimental method is used to determine parameters in elasto-plastic constitutive models. An aluminium plate of non-standard geometry is mounted in a uniaxial tensile testing machine at which some adjustments are made to carry out shear tests. The sample is loaded and the total

  3. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  4. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  5. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....

  6. Key processes and input parameters for environmental tritium models

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Taschner, M.; Ogram, G.L.

    1994-01-01

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs

  7. Key processes and input parameters for environmental tritium models

    Energy Technology Data Exchange (ETDEWEB)

    Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)

    1994-12-31

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.

  8. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    Science.gov (United States)

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a

  9. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-09-24

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air

  10. Integrating microbial diversity in soil carbon dynamic models parameters

    Science.gov (United States)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  11. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the

  12. A relation between the Barbero-Immirzi parameter and the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Broda, Boguslaw, E-mail: bobroda@uni.lodz.p [Department of Theoretical Physics, University of Lodz, Pomorska 149/153, PL-90-236 Lodz (Poland); Szanecki, Michal, E-mail: michalszanecki@wp.p [Department of Theoretical Physics, University of Lodz, Pomorska 149/153, PL-90-236 Lodz (Poland)

    2010-06-07

    It has been shown that Sakharov's induced, from the fields entering the standard model, Barbero-Immirzi parameter {gamma} assumes, in the framework of Euclidean formalism, the UV cutoff-independent value, 1/9. The calculus uses the Schwinger's proper-time formalism, the Seeley-DeWitt heat-kernel expansion, and it is akin to the derivation of the ABJ chiral anomaly in space-time with torsion.

  13. Inflationary models with non-minimally derivative coupling

    International Nuclear Information System (INIS)

    Yang, Nan; Fei, Qin; Gong, Yungui; Gao, Qing

    2016-01-01

    We derive the general formulae for the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL. (paper)

  14. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  15. Evaluation of some infiltration models and hydraulic parameters

    International Nuclear Information System (INIS)

    Haghighi, F.; Gorji, M.; Shorafa, M.; Sarmadian, F.; Mohammadi, M. H.

    2010-01-01

    The evaluation of infiltration characteristics and some parameters of infiltration models such as sorptivity and final steady infiltration rate in soils are important in agriculture. The aim of this study was to evaluate some of the most common models used to estimate final soil infiltration rate. The equality of final infiltration rate with saturated hydraulic conductivity (Ks) was also tested. Moreover, values of the estimated sorptivity from the Philips model were compared to estimates by selected pedotransfer functions (PTFs). The infiltration experiments used the doublering method on soils with two different land uses in the Taleghan watershed of Tehran province, Iran, from September to October, 2007. The infiltration models of Kostiakov-Lewis, Philip two-term and Horton were fitted to observed infiltration data. Some parameters of the models and the coefficient of determination goodness of fit were estimated using MATLAB software. The results showed that, based on comparing measured and model-estimated infiltration rate using root mean squared error (RMSE), Hortons model gave the best prediction of final infiltration rate in the experimental area. Laboratory measured Ks values gave significant differences and higher values than estimated final infiltration rates from the selected models. The estimated final infiltration rate was not equal to laboratory measured Ks values in the study area. Moreover, the estimated sorptivity factor by Philips model was significantly different to those estimated by selected PTFs. It is suggested that the applicability of PTFs is limited to specific, similar conditions. (Author) 37 refs.

  16. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  17. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  18. Mass balance model parameter transferability on a tropical glacier

    Science.gov (United States)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  19. Constraining statistical-model parameters using fusion and spallation reactions

    Directory of Open Access Journals (Sweden)

    Charity Robert J.

    2011-10-01

    Full Text Available The de-excitation of compound nuclei has been successfully described for several decades by means of statistical models. However, such models involve a large number of free parameters and ingredients that are often underconstrained by experimental data. We show how the degeneracy of the model ingredients can be partially lifted by studying different entrance channels for de-excitation, which populate different regions of the parameter space of the compound nucleus. Fusion reactions, in particular, play an important role in this strategy because they fix three out of four of the compound-nucleus parameters (mass, charge and total excitation energy. The present work focuses on fission and intermediate-mass-fragment emission cross sections. We prove how equivalent parameter sets for fusion-fission reactions can be resolved using another entrance channel, namely spallation reactions. Intermediate-mass-fragment emission can be constrained in a similar way. An interpretation of the best-fit IMF barriers in terms of the Wigner energies of the nascent fragments is discussed.

  20. Investigation of RADTRAN Stop Model input parameters for truck stops

    International Nuclear Information System (INIS)

    Griego, N.R.; Smith, J.D.; Neuhauser, K.S.

    1996-01-01

    RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops

  1. Updated climatological model predictions of ionospheric and HF propagation parameters

    International Nuclear Information System (INIS)

    Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.

    1991-01-01

    The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs

  2. Influential input parameters for reflood model of MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Deog Yeon; Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Best Estimate (BE) calculation has been more broadly used in nuclear industries and regulations to reduce the significant conservatism for evaluating Loss of Coolant Accident (LOCA). Reflood model has been identified as one of the problems in BE calculation. The objective of the Post BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) program of OECD/NEA is to make progress the issue of the quantification of the uncertainty of the physical models in system thermal hydraulic codes, by considering an experimental result especially for reflood. It is important to establish a methodology to identify and select the parameters influential to the response of reflood phenomena following Large Break LOCA. For this aspect, a reference calculation and sensitivity analysis to select the dominant influential parameters for FEBA experiment are performed.

  3. Four-parameter analytical local model potential for atoms

    International Nuclear Information System (INIS)

    Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang

    2009-01-01

    Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)

  4. Hamiltonian derivation of a gyrofluid model for collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Tassi, E

    2014-01-01

    We consider a simple electromagnetic gyrokinetic model for collisionless plasmas and show that it possesses a Hamiltonian structure. Subsequently, from this model we derive a two-moment gyrofluid model by means of a procedure which guarantees that the resulting gyrofluid model is also Hamiltonian. The first step in the derivation consists of imposing a generic fluid closure in the Poisson bracket of the gyrokinetic model, after expressing such bracket in terms of the gyrofluid moments. The constraint of the Jacobi identity, which every Poisson bracket has to satisfy, selects then what closures can lead to a Hamiltonian gyrofluid system. For the case at hand, it turns out that the only closures (not involving integro/differential operators or an explicit dependence on the spatial coordinates) that lead to a valid Poisson bracket are those for which the second order parallel moment, independently for each species, is proportional to the zero order moment. In particular, if one chooses an isothermal closure based on the equilibrium temperatures and derives accordingly the Hamiltonian of the system from the Hamiltonian of the parent gyrokinetic model, one recovers a known Hamiltonian gyrofluid model for collisionless reconnection. The proposed procedure, in addition to yield a gyrofluid model which automatically conserves the total energy, provides also, through the resulting Poisson bracket, a way to derive further conservation laws of the gyrofluid model, associated with the so called Casimir invariants. We show that a relation exists between Casimir invariants of the gyrofluid model and those of the gyrokinetic parent model. The application of such Hamiltonian derivation procedure to this two-moment gyrofluid model is a first step toward its application to more realistic, higher-order fluid or gyrofluid models for tokamaks. It also extends to the electromagnetic gyrokinetic case, recent applications of the same procedure to Vlasov and drift- kinetic systems

  5. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    Science.gov (United States)

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial

  6. Coast-down model based on rated parameters of reactor coolant pump

    International Nuclear Information System (INIS)

    Jiang Maohua; Zou Zhichao; Wang Pengfei; Ruan Xiaodong

    2014-01-01

    For a sudden loss of power in reactor coolant pump (RCP), a calculation model of rotor speed and flow characteristics based on rated parameters was studied. The derived model was verified by comparing with the power-off experimental data of 100D RCP. The results indicate that it can be used in preliminary design calculation and verification analysis. Then a design criterion of RCP was described based on the calculation model. The moment of inertia in AP1000 RCP was verified by this criterion. (authors)

  7. Impulsive synchronization and parameter mismatch of the three-variable autocatalator model

    International Nuclear Information System (INIS)

    Li, Yang; Liao, Xiaofeng; Li, Chuandong; Huang, Tingwen; Yang, Degang

    2007-01-01

    The synchronization problems of the three-variable autocatalator model via impulsive control approach are investigated; several theorems on the stability of impulsive control systems are also investigated. These theorems are then used to find the conditions under which the three-variable autocatalator model can be asymptotically controlled to the equilibrium point. This Letter derives some sufficient conditions for the stabilization and synchronization of a three-variable autocatalator model via impulsive control with varying impulsive intervals. Furthermore, we address the chaos quasi-synchronization in the presence of single-parameter mismatch. To illustrate the effectiveness of the new scheme, several numerical examples are given

  8. EMF 7 model comparisons: key relationships and parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, B.G.

    1983-12-01

    A simplified textbook model of aggregate demand and supply interprets the similarities and differences in the price and income responses of the various EMF 7 models to oil and policy shocks. The simplified model is a marriage of Hicks' classic IS-LM formulation of the Keynesian theory of effective demand with a rudimentary model of aggregate supply, combining a structural Phillips curve for wage determination and a markup theory of price determination. The reduced-form income equation from the fix-price IS-LM model is used to define an aggregate demand (AD) locus in P-Y space, showing alternative pairs of the implicit GNP deflator and real GNP which would simultaneously satisfy the saving-investment identity and the condition for money market equilibrium. An aggregate supply (AS) schedule is derived by a similar reduction of relations between output and labor demand, unemployment and wage inflation, and the wage-price-productivity nexus governing markup pricing. Given a particular econometric model it is possible to derive IS and LM curves algebraically. The resulting locuses would show alternative combinations of interest rate and real income which equilibrate real income identity on the IS side and the demand and supply of money on the LM side. By further substitution the reduced form fix-price income relation could be obtained for direct quantification of the AD locus. The AS schedule is obtainable by algebraic reduction of the structural supply side equations.

  9. Application of parameters space analysis tools for empirical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Paloma del Barrio, E. [LEPT-ENSAM UMR 8508, Talence (France); Guyon, G. [Electricite de France, Moret-sur-Loing (France)

    2004-01-01

    A new methodology for empirical model validation has been proposed in the framework of the Task 22 (Building Energy Analysis Tools) of the International Energy Agency. It involves two main steps: checking model validity and diagnosis. Both steps, as well as the underlying methods, have been presented in the first part of the paper. In this part, they are applied for testing modelling hypothesis in the framework of the thermal analysis of an actual building. Sensitivity analysis tools have been first used to identify the parts of the model that can be really tested on the available data. A preliminary diagnosis is then supplied by principal components analysis. Useful information for model behaviour improvement has been finally obtained by optimisation techniques. This example of application shows how model parameters space analysis is a powerful tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison with residuals analysis techniques. (author)

  10. Deriving Animal Movement Behaviors Using Movement Parameters Extracted from Location Data

    Directory of Open Access Journals (Sweden)

    Maryam Teimouri

    2018-02-01

    Full Text Available We present a methodology for distinguishing between three types of animal movement behavior (foraging, resting, and walking based on high-frequency tracking data. For each animal we quantify an individual movement path. A movement path is a temporal sequence consisting of the steps through space taken by an animal. By selecting a set of appropriate movement parameters, we develop a method to assess movement behavioral states, reflected by changes in the movement parameters. The two fundamental tasks of our study are segmentation and clustering. By segmentation, we mean the partitioning of the trajectory into segments, which are homogeneous in terms of their movement parameters. By clustering, we mean grouping similar segments together according to their estimated movement parameters. The proposed method is evaluated using field observations (done by humans of movement behavior. We found that on average, our method agreed with the observational data (ground truth at a level of 80.75% ± 5.9% (SE.

  11. Test models for improving filtering with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  12. A simple but accurate procedure for solving the five-parameter model

    International Nuclear Information System (INIS)

    Mares, Oana; Paulescu, Marius; Badescu, Viorel

    2015-01-01

    Highlights: • A new procedure for extracting the parameters of the one-diode model is proposed. • Only the basic information listed in the datasheet of PV modules are required. • Results demonstrate a simple, robust and accurate procedure. - Abstract: The current–voltage characteristic of a photovoltaic module is typically evaluated by using a model based on the solar cell equivalent circuit. The complexity of the procedure applied for extracting the model parameters depends on data available in manufacture’s datasheet. Since the datasheet is not detailed enough, simplified models have to be used in many cases. This paper proposes a new procedure for extracting the parameters of the one-diode model in standard test conditions, using only the basic data listed by all manufactures in datasheet (short circuit current, open circuit voltage and maximum power point). The procedure is validated by using manufacturers’ data for six commercially crystalline silicon photovoltaic modules. Comparing the computed and measured current–voltage characteristics the determination coefficient is in the range 0.976–0.998. Thus, the proposed procedure represents a feasible tool for solving the five-parameter model applied to crystalline silicon photovoltaic modules. The procedure is described in detail, to guide potential users to derive similar models for other types of photovoltaic modules.

  13. distributed parameter model of spiral-wound sepralator for treatment of uranyl nitrate effluents

    International Nuclear Information System (INIS)

    El-Bialy, S.H; Elsherbiny, A.E.

    2004-01-01

    in this paper, mathematical formulation of spiral-wound sepralator was derived and applied for the treatment of effluent stream which is produced during nuclear fuel processing stage. the concentration of the stream has a value up to 200 ppm . cross-flow characteristic of both feed and permeate streams was taken into account and their mutual effects on the values of system variables were investigated. of course, such a flow pattern leads to a heterogeneous system which leads-in turn-to six partial differential equations, beside a set of algebraic equations. those were solved numerically and the results were used to estimate the average values of both permeate flux and percent solute rejection. then, these were compared with both experimental data in addition to the results of lumped parameter model. the study showed that distributed parameter model gives better results than lumped parameter one compared with experimental data

  14. Model parameter learning using Kullback-Leibler divergence

    Science.gov (United States)

    Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan

    2018-02-01

    In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.

  15. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  16. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...... the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models....

  17. Biosphere modelling for a HLW repository - scenario and parameter variations

    International Nuclear Information System (INIS)

    Grogan, H.

    1985-03-01

    In Switzerland high-level radioactive wastes have been considered for disposal in deep-lying crystalline formations. The individual doses to man resulting from radionuclides entering the biosphere via groundwater transport are calculated. The main recipient area modelled, which constitutes the base case, is a broad gravel terrace sited along the south bank of the river Rhine. An alternative recipient region, a small valley with a well, is also modelled. A number of parameter variations are performed in order to ascertain their impact on the doses. Finally two scenario changes are modelled somewhat simplistically, these consider different prevailing climates, namely tundra and a warmer climate than present. In the base case negligibly low doses to man in the long term, resulting from the existence of a HLW repository have been calculated. Cs-135 results in the largest dose (8.4E-7 mrem/y at 6.1E+6 y) while Np-237 gives the largest dose from the actinides (3.6E-8 mrem/y). The response of the model to parameter variations cannot be easily predicted due to non-linear coupling of many of the parameters. However, the calculated doses were negligibly low in all cases as were those resulting from the two scenario variations. (author)

  18. Deriving the Dividend Discount Model in the Intermediate Microeconomics Class

    Science.gov (United States)

    Norman, Stephen; Schlaudraff, Jonathan; White, Karianne; Wills, Douglas

    2013-01-01

    In this article, the authors show that the dividend discount model can be derived using the basic intertemporal consumption model that is introduced in a typical intermediate microeconomics course. This result will be of use to instructors who teach microeconomics to finance students in that it demonstrates the value of utility maximization in…

  19. On a derivation of the Salam-Weinberg model

    International Nuclear Information System (INIS)

    Squires, E.J.

    1979-01-01

    It is shown how the graded Lie-algebra structure of a recent derivation of the Salam-Weinberg model might arise from the form of allowed transformations on the lepton lagrangian in a 6-dimensional space. The possibility that the model might allow two identically coupled leptonic sectors, and others in which the chiralites are reversed, are discussed. (Auth.)

  20. Some remarks on the small-distance derivative model

    International Nuclear Information System (INIS)

    Jannussis, A.

    1985-01-01

    In the present work the new expressions of the derivatives for small distance are investigated according to Gonzales-Diaz model. This model is noncanonical, is a particular case of the Lie-admissible formulation and has applications for distance and time scales comparable with the Planck dimensions

  1. Contaminant transport in aquifers: improving the determination of model parameters

    International Nuclear Information System (INIS)

    Sabino, C.V.S.; Moreira, R.M.; Lula, Z.L.; Chausson, Y.; Magalhaes, W.F.; Vianna, M.N.

    1998-01-01

    Parameters conditioning the migration behavior of cesium and mercury are measured with their tracers 137 Cs and 203 Hg in the laboratory, using both batch and column experiments. Batch tests were used to define the sorption isotherm characteristics. Also investigated were the influences of some test parameters, in particular those due to the volume of water to mass of soil ratio (V/m). A provisional relationship between V/m and the distribution coefficient, K d , has been advanced, and a procedure to estimate K d 's valid for environmental values of the ratio V/m has been suggested. Column tests provided the parameters for a transport model. A major problem to be dealt with in such tests is the collimation of the radioactivity probe. Besides mechanically optimizing the collimator, a deconvolution procedure has been suggested and tested, with statistical criteria, to filter off both noise and spurious tracer signals. Correction procedures for the integrating effect introduced by sampling at the exit of columns have also been developed. These techniques may be helpful in increasing the accuracy required in the measurement of parameters conditioning contaminant migration in soils, thus allowing more reliable predictions based on mathematical model applications. (author)

  2. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    Science.gov (United States)

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2018-01-01

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  3. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  4. Empirical flow parameters : a tool for hydraulic model validity

    Science.gov (United States)

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  5. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    NARCIS (Netherlands)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡

  6. Parameter discovery in stochastic biological models using simulated annealing and statistical model checking.

    Science.gov (United States)

    Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J

    2014-01-01

    Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.

  7. Applications of the solvation parameter model in reversed-phase liquid chromatography.

    Science.gov (United States)

    Poole, Colin F; Lenca, Nicole

    2017-02-24

    The solvation parameter model is widely used to provide insight into the retention mechanism in reversed-phase liquid chromatography, for column characterization, and in the development of surrogate chromatographic models for biopartitioning processes. The properties of the separation system are described by five system constants representing all possible intermolecular interactions for neutral molecules. The general model can be extended to include ions and enantiomers by adding new descriptors to encode the specific properties of these compounds. System maps provide a comprehensive overview of the separation system as a function of mobile phase composition and/or temperature for method development. The solvation parameter model has been applied to gradient elution separations but here theory and practice suggest a cautious approach since the interpretation of system and compound properties derived from its use are approximate. A growing application of the solvation parameter model in reversed-phase liquid chromatography is the screening of surrogate chromatographic systems for estimating biopartitioning properties. Throughout the discussion of the above topics success as well as known and likely deficiencies of the solvation parameter model are described with an emphasis on the role of the heterogeneous properties of the interphase region on the interpretation and understanding of the general retention mechanism in reversed-phase liquid chromatography for porous chemically bonded sorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2016-01-01

    be used directly for accurate full-scale transient simulations. The model was validated against full-scale data with an engine following the European Transient Cycle. The validation showed that the predictive capability for nitrogen oxides (NOx) was satisfactory. After re-estimation of the adsorption...... and desorption parameters with full-scale transient data, the fit for both NOx and NH3-slip was satisfactory....

  9. Mathematical models to predict rheological parameters of lateritic hydromixtures

    OpenAIRE

    Gabriel Hernández-Ramírez; Arístides A. Legrá-Lobaina; Beatriz Ramírez-Serrano; Liudmila Pérez-García

    2017-01-01

    The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to...

  10. Mathematical properties and parameter estimation for transit compartment pharmacodynamic models.

    Science.gov (United States)

    Yates, James W T

    2008-07-03

    One feature of recent research in pharmacodynamic modelling has been the move towards more mechanistically based model structures. However, in all of these models there are common sub-systems, such as feedback loops and time-delays, whose properties and contribution to the model behaviour merit some mathematical analysis. In this paper a common pharmacodynamic model sub-structure is considered: the linear transit compartment. These models have a number of interesting properties as the length of the cascade chain is increased. In the limiting case a pure time-delay is achieved [Milsum, J.H., 1966. Biological Control Systems Analysis. McGraw-Hill Book Company, New York] and the initial behaviour becoming increasingly sensitive to parameter value perturbation. It is also shown that the modelled drug effect is attenuated, though the duration of action is longer. Through this analysis the range of behaviours that such models are capable of reproducing are characterised. The properties of these models and the experimental requirements are discussed in order to highlight how mathematical analysis prior to experimentation can enhance the utility of mathematical modelling.

  11. A Study on Stability of Limit Cycle Walking Model with Feet: Parameter Study

    Directory of Open Access Journals (Sweden)

    Yonggwon Jeon

    2013-01-01

    Full Text Available In this paper, two kinds of feet, namely, curved and flat feet, are added to limit cycle walking model to investigate its stability properties. Although both models are already proposed and are investigated, most previous works are focused on efficiency and gait behaviors. Only the stability properties of the simplest walking model conceived Garcia et al. are well defined. Therefore, there is still a need for a precise research on the effect of feet, especially in the view of local stability, bifurcation route to chaos, global stability, falling boundary and energy balance line. Therefore, this article revisits the stability analysis of limit cycle walking model with various foot shape. To analyze the effects of feet, we re-derive the equation of motion of modified models by adding one more parameter of foot shape than the simplest walking model. Also, the falling boundary and energy balance line of modified models are derived to get proper initial conditions for stable walking and to explain global stability. Simulation results show us that the curved feet can enlarge both stable walking range and area of basin of attraction while the case of flat feet depends on foot shape parameter.

  12. State-Space Modelling of Loudspeakers using Fractional Derivatives

    DEFF Research Database (Denmark)

    King, Alexander Weider; Agerkvist, Finn T.

    2015-01-01

    This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response of a fractio......This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response...... of a fractional harmonic oscillator, representing the mechanical part of a loudspeaker, showing the effect of the fractional derivative and its relationship to viscoelasticity. Finally, a loudspeaker model with a fractional order viscoelastic suspension and fractional order voice coil is fit to measurement data...

  13. Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods

    Directory of Open Access Journals (Sweden)

    W. Castaings

    2009-04-01

    Full Text Available Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised with respect to model inputs.

    In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations but didactic application case.

    It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run and the singular value decomposition (SVD of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation.

    For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers is adopted.

    Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting.

  14. Estimation Parameters And Modelling Zero Inflated Negative Binomial

    Directory of Open Access Journals (Sweden)

    Cindy Cahyaning Astuti

    2016-11-01

    Full Text Available Regression analysis is used to determine relationship between one or several response variable (Y with one or several predictor variables (X. Regression model between predictor variables and the Poisson distributed response variable is called Poisson Regression Model. Since, Poisson Regression requires an equality between mean and variance, it is not appropriate to apply this model on overdispersion (variance is higher than mean. Poisson regression model is commonly used to analyze the count data. On the count data type, it is often to encounteredd some observations that have zero value with large proportion of zero value on the response variable (zero Inflation. Poisson regression can be used to analyze count data but it has not been able to solve problem of excess zero value on the response variable. An alternative model which is more suitable for overdispersion data and can solve the problem of excess zero value on the response variable is Zero Inflated Negative Binomial (ZINB. In this research, ZINB is applied on the case of Tetanus Neonatorum in East Java. The aim of this research is to examine the likelihood function and to form an algorithm to estimate the parameter of ZINB and also applying ZINB model in the case of Tetanus Neonatorum in East Java. Maximum Likelihood Estimation (MLE method is used to estimate the parameter on ZINB and the likelihood function is maximized using Expectation Maximization (EM algorithm. Test results of ZINB regression model showed that the predictor variable have a partial significant effect at negative binomial model is the percentage of pregnant women visits and the percentage of maternal health personnel assisted, while the predictor variables that have a partial significant effect at zero inflation model is the percentage of neonatus visits.

  15. Information Theoretic Tools for Parameter Fitting in Coarse Grained Models

    KAUST Repository

    Kalligiannaki, Evangelia

    2015-01-07

    We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.

  16. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  17. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-01

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  18. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  19. The Impact of Three Factors on the Recovery of Item Parameters for the Three-Parameter Logistic Model

    Science.gov (United States)

    Kim, Kyung Yong; Lee, Won-Chan

    2017-01-01

    This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…

  20. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    Directory of Open Access Journals (Sweden)

    Tashkova Katerina

    2011-10-01

    Full Text Available Abstract Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA, particle-swarm optimization (PSO, and differential evolution (DE, as well as a local-search derivative-based algorithm 717 (A717 to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE clearly and significantly outperform the local derivative-based method (A717. Among the three meta-heuristics, differential evolution (DE performs best in terms of the objective function, i.e., reconstructing the output, and in terms of

  1. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis.

    Science.gov (United States)

    Tashkova, Katerina; Korošec, Peter; Silc, Jurij; Todorovski, Ljupčo; Džeroski, Sašo

    2011-10-11

    We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and

  2. Ordinary Mathematical Models in Calculating the Aviation GTE Parameters

    Directory of Open Access Journals (Sweden)

    E. A. Khoreva

    2017-01-01

    Full Text Available The paper presents the analytical review results of the ordinary mathematical models of the operating process used to study aviation GTE parameters and characteristics at all stages of its creation and operation. Considers the mathematical models of the zero and the first level, which are mostly used when solving typical problems in calculating parameters and characteristics of engines.Presents a number of practical problems arising in designing aviation GTE for various applications.The application of mathematical models of the zero-level engine can be quite appropriate when the engine is considered as a component in the aircraft system to estimate its calculated individual flight performance or when modeling the flight cycle of the aircrafts of different purpose.The paper demonstrates that introduction of correction functions into the first-level mathematical models in solving typical problems (influence of the Reynolds number, characteristics deterioration of the units during the overhaul period of engine, as well as influence of the flow inhomogeneity at the inlet because of manufacturing tolerance, etc. enables providing a sufficient engineering estimate accuracy to reflect a realistic operating process in the engine and its elements.

  3. Variation in semen parameters derived from computer-aided semen analysis, within donors and between donors

    NARCIS (Netherlands)

    Wijchman, JG; De Wolf, BTHM; Graaff, R; Arts, EGJM

    2001-01-01

    The development of computer-aided semen analysis (CASA) has made it possible to study sperm motility characteristics objectively and longitudinally. In this 2-year study of 8 sperm donors, we used CASA to measure 7 semen parameters (concentration, percentage of motile spermatozoa, curvilinear

  4. Azadirachtin, a neem-derived biopesticide, impairs behavioral and hematological parameters in carp (Cyprinus carpio).

    Science.gov (United States)

    Murussi, Camila R; Menezes, Charlene C; Nunes, Mauro E M; Araújo, Maria do Carmo S; Quadros, Vanessa A; Rosemberg, Denis B; Loro, Vania L

    2016-11-01

    Azadirachtin (Aza) is a promisor biopesticide used in organic production and aquaculture. Although this compound is apparently safe, there is evidence that it may have deleterious effects on fish. Behavioral and hematological tests are grouped into a set of parameters that may predict potential toxicity of chemical compounds. Here, we investigate the effects of Aza, in the commercial formulation Neenmax ™ , on carp (Cyprinus carpio) by defining LC 50 (96 h), and testing behavioral and hematological parameters. In our study, LC 50 was estimated at 80 μL/L. We exposed carp to Aza at 20, 40, and 60 μL/L, values based on 25, 50, and 75% of LC 50 , respectively. At 60 μL/L, Aza promoted significant changes in several parameters, increasing the distance traveled and absolute turn angle. In addition, the same concentration decreased the time spent immobile and the number of immobile episodes. Hematological parameters, such as hematocrit, hemoglobin, hematimetrics index, and red cell distribution, were decreased at 60 μL/L Aza exposure. In conclusion, our study demonstrates that 60 μL/L Aza altered locomotor activity, motor pattern, and hematological parameters, suggesting potential toxicity to carp after acute exposure. In addition, this is the first report that evaluates the actions of a chemical contaminant using automated behavioral tracking of carp, which may be a useful tool for assessing the potential toxicity of biopesticides in conjunction with hematological tests. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1381-1388, 2016. © 2015 Wiley Periodicals, Inc.

  5. Efficient Ensemble State-Parameters Estimation Techniques in Ocean Ecosystem Models: Application to the North Atlantic

    Science.gov (United States)

    El Gharamti, M.; Bethke, I.; Tjiputra, J.; Bertino, L.

    2016-02-01

    Given the recent strong international focus on developing new data assimilation systems for biological models, we present in this comparative study the application of newly developed state-parameters estimation tools to an ocean ecosystem model. It is quite known that the available physical models are still too simple compared to the complexity of the ocean biology. Furthermore, various biological parameters remain poorly unknown and hence wrong specifications of such parameters can lead to large model errors. Standard joint state-parameters augmentation technique using the ensemble Kalman filter (Stochastic EnKF) has been extensively tested in many geophysical applications. Some of these assimilation studies reported that jointly updating the state and the parameters might introduce significant inconsistency especially for strongly nonlinear models. This is usually the case for ecosystem models particularly during the period of the spring bloom. A better handling of the estimation problem is often carried out by separating the update of the state and the parameters using the so-called Dual EnKF. The dual filter is computationally more expensive than the Joint EnKF but is expected to perform more accurately. Using a similar separation strategy, we propose a new EnKF estimation algorithm in which we apply a one-step-ahead smoothing to the state. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. Unlike the classical filtering path, the new scheme starts with an update step and later a model propagation step is performed. We test the performance of the new smoothing-based schemes against the standard EnKF in a one-dimensional configuration of the Norwegian Earth System Model (NorESM) in the North Atlantic. We use nutrients profile (up to 2000 m deep) data and surface partial CO2 measurements from Mike weather station (66o N, 2o E) to estimate

  6. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  7. Derivation of quantitative parameters from salivary scintigraphy and their utility in the diagnosis of xerostomia

    International Nuclear Information System (INIS)

    Booker, J.A.; Sutherland, D.C.; Howarth, D.M.; Taylor, L.; Tan, P.

    2002-01-01

    Full text: Xerostomia may be due to salivary dysfunction from a variety of causes and can be clinically variable ranging from halitosis to overt xerostomia. Semi-quantitative indices may be derived from salivary scintigraphy and may aid both clinical diagnosis and response to treatment. The objective of this study was to determine whether semi-quantitative indices were able to distinguish normal from abnormal salivary function and to be clinically useful. 56 consecutive patients with xerostomia (including a subset of 10 patients with clinical Sjogrens syndrome) and 25 healthy volunteers underwent salivary scintigraphy. Semi-quantitative analysis of time activity curves was performed deriving 6 different indices for each of the four major salivary glands. These indices included percent uptake (%UP), uptake ratios(UR),maximum accumulation (MA), pre-stimulatory oral radioactivity index (PRI), post-stimulatory oral radioactivity index (POI) and ejection fraction (EF). The 95% confidence interval around the mean values was used to compare normal volunteers and xerostomia patients. Wide reference limits were obtained for all indices derived from normal volunteers. No significant difference was found between normal volunteers and patients using any of the six indices. UR and EF showed the greatest difference between the groups. Allowing for Type Two (Beta) error, none of the above indices allow patients with xerostomia who have salivary dysfunction to be distinguished from normal subjects. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  8. Applicability of genetic algorithms to parameter estimation of economic models

    Directory of Open Access Journals (Sweden)

    Marcel Ševela

    2004-01-01

    Full Text Available The paper concentrates on capability of genetic algorithms for parameter estimation of non-linear economic models. In the paper we test the ability of genetic algorithms to estimate of parameters of demand function for durable goods and simultaneously search for parameters of genetic algorithm that lead to maximum effectiveness of the computation algorithm. The genetic algorithms connect deterministic iterative computation methods with stochastic methods. In the genteic aůgorithm approach each possible solution is represented by one individual, those life and lifes of all generations of individuals run under a few parameter of genetic algorithm. Our simulations resulted in optimal mutation rate of 15% of all bits in chromosomes, optimal elitism rate 20%. We can not set the optimal extend of generation, because it proves positive correlation with effectiveness of genetic algorithm in all range under research, but its impact is degreasing. The used genetic algorithm was sensitive to mutation rate at most, than to extend of generation. The sensitivity to elitism rate is not so strong.

  9. A Review of Distributed Parameter Groundwater Management Modeling Methods

    Science.gov (United States)

    Gorelick, Steven M.

    1983-04-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  10. Parameters of oscillation generation regions in open star cluster models

    Science.gov (United States)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  11. Identifyability measures to select the parameters to be estimated in a solid-state fermentation distributed parameter model.

    Science.gov (United States)

    da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G

    2016-07-08

    Process modeling can lead to of advantages such as helping in process control, reducing process costs and product quality improvement. This work proposes a solid-state fermentation distributed parameter model composed by seven differential equations with seventeen parameters to represent the process. Also, parameters estimation with a parameters identifyability analysis (PIA) is performed to build an accurate model with optimum parameters. Statistical tests were made to verify the model accuracy with the estimated parameters considering different assumptions. The results have shown that the model assuming substrate inhibition better represents the process. It was also shown that eight from the seventeen original model parameters were nonidentifiable and better results were obtained with the removal of these parameters from the estimation procedure. Therefore, PIA can be useful to estimation procedure, since it may reduce the number of parameters that can be evaluated. Further, PIA improved the model results, showing to be an important procedure to be taken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:905-917, 2016. © 2016 American Institute of Chemical Engineers.

  12. Turbulence modeling with fractional derivatives: Derivation from first principles and initial results

    Science.gov (United States)

    Epps, Brenden; Cushman-Roisin, Benoit

    2017-11-01

    Fluid turbulence is an outstanding unsolved problem in classical physics, despite 120+ years of sustained effort. Given this history, we assert that a new mathematical framework is needed to make a transformative breakthrough. This talk offers one such framework, based upon kinetic theory tied to the statistics of turbulent transport. Starting from the Boltzmann equation and ``Lévy α-stable distributions'', we derive a turbulence model that expresses the turbulent stresses in the form of a fractional derivative, where the fractional order is tied to the transport behavior of the flow. Initial results are presented herein, for the cases of Couette-Poiseuille flow and 2D boundary layers. Among other results, our model is able to reproduce the logarithmic Law of the Wall in shear turbulence.

  13. Selected examples of practical approaches for the assessment of model reliability - parameter uncertainty analysis

    International Nuclear Information System (INIS)

    Hofer, E.; Hoffman, F.O.

    1987-02-01

    The uncertainty analysis of model predictions has to discriminate between two fundamentally different types of uncertainty. The presence of stochastic variability (Type 1 uncertainty) necessitates the use of a probabilistic model instead of the much simpler deterministic one. Lack of knowledge (Type 2 uncertainty), however, applies to deterministic as well as to probabilistic model predictions and often dominates over uncertainties of Type 1. The term ''probability'' is interpreted differently in the probabilistic analysis of either type of uncertainty. After these discriminations have been explained the discussion centers on the propagation of parameter uncertainties through the model, the derivation of quantitative uncertainty statements for model predictions and the presentation and interpretation of the results of a Type 2 uncertainty analysis. Various alternative approaches are compared for a very simple deterministic model

  14. Determination of remodeling parameters for a strain-adaptive finite element model of the distal ulna.

    Science.gov (United States)

    Neuert, Mark A C; Dunning, Cynthia E

    2013-09-01

    Strain energy-based adaptive material models are used to predict bone resorption resulting from stress shielding induced by prosthetic joint implants. Generally, such models are governed by two key parameters: a homeostatic strain-energy state (K) and a threshold deviation from this state required to initiate bone reformation (s). A refinement procedure has been performed to estimate these parameters in the femur and glenoid; this study investigates the specific influences of these parameters on resulting density distributions in the distal ulna. A finite element model of a human ulna was created using micro-computed tomography (µCT) data, initialized to a homogeneous density distribution, and subjected to approximate in vivo loading. Values for K and s were tested, and the resulting steady-state density distribution compared with values derived from µCT images. The sensitivity of these parameters to initial conditions was examined by altering the initial homogeneous density value. The refined model parameters selected were then applied to six additional human ulnae to determine their performance across individuals. Model accuracy using the refined parameters was found to be comparable with that found in previous studies of the glenoid and femur, and gross bone structures, such as the cortical shell and medullary canal, were reproduced. The model was found to be insensitive to initial conditions; however, a fair degree of variation was observed between the six specimens. This work represents an important contribution to the study of changes in load transfer in the distal ulna following the implementation of commercial orthopedic implants.

  15. Identification of Affine Linear Parameter Varying Models for Adaptive Interventions in Fibromyalgia Treatment.

    Science.gov (United States)

    Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred

    2013-12-31

    There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.

  16. Tension-compression asymmetry modelling: strategies for anisotropy parameters identification.

    Directory of Open Access Journals (Sweden)

    Barros Pedro

    2016-01-01

    Full Text Available This work presents details concerning the strategies and algorithms adopted in the fully implicit FE solver DD3IMP to model the orthotropic behavior of metallic sheets and the procedure for anisotropy parameters identification. The work is focused on the yield criterion developed by Cazacu, Plunkett and Barlat, 2006 [1], which accounts for both tension–compression asymmetry and orthotropic plastic behavior. The anisotropy parameters for a 2090-T3 aluminum alloy are identified accounting, or not, for the tension-compression asymmetry. The numerical simulation of a cup drawing is performed for this material, highlighting the importance of considering tension-compression asymmetry in the prediction of the earing profile, for materials with cubic structure, even if this phenomenon is relatively small.

  17. Parameter Estimation in Stochastic Grey-Box Models

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2004-01-01

    An efficient and flexible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Ito stochastic differential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended...... Kalman filter and features maximum likelihood as well as maximum a posteriori estimation on multiple independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software implementation is compared to an existing software tool...... and proves to have better performance both in terms of quality of estimates for nonlinear systems with significant diffusion and in terms of reproducibility. In particular, the new tool provides more accurate and more consistent estimates of the parameters of the diffusion term....

  18. Modelling Technical and Economic Parameters in Selection of Manufacturing Devices

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2017-11-01

    Full Text Available Sustainable science and technology development is also conditioned by continuous development of means of production which have a key role in structure of each production system. Mechanical nature of the means of production is complemented by controlling and electronic devices in context of intelligent industry. A selection of production machines for a technological process or technological project has so far been practically resolved, often only intuitively. With regard to increasing intelligence, the number of variable parameters that have to be considered when choosing a production device is also increasing. It is necessary to use computing techniques and decision making methods according to heuristic methods and more precise methodological procedures during the selection. The authors present an innovative model for optimization of technical and economic parameters in the selection of manufacturing devices for industry 4.0.

  19. Automated parameter estimation for biological models using Bayesian statistical model checking.

    Science.gov (United States)

    Hussain, Faraz; Langmead, Christopher J; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram; Jha, Sumit K

    2015-01-01

    Probabilistic models have gained widespread acceptance in the systems biology community as a useful way to represent complex biological systems. Such models are developed using existing knowledge of the structure and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data. A key bottleneck in building such models is that some system variables cannot be measured experimentally. These variables are incorporated into the model as numerical parameters. Determining values of these parameters that justify existing experiments and provide reliable predictions when model simulations are performed is a key research problem. Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel parameter estimation algorithm by discovering the amount and schedule of doses of bacterial lipopolysaccharide that guarantee a set of observed clinical outcomes with high probability. We synthesized values of twenty-eight unknown parameters such that the parameterized model instantiated with these parameter values satisfies four specifications describing the dynamic behavior of the model. We have developed a new algorithmic technique for discovering parameters in complex stochastic models of biological systems given behavioral specifications written in a formal mathematical logic. Our algorithm uses Bayesian model checking, sequential hypothesis testing, and stochastic optimization to automatically synthesize parameters of probabilistic biological models.

  20. Modeling and Forecasting Average Temperature for Weather Derivative Pricing

    Directory of Open Access Journals (Sweden)

    Zhiliang Wang

    2015-01-01

    Full Text Available The main purpose of this paper is to present a feasible model for the daily average temperature on the area of Zhengzhou and apply it to weather derivatives pricing. We start by exploring the background of weather derivatives market and then use the 62 years of daily historical data to apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution of the temperature. Finally, Monte Carlo simulations are used to price heating degree day (HDD call option for this city, and the slow convergence of the price of the HDD call can be found through taking 100,000 simulations. The methods of the research will provide a frame work for modeling temperature and pricing weather derivatives in other similar places in China.

  1. Correlation between the Quantifiable Parameters of Whole Solitary Pulmonary Nodules Perfusion Imaging Derived with Dynamic CT and Nodules Size

    Directory of Open Access Journals (Sweden)

    Shiyuan LIU

    2009-05-01

    Full Text Available Background and objective The solitary pulmonary nodules (SPNs is one of the most common findings on chest radiographs. The blood flow patterns of the biggest single SPNs level has been studied. This assessment may be only a limited sample of the entire region of interest (ROI and is unrepresentative of the SPNs as a volume. Ideally, SPNs volume perfusion should be measured. The aim of this study is to evaluate the correlation between the quantifiableparameters of SPNs volume perfusion imaging derived with 16-slice spiral CT and 64-slice spiral CT and nodules size. Methods Sixty-five patients with SPNs (diameter≤3 cm; 42 malignant; 12 active inflammatory; 11 benign underwent multi-location dynamic contrast material-enhanced serial CT scanning mode with stable table were performed; The mean values of valid sections were calculated, as the quantifiable parameters of volume SPNs perfusion imaging derived with16-slice spiral CT and 64-slice spiral CT. The correlation between the quantifiable parameters of SPNs volume perfusion imaging derived with 16-slice spiral CT and 64-slice spiral CT and nodules size were assessed by means of linear regression analysis. Results No significant correlations were found between the nodules size and each of the peak height (PHSPN (32.15 Hu±14.55 Hu,ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio(13.20±6.18%, perfusion(PSPN (29.79±19.12 mLmin-1100 g-1 and mean transit time (12.95±6.53 s (r =0.081, P =0.419; r =0.089, P =0.487; r =0.167, P =0.077; r =0.023, P =0.880. Conclusion No significant correlations were found between the quantifiable parameters of SPNs volume perfusion imaging derived with 16-slice spiral CT and 64-slice spiral CT and nodules size.

  2. Multivariate analysis and extraction of parameters in resistive RAMs using the Quantum Point Contact model

    Science.gov (United States)

    Roldán, J. B.; Miranda, E.; González-Cordero, G.; García-Fernández, P.; Romero-Zaliz, R.; González-Rodelas, P.; Aguilera, A. M.; González, M. B.; Jiménez-Molinos, F.

    2018-01-01

    A multivariate analysis of the parameters that characterize the reset process in Resistive Random Access Memory (RRAM) has been performed. The different correlations obtained can help to shed light on the current components that contribute in the Low Resistance State (LRS) of the technology considered. In addition, a screening method for the Quantum Point Contact (QPC) current component is presented. For this purpose, the second derivative of the current has been obtained using a novel numerical method which allows determining the QPC model parameters. Once the procedure is completed, a whole Resistive Switching (RS) series of thousands of curves is studied by means of a genetic algorithm. The extracted QPC parameter distributions are characterized in depth to get information about the filamentary pathways associated with LRS in the low voltage conduction regime.

  3. Improving the quantity, quality and transparency of data used to derive radionuclide transfer parameters for animal products. 2. Cow milk.

    Science.gov (United States)

    Howard, B J; Wells, C; Barnett, C L; Howard, D C

    2017-02-01

    Under the International Atomic Energy Agency (IAEA) MODARIA (Modelling and Data for Radiological Impact Assessments) Programme, there has been an initiative to improve the derivation, provenance and transparency of transfer parameter values for radionuclides from feed to animal products that are for human consumption. A description of the revised MODARIA 2016 cow milk dataset is described in this paper. As previously reported for the MODARIA goat milk dataset, quality control has led to the discounting of some references used in IAEA's Technical Report Series (TRS) report 472 (IAEA, 2010). The number of Concentration Ratio (CR) values has been considerably increased by (i) the inclusion of more literature from agricultural studies which particularly enhanced the stable isotope data of both CR and F m and (ii) by estimating dry matter intake from assumed liveweight. In TRS 472, the data for cow milk were 714 transfer coefficient (F m ) values and 254 CR values describing 31 elements and 26 elements respectively. In the MODARIA 2016 cow milk dataset, F m and CR values are now reported for 43 elements based upon 825 data values for F m and 824 for CR. The MODARIA 2016 cow milk dataset F m values are within an order of magnitude of those reported in TRS 472. Slightly bigger changes are seen in the CR values, but the increase in size of the dataset creates greater confidence in them. Data gaps that still remain are identified for elements with isotopes relevant to radiation protection. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Relationship between Levels of Brain-Derived Neurotrophic Factor and Metabolic Parameters in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Banu Boyuk

    2014-01-01

    Full Text Available Background and Aim. Studies have suggested that brain-derived neurotrophic factor (BDNF plays a role in glucose and lipid metabolism and inflammation. The aim of this study was to evaluate the relationship between serum BDNF levels and various metabolic parameters and inflammatory markers in patients with type 2 diabetes mellitus (T2DM. Materials and Methods. The study included 88 T2DM patients and 33 healthy controls. Fasting blood samples were obtained from the patients and the control group. The serum levels of BDNF were measured with an ELISA kit. The current paper introduces a receiver-operating characteristic (ROC generalization curve to identify cut-off for the BDNF values in type 2 diabetes patients. Results. The serum levels of BDNF were significantly higher in T2DM patients than in the healthy controls (206.81 ± 107.32 pg/mL versus 130.84 ± 59.81 pg/mL; P<0.001. They showed a positive correlation with the homeostasis model assessment of insulin resistance (HOMA-IR (r=0.28; P<0.05, the triglyceride level (r=0.265; P<0.05, and white blood cell (WBC count (r=0.35; P<0.001. In logistic regression analysis, age (P<0.05, body mass index (BMI (P<0.05, C-reactive protein (CRP (P<0.05, and BDNF (P<0.01 were independently associated with T2DM. In ROC curve analysis, BDNF cut-off was 137. Conclusion. The serum BDNF level was higher in patients with T2DM. The BDNF had a cut-off value of 137. The findings suggest that BDNF may contribute to glucose and lipid metabolism and inflammation.

  5. Identification of grid model parameters using synchrophasor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Boicea, Valentin; Albu, Mihaela [Politehnica University of Bucharest (Romania)

    2012-07-01

    Presently a critical element of the energy networks is represented by the active distribution grids, where generation intermittency and controllable loads contribute to a stochastic varability of the quantities characterizing the grid operation. The capability of controlling the electrical energy transfer is also limited by the incomplete knowledge of the detailed electrical model of each of the grid components. Asset management in distribution grids has to consider dynamic loads, while high loading of network sections might already have degraded some of the assets. Moreover, in case of functional microgrids, all elements need to be modelled accurately and an appropriate measurement layer enabling online control needs to be deployed. In this paper a method for online identification of the actual parameter values in grid electrical models is proposed. Laboratory results validating the proposed method are presented. (orig.)

  6. Dynamic systems models new methods of parameter and state estimation

    CERN Document Server

    2016-01-01

    This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...

  7. Luminescence model with quantum impact parameter for low energies

    International Nuclear Information System (INIS)

    Cruz G, H.S.; Michaelian, K.; Galindo U, S.; Martinez D, A.; Belmont M, E.

    2000-01-01

    The analytical model of induced light production in scintillator materials by energetic ions proposed by Michaelian and Menchaca (M-M) adjusts very well the luminescence substance data in a wide energy interval of the incident ions (10-100 MeV). However at low energies, that is, under to 10 MeV, the experimental deviations of the predictions of M-M model, show that the causes may be certain physical effects, all they important at low energies, which were not considered. We have modified lightly the M-M model using the basic fact that the Quantum mechanics gives to a different limit for the quantum impact parameter instead of the classic approximation. (Author)

  8. On the Relationship Between Transfer Function-derived Response Times and Hydrograph Analysis Timing Parameters: Are there Similarities?

    Science.gov (United States)

    Bansah, S.; Ali, G.; Haque, M. A.; Tang, V.

    2017-12-01

    The proportion of precipitation that becomes streamflow is a function of internal catchment characteristics - which include geology, landscape characteristics and vegetation - and influence overall storage dynamics. The timing and quantity of water discharged by a catchment are indeed embedded in event hydrographs. Event hydrograph timing parameters, such as the response lag and time of concentration, are important descriptors of how long it takes the catchment to respond to input precipitation and how long it takes the latter to filter through the catchment. However, the extent to which hydrograph timing parameters relate to average response times derived from fitting transfer functions to annual hydrographs is unknown. In this study, we used a gamma transfer function to determine catchment average response times as well as event-specific hydrograph parameters across a network of eight nested watersheds ranging from 0.19 km2 to 74.6 km2 prairie catchments located in south central Manitoba (Canada). Various statistical analyses were then performed to correlate average response times - estimated using the parameters of the fitted gamma transfer function - to event-specific hydrograph parameters. Preliminary results show significant interannual variations in response times and hydrograph timing parameters: the former were in the order of a few hours to days, while the latter ranged from a few days to weeks. Some statistically significant relationships were detected between response times and event-specific hydrograph parameters. Future analyses will involve the comparison of statistical distributions of event-specific hydrograph parameters with that of runoff response times and baseflow transit times in order to quantity catchment storage dynamics across a range of temporal scales.

  9. Modeling parameters that characterize pacing of elite female 800-m freestyle swimmers.

    Science.gov (United States)

    Lipińska, Patrycja; Allen, Sian V; Hopkins, Will G

    2016-01-01

    Pacing offers a potential avenue for enhancement of endurance performance. We report here a novel method for characterizing pacing in 800-m freestyle swimming. Websites provided 50-m lap and race times for 192 swims of 20 elite female swimmers between 2000 and 2013. Pacing for each swim was characterized with five parameters derived from a linear model: linear and quadratic coefficients for effect of lap number, reductions from predicted time for first and last laps, and lap-time variability (standard error of the estimate). Race-to-race consistency of the parameters was expressed as intraclass correlation coefficients (ICCs). The average swim was a shallow negative quadratic with slowest time in the eleventh lap. First and last laps were faster by 6.4% and 3.6%, and lap-time variability was ±0.64%. Consistency between swimmers ranged from low-moderate for the linear and quadratic parameters (ICC = 0.29 and 0.36) to high for the last-lap parameter (ICC = 0.62), while consistency for race time was very high (ICC = 0.80). Only ~15% of swimmers had enough swims (~15 or more) to provide reasonable evidence of optimum parameter values in plots of race time vs. each parameter. The modest consistency of most of the pacing parameters and lack of relationships between parameters and performance suggest that swimmers usually compensated for changes in one parameter with changes in another. In conclusion, pacing in 800-m elite female swimmers can be characterized with five parameters, but identifying an optimal pacing profile is generally impractical.

  10. Aspects of the derivative coupling model in four dimensions

    International Nuclear Information System (INIS)

    Aste, Andreas

    2014-01-01

    A concise discussion of a 3 + 1-dimensional derivative coupling model, in which a massive Dirac field couples to the four-gradient of a massless scalar field, is given in order to elucidate the role of different concepts in quantum field theory like the regularization of quantum fields as operator-valued distributions, correlation distributions, locality, causality, and field operator gauge transformations. (orig.)

  11. Aspects of the derivative coupling model in four dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aste, Andreas [University of Basel, Department of Physics, Basel (Switzerland); Paul Scherrer Institute, Villigen (Switzerland)

    2014-01-15

    A concise discussion of a 3 + 1-dimensional derivative coupling model, in which a massive Dirac field couples to the four-gradient of a massless scalar field, is given in order to elucidate the role of different concepts in quantum field theory like the regularization of quantum fields as operator-valued distributions, correlation distributions, locality, causality, and field operator gauge transformations. (orig.)

  12. Microscopic Derivation of the Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Frank, Rupert; Hainzl, Christian; Seiringer, Robert

    2014-01-01

    We present a summary of our recent rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit...

  13. Comprehensive reference ranges for hematology and clinical chemistry laboratory parameters derived from normal Nigerian adults.

    Science.gov (United States)

    Miri-Dashe, Timzing; Osawe, Sophia; Tokdung, Monday; Daniel, Monday Tokdung Nenbammun; Daniel, Nenbammun; Choji, Rahila Pam; Mamman, Ille; Deme, Kurt; Damulak, Dapus; Abimiku, Alash'le

    2014-01-01

    Interpretation of laboratory test results with appropriate diagnostic accuracy requires reference or cutoff values. This study is a comprehensive determination of reference values for hematology and clinical chemistry in apparently healthy voluntary non-remunerated blood donors and pregnant women. Consented clients were clinically screened and counseled before testing for HIV, Hepatitis B, Hepatitis C and Syphilis. Standard national blood donors' questionnaire was administered to consented blood donors. Blood from qualified volunteers was used for measurement of complete hematology and chemistry parameters. Blood samples were analyzed from a total of 383 participants, 124 (32.4%) males, 125 (32.6%) non-pregnant females and 134 pregnant females (35.2%) with a mean age of 31 years. Our results showed that the red blood cells count (RBC), Hemoglobin (HB) and Hematocrit (HCT) had significant gender difference (p = 0.000) but not for total white blood count (p>0.05) which was only significantly higher in pregnant verses non-pregnant women (p = 0.000). Hemoglobin and Hematocrit values were lower in pregnancy (P = 0.000). Platelets were significantly higher in females than men (p = 0.001) but lower in pregnant women (p =  .001) with marked difference in gestational period. For clinical chemistry parameters, there was no significant difference for sodium, potassium and chloride (p>0.05) but gender difference exists for Bicarbonate (HCO3), Urea nitrogen, Creatinine as well as the lipids (pchemistry parameters between pregnant and non-pregnant women in this study (p0.05). Hematological and Clinical Chemistry reference ranges established in this study showed significant gender differences. Pregnant women also differed from non-pregnant females and during pregnancy. This is the first of such comprehensive study to establish reference values among adult Nigerians and difference observed underscore the need to establish reference values for different populations.

  14. Modelling ocean-colour-derived chlorophyll a

    Directory of Open Access Journals (Sweden)

    S. Dutkiewicz

    2018-01-01

    Full Text Available This article provides a proof of concept for using a biogeochemical/ecosystem/optical model with a radiative transfer component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour chlorophyll a (Chl a product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared directly to the real-world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean colour satellite-like Chl a product using an algorithm linking the blue versus green reflectance similar to that used for the real world. Given that the model includes complete knowledge of the (model water constituents, optics and reflectance, we can explore uncertainties and their causes in this proxy for Chl a (called derived Chl a in this paper. We compare the derived Chl a to the actual model Chl a field. In the model we find that the mean absolute bias due to the algorithm is 22 % between derived and actual Chl a. The real-world algorithm is found using concurrent in situ measurement of Chl a and radiometry. We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases increase. Not surprisingly, we find that region-specific algorithms provide a significant improvement, at least in the annual mean. However, in the model, we find that no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl a and the actual Chl a. These mismatches stem from temporal decoupling between Chl a and other optically important water constituents (such as coloured dissolved organic matter and detrital matter. The degree of decoupling differs regionally and over time. For example, in many highly seasonal regions, the timing of initiation

  15. Optimization of Experimental Model Parameter Identification for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Rosario Morello

    2013-09-01

    Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.

  16. Bayesian parameter estimation for stochastic models of biological cell migration

    Science.gov (United States)

    Dieterich, Peter; Preuss, Roland

    2013-08-01

    Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.

  17. Parameter Estimation of a Delay Time Model of Wearing Parts Based on Objective Data

    Directory of Open Access Journals (Sweden)

    Y. Tang

    2015-01-01

    Full Text Available The wearing parts of a system have a very high failure frequency, making it necessary to carry out continual functional inspections and maintenance to protect the system from unscheduled downtime. This allows for the collection of a large amount of maintenance data. Taking the unique characteristics of the wearing parts into consideration, we establish their respective delay time models in ideal inspection cases and nonideal inspection cases. The model parameters are estimated entirely using the collected maintenance data. Then, a likelihood function of all renewal events is derived based on their occurring probability functions, and the model parameters are calculated with the maximum likelihood function method, which is solved by the CRM. Finally, using two wearing parts from the oil and gas drilling industry as examples—the filter element and the blowout preventer rubber core—the parameters of the distribution function of the initial failure time and the delay time for each example are estimated, and their distribution functions are obtained. Such parameter estimation based on objective data will contribute to the optimization of the reasonable function inspection interval and will also provide some theoretical models to support the integrity management of equipment or systems.

  18. Model parameters for representative wetland plant functional groups

    Science.gov (United States)

    Williams, Amber S.; Kiniry, James R.; Mushet, David M.; Smith, Loren M.; McMurry, Scott T.; Attebury, Kelly; Lang, Megan; McCarty, Gregory W.; Shaffer, Jill A.; Effland, William R.; Johnson, Mari-Vaughn V.

    2017-01-01

    Wetlands provide a wide variety of ecosystem services including water quality remediation, biodiversity refugia, groundwater recharge, and floodwater storage. Realistic estimation of ecosystem service benefits associated with wetlands requires reasonable simulation of the hydrology of each site and realistic simulation of the upland and wetland plant growth cycles. Objectives of this study were to quantify leaf area index (LAI), light extinction coefficient (k), and plant nitrogen (N), phosphorus (P), and potassium (K) concentrations in natural stands of representative plant species for some major plant functional groups in the United States. Functional groups in this study were based on these parameters and plant growth types to enable process-based modeling. We collected data at four locations representing some of the main wetland regions of the United States. At each site, we collected on-the-ground measurements of fraction of light intercepted, LAI, and dry matter within the 2013–2015 growing seasons. Maximum LAI and k variables showed noticeable variations among sites and years, while overall averages and functional group averages give useful estimates for multisite simulation modeling. Variation within each species gives an indication of what can be expected in such natural ecosystems. For P and K, the concentrations from highest to lowest were spikerush (Eleocharis macrostachya), reed canary grass (Phalaris arundinacea), smartweed (Polygonum spp.), cattail (Typha spp.), and hardstem bulrush (Schoenoplectus acutus). Spikerush had the highest N concentration, followed by smartweed, bulrush, reed canary grass, and then cattail. These parameters will be useful for the actual wetland species measured and for the wetland plant functional groups they represent. These parameters and the associated process-based models offer promise as valuable tools for evaluating environmental benefits of wetlands and for evaluating impacts of various agronomic practices in

  19. Application of a free parameter model to plastic scintillation samples

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2011-08-21

    In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.

  20. Microbial Communities Model Parameter Calculation for TSPA/SR

    International Nuclear Information System (INIS)

    D. Jolley

    2001-01-01

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed

  1. CPT Profiling and Laboratory Data Correlations for Deriving of Selected Geotechnical Parameter

    Directory of Open Access Journals (Sweden)

    Bulko Roman

    2015-12-01

    Full Text Available Currently, can be seen a new trend in engineering geological survey, where laboratory analysis are replaced by in situ testing methods, which are more efficient and cost effective, and time saving too. A regular engineering geological survey cannot be provided by simple core drillings, macroscopic description (sometimes very subjective, and then geotechnical parameters are established based on indicative standardized values or archive values from previous geotechnical standards. The engineering geological survey is trustworthy if is composed of laboratory and in-situ testing supplemented by indirect methods of testing, [1]. The prevalence of rotary core drilling for obtaining laboratory soil samples from various depths (every 1 to 3 m, cannot be a more enhanced as continues evaluation of strata and properties e.g. by CPT Piezocone (every 1 cm. Core drillings survey generally uses small amounts of soil samples, but this is resulting to a lower representation of the subsoil and underestimation of parameters. Higher amounts of soil samples make laboratory testing time-consuming and results from this testing can be influenced by the storage and processing of the soil samples. Preference for geotechnical surveys with in situ testing is therefore a more suitable option. In situ testing using static and dynamic penetration tests can be used as a supplement or as a replacement for the (traditional methods of surveying.

  2. Geostatistical analysis of tritium, groundwater age and other noble gas derived parameters in California.

    Science.gov (United States)

    Visser, A; Moran, J E; Hillegonds, Darren; Singleton, M J; Kulongoski, Justin T; Belitz, Kenneth; Esser, B K

    2016-03-15

    Key characteristics of California groundwater systems related to aquifer vulnerability, sustainability, recharge locations and mechanisms, and anthropogenic impact on recharge are revealed in a spatial geostatistical analysis of a unique data set of tritium, noble gases and other isotopic analyses unprecedented in size at nearly 4000 samples. The correlation length of key groundwater residence time parameters varies between tens of kilometers ((3)H; age) to the order of a hundred kilometers ((4)Heter; (14)C; (3)Hetrit). The correlation length of parameters related to climate, topography and atmospheric processes is on the order of several hundred kilometers (recharge temperature; δ(18)O). Young groundwater ages that highlight regional recharge areas are located in the eastern San Joaquin Valley, in the southern Santa Clara Valley Basin, in the upper LA basin and along unlined canals carrying Colorado River water, showing that much of the recent recharge in central and southern California is dominated by river recharge and managed aquifer recharge. Modern groundwater is found in wells with the top open intervals below 60 m depth in the southeastern San Joaquin Valley, Santa Clara Valley and Los Angeles basin, as the result of intensive pumping and/or managed aquifer recharge operations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  4. Modelled basic parameters for semi-industrial irradiation plant design

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    The basic parameters of an irradiation plant design are the total activity, the product uniformity ratio and the efficiency process. The target density, the minimum dose required and the throughput depends on the use to which the irradiator will be put at. In this work, a model for calculating the specific dose rate at several depths in an infinite homogeneous medium produced by a slab source irradiator is presented. The product minimum dose rate for a set of target thickness is obtained. The design method steps are detailed and an illustrative example is presented. (author)

  5. Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator

    Directory of Open Access Journals (Sweden)

    CONSTANTINESCU, F.

    2011-02-01

    Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.

  6. Modeling error and stability of endothelial cytoskeletal membrane parameters based on modeling transendothelial impedance as resistor and capacitor in series.

    Science.gov (United States)

    Bodmer, James E; English, Anthony; Brady, Megan; Blackwell, Ken; Haxhinasto, Kari; Fotedar, Sunaina; Borgman, Kurt; Bai, Er-Wei; Moy, Alan B

    2005-09-01

    Transendothelial impedance across an endothelial monolayer grown on a microelectrode has previously been modeled as a repeating pattern of disks in which the electrical circuit consists of a resistor and capacitor in series. Although this numerical model breaks down barrier function into measurements of cell-cell adhesion, cell-matrix adhesion, and membrane capacitance, such solution parameters can be inaccurate without understanding model stability and error. In this study, we have evaluated modeling stability and error by using a chi(2) evaluation and Levenberg-Marquardt nonlinear least-squares (LM-NLS) method of the real and/or imaginary data in which the experimental measurement is compared with the calculated measurement derived by the model. Modeling stability and error were dependent on current frequency and the type of experimental data modeled. Solution parameters of cell-matrix adhesion were most susceptible to modeling instability. Furthermore, the LM-NLS method displayed frequency-dependent instability of the solution parameters, regardless of whether the real or imaginary data were analyzed. However, the LM-NLS method identified stable and reproducible solution parameters between all types of experimental data when a defined frequency spectrum of the entire data set was selected on the basis of a criterion of minimizing error. The frequency bandwidth that produced stable solution parameters varied greatly among different data types. Thus a numerical model based on characterizing transendothelial impedance as a resistor and capacitor in series and as a repeating pattern of disks is not sufficient to characterize the entire frequency spectrum of experimental transendothelial impedance.

  7. Selection of operating parameters on the basis of hydrodynamics in centrifugal partition chromatography for the purification of nybomycin derivatives.

    Science.gov (United States)

    Adelmann, S; Baldhoff, T; Koepcke, B; Schembecker, G

    2013-01-25

    The selection of solvent systems in centrifugal partition chromatography (CPC) is the most critical point in setting up a separation. Therefore, lots of research was done on the topic in the last decades. But the selection of suitable operating parameters (mobile phase flow rate, rotational speed and mode of operation) with respect to hydrodynamics and pressure drop limit in CPC is still mainly driven by experience of the chromatographer. In this work we used hydrodynamic analysis for the prediction of most suitable operating parameters. After selection of different solvent systems with respect to partition coefficients for the target compound the hydrodynamics were visualized. Based on flow pattern and retention the operating parameters were selected for the purification runs of nybomycin derivatives that were carried out with a 200 ml FCPC(®) rotor. The results have proven that the selection of optimized operating parameters by analysis of hydrodynamics only is possible. As the hydrodynamics are predictable by the physical properties of the solvent system the optimized operating parameters can be estimated, too. Additionally, we found that dispersion and especially retention are improved if the less viscous phase is mobile. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Dynamic model of cage induction motor with number of rotor bars as parameter

    Directory of Open Access Journals (Sweden)

    Gojko Joksimović

    2017-05-01

    Full Text Available A dynamic mathematical model, using number of rotor bars as parameter, is reached for cage induction motors through the use of coupled-circuits and the concept of winding functions. The exact MMFs waveforms are accounted for by the model which is derived in natural frames of reference. By knowing the initial motor parameters for a priori adopted number of stator slots and rotor bars model allows change of rotor bars number what results in new model parameters. During this process, the rated machine power, number of stator slots and stator winding scheme remain the same. Although presented model has a potentially broad application area it is primarily suitable for the analysis of the different stator/rotor slot combination on motor behaviour during the transients or in steady-state regime. The model is significant in its potential to provide analysis of dozen of different number of rotor bars in a few tens of minutes. Numerical example on cage rotor induction motor exemplifies this application, including three variants of number of rotor bars.

  9. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  10. Modelling of bio-optical parameters of open ocean waters

    Directory of Open Access Journals (Sweden)

    Vadim N. Pelevin

    2001-12-01

    Full Text Available An original method for estimating the concentration of chlorophyll pigments, absorption of yellow substance and absorption of suspended matter without pigments and yellow substance in detritus using spectral diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance data has been applied to sea waters of different types in the open ocean (case 1. Using the effective numerical single parameter classification with the water type optical index m as a parameter over the whole range of the open ocean waters, the calculations have been carried out and the light absorption spectra of sea waters tabulated. These spectra are used to optimize the absorption models and thus to estimate the concentrations of the main admixtures in sea water. The value of m can be determined from direct measurements of the downward irradiance attenuation coefficient at 500 nm or calculated from remote sensing data using the regressions given in the article. The sea water composition can then be readily estimated from the tables given for any open ocean area if that one parameter m characterizing the basin is known.

  11. Application of regression model on stream water quality parameters

    International Nuclear Information System (INIS)

    Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.

    2012-01-01

    Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)

  12. Operational derivation of Boltzmann distribution with Maxwell's demon model.

    Science.gov (United States)

    Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka

    2015-11-24

    The resolution of the Maxwell's demon paradox linked thermodynamics with information theory through information erasure principle. By considering a demon endowed with a Turing-machine consisting of a memory tape and a processor, we attempt to explore the link towards the foundations of statistical mechanics and to derive results therein in an operational manner. Here, we present a derivation of the Boltzmann distribution in equilibrium as an example, without hypothesizing the principle of maximum entropy. Further, since the model can be applied to non-equilibrium processes, in principle, we demonstrate the dissipation-fluctuation relation to show the possibility in this direction.

  13. Parameter identification and global sensitivity analysis of Xin'anjiang model using meta-modeling approach

    Directory of Open Access Journals (Sweden)

    Xiao-meng Song

    2013-01-01

    Full Text Available Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1 a screening method (Morris for qualitative ranking of parameters, and (2 a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol. First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.

  14. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    Science.gov (United States)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  15. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    Science.gov (United States)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    One hundred sets of mean elements of GEOS-3 computed at 2-day intervals yielded observation equations for the M sub 2 ocean tide from the long periodic variations of the inclination and node of the orbit. The 2nd degree Love number was given the value k sub 2 = 0.30 and the solid tide phase angle was taken to be zero. Combining obtained equations with results for the satellite 1967-92A gives the M sub 2 ocean tide parameter values. Under the same assumption of zero solid tide phase lag, the lunar tidal acceleration was found mostly due to the C sub 22 term in the expansion of the M sub 2 tide with additional small contributions from the 0 sub 1 and N sub 2 tides. Using Lambeck's (1975) estimates for the latter, the obtained acceleration in lunar longitudal in excellent agreement with the most recent determinations from ancient and modern astronomical data.

  16. Frequency-Domain Maximum-Likelihood Estimation of High-Voltage Pulse Transformer Model Parameters

    CERN Document Server

    Aguglia, D; Martins, C.D.A.

    2014-01-01

    This paper presents an offline frequency-domain nonlinear and stochastic identification method for equivalent model parameter estimation of high-voltage pulse transformers. Such kinds of transformers are widely used in the pulsed-power domain, and the difficulty in deriving pulsed-power converter optimal control strategies is directly linked to the accuracy of the equivalent circuit parameters. These components require models which take into account electric fields energies represented by stray capacitance in the equivalent circuit. These capacitive elements must be accurately identified, since they greatly influence the general converter performances. A nonlinear frequency-based identification method, based on maximum-likelihood estimation, is presented, and a sensitivity analysis of the best experimental test to be considered is carried out. The procedure takes into account magnetic saturation and skin effects occurring in the windings during the frequency tests. The presented method is validated by experim...

  17. Interpretation of hydraulic conductivity data and parameter evaluation for groundwater flow models

    International Nuclear Information System (INIS)

    Niemi, A.

    1991-01-01

    The report reviews recent developments in evaluating effective permeabilities for groundwater flow models, starting from methods of well test interpretation for and proceeding to the principles of parameter estimation. Basic concepts of parameter evaluation as well as expressions derived for effective permeabilities in traditional porous medium are described. Due to the assumptions made, these do often not apply for fractured media. Specific features of fractured medium are discussed, including approaches used determining the size of a possible REV and questions related to the application of stochastic theories. Due to the difficulties encountered when applying traditional deterministic models for fractured media, stochastic and fracture network approaches have been developed. The application of these techniques is still under development, the main questions to be resolved being related to the scarcity of data

  18. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development.

    Science.gov (United States)

    Tøndel, Kristin; Niederer, Steven A; Land, Sander; Smith, Nicolas P

    2014-05-20

    Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input-output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on

  19. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    Science.gov (United States)

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  20. Higher derivative extensions of 3d Chern-Simons models: conservation laws and stability

    International Nuclear Information System (INIS)

    Kaparulin, D.S.; Karataeva, I.Yu.; Lyakhovich, S.L.

    2015-01-01

    We consider the class of higher derivative 3d vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For the nth-order theory of this type, we provide a general recipe for constructing n-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability. (orig.)

  1. Comprehensive reference ranges for hematology and clinical chemistry laboratory parameters derived from normal Nigerian adults.

    Directory of Open Access Journals (Sweden)

    Timzing Miri-Dashe

    Full Text Available Interpretation of laboratory test results with appropriate diagnostic accuracy requires reference or cutoff values. This study is a comprehensive determination of reference values for hematology and clinical chemistry in apparently healthy voluntary non-remunerated blood donors and pregnant women.Consented clients were clinically screened and counseled before testing for HIV, Hepatitis B, Hepatitis C and Syphilis. Standard national blood donors' questionnaire was administered to consented blood donors. Blood from qualified volunteers was used for measurement of complete hematology and chemistry parameters. Blood samples were analyzed from a total of 383 participants, 124 (32.4% males, 125 (32.6% non-pregnant females and 134 pregnant females (35.2% with a mean age of 31 years. Our results showed that the red blood cells count (RBC, Hemoglobin (HB and Hematocrit (HCT had significant gender difference (p = 0.000 but not for total white blood count (p>0.05 which was only significantly higher in pregnant verses non-pregnant women (p = 0.000. Hemoglobin and Hematocrit values were lower in pregnancy (P = 0.000. Platelets were significantly higher in females than men (p = 0.001 but lower in pregnant women (p =  .001 with marked difference in gestational period. For clinical chemistry parameters, there was no significant difference for sodium, potassium and chloride (p>0.05 but gender difference exists for Bicarbonate (HCO3, Urea nitrogen, Creatinine as well as the lipids (p0.05.Hematological and Clinical Chemistry reference ranges established in this study showed significant gender differences. Pregnant women also differed from non-pregnant females and during pregnancy. This is the first of such comprehensive study to establish reference values among adult Nigerians and difference observed underscore the need to establish reference values for different populations.

  2. Convergence of surface diffusion parameters with model crystal size

    Science.gov (United States)

    Cohen, Jennifer M.; Voter, Arthur F.

    1994-07-01

    A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.

  3. A distributed parameter wire model for transient electrical discharges

    International Nuclear Information System (INIS)

    Maier, W.B. II; Kadish, A.; Sutherland, C.D.; Robiscoe, R.T.

    1990-01-01

    A model for freely propagating transient electrical discharges, such as lightning and punch-through arcs, is developed in this paper. We describe the electromagnetic fields by Maxwell's equations and we represent the interaction of electric fields with the medium to produce current by ∂J/∂t=ω 2 (E-E*J)/4π, where ω and E* are parameters characteristic of the medium, J≡current density, and J≡J/|J|. We illustrate the properties of this model for small-diameter, guided, cylindrically symmetric discharges. Analytic, numerical, and approximate solutions are given for special cases. The model describes, in a new and comprehensive fashion, certain macroscopic discharge properties, such as threshold behavior, quenching and reignition, path tortuosity, discharge termination with nonzero charge density remaining along the discharge path, and other experimentally observed discharge phenomena. Fields, current densities, and charge densities are quantitatively determined from given boundary and initial conditions. We suggest that many macroscopic discharge properties are properly explained by the model as electromagnetic phenomena, and we discuss extensions of the model to include chemistry, principally ionization and recombination

  4. Standard model parameters and the search for new physics

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1988-04-01

    In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs

  5. An iterative stochastic ensemble method for parameter estimation of subsurface flow models

    International Nuclear Information System (INIS)

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2013-01-01

    Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss–Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates

  6. An iterative stochastic ensemble method for parameter estimation of subsurface flow models

    KAUST Repository

    Elsheikh, Ahmed H.

    2013-06-01

    Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss-Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. © 2013 Elsevier Inc.

  7. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    International Nuclear Information System (INIS)

    Chacon, R.; Canale, A.; Bouza, A.; Sanchez, Y.

    2012-01-01

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H 2 ), hydrogen sulfide (H 2 S) and ammonia (NH 3 ) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H 2 /feed ratio and the inhibiting effect of H 2 S on HDS and NH 3 on HDN. (author)

  8. Fractional Klein-Gordon equation composed of Jumarie fractional derivative and its interpretation by a smoothness parameter

    Science.gov (United States)

    Ghosh, Uttam; Banerjee, Joydip; Sarkar, Susmita; Das, Shantanu

    2018-06-01

    Klein-Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein-Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein-Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein-Gordon equation, we can overcome the problem. The fractional Klein-Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.

  9. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  10. A parameter identification problem arising from a two-dimensional airfoil section model

    International Nuclear Information System (INIS)

    Cerezo, G.M.

    1994-01-01

    The development of state space models for aeroelastic systems, including unsteady aerodynamics, is particularly important for the design of highly maneuverable aircraft. In this work we present a state space formulation for a special class of singular neutral functional differential equations (SNFDE) with initial data in C(-1, 0). This work is motivated by the two-dimensional airfoil model presented by Burns, Cliff and Herdman in. In the same authors discuss the validity of the assumptions under which the model was formulated. They pay special attention to the derivation of the evolution equation for the circulation on the airfoil. This equation was coupled to the rigid-body dynamics of the airfoil in order to obtain a complete set of functional differential equations that describes the composite system. The resulting mathematical model for the aeroelastic system has a weakly singular component. In this work we consider a finite delay approximation to the model presented in. We work with a scalar model in which we consider the weak singularity appearing in the original problem. The main goal of this work is to develop numerical techniques for the identification of the parameters appearing in the kernel of the associated scalar integral equation. Clearly this is the first step in the study of parameter identification for the original model and the corresponding validation of this model for the aeroelastic system

  11. Gauge coupling unification in superstring derived standard-like models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1992-11-01

    I discuss gauge coupling unification in a class of superstring standard-like models, which are derived in the free fermionic formulation. Recent calculations indicate that the superstring unification scale is at O(10 18 GeV) while the minimal supersymmetric standard model is consistent with LEP data if the unification scale is at O(10 16 )GeV. A generic feature of the superstring standard-like models is the appearance of extra color triplets (D,D), and electroweak doublets (l,l), in vector-like representations, beyond the supersymmetric standard model. I show that the gauge coupling unification at O(10 18 GeV) in the superstring standard-like models can be consistent with LEP data. I present an explicit standard-like model that can realize superstring gauge coupling unification. (author)

  12. Hamiltonian derivation of the nonhydrostatic pressure-coordinate model

    Science.gov (United States)

    Salmon, Rick; Smith, Leslie M.

    1994-07-01

    In 1989, the Miller-Pearce (MP) model for nonhydrostatic fluid motion governed by equations written in pressure coordinates was extended by removing the prescribed reference temperature, T(sub s)(p), while retaining the conservation laws and other desirable properties. It was speculated that this extension of the MP model had a Hamiltonian structure and that a slick derivation of the Ertel property could be constructed if the relevant Hamiltonian were known. In this note, the extended equations are derived using Hamilton's principle. The potential vorticity law arises from the usual particle-relabeling symmetry of the Lagrangian, and even the absence of sound waves is anticipated from the fact that the pressure inside the free energy G(p, theta) in the derived equation is hydrostatic and thus G is insensitive to local pressure fluctuations. The model extension is analogous to the semigeostrophic equations for nearly geostrophic flow, which do not incorporate a prescribed reference state, while the earlier MP model is analogous to the quasigeostrophic equations, which become highly inaccurate when the flow wanders from a prescribed state with nearly flat isothermal surfaces.

  13. Performance Analysis of Different NeQuick Ionospheric Model Parameters

    Directory of Open Access Journals (Sweden)

    WANG Ningbo

    2017-04-01

    Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.

  14. Exploring parameter constraints on quintessential dark energy: The exponential model

    International Nuclear Information System (INIS)

    Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael

    2008-01-01

    We present an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their 'w 0 -w a ' parametrization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which cannot be distinguished from a cosmological constant at DETF 'Stage 2', and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3σ

  15. Quantitative predictions from competition theory with incomplete information on model parameters tested against experiments across diverse taxa

    OpenAIRE

    Fort, Hugo

    2017-01-01

    We derive an analytical approximation for making quantitative predictions for ecological communities as a function of the mean intensity of the inter-specific competition and the species richness. This method, with only a fraction of the model parameters (carrying capacities and competition coefficients), is able to predict accurately empirical measurements covering a wide variety of taxa (algae, plants, protozoa).

  16. Multivariate analysis of diagnostic parameters derived from whole-kidney and parenchymal time-activity curves

    International Nuclear Information System (INIS)

    Bergmann, H.; Mostbeck, A.; Samal, M.; Nimmon, C.C.; Staudenherz, A.; Dudczak, R.

    2002-01-01

    Aim: In a previous work, we have confirmed earlier reports that time-activity curves of renal cortex provide additional useful diagnostic information. The aim of this experiment was to support the finding quantitatively using multiple regression. Materials and Methods: In a retrospective study, we have analyzed MAG3 renal data (90 kidneys in 57 children). Whole-kidney (WK) and parenchymal (PA) time-activity curves were extracted from 20 min pre-diuretic phase using standard WK and parenchymal fuzzy ROIs. Using multiple regression analysis, peak time, mean transit time, output efficiency, and four additional indices of residual activity in WK and PA ROIs were related to the maximum elimination rate (EM) of urine after the diuretic. The kidneys were divided into four groups according to the WK peak time (WKPT): WKPT longer than 0 (all kidneys), 5, 10, and 15 min. Results: Multiple correlation coefficients between the set of WK, PA, and WK+PA curve parameters (independent variables) and the log EM (dependent variable) for each group are summarized. Conclusions: Using pre-diuretic time-activity curves, it is possible to predict diuretic response. This can be useful when interpreting dubious results. Parenchymal curves predict diuretic response better than the whole-kidney curves. With increasing WKPT the whole-kidney curves become useless, while the parenchymal curves are still useful. Using both WK and PA curves produces the best results. This demonstrates that both WK and PA curves carry independent diagnostic information. The contribution obtained from the parenchymal curves certainly worth the difficulties and time required to draw additional ROIs. However, substantial efforts have to be given to the accurate and reproducible definition of parenchymal ROIs

  17. Hemoglobin, red blood cell count, hematocrit and derived parameters for diagnosing anemia in elderly males

    International Nuclear Information System (INIS)

    Khan, Z.; Nawaz, M.

    2013-01-01

    Anemia is one of the most common micronutrient deficiency in our community. Nutritional anaemias are caused when there is an inadequate body store of a specific nutrient needed for hemoglobin synthesis. The most common nutrient deficiency is of iron. Therefore, a cross-sectional survey was conducted on the healthy elderly male, aged >= 40 and 77 years (n=60) volunteers in order to assess their blood parameters, such as hemoglobin concentration (Hb), hematocrit (HCT), red blood cell count (RBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) for the diagnosis of anemia. The demographic results showed mean values (50.10+-8.79) years for age, 66-68 +- 1.95 inches for height , 71.43 +- 6.43 kg body weight, 98.34+-0.48 degree F body temperature, 124 +- 8.67 systolic blood pressure, 82.17 +- 4.15 diastolic pressure while, The pulse rate was found to be 74.63 +- 7.02/minute. Similarly, mean values for lean body weight (LBW) found to be 49.9+-2.89, ideal body weight (IBW) 60.9 +- 4.49, body surface area (BSA) was 1.8 +- 0.1 m2 whereas, body mass index (BMI) showed mean value 24.9 +- 2.6 kg/m2. More so, overall mean Hb found to be 13.60 g/dl, RBC 4.6 mill/mm3, HCT/PCV 43%, MCV 92.95fl, MCH 29.42 pg and MCHC was found to be 31.73 g/dl. The normal range of Hb for men was 13-17 g/dl and 31.67% of the subjects participated in the study was considered to be anemic showing less Hb than normal range. The volunteers were suggested to improve the dietary habits and to take iron supplements in order to overcome the iron deficiency anemia. (author)

  18. The SSI TOOLBOX Source Term Model SOSIM - Screening for important radionuclides and parameter sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Avila Moreno, R.; Barrdahl, R.; Haegg, C.

    1995-05-01

    The main objective of the present study was to carry out a screening and a sensitivity analysis of the SSI TOOLBOX source term model SOSIM. This model is a part of the SSI TOOLBOX for radiological impact assessment of the Swedish disposal concept for high-level waste KBS-3. The outputs of interest for this purpose were: the total released fraction, the time of total release, the time and value of maximum release rate, the dose rates after direct releases of the biosphere. The source term equations were derived and simple equations and methods were proposed for calculation of these. A literature survey has been performed in order to determine a characteristic variation range and a nominal value for each model parameter. In order to reduce the model uncertainties the authors recommend a change in the initial boundary condition for solution of the diffusion equation for highly soluble nuclides. 13 refs.

  19. Coastal aquifer management under parameter uncertainty: Ensemble surrogate modeling based simulation-optimization

    Science.gov (United States)

    Janardhanan, S.; Datta, B.

    2011-12-01

    saltwater intrusion are considered. The salinity levels resulting at strategic locations due to these pumping are predicted using the ensemble surrogates and are constrained to be within pre-specified levels. Different realizations of the concentration values are obtained from the ensemble predictions corresponding to each candidate solution of pumping. Reliability concept is incorporated as the percent of the total number of surrogate models which satisfy the imposed constraints. The methodology was applied to a realistic coastal aquifer system in Burdekin delta area in Australia. It was found that all optimal solutions corresponding to a reliability level of 0.99 satisfy all the constraints and as reducing reliability level decreases the constraint violation increases. Thus ensemble surrogate model based simulation-optimization was found to be useful in deriving multi-objective optimal pumping strategies for coastal aquifers under parameter uncertainty.

  20. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  1. Parameter estimation and hypothesis testing in linear models

    CERN Document Server

    Koch, Karl-Rudolf

    1999-01-01

    The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there­ fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In­ ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im­ prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...

  2. Novel Thiazole Derivatives of Medicinal Potential: Synthesis and Modeling

    Directory of Open Access Journals (Sweden)

    Nour E. A. Abdel-Sattar

    2017-01-01

    Full Text Available This paper reports on the synthesis of new thiazole derivatives that could be profitably exploited in medical treatment of tumors. Molecular electronic structures have been modeled within density function theory (DFT framework. Reactivity indices obtained from the frontier orbital energies as well as electrostatic potential energy maps are discussed and correlated with the molecular structure. X-ray crystallographic data of one of the new compounds is measured and used to support and verify the theoretical results.

  3. Validation of mixing heights derived from the operational NWP models at the German weather service

    Energy Technology Data Exchange (ETDEWEB)

    Fay, B.; Schrodin, R.; Jacobsen, I. [Deutscher Wetterdienst, Offenbach (Germany); Engelbart, D. [Deutscher Wetterdienst, Meteorol. Observ. Lindenberg (Germany)

    1997-10-01

    NWP models incorporate an ever-increasing number of observations via four-dimensional data assimilation and are capable of providing comprehensive information about the atmosphere both in space and time. They describe not only near surface parameters but also the vertical structure of the atmosphere. They operate daily, are well verified and successfully used as meteorological pre-processors in large-scale dispersion modelling. Applications like ozone forecasts, emission or power plant control calculations require highly resolved, reliable, and routine values of the temporal evolution of the mixing height (MH) which is a critical parameter in determining the mixing and transformation of substances and the resulting pollution levels near the ground. The purpose of development at the German Weather Service is a straightforward mixing height scheme that uses only parameters derived from NWP model variables and thus automatically provides spatial and temporal fields of mixing heights on an operational basis. An universal parameter to describe stability is the Richardson number Ri. Compared to the usual diagnostic or rate equations, the Ri number concept of determining mixing heights has the advantage of using not only surface layer parameters but also regarding the vertical structure of the boundary layer resolved in the NWP models. (au)

  4. Derivative Geometric Modeling of Basic Rotational Solids on CATIA

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-bao; PAN Zi-jian; ZHU Yu-xiang; LI Jun

    2011-01-01

    Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.

  5. Relativistic nuclear matter with alternative derivative coupling models

    International Nuclear Information System (INIS)

    Delfino, A.; Coelho, C.T.; Malheiro, M.

    1994-01-01

    Effective Lagrangians involving nucleons coupled to scalar and vector fields are investigated within the framework of relativistic mean-field theory. The study presents the traditional Walecka model and different kinds of scalar derivative coupling suggested by Zimanyi and Moszkowski. The incompressibility (presented in an analytical form), scalar potential, and vector potential at the saturation point of nuclear matter are compared for these models. The real optical potential for the models are calculated and one of the models fits well the experimental curve from-50 to 400 MeV while also gives a soft equation of state. By varying the coupling constants and keeping the saturation point of nuclear matter approximately fixed, only the Walecka model presents a first order phase transition of finite temperature at zero density. (author)

  6. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters

    Directory of Open Access Journals (Sweden)

    Adeniyi Ganiyu Adeogun

    2015-10-01

    Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain. Keywords: Inundation, DEM, Sensitivity analysis, Model coupling, Flooding

  7. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root

  8. Evaluation of the perceptual grouping parameter in the CTVA model

    Directory of Open Access Journals (Sweden)

    Manuel Cortijo

    2005-01-01

    Full Text Available The CODE Theory of Visual Attention (CTVA is a mathematical model explaining the effects of grouping by proximity and distance upon reaction times and accuracy of response with regard to elements in the visual display. The predictions of the theory agree quite acceptably in one and two dimensions (CTVA-2D with the experimental results (reaction times and accuracy of response. The difference between reaction-times for the compatible and incompatible responses, known as the responsecompatibility effect, is also acceptably predicted, except at small distances and high number of distractors. Further results using the same paradigm at even smaller distances have been now obtained, showing greater discrepancies. Then, we have introduced a method to evaluate the strength of sensory evidence (eta parameter, which takes grouping by similarity into account and minimizes these discrepancies.

  9. Rigorous theoretical derivation of lumped models to transmission line systems

    International Nuclear Information System (INIS)

    Zhao Jixiang

    2012-01-01

    By virtue of the negative electric parameter concept, i.e. negative lumped resistance, inductance, conductance and capacitance (N-RLGC), the lumped equivalent models of transmission line systems, including the circuit model, two-port π-network and T-network, are given. We start from the N-segment-ladder-like equivalent networks composed distributed parameters, and achieve the input impedance in the form of a continued fraction. Utilizing the continued fraction theory, the expressions of input impedance are obtained under three kinds of extreme cases, i.e. the load impedances are equal to zero, infinity and characteristic impedance, respectively. When the number of segment N is limited to infinity, they are transformed to lumped elements. Comparison between the distributed model and lumped model of transmission lines, the expression of tanh γd, which is the key term in the transmission line equations, are obtained by RLGC, furthermore, according to input admittance, admittance matrix and ABCD matrix of transmission lines, the lumped equivalent circuit models, π-networks and T-networks have been given. The models are verified in the frequency and time domain, respectively, showing that the models are accurate and efficient. (semiconductor integrated circuits)

  10. Pseudo-dynamic source modelling with 1-point and 2-point statistics of earthquake source parameters

    KAUST Repository

    Song, S. G.

    2013-12-24

    Ground motion prediction is an essential element in seismic hazard and risk analysis. Empirical ground motion prediction approaches have been widely used in the community, but efficient simulation-based ground motion prediction methods are needed to complement empirical approaches, especially in the regions with limited data constraints. Recently, dynamic rupture modelling has been successfully adopted in physics-based source and ground motion modelling, but it is still computationally demanding and many input parameters are not well constrained by observational data. Pseudo-dynamic source modelling keeps the form of kinematic modelling with its computational efficiency, but also tries to emulate the physics of source process. In this paper, we develop a statistical framework that governs the finite-fault rupture process with 1-point and 2-point statistics of source parameters in order to quantify the variability of finite source models for future scenario events. We test this method by extracting 1-point and 2-point statistics from dynamically derived source models and simulating a number of rupture scenarios, given target 1-point and 2-point statistics. We propose a new rupture model generator for stochastic source modelling with the covariance matrix constructed from target 2-point statistics, that is, auto- and cross-correlations. Our sensitivity analysis of near-source ground motions to 1-point and 2-point statistics of source parameters provides insights into relations between statistical rupture properties and ground motions. We observe that larger standard deviation and stronger correlation produce stronger peak ground motions in general. The proposed new source modelling approach will contribute to understanding the effect of earthquake source on near-source ground motion characteristics in a more quantitative and systematic way.

  11. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  12. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions

    International Nuclear Information System (INIS)

    Mus, Roel D.; Borelli, Cristina; Bult, Peter; Weiland, Elisabeth; Karssemeijer, Nico; Barentsz, Jelle O.; Gubern-Mérida, Albert; Platel, Bram; Mann, Ritse M.

    2017-01-01

    Highlights: • New view-sharing sequences (e.g. TWIST) enable ultrafast dynamic breast MRI. • TWIST sequences accurately characterize the inflow of contrast in breast lesions. • TTE evaluation allows breast lesion classification with very high accuracy. • The use of TTE significantly increases the specificity of breast MRI. • TWIST imaging may increase the potential of breast MRI as screening tool. - Abstract: Objectives: To investigate time to enhancement (TTE) as novel dynamic parameter for lesion classification in breast magnetic resonance imaging (MRI). Methods: In this retrospective study, 157 women with 195 enhancing abnormalities (99 malignant and 96 benign) were included. All patients underwent a bi-temporal MRI protocol that included ultrafast time-resolved angiography with stochastic trajectory (TWIST) acquisitions (1.0 × 0.9 × 2.5 mm, temporal resolution 4.32 s), during the inflow of contrast agent. TTE derived from TWIST series and relative enhancement versus time curve type derived from volumetric interpolated breath-hold examination (VIBE) series were assessed and combined with basic morphological information to differentiate benign from malignant lesions. Receiver operating characteristic analysis and kappa statistics were applied. Results: TTE had a significantly better discriminative ability than curve type (p < 0.001 and p = 0.026 for reader 1 and 2, respectively). Including morphology, sensitivity of TWIST and VIBE assessment was equivalent (p = 0.549 and p = 0.344, respectively). Specificity and diagnostic accuracy were significantly higher for TWIST than for VIBE assessment (p < 0.001). Inter-reader agreement in differentiating malignant from benign lesions was almost perfect for TWIST evaluation (κ = 0.86) and substantial for conventional assessment (κ = 0.75). Conclusions: TTE derived from ultrafast TWIST acquisitions is a valuable parameter that allows robust differentiation between malignant and benign breast lesions with high

  13. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Mus, Roel D., E-mail: aroel.mus@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Borelli, Cristina, E-mail: cristinaborelli@hotmail.it [Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia (Italy); Department of Radiology, Radboud University Medical Center (internal address 766), Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Bult, Peter, E-mail: peter.bult@radboudumc.nl [Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Weiland, Elisabeth, E-mail: elisabeth.weiland@siemens.com [Siemens Healthcare, Erlangen (Germany); Karssemeijer, Nico, E-mail: nico.karssemeijer@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Barentsz, Jelle O., E-mail: jelle.barentsz@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Gubern-Mérida, Albert, E-mail: albert.gubernmerida@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Platel, Bram, E-mail: bram.platel@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands); Mann, Ritse M., E-mail: ritse.mann@radboudumc.nl [Department of Radiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen (Netherlands)

    2017-04-15

    Highlights: • New view-sharing sequences (e.g. TWIST) enable ultrafast dynamic breast MRI. • TWIST sequences accurately characterize the inflow of contrast in breast lesions. • TTE evaluation allows breast lesion classification with very high accuracy. • The use of TTE significantly increases the specificity of breast MRI. • TWIST imaging may increase the potential of breast MRI as screening tool. - Abstract: Objectives: To investigate time to enhancement (TTE) as novel dynamic parameter for lesion classification in breast magnetic resonance imaging (MRI). Methods: In this retrospective study, 157 women with 195 enhancing abnormalities (99 malignant and 96 benign) were included. All patients underwent a bi-temporal MRI protocol that included ultrafast time-resolved angiography with stochastic trajectory (TWIST) acquisitions (1.0 × 0.9 × 2.5 mm, temporal resolution 4.32 s), during the inflow of contrast agent. TTE derived from TWIST series and relative enhancement versus time curve type derived from volumetric interpolated breath-hold examination (VIBE) series were assessed and combined with basic morphological information to differentiate benign from malignant lesions. Receiver operating characteristic analysis and kappa statistics were applied. Results: TTE had a significantly better discriminative ability than curve type (p < 0.001 and p = 0.026 for reader 1 and 2, respectively). Including morphology, sensitivity of TWIST and VIBE assessment was equivalent (p = 0.549 and p = 0.344, respectively). Specificity and diagnostic accuracy were significantly higher for TWIST than for VIBE assessment (p < 0.001). Inter-reader agreement in differentiating malignant from benign lesions was almost perfect for TWIST evaluation (κ = 0.86) and substantial for conventional assessment (κ = 0.75). Conclusions: TTE derived from ultrafast TWIST acquisitions is a valuable parameter that allows robust differentiation between malignant and benign breast lesions with high

  14. Ab initio derivation of model energy density functionals

    International Nuclear Information System (INIS)

    Dobaczewski, Jacek

    2016-01-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results. (letter)

  15. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...... on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across...

  16. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    2013-01-01

    to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...... on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across...

  17. Modeling the outflow of liquid with initial supercritical parameters using the relaxation model for condensation

    Directory of Open Access Journals (Sweden)

    Lezhnin Sergey

    2017-01-01

    Full Text Available The two-temperature model of the outflow from a vessel with initial supercritical parameters of medium has been realized. The model uses thermodynamic non-equilibrium relaxation approach to describe phase transitions. Based on a new asymptotic model for computing the relaxation time, the outflow of water with supercritical initial pressure and super- and subcritical temperatures has been calculated.

  18. Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model

    International Nuclear Information System (INIS)

    Huangfu, Yigeng; Gao, Fei; Abbas-Turki, Abdeljalil; Bouquain, David; Miraoui, Abdellatif

    2013-01-01

    Highlights: • A multiphysics, 1D, dynamic SOFC model is developed. • The presented model is validated experimentally in eight different operating conditions. • Electrochemical and thermal dynamic transient time expressions are given in explicit forms. • Parameter sensitivity is discussed for different semi-empirical parameters in the model. - Abstract: In this paper, a multiphysics solid oxide fuel cell (SOFC) dynamic model is developed by using a one dimensional (1D) modeling approach. The dynamic effects of double layer capacitance on the electrochemical domain and the dynamic effect of thermal capacity on thermal domain are thoroughly considered. The 1D approach allows the model to predict the non-uniform distributions of current density, gas pressure and temperature in SOFC during its operation. The developed model has been experimentally validated, under different conditions of temperature and gas pressure. Based on the proposed model, the explicit time constant expressions for different dynamic phenomena in SOFC have been given and discussed in detail. A parameters sensitivity study has also been performed and discussed by using statistical Multi Parameter Sensitivity Analysis (MPSA) method, in order to investigate the impact of parameters on the modeling accuracy

  19. Threshold effects on renormalization group running of neutrino parameters in the low-scale seesaw model

    International Nuclear Information System (INIS)

    Bergstroem, Johannes; Ohlsson, Tommy; Zhang He

    2011-01-01

    We show that, in the low-scale type-I seesaw model, renormalization group running of neutrino parameters may lead to significant modifications of the leptonic mixing angles in view of so-called seesaw threshold effects. Especially, we derive analytical formulas for radiative corrections to neutrino parameters in crossing the different seesaw thresholds, and show that there may exist enhancement factors efficiently boosting the renormalization group running of the leptonic mixing angles. We find that, as a result of the seesaw threshold corrections to the leptonic mixing angles, various flavor symmetric mixing patterns (e.g., bi-maximal and tri-bimaximal mixing patterns) can be easily accommodated at relatively low energy scales, which is well within the reach of running and forthcoming experiments (e.g., the LHC).

  20. CHARACTERIZING AND PROPAGATING MODELING UNCERTAINTIES IN PHOTOMETRICALLY DERIVED REDSHIFT DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Abrahamse, Augusta; Knox, Lloyd; Schmidt, Samuel; Thorman, Paul; Anthony Tyson, J.; Zhan Hu

    2011-01-01

    The uncertainty in the redshift distributions of galaxies has a significant potential impact on the cosmological parameter values inferred from multi-band imaging surveys. The accuracy of the photometric redshifts measured in these surveys depends not only on the quality of the flux data, but also on a number of modeling assumptions that enter into both the training set and spectral energy distribution (SED) fitting methods of photometric redshift estimation. In this work we focus on the latter, considering two types of modeling uncertainties: uncertainties in the SED template set and uncertainties in the magnitude and type priors used in a Bayesian photometric redshift estimation method. We find that SED template selection effects dominate over magnitude prior errors. We introduce a method for parameterizing the resulting ignorance of the redshift distributions, and for propagating these uncertainties to uncertainties in cosmological parameters.

  1. Sensitivity of numerical dispersion modeling to explosive source parameters

    International Nuclear Information System (INIS)

    Baskett, R.L.; Cederwall, R.T.

    1991-01-01

    The calculation of downwind concentrations from non-traditional sources, such as explosions, provides unique challenges to dispersion models. The US Department of Energy has assigned the Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) the task of estimating the impact of accidental radiological releases to the atmosphere anywhere in the world. Our experience includes responses to over 25 incidents in the past 16 years, and about 150 exercises a year. Examples of responses to explosive accidents include the 1980 Titan 2 missile fuel explosion near Damascus, Arkansas and the hydrogen gas explosion in the 1986 Chernobyl nuclear power plant accident. Based on judgment and experience, we frequently estimate the source geometry and the amount of toxic material aerosolized as well as its particle size distribution. To expedite our real-time response, we developed some automated algorithms and default assumptions about several potential sources. It is useful to know how well these algorithms perform against real-world measurements and how sensitive our dispersion model is to the potential range of input values. In this paper we present the algorithms we use to simulate explosive events, compare these methods with limited field data measurements, and analyze their sensitivity to input parameters. 14 refs., 7 figs., 2 tabs

  2. The effects of parameter variation on MSET models of the Crystal River-3 feedwater flow system

    International Nuclear Information System (INIS)

    Miron, A.

    1998-01-01

    In this paper we develop further the results reported in Reference 1 to include a systematic study of the effects of varying MSET models and model parameters for the Crystal River-3 (CR) feedwater flow system The study used archived CR process computer files from November 1-December 15, 1993 that were provided by Florida Power Corporation engineers Fairman Bockhorst and Brook Julias. The results support the conclusion that an optimal MSET model, properly trained and deriving its inputs in real-time from no more than 25 of the sensor signals normally provided to a PWR plant process computer, should be able to reliably detect anomalous variations in the feedwater flow venturis of less than 0.1% and in the absence of a venturi sensor signal should be able to generate a virtual signal that will be within 0.1% of the correct value of the missing signal

  3. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1996-09-01

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes

  4. Predictive Models for Different Roughness Parameters During Machining Process of Peek Composites Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mata-Cabrera Francisco

    2013-10-01

    Full Text Available Polyetheretherketone (PEEK composite belongs to a group of high performance thermoplastic polymers and is widely used in structural components. To improve the mechanical and tribological properties, short fibers are added as reinforcement to the material. Due to its functional properties and potential applications, it’s impor- tant to investigate the machinability of non-reinforced PEEK (PEEK, PEEK rein- forced with 30% of carbon fibers (PEEK CF30, and reinforced PEEK with 30% glass fibers (PEEK GF30 to determine the optimal conditions for the manufacture of the parts. The present study establishes the relationship between the cutting con- ditions (cutting speed and feed rate and the roughness (Ra , Rt , Rq , Rp , by develop- ing second order mathematical models. The experiments were planned as per full factorial design of experiments and an analysis of variance has been performed to check the adequacy of the models. These state the adequacy of the derived models to obtain predictions for roughness parameters within ranges of parameters that have been investigated during the experiments. The experimental results show that the most influence of the cutting parameters is the feed rate, furthermore, proved that glass fiber reinforcements produce a worse machinability.

  5. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    Science.gov (United States)

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.

  6. What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast.

    Directory of Open Access Journals (Sweden)

    Artémis Llamosi

    2016-02-01

    Full Text Available Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation. Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.