WorldWideScience

Sample records for model parameter space

  1. Joint Dynamics Modeling and Parameter Identification for Space Robot Applications

    Directory of Open Access Journals (Sweden)

    Adenilson R. da Silva

    2007-01-01

    Full Text Available Long-term mission identification and model validation for in-flight manipulator control system in almost zero gravity with hostile space environment are extremely important for robotic applications. In this paper, a robot joint mathematical model is developed where several nonlinearities have been taken into account. In order to identify all the required system parameters, an integrated identification strategy is derived. This strategy makes use of a robust version of least-squares procedure (LS for getting the initial conditions and a general nonlinear optimization method (MCS—multilevel coordinate search—algorithm to estimate the nonlinear parameters. The approach is applied to the intelligent robot joint (IRJ experiment that was developed at DLR for utilization opportunity on the International Space Station (ISS. The results using real and simulated measurements have shown that the developed algorithm and strategy have remarkable features in identifying all the parameters with good accuracy.

  2. Space geodetic techniques for global modeling of ionospheric peak parameters

    Science.gov (United States)

    Alizadeh, M. Mahdi; Schuh, Harald; Schmidt, Michael

    The rapid development of new technological systems for navigation, telecommunication, and space missions which transmit signals through the Earth’s upper atmosphere - the ionosphere - makes the necessity of precise, reliable and near real-time models of the ionospheric parameters more crucial. In the last decades space geodetic techniques have turned into a capable tool for measuring ionospheric parameters in terms of Total Electron Content (TEC) or the electron density. Among these systems, the current space geodetic techniques, such as Global Navigation Satellite Systems (GNSS), Low Earth Orbiting (LEO) satellites, satellite altimetry missions, and others have found several applications in a broad range of commercial and scientific fields. This paper aims at the development of a three-dimensional integrated model of the ionosphere, by using various space geodetic techniques and applying a combination procedure for computation of the global model of electron density. In order to model ionosphere in 3D, electron density is represented as a function of maximum electron density (NmF2), and its corresponding height (hmF2). NmF2 and hmF2 are then modeled in longitude, latitude, and height using two sets of spherical harmonic expansions with degree and order 15. To perform the estimation, GNSS input data are simulated in such a way that the true position of the satellites are detected and used, but the STEC values are obtained through a simulation procedure, using the IGS VTEC maps. After simulating the input data, the a priori values required for the estimation procedure are calculated using the IRI-2012 model and also by applying the ray-tracing technique. The estimated results are compared with F2-peak parameters derived from the IRI model to assess the least-square estimation procedure and moreover, to validate the developed maps, the results are compared with the raw F2-peak parameters derived from the Formosat-3/Cosmic data.

  3. The parameter space of Cubic Galileon models for cosmic acceleration

    CERN Document Server

    Bellini, Emilio

    2013-01-01

    We use recent measurements of the expansion history of the universe to place constraints on the parameter space of cubic Galileon models. This gives strong constraints on the Lagrangian of these models. Most dynamical terms in the Galileon Lagrangian are constraint to be small and the acceleration is effectively provided by a constant term in the scalar potential, thus reducing, effectively, to a LCDM model for current acceleration. The effective equation of state is indistinguishable from that of a cosmological constant w = -1 and the data constraint it to have no temporal variations of more than at the few % level. The energy density of the Galileon can contribute only to about 10% of the acceleration energy density, being the other 90% a cosmological constant term. This demonstrates how useful direct measurements of the expansion history of the universe are at constraining the dynamical nature of dark energy.

  4. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  5. Parameter and state estimator for state space models.

    Science.gov (United States)

    Ding, Ruifeng; Zhuang, Linfan

    2014-01-01

    This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  6. Exploring the parameter space of warm-inflation models

    Science.gov (United States)

    Bastero-Gil, Mar; Berera, Arjun; Kronberg, Nico

    2015-12-01

    Warm inflation includes inflaton interactions with other fields throughout the inflationary epoch instead of confining such interactions to a distinct reheating era. Previous investigations have shown that, when certain constraints on the dynamics of these interactions and the resultant radiation bath are satisfied, a low-momentum-dominated dissipation coefficient propto T3/mχ2 can sustain an era of inflation compatible with CMB observations. In this work, we extend these analyses by including the pole-dominated dissipation term propto √mχ T exp(-mχ/T). We find that, with this enhanced dissipation, certain models, notably the quadratic hilltop potential, perform significantly better. Specifically, we can achieve 50 e-folds of inflation and a spectral index compatible with Planck data while requiring fewer mediator field (Script O(104) for the quadratic hilltop potential) and smaller coupling constants, opening up interesting model-building possibilities. We also highlight the significance of the specific parametric dependence of the dissipative coefficient which could prove useful in even greater reduction in field content.

  7. Joint Bayesian Analysis of Parameters and States in Nonlinear, Non-Gaussian State Space Models

    NARCIS (Netherlands)

    Barra, I.; Hoogerheide, L.F.; Koopman, S.J.; Lucas, A.

    2017-01-01

    We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent

  8. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models.

    Directory of Open Access Journals (Sweden)

    Catherine C Sun

    Full Text Available An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation. We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.

  9. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models.

    Science.gov (United States)

    Sun, Catherine C; Fuller, Angela K; Royle, J Andrew

    2014-01-01

    An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.

  10. Surrogate models for identifying robust, high yield regions of parameter space for ICF implosion simulations

    Science.gov (United States)

    Humbird, Kelli; Peterson, J. Luc; Brandon, Scott; Field, John; Nora, Ryan; Spears, Brian

    2016-10-01

    Next-generation supercomputer architecture and in-transit data analysis have been used to create a large collection of 2-D ICF capsule implosion simulations. The database includes metrics for approximately 60,000 implosions, with x-ray images and detailed physics parameters available for over 20,000 simulations. To map and explore this large database, surrogate models for numerous quantities of interest are built using supervised machine learning algorithms. Response surfaces constructed using the predictive capabilities of the surrogates allow for continuous exploration of parameter space without requiring additional simulations. High performing regions of the input space are identified to guide the design of future experiments. In particular, a model for the yield built using a random forest regression algorithm has a cross validation score of 94.3% and is consistently conservative for high yield predictions. The model is used to search for robust volumes of parameter space where high yields are expected, even given variations in other input parameters. Surrogates for additional quantities of interest relevant to ignition are used to further characterize the high yield regions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-697277.

  11. A morphing technique for signal modelling in a multidimensional space of coupling parameters

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    This note describes a morphing method that produces signal models for fits to data in which both the affected event yields and kinematic distributions are simultaneously taken into account. The signal model is morphed in a continuous manner through the available multi-dimensional parameter space. Searches for deviations from Standard Model predictions for Higgs boson properties have so far used information either from event yields or kinematic distributions. The combined approach described here is expected to substantially enhance the sensitivity to beyond the Standard Model contributions.

  12. Influence of Population Variation of Physiological Parameters in Computational Models of Space Physiology

    Science.gov (United States)

    Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and

  13. Application of separable parameter space techniques to multi-tracer PET compartment modeling.

    Science.gov (United States)

    Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J

    2016-02-07

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  14. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    Science.gov (United States)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  15. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    International Nuclear Information System (INIS)

    Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. (paper)

  16. Inclusion of the frequency effect in the lumped parameters transmission line model: State space formulation

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Sergio; Yamanaka, Fabio N.R.; Prado, Afonso J. [Faculdade de Engenharia de Ilha Solteira, Avenida Brasil Centro 56, Caixa Postal 31, Ilha Solteira, SP, CEP 15385-000 (Brazil); Pissolato, Jose [Universidade Estadual de Campinas, Caixa Postal 6101, CEP 13081-970, Campinas, SP (Brazil)

    2009-07-15

    The objective of this paper is to include the frequency dependence of the longitudinal parameters in the lumped parameters line model. The distributed nature of the transmission line was approximated by a cascade of {pi} circuits and the frequency effect was approximated by a rational function which was synthesized by an equivalent circuit. Then, the equivalent circuit was inserted in each {pi} circuit of the cascade. After that, the currents and voltages along the line were described in the form of state equations. This way, it was possible to obtain a formation rule of the state matrices lumped parameters model taking into account the frequency dependence. To confirm the validation of the state matrices obtained, the lumped parameters representation of frequency-dependent lines was used to represent a single-phase line and a three-phase line. The simulations were carried out using state space techniques and an electromagnetic transient program (EMTP) (in this case, the cascade was inserted in the EMTP). It is observed that the simulation results obtained with state space representation are in agreement with those results obtained with EMTP. (author)

  17. On the identification of multiple space dependent ionic parameters in cardiac electrophysiology modelling

    Science.gov (United States)

    Abidi, Yassine; Bellassoued, Mourad; Mahjoub, Moncef; Zemzemi, Nejib

    2018-03-01

    In this paper, we consider the inverse problem of space dependent multiple ionic parameters identification in cardiac electrophysiology modelling from a set of observations. We use the monodomain system known as a state-of-the-art model in cardiac electrophysiology and we consider a general Hodgkin-Huxley formalism to describe the ionic exchanges at the microscopic level. This formalism covers many physiological transmembrane potential models including those in cardiac electrophysiology. Our main result is the proof of the uniqueness and a Lipschitz stability estimate of ion channels conductance parameters based on some observations on an arbitrary subdomain. The key idea is a Carleman estimate for a parabolic operator with multiple coefficients and an ordinary differential equation system.

  18. "A space-time ensemble Kalman filter for state and parameter estimation of groundwater transport models"

    Science.gov (United States)

    Briseño, Jessica; Herrera, Graciela S.

    2010-05-01

    Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them. For this reason, the main objective of this work is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity, together with hydraulic head and contaminant concentration, and its application in a synthetic example. The method has three steps: 1) Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (ln K), random realizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHC). 2) The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the conductivity realizations. With these realization the mean of ln K, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-ln K-C in space and time. The covariance matrix is obtained averaging products of the ln K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables. The estimation points are the positions at which estimates of ln K, h or C are gathered. In an analogous way, the estimation times are those at which estimates of any of the three variables are gathered. 3) Finally the ln K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one

  19. Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds.

    Science.gov (United States)

    Noé, Laurent

    2017-01-01

    Spaced seeds , also named gapped q-grams, gapped k-mers, spaced q-grams , have been proven to be more sensitive than contiguous seeds ( contiguous q-grams, contiguous k-mers ) in nucleic and amino-acid sequences analysis. Initially proposed to detect sequence similarities and to anchor sequence alignments, spaced seeds have more recently been applied in several alignment-free related methods. Unfortunately, spaced seeds need to be initially designed. This task is known to be time-consuming due to the number of spaced seed candidates. Moreover, it can be altered by a set of arbitrary chosen parameters from the probabilistic alignment models used. In this general context, Dominant seeds have been introduced by Mak and Benson (Bioinformatics 25:302-308, 2009) on the Bernoulli model, in order to reduce the number of spaced seed candidates that are further processed in a parameter-free calculation of the sensitivity. We expand the scope of work of Mak and Benson on single and multiple seeds by considering the Hit Integration model of Chung and Park (BMC Bioinform 11:31, 2010), demonstrate that the same dominance definition can be applied, and that a parameter-free study can be performed without any significant additional cost. We also consider two new discrete models, namely the Heaviside and the Dirac models, where lossless seeds can be integrated. From a theoretical standpoint, we establish a generic framework on all the proposed models, by applying a counting semi-ring to quickly compute large polynomial coefficients needed by the dominance filter. From a practical standpoint, we confirm that dominant seeds reduce the set of, either single seeds to thoroughly analyse, or multiple seeds to store. Moreover, in http://bioinfo.cristal.univ-lille.fr/yass/iedera_dominance, we provide a full list of spaced seeds computed on the four aforementioned models, with one (continuous) parameter left free for each model, and with several (discrete) alignment lengths.

  20. Free flight in parameter space

    DEFF Research Database (Denmark)

    Dahlstedt, Palle; Nilsson, Per Anders

    2008-01-01

    The well-known difficulty of controlling many synthesis parameters in performance, for exploration and expression, is addressed. Inspired by interactive evolution, random vectors in parameter space are assigned to an array of pressure sensitive pads. Vectors are scaled with pressure and added...

  1. Theoretical justification of space-mapping-based modeling utilizing a database and on-demand parameter extraction

    DEFF Research Database (Denmark)

    Koziel, Slawomir; Bandler, John W.; Madsen, Kaj

    2006-01-01

    We present a theoretical justification of a recently introduced surrogate modeling methodology based on space mapping that relies on an available data base and on-demand parameter extraction. Fine model data, the so-called base set, is assumed available in the region of interest. To evaluate...... the surrogate, we perform parameter extraction with weighting coefficients dependent on the distance between the point of interest and base points. We provide theoretical results showing that the new methodology can assure any accuracy that is required (provided the base set is dense enough), which...

  2. Planning ahead for asteroid and comet hazard mitigation, phase 1: parameter space exploration and scenario modeling

    Energy Technology Data Exchange (ETDEWEB)

    Plesko, Catherine S [Los Alamos National Laboratory; Clement, R Ryan [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

    2009-01-01

    The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.

  3. State and parameter estimation of state-space model with entry-wise correlated uniform noise

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka; Kárný, Miroslav

    2014-01-01

    Roč. 28, č. 11 (2014), s. 1189-1205 ISSN 0890-6327 R&D Projects: GA TA ČR TA01030123; GA ČR GA13-13502S Institutional research plan: CEZ:AV0Z1075907 Keywords : state-space models * bounded noise * filtering problems * estimation algorithms * uncertain dynamic systems Subject RIV: BC - Control Systems Theory Impact factor: 1.346, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/pavelkova-0422958.pdf

  4. The bijection from data to parameter space with the standard DEB model quantifies the supply-demand spectrum.

    Science.gov (United States)

    Lika, Konstadia; Augustine, Starrlight; Pecquerie, Laure; Kooijman, Sebastiaan A L M

    2014-08-07

    The standard Dynamic Energy Budget (DEB) model assumes that food is converted to reserve and a fraction κ of mobilised reserve of an individual is allocated to somatic maintenance plus growth, while the rest is allocated to maturity maintenance plus maturation (in embryos and juveniles) or reproduction (in adults). The add_my_pet collection of over 300 animal species from most larger phyla, and all chordate classes, shows that this model fits energy data very well. Nine parameters determine nine data points at abundant food: dry/wet weight ratio, age at birth, puberty, death, weight at birth, metamorphosis, puberty, ultimate weight and ultimate reproduction rate. We demonstrate that, given a few other parameters, these nine data points also determine the nine parameters uniquely that are independent of food availability: maturity at birth, metamorphosis and puberty, specific assimilation, somatic maintenance and costs for structure, allocation fraction of mobilised reserve to soma, energy conductance, and ageing acceleration. We provide an efficient algorithm for mapping between data and parameter space in both directions and found expressions for the boundaries of the parameter and data spaces. One of them quantifies the position of species in the supply-demand spectrum, which reflects the internalisation of energetic control. We link eco-physiological properties of species to their position in this spectrum and discuss it in the context of homeostasis. Invertebrates and ray-finned fish turn out to be close to the supply end of the spectrum, while other vertebrates, including cartilaginous fish, have stronger demand tendencies. We explain why birds and mammals up-regulate metabolism during reproduction. We study some properties of the bijection using elasticity coefficients. The properties have applications in parameter estimation and in the analysis of evolutionary constraints on parameter values; the relationship between DEB parameters and data has similarities

  5. Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model

    Science.gov (United States)

    2013-01-01

    Background Parameter estimation from experimental data is critical for mathematical modeling of protein regulatory networks. For realistic networks with dozens of species and reactions, parameter estimation is an especially challenging task. In this study, we present an approach for parameter estimation that is effective in fitting a model of the budding yeast cell cycle (comprising 26 nonlinear ordinary differential equations containing 126 rate constants) to the experimentally observed phenotypes (viable or inviable) of 119 genetic strains carrying mutations of cell cycle genes. Results Starting from an initial guess of the parameter values, which correctly captures the phenotypes of only 72 genetic strains, our parameter estimation algorithm quickly improves the success rate of the model to 105–111 of the 119 strains. This success rate is comparable to the best values achieved by a skilled modeler manually choosing parameters over many weeks. The algorithm combines two search and optimization strategies. First, we use Latin hypercube sampling to explore a region surrounding the initial guess. From these samples, we choose ∼20 different sets of parameter values that correctly capture wild type viability. These sets form the starting generation of differential evolution that selects new parameter values that perform better in terms of their success rate in capturing phenotypes. In addition to producing highly successful combinations of parameter values, we analyze the results to determine the parameters that are most critical for matching experimental outcomes and the most competitive strains whose correct outcome with a given parameter vector forces numerous other strains to have incorrect outcomes. These “most critical parameters” and “most competitive strains” provide biological insights into the model. Conversely, the “least critical parameters” and “least competitive strains” suggest ways to reduce the computational complexity of the

  6. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  7. Physics parameter space of tokamak ignition devices

    International Nuclear Information System (INIS)

    Selcow, E.C.; Peng, Y.K.M.; Uckan, N.A.; Houlberg, W.A.

    1985-01-01

    This paper describes the results of a study to explore the physics parameter space of tokamak ignition experiments. A new physics systems code has been developed to perform the study. This code performs a global plasma analysis using steady-state, two-fluid, energy-transport models. In this paper, we discuss the models used in the code and their application to the analysis of compact ignition experiments. 8 refs., 8 figs., 1 tab

  8. A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons.

    Directory of Open Access Journals (Sweden)

    Dimitrios V Vavoulis

    Full Text Available Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks usually adopt a global search algorithm (for example, an evolutionary algorithm, often in combination with a local search method (such as gradient descent in order to minimize the value of a cost function, which measures the discrepancy between various features of the available experimental data and model output. In this study, we approach the problem of parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can then be tackled using a range of well-established statistical inference methods. The particular method we used was Kitagawa's self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used. Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-dimensional inference problems based on noisy electrophysiological data and, therefore, a

  9. Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes.

    Science.gov (United States)

    Pooley, C M; Bishop, S C; Marion, G

    2015-06-06

    Bayesian statistics provides a framework for the integration of dynamic models with incomplete data to enable inference of model parameters and unobserved aspects of the system under study. An important class of dynamic models is discrete state space, continuous-time Markov processes (DCTMPs). Simulated via the Doob-Gillespie algorithm, these have been used to model systems ranging from chemistry to ecology to epidemiology. A new type of proposal, termed 'model-based proposal' (MBP), is developed for the efficient implementation of Bayesian inference in DCTMPs using Markov chain Monte Carlo (MCMC). This new method, which in principle can be applied to any DCTMP, is compared (using simple epidemiological SIS and SIR models as easy to follow exemplars) to a standard MCMC approach and a recently proposed particle MCMC (PMCMC) technique. When measurements are made on a single-state variable (e.g. the number of infected individuals in a population during an epidemic), model-based proposal MCMC (MBP-MCMC) is marginally faster than PMCMC (by a factor of 2-8 for the tests performed), and significantly faster than the standard MCMC scheme (by a factor of 400 at least). However, when model complexity increases and measurements are made on more than one state variable (e.g. simultaneously on the number of infected individuals in spatially separated subpopulations), MBP-MCMC is significantly faster than PMCMC (more than 100-fold for just four subpopulations) and this difference becomes increasingly large. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. MFV reductions of MSSM parameter space

    Energy Technology Data Exchange (ETDEWEB)

    AbdusSalam, S.S. [INFN - Sezione di Roma,P.le A. Moro 2, I-00185 Roma (Italy); The Abdus Salam ICTP,Trieste (Italy); Burgess, C.P. [Department of Physics & Astronomy, McMaster University,Hamilton ON (Canada); Perimeter Institute for Theoretical Physics,Waterloo, ON (Canada); Division PH -TH, CERN,CH-1211, Genève 23 (Switzerland); Quevedo, F. [The Abdus Salam ICTP,Trieste (Italy); DAMTP, Cambridge University,Cambridge (United Kingdom)

    2015-02-11

    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tan β∼10 with multi-TeV sparticles.

  11. MFV reductions of MSSM parameter space

    Science.gov (United States)

    AbdusSalam, S. S.; Burgess, C. P.; Quevedo, F.

    2015-02-01

    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tan β ˜ 10 with multi-TeV sparticles.

  12. MFV Reductions of MSSM Parameter Space

    CERN Document Server

    AbdusSalam, S.S.; Quevedo, F.

    2015-01-01

    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours...

  13. Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh—Rose neuron model

    International Nuclear Information System (INIS)

    Jia Bing

    2014-01-01

    A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces

  14. A Tool for Parameter-space Explorations

    Science.gov (United States)

    Murase, Yohsuke; Uchitane, Takeshi; Ito, Nobuyasu

    A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results. A few examples of the automated parameter selection are also demonstrated.

  15. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    Science.gov (United States)

    Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang

    2016-06-01

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.

  16. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Gebhardt, Sascha [RWTH Aachen University, Virtual Reality Group, IT Center, Seffenter Weg 23, 52074 Aachen (Germany); Kuhlen, Torsten [Forschungszentrum Jülich GmbH, Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Wilhelm-Johnen-Straße, 52425 Jülich (Germany); Schulz, Wolfgang [Fraunhofer, ILT Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)

    2016-06-08

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.

  17. Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost

    OpenAIRE

    Nemeth, Christopher; Fearnhead, Paul; Mihaylova, Lyudmila

    2013-01-01

    Poyiadjis et al. (2011) show how particle methods can be used to estimate both the score and the observed information matrix for state space models. These methods either suffer from a computational cost that is quadratic in the number of particles, or produce estimates whose variance increases quadratically with the amount of data. This paper introduces an alternative approach for estimating these terms at a computational cost that is linear in the number of particles. The method is derived u...

  18. Concept design theory and model for multi-use space facilities: Analysis of key system design parameters through variance of mission requirements

    Science.gov (United States)

    Reynerson, Charles Martin

    This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.

  19. Response model parameter linking

    NARCIS (Netherlands)

    Barrett, M.L.D.

    2015-01-01

    With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of equating observed scores on different test forms. This thesis argues, however, that the use of item response models does not require

  20. On Data Space Selection and Data Processing for Parameter Identification in a Reaction-Diffusion Model Based on FRAP Experiments

    Directory of Open Access Journals (Sweden)

    Stefan Kindermann

    2015-01-01

    Full Text Available Fluorescence recovery after photobleaching (FRAP is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data (preprocessing represents an important issue. The aim of this paper is twofold. First, we formulate and solve the problem of relevant FRAP data selection. The theoretical findings are illustrated by the comparison of the results of parameter identification when the full data set was used and the case when the irrelevant data set (data with negligible impact on the confidence interval of the estimated parameters was removed from the data space. Second, we analyze and compare two approaches of FRAP data processing. Our proposition, surprisingly for the FRAP community, claims that the data set represented by the FRAP recovery curves in form of a time series (integrated data approach commonly used by the FRAP community leads to a larger confidence interval compared to the full (spatiotemporal data approach.

  1. The bijection from data to parameter space with the standard DEB model quantifies the supply–demand spectrum

    DEFF Research Database (Denmark)

    Lika, Konstadia; Augustine, Starrlight; Pecquerie, Laure

    2014-01-01

    ) or reproduction (in adults). The add_my_pet collection of over 300 animal species from most larger phyla, and all chordate classes, shows that this model fits energy data very well. Nine parameters determine nine data points at abundant food: dry/wet weight ratio, age at birth, puberty, death, weight at birth...... to be close to the supply end of the spectrum, while other vertebrates, including cartilaginous fish, have stronger demand tendencies. We explain why birds and mammals up-regulate metabolism during reproduction. We study some properties of the bijection using elasticity coefficients. The properties have...

  2. Particle system based adaptive sampling on spherical parameter space to improve the MDL method for construction of statistical shape models.

    Science.gov (United States)

    Xu, Rui; Zhou, Xiangrong; Hirano, Yasushi; Tachibana, Rie; Hara, Takeshi; Kido, Shoji; Fujita, Hiroshi

    2013-01-01

    Minimum description length (MDL) based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs). However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right) lungs and 50 cases of livers, (left and right) kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests.

  3. Particle System Based Adaptive Sampling on Spherical Parameter Space to Improve the MDL Method for Construction of Statistical Shape Models

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2013-01-01

    Full Text Available Minimum description length (MDL based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs. However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right lungs and 50 cases of livers, (left and right kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests.

  4. Parameter space of general gauge mediation

    International Nuclear Information System (INIS)

    Rajaraman, Arvind; Shirman, Yuri; Smidt, Joseph; Yu, Felix

    2009-01-01

    We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.

  5. A generalized Lyapunov theory for robust root clustering of linear state space models with real parameter uncertainty

    Science.gov (United States)

    Yedavalli, R. K.

    1992-01-01

    The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.

  6. State-Space Analysis of Model Error: A Probabilistic Parameter Estimation Framework with Spatial Analysis of Variance

    Science.gov (United States)

    2012-09-30

    atmospheric models and the chaotic growth of initial-condition (IC) error. The aim of our work is to provide new methods that begin to systematically disentangle the model inadequacy signal from the initial condition error signal.

  7. The Parameters of Common Information Spaces

    DEFF Research Database (Denmark)

    Bossen, Claus

    2002-01-01

    The paper proposes a refinement of the concept of 'Common Information Spaces' (CIS), which has been proposed as a conceptual framework for the CWCW field in order to provide analyses of cooperative work. The refinement is developed through an introductory discussion of previous analyses of CIS...... and on the basis of a thorough description of the CIS of a hospital ward based on ethnographic fieldwork. The initially definition is refined by the introduction of 7 parameters: (i) the degree of distribution of work; (ii) the multiplicity of webs of significance; (iii) the level of required articulation work...

  8. The bijection from data to parameter space with the standard deb model quantifies the supply-demand spectrum.

    NARCIS (Netherlands)

    Lika, K.; Augustine, S.; Pecquerie, L; Kooijman, S.A.L.M.

    2014-01-01

    The standard Dynamic Energy Budget (DEB) model assumes that food is converted to reserve and a fraction κ of mobilised reserve of an individual is allocated to somatic maintenance plus growth, while the rest is allocated to maturity maintenance plus maturation (in embryos and juveniles) or

  9. Triple Junction InGaP/GaAs/Ge Solar Cell Optimization: The Design Parameters for a 36.2% Efficient Space Cell Using Silvaco ATLAS Modeling & Simulation

    OpenAIRE

    Tsutagawa, Michael H.; Michael, Sherif

    2009-01-01

    This paper presents the design parameters for a triple junction InGaP/GaAs/Ge space solar cell with a simulated maximum efficiency of 36.28% using Silvaco ATLAS Virtual Wafer Fabrication tool. Design parameters include the layer material, doping concentration, and thicknesses.

  10. The reach of the ATLAS experiment in SUSY parameter space

    CERN Document Server

    Dietrich, Janet

    2009-01-01

    Already with very first data, the ATLAS experiment should be sensitive to a SUSY signal well beyond the regions explored by the Tevatron. We present a detailed study of the ATLAS discovery reach in the parameter space for various SUSY models. The expected uncertainties on the background estimates are taken ito account.

  11. Recovering a Probabilistic Knowledge Structure by Constraining Its Parameter Space

    Science.gov (United States)

    Stefanutti, Luca; Robusto, Egidio

    2009-01-01

    In the Basic Local Independence Model (BLIM) of Doignon and Falmagne ("Knowledge Spaces," Springer, Berlin, 1999), the probabilistic relationship between the latent knowledge states and the observable response patterns is established by the introduction of a pair of parameters for each of the problems: a lucky guess probability and a careless…

  12. Space Environment Modeling

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes presentation materials and outputs from operational space environment models produced by the NOAA Space Weather Prediction Center (SWPC) and...

  13. Measuring the black hole parameters from space

    International Nuclear Information System (INIS)

    Zakharov, A.; De Paolis, F.; Ingrosso, G.; Nucita, A.

    2006-01-01

    Recently Holz and Wheeler considered a very attracting possibility to detect retro-MACHOs, i.e., retro-images of the Sun by a Schwarzschild black hole. In this paper we discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. In some sense that is a manifestation of gravitational lens effect in the strong gravitational field near black hole horizon and a generalization of the retro-gravitational lens phenomenon. We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. Some time ago suggested to search shadows at the Galactic Center. In this paper we present the boundaries for shadows. We also propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer. We propose also a procedure to measure a black hole charge with future space missions. Keywords: black hole physics, gravitational lenses, microlensing. (authors)

  14. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  15. Linking Item Response Model Parameters.

    Science.gov (United States)

    van der Linden, Wim J; Barrett, Michelle D

    2016-09-01

    With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of test equating scores on different test forms. This paper argues, however, that the use of item response models does not require any test score equating. Instead, it involves the necessity of parameter linking due to a fundamental problem inherent in the formal nature of these models-their general lack of identifiability. More specifically, item response model parameters need to be linked to adjust for the different effects of the identifiability restrictions used in separate item calibrations. Our main theorems characterize the formal nature of these linking functions for monotone, continuous response models, derive their specific shapes for different parameterizations of the 3PL model, and show how to identify them from the parameter values of the common items or persons in different linking designs.

  16. Integrated Logistics Support Analysis of the International Space Station Alpha, Background and Summary of Mathematical Modeling and Failure Density Distributions Pertaining to Maintenance Time Dependent Parameters

    Science.gov (United States)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The process of predicting the values of maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability and maintenance support costs. There are two types of parameters in the logistics and maintenance world: a. Fixed; b. Variable Fixed parameters, such as cost per man hour, are relatively easy to predict and forecast. These parameters normally follow a linear path and they do not change randomly. However, the variable parameters subject to the study in this report such as MTBF do not follow a linear path and they normally fall within the distribution curves which are discussed in this publication. The very challenging task then becomes the utilization of statistical techniques to accurately forecast the future non-linear time dependent variable arisings and events with a high confidence level. This, in turn, shall translate in tremendous cost savings and improved availability all around.

  17. Exploiting intrinsic fluctuations to identify model parameters.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  18. Space dependence of reactivity parameters on reactor dynamic perturbation measurements

    International Nuclear Information System (INIS)

    Maletti, R.; Ziegenbein, D.

    1985-01-01

    Practical application of reactor-dynamic perturbation measurements for on-power determination of differential reactivity weight of control rods and power coefficients of reactivity has shown a significant dependence of parameters on the position of outcore detectors. The space dependence of neutron flux signal in the core of a VVER-440-type reactor was measured by means of 60 self-powered neutron detectors. The greatest neutron flux alterations are located close to moved control rods and in height of the perturbation position. By means of computations, detector positions can be found in the core in which the one-point model is almost valid. (author)

  19. Charting the parameter space of the global 21-cm signal

    Science.gov (United States)

    Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan; Lotem, Matan

    2017-12-01

    The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work, we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming haloes; the efficiency, spectral energy distribution and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range z = 6-40 for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models, we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high-redshift Universe, namely the Ly α intensity, the X-ray heating rate and the production rate of ionizing photons. These correlations can be used to directly link future measurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks.

  20. On the consistency of bootstrap testing for a parameter on the boundary of the parameter space

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Nielsen, Heino Bohn; Rahbek, Anders

    2017-01-01

    It is well known that with a parameter on the boundary of the parameter space, such as in the classic cases of testing for a zero location parameter or no autoregressive conditional heteroskedasticity (ARCH) effects, the classic nonparametric bootstrap – based on unrestricted parameter estimates...... the standard and bootstrap Lagrange multiplier tests as well as the asymptotic quasi-likelihood ratio test....

  1. Entropy considerations in constraining the mSUGRA parameter space

    International Nuclear Information System (INIS)

    Nunez, Dario; Sussman, Roberto A.; Zavala, Jesus; Nellen, Lukas; Cabral-Rosetti, Luis G.; Mondragon, Myriam

    2006-01-01

    We explore the use of two criteria to constraint the allowed parameter space in mSUGRA models. Both criteria are based in the calculation of the present density of neutralinos as dark matter in the Universe. The first one is the usual ''abundance'' criterion which is used to calculate the relic density after the ''freeze-out'' era. To compute the relic density we used the numerical public code micrOMEGAs. The second criterion applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas evaluating then the change in the entropy per particle of this gas between the ''freeze-out'' era and present day virialized structures (i.e systems in virial equilibrium). An ''entropy-consistency'' criterion emerges by comparing theoretical and empirical estimates of this entropy. The main objective of our work is to determine for which regions of the parameter space in the mSUGRA model are both criteria consistent with the 2σ bounds according to WMAP for the relic density: 0.0945 < ΩCDMh2 < 0.1287. As a first result, we found that for A0 = 0, sgnμ +, small values of tanβ are not favored; only for tanβ ≅ 50 are both criteria significantly consistent

  2. Weighted two-parameter Bergman space inequalities

    OpenAIRE

    Wilson, J. Michael

    2003-01-01

    For f , a function defined on Rd1 ×Rd2 , take u to be its biharmonic extension into R+ +1 × Rd2 +1 . In this paper we prove strong d1 + sufficient conditions on measures µ and weights v such that the inequality 1/q q ∇2 u dµ(x1 , x2 , y1 , y2 ) d +1 d +1 R+1 ×R+2 1/p ≤ f p v dx Rd1 ×Rd2 will hold for all f in a reasonable test class, for 1 < p ≤ 2 ≤ q < ∞. Our result generalizes earlier work by R. L. Wheeden and the author on one-parameter harmonic extensions. We also obtain sufficient conditions ...

  3. Rain-Induced Propagation Parameters For Earth-Space ...

    African Journals Online (AJOL)

    space path at two elevation angles and some rain rates representing high and low availability requirements in Nigeria. The paper first calculates the slant path scattering parameters at various frequencies and rain rates, and then uses the new ...

  4. Robust control of UAVs using the parameter space approach

    NARCIS (Netherlands)

    Abdelmoeti, Samer; Carloni, Raffaella

    2016-01-01

    In this paper a robust PID controller for quadrotor unmanned aerial vehicles is proposed that uses the pa- rameter space approach. Stability and robustness analyses are carried out in the controller parameter space to determine a set of stable controller gains that guarantee also robustness against

  5. Search Space Calculation to Improve Parameter Estimation of Excitation Control Systems

    Directory of Open Access Journals (Sweden)

    Andrés J. Saavedra-Montes

    2013-11-01

    Full Text Available A method to calculate the search space for each parameter in an excitation control system is presented in this paper. The calculated search space is intended to reduce the number of parameter solution sets that can be found by an estimation algorithm, reducing its processing time. The method considers a synchronous generator time constant range between 4s and 10s, an excitation control system performance index, a controller design technique, and the excitation control system model structure. When the obtained search space is used to estimate the parameters, less processing time is used by the algorithm. Also the estimated parameters are closer to the reference ones.

  6. One-parameter supersymmetric Hamiltonians in momentum space

    International Nuclear Information System (INIS)

    Rosu, H C; Mancas, S C; Chen, P

    2015-01-01

    Recent results on the one-parameter supersymmetric deformation in momentum space by Curtright and Zachos (2014 J. Phys. A: Math. Theor. 47 145201) are presented in a more general framework following our own papers. We extend the analysis of Curtright and Zachos by including the supersymmetric partner one-parameter deformation. (paper)

  7. Multimedia Mapping using Continuous State Space Models

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue

    2004-01-01

    In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space'. Simulatio...

  8. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  9. Effect of solar wind plasma parameters on space weather

    Science.gov (United States)

    Rathore, Balveer S.; Gupta, Dinesh C.; Kaushik, Subhash C.

    2015-01-01

    Today's challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field (IMF) conditions. Correlative studies between geomagnetic storms (GMSs) and the various interplanetary (IP) field/plasma parameters have been performed to search for the causes of geomagnetic activity and develop models for predicting the occurrence of GMSs, which are important for space weather predictions. We find a possible relation between GMSs and solar wind and IMF parameters in three different situations and also derived the linear relation for all parameters in three situations. On the basis of the present statistical study, we develop an empirical model. With the help of this model, we can predict all categories of GMSs. This model is based on the following fact: the total IMF Btotal can be used to trigger an alarm for GMSs, when sudden changes in total magnetic field Btotal occur. This is the first alarm condition for a storm's arrival. It is observed in the present study that the southward Bz component of the IMF is an important factor for describing GMSs. A result of the paper is that the magnitude of Bz is maximum neither during the initial phase (at the instant of the IP shock) nor during the main phase (at the instant of Disturbance storm time (Dst) minimum). It is seen in this study that there is a time delay between the maximum value of southward Bz and the Dst minimum, and this time delay can be used in the prediction of the intensity of a magnetic storm two-three hours before the main phase of a GMS. A linear relation has been derived between the maximum value of the southward component of Bz and the Dst, which is Dst = (-0.06) + (7.65) Bz +t. Some auxiliary conditions should be fulfilled with this, for example the speed of the solar wind should, on average, be 350 km s-1 to 750 km s-1, plasma β should be low and, most importantly, plasma temperature should be low for intense

  10. Parameter estimation in space systems using recurrent neural networks

    Science.gov (United States)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  11. The Dark Side of the Solar Neutrino Parameter Space

    CERN Document Server

    De Gouvêa, A; Murayama, H; Gouvea, Andre de; Friedland, Alexander; Murayama, Hitoshi

    2000-01-01

    Results of neutrino oscillation experiments have always been presented on the(sin^2 2theta, Delta m^2) parameter space for the case of two-flavoroscillations. We point out, however, that this parameterization misses the halfof the parameter space pi/4 < theta <= pi/2 (``the dark side''), which isphysically inequivalent to the region 0 <= theta <= pi/4 (``the light side'')in the presence of matter effects. The MSW solutions to the solar neutrinoproblem can extend to the dark side, especially if we take the conservativeattitude to allow higher confidence levels, ignore some of the experimentalresults in the fits, or relax theoretical predictions. Furthermore even theso-called ``vacuum oscillation'' solution distinguishes the dark and the lightsides. We urge experimental collaborations to present their results on theentire parameter space.

  12. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    Directory of Open Access Journals (Sweden)

    Christian Held

    2013-01-01

    Full Text Available Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline′s modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  13. Space market model space industry input-output model

    Science.gov (United States)

    Hodgin, Robert F.; Marchesini, Roberto

    1987-01-01

    The goal of the Space Market Model (SMM) is to develop an information resource for the space industry. The SMM is intended to contain information appropriate for decision making in the space industry. The objectives of the SMM are to: (1) assemble information related to the development of the space business; (2) construct an adequate description of the emerging space market; (3) disseminate the information on the space market to forecasts and planners in government agencies and private corporations; and (4) provide timely analyses and forecasts of critical elements of the space market. An Input-Output model of market activity is proposed which are capable of transforming raw data into useful information for decision makers and policy makers dealing with the space sector.

  14. Review of the different methods to derive average spacing from resolved resonance parameters sets

    International Nuclear Information System (INIS)

    Fort, E.; Derrien, H.; Lafond, D.

    1979-12-01

    The average spacing of resonances is an important parameter for statistical model calculations, especially concerning non fissile nuclei. The different methods to derive this average value from resonance parameters sets have been reviewed and analyzed in order to tentatively detect their respective weaknesses and propose recommendations. Possible improvements are suggested

  15. Incremental parameter estimation of kinetic metabolic network models

    Directory of Open Access Journals (Sweden)

    Jia Gengjie

    2012-11-01

    Full Text Available Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE. Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified. Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates exceeds that of metabolites (chemical species. Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.

  16. Cost Modeling for Space Telescope

    Science.gov (United States)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  17. Efficient characterization of high-dimensional parameter spaces for systems biology

    Science.gov (United States)

    2011-01-01

    Background A biological system's robustness to mutations and its evolution are influenced by the structure of its viable space, the region of its space of biochemical parameters where it can exert its function. In systems with a large number of biochemical parameters, viable regions with potentially complex geometries fill a tiny fraction of the whole parameter space. This hampers explorations of the viable space based on "brute force" or Gaussian sampling. Results We here propose a novel algorithm to characterize viable spaces efficiently. The algorithm combines global and local explorations of a parameter space. The global exploration involves an out-of-equilibrium adaptive Metropolis Monte Carlo method aimed at identifying poorly connected viable regions. The local exploration then samples these regions in detail by a method we call multiple ellipsoid-based sampling. Our algorithm explores efficiently nonconvex and poorly connected viable regions of different test-problems. Most importantly, its computational effort scales linearly with the number of dimensions, in contrast to "brute force" sampling that shows an exponential dependence on the number of dimensions. We also apply this algorithm to a simplified model of a biochemical oscillator with positive and negative feedback loops. A detailed characterization of the model's viable space captures well known structural properties of circadian oscillators. Concretely, we find that model topologies with an essential negative feedback loop and a nonessential positive feedback loop provide the most robust fixed period oscillations. Moreover, the connectedness of the model's viable space suggests that biochemical oscillators with varying topologies can evolve from one another. Conclusions Our algorithm permits an efficient analysis of high-dimensional, nonconvex, and poorly connected viable spaces characteristic of complex biological circuitry. It allows a systematic use of robustness as a tool for model

  18. Parameter choice in Banach space regularization under variational inequalities

    International Nuclear Information System (INIS)

    Hofmann, Bernd; Mathé, Peter

    2012-01-01

    The authors study parameter choice strategies for the Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depends on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader, the authors review in an appendix a few instances where the validity of a variational inequality can be established. (paper)

  19. B→τν: Opening up the charged Higgs parameter space with R-parity violation

    International Nuclear Information System (INIS)

    Bose, Roshni; Kundu, Anirban

    2012-01-01

    The theoretically clean channel B + →τ + ν shows a close to 3σ discrepancy between the Standard Model prediction and the data. This in turn puts a strong constraint on the parameter space of a two-Higgs doublet model, including R-parity conserving supersymmetry. The constraint is so strong that it almost smells of fine-tuning. We show how the parameter space opens up with the introduction of suitable R-parity violating interactions, and release the tension between data and theory.

  20. Noncommutative spaces from matrix models

    Science.gov (United States)

    Lu, Lei

    Noncommutative (NC) spaces commonly arise as solutions to matrix model equations of motion. They are natural generalizations of the ordinary commutative spacetime. Such spaces may provide insights into physics close to the Planck scale, where quantum gravity becomes relevant. Although there has been much research in the literature, aspects of these NC spaces need further investigation. In this dissertation, we focus on properties of NC spaces in several different contexts. In particular, we study exact NC spaces which result from solutions to matrix model equations of motion. These spaces are associated with finite-dimensional Lie-algebras. More specifically, they are two-dimensional fuzzy spaces that arise from a three-dimensional Yang-Mills type matrix model, four-dimensional tensor-product fuzzy spaces from a tensorial matrix model, and Snyder algebra from a five-dimensional tensorial matrix model. In the first part of this dissertation, we study two-dimensional NC solutions to matrix equations of motion of extended IKKT-type matrix models in three-space-time dimensions. Perturbations around the NC solutions lead to NC field theories living on a two-dimensional space-time. The commutative limit of the solutions are smooth manifolds which can be associated with closed, open and static two-dimensional cosmologies. One particular solution is a Lorentzian fuzzy sphere, which leads to essentially a fuzzy sphere in the Minkowski space-time. In the commutative limit, this solution leads to an induced metric that does not have a fixed signature, and have a non-constant negative scalar curvature, along with singularities at two fixed latitudes. The singularities are absent in the matrix solution which provides a toy model for resolving the singularities of General relativity. We also discussed the two-dimensional fuzzy de Sitter space-time, which has irreducible representations of su(1,1) Lie-algebra in terms of principal, complementary and discrete series. Field

  1. Simplicial models for trace spaces

    DEFF Research Database (Denmark)

    Raussen, Martin

    Directed Algebraic Topology studies topological spaces in which certain directed paths (d-paths) - in general irreversible - are singled out. The main interest concerns the spaces of directed paths between given end points - and how those vary under variation of the end points. The original...... motivation stems from certain models for concurrent computation. So far, spaces of d-paths and their topological invariants have only been determined in cases that were elementary to overlook. In this paper, we develop a systematic approach describing spaces of directed paths - up to homotopy equivalence...

  2. Space market model development project

    Science.gov (United States)

    Bishop, Peter C.

    1987-01-01

    The objectives of the research program, Space Market Model Development Project, (Phase 1) were: (1) to study the need for business information in the commercial development of space; and (2) to propose a design for an information system to meet the identified needs. Three simultaneous research strategies were used in proceeding toward this goal: (1) to describe the space business information which currently exists; (2) to survey government and business representatives on the information they would like to have; and (3) to investigate the feasibility of generating new economical information about the space industry.

  3. Parameter space of experimental chaotic circuits with high-precision control parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Francisco F. G. de; Rubinger, Rero M. [Instituto de Física e Química, Universidade Federal de Itajubá, Itajubá, MG (Brazil); Sartorelli, José C., E-mail: sartorelli@if.usp.br [Universidade de São Paulo, São Paulo, SP (Brazil); Albuquerque, Holokx A. [Departamento de Física, Universidade do Estado de Santa Catarina, Joinville, SC (Brazil); Baptista, Murilo S. [Institute of Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen (United Kingdom)

    2016-08-15

    We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.

  4. Model parameter updating using Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Treml, C. A. (Christine A.); Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  5. Rapid Computation of Thermodynamic Properties Over Multidimensional Nonbonded Parameter Spaces using Adaptive Multistate Reweighting

    OpenAIRE

    Naden, Levi N.; Shirts, Michael R.

    2015-01-01

    We show how thermodynamic properties of molecular models can be computed over a large, multidimensional parameter space by combining multistate reweighting analysis with a linear basis function approach. This approach reduces the computational cost to estimate thermodynamic properties from molecular simulations for over 130,000 tested parameter combinations from over a thousand CPU years to tens of CPU days. This speed increase is achieved primarily by computing the potential energy as a line...

  6. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...

  7. Dimensionality reduction of RKHS model parameters.

    Science.gov (United States)

    Taouali, Okba; Elaissi, Ilyes; Messaoud, Hassani

    2015-07-01

    This paper proposes a new method to reduce the parameter number of models developed in the Reproducing Kernel Hilbert Space (RKHS). In fact, this number is equal to the number of observations used in the learning phase which is assumed to be high. The proposed method entitled Reduced Kernel Partial Least Square (RKPLS) consists on approximating the retained latent components determined using the Kernel Partial Least Square (KPLS) method by their closest observation vectors. The paper proposes the design and the comparative study of the proposed RKPLS method and the Support Vector Machines on Regression (SVR) technique. The proposed method is applied to identify a nonlinear Process Trainer PT326 which is a physical process available in our laboratory. Moreover as a thermal process with large time response may help record easily effective observations which contribute to model identification. Compared to the SVR technique, the results from the proposed RKPLS method are satisfactory. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Scattering-parameter extraction and calibration techniques for RF free-space material characterization

    DEFF Research Database (Denmark)

    Kaniecki, M.; Saenz, E.; Rolo, L.

    2014-01-01

    This paper demonstrates a method for material characterization (permittivity, permeability, loss tangent) based on the scattering parameters. The performance of the extraction algorithm will be shown for modelled and measured data. The measurements were carried out at the European Space Agency...

  9. Vertices in parameter space: Double crises which destroy chaotic attractors

    International Nuclear Information System (INIS)

    Gallas, J.A.C.; Grebogi, C.; Yorke, J.A.

    1993-01-01

    We report a new phenomenon observed along a crisis locus when two control parameters of physical models are varied simultaneously: the existence of one or several vertices. The occurrence of a vertex (loss of differentiability) on a crisis locus implies the existence of simultaneous sudden changes in the structure of both the chaotic attractor and of its basin boundary. Vertices correspond to degenerate tangencies between manifolds of the unstable periodic orbits accessible from the basin of the chaotic attractor. Physically, small parameter perturbations (noise) about such vertices induce drastic changes in the dynamics

  10. Emergence and spread of antibiotic resistance: setting a parameter space.

    Science.gov (United States)

    Martínez, José Luis; Baquero, Fernando

    2014-05-01

    The emergence and spread of antibiotic resistance among human pathogens is a relevant problem for human health and one of the few evolution processes amenable to experimental studies. In the present review, we discuss some basic aspects of antibiotic resistance, including mechanisms of resistance, origin of resistance genes, and bottlenecks that modulate the acquisition and spread of antibiotic resistance among human pathogens. In addition, we analyse several parameters that modulate the evolution landscape of antibiotic resistance. Learning why some resistance mechanisms emerge but do not evolve after a first burst, whereas others can spread over the entire world very rapidly, mimicking a chain reaction, is important for predicting the evolution, and relevance for human health, of a given mechanism of resistance. Because of this, we propose that the emergence and spread of antibiotic resistance can only be understood in a multi-parameter space. Measuring the effect on antibiotic resistance of parameters such as contact rates, transfer rates, integration rates, replication rates, diversification rates, and selection rates, for different genes and organisms, growing under different conditions in distinct ecosystems, will allow for a better prediction of antibiotic resistance and possibilities of focused interventions.

  11. Parameter identification in the logistic STAR model

    DEFF Research Database (Denmark)

    Ekner, Line Elvstrøm; Nejstgaard, Emil

    We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th......We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter...

  12. Simplicial models of trace spaces

    DEFF Research Database (Denmark)

    Raussen, Martin

    2010-01-01

    Directed algebraic topology studies topological spaces in which certain directed paths (d-paths) are singled out; in most cases of interest, the reverse path of a d-path is no longer a d-path. We are mainly concerned with spaces of directed paths between given end points, and how those vary under...... variation of the end points. The original motivation stems from certain models for concurrent computation. So far, homotopy types of spaces of d-paths and their topological invariants have only been determined in cases that were elementary to overlook. In this paper, we develop a systematic approach...

  13. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  14. Application of lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil. Subsequently, the assembly of the dynamic stiffness matrix for the foundation is considered, and the solution for obtaining the steady state response, when using lumped-parameter models is given. (au)

  15. Computational Modeling of Space Physiology

    Science.gov (United States)

    Lewandowski, Beth E.; Griffin, Devon W.

    2016-01-01

    The Digital Astronaut Project (DAP), within NASAs Human Research Program, develops and implements computational modeling for use in the mitigation of human health and performance risks associated with long duration spaceflight. Over the past decade, DAP developed models to provide insights into space flight related changes to the central nervous system, cardiovascular system and the musculoskeletal system. Examples of the models and their applications include biomechanical models applied to advanced exercise device development, bone fracture risk quantification for mission planning, accident investigation, bone health standards development, and occupant protection. The International Space Station (ISS), in its role as a testing ground for long duration spaceflight, has been an important platform for obtaining human spaceflight data. DAP has used preflight, in-flight and post-flight data from short and long duration astronauts for computational model development and validation. Examples include preflight and post-flight bone mineral density data, muscle cross-sectional area, and muscle strength measurements. Results from computational modeling supplement space physiology research by informing experimental design. Using these computational models, DAP personnel can easily identify both important factors associated with a phenomenon and areas where data are lacking. This presentation will provide examples of DAP computational models, the data used in model development and validation, and applications of the model.

  16. CHAMP: Changepoint Detection Using Approximate Model Parameters

    Science.gov (United States)

    2014-06-01

    form (with independent emissions or otherwise), in which parameter estimates are available via means such as maximum likelihood fit, MCMC , or sample ...counterparts, including the ability to generate a full posterior distribution over changepoint locations and offering a natural way to incorporate prior... sample consensus method. Our modifications also remove a significant restriction on model definition when detecting parameter changes within a single

  17. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all....... For a comparison the parameters are also estimated by an output error method, where the sum of squared simulation error is minimized. The former methodology is optimal for short-term prediction whereas the latter is optimal for simulations. Hence, depending on the purpose it is possible to select whether...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  18. Setting Parameters for Biological Models With ANIMO

    NARCIS (Netherlands)

    Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran

    2014-01-01

    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions

  19. Dynamical quantum Hall effect in the parameter space.

    Science.gov (United States)

    Gritsev, V; Polkovnikov, A

    2012-04-24

    Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect.

  20. Parameters and error of a theoretical model

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs

  1. Modeling thermally active building components using space mapping

    DEFF Research Database (Denmark)

    Pedersen, Frank; Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    simplified models of the components do not always provide useful solutions, since they are not always able to reproduce the correct thermal behavior. The space mapping technique transforms a simplified, but computationally inexpensive model, in order to align it with a detailed model or measurements....... This paper describes the principle of the space mapping technique, and introduces a simple space mapping technique. The technique is applied to a lumped parameter model of a thermo active component, which provides a model of the thermal performance of the component as a function of two design parameters...

  2. Application of lumped-parameter models

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse......This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1...

  3. Setting Parameters for Biological Models With ANIMO

    Directory of Open Access Journals (Sweden)

    Stefano Schivo

    2014-03-01

    Full Text Available ANIMO (Analysis of Networks with Interactive MOdeling is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions between biological entities in form of a graph, while the parameters determine the speed of occurrence of such interactions. When a mismatch is observed between the behavior of an ANIMO model and experimental data, we want to update the model so that it explains the new data. In general, the topology of a model can be expanded with new (known or hypothetical nodes, and enables it to match experimental data. However, the unrestrained addition of new parts to a model causes two problems: models can become too complex too fast, to the point of being intractable, and too many parts marked as "hypothetical" or "not known" make a model unrealistic. Even if changing the topology is normally the easier task, these problems push us to try a better parameter fit as a first step, and resort to modifying the model topology only as a last resource. In this paper we show the support added in ANIMO to ease the task of expanding the knowledge on biological networks, concentrating in particular on the parameter settings.

  4. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  5. Modelling and parameter estimation of dynamic systems

    CERN Document Server

    Raol, JR; Singh, J

    2004-01-01

    Parameter estimation is the process of using observations from a system to develop mathematical models that adequately represent the system dynamics. The assumed model consists of a finite set of parameters, the values of which are calculated using estimation techniques. Most of the techniques that exist are based on least-square minimization of error between the model response and actual system response. However, with the proliferation of high speed digital computers, elegant and innovative techniques like filter error method, H-infinity and Artificial Neural Networks are finding more and mor

  6. Models and parameters for environmental radiological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C W [ed.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  7. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  8. Models and parameters for environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base

  9. On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.

    Science.gov (United States)

    Yamazaki, Keisuke

    2012-07-01

    Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  11. Ground level enhancement (GLE) energy spectrum parameters model

    Science.gov (United States)

    Qin, G.; Wu, S.

    2017-12-01

    We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.

  12. Simulative Analysis of Various Parameters on Free Space Optical Communication System

    Science.gov (United States)

    Kumar, Naresh; Rana, Ashwani Kumar

    2013-09-01

    The Free Space Optical (FSO) communication system provides a high bandwidth, small size, light weight, low power and low cost alternative to present microwave systems. In this paper, we have designed a model of FSO system using OPTISYSTEM™ simulator to establish an FSO link by a range of 5 km with BER ˜ 10-6 achieved and reported analysis of different parameter that play important role in FSO communication system.

  13. Investigations of the Parameter Space for the LHC Luminosity Upgrade

    CERN Document Server

    Koutchouk, Jean-Pierre

    2006-01-01

    Increasing the LHC luminosity by a factor of ten is a major challenge, especially for the beam-beam long-range interactions and even more for the magnet technology and insertion layout. To help identifying consistent solutions in this multi-dimensional constrained space, a parametric model of an LHC insertion was prepared, based on the present LHC layout, i.e. ?quadrupole first? and small crossing angle. The model deals with the layout, beam optics, beam-beam effect, superconductor margin and peak heat deposition in the coils. The approach is simplified to obtain a large gain in the optimization time. This study puts in evidence, as critical for the luminosity upgrade, the following actions: enlarging significantly the quadrupole aperture, moving the insertion towards the interaction point, using the highest available critical field superconductors and complementing the insertion with an early separation scheme. The luminosity reach can then be extended to 2×1035 cm-2s-1 while 1×1035 can be obtained with si...

  14. Exploitation of ISAR Imagery in Euler Parameter Space

    National Research Council Canada - National Science Library

    Baird, Christopher; Kersey, W. T; Giles, R; Nixon, W. E

    2005-01-01

    .... The Euler parameters have potential value in target classification but have historically met with limited success due to ambiguities that arise in decomposition as well as the parameters' sensitivity...

  15. SP_Ace: a new code to derive stellar parameters and elemental abundances

    Science.gov (United States)

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters

  16. Advances in Modelling, System Identification and Parameter ...

    Indian Academy of Sciences (India)

    models determined from flight test data by using parameter estimation methods find extensive use in design/modification of flight control systems, high fidelity flight simulators and evaluation of handling qualitites of aircraft and rotorcraft. R K Mehra et al present new algorithms and results for flutter tests and adaptive notching ...

  17. A lumped parameter model of plasma focus

    International Nuclear Information System (INIS)

    Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro

    1999-01-01

    A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)

  18. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  19. Sensor placement for calibration of spatially varying model parameters

    Science.gov (United States)

    Nath, Paromita; Hu, Zhen; Mahadevan, Sankaran

    2017-08-01

    This paper presents a sensor placement optimization framework for the calibration of spatially varying model parameters. To account for the randomness of the calibration parameters over space and across specimens, the spatially varying parameter is represented as a random field. Based on this representation, Bayesian calibration of spatially varying parameter is investigated. To reduce the required computational effort during Bayesian calibration, the original computer simulation model is substituted with Kriging surrogate models based on the singular value decomposition (SVD) of the model response and the Karhunen-Loeve expansion (KLE) of the spatially varying parameters. A sensor placement optimization problem is then formulated based on the Bayesian calibration to maximize the expected information gain measured by the expected Kullback-Leibler (K-L) divergence. The optimization problem needs to evaluate the expected K-L divergence repeatedly which requires repeated calibration of the spatially varying parameter, and this significantly increases the computational effort of solving the optimization problem. To overcome this challenge, an approximation for the posterior distribution is employed within the optimization problem to facilitate the identification of the optimal sensor locations using the simulated annealing algorithm. A heat transfer problem with spatially varying thermal conductivity is used to demonstrate the effectiveness of the proposed method.

  20. Modeling volatility using state space models.

    Science.gov (United States)

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).

  1. The level density parameters for fermi gas model

    International Nuclear Information System (INIS)

    Zuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi

    1986-01-01

    Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D D , radiative capture width Γ γ 0 at neutron binding energy and cumulative level number N 0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements

  2. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  3. How to constrain inflationary parameter space with minimal priors

    International Nuclear Information System (INIS)

    Hamann, Jan; Lesgourgues, Julien; Valkenburg, Wessel

    2008-01-01

    We update constraints on the Hubble function H(φ) during inflation, using the most recent cosmic microwave background (CMB) and large scale structure (LSS) data. Our main focus is on a comparison between various commonly used methods of calculating the primordial power spectrum via analytical approximations and the results obtained by integrating the exact equations numerically. In each case, we impose naive, minimally restrictive priors on the duration of inflation. We find that the choice of priors has an impact on the results: the bounds on inflationary parameters can vary by up to a factor of two. Nevertheless, it should be noted that, within the region allowed by the minimal prior of the exact method, the accuracy of the approximations is sufficient for current data. We caution, however, that a careless minimal implementation of the approximative methods allows models for which the assumptions behind the analytical approximations fail, and recommend using the exact numerical method for a self-consistent analysis of cosmological data

  4. Analisis Perbandingan Parameter Transformasi Antar Itrf Hasil Hitungan Kuadrat Terkecil Model Helmert 14-parameter Dengan Parameter Standar Iers

    OpenAIRE

    Fadly, Romi; Dewi, Citra

    2014-01-01

    This research aims to compare the 14 transformation parameters between ITRF from computation result using the Helmert 14-parameter models with IERS standard parameters. The transforma- tion parameters are calculated from the coordinates and velocities of ITRF05 to ITRF00 epoch 2000.00, and from ITRF08 to ITRF05 epoch 2005.00 for respectively transformation models. The transformation parameters are compared to the IERS standard parameters, then tested the signifi- cance of the d...

  5. The Space Laser Business Model

    Science.gov (United States)

    2005-01-01

    Creating long-duration, high-powered lasers, for satellites, that can withstand the type of optical misalignment and damage dished out by the unforgiving environment of space, is work that is unique to NASA. It is complicated, specific work, where each step forward is into uncharted territory. In the 1990s, as this technology was first being created, NASA gave free reign to a group of "laser jocks" to develop their own business model and supply the Space Agency with the technology it needed. It was still to be a part of NASA as a division of Goddard Space Flight Center, but would operate independently out of a remote office. The idea for this satellite laboratory was based on the Skunk Works concept at Lockheed Martin Corporation. Formerly known as the Lockheed Corporation, in 1943, the aerospace firm, realizing that the type of advanced research it needed done could not be performed within the confines of a larger company, allowed a group of researchers and engineers to essentially run their own microbusiness without the corporate oversight. The Skunk Works project, in Burbank, California, produced America s first jet fighter, the world s most successful spy plane (U-2), the first 3-times-the-speed-of-sound surveillance aircraft, and the F-117A Nighthawk Stealth Fighter. Boeing followed suit with its Phantom Works, an advanced research and development branch of the company that operates independent of the larger unit and is responsible for a great deal of its most cutting-edge research. NASA s version of this advanced business model was the Space Lidar Technology Center (SLTC), just south of Goddard, in College Park, Maryland. Established in 1998 under a Cooperative Agreement between Goddard and the University of Maryland s A. James Clark School of Engineering, it was a high-tech laser shop where a small group of specialists, never more than 20 employees, worked all hours of the day and night to create the cutting- edge technology the Agency required of them. Drs

  6. Direct Parametric Image Reconstruction in Reduced Parameter Space for Rapid Multi-Tracer PET Imaging.

    Science.gov (United States)

    Cheng, Xiaoyin; Li, Zhoulei; Liu, Zhen; Navab, Nassir; Huang, Sung-Cheng; Keller, Ulrich; Ziegler, Sibylle; Shi, Kuangyu

    2015-02-12

    The separation of multiple PET tracers within an overlapping scan based on intrinsic differences of tracer pharmacokinetics is challenging, due to limited signal-to-noise ratio (SNR) of PET measurements and high complexity of fitting models. In this study, we developed a direct parametric image reconstruction (DPIR) method for estimating kinetic parameters and recovering single tracer information from rapid multi-tracer PET measurements. This is achieved by integrating a multi-tracer model in a reduced parameter space (RPS) into dynamic image reconstruction. This new RPS model is reformulated from an existing multi-tracer model and contains fewer parameters for kinetic fitting. Ordered-subsets expectation-maximization (OSEM) was employed to approximate log-likelihood function with respect to kinetic parameters. To incorporate the multi-tracer model, an iterative weighted nonlinear least square (WNLS) method was employed. The proposed multi-tracer DPIR (MTDPIR) algorithm was evaluated on dual-tracer PET simulations ([18F]FDG and [11C]MET) as well as on preclinical PET measurements ([18F]FLT and [18F]FDG). The performance of the proposed algorithm was compared to the indirect parameter estimation method with the original dual-tracer model. The respective contributions of the RPS technique and the DPIR method to the performance of the new algorithm were analyzed in detail. For the preclinical evaluation, the tracer separation results were compared with single [18F]FDG scans of the same subjects measured 2 days before the dual-tracer scan. The results of the simulation and preclinical studies demonstrate that the proposed MT-DPIR method can improve the separation of multiple tracers for PET image quantification and kinetic parameter estimations.

  7. Constant-parameter capture-recapture models

    Science.gov (United States)

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  8. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer ...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented.......This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...

  9. Constraining the mSUGRA (minimal supergravity) parameter space using the entropy of dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Dario; Zavala, Jesus; Nellen, Lukas; Sussman, Roberto A [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), AP 70-543, Mexico 04510 DF (Mexico); Cabral-Rosetti, Luis G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Avenida Universidad 282 Pte., Col. Centro, Apartado Postal 752, C. P. 76000, Santiago de Queretaro, Qro. (Mexico); Mondragon, Myriam, E-mail: nunez@nucleares.unam.mx, E-mail: jzavala@nucleares.unam.mx, E-mail: jzavala@shao.ac.cn, E-mail: lukas@nucleares.unam.mx, E-mail: sussman@nucleares.unam.mx, E-mail: lgcabral@ciidet.edu.mx, E-mail: myriam@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (IF-UNAM), Apartado Postal 20-364, 01000 Mexico DF (Mexico); Collaboration: For the Instituto Avanzado de Cosmologia, IAC

    2008-05-15

    We derive an expression for the entropy of a dark matter halo described using a Navarro-Frenk-White model with a core. The comparison of this entropy with that of dark matter in the freeze-out era allows us to constrain the parameter space in mSUGRA models. Moreover, combining these constraints with the ones obtained from the usual abundance criterion and demanding that these criteria be consistent with the 2{sigma} bounds for the abundance of dark matter: 0.112{<=}{Omega}{sub DM}h{sup 2}{<=}0.122, we are able to clearly identify validity regions among the values of tan{beta}, which is one of the parameters of the mSUGRA model. We found that for the regions of the parameter space explored, small values of tan{beta} are not favored; only for tan {beta} Asymptotically-Equal-To 50 are the two criteria significantly consistent. In the region where the two criteria are consistent we also found a lower bound for the neutralino mass, m{sub {chi}}{>=}141 GeV.

  10. Model parameter learning using Kullback-Leibler divergence

    Science.gov (United States)

    Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan

    2018-02-01

    In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.

  11. Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves

    Science.gov (United States)

    Saleem, M.; Resmi, L.; Misra, Kuntal; Pai, Archana; Arun, K. G.

    2018-03-01

    Short duration Gamma Ray Bursts (SGRB) and their afterglows are among the most promising electromagnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broad-band, visible across the entire electromagnetic window from γ-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multidimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming that all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow down the regions of afterglow parameter space for a uniform top-hat jet model, which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multimessenger astronomy with coincident GW-EM observations.

  12. Modelling tourists arrival using time varying parameter

    Science.gov (United States)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  13. Parameter estimation in nonlinear models for pesticide degradation

    International Nuclear Information System (INIS)

    Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.

    1991-01-01

    A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)

  14. Lumped Parameters Model of a Crescent Pump

    Directory of Open Access Journals (Sweden)

    Massimo Rundo

    2016-10-01

    Full Text Available This paper presents the lumped parameters model of an internal gear crescent pump with relief valve, able to estimate the steady-state flow-pressure characteristic and the pressure ripple. The approach is based on the identification of three variable control volumes regardless of the number of gear teeth. The model has been implemented in the commercial environment LMS Amesim with the development of customized components. Specific attention has been paid to the leakage passageways, some of them affected by the deformation of the cover plate under the action of the delivery pressure. The paper reports the finite element method analysis of the cover for the evaluation of the deflection and the validation through a contactless displacement transducer. Another aspect described in this study is represented by the computational fluid dynamics analysis of the relief valve, whose results have been used for tuning the lumped parameters model. Finally, the validation of the entire model of the pump is presented in terms of steady-state flow rate and of pressure oscillations.

  15. Modeling Space Radiation with Bleomycin

    Data.gov (United States)

    National Aeronautics and Space Administration — Space radiation is a mixed field of solar particle events (proton) and particles of Galactic Cosmic Rays (GCR) with different energy levels. These radiation events...

  16. Changes in Periodontal and Microbial Parameters after the Space ...

    African Journals Online (AJOL)

    2017-10-26

    Oct 26, 2017 ... of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and. Tannerella forshia were not observed in any of the samples in short-term. Further long-term and comprehensive investigations are necessary. KEYWORDS: Anaerobic microorganism, periodontology, space maintainer. Changes in ...

  17. Determination of surface parameters and fluxes for climate studies from space observation. Methods, results and problems

    Science.gov (United States)

    Becker, F.; Seguin, B.

    Climate being the result of many interconnected processes, it can hardly be understood without models which describe these various processes as quantitatively as possible and define the parameters which are relevant for climate studies. Among those, surface processes and therefore surface parameters are now recognized to be of great importance. Some examples are discussed in the first part, showing the great interest to measure the relevant parameters on a multi-year basis, over large areas with sufficiently dense array and on a stable basis, in order to monitor climate changes or to study the impact on climate of the modifications of some relevant parameters which are analysed. Since space observations from satellites fulfil these requirements, it is clear that they will become very soon a fundamental tool for climate studies. Unfortunately, as it is discussed in the second part, satellites do measure only spectral radiances at the top of the atmosphere and the determination of the relevant surface parameters (or fluxes) from these radiances still raises many problems which have to be solved, although many progresses have already been made. The aim of this paper is therefore to review and discuss these problems and the various ways they have been tackled until now. The first part is devoted to an overview of what needs to be measured and why, while the existing methods for determining the most important surface parameters from space observations are presented in the second part where a particular attention is given to the theoretical and experimental validations of these methods, their limits and the problems still to be solved.

  18. Changes in Periodontal and Microbial Parameters after the Space ...

    African Journals Online (AJOL)

    Conclusion: Although, the results of this study demonstrate that the application of fixed or removable SM appliances in children induced an increase of clinical periodontal parameters, anaerobic microbiota consisting of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forshia were not ...

  19. Space and Astrophysical Plasmas: Matched filtering-parameter ...

    Indian Academy of Sciences (India)

    The parameters estimated from the theoretical and experimental whistler curves are matched to have higher accuracy using digital filters. This yields a resolution ten times better in the time domain. We have tested the applicability of this technique for the analysis of whistlers recorded at Varanasi. It is found that the whistlers ...

  20. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  1. Parameter estimation in fractional diffusion models

    CERN Document Server

    Kubilius, Kęstutis; Ralchenko, Kostiantyn

    2017-01-01

    This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...

  2. Likelihood functions for state space models with diffuse initial conditions

    NARCIS (Netherlands)

    Koopman, S.J.; Shephard, N.; de Vos, A.F.

    2010-01-01

    State space models with non-stationary processes and/or fixed regression effects require a state vector with diffuse initial conditions. Different likelihood functions can be adopted for the estimation of parameters in time-series models with diffuse initial conditions. In this article, we consider

  3. Likelihood functions for state space models with diffuse initial conditions

    NARCIS (Netherlands)

    Francke, M.K.; Koopmans, S.J.; de Vos, A.F.

    2008-01-01

    State space models with nonstationary processes and fixed regression effects require a state vector with diffuse initial conditions. Different likelihood functions can be adopted for the estimation of parameters in time series models with diffuse initial conditions. In this paper we consider

  4. Model parameters estimation and sensitivity by genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca

    2003-01-01

    In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The

  5. Moose models with vanishing S parameter

    International Nuclear Information System (INIS)

    Casalbuoni, R.; De Curtis, S.; Dominici, D.

    2004-01-01

    In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2) L and U(1) Y at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric

  6. My Life with State Space Models

    DEFF Research Database (Denmark)

    Lundbye-Christensen, Søren

    2007-01-01

    State space models have had a tremendous impact on the analysis of time series. Even though the models and ideas are much older the work that Mike West and others started in the 1980ies brought the attention to the statisticians and the models and inferential possibilities have developed enormously....... The conceptual idea behind the state space model is that the evolution over time in the object we are observing and the measurement process itself are modelled separately. My very first serious analysis of a data set was done using a state space model, and since then I seem to have been "haunted" by state space...... models. I will not try to give a thorough exposition of the development from simple linear Gaussian state space models to the highly non-linear models analysed with computer intensive methods. Instead I will give examples of some health related applications, that I have been involved in, and relate...

  7. Parameter spaces for linear and nonlinear whistler-mode waves

    International Nuclear Information System (INIS)

    Summers, Danny; Tang, Rongxin; Omura, Yoshiharu; Lee, Dong-Hun

    2013-01-01

    We examine the growth of magnetospheric whistler-mode waves which comprises a linear growth phase followed by a nonlinear growth phase. We construct time-profiles for the wave amplitude that smoothly match at the transition between linear and nonlinear wave growth. This matching procedure can only take place over a limited “matching region” in (N h /N 0 ,A T )-space, where A T is the electron thermal anisotropy, N h is the hot (energetic) electron number density, and N 0 is the cold (background) electron number density. We construct this matching region and determine how the matching wave amplitude varies throughout the region. Further, we specify a boundary in (N h /N 0 ,A T )-space that separates a region where only linear chorus wave growth can occur from the region in which fully nonlinear chorus growth is possible. We expect that this boundary should prove of practical use in performing computationally expensive full-scale particle simulations, and in interpreting experimental wave data

  8. Nonlinear Parameter-Varying AeroServoElastic Reduced Order Model for Aerostructural Sensing and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate nonlinear, parameter-varying (PV),...

  9. Constraining the loop quantum gravity parameter space from phenomenology

    Science.gov (United States)

    Brahma, Suddhasattwa; Ronco, Michele

    2018-03-01

    Development of quantum gravity theories rarely takes inputs from experimental physics. In this letter, we take a small step towards correcting this by establishing a paradigm for incorporating putative quantum corrections, arising from canonical quantum gravity (QG) theories, in deriving falsifiable modified dispersion relations (MDRs) for particles on a deformed Minkowski space-time. This allows us to differentiate and, hopefully, pick between several quantization choices via testable, state-of-the-art phenomenological predictions. Although a few explicit examples from loop quantum gravity (LQG) (such as the regularization scheme used or the representation of the gauge group) are shown here to establish the claim, our framework is more general and is capable of addressing other quantization ambiguities within LQG and also those arising from other similar QG approaches.

  10. Pump Component Model in SPACE Code

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kyoung Doo

    2010-08-01

    This technical report describes the pump component model in SPACE code. A literature survey was made on pump models in existing system codes. The models embedded in SPACE code were examined to check the confliction with intellectual proprietary rights. Design specifications, computer coding implementation, and test results are included in this report

  11. International Space Station Model Correlation Analysis

    Science.gov (United States)

    Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael

    2018-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.

  12. Constraining the mSUGRA parameter space through entropy and abundance criteria

    International Nuclear Information System (INIS)

    Cabral-Rosetti, Luis G.; Mondragon, Myriam; Nunez, Dario; Sussman, Roberto A.; Zavala, Jesus; Nellen, Lukas

    2007-01-01

    We explore the use of two criteria to constrain the allowed parameter space in mSUGRA models; both criteria are based in the calculation of the present density of neutralinos χ0 as Dark Matter in the Universe. The first one is the usual ''abundance'' criterion that requieres that present neutralino relic density complies with 0.0945 < ΩCDMh2 < 0.1287, which are the 2σ bounds according to WMAP. To calculate the relic density we use the public numerical code micrOMEGAS. The second criterion is the original idea presented in [3] that basically applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas, and then evaluate the change in entropy per particle of this gas between the freeze-out era and present day virialized structures. An 'entropy consistency' criterion emerges by comparing theoretical and empirical estimates of this entropy. One of the objetives of the work is to analyze the joint application of both criteria, already done in [3], to see if their results, using approximations for the calculations of the relic density, agree with the results coming from the exact numerical results of micrOMEGAS. The main objetive of the work is to use this method to constrain the parameter space in mSUGRA models that are inputs for the calculations of micrOMEGAS, and thus to get some bounds on the predictions for the SUSY spectra

  13. Models for setting ATM parameter values

    DEFF Research Database (Denmark)

    Blaabjerg, Søren; Gravey, A.; Romæuf, L.

    1996-01-01

    presents approximate methods and discusses their applicability. We then discuss the problem of obtaining traffic characteristic values for a connection that has crossed a series of switching nodes. This problem is particularly relevant for the traffic contract components corresponding to ICIs...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...... essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper...

  14. Modeling the long-term evolution of space debris

    Science.gov (United States)

    Nikolaev, Sergei; De Vries, Willem H.; Henderson, John R.; Horsley, Matthew A.; Jiang, Ming; Levatin, Joanne L.; Olivier, Scot S.; Pertica, Alexander J.; Phillion, Donald W.; Springer, Harry K.

    2017-03-07

    A space object modeling system that models the evolution of space debris is provided. The modeling system simulates interaction of space objects at simulation times throughout a simulation period. The modeling system includes a propagator that calculates the position of each object at each simulation time based on orbital parameters. The modeling system also includes a collision detector that, for each pair of objects at each simulation time, performs a collision analysis. When the distance between objects satisfies a conjunction criterion, the modeling system calculates a local minimum distance between the pair of objects based on a curve fitting to identify a time of closest approach at the simulation times and calculating the position of the objects at the identified time. When the local minimum distance satisfies a collision criterion, the modeling system models the debris created by the collision of the pair of objects.

  15. Space motion sickness medications: interference with biomedical parameters

    Science.gov (United States)

    Vernikos-Danellis, J.; Winget, C. M.; Leach, C. S.; Rosenblatt, L. S.; Lyman, J.; Beljan, J. R.

    1977-01-01

    The possibility that drugs administered to Skylab 3 (SL-3) and 4 (SL-4) crewmen for space motion sickness may have interfered with their biomedical evaluation in space was investigated. Healthy volunteers received combinations of Scopolamine/Dexedrine for four days in regimens similar to those used in these missions. Urine samples, heart rate, body temperature, mood and performance were analyzed for drug-related changes. Twenty-four hour urine samples were analyzed by the same procedures as those used to analyze the flight samples. Hormone concentrations determined included cortisol, epinephrine, norepinephrine, aldosterone and antidiuretic hormone (ADH). In addition, volume, specific gravity, osmolarity, sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chloride (Cl), inorganic phosphate, uric acid and creatinine were measured. Performance was not affected by the Scopolamine/Dexedrine. The drug combination increased daily mean heart rate (HR) significantly in all the subjects and daily mean rectal temperature (RT) in some of the subjects. A 2-4 hr phase shift in the HR circadian rhythm was also observed which indicates that internal circadian synchrony was disturbed by the drugs. Psychological and subjective evaluation indicated that the subjects could usually identify which days they were given the drugs by an increase in tension and anxiety, decreased patience, restlessness, decreased appetite, difficulty in sleeping and feelings of increased heart rate and body temperature. Urinary electrolytes were not changed significantly by the drug, but marked and significant changes occurred in urine volume and hormone excretion patterns. Scopolamine/Dexedrine caused consistent elevations in urinary cortisol and epinephrine and a transient elevation in ADH. Norepinephrine excretion was decreased, but there was no significant change in aldosterone excretion or in 24 hr urine volume. A comparison of these findings with the first four days of inflight data from the

  16. Embedding a State Space Model Into a Markov Decision Process

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund; Jørgensen, Erik; Højsgaard, Søren

    2011-01-01

    In agriculture Markov decision processes (MDPs) with finite state and action space are often used to model sequential decision making over time. For instance, states in the process represent possible levels of traits of the animal and transition probabilities are based on biological models...... estimated from data collected from the animal or herd. State space models (SSMs) are a general tool for modeling repeated measurements over time where the model parameters can evolve dynamically. In this paper we consider methods for embedding an SSM into an MDP with finite state and action space. Different...... ways of discretizing an SSM are discussed and methods for reducing the state space of the MDP are presented. An example from dairy production is given...

  17. Preliminary Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  18. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    Science.gov (United States)

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2018-01-01

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  19. Quantum metric spaces as a model for pregeometry

    International Nuclear Information System (INIS)

    Alvarez, E.; Cespedes, J.; Verdaguer, E.

    1992-01-01

    A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold

  20. Dengue human infection model performance parameters.

    Science.gov (United States)

    Endy, Timothy P

    2014-06-15

    Dengue is a global health problem and of concern to travelers and deploying military personnel with development and licensure of an effective tetravalent dengue vaccine a public health priority. The dengue viruses (DENVs) are mosquito-borne flaviviruses transmitted by infected Aedes mosquitoes. Illness manifests across a clinical spectrum with severe disease characterized by intravascular volume depletion and hemorrhage. DENV illness results from a complex interaction of viral properties and host immune responses. Dengue vaccine development efforts are challenged by immunologic complexity, lack of an adequate animal model of disease, absence of an immune correlate of protection, and only partially informative immunogenicity assays. A dengue human infection model (DHIM) will be an essential tool in developing potential dengue vaccines or antivirals. The potential performance parameters needed for a DHIM to support vaccine or antiviral candidates are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Exploring drivers of wetland hydrologic fluxes across parameters and space

    Science.gov (United States)

    Jones, C. N.; Cheng, F. Y.; Mclaughlin, D. L.; Basu, N. B.; Lang, M.; Alexander, L. C.

    2017-12-01

    Depressional wetlands provide diverse ecosystem services, ranging from critical habitat to the regulation of landscape hydrology. The latter is of particular interest, because while hydrologic connectivity between depressional wetlands and downstream waters has been a focus of both scientific research and policy, it remains difficult to quantify the mode, magnitude, and timing of this connectivity at varying spatial and temporary scales. To do so requires robust empirical and modeling tools that accurately represent surface and subsurface flowpaths between depressional wetlands and other landscape elements. Here, we utilize a parsimonious wetland hydrology model to explore drivers of wetland water fluxes in different archetypal wetland-rich landscapes. We validated the model using instrumented sites from regions that span North America: Prairie Pothole Region (south-central Canada), Delmarva Peninsula (Mid-Atlantic Coastal Plain), and Big Cypress Swamp (southern Florida). Then, using several national scale datasets (e.g., National Wetlands Inventory, USFWS; National Hydrography Dataset, USGS; Soil Survey Geographic Database, NRCS), we conducted a global sensitivity analysis to elucidate dominant drivers of simulated fluxes. Finally, we simulated and compared wetland hydrology in five contrasting landscapes dominated by depressional wetlands: prairie potholes, Carolina and Delmarva bays, pocosins, western vernal pools, and Texas coastal prairie wetlands. Results highlight specific drivers that vary across these regions. Largely, hydroclimatic variables (e.g., PET/P ratios) controlled the timing and magnitude of wetland connectivity, whereas both wetland morphology (e.g., storage capacity and watershed size) and soil characteristics (e.g., ksat and confining layer depth) controlled the duration and mode (surface vs. subsurface) of wetland connectivity. Improved understanding of the drivers of wetland hydrologic connectivity supports enhanced, region

  2. Derivation and application of blending constraints in lamination parameter space for composite optimisation

    NARCIS (Netherlands)

    Macquart, T.B.M.J.; Bordogna, MT; Lancelot, P.M.G.J.; De Breuker, R.

    2016-01-01

    The present paper proposes a set of blending constraints expressed in lamination parameter space, applicable during the continuous optimisation of composite structures. Thicknesses and ply orientations of large composite structures are often locally optimised in response to unequal spatial load

  3. Fitting State Space Models with EViews

    Directory of Open Access Journals (Sweden)

    Filip A. M. Van den Bossche

    2011-05-01

    Full Text Available This paper demonstrates how state space models can be fitted in EViews. We first briefly introduce EViews as an econometric software package. Next we fit a local level model to the Nile data. We then show how a multivariate “latent risk” model can be developed, making use of the EViews programming environment. We conclude by summarizing the possibilities and limitations of the software package when it comes to state space modeling.

  4. Clustering reveals limits of parameter identifiability in multi-parameter models of biochemical dynamics.

    Science.gov (United States)

    Nienałtowski, Karol; Włodarczyk, Michał; Lipniacki, Tomasz; Komorowski, Michał

    2015-09-29

    Compared to engineering or physics problems, dynamical models in quantitative biology typically depend on a relatively large number of parameters. Progress in developing mathematics to manipulate such multi-parameter models and so enable their efficient interplay with experiments has been slow. Existing solutions are significantly limited by model size. In order to simplify analysis of multi-parameter models a method for clustering of model parameters is proposed. It is based on a derived statistically meaningful measure of similarity between groups of parameters. The measure quantifies to what extend changes in values of some parameters can be compensated by changes in values of other parameters. The proposed methodology provides a natural mathematical language to precisely communicate and visualise effects resulting from compensatory changes in values of parameters. As a results, a relevant insight into identifiability analysis and experimental planning can be obtained. Analysis of NF-κB and MAPK pathway models shows that highly compensative parameters constitute clusters consistent with the network topology. The method applied to examine an exceptionally rich set of published experiments on the NF-κB dynamics reveals that the experiments jointly ensure identifiability of only 60% of model parameters. The method indicates which further experiments should be performed in order to increase the number of identifiable parameters. We currently lack methods that simplify broadly understood analysis of multi-parameter models. The introduced tools depict mutually compensative effects between parameters to provide insight regarding role of individual parameters, identifiability and experimental design. The method can also find applications in related methodological areas of model simplification and parameters estimation.

  5. On discrete models of space-time

    International Nuclear Information System (INIS)

    Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.

    1992-02-01

    Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)

  6. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.

    2010-01-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...

  7. Modelling of Tethered Space-Web Structures

    Science.gov (United States)

    McKenzie, D. J.; Cartnell, M. P.

    Large structures in space are an essential milestone in the path of many projects, from solar power collectors to space stations. In space, as on Earth, these large projects may be split up into more manageable sections, dividing the task into multiple replicable parts. Specially constructed spider robots could assemble these structures piece by piece over a membrane or space- web, giving a method for building a structure while on orbit. The modelling and applications of these space-webs are discussed, along with the derivation of the equations of motion of the structure. The presentation of some preliminary results from the solution of these equations will show that space-webs can take a variety of different forms, and give some guidelines for configuring the space-web system.

  8. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

    Science.gov (United States)

    Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu

    2002-07-01

    Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.

  9. Space Vehicle Reliability Modeling in DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-12

    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  10. Constraints on pre-big-bang parameter space from CMBR anisotropies

    International Nuclear Information System (INIS)

    Bozza, V.; Gasperini, M.; Giovannini, M.; Veneziano, G.

    2003-01-01

    The so-called curvaton mechanism--a way to convert isocurvature perturbations into adiabatic ones--is investigated both analytically and numerically in a pre-big-bang scenario where the role of the curvaton is played by a sufficiently massive Kalb-Ramond axion of superstring theory. When combined with observations of CMBR anisotropies at large and moderate angular scales, the present analysis allows us to constrain quite considerably the parameter space of the model: in particular, the initial displacement of the axion from the minimum of its potential and the rate of evolution of the compactification volume during pre-big-bang inflation. The combination of theoretical and experimental constraints favors a slightly blue spectrum of scalar perturbations, and/or a value of the string scale in the vicinity of the SUSY GUT scale

  11. A hybrid method of estimating pulsating flow parameters in the space-time domain

    Science.gov (United States)

    Pałczyński, Tomasz

    2017-05-01

    This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.

  12. Constraints on pre-big bang parameter space from CMBR anisotropies

    CERN Document Server

    Bozza, Valerio; Giovannini, Massimo; Veneziano, Gabriele

    2003-01-01

    The so-called curvaton mechanism --a way to convert isocurvature perturbations into adiabatic ones-- is investigated both analytically and numerically in a pre-big bang scenario where the role of the curvaton is played by a sufficiently massive Kalb--Ramond axion of superstring theory. When combined with observations of CMBR anisotropies at large and moderate angular scales, the present analysis allows us to constrain quite considerably the parameter space of the model: in particular, the initial displacement of the axion from the minimum of its potential and the rate of evolution of the compactification volume during pre-big bang inflation. The combination of theoretical and experimental constraints favours a slightly blue spectrum of scalar perturbations, and/or a value of the string scale in the vicinity of the SUSY-GUT scale.

  13. Modeling Water Quality Parameters Using Data-driven Methods

    Directory of Open Access Journals (Sweden)

    Shima Soleimani

    2017-02-01

    Full Text Available Introduction: Surface water bodies are the most easily available water resources. Increase use and waste water withdrawal of surface water causes drastic changes in surface water quality. Water quality, importance as the most vulnerable and important water supply resources is absolutely clear. Unfortunately, in the recent years because of city population increase, economical improvement, and industrial product increase, entry of pollutants to water bodies has been increased. According to that water quality parameters express physical, chemical, and biological water features. So the importance of water quality monitoring is necessary more than before. Each of various uses of water, such as agriculture, drinking, industry, and aquaculture needs the water with a special quality. In the other hand, the exact estimation of concentration of water quality parameter is significant. Material and Methods: In this research, first two input variable models as selection methods (namely, correlation coefficient and principal component analysis were applied to select the model inputs. Data processing is consisting of three steps, (1 data considering, (2 identification of input data which have efficient on output data, and (3 selecting the training and testing data. Genetic Algorithm-Least Square Support Vector Regression (GA-LSSVR algorithm were developed to model the water quality parameters. In the LSSVR method is assumed that the relationship between input and output variables is nonlinear, but by using a nonlinear mapping relation can create a space which is named feature space in which relationship between input and output variables is defined linear. The developed algorithm is able to gain maximize the accuracy of the LSSVR method with auto LSSVR parameters. Genetic algorithm (GA is one of evolutionary algorithm which automatically can find the optimum coefficient of Least Square Support Vector Regression (LSSVR. The GA-LSSVR algorithm was employed to

  14. Sample Size and Item Parameter Estimation Precision When Utilizing the One-Parameter "Rasch" Model

    Science.gov (United States)

    Custer, Michael

    2015-01-01

    This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…

  15. 3D space analysis of dental models

    Science.gov (United States)

    Chuah, Joon H.; Ong, Sim Heng; Kondo, Toshiaki; Foong, Kelvin W. C.; Yong, Than F.

    2001-05-01

    Space analysis is an important procedure by orthodontists to determine the amount of space available and required for teeth alignment during treatment planning. Traditional manual methods of space analysis are tedious and often inaccurate. Computer-based space analysis methods that work on 2D images have been reported. However, as the space problems in the dental arch exist in all three planes of space, a full 3D analysis of the problems is necessary. This paper describes a visualization and measurement system that analyses 3D images of dental plaster models. Algorithms were developed to determine dental arches. The system is able to record the depths of the Curve of Spee, and quantify space liabilities arising from a non-planar Curve of Spee, malalignment and overjet. Furthermore, the difference between total arch space available and the space required to arrange the teeth in ideal occlusion can be accurately computed. The system for 3D space analysis of the dental arch is an accurate, comprehensive, rapid and repeatable method of space analysis to facilitate proper orthodontic diagnosis and treatment planning.

  16. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  17. Models for multimegawatt space power systems

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.

    1990-06-01

    This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.

  18. Constraining the supersymmetric parameter space with early data from the Compact Muon Solenoid experiment.

    CERN Document Server

    Whyntie, Tom

    2011-01-01

    The year 2010 saw the Large Hadron Collider (LHC) collect 35.1 pb−1 of 7 TeV proton-proton collision data. This thesis reports on the work carried out by the candidate as part of the calculation of the first constraints placed upon the supersymmetric parameter space using measurements made with this data. In particular, the development and application of the kinematic techniques used to ensure that the search was robust to detector mismeasurements, inherent in any early phase of data-taking, are discussed. The Constrained Minimally Supersymmetric Standard Model (CMSSM) model is introduced to demonstrate how a supersymmetric model may extend the Standard Model of particle physics, and is used as the benchmark signal to examine how supersymmetry may manifest in 7 TeV proton-proton collisions. The role of kinematics in early searches for such signals is then discussed; given the final state topology of interest (particle jets and large missing transverse momentum), it is useful to explore how the event kinemat...

  19. The manifold model for space-time

    International Nuclear Information System (INIS)

    Heller, M.

    1981-01-01

    Physical processes happen on a space-time arena. It turns out that all contemporary macroscopic physical theories presuppose a common mathematical model for this arena, the so-called manifold model of space-time. The first part of study is an heuristic introduction to the concept of a smooth manifold, starting with the intuitively more clear concepts of a curve and a surface in the Euclidean space. In the second part the definitions of the Csub(infinity) manifold and of certain structures, which arise in a natural way from the manifold concept, are given. The role of the enveloping Euclidean space (i.e. of the Euclidean space appearing in the manifold definition) in these definitions is stressed. The Euclidean character of the enveloping space induces to the manifold local Euclidean (topological and differential) properties. A suggestion is made that replacing the enveloping Euclidean space by a discrete non-Euclidean space would be a correct way towards the quantization of space-time. (author)

  20. Lag space estimation in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...

  1. Modelling Complex Relevance Spaces with Copulas

    OpenAIRE

    Eickhoff, Carsten; Vries, Arjen

    2014-01-01

    htmlabstractModern relevance models consider a wide range of criteria in order to identify those documents that are expected to satisfy the user's information need. With growing dimensionality of the underlying relevance spaces the need for sophisticated score combination and estimation schemes arises. In this paper, we investigate the use of copulas, a model family from the domain of robust statistics, for the formal estimation of the probability of relevance in high-dimensional spaces. Our ...

  2. Optimizing incomplete sample designs for item response model parameters

    NARCIS (Netherlands)

    van der Linden, Willem J.

    Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with

  3. Exactly solvable string models of curved space-time backgrounds

    CERN Document Server

    Russo, J.G.; Russo, J G; Tseytlin, A A

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.

  4. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  5. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  6. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  7. Application of a free parameter model to plastic scintillation samples

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2011-08-21

    In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.

  8. Observational modeling of topological spaces

    International Nuclear Information System (INIS)

    Molaei, M.R.

    2009-01-01

    In this paper a model for a multi-dimensional observer by using of the fuzzy theory is presented. Relative form of Tychonoff theorem is proved. The notion of topological entropy is extended. The persistence of relative topological entropy under relative conjugate relation is proved.

  9. Study on Parameters Modeling of Wind Turbines Using SCADA Data

    Directory of Open Access Journals (Sweden)

    Yonglong YAN

    2014-08-01

    Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.

  10. Trading Time with Space - Development of subduction zone parameter database for a maximum magnitude correlation assessment

    Science.gov (United States)

    Schaefer, Andreas; Wenzel, Friedemann

    2017-04-01

    Subduction zones are generally the sources of the earthquakes with the highest magnitudes. Not only in Japan or Chile, but also in Pakistan, the Solomon Islands or for the Lesser Antilles, subduction zones pose a significant hazard for the people. To understand the behavior of subduction zones, especially to identify their capabilities to produce maximum magnitude earthquakes, various physical models have been developed leading to a large number of various datasets, e.g. from geodesy, geomagnetics, structural geology, etc. There have been various studies to utilize this data for the compilation of a subduction zone parameters database, but mostly concentrating on only the major zones. Here, we compile the largest dataset of subduction zone parameters both in parameter diversity but also in the number of considered subduction zones. In total, more than 70 individual sources have been assessed and the aforementioned parametric data have been combined with seismological data and many more sources have been compiled leading to more than 60 individual parameters. Not all parameters have been resolved for each zone, since the data completeness depends on the data availability and quality for each source. In addition, the 3D down-dip geometry of a majority of the subduction zones has been resolved using historical earthquake hypocenter data and centroid moment tensors where available and additionally compared and verified with results from previous studies. With such a database, a statistical study has been undertaken to identify not only correlations between those parameters to estimate a parametric driven way to identify potentials for maximum possible magnitudes, but also to identify similarities between the sources themselves. This identification of similarities leads to a classification system for subduction zones. Here, it could be expected if two sources share enough common characteristics, other characteristics of interest may be similar as well. This concept

  11. A growing social network model in geographical space

    Science.gov (United States)

    Antonioni, Alberto; Tomassini, Marco

    2017-09-01

    In this work we propose a new model for the generation of social networks that includes their often ignored spatial aspects. The model is a growing one and links are created either taking space into account, or disregarding space and only considering the degree of target nodes. These two effects can be mixed linearly in arbitrary proportions through a parameter. We numerically show that for a given range of the combination parameter, and for given mean degree, the generated network class shares many important statistical features with those observed in actual social networks, including the spatial dependence of connections. Moreover, we show that the model provides a good qualitative fit to some measured social networks.

  12. Reconciling Planck with the local value of H0 in extended parameter space

    Directory of Open Access Journals (Sweden)

    Eleonora Di Valentino

    2016-10-01

    Full Text Available The recent determination of the local value of the Hubble constant by Riess et al., 2016 (hereafter R16 is now 3.3 sigma higher than the value derived from the most recent CMB anisotropy data provided by the Planck satellite in a ΛCDM model. Here we perform a combined analysis of the Planck and R16 results in an extended parameter space, varying simultaneously 12 cosmological parameters instead of the usual 6. We find that a phantom-like dark energy component, with effective equation of state w=−1.29−0.12+0.15 at 68% c.l. can solve the current tension between the Planck dataset and the R16 prior in an extended ΛCDM scenario. On the other hand, the neutrino effective number is fully compatible with standard expectations. This result is confirmed when including cosmic shear data from the CFHTLenS survey and CMB lensing constraints from Planck. However, when BAO measurements are included we find that some of the tension with R16 remains, as also is the case when we include the supernova type Ia luminosity distances from the JLA catalog.

  13. Parameter and Uncertainty Estimation in Groundwater Modelling

    DEFF Research Database (Denmark)

    Jensen, Jacob Birk

    The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... was applied.Capture zone modelling was conducted on a synthetic stationary 3-dimensional flow problem involving river, surface and groundwater flow. Simulated capture zones were illustrated as likelihood maps and compared with a deterministic capture zones derived from a reference model. The results showed...

  14. The STAMP Software for State Space Models

    Directory of Open Access Journals (Sweden)

    Roy Mendelssohn

    2011-05-01

    Full Text Available This paper reviews the use of STAMP (Structural Time Series Analyser, Modeler and Predictor for modeling time series data using state-space methods with unobserved components. STAMP is a commercial, GUI-based program that runs on Windows, Linux and Macintosh computers as part of the larger OxMetrics System. STAMP can estimate a wide-variety of both univariate and multivariate state-space models, provides a wide array of diagnostics, and has a batch mode capability. The use of STAMP is illustrated for the Nile river data which is analyzed throughout this issue, as well as by modeling a variety of oceanographic and climate related data sets. The analyses of the oceanographic and climate data illustrate the breadth of models available in STAMP, and that state-space methods produce results that provide new insights into important scientific problems.

  15. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    SUBGRADE MODELING. Asrat Worku. Department of ... The models give consistently larger stiffness for the Winkler springs as compared to previously proposed similar continuum-based models that ignore the lateral stresses. ...... (ν = 0.25 and E = 40MPa); (b) a medium stiff clay (ν = 0.45 and E = 50MPa). In contrast to this, ...

  16. Rejoinder: Sifting through model space

    Science.gov (United States)

    Heisey, Dennis M.; Osnas, Erik E.; Cross, Paul C.; Joly, Damien O.; Langenberg, Julia A.; Miller, Michael W.

    2010-01-01

    Observational data sets generated by complex processes are common in ecology. Traditionally these have been very challenging to analyze because of the limitations of available statistical tools. This seems to be changing, and these are exciting times to be involved with ecological statistics, not just because of the neo-Bayesian revival but also because of the proliferation of computationally intensive methods in general. It is now possible to fit much richer models to observational data than in the relatively recent past, which in turn has stimulated much interest in how to evaluate and compare such models. In such an immature, vibrant, and rapidly growing field, not everyone is going to agree on the best way to do things. This is reflected in the contrast of opinions offered by the discussants. Each offers a thoughtful and thought-provoking critique of our work that reflects the current thinking in a non-negligible segment of the ecological data analysis community. We want to thank them for their insights.

  17. The magnetically driven imploding liner parameter space of the ATLAS capacitor bank

    CERN Document Server

    Lindemuth, I R; Faehl, R J; Reinovsky, R E

    2001-01-01

    Summary form only given, as follows. The Atlas capacitor bank (23 MJ, 30 MA) is now operational at Los Alamos. Atlas was designed primarily to magnetically drive imploding liners for use as impactors in shock and hydrodynamic experiments. We have conducted a computational "mapping" of the high-performance imploding liner parameter space accessible to Atlas. The effect of charge voltage, transmission inductance, liner thickness, liner initial radius, and liner length has been investigated. One conclusion is that Atlas is ideally suited to be a liner driver for liner-on-plasma experiments in a magnetized target fusion (MTF) context . The parameter space of possible Atlas reconfigurations has also been investigated.

  18. An open-source job management framework for parameter-space exploration: OACIS

    Science.gov (United States)

    Murase, Y.; Uchitane, T.; Ito, N.

    2017-11-01

    We present an open-source software framework for parameter-space exporation, named OACIS, which is useful to manage vast amount of simulation jobs and results in a systematic way. Recent development of high-performance computers enabled us to explore parameter spaces comprehensively, however, in such cases, manual management of the workflow is practically impossible. OACIS is developed aiming at reducing the cost of these repetitive tasks when conducting simulations by automating job submissions and data management. In this article, an overview of OACIS as well as a getting started guide are presented.

  19. Exploring parameter constraints on quintessential dark energy: The exponential model

    International Nuclear Information System (INIS)

    Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael

    2008-01-01

    We present an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their 'w 0 -w a ' parametrization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which cannot be distinguished from a cosmological constant at DETF 'Stage 2', and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3σ

  20. Deep Space Network Measurement Model Development for Interplanetary Mission

    Directory of Open Access Journals (Sweden)

    Hae-Yeon Kim

    2004-12-01

    Full Text Available The DSN(Deep Space Network measurement model for interplanetary navigations which is essential for precise orbit determination has been developed. The DSN measurement model produces fictitious DSN observables such as range, doppler and angular data, containing the potential observational errors in geometric data obtained from orbit propagator. So the important part of this research is to model observational errors in DSN observation and to characterize the errors. The modeled observational errors include the range delay effect caused by troposphere, ionosphere, antenna offset, and angular refraction effect caused by troposphere. Non-modeled errors are justified %%as the solved-for parameters. as the parameters. All of these results from developed models show about 10% errors compared to the JPL's reference results, that are within acceptable error range.

  1. Diabatic models with transferrable parameters for generalized chemical reactions

    Science.gov (United States)

    Reimers, Jeffrey R.; McKemmish, Laura K.; McKenzie, Ross H.; Hush, Noel S.

    2017-05-01

    Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical

  2. Periodic window arising in the parameter space of an impact oscillator

    International Nuclear Information System (INIS)

    Medeiros, E.S.; Souza, S.L.T. de; Medrano-T, R.O.; Caldas, I.L.

    2010-01-01

    In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We identify periodic and chaotic attractors by their largest Lyapunov exponents.

  3. Extended Kalman Filtering and Pathloss modeling for Shadow Power Parameter Estimation in Mobile Wireless Communications

    OpenAIRE

    P. Pappas, George; A. Zohdy, Mohamed

    2017-01-01

    In this paper accurate estimation of parameters, higher order state space prediction methods and Extended Kalman filter (EKF) for modeling shadow power in wireless mobile communications are developed. Path-loss parameter estimation models are compared and evaluated. Shadow power estimation methods in wireless cellular communications are very important for use in power control of mobile device and base station. The methods are validated and compared to existing methods, Kalman Filter (KF) with...

  4. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.

  5. Identifying the connective strength between model parameters and performance criteria

    Directory of Open Access Journals (Sweden)

    B. Guse

    2017-11-01

    Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria

  6. Effective hamiltonian calculations using incomplete model spaces

    International Nuclear Information System (INIS)

    Koch, S.; Mukherjee, D.

    1987-01-01

    It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations

  7. Modeling color preference using color space metrics.

    Science.gov (United States)

    Schloss, Karen B; Lessard, Laurent; Racey, Chris; Hurlbert, Anya C

    2017-07-27

    Studying color preferences provides a means to discover how perceptual experiences map onto cognitive and affective judgments. A challenge is finding a parsimonious way to describe and predict patterns of color preferences, which are complex with rich individual differences. One approach has been to model color preferences using factors from metric color spaces to establish direct correspondences between dimensions of color and preference. Prior work established that substantial, but not all, variance in color preferences could be captured by weights on color space dimensions using multiple linear regression. The question we address here is whether model fits may be improved by using different color metric specifications. We therefore conducted a large-scale analysis of color space models, and focused in-depth analysis on models that differed in color space (cone-contrast vs. CIELAB), coordinate system within the color space (Cartesian vs. cylindrical), and factor degrees (1st degree only, or 1st and 2nd degree). We used k-fold cross validation to avoid over-fitting the data and to ensure fair comparisons across models. The best model was the 2nd-harmonic Lch model ("LabC Cyl2"). Specified in CIELAB space, it included 1st and 2nd harmonics of hue (capturing opponency in hue preferences and simultaneous liking/disliking of both hues on an opponent axis, respectively), lightness, and chroma. These modeling approaches can be used to characterize and compare patterns for group averages and individuals in future datasets on color preference, or other measures in which correspondences between color appearance and cognitive or affective judgments may exist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Developing Viable Financing Models for Space Tourism

    Science.gov (United States)

    Eilingsfeld, F.; Schaetzler, D.

    2002-01-01

    Increasing commercialization of space services and the impending release of government's control of space access promise to make space ventures more attractive. Still, many investors shy away from going into the space tourism market as long as they do not feel secure that their return expectations will be met. First and foremost, attracting investors from the capital markets requires qualifying financing models. Based on earlier research on the cost of capital for space tourism, this paper gives a brief run-through of commercial, technical and financial due diligence aspects. After that, a closer look is taken at different valuation techniques as well as alternative ways of streamlining financials. Experience from earlier ventures has shown that the high cost of capital represents a significant challenge. Thus, the sophistication and professionalism of business plans and financial models needs to be very high. Special emphasis is given to the optimization of the debt-to-equity ratio over time. The different roles of equity and debt over a venture's life cycle are explained. Based on the latter, guidelines for the design of an optimized loan structure are given. These are then applied to simulating the financial performance of a typical space tourism venture over time, including the calculation of Weighted Average Cost of Capital (WACC) and Net Present Value (NPV). Based on a concluding sensitivity analysis, the lessons learned are presented. If applied properly, these will help to make space tourism economically viable.

  9. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  10. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  11. Remote sensing of refractivity from space for global observations of atmospheric parameters

    International Nuclear Information System (INIS)

    Gorbunov, M.E.; Sokolovskiy, S.V.

    1993-01-01

    This report presents the first results of computational simulations on the retrieval of meteorological parameters from space refractometric data on the basis of the ECHAM 3 model developed at the Max Planck Institute for Meteorology (Roeckner et al. 1992). For this purpose the grid fields of temperature, geopotential and humidity available from the model were interpolated and a continuous spatial field of refractivity (together with its first derivative) was generated. This field was used for calculating the trajectories of electromagnetic rays for the given orbits of transmitting and receiving satellites and for the determination of the quantities (incident angles or Doppler frequency shifts) being measured at receiving satellite during occultation. These quantities were then used for solving the inverse problem - retrieving the distribution of refractivity in the vicinity of the ray perigees. The retrieved refractivity was used to calculate pressure and temperature (using the hydrostatic equation and the equation of state). The results were compared with initial data, and the retrieval errors were evaluated. The study shows that the refractivity can be retrieved with very high accuracy in particular if a tomographic reconstruction is applied. Effects of humidity and temperature are not separable. Stratospheric temperatures globally and upper tropospheric temperatures at middle and high latitudes can be accurately retrieved, other areas require humidity data. Alternatively humidity data can be retrieved if the temperature fields are known. (orig.)

  12. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    Science.gov (United States)

    Laycock, Silas; Yang, Jun; Christodoulou, Dimitris; Coe, Malcolm; Cappallo, Rigel; Zezas, Andreas; Ho, Wynn C. G.; Hong, JaeSub; Fingerman, Samuel; Drake, Jeremy J.; Kretschmar, Peter; Antoniou, Vallia

    2017-08-01

    We present our multi-satellite library of X-ray Pulsar observations to the community, and highlight recent science results. Available at www.xraypulsars.space the library provides a range of high-level data products, including: activity histories, pulse-profiles, phased event files, and a unique pulse-profile modeling interface. The initial release (v1.0) contains some 15 years of RXTE-PCA, Chandra ACIS-I, and XMM-PN observations of the Small Magellanic Cloud, creating a valuable record of pulsar behavior. Our library is intended to enable new progress on fundamental NS parameters and accretion physics. The major motivations are (1) Assemble a large homogeneous sample to enable population statistics. This has so far been used to map the propeller transition, and explore the role of retrograde and pro-grade accretion disks. (2) Obtain pulse-profiles for the same pulsars on many different occasions, at different luminosities and states in order to break model degeneracies. This effort has led to preliminary measurements of the offsets between magnetic and spin axes. With the addition of other satellites, and Galactic pulsars, the library will cover the entire available range of luminosity, variability timescales and accretion regimes.

  13. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2016-01-01

    A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests...

  14. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  15. Moving around the cosmological parameter space: A nonlinear power spectrum reconstruction based on high-resolution cosmic responses

    Science.gov (United States)

    Nishimichi, Takahiro; Bernardeau, Francis; Taruya, Atsushi

    2017-12-01

    We present numerical measurements of the power spectrum response function of the gravitational growth of cosmic structures, defined as the functional derivative of the nonlinear spectrum with respect to the linear counterpart, based on 1400 cosmological simulations. We develop a simple analytical model based on a regularization of the standard perturbative calculation. Using the model prediction, we show that this function gives a natural way to interpolate the nonlinear power spectrum over cosmological parameter space from single- or multistep interpolations. We demonstrate that once an accurate numerical spectrum template is available for one (or a small number of) cosmological model(s), it doubles the range in k for which percent-level accuracy can be obtained even for a large change in the cosmological parameters. The Python package RESPRESSO we developed to make those predictions is publicly available.

  16. Estimation of Parameters in Latent Class Models with Constraints on the Parameters.

    Science.gov (United States)

    Paulson, James A.

    This paper reviews the application of the EM Algorithm to marginal maximum likelihood estimation of parameters in the latent class model and extends the algorithm to the case where there are monotone homogeneity constraints on the item parameters. It is shown that the EM algorithm can be used to obtain marginal maximum likelihood estimates of the…

  17. Modeling and Dynamic Properties of a Four-Parameter Zener Model Vibration Isolator

    Directory of Open Access Journals (Sweden)

    Wen-ku Shi

    2016-01-01

    Full Text Available To install high-performance isolators in a limited installation space, a novel passive isolator based on the four-parameter Zener model is proposed. The proposed isolator consists of three major parts, namely, connecting structure, sealing construction, and upper and lower cavities, all of which are enclosed by four segments of metal bellows with the same diameter. The equivalent stiffness and damping model of the isolator are derived from the dynamic stiffness of the isolation system. Experiments are conducted, and the experiment error is analyzed. Test results verify the validity of the model. Theoretical analysis and numerical simulation reveal that the stiffness and damping of the isolator have multiple properties with different exciting amplitudes and structural parameters. In consideration of the design of the structural parameter, the effects of exciting amplitude, damp channel diameter, equivalent cylinder diameter of cavities, sum of the stiffness of the bellows at the end of the isolator, and length of damp channel on the dynamic properties of the isolator are discussed comprehensively. A design method based on the parameter sensitivity of the isolator’s design parameter is proposed. Thus, the novel isolator can be practically applied to engineering and provide a significant contribution in the field.

  18. Nonlinear Prediction As A Tool For Determining Parameters For Phase Space Reconstruction In Meteorology

    Science.gov (United States)

    Miksovsky, J.; Raidl, A.

    Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.

  19. An approach to adjustment of relativistic mean field model parameters

    Directory of Open Access Journals (Sweden)

    Bayram Tuncay

    2017-01-01

    Full Text Available The Relativistic Mean Field (RMF model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs of 58Ni and 208Pb have been found in agreement with the literature values.

  20. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  1. State-Space Modelling in Marine Science

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard

    State-space models provide a natural framework for analysing time series that cannot be observed without error. This is the case for fisheries stock assessments and movement data from marine animals. In fisheries stock assessments, the aim is to estimate the stock size; however, the only data...... available is the number of fish removed from the population and samples on a small fraction of the population. In marine animal movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must be used yielding observations with large errors. Both assessment and individual...... animal movement models are important for management and conservation of marine animals. Consequently, models should be developed to be operational in a management context while adequately evaluating uncertainties in the models. This thesis develops state-space models using the Laplace approximation...

  2. Lumped parameter models for the interpretation of environmental tracer data

    International Nuclear Information System (INIS)

    Maloszewski, P.; Zuber, A.

    1996-01-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs

  3. Sensitivity analysis of specific activity model parameters for environmental transport of 3H and dose assessment

    International Nuclear Information System (INIS)

    Rout, S.; Mishra, D.G.; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Tritium is one of the radionuclides likely to get released to the environment from Pressurized Heavy Water Reactors. Environmental models are extensively used to quantify the complex environmental transport processes of radionuclides and also to assess the impact to the environment. Model parameters exerting the significant influence on model results are identified through a sensitivity analysis (SA). SA is the study of how the variation (uncertainty) in the output of a mathematical model can be apportioned, qualitatively or quantitatively, to different sources of variation in the input parameters. This study was designed to identify the sensitive model parameters of specific activity model (TRS 1616, IAEA) for environmental transfer of 3 H following release to air and then to vegetation and animal products. Model includes parameters such as air to soil transfer factor (CRs), Tissue Free Water 3 H to Organically Bound 3 H ratio (Rp), Relative humidity (RH), WCP (fractional water content) and WEQp (water equivalent factor) any change in these parameters leads to change in 3 H level in vegetation and animal products consequently change in dose due to ingestion. All these parameters are function of climate and/or plant which change with time, space and species. Estimation of these parameters at every time is a time consuming and also required sophisticated instrumentation. Therefore it is necessary to identify the sensitive parameters and freeze the values of least sensitive parameters at constant values for more accurate estimation of 3 H dose in short time for routine assessment

  4. Bayesian parameter estimation in dynamic population model via particle Markov chain Monte Carlo

    Directory of Open Access Journals (Sweden)

    Meng Gao

    2012-12-01

    Full Text Available In nature, population dynamics are subject to multiple sources of stochasticity. State-space models (SSMs provide an ideal framework for incorporating both environmental noises and measurement errors into dynamic population models. In this paper, we present a recently developed method, Particle Markov Chain Monte Carlo (Particle MCMC, for parameter estimation in nonlinear SSMs. We use one effective algorithm of Particle MCMC, Particle Gibbs sampling algorithm, to estimate the parameters of a state-space model of population dynamics. The posterior distributions of parameters are derived given the conjugate prior distribution. Numerical simulations showed that the model parameters can be accurately estimated, no matter the deterministic model is stable, periodic or chaotic. Moreover, we fit the model to 16 representative time series from Global Population Dynamics Database (GPDD. It is verified that the results of parameter and state estimation using Particle Gibbs sampling algorithm are satisfactory for a majority of time series. For other time series, the quality of parameter estimation can also be improved, if prior knowledge is constrained. In conclusion, Particle Gibbs sampling algorithm provides a new Bayesian parameter inference method for studying population dynamics.

  5. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  6. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  7. Exploring the interdependencies between parameters in a material model.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Fermen-Coker, Muge

    2014-01-01

    A method is investigated to reduce the number of numerical parameters in a material model for a solid. The basis of the method is to detect interdependencies between parameters within a class of materials of interest. The method is demonstrated for a set of material property data for iron and steel using the Johnson-Cook plasticity model.

  8. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  9. Physical models on discrete space and time

    International Nuclear Information System (INIS)

    Lorente, M.

    1986-01-01

    The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references

  10. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  11. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  12. Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes

    Science.gov (United States)

    He, Minxue; Hogue, Terri S.; Franz, Kristie J.; Margulis, Steven A.; Vrugt, Jasper A.

    2011-01-01

    The National Weather Service (NWS) uses the SNOW17 model to forecast snow accumulation and ablation processes in snow-dominated watersheds nationwide. Successful application of the SNOW17 relies heavily on site-specific estimation of model parameters. The current study undertakes a comprehensive sensitivity and uncertainty analysis of SNOW17 model parameters using forcing and snow water equivalent (SWE) data from 12 sites with differing meteorological and geographic characteristics. The Generalized Sensitivity Analysis and the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm are utilized to explore the parameter space and assess model parametric and predictive uncertainty. Results indicate that SNOW17 parameter sensitivity and uncertainty generally varies between sites. Of the six hydroclimatic characteristics studied, only air temperature shows strong correlation with the sensitivity and uncertainty ranges of two parameters, while precipitation is highly correlated with the uncertainty of one parameter. Posterior marginal distributions of two parameters are also shown to be site-dependent in terms of distribution type. The SNOW17 prediction ensembles generated by the DREAM-derived posterior parameter sets contain most of the observed SWE. The proposed uncertainty analysis provides posterior parameter information on parameter uncertainty and distribution types that can serve as a foundation for a data assimilation framework for hydrologic models.

  13. Brownian motion model with stochastic parameters for asset prices

    Science.gov (United States)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  14. Estimation of shape model parameters for 3D surfaces

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen

    2008-01-01

    is applied to a database of 3D surfaces from a section of the porcine pelvic bone extracted from 33 CT scans. A leave-one-out validation shows that the parameters of the first 3 modes of the shape model can be predicted with a mean difference within [-0.01,0.02] from the true mean, with a standard deviation......Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D...... surfaces using distance maps, which enables the estimation of model parameters without the requirement of point correspondence. For applications with acquisition limitations such as speed and cost, this formulation enables the fitting of a statistical shape model to arbitrarily sampled data. The method...

  15. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  16. Multivariable Wind Modeling in State Space

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.

    2011-01-01

    -spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modeling method is proposed which allows selection of an appropriate model order, and estimation of a state space model......Turbulence of the incoming wind field is of paramount importance to the dynamic response of wind turbines. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical...... cross-spectral density function for the along-wind turbulence component over the rotor plane is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since...

  17. Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width

    Directory of Open Access Journals (Sweden)

    S. E. Tolwinski-Ward

    2013-07-01

    Full Text Available We present a Bayesian model for estimating the parameters of the VS-Lite forward model of tree-ring width for a particular chronology and its local climatology. The scheme also provides information about the uncertainty of the parameter estimates, as well as the model error in representing the observed proxy time series. By inferring VS-Lite's parameters independently for synthetically generated ring-width series at several hundred sites across the United States, we show that the algorithm is skillful. We also infer optimal parameter values for modeling observed ring-width data at the same network of sites. The estimated parameter values covary in physical space, and their locations in multidimensional parameter space provide insight into the dominant climatic controls on modeled tree-ring growth at each site as well as the stability of those controls. The estimation procedure is useful for forward and inverse modeling studies using VS-Lite to quantify the full range of model uncertainty stemming from its parameterization.

  18. Reliability models for Space Station power system

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.

    1987-01-01

    This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.

  19. Space-time modeling of timber prices

    Science.gov (United States)

    Mo Zhou; Joseph Buongriorno

    2006-01-01

    A space-time econometric model was developed for pine sawtimber timber prices of 21 geographically contiguous regions in the southern United States. The correlations between prices in neighboring regions helped predict future prices. The impulse response analysis showed that although southern pine sawtimber markets were not globally integrated, local supply and demand...

  20. Modelling Complex Relevance Spaces with Copulas

    NARCIS (Netherlands)

    C. Eickhoff (Carsten); A.P. de Vries (Arjen)

    2014-01-01

    htmlabstractModern relevance models consider a wide range of criteria in order to identify those documents that are expected to satisfy the user's information need. With growing dimensionality of the underlying relevance spaces the need for sophisticated score combination and estimation schemes

  1. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  2. Some tests for parameter constancy in cointegrated VAR-models

    DEFF Research Database (Denmark)

    Hansen, Henrik; Johansen, Søren

    1999-01-01

    Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ...

  3. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...

  4. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  5. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  6. Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver

    Science.gov (United States)

    Kang, Ling; Zhou, Liwei

    2018-02-01

    Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.

  7. Exactly solvable string models of curved space-time backgrounds

    International Nuclear Information System (INIS)

    Russo, J.G.

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)

  8. Dynamic modelling and analysis of space webs

    Science.gov (United States)

    Yu, Yang; Baoyin, HeXi; Li, JunFeng

    2011-04-01

    Future space missions demand operations on large flexible structures, for example, space webs, the lightweight cable nets deployable in space, which can serve as platforms for very large structures or be used to capture orbital objects. The interest in research on space webs is likely to increase in the future with the development of promising applications such as Furoshiki sat-ellite of JAXA, Robotic Geostationary Orbit Restorer (ROGER) of ESA and Grapple, Retrieve And Secure Payload (GRASP) of NASA. Unlike high-tensioned nets in civil engineering, space webs may be low-tensioned or tensionless, and extremely flexible, owing to the microgravity in the orbit and the lack of support components, which may cause computational difficulties. Mathematical models are necessary in the analysis of space webs, especially in the conceptual design and evaluation for prototypes. A full three-dimensional finite element (FE) model was developed in this work. Trivial truss elements were adopted to reduce the computational complexity. Considering cable is a compression-free material and its tensile stiffness is also variable, we introduced the cable material constitutive relationship to work out an accurate and feasible model for prototype analysis and design. In the static analysis, the stress distribution and global deformation of the webs were discussed to get access to the knowledge of strength of webs with different types of meshes. In the dynamic analysis, special attention was paid to the impact problem. The max stress and global deformation were investigated. The simulation results indicate the interesting phenomenon which may be worth further research.

  9. Effects of Space Weather on Biomedical Parameters during the Solar Activity Cycles 23-24.

    Science.gov (United States)

    Ragul'skaya, M V; Rudenchik, E A; Chibisov, S M; Gromozova, E N

    2015-06-01

    The results of long-term (1998-2012) biomedical monitoring of the biotropic effects of space weather are discussed. A drastic change in statistical distribution parameters in the middle of 2005 was revealed that did not conform to usual sinusoidal distribution of the biomedical data reflecting changes in the number of solar spots over a solar activity cycle. The dynamics of space weather of 2001-2012 is analyzed. The authors hypothesize that the actual change in statistical distributions corresponds to the adaptation reaction of the biosphere to nonstandard geophysical characteristics of the 24th solar activity cycle and the probable long-term decrease in solar activity up to 2067.

  10. Exploring the triplet parameters space to optimise the final focus of the FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2141109; Abelleira, Jose; Seryi, Andrei; Cruz Alaniz, Emilia

    2017-01-01

    One of the main challenges when designing final focus systems of particle accelerators is maximising the beam stay clear in the strong quadrupole magnets of the inner triplet. Moreover it is desirable to keep the quadrupoles in the triplet as short as possible for space and costs reasons but also to reduce chromaticity and simplify corrections schemes. An algorithm that explores the triplet parameter space to optimise both these aspects was written. It uses thin lenses as a first approximation and MADX for more precise calculations. In cooperation with radiation studies, this algorithm was then applied to design an alternative triplet for the final focus of the Future Circular Collider (FCC-hh).

  11. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    2007-01-01

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines......-parameter models with respect to the prediction of the maximum response during excitation and the geometrical damping related to free vibrations of a footing....

  12. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  13. Incorporating model parameter uncertainty into inverse treatment planning

    International Nuclear Information System (INIS)

    Lian Jun; Xing Lei

    2004-01-01

    Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment

  14. MODIS/Terra+Aqua BRDF/Albedo Model Parameters 16-Day L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODerate-resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo Model Parameters product (MCD43B1) contains three-dimensional (3D) data sets providing users...

  15. MODIS/Terra+Aqua BRDF/Albedo Model Parameters 16-Day L3 Global 500m SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODerate-resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo Model Parameters product (MCD43A1) contains three-dimensional (3D) data sets providing users...

  16. MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global 0.05Deg CMG V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS MCD43C1 Version 6 Bidirectional reflectance distribution function and Albedo (BRDF/Albedo) Model Parameters data set is a 5600 meter daily 16-day product....

  17. MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global - 500m V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS MCD43A1 Version 6 Bidirectional reflectance distribution function and Albedo (BRDF/Albedo) Model Parameters data set is a 500 meter daily 16-day product....

  18. Nonlinear Parameter-Varying AeroServoElastic Reduced Order Model for Aerostructural Sensing and Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate parameter-varying (PV), aeroservoelastic (ASE)...

  19. MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global 500m SIN Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Near Real Time (NRT) MCD43A1N, MODIS Combined Aqua and Terra Bidirectional Reflectance Distribution Function and Albedo (BRDF/Albedo) Model Parameters is a...

  20. MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global 0.05Deg CMG

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Near Real Time (NRT) MCD43C1N, MODIS Combined Aqua and Terra Bidirectional Reflectance Distribution Function and Albedo (BRDF/Albedo) Model Parameters is a...

  1. A method for model identification and parameter estimation

    International Nuclear Information System (INIS)

    Bambach, M; Heinkenschloss, M; Herty, M

    2013-01-01

    We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)

  2. LAMOST DR1: Stellar Parameters and Chemical Abundances with SP_Ace

    Science.gov (United States)

    Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.

    2018-04-01

    We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters {T}{{eff}}, {log}g, [Fe/H], and [α/H] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as ∼120 K in {T}{{eff}}, ∼0.2 in {log}g, ∼0.15 dex in [Fe/H], and ∼0.1 dex in [α/Fe] for spectra with S/N > 40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.

  3. Optimal parameters for the FFA-Beddoes dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Mert, M. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)

  4. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  5. MATHEMATICAL MODELING OF FLOW PARAMETERS FOR SINGLE WIND TURBINE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available It is known that on the territory of the Russian Federation the construction of several large wind farms is planned. The tasks connected with design and efficiency evaluation of wind farm work are in demand today. One of the possible directions in design is connected with mathematical modeling. The method of large eddy simulation developed within the direction of computational hydrodynamics allows to reproduce unsteady structure of the flow in details and to determine various integrated values. The calculation of work for single wind turbine installation by means of large eddy simulation and Actuator Line Method along the turbine blade is given in this work. For problem definition the numerical method in the form of a box was considered and the adapted unstructured grid was used.The mathematical model included the main equations of continuity and momentum equations for incompressible fluid. The large-scale vortex structures were calculated by means of integration of the filtered equations. The calculation was carried out with Smagorinsky model for determination of subgrid scale turbulent viscosity. The geometrical parametersof wind turbine were set proceeding from open sources in the Internet.All physical values were defined at center of computational cell. The approximation of items in equations was ex- ecuted with the second order of accuracy for time and space. The equations for coupling velocity and pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values on each time step was equal to 18. So, the resources of a high performance cluster were required.As a result of flow calculation in wake for the three-bladed turbine average and instantaneous values of velocity, pressure, subgrid kinetic energy and turbulent viscosity, components of subgrid stress tensor were worked out. The re- ceived results matched the known results of experiments and numerical simulation, testify the opportunity

  6. Creating and Exploring Huge Parameter Spaces: Interactive Evolution as a Tool for Sound Generation

    DEFF Research Database (Denmark)

    Dahlstedt, Palle

    2001-01-01

    of huge synthesis parameter spaces, and presents a possibility for the sound artist to create new sound engines customized for this kind of creation and exploration – sound engines too complex to control in any other way. Different sound engines are presented, together with a discussion of compositional...... applications. It is also shown how this technique can be used to simplify sound design in standard hardware synthesizers, a task normally avoided by most musicians, due to the required amount of technical understanding....

  7. Parametric estimation of R&M parameters during the conceptual design of space vehicles

    Science.gov (United States)

    Ebeling, Charles E.

    1992-01-01

    Reliability and maintainability parameters of proposed space vehicles are estimated based on a comparability analysis of similar aircraft subsystems. Using multiple regression techniques, parametric equations are developed for each subsystem to predict mean flying hours between failure as a function of vehicle design and performance specifications. These estimates are then adjusted to account for reliability growth, environmental differences, and new technologies. Overall vehicle mission reliability may then be computed from subsystem reliability estimates.

  8. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation of struct......This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation...... response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...

  9. Adaptive numerical algorithms in space weather modeling

    Science.gov (United States)

    Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-02-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  10. Adaptive numerical algorithms in space weather modeling

    International Nuclear Information System (INIS)

    Tóth, Gábor; Holst, Bart van der; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-01-01

    Space weather describes the various processes in the Sun–Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  11. Adaptive Numerical Algorithms in Space Weather Modeling

    Science.gov (United States)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  12. Parameter estimation for groundwater models under uncertain irrigation data

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  13. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions

    Directory of Open Access Journals (Sweden)

    Teresa eLehnert

    2015-06-01

    Full Text Available Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM, because this level of model complexity allows estimating textit{a priori} unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e. least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment.

  14. Transformations among CE–CVM model parameters for ...

    Indian Academy of Sciences (India)

    Unknown

    parameters which exclusively represent interactions of the higher order systems. Such a procedure is presen- ted in detail in this communication. Furthermore, the details of transformations required to express the model parameters in one basis from those defined in another basis for the same system are also presented.

  15. Transformations among CE–CVM model parameters for ...

    Indian Academy of Sciences (India)

    ... of parameters which exclusively represent interactions of the higher order systems. Such a procedure is presented in detail in this communication. Furthermore, the details of transformations required to express the model parameters in one basis from those defined in another basis for the same system are also presented.

  16. Prior distributions for item parameters in IRT models

    NARCIS (Netherlands)

    Matteucci, M.; S. Mignani, Prof.; Veldkamp, Bernard P.

    2012-01-01

    The focus of this article is on the choice of suitable prior distributions for item parameters within item response theory (IRT) models. In particular, the use of empirical prior distributions for item parameters is proposed. Firstly, regression trees are implemented in order to build informative

  17. Retrospective forecast of ETAS model with daily parameters estimate

    Science.gov (United States)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  18. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  19. Stochastic hyperelastic modeling considering dependency of material parameters

    Science.gov (United States)

    Caylak, Ismail; Penner, Eduard; Dridger, Alex; Mahnken, Rolf

    2018-03-01

    This paper investigates the uncertainty of a hyperelastic model by treating random material parameters as stochastic variables. For its stochastic discretization a polynomial chaos expansion (PCE) is used. An important aspect in our work is the consideration of stochastic dependencies in the stochastic modeling of Ogden's material model. To this end, artificial experiments are generated using the auto-regressive moving average process based on real experiments. The parameter identification for all data provides statistics of Ogden's material parameters, which are subsequently used for stochastic modeling. Stochastic dependencies are incorporated into the PCE using a Nataf transformation from dependent distributed random variables to independent standard normal distributed ones. The representative numerical example shows that our proposed method adequately takes into account the stochastic dependencies of Ogden's material parameters.

  20. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    by the Armstrong–Frederick model, contained as a special case of the present model for a particular choice of the shape parameter. In contrast to previous work, where shaping the stress-strain loops is derived from multiple internal stress states, this effect is here represented by a single parameter......The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  1. Parameter Estimation for the Thurstone Case III Model.

    Science.gov (United States)

    Mackay, David B.; Chaiy, Seoil

    1982-01-01

    The ability of three estimation criteria to recover parameters of the Thurstone Case V and Case III models from comparative judgment data was investigated via Monte Carlo techniques. Significant differences in recovery are shown to exist. (Author/JKS)

  2. Improved parameter estimation for hydrological models using weighted object functions

    NARCIS (Netherlands)

    Stein, A.; Zaadnoordijk, W.J.

    1999-01-01

    This paper discusses the sensitivity of calibration of hydrological model parameters to different objective functions. Several functions are defined with weights depending upon the hydrological background. These are compared with an objective function based upon kriging. Calibration is applied to

  3. Modelling of Patterns in Space and Time

    CERN Document Server

    Murray, James

    1984-01-01

    This volume contains a selection of papers presented at the work­ shop "Modelling of Patterns in Space and Time", organized by the 80nderforschungsbereich 123, "8tochastische Mathematische Modelle", in Heidelberg, July 4-8, 1983. The main aim of this workshop was to bring together physicists, chemists, biologists and mathematicians for an exchange of ideas and results in modelling patterns. Since the mathe­ matical problems arising depend only partially on the particular field of applications the interdisciplinary cooperation proved very useful. The workshop mainly treated phenomena showing spatial structures. The special areas covered were morphogenesis, growth in cell cultures, competition systems, structured populations, chemotaxis, chemical precipitation, space-time oscillations in chemical reactors, patterns in flames and fluids and mathematical methods. The discussions between experimentalists and theoreticians were especially interesting and effective. The editors hope that these proceedings reflect ...

  4. Data Model Management for Space Information Systems

    Science.gov (United States)

    Hughes, J. Steven; Crichton, Daniel J.; Ramirez, Paul; Mattmann, chris

    2006-01-01

    The Reference Architecture for Space Information Management (RASIM) suggests the separation of the data model from software components to promote the development of flexible information management systems. RASIM allows the data model to evolve independently from the software components and results in a robust implementation that remains viable as the domain changes. However, the development and management of data models within RASIM are difficult and time consuming tasks involving the choice of a notation, the capture of the model, its validation for consistency, and the export of the model for implementation. Current limitations to this approach include the lack of ability to capture comprehensive domain knowledge, the loss of significant modeling information during implementation, the lack of model visualization and documentation capabilities, and exports being limited to one or two schema types. The advent of the Semantic Web and its demand for sophisticated data models has addressed this situation by providing a new level of data model management in the form of ontology tools. In this paper we describe the use of a representative ontology tool to capture and manage a data model for a space information system. The resulting ontology is implementation independent. Novel on-line visualization and documentation capabilities are available automatically, and the ability to export to various schemas can be added through tool plug-ins. In addition, the ingestion of data instances into the ontology allows validation of the ontology and results in a domain knowledge base. Semantic browsers are easily configured for the knowledge base. For example the export of the knowledge base to RDF/XML and RDFS/XML and the use of open source metadata browsers provide ready-made user interfaces that support both text- and facet-based search. This paper will present the Planetary Data System (PDS) data model as a use case and describe the import of the data model into an ontology tool

  5. Axial model in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Barcelos-Neto, J.; Farina, C.; Vaidya, A.N.

    1986-12-11

    We study the axial model in a background gravitational field. Using the zeta-function regularization, we obtain explicitly the anomalous divergence of the axial-vector current and the exact generating functional of the theory. We show that, as a consequence of a space-time-dependent metric, all differential equations involved in the theory generalize to their covariantized forms. We also comment on the finite-mass renormalization exhibited by the pseudoscalar field and the form of the fermion propagator.

  6. Partial sum approaches to mathematical parameters of some growth models

    Science.gov (United States)

    Korkmaz, Mehmet

    2016-04-01

    Growth model is fitted by evaluating the mathematical parameters, a, b and c. In this study, the method of partial sums were used. For finding the mathematical parameters, firstly three partial sums were used, secondly four partial sums were used, thirdly five partial sums were used and finally N partial sums were used. The purpose of increasing the partial decomposition is to produce a better phase model which gives a better expected value by minimizing error sum of squares in the interval used.

  7. Luminescence model with quantum impact parameter for low energy ions

    CERN Document Server

    Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S

    2002-01-01

    We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.

  8. An Integrated Approach to Parameter Learning in Infinite-Dimensional Space

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wendelberger, Joanne Roth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    The availability of sophisticated modern physics codes has greatly extended the ability of domain scientists to understand the processes underlying their observations of complicated processes, but it has also introduced the curse of dimensionality via the many user-set parameters available to tune. Many of these parameters are naturally expressed as functional data, such as initial temperature distributions, equations of state, and controls. Thus, when attempting to find parameters that match observed data, being able to navigate parameter-space becomes highly non-trivial, especially considering that accurate simulations can be expensive both in terms of time and money. Existing solutions include batch-parallel simulations, high-dimensional, derivative-free optimization, and expert guessing, all of which make some contribution to solving the problem but do not completely resolve the issue. In this work, we explore the possibility of coupling together all three of the techniques just described by designing user-guided, batch-parallel optimization schemes. Our motivating example is a neutron diffusion partial differential equation where the time-varying multiplication factor serves as the unknown control parameter to be learned. We find that a simple, batch-parallelizable, random-walk scheme is able to make some progress on the problem but does not by itself produce satisfactory results. After reducing the dimensionality of the problem using functional principal component analysis (fPCA), we are able to track the progress of the solver in a visually simple way as well as viewing the associated principle components. This allows a human to make reasonable guesses about which points in the state space the random walker should try next. Thus, by combining the random walker's ability to find descent directions with the human's understanding of the underlying physics, it is possible to use expensive simulations more efficiently and more quickly arrive at the

  9. Fast Estimation Method of Space-Time Two-Dimensional Positioning Parameters Based on Hadamard Product

    Directory of Open Access Journals (Sweden)

    Haiwen Li

    2018-01-01

    Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.

  10. Electromagnetic weather in the near-earth space in dependence on solar wind parameters

    International Nuclear Information System (INIS)

    Belov, B.A.; Burtsev, Yu.A.; Dremukhina, L.A.; Papitashvili, V.O.

    1995-01-01

    Analysis of modern models of electrical and magnetic fields, electrical current and plasma convection is carried out with the purpose of quantitative description of the near-earth electrodynamic parameters. Possibility of utilizing such models simultaneously with radar and geomagnetic observations for continuous real time control of electromagnetic weather in the earth magnetosphere is considered. Refs. 24, refs. 3

  11. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rasmuson; K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters

  12. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  13. Modal Analysis and Model Correlation of the Mir Space Station

    Science.gov (United States)

    Kim, Hyoung M.; Kaouk, Mohamed

    2000-01-01

    This paper will discuss on-orbit dynamic tests, modal analysis, and model refinement studies performed as part of the Mir Structural Dynamics Experiment (MiSDE). Mir is the Russian permanently manned Space Station whose construction first started in 1986. The MiSDE was sponsored by the NASA International Space Station (ISS) Phase 1 Office and was part of the Shuttle-Mir Risk Mitigation Experiment (RME). One of the main objectives for MiSDE is to demonstrate the feasibility of performing on-orbit modal testing on large space structures to extract modal parameters that will be used to correlate mathematical models. The experiment was performed over a one-year span on the Mir-alone and Mir with a Shuttle docked. A total of 45 test sessions were performed including: Shuttle and Mir thruster firings, Shuttle-Mir and Progress-Mir dockings, crew exercise and pushoffs, and ambient noise during night-to-day and day-to-night orbital transitions. Test data were recorded with a variety of existing and new instrumentation systems that included: the MiSDE Mir Auxiliary Sensor Unit (MASU), the Space Acceleration Measurement System (SAMS), the Russian Mir Structural Dynamic Measurement System (SDMS), the Mir and Shuttle Inertial Measurement Units (IMUs), and the Shuttle payload bay video cameras. Modal analysis was performed on the collected test data to extract modal parameters, i.e. frequencies, damping factors, and mode shapes. A special time-domain modal identification procedure was used on free-decay structural responses. The results from this study show that modal testing and analysis of large space structures is feasible within operational constraints. Model refinements were performed on both the Mir alone and the Shuttle-Mir mated configurations. The design sensitivity approach was used for refinement, which adjusts structural properties in order to match analytical and test modal parameters. To verify the refinement results, the analytical responses calculated using

  14. Numerical modelling of elastic space tethers

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Palmer, P. L.; Roberts, R. M.

    2012-01-01

    In this paper the importance of the ill-posedness of the classical, non-dissipative massive tether model on an orbiting tether system is studied numerically. The computations document that via the regularisation of bending resistance a more reliable numerical integrator can be produced. Furthermore......, the numerical experiments of an orbiting tether system show that bending may introduce significant forces in some regions of phase space. Finally, numerical evidence for the existence of an almost invariant slow manifold of the singularly perturbed, regularised, non-dissipative massive tether model is provided...

  15. SPOTting Model Parameters Using a Ready-Made Python Package.

    Directory of Open Access Journals (Sweden)

    Tobias Houska

    Full Text Available The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool, an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI. We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  16. Simultaneous inference for model averaging of derived parameters

    DEFF Research Database (Denmark)

    Jensen, Signe Marie; Ritz, Christian

    2015-01-01

    Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...

  17. Updating parameters of the chicken processing line model

    DEFF Research Database (Denmark)

    Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna

    2010-01-01

    A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate performance of this method in updating parameters...... of the chicken processing line model....

  18. Lumped-Parameter Models for Windturbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...

  19. The dynamics of blood biochemical parameters in cosmonauts during long-term space flights

    Science.gov (United States)

    Markin, Andrei; Strogonova, Lubov; Balashov, Oleg; Polyakov, Valery; Tigner, Timoty

    Most of the previously obtained data on cosmonauts' metabolic state concerned certain stages of the postflight period. In this connection, all conclusions, as to metabolism peculiarities during the space flight, were to a large extent probabilistic. The purpose of this work was study of metabolism characteristics in cosmonauts directly during long-term space flights. In the capillary blood samples taken from a finger, by "Reflotron IV" biochemical analyzer, "Boehringer Mannheim" GmbH, Germany, adapted to weightlessness environments, the activity of GOT, GPT, CK, gamma-GT, total and pancreatic amylase, as well as concentration of hemoglobin, glucose, total bilirubin, uric acid, urea, creatinine, total, HDL- and LDL cholesterol, triglycerides had been determined. HDL/LDL-cholesterol ratio also was computed. The crewmembers of 6 main missions to the "Mir" orbital station, a total of 17 cosmonauts, were examined. Biochemical tests were carryed out 30-60 days before lounch, and in the flights different stages between the 25-th and the 423-rd days of flights. In cosmonauts during space flight had been found tendency to increase, in compare with basal level, GOT, GPT, total amylase activity, glucose and total cholesterol concentration, and tendency to decrease of CK activity, hemoglobin, HDL-cholesterol concentration, and HDL/LDL — cholesterol ratio. Some definite trends in variations of other determined biochemical parameters had not been found. The same trends of mentioned biochemical parameters alterations observed in majority of tested cosmonauts, allows to suppose existence of connection between noted metabolic alterations with influence of space flight conditions upon cosmonaut's body. Variations of other studied blood biochemical parameters depends on, probably, pure individual causes.

  20. Parameter estimation and model selection in computational biology.

    Directory of Open Access Journals (Sweden)

    Gabriele Lillacci

    2010-03-01

    Full Text Available A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.

  1. Optimization of Allelic Combinations Controlling Parameters of a Peach Quality Model.

    Science.gov (United States)

    Quilot-Turion, Bénédicte; Génard, Michel; Valsesia, Pierre; Memmah, Mohamed-Mahmoud

    2016-01-01

    Process-based models are effective tools to predict the phenotype of an individual in different growing conditions. Combined with a quantitative trait locus (QTL) mapping approach, it is then possible to predict the behavior of individuals with any combinations of alleles. However the number of simulations to explore the realm of possibilities may become infinite. Therefore, the use of an efficient optimization algorithm to intelligently explore the search space becomes imperative. The optimization algorithm has to solve a multi-objective problem, since the phenotypes of interest are usually a complex of traits, to identify the individuals with best tradeoffs between those traits. In this study we proposed to unroll such a combined approach in the case of peach fruit quality described through three targeted traits, using a process-based model with seven parameters controlled by QTL. We compared a current approach based on the optimization of the values of the parameters with a more evolved way to proceed which consists in the direct optimization of the alleles controlling the parameters. The optimization algorithm has been adapted to deal with both continuous and combinatorial problems. We compared the spaces of parameters obtained with different tactics and the phenotype of the individuals resulting from random simulations and optimization in these spaces. The use of a genetic model enabled the restriction of the dimension of the parameter space toward more feasible combinations of parameter values, reproducing relationships between parameters as observed in a real progeny. The results of this study demonstrated the potential of such an approach to refine the solutions toward more realistic ideotypes. Perspectives of improvement are discussed.

  2. Mirror symmetry for two-parameter models. Pt. 2

    International Nuclear Information System (INIS)

    Candelas, Philip; Font, Anamaria; Katz, Sheldon; Morrison, David R.

    1994-01-01

    We describe in detail the space of the two Kaehler parameters of the Calabi-Yau manifold P 4 (1,1,1,6,9) [D. R. Morrison, 1993] by exploiting mirror symmetry. The large complex structure limit of the mirror, which corresponds to the classical large radius limit, is found by studying the monodromy of the periods about the discriminant locus, the boundary of the moduli space corresponding to singular Calabi-Yau manifolds. A symplectic basis of periods is found and the action of the Sp(6, Z) generators of the modular group is determined. From the mirror map we compute the instanton expansion of the Yukawa couplings and the generalized N=2 index, arriving at the numbers of instantons of genus zero and genus one of each bidegree. We find that these numbers can be negative, even in genus zero. We also investigate an SL(2, Z) symmetry that acts on a boundary of the moduli space. ((orig.))

  3. Development of new model for high explosives detonation parameters calculation

    Directory of Open Access Journals (Sweden)

    Jeremić Radun

    2012-01-01

    Full Text Available The simple semi-empirical model for calculation of detonation pressure and velocity for CHNO explosives has been developed, which is based on experimental values of detonation parameters. Model uses Avakyan’s method for determination of detonation products' chemical composition, and is applicable in wide range of densities. Compared with the well-known Kamlet's method and numerical model of detonation based on BKW EOS, the calculated values from proposed model have significantly better accuracy.

  4. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  5. Modeling utilization distributions in space and time

    Science.gov (United States)

    Keating, K.A.; Cherry, S.

    2009-01-01

    W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r - 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep {Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed. ?? 2009 by the Ecological Society of America.

  6. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])

  7. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  8. Parameter uncertainty analysis of a biokinetic model of caesium

    International Nuclear Information System (INIS)

    Li, W.B.; Oeh, U.; Klein, W.; Blanchardon, E.; Puncher, M.; Leggett, R.W.; Breustedt, B.; Nosske, D.; Lopez, M.A.

    2015-01-01

    Parameter uncertainties for the biokinetic model of caesium (Cs) developed by Leggett et al. were inventoried and evaluated. The methods of parameter uncertainty analysis were used to assess the uncertainties of model predictions with the assumptions of model parameter uncertainties and distributions. Furthermore, the importance of individual model parameters was assessed by means of sensitivity analysis. The calculated uncertainties of model predictions were compared with human data of Cs measured in blood and in the whole body. It was found that propagating the derived uncertainties in model parameter values reproduced the range of bioassay data observed in human subjects at different times after intake. The maximum ranges, expressed as uncertainty factors (UFs) (defined as a square root of ratio between 97.5. and 2.5. percentiles) of blood clearance, whole-body retention and urinary excretion of Cs predicted at earlier time after intake were, respectively: 1.5, 1.0 and 2.5 at the first day; 1.8, 1.1 and 2.4 at Day 10 and 1.8, 2.0 and 1.8 at Day 100; for the late times (1000 d) after intake, the UFs were increased to 43, 24 and 31, respectively. The model parameters of transfer rates between kidneys and blood, muscle and blood and the rate of transfer from kidneys to urinary bladder content are most influential to the blood clearance and to the whole-body retention of Cs. For the urinary excretion, the parameters of transfer rates from urinary bladder content to urine and from kidneys to urinary bladder content impact mostly. The implication and effect on the estimated equivalent and effective doses of the larger uncertainty of 43 in whole-body retention in the later time, say, after Day 500 will be explored in a successive work in the framework of EURADOS. (authors)

  9. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception

  10. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  11. New trends in parameter identification for mathematical models

    CERN Document Server

    Leitão, Antonio; Zubelli, Jorge

    2018-01-01

    The Proceedings volume contains 16 contributions to the IMPA conference “New Trends in Parameter Identification for Mathematical Models”, Rio de Janeiro, Oct 30 – Nov 3, 2017, integrating the “Chemnitz Symposium on Inverse Problems on Tour”.  This conference is part of the “Thematic Program on Parameter Identification in Mathematical Models” organized  at IMPA in October and November 2017. One goal is to foster the scientific collaboration between mathematicians and engineers from the Brazialian, European and Asian communities. Main topics are iterative and variational regularization methods in Hilbert and Banach spaces for the stable approximate solution of ill-posed inverse problems, novel methods for parameter identification in partial differential equations, problems of tomography ,  solution of coupled conduction-radiation problems at high temperatures, and the statistical solution of inverse problems with applications in physics.

  12. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M. A.

    2003-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values

  13. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-06-27

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699

  14. Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters.

    Science.gov (United States)

    Liu, Fei; Heiner, Monika; Yang, Ming

    2016-01-01

    Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information.

  15. Integrated Space Asset Management Database and Modeling

    Science.gov (United States)

    MacLeod, Todd; Gagliano, Larry; Percy, Thomas; Mason, Shane

    2015-01-01

    Effective Space Asset Management is one key to addressing the ever-growing issue of space congestion. It is imperative that agencies around the world have access to data regarding the numerous active assets and pieces of space junk currently tracked in orbit around the Earth. At the center of this issues is the effective management of data of many types related to orbiting objects. As the population of tracked objects grows, so too should the data management structure used to catalog technical specifications, orbital information, and metadata related to those populations. Marshall Space Flight Center's Space Asset Management Database (SAM-D) was implemented in order to effectively catalog a broad set of data related to known objects in space by ingesting information from a variety of database and processing that data into useful technical information. Using the universal NORAD number as a unique identifier, the SAM-D processes two-line element data into orbital characteristics and cross-references this technical data with metadata related to functional status, country of ownership, and application category. The SAM-D began as an Excel spreadsheet and was later upgraded to an Access database. While SAM-D performs its task very well, it is limited by its current platform and is not available outside of the local user base. Further, while modeling and simulation can be powerful tools to exploit the information contained in SAM-D, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. This paper provides a summary of SAM-D development efforts to date and outlines a proposed data management infrastructure that extends SAM-D to support the larger data sets to be generated. A service-oriented architecture model using an information sharing platform named SIMON will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for

  16. Procedures for parameter estimates of computational models for localized failure

    NARCIS (Netherlands)

    Iacono, C.

    2007-01-01

    In the last years, many computational models have been developed for tensile fracture in concrete. However, their reliability is related to the correct estimate of the model parameters, not all directly measurable during laboratory tests. Hence, the development of inverse procedures is needed, that

  17. Geometry parameters for musculoskeletal modelling of the shoulder system

    NARCIS (Netherlands)

    Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H

    A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of

  18. Space Environment Modelling with the Use of Artificial Intelligence Methods

    Science.gov (United States)

    Lundstedt, H.; Wintoft, P.; Wu, J.-G.; Gleisner, H.; Dovheden, V.

    1996-12-01

    Space based technological systems are affected by the space weather in many ways. Several severe failures of satellites have been reported at times of space storms. Our society also increasingly depends on satellites for communication, navigation, exploration, and research. Predictions of the conditions in the satellite environment have therefore become very important. We will here present predictions made with the use of artificial intelligence (AI) techniques, such as artificial neural networks (ANN) and hybrids of AT methods. We are developing a space weather model based on intelligence hybrid systems (IHS). The model consists of different forecast modules, each module predicts the space weather on a specific time-scale. The time-scales range from minutes to months with the fundamental time-scale of 1-5 minutes, 1-3 hours, 1-3 days, and 27 days. Solar and solar wind data are used as input data. From solar magnetic field measurements, either made on the ground at Wilcox Solar Observatory (WSO) at Stanford, or made from space by the satellite SOHO, solar wind parameters can be predicted and modelled with ANN and MHD models. Magnetograms from WSO are available on a daily basis. However, from SOHO magnetograms will be available every 90 minutes. SOHO magnetograms as input to ANNs will therefore make it possible to even predict solar transient events. Geomagnetic storm activity can today be predicted with very high accuracy by means of ANN methods using solar wind input data. However, at present real-time solar wind data are only available during part of the day from the satellite WIND. With the launch of ACE in 1997, solar wind data will on the other hand be available during 24 hours per day. The conditions of the satellite environment are not only disturbed at times of geomagnetic storms but also at times of intense solar radiation and highly energetic particles. These events are associated with increased solar activity. Predictions of these events are therefore

  19. Space physiology IV: mathematical modeling of the cardiovascular system in space exploration.

    Science.gov (United States)

    Keith Sharp, M; Batzel, Jerry Joseph; Montani, Jean-Pierre

    2013-08-01

    Mathematical modeling represents an important tool for analyzing cardiovascular function during spaceflight. This review describes how modeling of the cardiovascular system can contribute to space life science research and illustrates this process via modeling efforts to study postflight orthostatic intolerance (POI), a key issue for spaceflight. Examining this application also provides a context for considering broader applications of modeling techniques to the challenges of bioastronautics. POI, which affects a large fraction of astronauts in stand tests upon return to Earth, presents as dizziness, fainting and other symptoms, which can diminish crew performance and cause safety hazards. POI on the Moon or Mars could be more critical. In the field of bioastronautics, POI has been the dominant application of cardiovascular modeling for more than a decade, and a number of mechanisms for POI have been investigated. Modeling approaches include computational models with a range of incorporated factors and hemodynamic sophistication, and also physical models tested in parabolic and orbital flight. Mathematical methods such as parameter sensitivity analysis can help identify key system mechanisms. In the case of POI, this could lead to more effective countermeasures. Validation is a persistent issue in modeling efforts, and key considerations and needs for experimental data to synergistically improve understanding of cardiovascular responses are outlined. Future directions in cardiovascular modeling include subject-specific assessment of system status, as well as research on integrated physiological responses, leading, for instance, to assessment of subject-specific susceptibility to POI or effects of cardiovascular alterations on muscular, vision and cognitive function.

  20. A software for parameter estimation in dynamic models

    Directory of Open Access Journals (Sweden)

    M. Yuceer

    2008-12-01

    Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.

  1. Retrieval of cloud optical parameters from space-based backscatter lidar data.

    Science.gov (United States)

    Balin, Y S; Samoilova, S V; Krekova, M M; Winker, D M

    1999-10-20

    We present an approach to estimating the multiple-scattering (MS) contribution to lidar return signals from clouds recorded from space that enables us to describe in more detail the return formation at the depth where first orders of scattering dominate. Estimates made have enabled us to propose a method for correcting solutions of single-scattering lidar equations for the MS contribution. We also describe an algorithm for reconstructing the profiles of the cloud scattering coefficient and the optical thickness tau under conditions of a priori uncertainties. The approach proposed is illustrated with results for optical parameters of cirrus and stratiform clouds determined from return signals calculated by the Monte Carlo method as well as from return signals acquired with the American spaceborne lidar during the Lidar In-Space Technology Experiment (LITE).

  2. Improving the realism of hydrologic model through multivariate parameter estimation

    Science.gov (United States)

    Rakovec, Oldrich; Kumar, Rohini; Attinger, Sabine; Samaniego, Luis

    2017-04-01

    Increased availability and quality of near real-time observations should improve understanding of predictive skills of hydrological models. Recent studies have shown the limited capability of river discharge data alone to adequately constrain different components of distributed model parameterizations. In this study, the GRACE satellite-based total water storage (TWS) anomaly is used to complement the discharge data with an aim to improve the fidelity of mesoscale hydrologic model (mHM) through multivariate parameter estimation. The study is conducted in 83 European basins covering a wide range of hydro-climatic regimes. The model parameterization complemented with the TWS anomalies leads to statistically significant improvements in (1) discharge simulations during low-flow period, and (2) evapotranspiration estimates which are evaluated against independent (FLUXNET) data. Overall, there is no significant deterioration in model performance for the discharge simulations when complemented by information from the TWS anomalies. However, considerable changes in the partitioning of precipitation into runoff components are noticed by in-/exclusion of TWS during the parameter estimation. A cross-validation test carried out to assess the transferability and robustness of the calibrated parameters to other locations further confirms the benefit of complementary TWS data. In particular, the evapotranspiration estimates show more robust performance when TWS data are incorporated during the parameter estimation, in comparison with the benchmark model constrained against discharge only. This study highlights the value for incorporating multiple data sources during parameter estimation to improve the overall realism of hydrologic model and its applications over large domains. Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016): Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res., 52, http://dx.doi.org/10

  3. Determination of appropriate models and parameters for premixing calculations

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan

    2008-03-15

    The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.

  4. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash

  5. Parameter Estimation for Single Diode Models of Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.

    2015-03-01

    Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.

  6. Non-Abelian monopole in the parameter space of point-like interactions

    International Nuclear Information System (INIS)

    Ohya, Satoshi

    2014-01-01

    We study non-Abelian geometric phase in N=2 supersymmetric quantum mechanics for a free particle on a circle with two point-like interactions at antipodal points. We show that non-Abelian Berry’s connection is that of SU(2) magnetic monopole discovered by Moody, Shapere and Wilczek in the context of adiabatic decoupling limit of diatomic molecule. - Highlights: • Supersymmetric quantum mechanics is an ideal playground for studying geometric phase. • We determine the parameter space of supersymmetric point-like interactions. • Berry’s connection is given by a Wu–Yang-like magnetic monopole in SU(2) Yang–Mills

  7. A discrete-space urban model with environmental amenities

    Science.gov (United States)

    Liaila Tajibaeva; Robert G. Haight; Stephen Polasky

    2008-01-01

    This paper analyzes the effects of providing environmental amenities associated with open space in a discrete-space urban model and characterizes optimal provision of open space across a metropolitan area. The discrete-space model assumes distinct neighborhoods in which developable land is homogeneous within a neighborhood but heterogeneous across neighborhoods. Open...

  8. Effect of alloy deformation on the average spacing parameters of non-deforming particles

    International Nuclear Information System (INIS)

    Fisher, J.; Gurland, J.

    1980-02-01

    It is shown on the basis of stereological definitions and a few simple experiments that the commonly used average dispersion parameters, area fraction (A/sub A/)/sub β/, areal particle density N/sub Aβ/ and mean free path lambda/sub α/, remain invariant during plastic deformation in the case of non-deforming equiaxed particles. Directional effects on the spacing parameters N/sub Aβ/ and lambda/sub α/ arise during uniaxial deformation by rotation and preferred orientation of nonequiaxed particles. Particle arrangement in stringered or layered structures and the effect of deformation on nearest neighbor distances of particles and voids are briefly discussed in relation to strength and fracture theories

  9. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    Science.gov (United States)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  10. Modeling Chinese ionospheric layer parameters based on EOF analysis

    Science.gov (United States)

    Yu, You; Wan, Weixing

    2016-04-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation co- efficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  11. Parameters and variables appearing in repository design models

    International Nuclear Information System (INIS)

    Curtis, R.H.; Wart, R.J.

    1983-12-01

    This report defines the parameters and variables appearing in repository design models and presents typical values and ranges of values of each. Areas covered by this report include thermal, geomechanical, and coupled stress and flow analyses in rock. Particular emphasis is given to conductivity, radiation, and convection parameters for thermal analysis and elastic constants, failure criteria, creep laws, and joint properties for geomechanical analysis. The data in this report were compiled to help guide the selection of values of parameters and variables to be used in code benchmarking. 102 references, 33 figures, 51 tables

  12. A lumped parameter, low dimension model of heat exchanger

    International Nuclear Information System (INIS)

    Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami

    1980-01-01

    This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)

  13. Control of the SCOLE configuration using distributed parameter models

    Science.gov (United States)

    Hsiao, Min-Hung; Huang, Jen-Kuang

    1994-01-01

    A continuum model for the SCOLE configuration has been derived using transfer matrices. Controller designs for distributed parameter systems have been analyzed. Pole-assignment controller design is considered easy to implement but stability is not guaranteed. An explicit transfer function of dynamic controllers has been obtained and no model reduction is required before the controller is realized. One specific LQG controller for continuum models had been derived, but other optimal controllers for more general performances need to be studied.

  14. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    Science.gov (United States)

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  15. SPOTting model parameters using a ready-made Python package

    Science.gov (United States)

    Houska, Tobias; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for

  16. Modelling of intermittent microwave convective drying: parameter sensitivity

    Directory of Open Access Journals (Sweden)

    Zhang Zhijun

    2017-06-01

    Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  17. Modelling of intermittent microwave convective drying: parameter sensitivity

    Science.gov (United States)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  18. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  19. Operational definition of (brane-induced) space-time and constraints on the fundamental parameters

    International Nuclear Information System (INIS)

    Maziashvili, Michael

    2008-01-01

    First we contemplate the operational definition of space-time in four dimensions in light of basic principles of quantum mechanics and general relativity and consider some of its phenomenological consequences. The quantum gravitational fluctuations of the background metric that comes through the operational definition of space-time are controlled by the Planck scale and are therefore strongly suppressed. Then we extend our analysis to the braneworld setup with low fundamental scale of gravity. It is observed that in this case the quantum gravitational fluctuations on the brane may become unacceptably large. The magnification of fluctuations is not linked directly to the low quantum gravity scale but rather to the higher-dimensional modification of Newton's inverse square law at relatively large distances. For models with compact extra dimensions the shape modulus of extra space can be used as a most natural and safe stabilization mechanism against these fluctuations

  20. The influence of joint parameters on normal fault evolution and geometry: a parameter study using analogue modeling

    Science.gov (United States)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.

    2017-04-01

    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small

  1. On the role of modeling parameters in IMRT plan optimization

    International Nuclear Information System (INIS)

    Krause, Michael; Scherrer, Alexander; Thieke, Christian

    2008-01-01

    The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way

  2. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin

    2009-01-01

    The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...... procedure. Both are only partly solved problems. Here, we focus on the problem of conformational sampling. The current state of the art solution is based on fragment assembly methods, which construct plausible conformations by stringing together short fragments obtained from experimental structures. However...... efficient sampling of RNA conformations in continuous space, and with associated probabilities. We show that the model captures several key features of RNA structure, such as its rotameric nature and the distribution of the helix lengths. Furthermore, the model readily generates native-like 3-D...

  3. Modeling Physarum space exploration using memristors

    International Nuclear Information System (INIS)

    Ntinas, V; Sirakoulis, G Ch; Vourkas, I; Adamatzky, A I

    2017-01-01

    Slime mold Physarum polycephalum optimizes its foraging behaviour by minimizing the distances between the sources of nutrients it spans. When two sources of nutrients are present, the slime mold connects the sources, with its protoplasmic tubes, along the shortest path. We present a two-dimensional mesh grid memristor based model as an approach to emulate Physarum’s foraging strategy, which includes space exploration and reinforcement of the optimally formed interconnection network in the presence of multiple aliment sources. The proposed algorithmic approach utilizes memristors and LC contours and is tested in two of the most popular computational challenges for Physarum, namely maze and transportation networks. Furthermore, the presented model is enriched with the notion of noise presence, which positively contributes to a collective behavior and enables us to move from deterministic to robust results. Consequently, the corresponding simulation results manage to reproduce, in a much better qualitative way, the expected transportation networks. (paper)

  4. Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation

    Science.gov (United States)

    Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.

    2011-12-01

    A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.

  5. Space weather: Modeling and forecasting ionospheric

    International Nuclear Information System (INIS)

    Calzadilla Mendez, A.

    2008-01-01

    Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)

  6. Assessment of Lumped-Parameter Models for Rigid Footings

    DEFF Research Database (Denmark)

    Andersen, Lars

    2010-01-01

    The quality of consistent lumped-parameter models of rigid footings is examined. Emphasis is put on the maximum response during excitation and the geometrical damping related to free vibrations. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal...... and vertical translations as well as torsion and rocking, and the necessity of coupling between horizontal sliding and rocking is discussed. Most of the analyses are carried out for hexagonal footings; but in order to generalise the conclusions to a broader variety of footings, comparisons are made...... with the response of circular and square foundations....

  7. On the identifiability of inertia parameters of planar Multi-Body Space Systems

    Science.gov (United States)

    Nabavi-Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2018-04-01

    This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.

  8. Climate change decision-making: Model & parameter uncertainties explored

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Linville, C.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.

  9. Assessing composition and structure of soft biphasic media from Kelvin-Voigt fractional derivative model parameters.

    Science.gov (United States)

    Zhang, Hong Mei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F

    2017-03-01

    Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques - ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material's fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r . Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η - E A relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties.

  10. Model-based verification method for solving the parameter uncertainty in the train control system

    International Nuclear Information System (INIS)

    Cheng, Ruijun; Zhou, Jin; Chen, Dewang; Song, Yongduan

    2016-01-01

    This paper presents a parameter analysis method to solve the parameter uncertainty problem for hybrid system and explore the correlation of key parameters for distributed control system. For improving the reusability of control model, the proposed approach provides the support for obtaining the constraint sets of all uncertain parameters in the abstract linear hybrid automata (LHA) model when satisfying the safety requirements of the train control system. Then, in order to solve the state space explosion problem, the online verification method is proposed to monitor the operating status of high-speed trains online because of the real-time property of the train control system. Furthermore, we construct the LHA formal models of train tracking model and movement authority (MA) generation process as cases to illustrate the effectiveness and efficiency of the proposed method. In the first case, we obtain the constraint sets of uncertain parameters to avoid collision between trains. In the second case, the correlation of position report cycle and MA generation cycle is analyzed under both the normal and the abnormal condition influenced by packet-loss factor. Finally, considering stochastic characterization of time distributions and real-time feature of moving block control system, the transient probabilities of wireless communication process are obtained by stochastic time petri nets. - Highlights: • We solve the parameters uncertainty problem by using model-based method. • We acquire the parameter constraint sets by verifying linear hybrid automata models. • Online verification algorithms are designed to monitor the high-speed trains. • We analyze the correlation of key parameters and uncritical parameters. • The transient probabilities are obtained by using reliability analysis.

  11. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  12. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  13. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    Science.gov (United States)

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  14. Halogenation of Hydraulic Fracturing Additives in the Shale Well Parameter Space

    Science.gov (United States)

    Sumner, A. J.; Plata, D.

    2017-12-01

    Horizontal Drilling and Hydraulic fracturing (HDHF) involves the deep-well injection of a `fracking fluid' composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. The potential impacts of HDHF operations on water resources and ecosystems are numerous, and analyses of flowback samples revealed organic compounds from both geogenic and anthropogenic sources. Furthermore, halogenated chemicals were also detected, and these compounds are rarely disclosed, suggesting the in situ halogenation of reactive additives. To test this transformation hypothesis, we designed and operated a novel high pressure and temperature reactor system to simulate the shale well parameter space and investigate the chemical reactivity of twelve commonly disclosed and functionally diverse HDHF additives. Early results revealed an unanticipated halogenation pathway of α-β unsaturated aldehyde, Cinnamaldehyde, in the presence of oxidant and concentrated brine. Ongoing experiments over a range of parameters informed a proposed mechanism, demonstrating the role of various shale-well specific parameters in enabling the demonstrated halogenation pathway. Ultimately, these results will inform a host of potentially unintended interactions of HDHF additives during the extreme conditions down-bore of a shale well during HDHF activities.

  15. Identifiability and error minimization of receptor model parameters with PET

    International Nuclear Information System (INIS)

    Delforge, J.; Syrota, A.; Mazoyer, B.M.

    1989-01-01

    The identifiability problem and the general framework for experimental design optimization are presented. The methodology is applied to the problem of the receptor-ligand model parameter estimation with dynamic positron emission tomography data. The first attempts to identify the model parameters from data obtained with a single tracer injection led to disappointing numerical results. The possibility of improving parameter estimation using a new experimental design combining an injection of the labelled ligand and an injection of the cold ligand (displacement experiment) has been investigated. However, this second protocol led to two very different numerical solutions and it was necessary to demonstrate which solution was biologically valid. This has been possible by using a third protocol including both a displacement and a co-injection experiment. (authors). 16 refs.; 14 figs

  16. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  17. Prediction of interest rate using CKLS model with stochastic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Khor Chia [Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Hin, Pooi Ah [Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor (Malaysia)

    2014-06-19

    The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.

  18. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    Science.gov (United States)

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  19. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.

    Science.gov (United States)

    Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E

    2013-12-01

    Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.

  20. Investigation of land use effects on Nash model parameters

    Science.gov (United States)

    Niazi, Faegheh; Fakheri Fard, Ahmad; Nourani, Vahid; Goodrich, David; Gupta, Hoshin

    2015-04-01

    Flood forecasting is of great importance in hydrologic planning, hydraulic structure design, water resources management and sustainable designs like flood control and management. Nash's instantaneous unit hydrograph is frequently used for simulating hydrological response in natural watersheds. Urban hydrology is gaining more attention due to population increases and associated construction escalation. Rapid development of urban areas affects the hydrologic processes of watersheds by decreasing soil permeability, flood base flow, lag time and increase in flood volume, peak runoff rates and flood frequency. In this study the influence of urbanization on the significant parameters of the Nash model have been investigated. These parameters were calculated using three popular methods (i.e. moment, root mean square error and random sampling data generation), in a small watershed consisting of one natural sub-watershed which drains into a residentially developed sub-watershed in the city of Sierra Vista, Arizona. The results indicated that for all three methods, the lag time, which is product of Nash parameters "K" and "n", in the natural sub-watershed is greater than the developed one. This logically implies more storage and/or attenuation in the natural sub-watershed. The median K and n parameters derived from the three methods using calibration events were tested via a set of verification events. The results indicated that all the three method have acceptable accuracy in hydrograph simulation. The CDF curves and histograms of the parameters clearly show the difference of the Nash parameter values between the natural and developed sub-watersheds. Some specific upper and lower percentile values of the median of the generated parameters (i.e. 10, 20 and 30 %) were analyzed to future investigates the derived parameters. The model was sensitive to variations in the value of the uncertain K and n parameter. Changes in n are smaller than K in both sub-watersheds indicating

  1. Revised models and genetic parameter estimates for production and ...

    African Journals Online (AJOL)

    Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...

  2. Transformations among CE–CVM model parameters for ...

    Indian Academy of Sciences (India)

    In the development of thermodynamic databases for multicomponent systems using the cluster expansion–cluster variation methods, we need to have a consistent procedure for expressing the model parameters (CECs) of a higher order system in terms of those of the lower order subsystems and to an independent set of ...

  3. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  4. Comparison of parameter estimation algorithms in hydrological modelling

    DEFF Research Database (Denmark)

    Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan

    2006-01-01

    for these types of models, although at a more expensive computational cost. The main purpose of this study is to investigate the performance of a global and a local parameter optimization algorithm, respectively, the Shuffled Complex Evolution (SCE) algorithm and the gradient-based Gauss...

  5. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  6. Constraint on Parameters of Inverse Compton Scattering Model for ...

    Indian Academy of Sciences (India)

    J. Astrophys. Astr. (2011) 32, 299–300 c Indian Academy of Sciences. Constraint on Parameters of Inverse Compton Scattering Model for PSR B2319+60. H. G. Wang. ∗. & M. Lv. Center for Astrophysics,Guangzhou University, Guangzhou, China. ∗ e-mail: cosmic008@yahoo.com.cn. Abstract. Using the multifrequency radio ...

  7. Conditioning rainfall-runoff model parameters for ungauged catchments and land management impacts analysis

    Directory of Open Access Journals (Sweden)

    N. Bulygina

    2009-06-01

    Full Text Available Data scarcity and model over-parameterisation, leading to model equifinality and large prediction uncertainty, are common barriers to effective hydrological modelling. The problem can be alleviated by constraining the prior parameter space using parameter regionalisation. A common basis for regionalisation in the UK is the HOST database which provides estimates of hydrological indices for different soil classifications. In our study, Base Flow Index is estimated from the HOST database and the power of this index for constraining the parameter space is explored. The method is applied to a highly discretised distributed model of a 12.5 km2 upland catchment in Wales. To assess probabilistic predictions against flow observations, a probabilistic version of the Nash-Sutcliffe efficiency is derived. For six flow gauges with reliable data, this efficiency ranged between 0.70 and 0.81, and inspection of the results shows that the model explains the data well. Knowledge of how Base Flow Index and interception losses may change under future land use management interventions was then used to further condition the model. Two interventions are considered: afforestation of grazed areas, and soil degradation associated with increased grazing intensity. Afforestation leads to median reduction in modelled runoff volume of 24% over the simulated 3 month period; and a median peak flow reduction ranging from 12 to 15% over the six gauges for the largest simulated event. Uncertainty in all results is low compared to prior uncertainty and it is concluded that using Base Flow Index estimated from HOST is a simple and potentially powerful method of conditioning the parameter space under current and future land management.

  8. A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data.

    Science.gov (United States)

    Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin

    2017-12-09

    Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.

  9. Overall feature of EAST operation space by using simple Core-SOL-Divertor model

    International Nuclear Information System (INIS)

    Hiwatari, R.; Hatayama, A.; Zhu, S.; Takizuka, T.; Tomita, Y.

    2005-01-01

    We have developed a simple Core-SOL-Divertor (C-S-D) model to investigate qualitatively the overall features of the operational space for the integrated core and edge plasma. To construct the simple C-S-D model, a simple core plasma model of ITER physics guidelines and a two-point SOL-divertor model are used. The simple C-S-D model is applied to the study of the EAST operational space with lower hybrid current drive experiments under various kinds of trade-off for the basic plasma parameters. Effective methods for extending the operation space are also presented. As shown by this study for the EAST operation space, it is evident that the C-S-D model is a useful tool to understand qualitatively the overall features of the plasma operation space. (author)

  10. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the

  11. Integrating microbial diversity in soil carbon dynamic models parameters

    Science.gov (United States)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  12. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-09-24

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air

  13. Optimal parameters for the Green-Ampt infiltration model under rainfall conditions

    Directory of Open Access Journals (Sweden)

    Chen Li

    2015-06-01

    Full Text Available The Green-Ampt (GA model is widely used in hydrologic studies as a simple, physically-based method to estimate infiltration processes. The accuracy of the model for applications under rainfall conditions (as opposed to initially ponded situations has not been studied extensively. We compared calculated rainfall infiltration results for various soils obtained using existing GA parameterizations with those obtained by solving the Richards equation for variably saturated flow. Results provided an overview of GA model performance evaluated by means of a root-meansquare- error-based objective function across a large region in GA parameter space as compared to the Richards equation, which showed a need for seeking optimal GA parameters. Subsequent analysis enabled the identification of optimal GA parameters that provided a close fit with the Richards equation. The optimal parameters were found to substantially outperform the standard theoretical parameters, thus improving the utility and accuracy of the GA model for infiltration simulations under rainfall conditions. A sensitivity analyses indicated that the optimal parameters may change for some rainfall scenarios, but are relatively stable for high-intensity rainfall events.

  14. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  15. Modeling and Parameter Identification Involving 3-Hydroxypropionaldehyde Inhibitory Effects in Glycerol Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Zhaohua Gong

    2012-01-01

    Full Text Available Mathematical modeling and parameter estimation are critical steps in the optimization of biotechnological processes. In the 1,3-propanediol (1,3-PD production by glycerol fermentation process under anaerobic conditions, 3-hydroxypropionaldehyde (3-HPA accumulation would arouse an irreversible cessation of the fermentation process. Considering 3-HPA inhibitions to cells growth and to activities of enzymes, we propose a novel mathematical model to describe glycerol continuous cultures. Some properties of the above model are discussed. On the basis of the concentrations of extracellular substances, a parameter identification model is established to determine the kinetic parameters in the presented system. Through the penalty function technique combined with an extension of the state space method, an improved genetic algorithm is then constructed to solve the parameter identification model. An illustrative numerical example shows the appropriateness of the proposed model and the validity of optimization algorithm. Since it is difficult to measure the concentrations of intracellular substances, a quantitative robustness analysis method is given to infer whether the model is plausible for the intracellular substances. Numerical results show that the proposed model is of good robustness.

  16. Finite size scaling study of a two parameter percolation model: Constant and correlated growth

    Science.gov (United States)

    Roy, Bappaditya; Santra, S. B.

    2018-02-01

    A new percolation model of enhanced parameter space with nucleation and growth is developed taking the initial seed concentration ρ and a growth parameter g as two tunable parameters. Percolation transition is determined by the final static configurations of spanning clusters once taking uniform growth probability for all the clusters and then taking a cluster size dependent dynamic growth probability. The uniform growth probability remains constant over time and leads to a constant growth model whereas the dynamically varying growth probability leads to a correlated growth model. In the first case, the growth of a cluster will encounter partial hindrance due to the presence of other clusters whereas in the second case the growth of a larger cluster will be further suppressed in comparison to the growth of smaller clusters. A finite size scaling theory for percolation transition is developed and numerically verified for both the models. The scaling functions are found to depend on both g and ρ. At the critical growth parameter gc, the values of the critical exponents are found to be same as that of the original percolation at all values of ρ for the constant growth model whereas in the case of correlated growth model the scaling behavior deviates from ordinary percolation in the dilute limit of ρ. The constant growth model then belongs to the same universality class of percolation for a wide range of ρ whereas the correlated growth model displays a continuously varying universality class as ρ decreases towards zero.

  17. Estimating model parameters in nonautonomous chaotic systems using synchronization

    International Nuclear Information System (INIS)

    Yang, Xiaoli; Xu, Wei; Sun, Zhongkui

    2007-01-01

    In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation

  18. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  19. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  20. Model based Computerized Ionospheric Tomography in space and time

    Science.gov (United States)

    Tuna, Hakan; Arikan, Orhan; Arikan, Feza

    2018-04-01

    Reconstruction of the ionospheric electron density distribution in space and time not only provide basis for better understanding the physical nature of the ionosphere, but also provide improvements in various applications including HF communication. Recently developed IONOLAB-CIT technique provides physically admissible 3D model of the ionosphere by using both Slant Total Electron Content (STEC) measurements obtained from a GPS satellite - receiver network and IRI-Plas model. IONOLAB-CIT technique optimizes IRI-Plas model parameters in the region of interest such that the synthetic STEC computations obtained from the IRI-Plas model are in accordance with the actual STEC measurements. In this work, the IONOLAB-CIT technique is extended to provide reconstructions both in space and time. This extension exploits the temporal continuity of the ionosphere to provide more reliable reconstructions with a reduced computational load. The proposed 4D-IONOLAB-CIT technique is validated on real measurement data obtained from TNPGN-Active GPS receiver network in Turkey.

  1. Unifying model for random matrix theory in arbitrary space dimensions

    Science.gov (United States)

    Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio

    2018-03-01

    A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.

  2. Space Weather Forecasts Driven by the ADAPT Model

    Science.gov (United States)

    Henney, C. J.; Arge, C. N.; Shurkin, K.; Schooley, A. K.; Hock, R. A.; White, S.

    2015-12-01

    In this presentation, we highlight recent progress to forecast key space weather parameters with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model. Driven by a magnetic flux transport model, ADAPT evolves global solar magnetic maps forward 1 to 7 days in the future to provide realistic estimates of the solar near-side field distribution used to forecast the solar wind, F10.7 (i.e., the solar 10.7 cm radio flux), extreme ultraviolet (EUV) and far ultraviolet (FUV) irradiance. Input to the ADAPT model includes solar near-side estimates of the inferred photospheric magnetic field from space-based (i.e., HMI) and ground-based (e.g., GONG & VSM) instruments. We summarize the recent findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). In addition, recent progress to utilize the ADAPT global maps as input to the Wang-Sheeley-Arge (WSA) coronal and solar wind model is presented. We also discuss the challenges of observing less than half of the solar surface at any given time and the need for future magnetograph instruments near L1 and L5.

  3. Variational learning for switching state-space models.

    Science.gov (United States)

    Ghahramani, Z; Hinton, G E

    2000-04-01

    We introduce a new statistical model for time series that iteratively segments data into regimes with approximately linear dynamics and learnsthe parameters of each of these linear regimes. This model combines and generalizes two of the most widely used stochastic time-series models -- hidden Markov models and linear dynamical systems -- and is closely related to models that are widely used in the control and econometrics literatures. It can also be derived by extending the mixture of experts neural network (Jacobs, Jordan, Nowlan, & Hinton, 1991) to its fully dynamical version, in which both expert and gating networks are recurrent. Inferring the posterior probabilities of the hidden states of this model is computationally intractable, and therefore the exact expectation maximization (EM) algorithm cannot be applied. However, we present a variational approximation that maximizes a lower bound on the log-likelihood and makes use of both the forward and backward recursions for hidden Markov models and the Kalman filter recursions for linear dynamical systems. We tested the algorithm on artificial data sets and a natural data set of respiration force from a patient with sleep apnea. The results suggest that variational approximations are a viable method for inference and learning in switching state-space models.

  4. Mass balance model parameter transferability on a tropical glacier

    Science.gov (United States)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  5. Investigation of RADTRAN Stop Model input parameters for truck stops

    International Nuclear Information System (INIS)

    Griego, N.R.; Smith, J.D.; Neuhauser, K.S.

    1996-01-01

    RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops

  6. Four-parameter analytical local model potential for atoms

    International Nuclear Information System (INIS)

    Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang

    2009-01-01

    Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)

  7. Improving the transferability of hydrological model parameters under changing conditions

    Science.gov (United States)

    Huang, Yingchun; Bárdossy, András

    2014-05-01

    Hydrological models are widely utilized to describe catchment behaviors with observed hydro-meteorological data. Hydrological process may be considered as non-stationary under the changing climate and land use conditions. An applicable hydrological model should be able to capture the essential features of the target catchment and therefore be transferable to different conditions. At present, many model applications based on the stationary assumptions are not sufficient for predicting further changes or time variability. The aim of this study is to explore new model calibration methods in order to improve the transferability of model parameters. To cope with the instability of model parameters calibrated on catchments in non-stationary conditions, we investigate the idea of simultaneously calibration on streamflow records for the period with dissimilar climate characteristics. In additional, a weather based weighting function is implemented to adjust the calibration period to future trends. For regions with limited data and ungauged basins, the common calibration was applied by using information from similar catchments. Result shows the model performance and transfer quantity could be well improved via common calibration. This model calibration approach will be used to enhance regional water management and flood forecasting capabilities.

  8. Model Building by Coset Space Dimensional Reduction Scheme Using Ten-Dimensional Coset Spaces

    Science.gov (United States)

    Jittoh, T.; Koike, M.; Nomura, T.; Sato, J.; Shimomura, T.

    2008-12-01

    We investigate the gauge-Higgs unification models within the scheme of the coset space dimensional reduction, beginning with a gauge theory in a fourteen-dimensional spacetime where extra-dimensional space has the structure of a ten-dimensional compact coset space. We found seventeen phenomenologically acceptable models through an exhaustive search for the candidates of the coset spaces, the gauge group in fourteen dimension, and fermion representation. Of the seventeen, ten models led to {SO}(10) (× {U}(1)) GUT-like models after dimensional reduction, three models led to {SU}(5) × {U}(1) GUT-like models, and four to {SU}(3) × {SU}(2) × {U}(1) × {U}(1) Standard-Model-like models. The combinations of the coset space, the gauge group in the fourteen-dimensional spacetime, and the representation of the fermion contents of such models are listed.

  9. Building a model by coset space dimensional reduction using 10 dimensional coset spaces

    Science.gov (United States)

    Jittoh, Toshifumi; Koike, Masafumi; Nomura, Takaaki; Sato, Joe; Shimomura, Takashi

    2008-05-01

    We investigate gauge-Higgs unification models within the scheme of the coset space dimensional reduction, beginning with a gauge theory in a fourteen-dimensional spacetime whose extra-dimensional space has a structure of a ten-dimensional compact coset space. We found seventeen phenomenologically acceptable models through an exhaustive search for the candidates of the coset spaces, the gauge group in fourteen dimension, and fermion representation. Of the seventeen, ten models led to SO(10)(×U(1)) GUT-like models after dimensional reduction, three models led to SU(5)×U(l) GUT-like models, and four to SU(3)×SU(2)×U(1)×U(1) Standard-Model-like models. The combinations of the coset space, the gauge group in the fourteen-dimensional spacetime, and the representation of the fermion contents of such models are listed.

  10. Modeling extreme events: Sample fraction adaptive choice in parameter estimation

    Science.gov (United States)

    Neves, Manuela; Gomes, Ivette; Figueiredo, Fernanda; Gomes, Dora Prata

    2012-09-01

    When modeling extreme events there are a few primordial parameters, among which we refer the extreme value index and the extremal index. The extreme value index measures the right tail-weight of the underlying distribution and the extremal index characterizes the degree of local dependence in the extremes of a stationary sequence. Most of the semi-parametric estimators of these parameters show the same type of behaviour: nice asymptotic properties, but a high variance for small values of k, the number of upper order statistics to be used in the estimation, and a high bias for large values of k. This shows a real need for the choice of k. Choosing some well-known estimators of those parameters we revisit the application of a heuristic algorithm for the adaptive choice of k. The procedure is applied to some simulated samples as well as to some real data sets.

  11. Robust linear parameter varying induction motor control with polytopic models

    Directory of Open Access Journals (Sweden)

    Dalila Khamari

    2013-01-01

    Full Text Available This paper deals with a robust controller for an induction motor which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI based approach and robust Lyapunov feedback controller are associated. This new approach is related to the fact that the synthesis of a linear parameter varying (LPV feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic model because of speed and rotor resistance affine dependence their values can be estimated on line during systems operations. The simulation results are presented to confirm the effectiveness of the proposed approach where robustness stability and high performances have been achieved over the entire operating range of the induction motor.

  12. Entropy Parameter M in Modeling a Flow Duration Curve

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-12-01

    Full Text Available A flow duration curve (FDC is widely used for predicting water supply, hydropower, environmental flow, sediment load, and pollutant load. Among different methods of constructing an FDC, the entropy-based method, developed recently, is appealing because of its several desirable characteristics, such as simplicity, flexibility, and statistical basis. This method contains a parameter, called entropy parameter M, which constitutes the basis for constructing the FDC. Since M is related to the ratio of the average streamflow to the maximum streamflow which, in turn, is related to the drainage area, it may be possible to determine M a priori and construct an FDC for ungauged basins. This paper, therefore, analyzed the characteristics of M in both space and time using streamflow data from 73 gauging stations in the Brazos River basin, Texas, USA. Results showed that the M values were impacted by reservoir operation and possibly climate change. The values were fluctuating, but relatively stable, after the operation of the reservoirs. Parameter M was found to change inversely with the ratio of average streamflow to the maximum streamflow. When there was an extreme event, there occurred a jump in the M value. Further, spatially, M had a larger value if the drainage area was small.

  13. Cosmological space-times with resolved Big Bang in Yang-Mills matrix models

    Science.gov (United States)

    Steinacker, Harold C.

    2018-02-01

    We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean "before" the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.

  14. A Knowledge Discovery from POS Data using State Space Models

    Science.gov (United States)

    Sato, Tadahiko; Higuchi, Tomoyuki

    The number of competing-brands changes by new product's entry. The new product introduction is endemic among consumer packaged goods firm and is an integral component of their marketing strategy. As a new product's entry affects markets, there is a pressing need to develop market response model that can adapt to such changes. In this paper, we develop a dynamic model that capture the underlying evolution of the buying behavior associated with the new product. This extends an application of a dynamic linear model, which is used by a number of time series analyses, by allowing the observed dimension to change at some point in time. Our model copes with a problem that dynamic environments entail: changes in parameter over time and changes in the observed dimension. We formulate the model with framework of a state space model. We realize an estimation of the model using modified Kalman filter/fixed interval smoother. We find that new product's entry (1) decreases brand differentiation for existing brands, as indicated by decreasing difference between cross-price elasticities; (2) decreases commodity power for existing brands, as indicated by decreasing trend; and (3) decreases the effect of discount for existing brands, as indicated by a decrease in the magnitude of own-brand price elasticities. The proposed framework is directly applicable to other fields in which the observed dimension might be change, such as economic, bioinformatics, and so forth.

  15. Biosphere modelling for a HLW repository - scenario and parameter variations

    International Nuclear Information System (INIS)

    Grogan, H.

    1985-03-01

    In Switzerland high-level radioactive wastes have been considered for disposal in deep-lying crystalline formations. The individual doses to man resulting from radionuclides entering the biosphere via groundwater transport are calculated. The main recipient area modelled, which constitutes the base case, is a broad gravel terrace sited along the south bank of the river Rhine. An alternative recipient region, a small valley with a well, is also modelled. A number of parameter variations are performed in order to ascertain their impact on the doses. Finally two scenario changes are modelled somewhat simplistically, these consider different prevailing climates, namely tundra and a warmer climate than present. In the base case negligibly low doses to man in the long term, resulting from the existence of a HLW repository have been calculated. Cs-135 results in the largest dose (8.4E-7 mrem/y at 6.1E+6 y) while Np-237 gives the largest dose from the actinides (3.6E-8 mrem/y). The response of the model to parameter variations cannot be easily predicted due to non-linear coupling of many of the parameters. However, the calculated doses were negligibly low in all cases as were those resulting from the two scenario variations. (author)

  16. Thermal Model Parameter Identification of a Lithium Battery

    Directory of Open Access Journals (Sweden)

    Dirk Nissing

    2017-01-01

    Full Text Available The temperature of a Lithium battery cell is important for its performance, efficiency, safety, and capacity and is influenced by the environmental temperature and by the charging and discharging process itself. Battery Management Systems (BMS take into account this effect. As the temperature at the battery cell is difficult to measure, often the temperature is measured on or nearby the poles of the cell, although the accuracy of predicting the cell temperature with those quantities is limited. Therefore a thermal model of the battery is used in order to calculate and estimate the cell temperature. This paper uses a simple RC-network representation for the thermal model and shows how the thermal parameters are identified using input/output measurements only, where the load current of the battery represents the input while the temperatures at the poles represent the outputs of the measurement. With a single measurement the eight model parameters (thermal resistances, electric contact resistances, and heat capacities can be determined using the method of least-square. Experimental results show that the simple model with the identified parameters fits very accurately to the measurements.

  17. Associations among q-space MRI, diffusion-weighted MRI and histopathological parameters in meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Fatima, Zareen; Motosugi, Utaroh; Ishigame, Keiichi; Araki, Tsutomu [University of Yamanashi, Department of Radiology, Chuo-shi, Yamanashi (Japan); Waqar, Ahmed Bilal [University of Yamanashi, Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, Chuo-shi, Yamanashi (Japan); Hori, Masaaki [Juntendo University, Department of Radiology, School of Medicine, Tokyo (Japan); Oishi, Naoki; Katoh, Ryohei [University of Yamanashi, Department of Pathology, Chuo-shi, Yamanashi (Japan); Onodera, Toshiyuki; Yagi, Kazuo [Tokyo Metropolitan University, Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo (Japan)

    2013-08-15

    The purposes of this MR-based study were to calculate q-space imaging (QSI)-derived mean displacement (MDP) in meningiomas, to evaluate the correlation of MDP values with apparent diffusion coefficient (ADC) and to investigate the relationships among these diffusion parameters, tumour cell count (TCC) and MIB-1 labelling index (LI). MRI, including QSI and conventional diffusion-weighted imaging (DWI), was performed in 44 meningioma patients (52 lesions). ADC and MDP maps were acquired from post-processing of the data. Quantitative analyses of these maps were performed by applying regions of interest. Pearson correlation coefficients were calculated for ADC and MDP in all lesions and for ADC and TCC, MDP and TCC, ADC and MIB-1 LI, and MDP and MIB-1 LI in 17 patients who underwent subsequent surgery. ADC and MDP values were found to have a strong correlation: r = 0.78 (P = <0.0001). Both ADC and MDP values had a significant negative association with TCC: r = -0.53 (p = 0.02) and -0.48 (P = 0.04), respectively. MIB-1 LI was not, however, found to have a significant association with these diffusion parameters. In meningiomas, both ADC and MDP may be representative of cell density. (orig.)

  18. Contaminant transport in aquifers: improving the determination of model parameters

    International Nuclear Information System (INIS)

    Sabino, C.V.S.; Moreira, R.M.; Lula, Z.L.; Chausson, Y.; Magalhaes, W.F.; Vianna, M.N.

    1998-01-01

    Parameters conditioning the migration behavior of cesium and mercury are measured with their tracers 137 Cs and 203 Hg in the laboratory, using both batch and column experiments. Batch tests were used to define the sorption isotherm characteristics. Also investigated were the influences of some test parameters, in particular those due to the volume of water to mass of soil ratio (V/m). A provisional relationship between V/m and the distribution coefficient, K d , has been advanced, and a procedure to estimate K d 's valid for environmental values of the ratio V/m has been suggested. Column tests provided the parameters for a transport model. A major problem to be dealt with in such tests is the collimation of the radioactivity probe. Besides mechanically optimizing the collimator, a deconvolution procedure has been suggested and tested, with statistical criteria, to filter off both noise and spurious tracer signals. Correction procedures for the integrating effect introduced by sampling at the exit of columns have also been developed. These techniques may be helpful in increasing the accuracy required in the measurement of parameters conditioning contaminant migration in soils, thus allowing more reliable predictions based on mathematical model applications. (author)

  19. Multidimensional design for urban space based on the syntactical modeling

    Science.gov (United States)

    Zhu, Qing; Wang, Jingwen

    2005-10-01

    The design of urban space is the process of making better places for people. As the graphical and computational language of space, space syntax focuses specially on making physical connection to integrate people and places. In this paper, the potential important role of space syntax for urban space design is presented. After briefly introducing the basic theory of space syntax model, its advantage comparing with other computational space modeling within GIS and its future development such as the extension to third dimension are discussed. Then the basic syntactical modeling for the corresponding process of spatial design is proposed. The multidimensional design for urban space based on syntactical modeling including morphological, functional, social, perceptual, temporal dimension is separately discussed in detail. Finally, a case study for Kanmen town of Zhejiang province of P.R.China is illustrated by using Axwoman tool.

  20. The effect of temperature on generic stable periodic structures in the parameter space of dissipative relativistic standard map

    Science.gov (United States)

    Horstmann, Ana C. C.; Albuquerque, Holokx A.; Manchein, Cesar

    2017-05-01

    In this work, we have characterized changes in the dynamics of a two-dimensional relativistic standard map in the presence of dissipation and specially when it is submitted to thermal effects modeled by a Gaussian noise reservoir. By the addition of thermal noise in the dissipative relativistic standard map (DRSM) it is possible to suppress typical stable periodic structures (SPSs) embedded in the chaotic domains of parameter space for large enough temperature strengths. Smaller SPSs are first affected by thermal effects, starting from their borders, as a function of temperature. To estimate the necessary temperature strength capable to destroy those SPSs we use the largest Lyapunov exponent to obtain the critical temperature (TC) diagrams. For critical temperatures the chaotic behavior takes place with the suppression of periodic motion, although the temperature strengths considered in this work are not so large to convert the deterministic features of the underlying system into a stochastic ones.

  1. HOM study and parameter calculation of the TESLA cavity model

    CERN Document Server

    Zeng, Ri-Hua; Gerigk Frank; Wang Guang-Wei; Wegner Rolf; Liu Rong; Schuh Marcel

    2010-01-01

    The Superconducting Proton Linac (SPL) is the project for a superconducting, high current H-accelerator at CERN. To find dangerous higher order modes (HOMs) in the SPL superconducting cavities, simulation and analysis for the cavity model using simulation tools are necessary. The. existing TESLA 9-cell cavity geometry data have been used for the initial construction of the models in HFSS. Monopole, dipole and quadrupole modes have been obtained by applying different symmetry boundaries on various cavity models. In calculation, scripting language in HFSS was used to create scripts to automatically calculate the parameters of modes in these cavity models (these scripts are also available in other cavities with different cell numbers and geometric structures). The results calculated automatically are then compared with the values given in the TESLA paper. The optimized cavity model with the minimum error will be taken as the base for further simulation of the SPL cavities.

  2. The definition of input parameters for modelling of energetic subsystems

    Directory of Open Access Journals (Sweden)

    Ptacek M.

    2013-06-01

    Full Text Available This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.

  3. The definition of input parameters for modelling of energetic subsystems

    Science.gov (United States)

    Ptacek, M.

    2013-06-01

    This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.

  4. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  5. Empirical flow parameters : a tool for hydraulic model validity

    Science.gov (United States)

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  6. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  7. Lumped-parameter Model of a Bucket Foundation

    DEFF Research Database (Denmark)

    Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten

    2009-01-01

    As an alternative to gravity footings or pile foundations, offshore wind turbines at shallow water can be placed on a bucket foundation. The present analysis concerns the development of consistent lumped-parameter models for this type of foundation. The aim is to formulate a computationally effic...... be disregarded without significant loss of accuracy. Finally, special attention is drawn to the influence of the skirt stiffness, i.e. whether the embedded part of the caisson is rigid or flexible....

  8. A procedure for determining parameters of a simplified ligament model.

    Science.gov (United States)

    Barrett, Jeff M; Callaghan, Jack P

    2018-01-03

    A previous mathematical model of ligament force-generation treated their behavior as a population of collagen fibres arranged in parallel. When damage was ignored in this model, an expression for ligament force in terms of the deflection, x, effective stiffness, k, mean collagen slack length, μ, and the standard deviation of slack lengths, σ, was obtained. We present a simple three-step method for determining the three model parameters (k, μ, and σ) from force-deflection data: (1) determine the equation of the line in the linear region of this curve, its slope is k and its x -intercept is -μ; (2) interpolate the force-deflection data when x is -μ to obtain F 0 ; (3) calculate σ with the equation σ=2πF 0 /k. Results from this method were in good agreement to those obtained from a least-squares procedure on experimental data - all falling within 6%. Therefore, parameters obtained using the proposed method provide a systematic way of reporting ligament parameters, or for obtaining an initial guess for nonlinear least-squares. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modelling spatial-temporal and coordinative parameters in swimming.

    Science.gov (United States)

    Seifert, L; Chollet, D

    2009-07-01

    This study modelled the changes in spatial-temporal and coordinative parameters through race paces in the four swimming strokes. The arm and leg phases in simultaneous strokes (butterfly and breaststroke) and the inter-arm phases in alternating strokes (crawl and backstroke) were identified by video analysis to calculate the time gaps between propulsive phases. The relationships among velocity, stroke rate, stroke length and coordination were modelled by polynomial regression. Twelve elite male swimmers swam at four race paces. Quadratic regression modelled the changes in spatial-temporal and coordinative parameters with velocity increases for all four strokes. First, the quadratic regression between coordination and velocity showed changes common to all four strokes. Notably, the time gaps between the key points defining the beginning and end of the stroke phases decreased with increases in velocity, which led to decreases in glide times and increases in the continuity between propulsive phases. Conjointly, the quadratic regression among stroke rate, stroke length and velocity was similar to the changes in coordination, suggesting that these parameters may influence coordination. The main practical application for coaches and scientists is that ineffective time gaps can be distinguished from those that simply reflect an individual swimmer's profile by monitoring the glide times within a stroke cycle. In the case of ineffective time gaps, targeted training could improve the swimmer's management of glide time.

  10. Subchannel and bundle friction factors and flow split parameters for laminar transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays

    International Nuclear Information System (INIS)

    Hawley, J.T.; Chiu, C.; Todreas, N.E.; Rohsenow, W.M.

    1980-01-01

    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressure drops assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived

  11. The Impact of Three Factors on the Recovery of Item Parameters for the Three-Parameter Logistic Model

    Science.gov (United States)

    Kim, Kyung Yong; Lee, Won-Chan

    2017-01-01

    This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…

  12. Local sensitivity analysis of a distributed parameters water quality model

    International Nuclear Information System (INIS)

    Pastres, R.; Franco, D.; Pecenik, G.; Solidoro, C.; Dejak, C.

    1997-01-01

    A local sensitivity analysis is presented of a 1D water-quality reaction-diffusion model. The model describes the seasonal evolution of one of the deepest channels of the lagoon of Venice, that is affected by nutrient loads from the industrial area and heat emission from a power plant. Its state variables are: water temperature, concentrations of reduced and oxidized nitrogen, Reactive Phosphorous (RP), phytoplankton, and zooplankton densities, Dissolved Oxygen (DO) and Biological Oxygen Demand (BOD). Attention has been focused on the identifiability and the ranking of the parameters related to primary production in different mixing conditions

  13. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  14. Information Theoretic Tools for Parameter Fitting in Coarse Grained Models

    KAUST Repository

    Kalligiannaki, Evangelia

    2015-01-07

    We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.

  15. Parameter-space survey of linear G-mode and interchange in extended magnetohydrodynamics

    Science.gov (United States)

    Howell, E. C.; Sovinec, C. R.

    2017-10-01

    The extended magnetohydrodynamic stability of interchange modes is studied in two configurations. In slab geometry, a local dispersion relation for the gravitational interchange mode (g-mode) with three different extensions of the MHD model [Zhu et al., Phys. Rev. Lett. 101, 085005 (2008)] is analyzed. Our results delineate where drifts stablize the g-mode with gyroviscosity alone and with a two-fluid Ohm's law alone. The two-fluid Ohm's law produces an ion drift wave that interacts with the g-mode. This interaction gives rise to a second instability at finite ky. A second instability is also observed in numerical extended MHD computations of linear interchange in cylindrical screw-pinch equilibria, the second configuration. Particularly with incomplete models, this mode limits the regions of stability for physically realistic conditions. However, applying a consistent two-temperature extended MHD model that includes the diamagnetic heat flux density ( q→ * ) makes the onset of the second mode occur at a larger Hall parameter. For conditions relevant to the SSPX experiment [E. B. Hooper, Plasma Phys. Controlled Fusion 54, 113001 (2012)], significant stabilization is observed for Suydam parameters as large as unity ( Ds ≲ 1 ).

  16. Finding the effective parameter perturbations in atmospheric models: the LORENZ63 model as case study

    NARCIS (Netherlands)

    Moolenaar, H.E.; Selten, F.M.

    2004-01-01

    Climate models contain numerous parameters for which the numeric values are uncertain. In the context of climate simulation and prediction, a relevant question is what range of climate outcomes is possible given the range of parameter uncertainties. Which parameter perturbation changes the climate

  17. Model building by Coset Space Dimensional Reduction scheme

    Science.gov (United States)

    Jittoh, Toshifumi; Koike, Masafumi; Nomura, Takaaki; Sato, Joe; Shimomura, Takashi

    2009-04-01

    We investigate the gauge-Higgs unification models within the scheme of the coset space dimensional reduction, beginning with a gauge theory in a fourteen-dimensional spacetime where extra-dimensional space has the structure of a ten-dimensional compact coset space. We found seventeen phenomenologically acceptable models through an exhaustive search for the candidates of the coset spaces, the gauge group in fourteen dimension, and fermion representation. Of the seventeen, ten models led to SO(10)(×U(1)) GUT-like models after dimensional reduction, three models led to SU(5)×U(1) GUT-like models, and four to SU(3)×SU(2)×U(1)×U(1) Standard-Model-like models. The combinations of the coset space, the gauge group in the fourteen-dimensional spacetime, and the representation of the fermion contents of such models are listed.

  18. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  19. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...

  20. Comparison of parameter estimation algorithms in hydrological modelling

    DEFF Research Database (Denmark)

    Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan

    2006-01-01

    Local search methods have been applied successfully in calibration of simple groundwater models, but might fail in locating the optimum for models of increased complexity, due to the more complex shape of the response surface. Global search algorithms have been demonstrated to perform well...... for these types of models, although at a more expensive computational cost. The main purpose of this study is to investigate the performance of a global and a local parameter optimization algorithm, respectively, the Shuffled Complex Evolution (SCE) algorithm and the gradient-based Gauss......-Marquardt-Levenberg algorithm (implemented in the PEST software), when applied to a steady-state and a transient groundwater model. The results show that PEST can have severe problems in locating the global optimum and in being trapped in local regions of attractions. The global SCE procedure is, in general, more effective...

  1. Determination of HCME 3-D parameters using a full ice-cream cone model

    Science.gov (United States)

    Na, Hyeonock; Moon, Yong-Jae; Lee, Harim

    2016-05-01

    It is very essential to determine three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) for space weather forecast. Several cone models (e.g., an elliptical cone model, an ice-cream cone model, an asymmetric cone model) have been examined to estimate these parameters. In this study, we investigate which cone type is close to a halo CME morphology using 26 CMEs: halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From cone shape parameters of these CMEs such as their front curvature, we find that near full ice-cream cone type CMEs are much closer to observations than shallow ice-cream cone type CMEs. Thus we develop a new cone model in which a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3-D parameters from our method are similar to those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data. We are developing a general ice-cream cone model whose front shape is a free parameter determined by observations.

  2. Flare parameters inferred from a 3D loop model database

    Science.gov (United States)

    Cuambe, Valente A.; Costa, J. E. R.; Simões, P. J. A.

    2018-04-01

    We developed a database of pre-calculated flare images and spectra exploring a set of parameters which describe the physical characteristics of coronal loops and accelerated electron distribution. Due to the large number of parameters involved in describing the geometry and the flaring atmosphere in the model used (Costa et al. 2013), we built a large database of models (˜250 000) to facilitate the flare analysis. The geometry and characteristics of non-thermal electrons are defined on a discrete grid with spatial resolution greater than 4 arcsec. The database was constructed based on general properties of known solar flares and convolved with instrumental resolution to replicate the observations from the Nobeyama radio polarimeter (NoRP) spectra and Nobeyama radio-heliograph (NoRH) brightness maps. Observed spectra and brightness distribution maps are easily compared with the modelled spectra and images in the database, indicating a possible range of solutions. The parameter search efficiency in this finite database is discussed. Eight out of ten parameters analysed for one thousand simulated flare searches were recovered with a relative error of less than 20 per cent on average. In addition, from the analysis of the observed correlation between NoRH flare sizes and intensities at 17 GHz, some statistical properties were derived. From these statistics the energy spectral index was found to be δ ˜ 3, with non-thermal electron densities showing a peak distribution ⪅107 cm-3, and Bphotosphere ⪆2000 G. Some bias for larger loops with heights as great as ˜2.6 × 109 cm, and looptop events were noted. An excellent match of the spectrum and the brightness distribution at 17 and 34 GHz of the 2002 May 31 flare, is presented as well.

  3. Parameter and uncertainty estimation for mechanistic, spatially explicit epidemiological models

    Science.gov (United States)

    Finger, Flavio; Schaefli, Bettina; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea

    2014-05-01

    Epidemiological models can be a crucially important tool for decision-making during disease outbreaks. The range of possible applications spans from real-time forecasting and allocation of health-care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. Our spatially explicit, mechanistic models for cholera epidemics have been successfully applied to several epidemics including, the one that struck Haiti in late 2010 and is still ongoing. Calibration and parameter estimation of such models represents a major challenge because of properties unusual in traditional geoscientific domains such as hydrology. Firstly, the epidemiological data available might be subject to high uncertainties due to error-prone diagnosis as well as manual (and possibly incomplete) data collection. Secondly, long-term time-series of epidemiological data are often unavailable. Finally, the spatially explicit character of the models requires the comparison of several time-series of model outputs with their real-world counterparts, which calls for an appropriate weighting scheme. It follows that the usual assumption of a homoscedastic Gaussian error distribution, used in combination with classical calibration techniques based on Markov chain Monte Carlo algorithms, is likely to be violated, whereas the construction of an appropriate formal likelihood function seems close to impossible. Alternative calibration methods, which allow for accurate estimation of total model uncertainty, particularly regarding the envisaged use of the models for decision-making, are thus needed. Here we present the most recent developments regarding methods for parameter and uncertainty estimation to be used with our mechanistic, spatially explicit models for cholera epidemics, based on informal measures of goodness of fit.

  4. Effect of 90-day space flight (MDS-ISS) on immunological parameters in mice: lymphocyte distribution and function

    Science.gov (United States)

    Roberts, Arthur; Lhuillier, Andrew; Liu, Yi; Ruggiu, Alessandra; Shi, Yufang

    Elucidation of the effects of space flight on the immune system of astronauts and other animal species is important for the survival and success of manned space flight, especially long-term missions. Space flight exposes astronauts to microgravity, galactic cosmic radiation (GCR), and various psycho-social stressors. Blood samples from astronauts returning from space flight have shown changes in the numbers and types of circulating leukocytes. Similarly, normal lym-phocyte homeostasis has been shown to be severely affected in mice using ground-based models of microgravity and GCR exposure, as demonstrated by profound effects on several immuno-logical parameters examined by other investigators and ourselves. In particular, lymphocyte numbers are significantly reduced and subpopulation distribution is altered in the spleen, thy-mus, and peripheral blood following hindlimb unloading (HU) in mice. Lymphocyte depletion was found to be mediated through corticosteroid-induced apoptosis, although the molecular mechanism of apoptosis induction is still under investigation. The proliferative capacity of TCR-stimulated lymphocytes was also inhibited after HU. We have similarly shown that mice exposed to high-energy 56Fe ion radiation have decreased lymphocyte numbers and perturba-tions in proportions of various subpopulations, including CD4+ and CD8+ T cells, and B cells in the spleen, and maturation stages of immature T cells in the thymus. To compare these ground-based results to the effects of actual space-flight, fresh spleen and thymus samples were recently obtained from normal and transgenic mice immediately after 90 d. space-flight in the MDS, and identically-housed ground control mice. Total leukocyte numbers in each organ were enumerated, and subpopulation distribution was examined by flow cytometric analysis of CD3, CD4, CD8, CD19, CD25, DX-5, and CD11b. Splenic T cells were stimulated with anti-CD3 and assessed for proliferation after 2-4 d., and production of

  5. Evaluation of parameters of color profile models of LCD and LED screens

    Science.gov (United States)

    Zharinov, I. O.; Zharinov, O. O.

    2017-12-01

    The purpose of the research relates to the problem of parametric identification of the color profile model of LCD (liquid crystal display) and LED (light emitting diode) screens. The color profile model of a screen is based on the Grassmann’s Law of additive color mixture. Mathematically the problem is to evaluate unknown parameters (numerical coefficients) of the matrix transformation between different color spaces. Several methods of evaluation of these screen profile coefficients were developed. These methods are based either on processing of some colorimetric measurements or on processing of technical documentation data.

  6. Estimation of k-ε parameters using surrogate models and jet-in-crossflow data

    Energy Technology Data Exchange (ETDEWEB)

    Lefantzi, Sophia [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ray, Jaideep [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arunajatesan, Srinivasan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Dechant, Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-11-01

    We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of the calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k - ε parameters ( C μ, C ε2 , C ε1 ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal

  7. A review of distributed parameter groundwater management modeling methods

    Science.gov (United States)

    Gorelick, Steven M.

    1983-01-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  8. Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model

    Science.gov (United States)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2015-04-01

    /24 degree, if in the end you only look at monthly runoff? In this study an attempt is made to link time and space scales in the VIC model, to study the added value of a higher spatial resolution-model for different time steps. In order to do this, four different VIC models were constructed for the Thur basin in North-Eastern Switzerland (1700 km²), a tributary of the Rhine: one lumped model, and three spatially distributed models with a resolution of respectively 1x1 km, 5x5 km, and 10x10 km. All models are run at an hourly time step and aggregated and calibrated for different time steps (hourly, daily, monthly, yearly) using a novel Hierarchical Latin Hypercube Sampling Technique (Vořechovský, 2014). For each time and space scale, several diagnostics like Nash-Sutcliffe efficiency, Kling-Gupta efficiency, all the quantiles of the discharge etc., are calculated in order to compare model performance over different time and space scales for extreme events like floods and droughts. Next to that, the effect of time and space scale on the parameter distribution can be studied. In the end we hope to find a link for optimal time and space scale combinations.

  9. Some notes on unobserved parameters (frailties) in reliability modeling

    International Nuclear Information System (INIS)

    Cha, Ji Hwan; Finkelstein, Maxim

    2014-01-01

    Unobserved random quantities (frailties) often appear in various reliability problems especially when dealing with the failure rates of items from heterogeneous populations. As the failure rate is a conditional characteristic, the distributions of these random quantities, similar to Bayesian approaches, are updated in accordance with the corresponding survival information. At some instances, apart from a statistical meaning, frailties can have also useful interpretations describing the underlying lifetime model. We discuss and clarify these issues in reliability context and present and analyze several meaningful examples. We consider the proportional hazards model with a random factor; the stress–strength model, where the unobserved strength of a system can be viewed as frailty; a parallel system with a random number of components and, finally, the first passage time problem for the Wiener process with random parameters. - Highlights: • We discuss and clarify the notion of frailty in reliability context and present and analyze several meaningful examples. • The paper provides a new insight and general perspective on reliability models with unobserved parameters. • The main message of the paper is well illustrated by several meaningful examples and emphasized by detailed discussion

  10. National Space Science Data Center Information Model

    Science.gov (United States)

    Bell, E. V.; McCaslin, P.; Grayzeck, E.; McLaughlin, S. A.; Kodis, J. M.; Morgan, T. H.; Williams, D. R.; Russell, J. L.

    2013-12-01

    The National Space Science Data Center (NSSDC) was established by NASA in 1964 to provide for the preservation and dissemination of scientific data from NASA missions. It has evolved to support distributed, active archives that were established in the Planetary, Astrophysics, and Heliophysics disciplines through a series of Memoranda of Understanding. The disciplines took over responsibility for working with new projects to acquire and distribute data for community researchers while the NSSDC remained vital as a deep archive. Since 2000, NSSDC has been using the Archive Information Package to preserve data over the long term. As part of its effort to streamline the ingest of data into the deep archive, the NSSDC developed and implemented a data model of desired and required metadata in XML. This process, in use for roughly five years now, has been successfully used to support the identification and ingest of data into the NSSDC archive, most notably those data from the Planetary Data System (PDS) submitted under PDS3. A series of software packages (X-ware) were developed to handle the submission of data from the PDS nodes utilizing a volume structure. An XML submission manifest is generated at the PDS provider site prior to delivery to NSSDC. The manifest ensures the fidelity of PDS data delivered to NSSDC. Preservation metadata is captured in an XML object when NSSDC archives the data. With the recent adoption by the PDS of the XML-based PDS4 data model, there is an opportunity for the NSSDC to provide additional services to the PDS such as the preservation, tracking, and restoration of individual products (e.g., a specific data file or document), which was unfeasible in the previous PDS3 system. The NSSDC is modifying and further streamlining its data ingest process to take advantage of the PDS4 model, an important consideration given the ever-increasing amount of data being generated and archived by orbiting missions at the Moon and Mars, other active projects

  11. Identification of Affine Linear Parameter Varying Models for Adaptive Interventions in Fibromyalgia Treatment.

    Science.gov (United States)

    Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred

    2013-12-31

    There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.

  12. EXTRACTION OF SPATIAL PARAMETERS FROM CLASSIFIED LIDAR DATA AND AERIAL PHOTOGRAPH FOR SOUND MODELING

    Directory of Open Access Journals (Sweden)

    S. Biswas

    2012-07-01

    Full Text Available Prediction of outdoor sound levels in 3D space is important for noise management, soundscaping etc. Sound levels at outdoor can be predicted using sound propagation models which need terrain parameters. The existing practices of incorporating terrain parameters into models are often limited due to inadequate data or inability to determine accurate sound transmission paths through a terrain. This leads to poor accuracy in modelling. LIDAR data and Aerial Photograph (or Satellite Images provide opportunity to incorporate high resolution data into sound models. To realize this, identification of building and other objects and their use for extraction of terrain parameters are fundamental. However, development of a suitable technique, to incorporate terrain parameters from classified LIDAR data and Aerial Photograph, for sound modelling is a challenge. Determination of terrain parameters along various transmission paths of sound from sound source to a receiver becomes very complex in an urban environment due to the presence of varied and complex urban features. This paper presents a technique to identify the principal paths through which sound transmits from source to receiver. Further, the identified principal paths are incorporated inside the sound model for sound prediction. Techniques based on plane cutting and line tracing are developed for determining principal paths and terrain parameters, which use various information, e.g., building corner and edges, triangulated ground, tree points and locations of source and receiver. The techniques developed are validated through a field experiment. Finally efficacy of the proposed technique is demonstrated by developing a noise map for a test site.

  13. Hydrological Modelling and Parameter Identification for Green Roof

    Science.gov (United States)

    Lo, W.; Tung, C.

    2012-12-01

    Green roofs, a multilayered system covered by plants, can be used to replace traditional concrete roofs as one of various measures to mitigate the increasing stormwater runoff in the urban environment. Moreover, facing the high uncertainty of the climate change, the present engineering method as adaptation may be regarded as improper measurements; reversely, green roofs are unregretful and flexible, and thus are rather important and suitable. The related technology has been developed for several years and the researches evaluating the stormwater reduction performance of green roofs are ongoing prosperously. Many European counties, cities in the U.S., and other local governments incorporate green roof into the stormwater control policy. Therefore, in terms of stormwater management, it is necessary to develop a robust hydrologic model to quantify the efficacy of green roofs over different types of designs and environmental conditions. In this research, a physical based hydrologic model is proposed to simulate water flowing process in the green roof system. In particular, the model adopts the concept of water balance, bringing a relatively simple and intuitive idea. Also, the research compares the two methods in the surface water balance calculation. One is based on Green-Ampt equation, and the other is under the SCS curve number calculation. A green roof experiment is designed to collect weather data and water discharge. Then, the proposed model is verified with these observed data; furthermore, the parameters using in the model are calibrated to find appropriate values in the green roof hydrologic simulation. This research proposes a simple physical based hydrologic model and the measures to determine parameters for the model.

  14. Nonlinear Steepest Descent Asymptotics for Semiclassical Limit of Integrable Systems: Continuation in the Parameter Space

    Science.gov (United States)

    Tovbis, Alexander; Venakides, Stephanos

    2010-04-01

    The initial value problem for an integrable system, such as the Nonlinear Schrödinger equation, is solved by subjecting the linear eigenvalue problem arising from its Lax pair to inverse scattering, and, thus, transforming it to a matrix Riemann-Hilbert problem (RHP) in the spectral variable. In the semiclassical limit, the method of nonlinear steepest descent ([4,5]), supplemented by the g-function mechanism ([3]), is applied to this RHP to produce explicit asymptotic solution formulae for the integrable system. These formule are based on a hyperelliptic Riemann surface {mathcal {R} = mathcal {R}(x,t)} in the spectral variable, where the space-time variables ( x, t) play the role of external parameters. The curves in the x, t plane, separating regions of different genuses of {mathcal {R}(x,t)}, are called breaking curves or nonlinear caustics. The genus of {mathcal {R}(x,t)} is related to the number of oscillatory phases in the asymptotic solution of the integrable system at the point x, t. The evolution theorem ([10]) guarantees continuous evolution of the asymptotic solution in the space-time away from the breaking curves. In the case of the analytic scattering data f( z; x, t) (in the NLS case, f is a normalized logarithm of the reflection coefficient with time evolution included), the primary role in the breaking mechanism is played by a phase function {{Im h(z;x,t)}}, which is closely related to the g function. Namely, a break can be caused ([10]) either through the change of topology of zero level curves of {Im h(z;x,t)} (regular break), or through the interaction of zero level curves of {{Im h(z;x,t)}} with singularities of f (singular break). Every time a breaking curve in the x, t plane is reached, one has to prove the validity of the nonlinear steepest descent asymptotics in the region across the curve. In this paper we prove that in the case of a regular break, the nonlinear steepest descent asymptotics can be “automatically” continued through the

  15. Modelling Technical and Economic Parameters in Selection of Manufacturing Devices

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2017-11-01

    Full Text Available Sustainable science and technology development is also conditioned by continuous development of means of production which have a key role in structure of each production system. Mechanical nature of the means of production is complemented by controlling and electronic devices in context of intelligent industry. A selection of production machines for a technological process or technological project has so far been practically resolved, often only intuitively. With regard to increasing intelligence, the number of variable parameters that have to be considered when choosing a production device is also increasing. It is necessary to use computing techniques and decision making methods according to heuristic methods and more precise methodological procedures during the selection. The authors present an innovative model for optimization of technical and economic parameters in the selection of manufacturing devices for industry 4.0.

  16. Propagation of Uncertainty in System Parameters of a LWR Model by Sampling MCNPX Calculations - Burnup Analysis

    Science.gov (United States)

    Campolina, Daniel de A. M.; Lima, Claubia P. B.; Veloso, Maria Auxiliadora F.

    2014-06-01

    For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95th percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input.

  17. Dynamic systems models new methods of parameter and state estimation

    CERN Document Server

    2016-01-01

    This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...

  18. Parameter Estimation for a Class of Lifetime Models

    Directory of Open Access Journals (Sweden)

    Xinyang Ji

    2014-01-01

    Full Text Available Our purpose in this paper is to present a better method of parametric estimation for a bivariate nonlinear regression model, which takes the performance indicator of rubber aging as the dependent variable and time and temperature as the independent variables. We point out that the commonly used two-step method (TSM, which splits the model and estimate parameters separately, has limitation. Instead, we apply the Marquardt’s method (MM to implement parametric estimation directly for the model and compare these two methods of parametric estimation by random simulation. Our results show that MM has better effect of data fitting, more reasonable parametric estimates, and smaller prediction error compared with TSM.

  19. Axiomatics of uniform space-time models

    International Nuclear Information System (INIS)

    Levichev, A.V.

    1983-01-01

    The mathematical statement of space-time axiomatics of the special theory of relativity is given; it postulates that the space-time M is the binding single boundary Hausedorf local-compact four-dimensional topological space with the given order. The theorem is proved: if the invariant order in the four-dimensional group M is given by the semi-group P, which contingency K contains inner points , then M is commutative. The analogous theorem is correct for the group of two and three dimensionalities

  20. EMF 7 model comparisons: key relationships and parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, B.G.

    1983-12-01

    A simplified textbook model of aggregate demand and supply interprets the similarities and differences in the price and income responses of the various EMF 7 models to oil and policy shocks. The simplified model is a marriage of Hicks' classic IS-LM formulation of the Keynesian theory of effective demand with a rudimentary model of aggregate supply, combining a structural Phillips curve for wage determination and a markup theory of price determination. The reduced-form income equation from the fix-price IS-LM model is used to define an aggregate demand (AD) locus in P-Y space, showing alternative pairs of the implicit GNP deflator and real GNP which would simultaneously satisfy the saving-investment identity and the condition for money market equilibrium. An aggregate supply (AS) schedule is derived by a similar reduction of relations between output and labor demand, unemployment and wage inflation, and the wage-price-productivity nexus governing markup pricing. Given a particular econometric model it is possible to derive IS and LM curves algebraically. The resulting locuses would show alternative combinations of interest rate and real income which equilibrate real income identity on the IS side and the demand and supply of money on the LM side. By further substitution the reduced form fix-price income relation could be obtained for direct quantification of the AD locus. The AS schedule is obtainable by algebraic reduction of the structural supply side equations.

  1. Quality parameters of wine grape varieties under the influence of different vine spacing and training systems

    Directory of Open Access Journals (Sweden)

    O. Tkachenko

    2017-06-01

    Full Text Available Physicochemical and biochemical indices, which characterize quality of white wine grape varieties Zagrey and Aromatnyi of selection of NNC «IV&W named after V. Ye. Tairov», (harvest of 2016 were determined. The field trial which includes various variants of planting density and vine training systems, made it possible to study the influence of viticulture practices on the criteria of carbohydrate-acid and phenolic complex, oxidative enzyme system of grapes. Low-density plantings of Aromatnyi variety (2222 vines per ha were characterized by harvest that slightly exceeded the grapes obtained from dense plantations (4000 vines per ha in terms of carbohydrate-acid and phenolic complexes. The most optimal in terms of the mass concentration of sugars, phenolic substances, polymer forms, macerating ability of must, activity of oxidizing enzyme system was cultivation of this variety on a 160 cm – high trunk. Growing grapes of Zagrey variety with vine spacing, corresponding to 4000 plants per ha, contributed to obtaining harvest with optimal parameters of carbohydrate-acid complex, low technological reserve and mass concentration of phenolic compounds, moderate macerating ability and activity of monophenol monooxygenase in must. Training vines of this variety on a 40 cm high trunk with vertical shoot positioning led to significant deterioration of grape quality due to increased content of phenolic substances and their polymer forms, high macerating capacity of must.

  2. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters

    Science.gov (United States)

    Jia, Ying-Hong; Hu, Quan; Xu, Shi-Jie

    2014-02-01

    A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the position and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters being estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. [Figure not available: see fulltext.

  3. Caenorhabditis elegans - A model system for space biology studies

    Science.gov (United States)

    Johnson, Thomas E.; Nelson, Gregory A.

    1991-01-01

    The utility of the nematode Caenorhabditis elegans in studies spanning aspects of development, aging, and radiobiology is reviewed. These topics are interrelated via cellular and DNA repair processes especially in the context of oxidative stress and free-radical metabolism. The relevance of these research topics to problems in space biology is discussed and properties of the space environment are outlined. Exposure to the space-flight environment can induce rapid changes in living systems that are similar to changes occurring during aging; manipulation of these environmental parameters may represent an experimental strategy for studies of development and senescence. The current and future opportunities for such space-flight experimentation are presented.

  4. Estimating Parameters in Physical Models through Bayesian Inversion: A Complete Example

    KAUST Repository

    Allmaras, Moritz

    2013-02-07

    All mathematical models of real-world phenomena contain parameters that need to be estimated from measurements, either for realistic predictions or simply to understand the characteristics of the model. Bayesian statistics provides a framework for parameter estimation in which uncertainties about models and measurements are translated into uncertainties in estimates of parameters. This paper provides a simple, step-by-step example-starting from a physical experiment and going through all of the mathematics-to explain the use of Bayesian techniques for estimating the coefficients of gravity and air friction in the equations describing a falling body. In the experiment we dropped an object from a known height and recorded the free fall using a video camera. The video recording was analyzed frame by frame to obtain the distance the body had fallen as a function of time, including measures of uncertainty in our data that we describe as probability densities. We explain the decisions behind the various choices of probability distributions and relate them to observed phenomena. Our measured data are then combined with a mathematical model of a falling body to obtain probability densities on the space of parameters we seek to estimate. We interpret these results and discuss sources of errors in our estimation procedure. © 2013 Society for Industrial and Applied Mathematics.

  5. Han's model parameters for microalgae grown under intermittent illumination: Determined using particle swarm optimization.

    Science.gov (United States)

    Pozzobon, Victor; Perre, Patrick

    2018-01-21

    This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Analysis of Model Parameters for a Polymer Filtration Simulator

    Directory of Open Access Journals (Sweden)

    N. Brackett-Rozinsky

    2011-01-01

    Full Text Available We examine a simulation model for polymer extrusion filters and determine its sensitivity to filter parameters. The simulator is a three-dimensional, time-dependent discretization of a coupled system of nonlinear partial differential equations used to model fluid flow and debris transport, along with statistical relationships that define debris distributions and retention probabilities. The flow of polymer fluid, and suspended debris particles, is tracked to determine how well a filter performs and how long it operates before clogging. A filter may have multiple layers, characterized by thickness, porosity, and average pore diameter. In this work, the thickness of each layer is fixed, while the porosities and pore diameters vary for a two-layer and three-layer study. The effects of porosity and average pore diameter on the measures of filter quality are calculated. For the three layer model, these effects are tested for statistical significance using analysis of variance. Furthermore, the effects of each pair of interacting parameters are considered. This allows the detection of complexity, where in changing two aspects of a filter together may generate results substantially different from what occurs when those same aspects change separately. The principal findings indicate that the first layer of a filter is the most important.

  7. Optimization of Experimental Model Parameter Identification for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Rosario Morello

    2013-09-01

    Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.

  8. Applying Atmospheric Measurements to Constrain Parameters of Terrestrial Source Models

    Science.gov (United States)

    Hyer, E. J.; Kasischke, E. S.; Allen, D. J.

    2004-12-01

    Quantitative inversions of atmospheric measurements have been widely applied to constrain atmospheric budgets of a range of trace gases. Experiments of this type have revealed persistent discrepancies between 'bottom-up' and 'top-down' estimates of source magnitudes. The most common atmospheric inversion uses the absolute magnitude as the sole parameter for each source, and returns the optimal value of that parameter. In order for atmospheric measurements to be useful for improving 'bottom-up' models of terrestrial sources, information about other properties of the sources must be extracted. As the density and quality of atmospheric trace gas measurements improve, examination of higher-order properties of trace gas sources should become possible. Our model of boreal forest fire emissions is parameterized to permit flexible examination of the key uncertainties in this source. Using output from this model together with the UM CTM, we examined the sensitivity of CO concentration measurements made by the MOPITT instrument to various uncertainties in the boreal source: geographic distribution of burned area, fire type (crown fires vs. surface fires), and fuel consumption in above-ground and ground-layer fuels. Our results indicate that carefully designed inversion experiments have the potential to help constrain not only the absolute magnitudes of terrestrial sources, but also the key uncertainties associated with 'bottom-up' estimates of those sources.

  9. Bayesian parameter estimation for stochastic models of biological cell migration

    Science.gov (United States)

    Dieterich, Peter; Preuss, Roland

    2013-08-01

    Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.

  10. Assessing composition and structure of soft biphasic media from Kelvin-Voigt fractional derivative model parameters

    Science.gov (United States)

    Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.

    2017-03-01

    Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.

  11. Microbial Communities Model Parameter Calculation for TSPA/SR

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2001-07-16

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.

  12. Microbial Communities Model Parameter Calculation for TSPA/SR

    International Nuclear Information System (INIS)

    D. Jolley

    2001-01-01

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed

  13. The privatization of public space: modeling and measuring publicness

    OpenAIRE

    Jeremy Németh; Stephen Schmidt

    2011-01-01

    Privately owned public spaces are frequently criticized for diminishing the publicness of public space by restricting social interaction, constraining individual liberties, and excluding undesirable populations. This study empirically determines whether, as is commonly believed, privately owned public spaces are more controlled than publicly owned spaces. To frame our empirical work, we propose a conceptual model that identifies publicness as the interaction between the ownership, management,...

  14. The effects of computed tomography scanner parameters on the quality of the reverse triangular surface model of the fibula

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Nasir; Ahmad, Mushtaq, E-mail: nasirhayat@uet.edu.pk [Faculty of Mechanical Engineering, UET, Lahore (Pakistan)

    2016-01-15

    This study investigates the effects of computed tomography (CT) parameters on the quality and size of the reverse triangular surface model with an objective of obtaining an accurate 3D triangular surface model of complex-shaped customized objects for reverse engineering and many other applications such as surgical planning and finite element analysis. For this purpose, the fibula of a human knee joint was CT scanned by changing various parameters (slice thickness, slice spacing, pixel size, X-ray tube current and helical pitch) over wide ranges. Three-dimensional triangular surface models were created from point cloud data extracted from the CT image data. To assess the influences of scanning parameters on the surface quality and accuracy, the resulting surface models were qualitatively compared based on various anatomical features. Statistical analysis was used to quantify the deviations of surface models with different scanning parameter levels from the reference CT surface model. The results show that these parameters to a varying degree affect the surface quality, reproduction of various anatomical details and size of the resulting surface model. Moreover, these parameters are highly dependent on each other. Interactive effects of these parameters have been discussed and recommendations have been made for parameter settings. The results of the study would help to improve the accuracy of the 3D surface models required for customized implants and other applications. (author)

  15. Modelled basic parameters for semi-industrial irradiation plant design

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    The basic parameters of an irradiation plant design are the total activity, the product uniformity ratio and the efficiency process. The target density, the minimum dose required and the throughput depends on the use to which the irradiator will be put at. In this work, a model for calculating the specific dose rate at several depths in an infinite homogeneous medium produced by a slab source irradiator is presented. The product minimum dose rate for a set of target thickness is obtained. The design method steps are detailed and an illustrative example is presented. (author)

  16. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  17. Taming Many-Parameter BSM Models with Bayesian Neural Networks

    Science.gov (United States)

    Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.

    2017-09-01

    The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.

  18. Bayesian analysis of inflation: Parameter estimation for single field models

    International Nuclear Information System (INIS)

    Mortonson, Michael J.; Peiris, Hiranya V.; Easther, Richard

    2011-01-01

    Future astrophysical data sets promise to strengthen constraints on models of inflation, and extracting these constraints requires methods and tools commensurate with the quality of the data. In this paper we describe ModeCode, a new, publicly available code that computes the primordial scalar and tensor power spectra for single-field inflationary models. ModeCode solves the inflationary mode equations numerically, avoiding the slow roll approximation. It is interfaced with CAMB and CosmoMC to compute cosmic microwave background angular power spectra and perform likelihood analysis and parameter estimation. ModeCode is easily extendable to additional models of inflation, and future updates will include Bayesian model comparison. Errors from ModeCode contribute negligibly to the error budget for analyses of data from Planck or other next generation experiments. We constrain representative single-field models (φ n with n=2/3, 1, 2, and 4, natural inflation, and 'hilltop' inflation) using current data, and provide forecasts for Planck. From current data, we obtain weak but nontrivial limits on the post-inflationary physics, which is a significant source of uncertainty in the predictions of inflationary models, while we find that Planck will dramatically improve these constraints. In particular, Planck will link the inflationary dynamics with the post-inflationary growth of the horizon, and thus begin to probe the ''primordial dark ages'' between TeV and grand unified theory scale energies.

  19. Housing land transaction data and structural econometric estimation of preference parameters for urban economic simulation models.

    Science.gov (United States)

    Caruso, Geoffrey; Cavailhès, Jean; Peeters, Dominique; Thomas, Isabelle; Frankhauser, Pierre; Vuidel, Gilles

    2015-12-01

    This paper describes a dataset of 6284 land transactions prices and plot surfaces in 3 medium-sized cities in France (Besançon, Dijon and Brest). The dataset includes road accessibility as obtained from a minimization algorithm, and the amount of green space available to households in the neighborhood of the transactions, as evaluated from a land cover dataset. Further to the data presentation, the paper describes how these variables can be used to estimate the non-observable parameters of a residential choice function explicitly derived from a microeconomic model. The estimates are used by Caruso et al. (2015) to run a calibrated microeconomic urban growth simulation model where households are assumed to trade-off accessibility and local green space amenities.

  20. Housing land transaction data and structural econometric estimation of preference parameters for urban economic simulation models

    Science.gov (United States)

    Caruso, Geoffrey; Cavailhès, Jean; Peeters, Dominique; Thomas, Isabelle; Frankhauser, Pierre; Vuidel, Gilles

    2015-01-01

    This paper describes a dataset of 6284 land transactions prices and plot surfaces in 3 medium-sized cities in France (Besançon, Dijon and Brest). The dataset includes road accessibility as obtained from a minimization algorithm, and the amount of green space available to households in the neighborhood of the transactions, as evaluated from a land cover dataset. Further to the data presentation, the paper describes how these variables can be used to estimate the non-observable parameters of a residential choice function explicitly derived from a microeconomic model. The estimates are used by Caruso et al. (2015) to run a calibrated microeconomic urban growth simulation model where households are assumed to trade-off accessibility and local green space amenities. PMID:26958606

  1. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  2. Robust Quasi-LPV Control Based on Neural State Space Models

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2000-01-01

    the system description into a linear part and a nonlinear part. Linear parameter-varying control synthesis methods are then applied to design a nonlinear control law for this system. Since the model is assumed to have been identified from input-output measurement data only, it must be expected......In this paper we derive a synthesis result for robust LPV output feedback controllers for nonlinear systems modelled by neural state space models. This result is achieved by writing the neural state space model on a linear fractional transformation form in a non-conservative way, separating...

  3. Robust Quasi-LPV Control Based on Neural State Space Models

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2002-01-01

    the system description into a linear part and a nonlinear part. Linear parameter-varying control synthesis methods are then applied to design a nonlinear control law for this system. Since the model is assumed to have been identified from input-output measurement data only, it must be expected......In this paper we derive a synthesis result for robust LPV output feedback controllers for nonlinear systems modelled by neural state space models. This result is achieved by writing the neural state space model on a linear fractional transformation form in a non-conservative way, separating...

  4. Modelling of bio-optical parameters of open ocean waters

    Directory of Open Access Journals (Sweden)

    Vadim N. Pelevin

    2001-12-01

    Full Text Available An original method for estimating the concentration of chlorophyll pigments, absorption of yellow substance and absorption of suspended matter without pigments and yellow substance in detritus using spectral diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance data has been applied to sea waters of different types in the open ocean (case 1. Using the effective numerical single parameter classification with the water type optical index m as a parameter over the whole range of the open ocean waters, the calculations have been carried out and the light absorption spectra of sea waters tabulated. These spectra are used to optimize the absorption models and thus to estimate the concentrations of the main admixtures in sea water. The value of m can be determined from direct measurements of the downward irradiance attenuation coefficient at 500 nm or calculated from remote sensing data using the regressions given in the article. The sea water composition can then be readily estimated from the tables given for any open ocean area if that one parameter m characterizing the basin is known.

  5. Application of regression model on stream water quality parameters

    International Nuclear Information System (INIS)

    Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.

    2012-01-01

    Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)

  6. A latent parameter node-centric model for spatial networks.

    Directory of Open Access Journals (Sweden)

    Nicholas D Larusso

    Full Text Available Spatial networks, in which nodes and edges are embedded in space, play a vital role in the study of complex systems. For example, many social networks attach geo-location information to each user, allowing the study of not only topological interactions between users, but spatial interactions as well. The defining property of spatial networks is that edge distances are associated with a cost, which may subtly influence the topology of the network. However, the cost function over distance is rarely known, thus developing a model of connections in spatial networks is a difficult task. In this paper, we introduce a novel model for capturing the interaction between spatial effects and network structure. Our approach represents a unique combination of ideas from latent variable statistical models and spatial network modeling. In contrast to previous work, we view the ability to form long/short-distance connections to be dependent on the individual nodes involved. For example, a node's specific surroundings (e.g. network structure and node density may make it more likely to form a long distance link than other nodes with the same degree. To capture this information, we attach a latent variable to each node which represents a node's spatial reach. These variables are inferred from the network structure using a Markov Chain Monte Carlo algorithm. We experimentally evaluate our proposed model on 4 different types of real-world spatial networks (e.g. transportation, biological, infrastructure, and social. We apply our model to the task of link prediction and achieve up to a 35% improvement over previous approaches in terms of the area under the ROC curve. Additionally, we show that our model is particularly helpful for predicting links between nodes with low degrees. In these cases, we see much larger improvements over previous models.

  7. A Simulation and Modeling Framework for Space Situational Awareness

    Science.gov (United States)

    Olivier, S.

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. This framework includes detailed models for threat scenarios, signatures, sensors, observables and knowledge extraction algorithms. The framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the details of the modeling and simulation framework, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical and infra-red brightness calculations, generic radar system models, generic optical and infra-red system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The specific modeling of the Space Surveillance Network is performed in collaboration with the Air Force Space Command Space Control Group. We will demonstrate the use of this integrated simulation and modeling framework on specific threat scenarios, including space debris and satellite maneuvers, and we will examine the results of case studies involving the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  8. A Stochastic and State Space Model for Tumour Growth and Applications

    Directory of Open Access Journals (Sweden)

    Wai-Yuan Tan

    2009-01-01

    Full Text Available We develop a state space model documenting Gompertz behaviour of tumour growth. The state space model consists of two sub-models: a stochastic system model that is an extension of the deterministic model proposed by Gyllenberg and Webb (1991, and an observation model that is a statistical model based on data for the total number of tumour cells over time. In the stochastic system model we derive through stochastic equations the probability distributions of the numbers of different types of tumour cells. Combining with the statistic model, we use these distribution results to develop a generalized Bayesian method and a Gibbs sampling procedure to estimate the unknown parameters and to predict the state variables (number of tumour cells. We apply these models and methods to real data and to computer simulated data to illustrate the usefulness of the models, the methods, and the procedures.

  9. A composite model of the space-time and 'colors'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-03-01

    A pregeometric and pregauge model of the space-time and ''colors'' in which the space-time metric and ''color'' gauge fields are both composite is presented. By the non-triviality of the model, the number of space-time dimensions is restricted to be not larger than the number of ''colors''. The long conjectured space-color correspondence is realized in the model action of the Nambu-Goto type which is invariant under both general-coordinate and local-gauge transformations. (author)

  10. Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells.

    Science.gov (United States)

    Rudhall, Andrew P; Antkowiak, Maciej; Tsampoula, Xanthi; Mazilu, Michael; Metzger, Nikolaus K; Gunn-Moore, Frank; Dholakia, Kishan

    2012-01-01

    The use of ultrashort femtosecond pulsed lasers to effect membrane permeabilisation and initiate both optoinjection and transfection of cells has recently seen immense interest. We investigate femtosecond laser-induced membrane permeabilisation in mammalian cells as a function of pulse duration, pulse energy and number of pulses, by quantifying the efficiency of optoinjection for these parameters. Depending on pulse duration and pulse energy we identify two distinct membrane permeabilisation regimes. In the first regime a nonlinear dependence of order 3.4-9.6 is exhibited below a threshold peak power of at least 6 kW. Above this threshold peak power, the nonlinear dependence is saturated resulting in linear behaviour. This indicates that the membrane permeabilisation mechanism requires efficient multiphoton absorption to produce free electrons but once this process saturates, linear absorption dominates. Our experimental findings support a previously proposed theoretical model and provide a step towards the optimisation of laser-mediated gene delivery into mammalian cells.

  11. Convergence of surface diffusion parameters with model crystal size

    Science.gov (United States)

    Cohen, Jennifer M.; Voter, Arthur F.

    1994-07-01

    A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.

  12. Piecewise Model and Parameter Obtainment of Governor Actuator in Turbine

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available The governor actuators in some heat-engine plants have nonlinear valves. This nonlinearity of valves may lead to the inaccuracy of the opening and closing time constants calculated based on the whole segment fully open and fully close experimental test curves of the valve. An improved mathematical model of the turbine governor actuator is proposed to reflect the nonlinearity of the valve, in which the main and auxiliary piecewise opening and closing time constants instead of the fixed oil motive opening and closing time constants are adopted to describe the characteristics of the actuator. The main opening and closing time constants are obtained from the linear segments of the whole fully open and close curves. The parameters of proportional integral derivative (PID controller are identified based on the small disturbance experimental tests of the valve. Then the auxiliary opening and closing time constants and the piecewise opening and closing valve points are determined by the fully open/close experimental tests. Several testing functions are selected to compare genetic algorithm and particle swarm optimization algorithm (GA-PSO with other basic intelligence algorithms. The effectiveness of the piecewise linear model and its parameters are validated by practical power plant case studies.

  13. Standard model parameters and the search for new physics

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1988-04-01

    In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs

  14. Nearly relativistic electron fluxes and ionospheric parameters as components of space weather

    Science.gov (United States)

    Dudnik, Oleksiy; Rothkaehl, Hanna; Matyjasiak, Barbara

    2017-04-01

    We present specific features detected in spatial distributions of magnetospheric high energy electrons and in ionosphere plasma electron densities and temperatures during a deep minimum of 11 year's cycle of solar activity. New outcome comes as a result of joint analysis of experimental data derived from the satellite telescope of electrons and protons STEP-F aboard the low, circular and highly inclined orbit CORONAS-Photon satellite, and from Demeter satellite. The highly sensitive STEP-F instrument flown in 2009 and measured sub-relativistic electron fluxes and protons of intermediate energies by extensive-angled telescopic system of detectors at the height of 550 km covering the wide range of McIlwain L-parameters from 1 up to 20. We present peculiar characteristics of electron flows in well-known Van Allen outer and inner radiation belts, inside the region of South Atlantic Anomaly and outside of mentioned zones observed during the first half of May, 2009. In spite of extremely low solar activity, and the presence of single geomagnetic substorm on May, 6-8, which was characterized by remarkably small Dst =-30 nT, substantial variations of electron fluxes with energies E > 180 keV came into being in all zones of enhanced charge radiation. It was clearly seen elongation of the South Atlantic Anomaly in terms of electron flows up to low and near-equatorial latitudes to eastern-directed longitudes. Throughout the whole period there were recorded two radiation belts in the inner magnetosphere: well-studied at L 2.3, and additional one at L 1.6. The third radiation belt at L 1.6 had specific belt-shaped profile of particle fluxes, and registered at broad range of longitudes that do not coincide with those ones related to the Anomaly location. The analyses of subrelativistic electrons at the heights of upper ionosphere and inospheric plasma parameters has been analysed. From this standpoint we consider electron flux pulsations during various phases of geomagnetic

  15. Study on TVD parameters sensitivity of a crankshaft using multiple scale and state space method considering quadratic and cubic non-linearities

    Directory of Open Access Journals (Sweden)

    R. Talebitooti

    Full Text Available In this paper the effect of quadratic and cubic non-linearities of the system consisting of the crankshaft and torsional vibration damper (TVD is taken into account. TVD consists of non-linear elastomer material used for controlling the torsional vibration of crankshaft. The method of multiple scales is used to solve the governing equations of the system. Meanwhile, the frequency response of the system for both harmonic and sub-harmonic resonances is extracted. In addition, the effects of detuning parameters and other dimensionless parameters for a case of harmonic resonance are investigated. Moreover, the external forces including both inertia and gas forces are simultaneously applied into the model. Finally, in order to study the effectiveness of the parameters, the dimensionless governing equations of the system are solved, considering the state space method. Then, the effects of the torsional damper as well as all corresponding parameters of the system are discussed.

  16. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  17. Phase-space dynamics of Bianchi IX cosmological models

    International Nuclear Information System (INIS)

    Soares, I.D.

    1985-01-01

    The complex phase-space dynamical behaviour of a class of Biachi IX cosmological models is discussed, as the chaotic gravitational collapse due Poincare's homoclinic phenomena, and the n-furcation of periodic orbits and tori in the phase space of the models. Poincare maps which show this behaviour are constructed merically and applications are discussed. (Author) [pt

  18. Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach.

    Science.gov (United States)

    Koutroumpas, Konstantinos; Ballarini, Paolo; Votsi, Irene; Cournède, Paul-Henry

    2016-09-01

    Likelihood-free methods, like Approximate Bayesian Computation (ABC), have been extensively used in model-based statistical inference with intractable likelihood functions. When combined with Sequential Monte Carlo (SMC) algorithms they constitute a powerful approach for parameter estimation and model selection of mathematical models of complex biological systems. A crucial step in the ABC-SMC algorithms, significantly affecting their performance, is the propagation of a set of parameter vectors through a sequence of intermediate distributions using Markov kernels. In this article, we employ Dirichlet process mixtures (DPMs) to design optimal transition kernels and we present an ABC-SMC algorithm with DPM kernels. We illustrate the use of the proposed methodology using real data for the canonical Wnt signaling pathway. A multi-compartment model of the pathway is developed and it is compared to an existing model. The results indicate that DPMs are more efficient in the exploration of the parameter space and can significantly improve ABC-SMC performance. In comparison to alternative sampling schemes that are commonly used, the proposed approach can bring potential benefits in the estimation of complex multimodal distributions. The method is used to estimate the parameters and the initial state of two models of the Wnt pathway and it is shown that the multi-compartment model fits better the experimental data. Python scripts for the Dirichlet Process Gaussian Mixture model and the Gibbs sampler are available at https://sites.google.com/site/kkoutroumpas/software konstantinos.koutroumpas@ecp.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Experimental assessment of an automatic approach for stereo models generation using directly measured orientation parameters

    Directory of Open Access Journals (Sweden)

    Antonio M. G. Tommaselli

    2004-07-01

    Full Text Available With the evolution of digital image acquisition devices, satellite positioning systems (GPS and space orientation by the inertial navigation systems (INS, new applications of fast cartography, became feasible, as disaster management and environment monitoring. Such applications require periodic georeferenced information with characteristics of speed and reliability that can be obtained by digital photogrammetry, using additional data from sensors of direct orientation. However, the exterior orientation parameters (EO provided by these sensors are under the required accuracy to remove the vertical parallax in the model. This paper presents an experimental evaluation of an approach for removing the vertical parallax of the model. This appoach is based on the reprocessing of the EO parameters provided by the sensors, using a modified coplanarity model. Some experiments with simulated and real data are presented. The experiments with simulated data were performed in order to assess the acceptable errors in the exterior orientation parameters. The experiments with real data were carried out to evaluate the vertical parallax effect, before and after the reprocessing of the EO parameters, and to access the accuracy of check points calculated by photogrammetric intersection.

  20. Local overfishing may be avoided by examining parameters of a spatio-temporal model.

    Science.gov (United States)

    Carson, Stuart; Shackell, Nancy; Mills Flemming, Joanna

    2017-01-01

    Spatial erosion of stock structure through local overfishing can lead to stock collapse because fish often prefer certain locations, and fisheries tend to focus on those locations. Fishery managers are challenged to maintain the integrity of the entire stock and require scientific approaches that provide them with sound advice. Here we propose a Bayesian hierarchical spatio-temporal modelling framework for fish abundance data to estimate key parameters that define spatial stock structure: persistence (similarity of spatial structure over time), connectivity (coherence of temporal pattern over space), and spatial variance (variation across the seascape). The consideration of these spatial parameters in the stock assessment process can help identify the erosion of structure and assist in preventing local overfishing. We use Atlantic cod (Gadus morhua) in eastern Canada as a case study an examine the behaviour of these parameters from the height of the fishery through its collapse. We identify clear signals in parameter behaviour under circumstances of destructive stock erosion as well as for recovery of spatial structure even when combined with a non-recovery in abundance. Further, our model reveals the spatial pattern of areas of high and low density persists over the 41 years of available data and identifies the remnant patches. Models of this sort are crucial to recovery plans if we are to identify and protect remaining sources of recolonization for Atlantic cod. Our method is immediately applicable to other exploited species.

  1. Gene flow analysis method, the D-statistic, is robust in a wide parameter space.

    Science.gov (United States)

    Zheng, Yichen; Janke, Axel

    2018-01-08

    We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.

  2. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.

    Science.gov (United States)

    Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith

    2018-01-02

    Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour

  3. MODIS/Terra+Aqua BRDF/Albedo Snow-free Model Parameters Daily L3 Global 0.05Deg CMG V006

    Data.gov (United States)

    National Aeronautics and Space Administration — Version 6 Bidirectional reflectance distribution function and Albedo (BRDF/Albedo) Model Snow Free Quality Parameters data set is a 5600 meter daily 16-day product....

  4. Space Particle Hazard Measurement and Modeling

    Science.gov (United States)

    2016-09-01

    Trap Modification as a Result of Insulating Materials Exposure to Space Weather, 13th Spacecraft Charging Technology Conference, Pasadena, CA, 23-27...Anomaly event versus driver climatology ............................................................................ 12 Approved for public release...470–486, doi:10.1002/2014SW001069, 2014 4. Spacecraft Charging A complex field requiring deep understanding of plasmas, materials , and detailed

  5. Performance Analysis of Different NeQuick Ionospheric Model Parameters

    Directory of Open Access Journals (Sweden)

    WANG Ningbo

    2017-04-01

    Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.

  6. Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods

    Directory of Open Access Journals (Sweden)

    W. Castaings

    2009-04-01

    Full Text Available Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised with respect to model inputs.

    In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations but didactic application case.

    It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run and the singular value decomposition (SVD of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation.

    For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers is adopted.

    Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting.

  7. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  8. Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J. D.

    2017-09-01

    Global climate models (GCMs) are examples of high-dimensional input-output systems, where model output is a function of many variables, and an update in model physics commonly improves performance in one objective function (i.e., measure of model performance) at the expense of degrading another. Here concepts from multiobjective optimization in the engineering literature are used to investigate parameter sensitivity and optimization in the face of such trade-offs. A metamodeling technique called cut high-dimensional model representation (cut-HDMR) is leveraged in the context of multiobjective optimization to improve GCM simulation of the tropical Pacific climate, focusing on seasonal precipitation, column water vapor, and skin temperature. An evolutionary algorithm is used to solve for Pareto fronts, which are surfaces in objective function space along which trade-offs in GCM performance occur. This approach allows the modeler to visualize trade-offs quickly and identify the physics at play. In some cases, Pareto fronts are small, implying that trade-offs are minimal, optimal parameter value choices are more straightforward, and the GCM is well-functioning. In all cases considered here, the control run was found not to be Pareto-optimal (i.e., not on the front), highlighting an opportunity for model improvement through objectively informed parameter selection. Taylor diagrams illustrate that these improvements occur primarily in field magnitude, not spatial correlation, and they show that specific parameter updates can improve fields fundamental to tropical moist processes—namely precipitation and skin temperature—without significantly impacting others. These results provide an example of how basic elements of multiobjective optimization can facilitate pragmatic GCM tuning processes.

  9. Optimization using surrogate models - by the space mapping technique

    DEFF Research Database (Denmark)

    Søndergaard, Jacob

    2003-01-01

    Surrogate modelling and optimization techniques are intended for engineering design in the case where an expensive physical model is involved. This thesis provides a literature overview of the field of surrogate modelling and optimization. The space mapping technique is one such method for constr......Surrogate modelling and optimization techniques are intended for engineering design in the case where an expensive physical model is involved. This thesis provides a literature overview of the field of surrogate modelling and optimization. The space mapping technique is one such method...... conditions are satisfied. So hybrid methods, combining the space mapping technique with classical optimization methods, should be used if convergence to high accuracy is wanted. Approximation abilities of the space mapping surrogate are compared with those of a Taylor model of the expensive model. The space...... mapping surrogate has a lower approximation error for long steps. For short steps, however, the Taylor model of the expensive model is best, due to exact interpolation at the model origin. Five algorithms for space mapping optimization are presented and the numerical performance is evaluated. Three...

  10. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root

  11. Petrophysical parameters of the porous space of the “tight” type sandstones of the Skole Unit - Preliminary analysis

    Directory of Open Access Journals (Sweden)

    Maruta Michał

    2018-01-01

    Full Text Available The scientific goal of the paper is the physical characteristics of pore space of the Inocereamian Sandstones located in the Skole Unit as a part of the Outer Carpathians – The Carpathian Flysch. Rock samples were tested using mercury porosimeter. Using this method, cumulative curves of effective porosity were obtained, as well as the pore geometry distribution and pore surface area distribution. geometry and distribution. In the article the authors determine the physical parameters of the pore space for 30 samples, such as porosity, permeability, size and distribution of pore diameter, specific surface area and geometry of a pore space. Preliminary analysis of rock samples is to answer the question of the existence of sandstones capable of forming "tight" type deposits of natural gas and determining their reservoir parameters.

  12. The electronic disability record: purpose, parameters, and model use case.

    Science.gov (United States)

    Tulu, Bengisu; Horan, Thomas A

    2009-01-01

    The active engagement of consumers is an important factor in achieving widespread success of health information systems. The disability community represents a major segment of the healthcare arena, with more than 50 million Americans experiencing some form of disability. In keeping with the "consumer-driven" approach to e-health systems, this paper considers the distinctive aspects of electronic and personal health record use by this segment of society. Drawing upon the information shared during two national policy forums on this topic, the authors present the concept of Electronic Disability Records (EDR). The authors outline the purpose and parameters of such records, with specific attention to its ability to organize health and financial data in a manner that can be used to expedite the disability determination process. In doing so, the authors discuss its interaction with Electronic Health Records (EHR) and Personal Health Records (PHR). The authors then draw upon these general parameters to outline a model use case for disability determination and discuss related implications for disability health management. The paper further reports on the subsequent considerations of these and related deliberations by the American Health Information Community (AHIC).

  13. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients

    Science.gov (United States)

    Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin

    2011-05-01

    The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is

  14. Parameter Estimation in Rainfall-Runoff Modelling Using Distributed Versions of Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Michala Jakubcová

    2015-01-01

    Full Text Available The presented paper provides the analysis of selected versions of the particle swarm optimization (PSO algorithm. The tested versions of the PSO were combined with the shuffling mechanism, which splits the model population into complexes and performs distributed PSO optimization. One of them is a new proposed PSO modification, APartW, which enhances the global exploration and local exploitation in the parametric space during the optimization process through the new updating mechanism applied on the PSO inertia weight. The performances of four selected PSO methods were tested on 11 benchmark optimization problems, which were prepared for the special session on single-objective real-parameter optimization CEC 2005. The results confirm that the tested new APartW PSO variant is comparable with other existing distributed PSO versions, AdaptW and LinTimeVarW. The distributed PSO versions were developed for finding the solution of inverse problems related to the estimation of parameters of hydrological model Bilan. The results of the case study, made on the selected set of 30 catchments obtained from MOPEX database, show that tested distributed PSO versions provide suitable estimates of Bilan model parameters and thus can be used for solving related inverse problems during the calibration process of studied water balance hydrological model.

  15. The S-parameter in Holographic Technicolor Models

    CERN Document Server

    Agashe, Kaustubh; Grojean, Christophe; Reece, Matthew

    2007-01-01

    We study the S parameter, considering especially its sign, in models of electroweak symmetry breaking (EWSB) in extra dimensions, with fermions localized near the UV brane. Such models are conjectured to be dual to 4D strong dynamics triggering EWSB. The motivation for such a study is that a negative value of S can significantly ameliorate the constraints from electroweak precision data on these models, allowing lower mass scales (TeV or below) for the new particles and leading to easier discovery at the LHC. We first extend an earlier proof of S>0 for EWSB by boundary conditions in arbitrary metric to the case of general kinetic functions for the gauge fields or arbitrary kinetic mixing. We then consider EWSB in the bulk by a Higgs VEV showing that S is positive for arbitrary metric and Higgs profile, assuming that the effects from higher-dimensional operators in the 5D theory are sub-leading and can therefore be neglected. For the specific case of AdS_5 with a power law Higgs profile, we also show that S ~ ...

  16. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    Science.gov (United States)

    Zhao, Song-Feng; Huang, Fang; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov–Popov–Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  17. Sound propagation and absorption in foam - A distributed parameter model.

    Science.gov (United States)

    Manson, L.; Lieberman, S.

    1971-01-01

    Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.

  18. Propagation of uncertainty in system parameters of a LWR model by sampling MCNPX calculations - Burnup analysis

    International Nuclear Information System (INIS)

    Campolina, D. de A. M.; Lima, C.P.B.; Veloso, M.A.F.

    2013-01-01

    For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95. percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input. Particularly it was shown that during the burnup, the variances when considering all the parameters uncertainties is equivalent to the sum of variances if the parameter uncertainties are sampled separately

  19. Bayesian Variable Selection on Model Spaces Constrained by Heredity Conditions.

    Science.gov (United States)

    Taylor-Rodriguez, Daniel; Womack, Andrew; Bliznyuk, Nikolay

    2016-01-01

    This paper investigates Bayesian variable selection when there is a hierarchical dependence structure on the inclusion of predictors in the model. In particular, we study the type of dependence found in polynomial response surfaces of orders two and higher, whose model spaces are required to satisfy weak or strong heredity conditions. These conditions restrict the inclusion of higher-order terms depending upon the inclusion of lower-order parent terms. We develop classes of priors on the model space, investigate their theoretical and finite sample properties, and provide a Metropolis-Hastings algorithm for searching the space of models. The tools proposed allow fast and thorough exploration of model spaces that account for hierarchical polynomial structure in the predictors and provide control of the inclusion of false positives in high posterior probability models.

  20. The Space Thermal Signature Model: Principles And Applications

    Science.gov (United States)

    D'Agostino, John A.

    1987-09-01

    The SPACE (Sun, Precipitation, Atmosphere, Clouds, Earth) Thermal Signature Model has been developed by XonTech as a tool to be used in the accurate prediction of military thermal signatures. Currently this model has been optimized to address 8-12 micrometer signatures of armored ground targets in natural background settings. With somewhat lesser accuracy the current model design can address the 3-5 micrometer spectral region. With some model modifications, air and space targets could be addressed. The model is based entirely on first principles with respect to the thermal signature components induced by the natural environment. However, self-heating effects such as those caused by a tank engine or by friction require empirical input data which must be derived from pre-existing thermal measurements. The SPACE model has been programmed in compiled Microsoft BASIC to run on PC-compatible computers. Some generic target and background descriptions are part of the model ensemble. The development of additional descriptive data bases to cover specific target/background scenarios is possible using related utility software which has been developed for this purpose. The SPACE model is currently being used both by Government and industry to support model comparison studies, the prediction of target-to-background thermal contrast signatures, and the generation of synthetic infrared thermal imagery. It is the purpose of this paper to provide a brief tutorial on the modeling principles behind SPACE, a description of the SPACE software architecture and operation, and some example problems.