Models for setting ATM parameter values
DEFF Research Database (Denmark)
Blaabjerg, Søren; Gravey, A.; Romæuf, L.
1996-01-01
essential to set traffic characteristic values that are relevant to the considered cell stream, and that ensure that the amount of non-conforming traffic is small. Using a queueing model representation for the GCRA formalism, several methods are available for choosing the traffic characteristics. This paper......In ATM networks, a user should negotiate at connection set-up a traffic contract which includes traffic characteristics and requested QoS. The traffic characteristics currently considered are the Peak Cell Rate, the Sustainable Cell Rate, the Intrinsic Burst Tolerance and the Cell Delay Variation...... (CDV) tolerance(s). The values taken by these traffic parameters characterize the so-called ''Worst Case Traffic'' that is used by CAC procedures for accepting a new connection and allocating resources to it. Conformance to the negotiated traffic characteristics is defined, at the ingress User...
Setting Parameters for Biological Models With ANIMO
Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran
2014-01-01
ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions
Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model
International Nuclear Information System (INIS)
Schindler, R.E.
1996-09-01
The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes
Evolving Non-Dominated Parameter Sets for Computational Models from Multiple Experiments
Lane, Peter C. R.; Gobet, Fernand
2013-03-01
Creating robust, reproducible and optimal computational models is a key challenge for theorists in many sciences. Psychology and cognitive science face particular challenges as large amounts of data are collected and many models are not amenable to analytical techniques for calculating parameter sets. Particular problems are to locate the full range of acceptable model parameters for a given dataset, and to confirm the consistency of model parameters across different datasets. Resolving these problems will provide a better understanding of the behaviour of computational models, and so support the development of general and robust models. In this article, we address these problems using evolutionary algorithms to develop parameters for computational models against multiple sets of experimental data; in particular, we propose the `speciated non-dominated sorting genetic algorithm' for evolving models in several theories. We discuss the problem of developing a model of categorisation using twenty-nine sets of data and models drawn from four different theories. We find that the evolutionary algorithms generate high quality models, adapted to provide a good fit to all available data.
Directory of Open Access Journals (Sweden)
Shangli Zhang
2009-01-01
Full Text Available By using the methods of linear algebra and matrix inequality theory, we obtain the characterization of admissible estimators in the general multivariate linear model with respect to inequality restricted parameter set. In the classes of homogeneous and general linear estimators, the necessary and suffcient conditions that the estimators of regression coeffcient function are admissible are established.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.
Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf
2010-05-25
Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.
Directory of Open Access Journals (Sweden)
M. F. Loutre
2011-05-01
Full Text Available Many sources of uncertainty limit the accuracy of climate projections. Among them, we focus here on the parameter uncertainty, i.e. the imperfect knowledge of the values of many physical parameters in a climate model. Therefore, we use LOVECLIM, a global three-dimensional Earth system model of intermediate complexity and vary several parameters within a range based on the expert judgement of model developers. Nine climatic parameter sets and three carbon cycle parameter sets are selected because they yield present-day climate simulations coherent with observations and they cover a wide range of climate responses to doubled atmospheric CO_{2} concentration and freshwater flux perturbation in the North Atlantic. Moreover, they also lead to a large range of atmospheric CO_{2} concentrations in response to prescribed emissions. Consequently, we have at our disposal 27 alternative versions of LOVECLIM (each corresponding to one parameter set that provide very different responses to some climate forcings. The 27 model versions are then used to illustrate the range of responses provided over the recent past, to compare the time evolution of climate variables over the time interval for which they are available (the last few decades up to more than one century and to identify the outliers and the "best" versions over that particular time span. For example, between 1979 and 2005, the simulated global annual mean surface temperature increase ranges from 0.24 °C to 0.64 °C, while the simulated increase in atmospheric CO_{2} concentration varies between 40 and 50 ppmv. Measurements over the same period indicate an increase in global annual mean surface temperature of 0.45 °C (Brohan et al., 2006 and an increase in atmospheric CO_{2} concentration of 44 ppmv (Enting et al., 1994; GLOBALVIEW-CO2, 2006. Only a few parameter sets yield simulations that reproduce the observed key variables of the climate system over the last
Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings
Directory of Open Access Journals (Sweden)
Livio Bioglio
2016-11-01
Full Text Available Abstract Background The homogeneous mixing assumption is widely adopted in epidemic modelling for its parsimony and represents the building block of more complex approaches, including very detailed agent-based models. The latter assume homogeneous mixing within schools, workplaces and households, mostly for the lack of detailed information on human contact behaviour within these settings. The recent data availability on high-resolution face-to-face interactions makes it now possible to assess the goodness of this simplified scheme in reproducing relevant aspects of the infection dynamics. Methods We consider empirical contact networks gathered in different contexts, as well as synthetic data obtained through realistic models of contacts in structured populations. We perform stochastic spreading simulations on these contact networks and in populations of the same size under a homogeneous mixing hypothesis. We adjust the epidemiological parameters of the latter in order to fit the prevalence curve of the contact epidemic model. We quantify the agreement by comparing epidemic peak times, peak values, and epidemic sizes. Results Good approximations of the peak times and peak values are obtained with the homogeneous mixing approach, with a median relative difference smaller than 20 % in all cases investigated. Accuracy in reproducing the peak time depends on the setting under study, while for the peak value it is independent of the setting. Recalibration is found to be linear in the epidemic parameters used in the contact data simulations, showing changes across empirical settings but robustness across groups and population sizes. Conclusions An adequate rescaling of the epidemiological parameters can yield a good agreement between the epidemic curves obtained with a real contact network and a homogeneous mixing approach in a population of the same size. The use of such recalibrated homogeneous mixing approximations would enhance the accuracy and
Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
Bioglio, Livio; Génois, Mathieu; Vestergaard, Christian L; Poletto, Chiara; Barrat, Alain; Colizza, Vittoria
2016-11-14
The homogeneous mixing assumption is widely adopted in epidemic modelling for its parsimony and represents the building block of more complex approaches, including very detailed agent-based models. The latter assume homogeneous mixing within schools, workplaces and households, mostly for the lack of detailed information on human contact behaviour within these settings. The recent data availability on high-resolution face-to-face interactions makes it now possible to assess the goodness of this simplified scheme in reproducing relevant aspects of the infection dynamics. We consider empirical contact networks gathered in different contexts, as well as synthetic data obtained through realistic models of contacts in structured populations. We perform stochastic spreading simulations on these contact networks and in populations of the same size under a homogeneous mixing hypothesis. We adjust the epidemiological parameters of the latter in order to fit the prevalence curve of the contact epidemic model. We quantify the agreement by comparing epidemic peak times, peak values, and epidemic sizes. Good approximations of the peak times and peak values are obtained with the homogeneous mixing approach, with a median relative difference smaller than 20 % in all cases investigated. Accuracy in reproducing the peak time depends on the setting under study, while for the peak value it is independent of the setting. Recalibration is found to be linear in the epidemic parameters used in the contact data simulations, showing changes across empirical settings but robustness across groups and population sizes. An adequate rescaling of the epidemiological parameters can yield a good agreement between the epidemic curves obtained with a real contact network and a homogeneous mixing approach in a population of the same size. The use of such recalibrated homogeneous mixing approximations would enhance the accuracy and realism of agent-based simulations and limit the intrinsic biases of
Directory of Open Access Journals (Sweden)
Neha Sharma
2017-10-01
Full Text Available One of the paradigms (called “sampling paradigm” in judgment and decision-making involves decision-makers sample information before making a final consequential choice. In the sampling paradigm, certain computational models have been proposed where a set of single or distribution parameters is calibrated to the choice proportions of a group of participants (aggregate and hierarchical models. However, currently little is known on how aggregate and hierarchical models would account for choices made by individual participants in the sampling paradigm. In this paper, we test the ability of aggregate and hierarchical models to explain choices made by individual participants. Several models, Ensemble, Cumulative Prospect Theory (CPT, Best Estimation and Simulation Techniques (BEAST, Natural-Mean Heuristic (NMH, and Instance-Based Learning (IBL, had their parameters calibrated to individual choices in a large dataset involving the sampling paradigm. Later, these models were generalized to two large datasets in the sampling paradigm. Results revealed that the aggregate models (like CPT and IBL accounted for individual choices better than hierarchical models (like Ensemble and BEAST upon generalization to problems that were like those encountered during calibration. Furthermore, the CPT model, which relies on differential valuing of gains and losses, respectively, performed better than other models during calibration and generalization on datasets with similar set of problems. The IBL model, relying on recency and frequency of sampled information, and the NMH model, relying on frequency of sampled information, performed better than other models during generalization to a challenging dataset. Sequential analyses of results from different models showed how these models accounted for transitions from the last sample to final choice in human data. We highlight the implications of using aggregate and hierarchical models in explaining individual choices
International Nuclear Information System (INIS)
Tsougos, Ioannis; Mavroidis, Panayiotis; Theodorou, Kyriaki; Rajala, J; Pitkaenen, M A; Holli, K; Ojala, A T; Hyoedynmaa, S; Jaervenpaeae, Ritva; Lind, Bengt K; Kappas, Constantin
2006-01-01
The choice of the appropriate model and parameter set in determining the relation between the incidence of radiation pneumonitis and dose distribution in the lung is of great importance, especially in the case of breast radiotherapy where the observed incidence is fairly low. From our previous study based on 150 breast cancer patients, where the fits of dose-volume models to clinical data were estimated (Tsougos et al 2005 Evaluation of dose-response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy Phys. Med. Biol. 50 3535-54), one could get the impression that the relative seriality is significantly better than the LKB NTCP model. However, the estimation of the different NTCP models was based on their goodness-of-fit on clinical data, using various sets of published parameters from other groups, and this fact may provisionally justify the results. Hence, we sought to investigate further the LKB model, by applying different published parameter sets for the very same group of patients, in order to be able to compare the results. It was shown that, depending on the parameter set applied, the LKB model is able to predict the incidence of radiation pneumonitis with acceptable accuracy, especially when implemented on a sub-group of patients (120) receiving D-bar-bar vertical bar EUD higher than 8 Gy. In conclusion, the goodness-of-fit of a certain radiobiological model on a given clinical case is closely related to the selection of the proper scoring criteria and parameter set as well as to the compatibility of the clinical case from which the data were derived. (letter to the editor)
Parameter setting and input reduction
Evers, A.; van Kampen, N.J.|info:eu-repo/dai/nl/126439737
2008-01-01
The language acquisition procedure identifies certain properties of the target grammar before others. The evidence from the input is processed in a stepwise order. Section 1 equates that order and its typical effects with an order of parameter setting. The question is how the acquisition procedure
Rasul, H.; Wu, M.; Olofsson, B.
2017-12-01
Modelling moisture and heat changes in road layers is very important to understand road hydrology and for better construction and maintenance of roads in a sustainable manner. In cold regions due to the freezing/thawing process in the partially saturated material of roads, the modeling task will become more complicated than simple model of flow through porous media without freezing/thawing pores considerations. This study is presenting a 2-D model simulation for a section of highway with considering freezing/thawing and vapor changes. Partial deferential equations (PDEs) are used in formulation of the model. Parameters are optimized from modelling results based on the measured data from test station on E18 highway near Stockholm. Impacts of phase change considerations in the modelling are assessed by comparing the modeled soil moisture with TDR-measured data. The results show that the model can be used for prediction of water and ice content in different layers of the road and at different seasons. Parameter sensitivities are analyzed by implementing a calibration strategy. In addition, the phase change consideration is evaluated in the modeling process, by comparing the PDE model with another model without considerations of freezing/thawing in roads. The PDE model shows high potential in understanding the moisture dynamics in the road system.
Energy Technology Data Exchange (ETDEWEB)
Bunting, Bruce G [ORNL
2012-10-01
The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).
International Nuclear Information System (INIS)
Sato, Shin; Noda, Masaru; Niunoya, Sumio; Hata, Koji; Matsui, Hiroya; Mikake, Shinichiro
2012-01-01
Creep phenomenon is one of the long-term rock behaviors. In many of rock-creep studies, model and parameter have been verified in 2D analysis using model parameter acquired by uniaxial compression test etc considering rock types. Therefore, in this study model parameter was set by uniaxial compression test with classified rock samples which were taken from pilot boring when the main shaft was constructed. Then, comparison between measured value and 3D excavation analysis with identified parameter was made. By and large, the study showed that validity of identification methodology of parameter to identify reproduction of measured value and analysis method. (author)
Pogliani, Lionello
2010-01-30
Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Lunde, Asger; Nason, James M.
The paper introduces the model confidence set (MCS) and applies it to the selection of models. A MCS is a set of models that is constructed such that it will contain the best model with a given level of confidence. The MCS is in this sense analogous to a confidence interval for a parameter. The MCS......, beyond the comparison of models. We apply the MCS procedure to two empirical problems. First, we revisit the inflation forecasting problem posed by Stock and Watson (1999), and compute the MCS for their set of inflation forecasts. Second, we compare a number of Taylor rule regressions and determine...... the MCS of the best in terms of in-sample likelihood criteria....
Directory of Open Access Journals (Sweden)
Jones Anne E
2011-02-01
Full Text Available Abstract Background A warm and humid climate triggers several water-associated diseases such as malaria. Climate- or weather-driven malaria models, therefore, allow for a better understanding of malaria transmission dynamics. The Liverpool Malaria Model (LMM is a mathematical-biological model of malaria parasite dynamics using daily temperature and precipitation data. In this study, the parameter settings of the LMM are refined and a new mathematical formulation of key processes related to the growth and size of the vector population are developed. Methods One of the most comprehensive studies to date in terms of gathering entomological and parasitological information from the literature was undertaken for the development of a new version of an existing malaria model. The knowledge was needed to allow the justification of new settings of various model parameters and motivated changes of the mathematical formulation of the LMM. Results The first part of the present study developed an improved set of parameter settings and mathematical formulation of the LMM. Important modules of the original LMM version were enhanced in order to achieve a higher biological and physical accuracy. The oviposition as well as the survival of immature mosquitoes were adjusted to field conditions via the application of a fuzzy distribution model. Key model parameters, including the mature age of mosquitoes, the survival probability of adult mosquitoes, the human blood index, the mosquito-to-human (human-to-mosquito transmission efficiency, the human infectious age, the recovery rate, as well as the gametocyte prevalence, were reassessed by means of entomological and parasitological observations. This paper also revealed that various malaria variables lack information from field studies to be set properly in a malaria modelling approach. Conclusions Due to the multitude of model parameters and the uncertainty involved in the setting of parameters, an extensive
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)
Setting parameters in the cold chain
Directory of Open Access Journals (Sweden)
Victoria Rodríguez
2011-12-01
Full Text Available Breaks in the cold chain are important economic losses in food and pharmaceutical companies. Many of the failures in the cold chain are due to improper adjustment of equipment parameters such as setting the parameters for theoretical conditions, without a corresponding check in normal operation. The companies that transport refrigeratedproducts must be able to adjust the parameters of the equipment in an easy and quick to adapt their functioning to changing environmental conditions. This article presents the results of a study carried out with a food distribution company. The main objective of the study is to verify the effectiveness of Six Sigma as a methodological toolto adjust the equipment in the cold chain. The second objective is more speciÞ c and is to study the impact of: reducing the volume of storage in the truck, the initial temperature of the storage areain the truck and the frequency of defrost in the transport of refrigerated products.
Directory of Open Access Journals (Sweden)
Jinshui Zhang
2017-04-01
Full Text Available This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD, to determine optimal parameters for support vector data description (SVDD model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient (C and kernel width (s, in mapping homogeneous specific land cover.
Archaeological predictive model set.
2015-03-01
This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...
Economic communication model set
Zvereva, Olga M.; Berg, Dmitry B.
2017-06-01
This paper details findings from the research work targeted at economic communications investigation with agent-based models usage. The agent-based model set was engineered to simulate economic communications. Money in the form of internal and external currencies was introduced into the models to support exchanges in communications. Every model, being based on the general concept, has its own peculiarities in algorithm and input data set since it was engineered to solve the specific problem. Several and different origin data sets were used in experiments: theoretic sets were estimated on the basis of static Leontief's equilibrium equation and the real set was constructed on the basis of statistical data. While simulation experiments, communication process was observed in dynamics, and system macroparameters were estimated. This research approved that combination of an agent-based and mathematical model can cause a synergetic effect.
Limited parameter set IMRT for carcinoma breast
International Nuclear Information System (INIS)
Gopinath, M.; Sharma, Sanjiv; Vivek, T.R.; Suparna; Deka, Preeti; Manikandan; Giriraj
2008-01-01
Post operative radiotherapy after breast conservation surgery is an effective and widely accepted treatment modality in early stage breast cancer. The treatment is usually performed using two wedged tangential photon beams. The disadvantage of this technique is significant dose inhomogeneity as large as 15-20% in the superior and inferior regions of the breast due to lesser transmission thickness and in the medial and lateral aspect of the breast due to lower attenuation of lung tissue in the field. The aim of the study is to modify the conventional wedged tangential pair to achieve a more homogeneous dose distribution and a reduction in acute toxicity and improved cosmetic result. A comparative study is done between the conventional wedged technique and limited parameter set IMRT
A global data set of land-surface parameters
International Nuclear Information System (INIS)
Claussen, M.; Lohmann, U.; Roeckner, E.; Schulzweida, U.
1994-01-01
A global data set of land surface parameters is provided for the climate model ECHAM developed at the Max-Planck-Institut fuer Meteorologie in Hamburg. These parameters are: background (surface) albedo α, surface roughness length z 0y , leaf area index LAI, fractional vegetation cover or vegetation ratio c y , and forest ratio c F . The global set of surface parameters is constructed by allocating parameters to major exosystem complexes of Olson et al. (1983). The global distribution of ecosystem complexes is given at a resolution of 0.5 0 x 0.5 0 . The latter data are compatible with the vegetation types used in the BIOME model of Prentice et al. (1992) which is a potential candidate of an interactive submodel within a comprehensive model of the climate system. (orig.)
Photovoltaic module parameters acquisition model
Energy Technology Data Exchange (ETDEWEB)
Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk
2014-09-01
Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.
Photovoltaic module parameters acquisition model
International Nuclear Information System (INIS)
Cibira, Gabriel; Koščová, Marcela
2014-01-01
Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model
Garcia, F.; Mesa, J.; Arruda-Neto, J. D. T.; Helene, O.; Vanin, V.; Milian, F.; Deppman, A.; Rodrigues, T. E.; Rodriguez, O.
2007-03-01
The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo simulation procedure. Program summaryTitle of program:STATFLUX Catalogue identifier:ADYS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it has been tested:Micro-computer with Intel Pentium III, 3.0 GHz Installation:Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, Brazil Operating system:Windows 2000 and Windows XP Programming language used:Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program. Memory required to execute with typical data:8 Mbytes of RAM memory and 100 MB of Hard disk memory No. of bits in a word:16 No. of lines in distributed program, including test data, etc.:6912 No. of bytes in distributed program, including test data, etc.:229 541 Distribution format:tar.gz Nature of the physical problem:The investigation of transport mechanisms for
Zhang, Ningyi; Li, Gang; Yu, Shanxiang; An, Dongsheng; Sun, Qian; Luo, Weihong; Yin, Xinyou
2017-01-01
Accurately predicting photosynthesis in response to water and nitrogen stress is the first step toward predicting crop growth, yield and many quality traits under fluctuating environmental conditions. While mechanistic models are capable of predicting photosynthesis under fluctuating environmental conditions, simplifying the parameterization procedure is important toward a wide range of model applications. In this study, the biochemical photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model) and the stomatal conductance model of Ball, Woodrow and Berry which was revised by Leuning and Yin (the BWB-Leuning-Yin model) were parameterized for Lilium (L. auratum × speciosum “Sorbonne”) grown under different water and nitrogen conditions. Linear relationships were found between biochemical parameters of the FvCB model and leaf nitrogen content per unit leaf area (Na), and between mesophyll conductance and Na under different water and nitrogen conditions. By incorporating these Na-dependent linear relationships, the FvCB model was able to predict the net photosynthetic rate (An) in response to all water and nitrogen conditions. In contrast, stomatal conductance (gs) can be accurately predicted if parameters in the BWB-Leuning-Yin model were adjusted specifically to water conditions; otherwise gs was underestimated by 9% under well-watered conditions and was overestimated by 13% under water-deficit conditions. However, the 13% overestimation of gs under water-deficit conditions led to only 9% overestimation of An by the coupled FvCB and BWB-Leuning-Yin model whereas the 9% underestimation of gs under well-watered conditions affected little the prediction of An. Our results indicate that to accurately predict An and gs under different water and nitrogen conditions, only a few parameters in the BWB-Leuning-Yin model need to be adjusted according to water conditions whereas all other parameters are either conservative or can be adjusted according to
Robust estimation of hydrological model parameters
Directory of Open Access Journals (Sweden)
A. Bárdossy
2008-11-01
Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.
A parameter tree approach to estimating system sensitivities to parameter sets
International Nuclear Information System (INIS)
Jarzemba, M.S.; Sagar, B.
2000-01-01
A post-processing technique for determining relative system sensitivity to groups of parameters and system components is presented. It is assumed that an appropriate parametric model is used to simulate system behavior using Monte Carlo techniques and that a set of realizations of system output(s) is available. The objective of our technique is to analyze the input vectors and the corresponding output vectors (that is, post-process the results) to estimate the relative sensitivity of the output to input parameters (taken singly and as a group) and thereby rank them. This technique is different from the design of experimental techniques in that a partitioning of the parameter space is not required before the simulation. A tree structure (which looks similar to an event tree) is developed to better explain the technique. Each limb of the tree represents a particular combination of parameters or a combination of system components. For convenience and to distinguish it from the event tree, we call it the parameter tree. To construct the parameter tree, the samples of input parameter values are treated as either a '+' or a '-' based on whether or not the sampled parameter value is greater than or less than a specified branching criterion (e.g., mean, median, percentile of the population). The corresponding system outputs are also segregated into similar bins. Partitioning the first parameter into a '+' or a '-' bin creates the first level of the tree containing two branches. At the next level, realizations associated with each first-level branch are further partitioned into two bins using the branching criteria on the second parameter and so on until the tree is fully populated. Relative sensitivities are then inferred from the number of samples associated with each branch of the tree. The parameter tree approach is illustrated by applying it to a number of preliminary simulations of the proposed high-level radioactive waste repository at Yucca Mountain, NV. Using a
Parameter Estimation for Thurstone Choice Models
Energy Technology Data Exchange (ETDEWEB)
Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-24
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.
The evaluation of set of criticality parameters using scale system
International Nuclear Information System (INIS)
Abe, Alfredo; Sanchez, Andrea; Yamaguchi, Mistuo
2009-01-01
In evaluating the criticality safety of the nuclear fuel facility, it is important to apply a consistent methodology, which consider every aspects concerning various types of criticality parameters. Usually, the critical parameters are compiled and arranged into handbooks, and these handbooks are based on experience with nuclear facilities, experimental data from criticality safety research facilities, and theoretical studies performed using numerical simulations. Most of criticality safety evaluation can be addressed using the criticality parameters data directly from handbook, but some critical parameters for a specific chemical mixtures and/or enrichment are not be available. Consequently, not available parameters has to be evaluated. This work present the methodology to evaluate a set of critical parameters using SCALE system for various types of mixtures present at nuclear fuel cycle facilities for two different level of enrichment, the results are verified in the independent calculation using MCNP Monte Carlo Code. (author)
A Regionalization Approach to select the final watershed parameter set among the Pareto solutions
Park, G. H.; Micheletty, P. D.; Carney, S.; Quebbeman, J.; Day, G. N.
2017-12-01
The calibration of hydrological models often results in model parameters that are inconsistent with those from neighboring basins. Considering that physical similarity exists within neighboring basins some of the physically related parameters should be consistent among them. Traditional manual calibration techniques require an iterative process to make the parameters consistent, which takes additional effort in model calibration. We developed a multi-objective optimization procedure to calibrate the National Weather Service (NWS) Research Distributed Hydrological Model (RDHM), using the Nondominant Sorting Genetic Algorithm (NSGA-II) with expert knowledge of the model parameter interrelationships one objective function. The multi-objective algorithm enables us to obtain diverse parameter sets that are equally acceptable with respect to the objective functions and to choose one from the pool of the parameter sets during a subsequent regionalization step. Although all Pareto solutions are non-inferior, we exclude some of the parameter sets that show extremely values for any of the objective functions to expedite the selection process. We use an apriori model parameter set derived from the physical properties of the watershed (Koren et al., 2000) to assess the similarity for a given parameter across basins. Each parameter is assigned a weight based on its assumed similarity, such that parameters that are similar across basins are given higher weights. The parameter weights are useful to compute a closeness measure between Pareto sets of nearby basins. The regionalization approach chooses the Pareto parameter sets that minimize the closeness measure of the basin being regionalized. The presentation will describe the results of applying the regionalization approach to a set of pilot basins in the Upper Colorado basin as part of a NASA-funded project.
Analytical one parameter method for PID motion controller settings
van Dijk, Johannes; Aarts, Ronald G.K.M.
2012-01-01
In this paper analytical expressions for PID-controllers settings for electromechanical motion systems are presented. It will be shown that by an adequate frequency domain oriented parametrization, the parameters of a PID-controller are analytically dependent on one variable only, the cross-over
Source term modelling parameters for Project-90
International Nuclear Information System (INIS)
Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.
1992-04-01
This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)
Fatimah, F.; Rosadi, D.; Hakim, R. B. F.
2018-03-01
In this paper, we motivate and introduce probabilistic soft sets and dual probabilistic soft sets for handling decision making problem in the presence of positive and negative parameters. We propose several types of algorithms related to this problem. Our procedures are flexible and adaptable. An example on real data is also given.
Reliability analysis of a sensitive and independent stabilometry parameter set.
Nagymáté, Gergely; Orlovits, Zsanett; Kiss, Rita M
2018-01-01
Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54-0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals.
Reliability analysis of a sensitive and independent stabilometry parameter set
Nagymáté, Gergely; Orlovits, Zsanett
2018-01-01
Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54–0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals. PMID:29664938
Psarra, I.; Arentze, T. A.; Timmermans, H. J P
2015-01-01
Models of activity-travel behavior can be a useful tool in order to predict the direct or secondary effects of various spatial, transportation or land-use policies. Whereas existing activity-based models of travel demand focus on a static, typical day, dynamic models simulate behavioral response to
A parameter set for a double-null DEMO reactor
International Nuclear Information System (INIS)
Cooke, P.I.H.
1987-01-01
The present study is aimed at commenting on the reactor-relevance of the design principles and technology being proposed for NET. The authors propose that a double-null device serve as a basis for a NET-based demonstration reactor. Calculations are carried out to determine the parameter set for reactors based on the double-null NET design, and the results are presented in tabular form. (U.K.)
Zhang, Ningyi; Li, Gang; Yu, Shanxiang; An, Dongsheng; Sun, Qian; Luo, Weihong; Yin, Xinyou
2017-01-01
Accurately predicting photosynthesis in response to water and nitrogen stress is the first step toward predicting crop growth, yield and many quality traits under fluctuating environmental conditions. While mechanistic models are capable of predicting photosynthesis under fluctuating environmental
Allowable variance set on left ventricular function parameter
International Nuclear Information System (INIS)
Zhou Li'na; Qi Zhongzhi; Zeng Yu; Ou Xiaohong; Li Lin
2010-01-01
Purpose: To evaluate the influence of allowable Variance settings on left ventricular function parameter of the arrhythmia patients during gated myocardial perfusion imaging. Method: 42 patients with evident arrhythmia underwent myocardial perfusion SPECT, 3 different allowable variance with 20%, 60%, 100% would be set before acquisition for every patients,and they will be acquired simultaneously. After reconstruction by Astonish, end-diastole volume(EDV) and end-systolic volume (ESV) and left ventricular ejection fraction (LVEF) would be computed with Quantitative Gated SPECT(QGS). Using SPSS software EDV, ESV, EF values of analysis of variance. Result: there is no statistical difference between three groups. Conclusion: arrhythmia patients undergo Gated myocardial perfusion imaging, Allowable Variance settings on EDV, ESV, EF value does not have a statistical meaning. (authors)
Exploiting intrinsic fluctuations to identify model parameters.
Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen
2015-04-01
Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.
Complete set of essential parameters of an effective theory
Ioffe, M. V.; Vereshagin, V. V.
2018-04-01
The present paper continues the series [V. V. Vereshagin, True self-energy function and reducibility in effective scalar theories, Phys. Rev. D 89, 125022 (2014); , 10.1103/PhysRevD.89.125022A. Vereshagin and V. Vereshagin, Resultant parameters of effective theory, Phys. Rev. D 69, 025002 (2004); , 10.1103/PhysRevD.69.025002K. Semenov-Tian-Shansky, A. Vereshagin, and V. Vereshagin, S-matrix renormalization in effective theories, Phys. Rev. D 73, 025020 (2006), 10.1103/PhysRevD.73.025020] devoted to the systematic study of effective scattering theories. We consider matrix elements of the effective Lagrangian monomials (in the interaction picture) of arbitrary high dimension D and show that the full set of corresponding coupling constants contains parameters of both kinds: essential and redundant. Since it would be pointless to formulate renormalization prescriptions for redundant parameters, it is necessary to select the full set of the essential ones. This is done in the present paper for the case of the single scalar field.
Review of the different methods to derive average spacing from resolved resonance parameters sets
International Nuclear Information System (INIS)
Fort, E.; Derrien, H.; Lafond, D.
1979-12-01
The average spacing of resonances is an important parameter for statistical model calculations, especially concerning non fissile nuclei. The different methods to derive this average value from resonance parameters sets have been reviewed and analyzed in order to tentatively detect their respective weaknesses and propose recommendations. Possible improvements are suggested
PARAMETER ESTIMATION IN BREAD BAKING MODEL
Directory of Open Access Journals (Sweden)
Hadiyanto Hadiyanto
2012-05-01
Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels. Abstrak PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan
Electron beam weld parameter set development and cavity cost
International Nuclear Information System (INIS)
John Brawley; John Mammossor; Larry Philips
1997-01-01
Various methods have recently been considered for use in the cost-effective manufacturing of large numbers of niobium cavities. A method commonly assumed to be too expensive is the joining of half cells by electron beam welding (EBW), as has been done with multipurpose EBW equipment for producing small numbers of cavities at accelerator laboratories. The authors have begun to investigate the advantages that would be available if a single-purpose, task-specific EBW processing tool were used to produce cavities in a high-volume commercial-industrial context. For such a tool and context they have sought to define an EBW parameter set that is cost-effective not only in terms of per-cavity production cost, but also in terms of the minimization of quench-producing weld defects. That is, they define cavity cost-effectiveness to include both production and performance costs. For such an EBW parameter set, they have developed a set of ideal characteristics, produced and tested samples and a complete cavity, studied the weld-defect question, and obtained industrial estimates of cavity high-volume production costs. The investigation in ongoing. This paper reports preliminary findings
Setting limits on supersymmetry using simplified models
Gutschow, C.
2012-01-01
Experimental limits on supersymmetry and similar theories are difficult to set because of the enormous available parameter space and difficult to generalize because of the complexity of single points. Therefore, more phenomenological, simplified models are becoming popular for setting experimental limits, as they have clearer physical implications. The use of these simplified model limits to set a real limit on a concrete theory has not, however, been demonstrated. This paper recasts simplified model limits into limits on a specific and complete supersymmetry model, minimal supergravity. Limits obtained under various physical assumptions are comparable to those produced by directed searches. A prescription is provided for calculating conservative and aggressive limits on additional theories. Using acceptance and efficiency tables along with the expected and observed numbers of events in various signal regions, LHC experimental results can be re-cast in this manner into almost any theoretical framework, includ...
Compositional models for credal sets
Czech Academy of Sciences Publication Activity Database
Vejnarová, Jiřina
2017-01-01
Roč. 90, č. 1 (2017), s. 359-373 ISSN 0888-613X R&D Projects: GA ČR(CZ) GA16-12010S Institutional support: RVO:67985556 Keywords : Imprecise probabilities * Credal sets * Multidimensional models * Conditional independence Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/vejnarova-0483288.pdf
Systematic parameter inference in stochastic mesoscopic modeling
Energy Technology Data Exchange (ETDEWEB)
Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.
Optimizing incomplete sample designs for item response model parameters
van der Linden, Willem J.
Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with
Directory of Open Access Journals (Sweden)
S. C. Truckenbrodt
2018-03-01
Full Text Available Ground reference data are a prerequisite for the calibration, update, and validation of retrieval models facilitating the monitoring of land parameters based on Earth Observation data. Here, we describe the acquisition of a comprehensive ground reference database which was created to test and validate the recently developed Earth Observation Land Data Assimilation System (EO-LDAS and products derived from remote sensing observations in the visible and infrared range. In situ data were collected for seven crop types (winter barley, winter wheat, spring wheat, durum, winter rape, potato, and sugar beet cultivated on the agricultural Gebesee test site, central Germany, in 2013 and 2014. The database contains information on hyperspectral surface reflectance factors, the evolution of biophysical and biochemical plant parameters, phenology, surface conditions, atmospheric states, and a set of ground control points. Ground reference data were gathered at an approximately weekly resolution and on different spatial scales to investigate variations within and between acreages. In situ data collected less than 1 day apart from satellite acquisitions (RapidEye, SPOT 5, Landsat-7 and -8 with a cloud coverage ≤ 25 % are available for 10 and 15 days in 2013 and 2014, respectively. The measurements show that the investigated growing seasons were characterized by distinct meteorological conditions causing interannual variations in the parameter evolution. Here, the experimental design of the field campaigns, and methods employed in the determination of all parameters, are described in detail. Insights into the database are provided and potential fields of application are discussed. The data will contribute to a further development of crop monitoring methods based on remote sensing techniques. The database is freely available at PANGAEA (https://doi.org/10.1594/PANGAEA.874251.
Truckenbrodt, Sina C.; Schmullius, Christiane C.
2018-03-01
Ground reference data are a prerequisite for the calibration, update, and validation of retrieval models facilitating the monitoring of land parameters based on Earth Observation data. Here, we describe the acquisition of a comprehensive ground reference database which was created to test and validate the recently developed Earth Observation Land Data Assimilation System (EO-LDAS) and products derived from remote sensing observations in the visible and infrared range. In situ data were collected for seven crop types (winter barley, winter wheat, spring wheat, durum, winter rape, potato, and sugar beet) cultivated on the agricultural Gebesee test site, central Germany, in 2013 and 2014. The database contains information on hyperspectral surface reflectance factors, the evolution of biophysical and biochemical plant parameters, phenology, surface conditions, atmospheric states, and a set of ground control points. Ground reference data were gathered at an approximately weekly resolution and on different spatial scales to investigate variations within and between acreages. In situ data collected less than 1 day apart from satellite acquisitions (RapidEye, SPOT 5, Landsat-7 and -8) with a cloud coverage ≤ 25 % are available for 10 and 15 days in 2013 and 2014, respectively. The measurements show that the investigated growing seasons were characterized by distinct meteorological conditions causing interannual variations in the parameter evolution. Here, the experimental design of the field campaigns, and methods employed in the determination of all parameters, are described in detail. Insights into the database are provided and potential fields of application are discussed. The data will contribute to a further development of crop monitoring methods based on remote sensing techniques. The database is freely available at PANGAEA (https://doi.org/10.1594/PANGAEA.874251).
Calibration of discrete element model parameters: soybeans
Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal
2018-05-01
Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.
Directory of Open Access Journals (Sweden)
Renato RIZZO
2012-08-01
Full Text Available This paper deals with Permanent Magnet Brushless Motors. In particular is proposed a new set of control algorithm expressions that is realized taking into account resistive parameters of the motor, differently from simplified models of this type of motors where these parameters are usually neglected. The control is set up and an analysis of the performance is reported in the paper, where the validation of the new expressions is done with reference to a motor prototype particularly compact because is foreseen for application on tram propulsion drives. The results are evidenced in the last part of the paper.
Waveform inversion in acoustic orthorhombic media with a practical set of parameters
Masmoudi, Nabil; Alkhalifah, Tariq Ali
2017-01-01
Full-waveform inversion (FWI) in anisotropic media is overall challenging, mainly because of the large computational cost, especially in 3D, and the potential trade-offs between the model parameters needed to describe such a media. We propose an efficient 3D FWI implementation for orthorhombic anisotropy under the acoustic assumption. Our modeling is based on solving the pseudo-differential orthorhombic wave equation split into a differential operator and a scalar one. The modeling is computationally efficient and free of shear wave artifacts. Using the adjoint state method, we derive the gradients with respect to a practical set of parameters describing the acoustic orthorhombic model, made of one velocity and five dimensionless parameters. This parameterization allows us to use a multi-stage model inversion strategy based on the continuity of the scattering potential of the parameters as we go from higher symmetry anisotropy to lower ones. We apply the proposed approach on a modified SEG-EAGE overthrust synthetic model. The quality of the inverted model suggest that we may recover only 4 parameters, with different resolution scales depending on the scattering potential of these parameters.
Waveform inversion in acoustic orthorhombic media with a practical set of parameters
Masmoudi, Nabil
2017-08-17
Full-waveform inversion (FWI) in anisotropic media is overall challenging, mainly because of the large computational cost, especially in 3D, and the potential trade-offs between the model parameters needed to describe such a media. We propose an efficient 3D FWI implementation for orthorhombic anisotropy under the acoustic assumption. Our modeling is based on solving the pseudo-differential orthorhombic wave equation split into a differential operator and a scalar one. The modeling is computationally efficient and free of shear wave artifacts. Using the adjoint state method, we derive the gradients with respect to a practical set of parameters describing the acoustic orthorhombic model, made of one velocity and five dimensionless parameters. This parameterization allows us to use a multi-stage model inversion strategy based on the continuity of the scattering potential of the parameters as we go from higher symmetry anisotropy to lower ones. We apply the proposed approach on a modified SEG-EAGE overthrust synthetic model. The quality of the inverted model suggest that we may recover only 4 parameters, with different resolution scales depending on the scattering potential of these parameters.
Parameter optimization for surface flux transport models
Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.
2017-11-01
Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
Setting of the Optimal Parameters of Melted Glass
Czech Academy of Sciences Publication Activity Database
Luptáková, Natália; Matejíčka, L.; Krečmer, N.
2015-01-01
Roč. 10, č. 1 (2015), s. 73-79 ISSN 1802-2308 Institutional support: RVO:68081723 Keywords : Striae * Glass * Glass melting * Regression * Optimal parameters Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass
Spatial occupancy models for large data sets
Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.
2013-01-01
Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.
Biological parameters for lung cancer in mathematical models of carcinogenesis
International Nuclear Information System (INIS)
Jacob, P.; Jacob, V.
2003-01-01
Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki, British doctors, Colorado Plateau miners, and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h 55 at an intermediate age, and the hazard H? at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. (author)
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
Quality assessment for radiological model parameters
International Nuclear Information System (INIS)
Funtowicz, S.O.
1989-01-01
A prototype framework for representing uncertainties in radiological model parameters is introduced. This follows earlier development in this journal of a corresponding framework for representing uncertainties in radiological data. Refinements and extensions to the earlier framework are needed in order to take account of the additional contextual factors consequent on using data entries to quantify model parameters. The parameter coding can in turn feed in to methods for evaluating uncertainties in calculated model outputs. (author)
Establishing statistical models of manufacturing parameters
International Nuclear Information System (INIS)
Senevat, J.; Pape, J.L.; Deshayes, J.F.
1991-01-01
This paper reports on the effect of pilgering and cold-work parameters on contractile strain ratio and mechanical properties that were investigated using a large population of Zircaloy tubes. Statistical models were established between: contractile strain ratio and tooling parameters, mechanical properties (tensile test, creep test) and cold-work parameters, and mechanical properties and stress-relieving temperature
Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set
Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.
2017-12-01
In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of
Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds
Directory of Open Access Journals (Sweden)
Indrajeet Chaubey
2010-11-01
Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.
Model parameter updating using Bayesian networks
International Nuclear Information System (INIS)
Treml, C.A.; Ross, Timothy J.
2004-01-01
This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.
Moving to continuous facial expression space using the MPEG-4 facial definition parameter (FDP) set
Karpouzis, Kostas; Tsapatsoulis, Nicolas; Kollias, Stefanos D.
2000-06-01
Research in facial expression has concluded that at least six emotions, conveyed by human faces, are universally associated with distinct expressions. Sadness, anger, joy, fear, disgust and surprise are categories of expressions that are recognizable across cultures. In this work we form a relation between the description of the universal expressions and the MPEG-4 Facial Definition Parameter Set (FDP). We also investigate the relation between the movement of basic FDPs and the parameters that describe emotion-related words according to some classical psychological studies. In particular Whissel suggested that emotions are points in a space, which seem to occupy two dimensions: activation and evaluation. We show that some of the MPEG-4 Facial Animation Parameters (FAPs), approximated by the motion of the corresponding FDPs, can be combined by means of a fuzzy rule system to estimate the activation parameter. In this way variations of the six archetypal emotions can be achieved. Moreover, Plutchik concluded that emotion terms are unevenly distributed through the space defined by dimensions like Whissel's; instead they tend to form an approximately circular pattern, called 'emotion wheel,' modeled using an angular measure. The 'emotion wheel' can be defined as a reference for creating intermediate expressions from the universal ones, by interpolating the movement of dominant FDP points between neighboring basic expressions. By exploiting the relation between the movement of the basic FDP point and the activation and angular parameters we can model more emotions than the primary ones and achieve efficient recognition in video sequences.
On parameter estimation in deformable models
DEFF Research Database (Denmark)
Fisker, Rune; Carstensen, Jens Michael
1998-01-01
Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian form...
Fault Detection of Wind Turbines with Uncertain Parameters: A Set-Membership Approach
Directory of Open Access Journals (Sweden)
Thomas Bak
2012-07-01
Full Text Available In this paper a set-membership approach for fault detection of a benchmark wind turbine is proposed. The benchmark represents relevant fault scenarios in the control system, including sensor, actuator and system faults. In addition we also consider parameter uncertainties and uncertainties on the torque coefficient. High noise on the wind speed measurement, nonlinearities in the aerodynamic torque and uncertainties on the parameters make fault detection a challenging problem. We use an effective wind speed estimator to reduce the noise on the wind speed measurements. A set-membership approach is used generate a set that contains all states consistent with the past measurements and the given model of the wind turbine including uncertainties and noise. This set represents all possible states the system can be in if not faulty. If the current measurement is not consistent with this set, a fault is detected. For representation of these sets we use zonotopes and for modeling of uncertainties we use matrix zonotopes, which yields a computationally efficient algorithm. The method is applied to the wind turbine benchmark problem without and with uncertainties. The result demonstrates the effectiveness of the proposed method compared to other proposed methods applied to the same problem. An advantage of the proposed method is that there is no need for threshold design, and it does not produce positive false alarms. In the case where uncertainty on the torque lookup table is introduced, some faults are not detectable. Previous research has not addressed this uncertainty. The method proposed here requires equal or less detection time than previous results.
Settings in Social Networks : a Measurement Model
Schweinberger, Michael; Snijders, Tom A.B.
2003-01-01
A class of statistical models is proposed that aims to recover latent settings structures in social networks. Settings may be regarded as clusters of vertices. The measurement model is based on two assumptions. (1) The observed network is generated by hierarchically nested latent transitive
International Nuclear Information System (INIS)
Kueppers, Christian; Ustohalova, Veronika
2013-01-01
The risk considerations for a long-term open-state of the radioactive waste storage facility Schacht Asse II include the following issues: description of radio-ecological models for the radionuclide transport in the covering rock formations and determination of the radiation exposure, parameters of the radio-ecological and their variability, Monte-Carlo method application. The results of the modeling calculations include the group short-living radionuclides, long-living radionuclides, radionuclides in the frame of decay chains and sensitivity analyses with respect to the correlation of input data and results.
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
Parameter identification in multinomial processing tree models
Schmittmann, V.D.; Dolan, C.V.; Raijmakers, M.E.J.; Batchelder, W.H.
2010-01-01
Multinomial processing tree models form a popular class of statistical models for categorical data that have applications in various areas of psychological research. As in all statistical models, establishing which parameters are identified is necessary for model inference and selection on the basis
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei
2013-09-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Regionalising Parameters of a Conceptual Rainfall-Runoff Model for ...
African Journals Online (AJOL)
IHACRES, a lumped conceptual rainfall-runoff model, was calibrated to six catchments ranging in size from 49km2 to 600 km2 within the upper Tana River basin to obtain a set of model parameters that characterise the hydrological behaviour within the region. Physical catchment attributes indexing topography, soil and ...
Parameter identification in the logistic STAR model
DEFF Research Database (Denmark)
Ekner, Line Elvstrøm; Nejstgaard, Emil
We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th...
Photosynthesis-irradiance parameters of marine phytoplankton: synthesis of a global data set
Bouman, Heather A.; Platt, Trevor; Doblin, Martina; Figueiras, Francisco G.; Gudmundsson, Kristinn; Gudfinnsson, Hafsteinn G.; Huang, Bangqin; Hickman, Anna; Hiscock, Michael; Jackson, Thomas; Lutz, Vivian A.; Mélin, Frédéric; Rey, Francisco; Pepin, Pierre; Segura, Valeria; Tilstone, Gavin H.; van Dongen-Vogels, Virginie; Sathyendranath, Shubha
2018-02-01
The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis-irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll) that are fundamental inputs for models (satellite-based and otherwise) of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in spatial coverage. The database will be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017).
Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set
Directory of Open Access Journals (Sweden)
H. A. Bouman
2018-02-01
Full Text Available The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS project of the European Space Agency is to assemble a global database of photosynthesis–irradiance (P-E parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll that are fundamental inputs for models (satellite-based and otherwise of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in spatial coverage. The database will be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017.
Parameters and error of a theoretical model
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.; Swiatecki, W.
1986-09-01
We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs
Parameter Estimation of Nonlinear Models in Forestry.
Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.
1999-01-01
Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...
Analyzing ROC curves using the effective set-size model
Samuelson, Frank W.; Abbey, Craig K.; He, Xin
2018-03-01
The Effective Set-Size model has been used to describe uncertainty in various signal detection experiments. The model regards images as if they were an effective number (M*) of searchable locations, where the observer treats each location as a location-known-exactly detection task with signals having average detectability d'. The model assumes a rational observer behaves as if he searches an effective number of independent locations and follows signal detection theory at each location. Thus the location-known-exactly detectability (d') and the effective number of independent locations M* fully characterize search performance. In this model the image rating in a single-response task is assumed to be the maximum response that the observer would assign to these many locations. The model has been used by a number of other researchers, and is well corroborated. We examine this model as a way of differentiating imaging tasks that radiologists perform. Tasks involving more searching or location uncertainty may have higher estimated M* values. In this work we applied the Effective Set-Size model to a number of medical imaging data sets. The data sets include radiologists reading screening and diagnostic mammography with and without computer-aided diagnosis (CAD), and breast tomosynthesis. We developed an algorithm to fit the model parameters using two-sample maximum-likelihood ordinal regression, similar to the classic bi-normal model. The resulting model ROC curves are rational and fit the observed data well. We find that the distributions of M* and d' differ significantly among these data sets, and differ between pairs of imaging systems within studies. For example, on average tomosynthesis increased readers' d' values, while CAD reduced the M* parameters. We demonstrate that the model parameters M* and d' are correlated. We conclude that the Effective Set-Size model may be a useful way of differentiating location uncertainty from the diagnostic uncertainty in medical
Optimal parameters for the FFA-Beddoes dynamic stall model
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A; Mert, M [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H A [Risoe National Lab., Roskilde (Denmark)
1999-03-01
Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)
Wind Farm Decentralized Dynamic Modeling With Parameters
DEFF Research Database (Denmark)
Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran
2010-01-01
Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...
Application of lumped-parameter models
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten
This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse...
Models and parameters for environmental radiological assessments
International Nuclear Information System (INIS)
Miller, C.W.
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base
WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...
African Journals Online (AJOL)
Preferred Customer
Page 1 ... corresponding single-parameter Winkler model presented in this work. Keywords: Heterogeneous subgrade, Reissner's simplified continuum, Shear interaction, Simplified continuum, Winkler ... model in practical applications and its long time familiarity among practical engineers, its usage has endured to this date ...
Models and parameters for environmental radiological assessments
Energy Technology Data Exchange (ETDEWEB)
Miller, C W [ed.
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)
Consistent Stochastic Modelling of Meteocean Design Parameters
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Sterndorff, M. J.
2000-01-01
Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...
Models and parameters for environmental radiological assessments
International Nuclear Information System (INIS)
Miller, C.W.
1983-01-01
This article reviews the forthcoming book Models and Parameters for Environmental Radiological Assessments, which presents a unified compilation of models and parameters for assessing the impact on man of radioactive discharges, both routine and accidental, into the environment. Models presented in this book include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Summaries are presented for each of the transport and dosimetry areas previously for each of the transport and dosimetry areas previously mentioned, and details are available in the literature cited. A chapter of example problems illustrates many of the methodologies presented throughout the text. Models and parameters presented are based on the results of extensive literature reviews and evaluations performed primarily by the staff of the Health and Safety Research Division of Oak Ridge National Laboratory
Modelling occupants’ heating set-point prefferences
DEFF Research Database (Denmark)
Andersen, Rune Vinther; Olesen, Bjarne W.; Toftum, Jørn
2011-01-01
consumption. Simultaneous measurement of the set-point of thermostatic radiator valves (trv), and indoor and outdoor environment characteristics was carried out in 15 dwellings in Denmark in 2008. Linear regression was used to infer a model of occupants’ interactions with trvs. This model could easily...... be implemented in most simulation software packages to increase the validity of the simulation outcomes....
Nuclear matter properties using different sets of parameters in the Gogny interaction
International Nuclear Information System (INIS)
Ramadan, Kh.A.; Mansour, H.M.M.
2002-01-01
In the present work we use the finite range density dependent effective Gogny interaction to study the equation of state of polarized nuclear matter. Six sets of the interaction parameters are used and a comparison is made with the calculations of Friedman and Pandharipande using a realistic interaction. One of the parameter sets (D1) gives similar results for the properties of polarized nuclear matter while the other parameter sets (D1S, D250, D260, D280 and D300) yield results which are reasonably comparable with the realistic interaction calculation of Friedman and Pandharipande. (author)
A Set Theoretical Approach to Maturity Models
DEFF Research Database (Denmark)
Lasrado, Lester; Vatrapu, Ravi; Andersen, Kim Normann
2016-01-01
characterized by equifinality, multiple conjunctural causation, and case diversity. We prescribe methodological guidelines consisting of a six-step procedure to systematically apply set theoretic methods to conceptualize, develop, and empirically derive maturity models and provide a demonstration......Maturity Model research in IS has been criticized for the lack of theoretical grounding, methodological rigor, empirical validations, and ignorance of multiple and non-linear paths to maturity. To address these criticisms, this paper proposes a novel set-theoretical approach to maturity models...
Incorporating model parameter uncertainty into inverse treatment planning
International Nuclear Information System (INIS)
Lian Jun; Xing Lei
2004-01-01
Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment
The mobilisation model and parameter sensitivity
International Nuclear Information System (INIS)
Blok, B.M.
1993-12-01
In the PRObabillistic Safety Assessment (PROSA) of radioactive waste in a salt repository one of the nuclide release scenario's is the subrosion scenario. A new subrosion model SUBRECN has been developed. In this model the combined effect of a depth-dependent subrosion, glass dissolution, and salt rise has been taken into account. The subrosion model SUBRECN and the implementation of this model in the German computer program EMOS4 is presented. A new computer program PANTER is derived from EMOS4. PANTER models releases of radionuclides via subrosion from a disposal site in a salt pillar into the biosphere. For uncertainty and sensitivity analyses the new subrosion model Latin Hypercube Sampling has been used for determine the different values for the uncertain parameters. The influence of the uncertainty in the parameters on the dose calculations has been investigated by the following sensitivity techniques: Spearman Rank Correlation Coefficients, Partial Rank Correlation Coefficients, Standardised Rank Regression Coefficients, and the Smirnov Test. (orig./HP)
Set-Theoretic Approach to Maturity Models
DEFF Research Database (Denmark)
Lasrado, Lester Allan
Despite being widely accepted and applied, maturity models in Information Systems (IS) have been criticized for the lack of theoretical grounding, methodological rigor, empirical validations, and ignorance of multiple and non-linear paths to maturity. This PhD thesis focuses on addressing...... these criticisms by incorporating recent developments in configuration theory, in particular application of set-theoretic approaches. The aim is to show the potential of employing a set-theoretic approach for maturity model research and empirically demonstrating equifinal paths to maturity. Specifically...... methodological guidelines consisting of detailed procedures to systematically apply set theoretic approaches for maturity model research and provides demonstrations of it application on three datasets. The thesis is a collection of six research papers that are written in a sequential manner. The first paper...
Analysis of Modeling Parameters on Threaded Screws.
Energy Technology Data Exchange (ETDEWEB)
Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.
CO 2 laser cutting of MDF . 1. Determination of process parameter settings
Lum, K. C. P.; Ng, S. L.; Black, I.
2000-02-01
This paper details an investigation into the laser processing of medium-density fibreboard (MDF). Part 1 reports on the determination of process parameter settings for the effective cutting of MDF by CO 2 laser, using an established experimental methodology developed to study the interrelationship between and effects of varying laser set-up parameters. Results are presented for both continuous wave (CW) and pulse mode (PM) cutting, and the associated cut quality effects have been commented on.
Parameter Estimation of Spacecraft Fuel Slosh Model
Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles
2004-01-01
Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.
The level density parameters for fermi gas model
International Nuclear Information System (INIS)
Zuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi
1986-01-01
Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D D , radiative capture width Γ γ 0 at neutron binding energy and cumulative level number N 0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements
Global parameter estimation for thermodynamic models of transcriptional regulation.
Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N
2013-07-15
Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.
Sensitivity of the optimal parameter settings for a LTE packet scheduler
Fernandez-Diaz, I.; Litjens, R.; van den Berg, C.A.; Dimitrova, D.C.; Spaey, K.
Advanced packet scheduling schemes in 3G/3G+ mobile networks provide one or more parameters to optimise the trade-off between QoS and resource efficiency. In this paper we study the sensitivity of the optimal parameter setting for packet scheduling in LTE radio networks with respect to various
Set up of a method for the adjustment of resonance parameters on integral experiments
International Nuclear Information System (INIS)
Blaise, P.
1996-01-01
Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.)
Iterative integral parameter identification of a respiratory mechanics model.
Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey
2012-07-18
Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
Iterative integral parameter identification of a respiratory mechanics model
Directory of Open Access Journals (Sweden)
Schranz Christoph
2012-07-01
Full Text Available Abstract Background Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. Methods An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS patients. Results The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. Conclusion These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
Model comparisons and genetic and environmental parameter ...
African Journals Online (AJOL)
arc
Model comparisons and genetic and environmental parameter estimates of growth and the ... breeding strategies and for accurate breeding value estimation. The objectives ...... Sci. 23, 72-76. Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2003.
The rho-parameter in supersymmetric models
International Nuclear Information System (INIS)
Lim, C.S.; Inami, T.; Sakai, N.
1983-10-01
The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)
A lumped parameter model of plasma focus
International Nuclear Information System (INIS)
Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro
1999-01-01
A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)
One parameter model potential for noble metals
International Nuclear Information System (INIS)
Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.
1981-08-01
A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)
SPOTting model parameters using a ready-made Python package
Houska, Tobias; Kraft, Philipp; Breuer, Lutz
2015-04-01
The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for
A Geršgorin-type eigenvalue localization set with n parameters for stochastic matrices
Directory of Open Access Journals (Sweden)
Wang Xiaoxiao
2018-04-01
Full Text Available A set in the complex plane which involves n parameters in [0, 1] is given to localize all eigenvalues different from 1 for stochastic matrices. As an application of this set, an upper bound for the moduli of the subdominant eigenvalues of a stochastic matrix is obtained. Lastly, we fix n parameters in [0, 1] to give a new set including all eigenvalues different from 1, which is tighter than those provided by Shen et al. (Linear Algebra Appl. 447 (2014 74-87 and Li et al. (Linear and Multilinear Algebra 63(11 (2015 2159-2170 for estimating the moduli of subdominant eigenvalues.
SPOTting Model Parameters Using a Ready-Made Python Package.
Directory of Open Access Journals (Sweden)
Tobias Houska
Full Text Available The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool, an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI. We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.
Setting priorities in health care organizations: criteria, processes, and parameters of success
Directory of Open Access Journals (Sweden)
Martin Douglas K
2004-09-01
Full Text Available Abstract Background Hospitals and regional health authorities must set priorities in the face of resource constraints. Decision-makers seek practical ways to set priorities fairly in strategic planning, but find limited guidance from the literature. Very little has been reported from the perspective of Board members and senior managers about what criteria, processes and parameters of success they would use to set priorities fairly. Discussion We facilitated workshops for board members and senior leadership at three health care organizations to assist them in developing a strategy for fair priority setting. Workshop participants identified 8 priority setting criteria, 10 key priority setting process elements, and 6 parameters of success that they would use to set priorities in their organizations. Decision-makers in other organizations can draw lessons from these findings to enhance the fairness of their priority setting decision-making. Summary Lessons learned in three workshops fill an important gap in the literature about what criteria, processes, and parameters of success Board members and senior managers would use to set priorities fairly.
Setting priorities in health care organizations: criteria, processes, and parameters of success.
Gibson, Jennifer L; Martin, Douglas K; Singer, Peter A
2004-09-08
Hospitals and regional health authorities must set priorities in the face of resource constraints. Decision-makers seek practical ways to set priorities fairly in strategic planning, but find limited guidance from the literature. Very little has been reported from the perspective of Board members and senior managers about what criteria, processes and parameters of success they would use to set priorities fairly. We facilitated workshops for board members and senior leadership at three health care organizations to assist them in developing a strategy for fair priority setting. Workshop participants identified 8 priority setting criteria, 10 key priority setting process elements, and 6 parameters of success that they would use to set priorities in their organizations. Decision-makers in other organizations can draw lessons from these findings to enhance the fairness of their priority setting decision-making. Lessons learned in three workshops fill an important gap in the literature about what criteria, processes, and parameters of success Board members and senior managers would use to set priorities fairly.
Condition Parameter Modeling for Anomaly Detection in Wind Turbines
Directory of Open Access Journals (Sweden)
Yonglong Yan
2014-05-01
Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.
Constant-parameter capture-recapture models
Brownie, C.; Hines, J.E.; Nichols, J.D.
1986-01-01
Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.
Benchmark data set for wheat growth models
DEFF Research Database (Denmark)
Asseng, S; Ewert, F.; Martre, P
2015-01-01
The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, max...... analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario....
Parameter Estimation in Stochastic Grey-Box Models
DEFF Research Database (Denmark)
Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay
2004-01-01
An efficient and flexible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Ito stochastic differential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended...... Kalman filter and features maximum likelihood as well as maximum a posteriori estimation on multiple independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software implementation is compared to an existing software tool...... and proves to have better performance both in terms of quality of estimates for nonlinear systems with significant diffusion and in terms of reproducibility. In particular, the new tool provides more accurate and more consistent estimates of the parameters of the diffusion term....
Modelling tourists arrival using time varying parameter
Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.
2017-06-01
The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.
Quantitative evaluation of ozone and selected climate parameters in a set of EMAC simulations
Directory of Open Access Journals (Sweden)
M. Righi
2015-03-01
Full Text Available Four simulations with the ECHAM/MESSy Atmospheric Chemistry (EMAC model have been evaluated with the Earth System Model Validation Tool (ESMValTool to identify differences in simulated ozone and selected climate parameters that resulted from (i different setups of the EMAC model (nudged vs. free-running and (ii different boundary conditions (emissions, sea surface temperatures (SSTs and sea ice concentrations (SICs. To assess the relative performance of the simulations, quantitative performance metrics are calculated consistently for the climate parameters and ozone. This is important for the interpretation of the evaluation results since biases in climate can impact on biases in chemistry and vice versa. The observational data sets used for the evaluation include ozonesonde and aircraft data, meteorological reanalyses and satellite measurements. The results from a previous EMAC evaluation of a model simulation with nudging towards realistic meteorology in the troposphere have been compared to new simulations with different model setups and updated emission data sets in free-running time slice and nudged quasi chemistry-transport model (QCTM mode. The latter two configurations are particularly important for chemistry-climate projections and for the quantification of individual sources (e.g., the transport sector that lead to small chemical perturbations of the climate system, respectively. With the exception of some specific features which are detailed in this study, no large differences that could be related to the different setups (nudged vs. free-running of the EMAC simulations were found, which offers the possibility to evaluate and improve the overall model with the help of shorter nudged simulations. The main differences between the two setups is a better representation of the tropospheric and stratospheric temperature in the nudged simulations, which also better reproduce stratospheric water vapor concentrations, due to the improved
Route constraints model based on polychromatic sets
Yin, Xianjun; Cai, Chao; Wang, Houjun; Li, Dongwu
2018-03-01
With the development of unmanned aerial vehicle (UAV) technology, the fields of its application are constantly expanding. The mission planning of UAV is especially important, and the planning result directly influences whether the UAV can accomplish the task. In order to make the results of mission planning for unmanned aerial vehicle more realistic, it is necessary to consider not only the physical properties of the aircraft, but also the constraints among the various equipment on the UAV. However, constraints among the equipment of UAV are complex, and the equipment has strong diversity and variability, which makes these constraints difficult to be described. In order to solve the above problem, this paper, referring to the polychromatic sets theory used in the advanced manufacturing field to describe complex systems, presents a mission constraint model of UAV based on polychromatic sets.
Particle filters for random set models
Ristic, Branko
2013-01-01
“Particle Filters for Random Set Models” presents coverage of state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. The resulting algorithms, known as particle filters, in the last decade have become one of the essential tools for stochastic filtering, with applications ranging from navigation and autonomous vehicles to bio-informatics and finance. While particle filters have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. These recent developments have dramatically widened the scope of applications, from single to multiple appearing/disappearing objects, from precise to imprecise measurements and measurement models. This book...
The lumped parameter model for fuel pins
Energy Technology Data Exchange (ETDEWEB)
Liu, W S [Ontario Hydro, Toronto, ON (Canada)
1996-12-31
The use of a lumped fuel-pin model in a thermal-hydraulic code is advantageous because of computational simplicity and efficiency. The model uses an averaging approach over the fuel cross section and makes some simplifying assumptions to describe the transient equations for the averaged fuel, fuel centerline and sheath temperatures. It is shown that by introducing a factor in the effective fuel conductivity, the analytical solution of the mean fuel temperature can be modified to simulate the effects of the flux depression in the heat generation rate and the variation in fuel thermal conductivity. The simplified analytical method used in the transient equation is presented. The accuracy of the lumped parameter model has been compared with the results from the finite difference method. (author). 4 refs., 2 tabs., 4 figs.
Bates, P. D.; Neal, J. C.; Fewtrell, T. J.
2012-12-01
In this we paper we consider two related questions. First, we address the issue of how much physical complexity is necessary in a model in order to simulate floodplain inundation to within validation data error. This is achieved through development of a single code/multiple physics hydraulic model (LISFLOOD-FP) where different degrees of complexity can be switched on or off. Different configurations of this code are applied to four benchmark test cases, and compared to the results of a number of industry standard models. Second we address the issue of how parameter sensitivity and transferability change with increasing complexity using numerical experiments with models of different physical and geometric intricacy. Hydraulic models are a good example system with which to address such generic modelling questions as: (1) they have a strong physical basis; (2) there is only one set of equations to solve; (3) they require only topography and boundary conditions as input data; and (4) they typically require only a single free parameter, namely boundary friction. In terms of complexity required we show that for the problem of sub-critical floodplain inundation a number of codes of different dimensionality and resolution can be found to fit uncertain model validation data equally well, and that in this situation Occam's razor emerges as a useful logic to guide model selection. We find also find that model skill usually improves more rapidly with increases in model spatial resolution than increases in physical complexity, and that standard approaches to testing hydraulic models against laboratory data or analytical solutions may fail to identify this important fact. Lastly, we find that in benchmark testing studies significant differences can exist between codes with identical numerical solution techniques as a result of auxiliary choices regarding the specifics of model implementation that are frequently unreported by code developers. As a consequence, making sound
Time and setting dependent instrument parameters and proofs of Bell-type inequalities
Hess, Karl; Philipp, Walter
2002-01-01
We show that all proofs of Bell-type inequalities, as discussed in Bell's well known book and as claimed to be relevant to Einstein-Podolsky-Rosen type experiments, come to a halt when Einstein-local time and setting dependent instrument parameters are included.
Modeling of Parameters of Subcritical Assembly SAD
Petrochenkov, S; Puzynin, I
2005-01-01
The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.
Parameter estimation in fractional diffusion models
Kubilius, Kęstutis; Ralchenko, Kostiantyn
2017-01-01
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...
Importance of hydrological parameters in contaminant transport modeling in a terrestrial environment
International Nuclear Information System (INIS)
Tsuduki, Katsunori; Matsunaga, Takeshi
2007-01-01
A grid type multi-layered distributed parameter model for calculating discharge in a watershed was described. Model verification with our field observation resulted in different sets of hydrological parameter values, all of which reproduced the observed discharge. The effect of those varied hydrological parameters on contaminant transport calculation was examined and discussed by simulation of event water transfer. (author)
Climate change decision-making: Model & parameter uncertainties explored
Energy Technology Data Exchange (ETDEWEB)
Dowlatabadi, H.; Kandlikar, M.; Linville, C.
1995-12-31
A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Wasiolek, M. A.
2003-01-01
developed in this report, and the related FEPs, are listed in Table 1-1. The relationship between the parameters and FEPs was based on a comparison of the parameter definition and the FEP descriptions as presented in BSC (2003 [160699], Section 6.2). The parameter values developed in this report support the biosphere model and are reflected in the TSPA through the biosphere dose conversion factors (BDCFs). Biosphere modeling focuses on radionuclides screened for the TSPA-LA (BSC 2002 [160059]). The same list of radionuclides is used in this analysis (Section 6.1.4). The analysis considers two human exposure scenarios (groundwater and volcanic ash) and climate change (Section 6.1.5). This analysis combines and revises two previous reports, ''Transfer Coefficient Analysis'' (CRWMS MandO 2000 [152435]) and ''Environmental Transport Parameter Analysis'' (CRWMS MandO 2001 [152434]), because the new ERMYN biosphere model requires a redefined set of input parameters. The scope of this analysis includes providing a technical basis for the selection of radionuclide- and element-specific biosphere parameters (except for Kd) that are important for calculating BDCFs based on the available radionuclide inventory abstraction data. The environmental transport parameter values were developed specifically for use in the biosphere model and may not be appropriate for other applications
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-06-27
], Section 6.2). Parameter values developed in this report, and the related FEPs, are listed in Table 1-1. The relationship between the parameters and FEPs was based on a comparison of the parameter definition and the FEP descriptions as presented in BSC (2003 [160699], Section 6.2). The parameter values developed in this report support the biosphere model and are reflected in the TSPA through the biosphere dose conversion factors (BDCFs). Biosphere modeling focuses on radionuclides screened for the TSPA-LA (BSC 2002 [160059]). The same list of radionuclides is used in this analysis (Section 6.1.4). The analysis considers two human exposure scenarios (groundwater and volcanic ash) and climate change (Section 6.1.5). This analysis combines and revises two previous reports, ''Transfer Coefficient Analysis'' (CRWMS M&O 2000 [152435]) and ''Environmental Transport Parameter Analysis'' (CRWMS M&O 2001 [152434]), because the new ERMYN biosphere model requires a redefined set of input parameters. The scope of this analysis includes providing a technical basis for the selection of radionuclide- and element-specific biosphere parameters (except for Kd) that are important for calculating BDCFs based on the available radionuclide inventory abstraction data. The environmental transport parameter values were developed specifically for use in the biosphere model and may not be appropriate for other applications.
Moose models with vanishing S parameter
International Nuclear Information System (INIS)
Casalbuoni, R.; De Curtis, S.; Dominici, D.
2004-01-01
In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2) L and U(1) Y at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric
On the role of modeling parameters in IMRT plan optimization
International Nuclear Information System (INIS)
Krause, Michael; Scherrer, Alexander; Thieke, Christian
2008-01-01
The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way
COMPARING INTRA- AND INTERENVIRONMENTAL PARAMETERS OF OPTIMAL SETTING IN BREEDING EXPERIMENTS
Directory of Open Access Journals (Sweden)
Domagoj Šimić
2004-06-01
Full Text Available A series of biometrical and quantitative-genetic parameters, not well known in Croatia, are being used for the most important agronomic traits to determine optimal genotype setting within a location as well as among locations. Objectives of the study are to estimate and to compare 1 parameters of intra-environment setting (effective mean square error EMSE, in lattice design, relative efficiency RE, of lattice design LD, compared to randomized complete block design RCBD, and repeatability Rep, of a plot value, and 2 operative heritability h2, as a parameter of inter-environment setting in an experiment with 72 maize hybrids. Trials were set up at four environments (two locations in two years evaluating grain yield and stalk rot. EMSE values corresponded across environments for both traits, while the estimations for RE of LD varied inconsistently over environments and traits. Rep estimates were more different over environments than traits. Rep values did not correspond with h2 estimates: Rep estimates for stalk rot were higher than those for grain yield, while h2 for grain yield was higher than for stalk rot in all instances. Our results suggest that due to importance of genotype × environment interaction, there is a need for multienvironment trials for both traits. If the experiment framework should be reduced due to economic or other reasons, decreasing number of locations in a year rather than decreasing number of years of investigation is recommended.
Directory of Open Access Journals (Sweden)
Aušra ADOMAITIENĖ
2011-11-01
Full Text Available During the manufacturing of fabric of different raw material there was noticed, that after removing the fabric from weaving loom and after stabilization of fabric structure, the changes of parameters of fabric structure are not regular. During this investigation it was analysed, how weaving loom technological parameters (heald cross moment and initial tension of warp should be chosen and how to predict the changes of fabric structure parameters and its mechanical properties. The dependencies of changes of half-wool fabric structure parameters (weft setting, fabric thickness and projections of fabric cross-section and mechanical properties (breaking force, elongation at break, static friction force and static friction coefficient on weaving loom setting parameters (heald cross moment and initial warp tension were analysed. The orthogonal Box plan of two factors was used, the 3-D dependencies were drawn, and empirical equations of these dependencies were established.http://dx.doi.org/10.5755/j01.ms.17.4.780
Automated parameter estimation for biological models using Bayesian statistical model checking.
Hussain, Faraz; Langmead, Christopher J; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram; Jha, Sumit K
2015-01-01
Probabilistic models have gained widespread acceptance in the systems biology community as a useful way to represent complex biological systems. Such models are developed using existing knowledge of the structure and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data. A key bottleneck in building such models is that some system variables cannot be measured experimentally. These variables are incorporated into the model as numerical parameters. Determining values of these parameters that justify existing experiments and provide reliable predictions when model simulations are performed is a key research problem. Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel parameter estimation algorithm by discovering the amount and schedule of doses of bacterial lipopolysaccharide that guarantee a set of observed clinical outcomes with high probability. We synthesized values of twenty-eight unknown parameters such that the parameterized model instantiated with these parameter values satisfies four specifications describing the dynamic behavior of the model. We have developed a new algorithmic technique for discovering parameters in complex stochastic models of biological systems given behavioral specifications written in a formal mathematical logic. Our algorithm uses Bayesian model checking, sequential hypothesis testing, and stochastic optimization to automatically synthesize parameters of probabilistic biological models.
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model
Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.
2016-01-01
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601
Information Theoretic Tools for Parameter Fitting in Coarse Grained Models
Kalligiannaki, Evangelia
2015-01-07
We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.
DEFF Research Database (Denmark)
Suárez, Carlos Gómez; Reigosa, Paula Diaz; Iannuzzo, Francesco
2016-01-01
An original tool for parameter extraction of PSpice models has been released, enabling a simple parameter identification. A physics-based IGBT model is used to demonstrate that the optimization tool is capable of generating a set of parameters which predicts the steady-state and switching behavio...
Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set
Bouman, HA; Platt, T; Doblin, M; Figueiras, FG; Gudmundsson, K; Gudfinnsson, HG; Huang, B; Hickman, A; Hiscock, M; Jackson, T; Lutz, VA; Melin, F; Rey, F; Pepin, P; Segura, V
2018-01-01
The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis–irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankto...
Electro-optical parameters of bond polarizability model for aluminosilicates.
Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam
2006-04-06
Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.
Prediction of interest rate using CKLS model with stochastic parameters
International Nuclear Information System (INIS)
Ying, Khor Chia; Hin, Pooi Ah
2014-01-01
The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ (j) of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ (j) , we assume that φ (j) depends on φ (j−m) , φ (j−m+1) ,…, φ (j−1) and the interest rate r j+n at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r j+n+1 of the interest rate at the next time point when the value r j+n of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r j+n+d at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters
Model parameters estimation and sensitivity by genetic algorithms
International Nuclear Information System (INIS)
Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca
2003-01-01
In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The
Prediction of interest rate using CKLS model with stochastic parameters
Energy Technology Data Exchange (ETDEWEB)
Ying, Khor Chia [Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Hin, Pooi Ah [Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor (Malaysia)
2014-06-19
The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.
Application of HGSO to security based optimal placement and parameter setting of UPFC
International Nuclear Information System (INIS)
Tarafdar Hagh, Mehrdad; Alipour, Manijeh; Teimourzadeh, Saeed
2014-01-01
Highlights: • A new method for solving the security based UPFC placement and parameter setting problem is proposed. • The proposed method is a global method for all mixed-integer problems. • The proposed method has the ability of the parallel search in binary and continues space. • By using the proposed method, most of the problems due to line contingencies are solved. • Comparison studies are done to compare the performance of the proposed method. - Abstract: This paper presents a novel method to solve security based optimal placement and parameter setting of unified power flow controller (UPFC) problem based on hybrid group search optimization (HGSO) technique. Firstly, HGSO is introduced in order to solve mix-integer type problems. Afterwards, the proposed method is applied to the security based optimal placement and parameter setting of UPFC problem. The focus of the paper is to enhance the power system security through eliminating or minimizing the over loaded lines and the bus voltage limit violations under single line contingencies. Simulation studies are carried out on the IEEE 6-bus, IEEE 14-bus and IEEE 30-bus systems in order to verify the accuracy and robustness of the proposed method. The results indicate that by using the proposed method, the power system remains secure under single line contingencies
Constraining statistical-model parameters using fusion and spallation reactions
Directory of Open Access Journals (Sweden)
Charity Robert J.
2011-10-01
Full Text Available The de-excitation of compound nuclei has been successfully described for several decades by means of statistical models. However, such models involve a large number of free parameters and ingredients that are often underconstrained by experimental data. We show how the degeneracy of the model ingredients can be partially lifted by studying different entrance channels for de-excitation, which populate different regions of the parameter space of the compound nucleus. Fusion reactions, in particular, play an important role in this strategy because they ﬁx three out of four of the compound-nucleus parameters (mass, charge and total excitation energy. The present work focuses on ﬁssion and intermediate-mass-fragment emission cross sections. We prove how equivalent parameter sets for fusion-ﬁssion reactions can be resolved using another entrance channel, namely spallation reactions. Intermediate-mass-fragment emission can be constrained in a similar way. An interpretation of the best-ﬁt IMF barriers in terms of the Wigner energies of the nascent fragments is discussed.
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Maity, Arnab; Carroll, Raymond J.
2013-01-01
PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus
ADAPTIVE PARAMETER ESTIMATION OF PERSON RECOGNITION MODEL IN A STOCHASTIC HUMAN TRACKING PROCESS
W. Nakanishi; T. Fuse; T. Ishikawa
2015-01-01
This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation ...
Mass functions from the excursion set model
Hiotelis, Nicos; Del Popolo, Antonino
2017-11-01
Aims: We aim to study the stochastic evolution of the smoothed overdensity δ at scale S of the form δ(S) = ∫0S K(S,u)dW(u), where K is a kernel and dW is the usual Wiener process. Methods: For a Gaussian density field, smoothed by the top-hat filter, in real space, we used a simple kernel that gives the correct correlation between scales. A Monte Carlo procedure was used to construct random walks and to calculate first crossing distributions and consequently mass functions for a constant barrier. Results: We show that the evolution considered here improves the agreement with the results of N-body simulations relative to analytical approximations which have been proposed from the same problem by other authors. In fact, we show that an evolution which is fully consistent with the ideas of the excursion set model, describes accurately the mass function of dark matter haloes for values of ν ≤ 1 and underestimates the number of larger haloes. Finally, we show that a constant threshold of collapse, lower than it is usually used, it is able to produce a mass function which approximates the results of N-body simulations for a variety of redshifts and for a wide range of masses. Conclusions: A mass function in good agreement with N-body simulations can be obtained analytically using a lower than usual constant collapse threshold.
Model parameter learning using Kullback-Leibler divergence
Lin, Chungwei; Marks, Tim K.; Pajovic, Milutin; Watanabe, Shinji; Tung, Chih-kuan
2018-02-01
In this paper, we address the following problem: For a given set of spin configurations whose probability distribution is of the Boltzmann type, how do we determine the model coupling parameters? We demonstrate that directly minimizing the Kullback-Leibler divergence is an efficient method. We test this method against the Ising and XY models on the one-dimensional (1D) and two-dimensional (2D) lattices, and provide two estimators to quantify the model quality. We apply this method to two types of problems. First, we apply it to the real-space renormalization group (RG). We find that the obtained RG flow is sufficiently good for determining the phase boundary (within 1% of the exact result) and the critical point, but not accurate enough for critical exponents. The proposed method provides a simple way to numerically estimate amplitudes of the interactions typically truncated in the real-space RG procedure. Second, we apply this method to the dynamical system composed of self-propelled particles, where we extract the parameter of a statistical model (a generalized XY model) from a dynamical system described by the Viscek model. We are able to obtain reasonable coupling values corresponding to different noise strengths of the Viscek model. Our method is thus able to provide quantitative analysis of dynamical systems composed of self-propelled particles.
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-09-24
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. A. Wasiolek
2003-01-01
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the
On the control of distributed parameter systems using a multidimensional systems setting
Czech Academy of Sciences Publication Activity Database
Cichy, B.; Augusta, Petr; Rogers, E.; Galkowski, K.; Hurák, Z.
2008-01-01
Roč. 22, č. 7 (2008), s. 1566-1581 ISSN 0888-3270 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Distributed parameter systems * Modelling * Control law design Subject RIV: BC - Control Systems Theory Impact factor: 1.984, year: 2008
Parameter Selection and Performance Analysis of Mobile Terminal Models Based on Unity3D
Institute of Scientific and Technical Information of China (English)
KONG Li-feng; ZHAO Hai-ying; XU Guang-mei
2014-01-01
Mobile platform is now widely seen as a promising multimedia service with a favorable user group and market prospect. To study the influence of mobile terminal models on the quality of scene roaming, a parameter setting platform of mobile terminal models is established to select the parameter selection and performance index on different mobile platforms in this paper. This test platform is established based on model optimality principle, analyzing the performance curve of mobile terminals in different scene models and then deducing the external parameter of model establishment. Simulation results prove that the established test platform is able to analyze the parameter and performance matching list of a mobile terminal model.
Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie
2018-01-01
The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.
Modelled basic parameters for semi-industrial irradiation plant design
International Nuclear Information System (INIS)
Mangussi, J.
2009-01-01
The basic parameters of an irradiation plant design are the total activity, the product uniformity ratio and the efficiency process. The target density, the minimum dose required and the throughput depends on the use to which the irradiator will be put at. In this work, a model for calculating the specific dose rate at several depths in an infinite homogeneous medium produced by a slab source irradiator is presented. The product minimum dose rate for a set of target thickness is obtained. The design method steps are detailed and an illustrative example is presented. (author)
Empirically modelled Pc3 activity based on solar wind parameters
Directory of Open Access Journals (Sweden)
B. Heilig
2010-09-01
Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through
Mass balance model parameter transferability on a tropical glacier
Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg
2013-04-01
The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer
A new set of parameters for 5 Gaussian fission yields systematics
International Nuclear Information System (INIS)
Katakura, Jun-ichi
2003-01-01
A new set of parameters for 5 Gaussian-type fission yields systematics has been proposed for applying to high energy neutron or proton fission and to various kinds of fissioning systems including minor actinides. The mass yields calculated using the systematics were compared with various kinds of measured data including the fission with incident energy higher than 100 MeV and the fission of minor actinide nuclides. The comparisons showed rather good agreement between the calculated values and measured ones for various kinds of fissioning systems. (author)
Tøndel, Kristin; Niederer, Steven A; Land, Sander; Smith, Nicolas P
2014-05-20
average 15% of the mean values over the succeeding parameter sets. Our results indicate that the presented approach is effective for comparing model alternatives and reducing models to the minimum complexity replicating measured data. We therefore believe that this approach has significant potential for reparameterising existing frameworks, for identification of redundant model components of large biophysical models and to increase their predictive capacity.
International Nuclear Information System (INIS)
De Cezaro, A; Leitão, A; Tai, X-C
2013-01-01
We investigate level-set-type methods for solving ill-posed problems with discontinuous (piecewise constant) coefficients. The goal is to identify the level sets as well as the level values of an unknown parameter function on a model described by a nonlinear ill-posed operator equation. The PCLS approach is used here to parametrize the solution of a given operator equation in terms of a L 2 level-set function, i.e. the level-set function itself is assumed to be a piecewise constant function. Two distinct methods are proposed for computing stable solutions of the resulting ill-posed problem: the first is based on Tikhonov regularization, while the second is based on the augmented Lagrangian approach with total variation penalization. Classical regularization results (Engl H W et al 1996 Mathematics and its Applications (Dordrecht: Kluwer)) are derived for the Tikhonov method. On the other hand, for the augmented Lagrangian method, we succeed in proving the existence of (generalized) Lagrangian multipliers in the sense of (Rockafellar R T and Wets R J-B 1998 Grundlehren der Mathematischen Wissenschaften (Berlin: Springer)). Numerical experiments are performed for a 2D inverse potential problem (Hettlich F and Rundell W 1996 Inverse Problems 12 251–66), demonstrating the capabilities of both methods for solving this ill-posed problem in a stable way (complicated inclusions are recovered without any a priori geometrical information on the unknown parameter). (paper)
EFFECT OF SETTING THE PARAMETERS OF FLAME WEEDER ON WEED CONTROL EFFECTIVENESS
Directory of Open Access Journals (Sweden)
Miroslav Mojžiš
2013-12-01
Full Text Available Unconventional ways of growing plants, when we return to non-chemical methods of controlling weeds, require new weed control methods. One of the few physical methods, which found wider application in practice, is a flame weeder with heat burners based on the use of gas (LPG. However, the process of practical use of this flame weeder has a number of factors that positively or negatively affect the effectiveness of weed control. A precise setting of flame weeders is influenced, for example by weed species, weed growth stage, weather, type of crop grown, but also heat transmission and heat absorption by plant. Many variables that enter into the process must be eliminated for their negative impacts on achieving the best results in fighting against weeds. In this paper, we have focused on naming these parameters, on field trials that confirm the justification of the precise setting of parameters, and recommendations for practice to achieve a higher efficiency of thermal weed control.
Applicability of genetic algorithms to parameter estimation of economic models
Directory of Open Access Journals (Sweden)
Marcel Ševela
2004-01-01
Full Text Available The paper concentrates on capability of genetic algorithms for parameter estimation of non-linear economic models. In the paper we test the ability of genetic algorithms to estimate of parameters of demand function for durable goods and simultaneously search for parameters of genetic algorithm that lead to maximum effectiveness of the computation algorithm. The genetic algorithms connect deterministic iterative computation methods with stochastic methods. In the genteic aůgorithm approach each possible solution is represented by one individual, those life and lifes of all generations of individuals run under a few parameter of genetic algorithm. Our simulations resulted in optimal mutation rate of 15% of all bits in chromosomes, optimal elitism rate 20%. We can not set the optimal extend of generation, because it proves positive correlation with effectiveness of genetic algorithm in all range under research, but its impact is degreasing. The used genetic algorithm was sensitive to mutation rate at most, than to extend of generation. The sensitivity to elitism rate is not so strong.
A practical approach to parameter estimation applied to model predicting heart rate regulation
DEFF Research Database (Denmark)
Olufsen, Mette; Ottesen, Johnny T.
2013-01-01
Mathematical models have long been used for prediction of dynamics in biological systems. Recently, several efforts have been made to render these models patient specific. One way to do so is to employ techniques to estimate parameters that enable model based prediction of observed quantities....... Knowledge of variation in parameters within and between groups of subjects have potential to provide insight into biological function. Often it is not possible to estimate all parameters in a given model, in particular if the model is complex and the data is sparse. However, it may be possible to estimate...... a subset of model parameters reducing the complexity of the problem. In this study, we compare three methods that allow identification of parameter subsets that can be estimated given a model and a set of data. These methods will be used to estimate patient specific parameters in a model predicting...
Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.
2016-11-01
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
Preference Mining Using Neighborhood Rough Set Model on Two Universes.
Zeng, Kai
2016-01-01
Preference mining plays an important role in e-commerce and video websites for enhancing user satisfaction and loyalty. Some classical methods are not available for the cold-start problem when the user or the item is new. In this paper, we propose a new model, called parametric neighborhood rough set on two universes (NRSTU), to describe the user and item data structures. Furthermore, the neighborhood lower approximation operator is used for defining the preference rules. Then, we provide the means for recommending items to users by using these rules. Finally, we give an experimental example to show the details of NRSTU-based preference mining for cold-start problem. The parameters of the model are also discussed. The experimental results show that the proposed method presents an effective solution for preference mining. In particular, NRSTU improves the recommendation accuracy by about 19% compared to the traditional method.
Models for estimating photosynthesis parameters from in situ production profiles
Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana
2017-12-01
The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of
Integer Set Compression and Statistical Modeling
DEFF Research Database (Denmark)
Larsson, N. Jesper
2014-01-01
enumeration of elements may be arbitrary or random, but where statistics is kept in order to estimate probabilities of elements. We present a recursive subset-size encoding method that is able to benefit from statistics, explore the effects of permuting the enumeration order based on element probabilities......Compression of integer sets and sequences has been extensively studied for settings where elements follow a uniform probability distribution. In addition, methods exist that exploit clustering of elements in order to achieve higher compression performance. In this work, we address the case where...
Exploring parameter constraints on quintessential dark energy: The exponential model
International Nuclear Information System (INIS)
Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael
2008-01-01
We present an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their 'w 0 -w a ' parametrization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which cannot be distinguished from a cosmological constant at DETF 'Stage 2', and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3σ
Parameter Estimates in Differential Equation Models for Chemical Kinetics
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Study on Parameters Modeling of Wind Turbines Using SCADA Data
Directory of Open Access Journals (Sweden)
Yonglong YAN
2014-08-01
Full Text Available Taking the advantage of the current massive monitoring data from Supervisory Control and Data Acquisition (SCADA system of wind farm, it is of important significance for anomaly detection, early warning and fault diagnosis to build the data model of state parameters of wind turbines (WTs. The operational conditions and the relationships between the state parameters of wind turbines are complex. It is difficult to establish the model of state parameter accurately, and the modeling method of state parameters of wind turbines considering parameter selection is proposed. Firstly, by analyzing the characteristic of SCADA data, a reasonable range of data and monitoring parameters are chosen. Secondly, neural network algorithm is adapted, and the selection method of input parameters in the model is presented. Generator bearing temperature and cooling air temperature are regarded as target parameters, and the two models are built and input parameters of the models are selected, respectively. Finally, the parameter selection method in this paper and the method using genetic algorithm-partial least square (GA-PLS are analyzed comparatively, and the results show that the proposed methods are correct and effective. Furthermore, the modeling of two parameters illustrate that the method in this paper can applied to other state parameters of wind turbines.
Temporal variation and scaling of parameters for a monthly hydrologic model
Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang
2018-03-01
The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.
Processing and filtrating of driver fatigue characteristic parameters based on rough set
Ye, Wenwu; Zhao, Xuyang
2018-05-01
With the rapid development of economy, people become increasingly rich, and cars have become a common means of transportation in daily life. However, the problem of traffic safety is becoming more and more serious. And fatigue driving is one of the main causes of traffic accidents. Therefore, it is of great importance for us to study the detection of fatigue driving to improve traffic safety. In the cause of determining whether the driver is tired, the characteristic quantity related to the steering angle of the steering wheel and the characteristic quantity of the driver's pulse are all important indicators. The fuzzy c-means clustering is used to discretize the above indexes. Because the characteristic parameters are too miscellaneous, rough set is used to filtrate these characteristics. Finally, this paper finds out the highest correlation with fatigue driving. It is proved that these selected characteristics are of great significance to the evaluation of fatigue driving.
Michalik, Thomas; Multsch, Sebastian; Frede, Hans-Georg; Breuer, Lutz
2016-04-01
Water for agriculture is strongly limited in arid and semi-arid regions and often of low quality in terms of salinity. The application of saline waters for irrigation increases the salt load in the rooting zone and has to be managed by leaching to maintain a healthy soil, i.e. to wash out salts by additional irrigation. Dynamic simulation models are helpful tools to calculate the root zone water fluxes and soil salinity content in order to investigate best management practices. However, there is little information on structural and parameter uncertainty for simulations regarding the water and salt balance of saline irrigation. Hence, we established a multi-model system with four different models (AquaCrop, RZWQM, SWAP, Hydrus1D/UNSATCHEM) to analyze the structural and parameter uncertainty by using the Global Likelihood and Uncertainty Estimation (GLUE) method. Hydrus1D/UNSATCHEM and SWAP were set up with multiple sets of different implemented functions (e.g. matric and osmotic stress for root water uptake) which results in a broad range of different model structures. The simulations were evaluated against soil water and salinity content observations. The posterior distribution of the GLUE analysis gives behavioral parameters sets and reveals uncertainty intervals for parameter uncertainty. Throughout all of the model sets, most parameters accounting for the soil water balance show a low uncertainty, only one or two out of five to six parameters in each model set displays a high uncertainty (e.g. pore-size distribution index in SWAP and Hydrus1D/UNSATCHEM). The differences between the models and model setups reveal the structural uncertainty. The highest structural uncertainty is observed for deep percolation fluxes between the model sets of Hydrus1D/UNSATCHEM (~200 mm) and RZWQM (~500 mm) that are more than twice as high for the latter. The model sets show a high variation in uncertainty intervals for deep percolation as well, with an interquartile range (IQR) of
A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model
DEFF Research Database (Denmark)
Spann, Robert; Roca, Christophe; Kold, David
2017-01-01
Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...... of parameters was performed in order to get a good model fit to the data. However, not all parameters are identifiable with the given data set and model structure. Sensitivity, identifiability, and uncertainty analysis were completed and a relevant identifiable subset of parameters was determined for a new...
Meesters, Arne A; Nieboer, Marilin J; Kezic, Sanja; de Rie, Menno A; Wolkerstorfer, Albert
2018-05-07
Efficacy of topical anesthetics can be enhanced by pretreatment of the skin with ablative fractional lasers. However, little is known about the role of parameters such as laser modality and laser density settings in this technique. Aims of this study were to compare the efficacy of pretreatment with two different ablative fractional laser modalities, a CO 2 laser and an Er:YAG laser, and to assess the role of laser density in ablative fractional laser assisted topical anesthesia. In each of 15 healthy subjects, four 10 × 10 mm test regions on the back were randomized to pretreatment (70-75 μm ablation depth) with CO 2 laser at 5% density, CO 2 laser at 15% density, Er:YAG laser at 5% density or Er:YAG laser at 15% density. Articaine hydrochloride 40 mg/ml + epinephrine 10 μg/ml solution was applied under occlusion to all four test regions. After 15 minutes, a pass with the CO 2 laser (1,500 μm ablation depth) was administered as pain stimulus to each test region. A reference pain stimulus was given on unanesthetized skin. The main outcome parameter, pain, was scored on a 0-10 visual analogue scale (VAS) after each pain stimulus. Median VAS scores were 1.50 [CO 2 5%], 0.50 [CO 2 15%], 1.50 [Er:YAG 5%], 0.43 [Er:YAG 15%], and 4.50 [unanesthetized reference]. VAS scores for all pretreated test regions were significantly lower compared to the untreated reference region (P laser pretreated regions. However, VAS scores were significantly lower at 15% density compared to 5% density for both for the CO 2 laser (P laser (P laser was considered slightly more painful than pretreatment with Er:YAG laser by the subjects. Fractional laser assisted topical anesthesia is effective even with very low energy settings and an occlusion time of only 15 minutes. Both the CO 2 laser and the Er:YAG laser can be used to assist topical anesthesia although the CO 2 laser pretreatment is experienced as more painful. In our study settings, using articaine
Nakashima, Takahiro
2006-01-01
The functional specification of mean-standard deviation approach is examined under location and scale parameter condition. Firstly, the full set of restrictions imposed on the mean-standard deviation function under the location and scale parameter condition are made clear. Secondly, the examination based on the restrictions mentioned in the previous sentence derives the new properties of the mean-standard deviation function on the applicability of additive separability and the curvature of ex...
Annotation-based feature extraction from sets of SBML models.
Alm, Rebekka; Waltemath, Dagmar; Wolfien, Markus; Wolkenhauer, Olaf; Henkel, Ron
2015-01-01
Model repositories such as BioModels Database provide computational models of biological systems for the scientific community. These models contain rich semantic annotations that link model entities to concepts in well-established bio-ontologies such as Gene Ontology. Consequently, thematically similar models are likely to share similar annotations. Based on this assumption, we argue that semantic annotations are a suitable tool to characterize sets of models. These characteristics improve model classification, allow to identify additional features for model retrieval tasks, and enable the comparison of sets of models. In this paper we discuss four methods for annotation-based feature extraction from model sets. We tested all methods on sets of models in SBML format which were composed from BioModels Database. To characterize each of these sets, we analyzed and extracted concepts from three frequently used ontologies, namely Gene Ontology, ChEBI and SBO. We find that three out of the methods are suitable to determine characteristic features for arbitrary sets of models: The selected features vary depending on the underlying model set, and they are also specific to the chosen model set. We show that the identified features map on concepts that are higher up in the hierarchy of the ontologies than the concepts used for model annotations. Our analysis also reveals that the information content of concepts in ontologies and their usage for model annotation do not correlate. Annotation-based feature extraction enables the comparison of model sets, as opposed to existing methods for model-to-keyword comparison, or model-to-model comparison.
Parameter Optimisation for the Behaviour of Elastic Models over Time
DEFF Research Database (Denmark)
Mosegaard, Jesper
2004-01-01
Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...
An automatic and effective parameter optimization method for model tuning
Directory of Open Access Journals (Sweden)
T. Zhang
2015-11-01
simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.
Presenting a Model for Setting in Narrative Fiction Illustration
Directory of Open Access Journals (Sweden)
Hajar Salimi Namin
2017-12-01
Full Text Available The present research aims at presenting a model for evaluating and enhancing training the setting in illustration for narrative fictions for undergraduate students of graphic design who are weak in setting. The research utilized expert’s opinions through a survey. The designed model was submitted to eight experts, and their opinions were used to have the model adjusted and improved. Used as research instruments were notes, materials in text books, papers, and related websites, as well as questionnaires. Results indicated that, for evaluating and enhancing the level of training the setting in illustration for narrative fiction to students, one needs to extract sub-indexes of setting. Moreover, definition and recognition of the model of setting helps undergraduate students of graphic design enhance the level of setting in their works skill by recognizing details of setting. Accordingly, it is recommended to design training packages to enhance these sub-indexes and hence improve the setting for narrative fiction illustration.
Directory of Open Access Journals (Sweden)
O.A. Awopeju
2017-12-01
Full Text Available The study investigated the invariance properties of one, two and three parame-ter logistic item response theory models. It examined the best fit among one parameter logistic (1PL, two-parameter logistic (2PL and three-parameter logistic (3PL IRT models for SSCE, 2008 in Mathematics. It also investigated the degree of invariance of the IRT models based item difficulty parameter estimates in SSCE in Mathematics across different samples of examinees and examined the degree of invariance of the IRT models based item discrimination estimates in SSCE in Mathematics across different samples of examinees. In order to achieve the set objectives, 6000 students (3000 males and 3000 females were drawn from the population of 35262 who wrote the 2008 paper 1 Senior Secondary Certificate Examination (SSCE in Mathematics organized by National Examination Council (NECO. The item difficulty and item discrimination parameter estimates from CTT and IRT were tested for invariance using BLOG MG 3 and correlation analysis was achieved using SPSS version 20. The research findings were that two parameter model IRT item difficulty and discrimination parameter estimates exhibited invariance property consistently across different samples and that 2-parameter model was suitable for all samples of examinees unlike one-parameter model and 3-parameter model.
Identifying the connective strength between model parameters and performance criteria
Directory of Open Access Journals (Sweden)
B. Guse
2017-11-01
Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria
Resuspension parameters for TRAC dispersion model
International Nuclear Information System (INIS)
Langer, G.
1987-01-01
Resuspension factors for the wind erosion of soil contaminated with plutonium are necessary to run the Rocky Flats Plant Terrain Responsive Atmospheric Code (TRAC). The model predicts the dispersion and resulting population dose due to accidental plutonium releases
Directory of Open Access Journals (Sweden)
Jonathan R Karr
2015-05-01
Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
Directory of Open Access Journals (Sweden)
G. Heuvelmans
2004-01-01
Full Text Available Operational applications of a hydrological model often require the prediction of stream flow in (future time periods without stream flow observations or in ungauged catchments. Data for a case-specific optimisation of model parameters are not available for such applications, so parameters have to be derived from other catchments or time periods. It has been demonstrated that for applications of the SWAT in Northern Belgium, temporal transfers of the parameters have less influence than spatial transfers on the performance of the model. This study examines the spatial variation in parameter optima in more detail. The aim was to delineate zones wherein model parameters can be transferred without a significant loss of model performance. SWAT was calibrated for 25 catchments that are part of eight larger sub-basins of the Scheldt river basin. Two approaches are discussed for grouping these units in zones with a uniform set of parameters: a single parameter approach considering each parameter separately and a parameter set approach evaluating the parameterisation as a whole. For every catchment, the SWAT model was run with the local parameter optima, with the average parameter values for the entire study region (Flanders, with the zones delineated with the single parameter approach and with the zones obtained by the parameter set approach. Comparison of the model performances of these four parameterisation strategies indicates that both the single parameter and the parameter set zones lead to stream flow predictions that are more accurate than if the entire study region were treated as one single zone. On the other hand, the use of zonal average parameter values results in a considerably worse model fit compared to local parameter optima. Clustering of parameter sets gives a more accurate result than the single parameter approach and is, therefore, the preferred technique for use in the parameterisation of ungauged sub-catchments as part of the
A New Five-Parameter Fréchet Model for Extreme Values
Directory of Open Access Journals (Sweden)
Muhammad Ahsan ul Haq
2017-09-01
Full Text Available A new five parameter Fréchet model for Extreme Values was proposed and studied. Various mathematical properties including moments, quantiles, and moment generating function were derived. Incomplete moments and probability weighted moments were also obtained. The maximum likelihood method was used to estimate the model parameters. The flexibility of the derived model was accessed using two real data set applications.
Modeling Influenza Transmission Using Environmental Parameters
Soebiyanto, Radina P.; Kiang, Richard K.
2010-01-01
Influenza is an acute viral respiratory disease that has significant mortality, morbidity and economic burden worldwide. It infects approximately 5-15% of the world population, and causes 250,000 500,000 deaths each year. The role of environments on influenza is often drawn upon the latitude variability of influenza seasonality pattern. In regions with temperate climate, influenza epidemics exhibit clear seasonal pattern that peak during winter months, but it is not as evident in the tropics. Toward this end, we developed mathematical model and forecasting capabilities for influenza in regions characterized by warm climate Hong Kong (China) and Maricopa County (Arizona, USA). The best model for Hong Kong uses Land Surface Temperature (LST), precipitation and relative humidity as its covariates. Whereas for Maricopa County, we found that weekly influenza cases can be best modelled using mean air temperature as its covariates. Our forecasts can further guides public health organizations in targeting influenza prevention and control measures such as vaccination.
Dynamics in the Parameter Space of a Neuron Model
Paulo, C. Rech
2012-06-01
Some two-dimensional parameter-space diagrams are numerically obtained by considering the largest Lyapunov exponent for a four-dimensional thirteen-parameter Hindmarsh—Rose neuron model. Several different parameter planes are considered, and it is shown that depending on the combination of parameters, a typical scenario can be preserved: for some choice of two parameters, the parameter plane presents a comb-shaped chaotic region embedded in a large periodic region. It is also shown that there exist regions close to these comb-shaped chaotic regions, separated by the comb teeth, organizing themselves in period-adding bifurcation cascades.
Advances in Modelling, System Identification and Parameter ...
Indian Academy of Sciences (India)
Authors show, using numerical simulation for two system functions, the improvement in percentage normalized ... of nonlinear systems. The approach is to use multiple linearizing models fitted along the operating trajectories. ... over emphasized in the light of present day high level of research activity in the field of aerospace ...
Diabatic models with transferrable parameters for generalized chemical reactions
International Nuclear Information System (INIS)
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2017-01-01
Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical
Comparing Fuzzy Sets and Random Sets to Model the Uncertainty of Fuzzy Shorelines
Dewi, Ratna Sari; Bijker, Wietske; Stein, Alfred
2017-01-01
This paper addresses uncertainty modelling of shorelines by comparing fuzzy sets and random sets. Both methods quantify extensional uncertainty of shorelines extracted from remote sensing images. Two datasets were tested: pan-sharpened Pleiades with four bands (Pleiades) and pan-sharpened Pleiades
Agricultural and Environmental Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Kaylie Rasmuson; Kurt Rautenstrauch
2003-01-01
This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN
A simulation of water pollution model parameter estimation
Kibler, J. F.
1976-01-01
A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.
Lumped parameter models for the interpretation of environmental tracer data
International Nuclear Information System (INIS)
Maloszewski, P.; Zuber, A.
1996-01-01
Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs
Lumped parameter models for the interpretation of environmental tracer data
Energy Technology Data Exchange (ETDEWEB)
Maloszewski, P [GSF-Inst. for Hydrology, Oberschleissheim (Germany); Zuber, A [Institute of Nuclear Physics, Cracow (Poland)
1996-10-01
Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs.
Hydrological model parameter dimensionality is a weak measure of prediction uncertainty
Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.
2015-04-01
This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.
Parameters modelling of amaranth grain processing technology
Derkanosova, N. M.; Shelamova, S. A.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.
2018-03-01
The article presents a technique that allows calculating the structure of a multicomponent bakery mixture for the production of enriched products, taking into account the instability of nutrient content, and ensuring the fulfilment of technological requirements and, at the same time considering consumer preferences. The results of modelling and analysis of optimal solutions are given by the example of calculating the structure of a three-component mixture of wheat and rye flour with an enriching component, that is, whole-hulled amaranth flour applied to the technology of bread from a mixture of rye and wheat flour on a liquid leaven.
WATGIS: A GIS-Based Lumped Parameter Water Quality Model
Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya
2002-01-01
A Geographic Information System (GIS)Âbased, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogenÂloading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...
A test for the parameters of multiple linear regression models ...
African Journals Online (AJOL)
A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...
The influence of model parameters on catchment-response
International Nuclear Information System (INIS)
Shah, S.M.S.; Gabriel, H.F.; Khan, A.A.
2002-01-01
This paper deals with the study of influence of influence of conceptual rainfall-runoff model parameters on catchment response (runoff). A conceptual modified watershed yield model is employed to study the effects of model-parameters on catchment-response, i.e. runoff. The model is calibrated, using manual parameter-fitting approach, also known as trial and error parameter-fitting. In all, there are twenty one (21) parameters that control the functioning of the model. A lumped parametric approach is used. The detailed analysis was performed on Ling River near Kahuta, having catchment area of 56 sq. miles. The model includes physical parameters like GWSM, PETS, PGWRO, etc. fitting coefficients like CINF, CGWS, etc. and initial estimates of the surface-water and groundwater storages i.e. srosp and gwsp. Sensitivity analysis offers a good way, without repetititious computations, the proper weight and consideration that must be taken when each of the influencing factor is evaluated. Sensitivity-analysis was performed to evaluate the influence of model-parameters on runoff. The sensitivity and relative contributions of model parameters influencing catchment-response are studied. (author)
Identification of ecosystem parameters by SDE-modelling
DEFF Research Database (Denmark)
Stochastic differential equations (SDEs) for ecosystem modelling have attracted increasing attention during recent years. The modelling has mostly been through simulation experiments in order to analyse how system noise propagates through the ordinary differential equation formulation of ecosystem...... models. Estimation of parameters in SDEs is, however, possible by combining Kalman filter techniques and likelihood estimation. By modelling parameters as random walks it is possible to identify linear as well as non-linear interactions between ecosystem components. By formulating a simple linear SDE...
Bayesian estimation of parameters in a regional hydrological model
Directory of Open Access Journals (Sweden)
K. Engeland
2002-01-01
Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis
Brownian motion model with stochastic parameters for asset prices
Ching, Soo Huei; Hin, Pooi Ah
2013-09-01
The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.
Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias
2015-01-01
Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.
A Decomposition Model for HPLC-DAD Data Set and Its Solution by Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Lizhi Cui
2014-01-01
Full Text Available This paper proposes a separation method, based on the model of Generalized Reference Curve Measurement and the algorithm of Particle Swarm Optimization (GRCM-PSO, for the High Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD data set. Firstly, initial parameters are generated to construct reference curves for the chromatogram peaks of the compounds based on its physical principle. Then, a General Reference Curve Measurement (GRCM model is designed to transform these parameters to scalar values, which indicate the fitness for all parameters. Thirdly, rough solutions are found by searching individual target for every parameter, and reinitialization only around these rough solutions is executed. Then, the Particle Swarm Optimization (PSO algorithm is adopted to obtain the optimal parameters by minimizing the fitness of these new parameters given by the GRCM model. Finally, spectra for the compounds are estimated based on the optimal parameters and the HPLC-DAD data set. Through simulations and experiments, following conclusions are drawn: (1 the GRCM-PSO method can separate the chromatogram peaks and spectra from the HPLC-DAD data set without knowing the number of the compounds in advance even when severe overlap and white noise exist; (2 the GRCM-PSO method is able to handle the real HPLC-DAD data set.
Improving weather predictability by including land-surface model parameter uncertainty
Orth, Rene; Dutra, Emanuel; Pappenberger, Florian
2016-04-01
The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by
Determination of the Corona model parameters with artificial neural networks
International Nuclear Information System (INIS)
Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov
2005-01-01
Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model
A termination criterion for parameter estimation in stochastic models in systems biology.
Zimmer, Christoph; Sahle, Sven
2015-11-01
Parameter estimation procedures are a central aspect of modeling approaches in systems biology. They are often computationally expensive, especially when the models take stochasticity into account. Typically parameter estimation involves the iterative optimization of an objective function that describes how well the model fits some measured data with a certain set of parameter values. In order to limit the computational expenses it is therefore important to apply an adequate stopping criterion for the optimization process, so that the optimization continues at least until a reasonable fit is obtained, but not much longer. In the case of stochastic modeling, at least some parameter estimation schemes involve an objective function that is itself a random variable. This means that plain convergence tests are not a priori suitable as stopping criteria. This article suggests a termination criterion suited to optimization problems in parameter estimation arising from stochastic models in systems biology. The termination criterion is developed for optimization algorithms that involve populations of parameter sets, such as particle swarm or evolutionary algorithms. It is based on comparing the variance of the objective function over the whole population of parameter sets with the variance of repeated evaluations of the objective function at the best parameter set. The performance is demonstrated for several different algorithms. To test the termination criterion we choose polynomial test functions as well as systems biology models such as an Immigration-Death model and a bistable genetic toggle switch. The genetic toggle switch is an especially challenging test case as it shows a stochastic switching between two steady states which is qualitatively different from the model behavior in a deterministic model. Copyright © 2015. Published by Elsevier Ireland Ltd.
Learning about physical parameters: the importance of model discrepancy
International Nuclear Information System (INIS)
Brynjarsdóttir, Jenný; O'Hagan, Anthony
2014-01-01
Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)
Hybrid Compensatory-Noncompensatory Choice Sets in Semicompensatory Models
DEFF Research Database (Denmark)
Kaplan, Sigal; Bekhor, Shlomo; Shiftan, Yoram
2013-01-01
Semicompensatory models represent a choice process consisting of an elimination-based choice set formation on satisfaction of criterion thresholds and a utility-based choice. Current semicompensatory models assume a purely noncompensatory choice set formation and therefore do not support multinom...
process setting models for the minimization of costs defectives
African Journals Online (AJOL)
Dr Obe
determine the mean setting so as to minimise the total loss through under-limit complaints and loss of sales and goodwill as well as over-limit losses through excess materials and rework costs. Models are developed for the two types of setting of the mean so that the minimum costs of losses are achieved. Also, a model is ...
Generalized algebra-valued models of set theory
Löwe, B.; Tarafder, S.
2015-01-01
We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory.
Spatio-temporal modeling of nonlinear distributed parameter systems
Li, Han-Xiong
2011-01-01
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s
Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process
Nakanishi, W.; Fuse, T.; Ishikawa, T.
2015-05-01
This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
Universally sloppy parameter sensitivities in systems biology models.
Directory of Open Access Journals (Sweden)
Ryan N Gutenkunst
2007-10-01
Full Text Available Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Universally sloppy parameter sensitivities in systems biology models.
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-10-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver
Kang, Ling; Zhou, Liwei
2018-02-01
Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.
Modeling and Parameter Estimation of a Small Wind Generation System
Directory of Open Access Journals (Sweden)
Carlos A. Ramírez Gómez
2013-11-01
Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.
Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models
Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.
2011-01-01
We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.
NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION
Directory of Open Access Journals (Sweden)
Roman L. Leibov
2017-09-01
Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented
Identification of parameters of discrete-continuous models
International Nuclear Information System (INIS)
Cekus, Dawid; Warys, Pawel
2015-01-01
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible
Identification of parameters of discrete-continuous models
Energy Technology Data Exchange (ETDEWEB)
Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)
2015-03-10
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.
Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean
Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.
2011-12-01
Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling
Parameter estimation in stochastic rainfall-runoff models
DEFF Research Database (Denmark)
Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur
2006-01-01
A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...
Some tests for parameter constancy in cointegrated VAR-models
DEFF Research Database (Denmark)
Hansen, Henrik; Johansen, Søren
1999-01-01
Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ......Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations......, and another in which the cointegrating relations are estimated recursively from a likelihood function, where the short-run parameters have been concentrated out. We suggest graphical procedures based on recursively estimated eigenvalues to evaluate the constancy of the long-run parameters in the model...
Meta-analysis of choice set generation effects on route choice model estimates and predictions
DEFF Research Database (Denmark)
Prato, Carlo Giacomo
2012-01-01
are applied for model estimation and results are compared to the ‘true model estimates’. Last, predictions from the simulation of models estimated with objective choice sets are compared to the ‘postulated predicted routes’. A meta-analytical approach allows synthesizing the effect of judgments......Large scale applications of behaviorally realistic transport models pose several challenges to transport modelers on both the demand and the supply sides. On the supply side, path-based solutions to the user assignment equilibrium problem help modelers in enhancing the route choice behavior...... modeling, but require them to generate choice sets by selecting a path generation technique and its parameters according to personal judgments. This paper proposes a methodology and an experimental setting to provide general indications about objective judgments for an effective route choice set generation...
A method for model identification and parameter estimation
International Nuclear Information System (INIS)
Bambach, M; Heinkenschloss, M; Herty, M
2013-01-01
We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)
Modelling hydrodynamic parameters to predict flow assisted corrosion
International Nuclear Information System (INIS)
Poulson, B.; Greenwell, B.; Chexal, B.; Horowitz, J.
1992-01-01
During the past 15 years, flow assisted corrosion has been a worldwide problem in the power generating industry. The phenomena is complex and depends on environment, material composition, and hydrodynamic factors. Recently, modeling of flow assisted corrosion has become a subject of great importance. A key part of this effort is modeling the hydrodynamic aspects of this issue. This paper examines which hydrodynamic parameter should be used to correlate the occurrence and rate of flow assisted corrosion with physically meaningful parameters, discusses ways of measuring the relevant hydrodynamic parameter, and describes how the hydrodynamic data is incorporated into the predictive model
A distributed approach for parameters estimation in System Biology models
International Nuclear Information System (INIS)
Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.
2009-01-01
Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.
Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart
2016-04-01
Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.
Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations
Directory of Open Access Journals (Sweden)
H. Nakajima
2006-01-01
Full Text Available Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40g, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.
Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations
Nakajima, H.; Stadler, A. T.
2006-10-01
Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40g, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.
Online State Space Model Parameter Estimation in Synchronous Machines
Directory of Open Access Journals (Sweden)
Z. Gallehdari
2014-06-01
The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.
A bottleneck model of set-specific capture.
Directory of Open Access Journals (Sweden)
Katherine Sledge Moore
Full Text Available Set-specific contingent attentional capture is a particularly strong form of capture that occurs when multiple attentional sets guide visual search (e.g., "search for green letters" and "search for orange letters". In this type of capture, a potential target that matches one attentional set (e.g. a green stimulus impairs the ability to identify a temporally proximal target that matches another attentional set (e.g. an orange stimulus. In the present study, we investigated whether set-specific capture stems from a bottleneck in working memory or from a depletion of limited resources that are distributed across multiple attentional sets. In each trial, participants searched a rapid serial visual presentation (RSVP stream for up to three target letters (T1-T3 that could appear in any of three target colors (orange, green, or lavender. The most revealing findings came from trials in which T1 and T2 matched different attentional sets and were both identified. In these trials, T3 accuracy was lower when it did not match T1's set than when it did match, but only when participants failed to identify T2. These findings support a bottleneck model of set-specific capture in which a limited-capacity mechanism in working memory enhances only one attentional set at a time, rather than a resource model in which processing capacity is simultaneously distributed across multiple attentional sets.
Parameter dependence and outcome dependence in dynamical models for state vector reduction
International Nuclear Information System (INIS)
Ghirardi, G.C.; Grassi, R.; Butterfield, J.; Fleming, G.N.
1993-01-01
The authors apply the distinction between parameter independence and outcome independence to the linear and nonlinear models of a recent nonrelativistic theory of continuous state vector reduction. It is shown that in the nonlinear model there is a set of realizations of the stochastic process that drives the state vector reduction for which parameter independence is violated for parallel spin components in the EPR-Bohm setup. Such a set has an appreciable probability of occurrence (∼ 1/2). On the other hand, the linear model exhibits only extremely small parameter dependence effects. Some specific features of the models are investigated and it is recalled that, as has been pointed out recently, to be able to speak of definite outcomes (or equivalently of possessed objective elements of reality) at finite times, the criteria for their attribution to physical systems must be slightly changed. The concluding section is devoted to a detailed discussion of the difficulties met when attempting to take, as a starting point for the formulation of a relativistic theory, a nonrelativistic scheme which exhibits parameter dependence. Here the authors derive a theorem which identifies the precise sense in which the occurrence of parameter dependence forbids a genuinely relativistic generalization. Finally, the authors show how the appreciable parameter dependence of the nonlinear model gives rise to problems with relativity, while the extremely weak parameter dependence of the linear model does not give rise to any difficulty, provided the appropriate criteria for the attribution of definite outcomes are taken into account. 19 refs
Oyster Creek cycle 10 nodal model parameter optimization study using PSMS
International Nuclear Information System (INIS)
Dougher, J.D.
1987-01-01
The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed
Retrospective forecast of ETAS model with daily parameters estimate
Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang
2016-04-01
We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
Kaylie Rasmuson; Kurt Rautenstrauch
2003-06-20
This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.
Parameter Estimates in Differential Equation Models for Population Growth
Winkel, Brian J.
2011-01-01
We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…
Uncertainty in dual permeability model parameters for structured soils
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.
A new level set model for multimaterial flows
Energy Technology Data Exchange (ETDEWEB)
Starinshak, David P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Karni, Smadar [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mathematics; Roe, Philip L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of AerospaceEngineering
2014-01-08
We present a new level set model for representing multimaterial flows in multiple space dimensions. Instead of associating a level set function with a specific fluid material, the function is associated with a pair of materials and the interface that separates them. A voting algorithm collects sign information from all level sets and determines material designations. M(M ₋1)/2 level set functions might be needed to represent a general M-material configuration; problems of practical interest use far fewer functions, since not all pairs of materials share an interface. The new model is less prone to producing indeterminate material states, i.e. regions claimed by more than one material (overlaps) or no material at all (vacuums). It outperforms existing material-based level set models without the need for reinitialization schemes, thereby avoiding additional computational costs and preventing excessive numerical diffusion.
Progress on reference input parameter library for nuclear model calculations of nuclear data (III)
International Nuclear Information System (INIS)
Su Zongdi; Liu Jianfeng; Huang Zhongfu
1997-01-01
A new set of the average neutron resonance spacings D 0 and neutron strength functions S 0 for 309 nuclei were reestimated on the basis of the resolved resonance parameters reevaluated from BNL-325, ENDF/B-6, JEF-2, and JENDL-3, and the cumulative number N 0 of low low lying levels for 344 nuclei were also reevaluated by means of histograms. Three sets of level density parameters for the Gilbert-Cameron (GC) formula, back-shifted Fermi gas model(BS) and generated superfluid model (GSM) have been reesitmated by fitting the D 0 and N 0 values of CENPL.LRD-2
Luminescence model with quantum impact parameter for low energy ions
Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S
2002-01-01
We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.
Zhu, X.; Wang, J. D.; Elmir, S.; Solo-Gabriele, H. M.; Wright, M. E.; Abdelzaher, A.
2006-12-01
Fecal Indicator Bacteria(FIB) are found in high concentrations in sewage water, and thus are used to indicate whether there is fecal material related pathogen present and to determine whether a beach is safe for recreational use. Studies have shown, however, in subtropical regions, FIB concentrations above EPA standards may be present in the absence of known point sources of human or animal waste, thus reducing the efficacy of FIB beach monitoring programs. An interdisciplinary study is being conducted in Miami, Florida , the goal is to understand the sources and behavior of FIB on a beach without point source loads and also to improve beach health hazard warnings in subtropical regions. This study, examines relationship between enterococci (EPA recommended FIB for use in marine water) and physical environmental parameters such as rain, tide and wind. FIB data employed include Florida Department of Health weekly beach monitoring enterococci (ENT) data during a five year period and a two-day experiment with hourly sampling at Hobie Cat Beach on Virginia Key in the Miami metropolitan area. The environmental data consist of wind from a nearby CMAN tower, and local rain and tide. The analysis also includes data from nearby beaches monitored by the Health Department. Results show the correlation coefficient between ENT and tide at Hobie Cat Beach is positive but not significant(r=0.17). Rain events have a significant influence on ENT at Hobie Cat Beach, with a correlation coefficient of up to 0.7 while at other beaches the correlation is less than 0.2. Reasons for this aberration are being investigated. Although this is the only beach allowing dogs there are other factors of possible importance, such as tidal flats frequented by birds and weaker water circulation and exchange at this beach facing a bay rather than the ocean. Higher ENT levels (> 300CFU/100ml water) are more likely (67% of the time) to be associated with periods of onshore winds, which may affect the
Model-based verification method for solving the parameter uncertainty in the train control system
International Nuclear Information System (INIS)
Cheng, Ruijun; Zhou, Jin; Chen, Dewang; Song, Yongduan
2016-01-01
This paper presents a parameter analysis method to solve the parameter uncertainty problem for hybrid system and explore the correlation of key parameters for distributed control system. For improving the reusability of control model, the proposed approach provides the support for obtaining the constraint sets of all uncertain parameters in the abstract linear hybrid automata (LHA) model when satisfying the safety requirements of the train control system. Then, in order to solve the state space explosion problem, the online verification method is proposed to monitor the operating status of high-speed trains online because of the real-time property of the train control system. Furthermore, we construct the LHA formal models of train tracking model and movement authority (MA) generation process as cases to illustrate the effectiveness and efficiency of the proposed method. In the first case, we obtain the constraint sets of uncertain parameters to avoid collision between trains. In the second case, the correlation of position report cycle and MA generation cycle is analyzed under both the normal and the abnormal condition influenced by packet-loss factor. Finally, considering stochastic characterization of time distributions and real-time feature of moving block control system, the transient probabilities of wireless communication process are obtained by stochastic time petri nets. - Highlights: • We solve the parameters uncertainty problem by using model-based method. • We acquire the parameter constraint sets by verifying linear hybrid automata models. • Online verification algorithms are designed to monitor the high-speed trains. • We analyze the correlation of key parameters and uncritical parameters. • The transient probabilities are obtained by using reliability analysis.
Agricultural and Environmental Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rasmuson; K. Rautenstrauch
2004-01-01
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters
Determining extreme parameter correlation in ground water models
DEFF Research Database (Denmark)
Hill, Mary Cole; Østerby, Ole
2003-01-01
can go undetected even by experienced modelers. Extreme parameter correlation can be detected using parameter correlation coefficients, but their utility depends on the presence of sufficient, but not excessive, numerical imprecision of the sensitivities, such as round-off error. This work...... investigates the information that can be obtained from parameter correlation coefficients in the presence of different levels of numerical imprecision, and compares it to the information provided by an alternative method called the singular value decomposition (SVD). Results suggest that (1) calculated...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...
Uncertainty of Modal Parameters Estimated by ARMA Models
DEFF Research Database (Denmark)
Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders
1990-01-01
In this paper the uncertainties of identified modal parameters such as eidenfrequencies and damping ratios are assed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the parameters...... by simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been choosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore......, it is shown that the model errors may also contribute significantly to the uncertainty....
Parameter resolution in two models for cell survival after radiation
International Nuclear Information System (INIS)
Di Cera, E.; Andreasi Bassi, F.; Arcovito, G.
1989-01-01
The resolvability of model parameters for the linear-quadratic and the repair-misrepair models for cell survival after radiation has been studied by Monte Carlo simulations as a function of the number of experimental data points collected in a given dose range and the experimental error. Statistical analysis of the results reveals the range of experimental conditions under which the model parameters can be resolved with sufficient accuracy, and points out some differences in the operational aspects of the two models. (orig.)
Simultaneous inference for model averaging of derived parameters
DEFF Research Database (Denmark)
Jensen, Signe Marie; Ritz, Christian
2015-01-01
Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...
Updating parameters of the chicken processing line model
DEFF Research Database (Denmark)
Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna
2010-01-01
A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate performance of this method in updating parameters...... of the chicken processing line model....
Lumped-parameter Model of a Bucket Foundation
DEFF Research Database (Denmark)
Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten
2009-01-01
efficient model that can be applied in aero-elastic codes for fast evaluation of the dynamic structural response of wind turbines. The target solutions, utilised for calibration of the lumped-parameter models, are obtained by a coupled finite-element/boundaryelement scheme in the frequency domain......, and the quality of the models are tested in the time and frequency domains. It is found that precise results are achieved by lumped-parameter models with two to four internal degrees of freedom per displacement or rotation of the foundation. Further, coupling between the horizontal sliding and rocking cannot...
Lumped-Parameter Models for Windturbine Footings on Layered Ground
DEFF Research Database (Denmark)
Andersen, Lars
The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...
Spatial extrapolation of light use efficiency model parameters to predict gross primary production
Directory of Open Access Journals (Sweden)
Karsten Schulz
2011-12-01
Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.
Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.
Cuba, Christian E; Valle, Alexander R; Ayala-Charca, Giancarlo; Villota, Elizabeth R; Coronado, Alberto M
2015-09-01
Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.
Fuzzy GML Modeling Based on Vague Soft Sets
Directory of Open Access Journals (Sweden)
Bo Wei
2017-01-01
Full Text Available The Open Geospatial Consortium (OGC Geography Markup Language (GML explicitly represents geographical spatial knowledge in text mode. All kinds of fuzzy problems will inevitably be encountered in spatial knowledge expression. Especially for those expressions in text mode, this fuzziness will be broader. Describing and representing fuzziness in GML seems necessary. Three kinds of fuzziness in GML can be found: element fuzziness, chain fuzziness, and attribute fuzziness. Both element fuzziness and chain fuzziness belong to the reflection of the fuzziness between GML elements and, then, the representation of chain fuzziness can be replaced by the representation of element fuzziness in GML. On the basis of vague soft set theory, two kinds of modeling, vague soft set GML Document Type Definition (DTD modeling and vague soft set GML schema modeling, are proposed for fuzzy modeling in GML DTD and GML schema, respectively. Five elements or pairs, associated with vague soft sets, are introduced. Then, the DTDs and the schemas of the five elements are correspondingly designed and presented according to their different chains and different fuzzy data types. While the introduction of the five elements or pairs is the basis of vague soft set GML modeling, the corresponding DTD and schema modifications are key for implementation of modeling. The establishment of vague soft set GML enables GML to represent fuzziness and solves the problem of lack of fuzzy information expression in GML.
MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS
Directory of Open Access Journals (Sweden)
G. M. Kukharonak
2011-01-01
Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper. The model allows to observe fuel sprays develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.
Horta, Bruno A C; Merz, Pascal T; Fuchs, Patrick F J; Dolenc, Jozica; Riniker, Sereina; Hünenberger, Philippe H
2016-08-09
This article reports on the calibration and validation of a new GROMOS-compatible parameter set 2016H66 for small organic molecules in the condensed phase. The calibration is based on 62 organic molecules spanning the chemical functions alcohol, ether, aldehyde, ketone, carboxylic acid, ester, amine, amide, thiol, sulfide, and disulfide, as well as aromatic compounds and nucleic-acid bases. For 57 organic compounds, the calibration targets are the experimental pure-liquid density ρliq and the vaporization enthalpy ΔHvap, as well as the hydration free energy ΔGwat and the solvation free energy ΔGche in cyclohexane, at atmospheric pressure and at (or close to) room temperature. The final root-mean-square deviations (RMSD) for these four quantities over the set of compounds are 32.4 kg m(-3), 3.5 kJ mol(-1), 4.1 kJ mol(-1), and 2.1 kJ mol(-1), respectively, and the corresponding average deviations (AVED) are 1.0 kg m(-3), 0.2 kJ mol(-1), 2.6 kJ mol(-1), and 1.0 kJ mol(-1), respectively. For the five nucleic-acid bases, the parametrization is performed by transferring the final 2016H66 parameters from analogous organic compounds followed by a slight readjustment of the charges to reproduce the experimental water-to-chloroform transfer free energies ΔGtrn. The final RMSD for this quantity over the five bases is 1.7 kJ mol(-1), and the corresponding AVED is 0.8 kJ mol(-1). As an initial validation of the 2016H66 set, seven additional thermodynamic, transport, and dielectric properties are calculated for the 57 organic compounds in the liquid phase. The agreement with experiment in terms of these additional properties is found to be reasonable, with significant deviations typically affecting either a specific chemical function or a specific molecule. This suggests that in most cases, a classical force-field description along with a careful parametrization against ρliq, ΔHvap, ΔGwat, and ΔGche results in a model that appropriately describes the liquid in terms of
Directory of Open Access Journals (Sweden)
Jeng-Wen Lin
2009-01-01
Full Text Available This paper proposes a statistical confidence interval based nonlinear model parameter refinement approach for the health monitoring of structural systems subjected to seismic excitations. The developed model refinement approach uses the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a least-squares regression setting. When the parameters' confidence interval covers the zero value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. This newly developed model refinement approach is implemented for the series models of multivariable polynomial expansions: the linear, the Taylor series, and the power series model, leading to a more accurate identification as well as a more controllable design for system vibration control. Because the statistical regression based model refinement approach is intrinsically used to process a “batch” of data and obtain an ensemble average estimation such as the structural stiffness, the Kalman filter and one of its extended versions is introduced to the refined power series model for structural health monitoring.
Seasonal and spatial variation in broadleaf forest model parameters
Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.
2009-04-01
Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and
Optimization of a Cu CMP process modeling parameters of nanometer integrated circuits
International Nuclear Information System (INIS)
Ruan Wenbiao; Chen Lan; Ma Tianyu; Fang Jingjing; Zhang He; Ye Tianchun
2012-01-01
A copper chemical mechanical polishing (Cu CMP) process is reviewed and analyzed from the view of chemical physics. Three steps Cu CMP process modeling is set up based on the actual process of manufacturing and pattern-density-step-height (PDSH) modeling from MIT. To catch the pattern dependency, a 65 nm testing chip is designed and processed in the foundry. Following the model parameter extraction procedure, the model parameters are extracted and verified by testing data from the 65 nm testing chip. A comparison of results between the model predictions and test data show that the former has the same trend as the latter and the largest deviation is less than 5 nm. Third party testing data gives further evidence to support the great performance of model parameter optimization. Since precise CMP process modeling is used for the design of manufacturability (DFM) checks, critical hotspots are displayed and eliminated, which will assure good yield and production capacity of IC. (semiconductor technology)
Neverov, V. V.; Kozhukhov, Y. V.; Yablokov, A. M.; Lebedev, A. A.
2017-08-01
Nowadays the optimization using computational fluid dynamics (CFD) plays an important role in the design process of turbomachines. However, for the successful and productive optimization it is necessary to define a simulation model correctly and rationally. The article deals with the choice of a grid and computational domain parameters for optimization of centrifugal compressor impellers using computational fluid dynamics. Searching and applying optimal parameters of the grid model, the computational domain and solver settings allows engineers to carry out a high-accuracy modelling and to use computational capability effectively. The presented research was conducted using Numeca Fine/Turbo package with Spalart-Allmaras and Shear Stress Transport turbulence models. Two radial impellers was investigated: the high-pressure at ψT=0.71 and the low-pressure at ψT=0.43. The following parameters of the computational model were considered: the location of inlet and outlet boundaries, type of mesh topology, size of mesh and mesh parameter y+. Results of the investigation demonstrate that the choice of optimal parameters leads to the significant reduction of the computational time. Optimal parameters in comparison with non-optimal but visually similar parameters can reduce the calculation time up to 4 times. Besides, it is established that some parameters have a major impact on the result of modelling.
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2004-09-10
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2004-01-01
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])
International Nuclear Information System (INIS)
Harish, V.S.K.V.; Kumar, Arun
2016-01-01
Highlights: • A BES model based on 1st principles is developed and solved numerically. • Parameters of lumped capacitance model are fitted using the proposed optimization routine. • Validations are showed for different types of building construction elements. • Step response excitations for outdoor air temperature and relative humidity are analyzed. - Abstract: Different control techniques together with intelligent building technology (Building Automation Systems) are used to improve energy efficiency of buildings. In almost all control projects, it is crucial to have building energy models with high computational efficiency in order to design and tune the controllers and simulate their performance. In this paper, a set of partial differential equations are formulated accounting for energy flow within the building space. These equations are then solved as conventional finite difference equations using Crank–Nicholson scheme. Such a model of a higher order is regarded as a benchmark model. An optimization algorithm has been developed, depicted through a flowchart, which minimizes the sum squared error between the step responses of the numerical and the optimal model. Optimal model of the construction element is nothing but a RC-network model with the values of Rs and Cs estimated using the non-linear time invariant constrained optimization routine. The model is validated with comparing the step responses with other two RC-network models whose parameter values are selected based on a certain criteria. Validations are showed for different types of building construction elements viz., low, medium and heavy thermal capacity elements. Simulation results show that the optimal model closely follow the step responses of the numerical model as compared to the responses of other two models.
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rautenstrauch
2004-09-10
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rautenstrauch
2004-01-01
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception
Reflector modelization for neutronic diffusion and parameters identification
International Nuclear Information System (INIS)
Argaud, J.P.
1993-04-01
Physical parameters of neutronic diffusion equations can be adjusted to decrease calculations-measurements errors. The reflector being always difficult to modelize, we choose to elaborate a new reflector model and to use the parameters of this model as adjustment coefficients in the identification procedure. Using theoretical results, and also the physical behaviour of neutronic flux solutions, the reflector model consists then in its replacement by boundary conditions for the diffusion equations on the core only. This theoretical result of non-local operator relations leads then to some discrete approximations by taking into account the multiscaled behaviour, on the core-reflector interface, of neutronic diffusion solutions. The resulting model of this approach is then compared with previous reflector modelizations, and first results indicate that this new model gives the same representation of reflector for the core than previous. (author). 12 refs
Constraint on Parameters of Inverse Compton Scattering Model for ...
Indian Academy of Sciences (India)
B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained. Key words. Pulsar—inverse Compton scattering—emission mechanism. 1. Introduction. Among various kinds of models for pulsar radio emission, the inverse ...
Geometry parameters for musculoskeletal modelling of the shoulder system
Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H
A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of
Rain storm models and the relationship between their parameters
Stol, P.T.
1977-01-01
Rainfall interstation correlation functions can be obtained with the aid of analytic rainfall or storm models. Since alternative storm models have different mathematical formulas, comparison should be based on equallity of parameters like storm diameter, mean rainfall amount, storm maximum or total
Lumped-parameters equivalent circuit for condenser microphones modeling.
Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar
2017-10-01
This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.
Determination of modeling parameters for power IGBTs under pulsed power conditions
Energy Technology Data Exchange (ETDEWEB)
Dale, Gregory E [Los Alamos National Laboratory; Van Gordon, Jim A [U. OF MISSOURI; Kovaleski, Scott D [U. OF MISSOURI
2010-01-01
While the power insulated gate bipolar transistor (IGRT) is used in many applications, it is not well characterized under pulsed power conditions. This makes the IGBT difficult to model for solid state pulsed power applications. The Oziemkiewicz implementation of the Hefner model is utilized to simulate IGBTs in some circuit simulation software packages. However, the seventeen parameters necessary for the Oziemkiewicz implementation must be known for the conditions under which the device will be operating. Using both experimental and simulated data with a least squares curve fitting technique, the parameters necessary to model a given IGBT can be determined. This paper presents two sets of these seventeen parameters that correspond to two different models of power IGBTs. Specifically, these parameters correspond to voltages up to 3.5 kV, currents up to 750 A, and pulse widths up to 10 {micro}s. Additionally, comparisons of the experimental and simulated data will be presented.
A software for parameter estimation in dynamic models
Directory of Open Access Journals (Sweden)
M. Yuceer
2008-12-01
Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.
2013-01-01
Background While a large body of work exists on comparing and benchmarking descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 amino acid descriptor sets have been benchmarked with respect to their ability of establishing bioactivity models. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI, BLOSUM, a novel protein descriptor set (termed ProtFP (4 variants)), and in addition we created and benchmarked three pairs of descriptor combinations. Prediction performance was evaluated in seven structure-activity benchmarks which comprise Angiotensin Converting Enzyme (ACE) dipeptidic inhibitor data, and three proteochemometric data sets, namely (1) GPCR ligands modeled against a GPCR panel, (2) enzyme inhibitors (NNRTIs) with associated bioactivities against a set of HIV enzyme mutants, and (3) enzyme inhibitors (PIs) with associated bioactivities on a large set of HIV enzyme mutants. Results The amino acid descriptor sets compared here show similar performance (set differences ( > 0.3 log units RMSE difference and >0.7 difference in MCC). Combining different descriptor sets generally leads to better modeling performance than utilizing individual sets. The best performers were Z-scales (3) combined with ProtFP (Feature), or Z-Scales (3) combined with an average Z-Scale value for each target, while ProtFP (PCA8), ST-Scales, and ProtFP (Feature) rank last. Conclusions While amino acid descriptor sets capture different aspects of amino acids their ability to be used for bioactivity modeling is still – on average – surprisingly similar. Still, combining sets describing complementary information consistently leads to small but consistent improvement in modeling performance (average MCC 0.01 better, average RMSE 0.01 log units lower). Finally, performance differences exist between the targets compared thereby underlining that
A HIERARCHICAL SET OF MODELS FOR SPECIES RESPONSE ANALYSIS
HUISMAN, J; OLFF, H; FRESCO, LFM
Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These
A hierarchical set of models for species response analysis
Huisman, J.; Olff, H.; Fresco, L.F.M.
1993-01-01
Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These
Determination of appropriate models and parameters for premixing calculations
Energy Technology Data Exchange (ETDEWEB)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-15
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.
Parameter identification in a nonlinear nuclear reactor model using quasilinearization
International Nuclear Information System (INIS)
Barreto, J.M.; Martins Neto, A.F.; Tanomaru, N.
1980-09-01
Parameter identification in a nonlinear, lumped parameter, nuclear reactor model is carried out using discrete output power measurements during the transient caused by an external reactivity change. In order to minimize the difference between the model and the reactor power responses, the parameter promt neutron generation time and a parameter in fuel temperature reactivity coefficient equation are adjusted using quasilinearization. The influences of the external reactivity disturbance, the number and frequency of measurements and the measurement noise level on the method accuracy and rate of convergence are analysed through simulation. Procedures for the design of the identification experiments are suggested. The method proved to be very effective for low level noise measurements. (Author) [pt
Determination of appropriate models and parameters for premixing calculations
International Nuclear Information System (INIS)
Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan
2008-03-01
The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al 2 O 3 ) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested
Ground level enhancement (GLE) energy spectrum parameters model
Qin, G.; Wu, S.
2017-12-01
We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.
Wójciak, Karolina M; Krajmas, Paweł; Solska, Elżbieta; Dolatowski, Zbigniew J
2015-01-01
The aim of the study was to evaluate the potential of acid whey and set milk as a marinade in the traditional production of fermented eye round. Studies involved assaying pH value, water activity (aw), oxidation-reduction potential and TBARS value, colour parameters in CIE system (L*, a*, b*), assaying the number of lactic acid bacteria and certain pathogenic bacteria after ripening process and after 60-day storing in cold storage. Sensory analysis and analysis of the fatty acids profile were performed after completion of the ripening process. Analysis of pH value in the products revealed that application of acid whey to marinate beef resulted in increased acidity of ripening eye round (5.14). The highest value of the colour parameter a* after ripening process and during storage was observed in sample AW (12.76 and 10.07 respectively), the lowest on the other hand was observed in sample SM (10.06 and 7.88 respectively). The content of polyunsaturated fatty acids (PUFA) was higher in eye round marinated in acid whey by approx. 4% in comparison to other samples. Application of acid whey to marinade beef resulted in increased share of red colour in general colour tone as well as increased oxidative stability of the product during storage. It also increased the content of polyunsaturated fatty acids (PUFA) in the product. All model products had high content of lactic acid bacteria and there were no pathogenic bacteria such as: L. monocytogenes, Y. enterocolitica, S. aureus, Clostridium sp.
Soil-related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
A. J. Smith
2003-01-01
This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash
Parameter Estimation for Traffic Noise Models Using a Harmony Search Algorithm
Directory of Open Access Journals (Sweden)
Deok-Soon An
2013-01-01
Full Text Available A technique has been developed for predicting road traffic noise for environmental assessment, taking into account traffic volume as well as road surface conditions. The ASJ model (ASJ Prediction Model for Road Traffic Noise, 1999, which is based on the sound power level of the noise emitted by the interaction between the road surface and tires, employs regression models for two road surface types: dense-graded asphalt (DGA and permeable asphalt (PA. However, these models are not applicable to other types of road surfaces. Accordingly, this paper introduces a parameter estimation procedure for ASJ-based noise prediction models, utilizing a harmony search (HS algorithm. Traffic noise measurement data for four different vehicle types were used in the algorithm to determine the regression parameters for several road surface types. The parameters of the traffic noise prediction models were evaluated using another measurement set, and good agreement was observed between the predicted and measured sound power levels.
The null hypothesis of GSEA, and a novel statistical model for competitive gene set analysis
DEFF Research Database (Denmark)
Debrabant, Birgit
2017-01-01
MOTIVATION: Competitive gene set analysis intends to assess whether a specific set of genes is more associated with a trait than the remaining genes. However, the statistical models assumed to date to underly these methods do not enable a clear cut formulation of the competitive null hypothesis....... This is a major handicap to the interpretation of results obtained from a gene set analysis. RESULTS: This work presents a hierarchical statistical model based on the notion of dependence measures, which overcomes this problem. The two levels of the model naturally reflect the modular structure of many gene set...... analysis methods. We apply the model to show that the popular GSEA method, which recently has been claimed to test the self-contained null hypothesis, actually tests the competitive null if the weight parameter is zero. However, for this result to hold strictly, the choice of the dependence measures...
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Zhang, Xiangsheng; Pan, Feng
2015-01-01
Aimed at the parameters optimization in support vector machine (SVM) for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO) algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effective...
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Directory of Open Access Journals (Sweden)
Xiangsheng Zhang
2015-01-01
Full Text Available Aimed at the parameters optimization in support vector machine (SVM for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effectiveness of the proposed algorithm.
Robust non-rigid point set registration using student's-t mixture model.
Directory of Open Access Journals (Sweden)
Zhiyong Zhou
Full Text Available The Student's-t mixture model, which is heavily tailed and more robust than the Gaussian mixture model, has recently received great attention on image processing. In this paper, we propose a robust non-rigid point set registration algorithm using the Student's-t mixture model. Specifically, first, we consider the alignment of two point sets as a probability density estimation problem and treat one point set as Student's-t mixture model centroids. Then, we fit the Student's-t mixture model centroids to the other point set which is treated as data. Finally, we get the closed-form solutions of registration parameters, leading to a computationally efficient registration algorithm. The proposed algorithm is especially effective for addressing the non-rigid point set registration problem when significant amounts of noise and outliers are present. Moreover, less registration parameters have to be set manually for our algorithm compared to the popular coherent points drift (CPD algorithm. We have compared our algorithm with other state-of-the-art registration algorithms on both 2D and 3D data with noise and outliers, where our non-rigid registration algorithm showed accurate results and outperformed the other algorithms.
A Bayesian framework for parameter estimation in dynamical models.
Directory of Open Access Journals (Sweden)
Flávio Codeço Coelho
Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.
A lumped parameter, low dimension model of heat exchanger
International Nuclear Information System (INIS)
Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami
1980-01-01
This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)
International Nuclear Information System (INIS)
Caravaca, M A; Casali, R A
2005-01-01
The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2 1 /c, Pbca, Pnma, Fm3m, P4 2 nmc and Pa3 phases of HfO 2 . Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2 1 /c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2 1 /c → Pbca and Pbca → Pnma, respectively, in accordance with different high pressure experimental values
Energy Technology Data Exchange (ETDEWEB)
Caravaca, M A [Facultad de Ingenieria, Universidad Nacional del Nordeste, Avenida Las Heras 727, 3500-Resistencia (Argentina); Casali, R A [Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad, 5600-Corrientes (Argentina)
2005-09-21
The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2{sub 1}/c, Pbca, Pnma, Fm3m, P4{sub 2}nmc and Pa3 phases of HfO{sub 2}. Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2{sub 1}/c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2{sub 1}/c {yields} Pbca and Pbca {yields} Pnma, respectively, in accordance with different high pressure experimental values.
Directory of Open Access Journals (Sweden)
Jie Bao
2015-12-01
Full Text Available Effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash–Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA approaches, including analysis of variance based on the generalized linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.
Reservoir theory, groundwater transit time distributions, and lumped parameter models
International Nuclear Information System (INIS)
Etcheverry, D.; Perrochet, P.
1999-01-01
The relation between groundwater residence times and transit times is given by the reservoir theory. It allows to calculate theoretical transit time distributions in a deterministic way, analytically, or on numerical models. Two analytical solutions validates the piston flow and the exponential model for simple conceptual flow systems. A numerical solution of a hypothetical regional groundwater flow shows that lumped parameter models could be applied in some cases to large-scale, heterogeneous aquifers. (author)
Pozzobon, Victor; Perre, Patrick
2018-01-21
This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
A study of optimal parameter setting for aMC@NLO + Pythia8 matched setup
The ATLAS collaboration
2015-01-01
This note presents a study to arrive at the optimum tune of Pythia8 generator's parton shower and multiple parton interaction parameters for aMC@NLO + Pythia8 matched setup. Published distributions from ATLAS Run 1 data at 7 TeV for three different processes, inclusive jet, Z~boson and $t\\bar{t}$ production were studied. Additionally, the effect of using two different parton recoil modes in shower, global and local recoil are also investigated.
Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M
2016-05-30
The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Validation of Simulation Models without Knowledge of Parameters Using Differential Algebra
Directory of Open Access Journals (Sweden)
Björn Haffke
2015-01-01
Full Text Available This study deals with the external validation of simulation models using methods from differential algebra. Without any system identification or iterative numerical methods, this approach provides evidence that the equations of a model can represent measured and simulated sets of data. This is very useful to check if a model is, in general, suitable. In addition, the application of this approach to verification of the similarity between the identifiable parameters of two models with different sets of input and output measurements is demonstrated. We present a discussion on how the method can be used to find parameter deviations between any two models. The advantage of this method is its applicability to nonlinear systems as well as its algorithmic nature, which makes it easy to automate.
Modelling of intermittent microwave convective drying: parameter sensitivity
Directory of Open Access Journals (Sweden)
Zhang Zhijun
2017-06-01
Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms
Berhausen, Sebastian; Paszek, Stefan
2016-01-01
In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.
Identification of hydrological model parameters for flood forecasting using data depth measures
Krauße, T.; Cullmann, J.
2011-03-01
The development of methods for estimating the parameters of hydrological models considering uncertainties has been of high interest in hydrological research over the last years. Besides the very popular Markov Chain Monte Carlo (MCMC) methods which estimate the uncertainty of model parameters in the settings of a Bayesian framework, the development of depth based sampling methods, also entitled robust parameter estimation (ROPE), have attracted an increasing research interest. These methods understand the estimation of model parameters as a geometric search of a set of robust performing parameter vectors by application of the concept of data depth. Recent studies showed that the parameter vectors estimated by depth based sampling perform more robust in validation. One major advantage of this kind of approach over the MCMC methods is that the formulation of a likelihood function within a Bayesian uncertainty framework gets obsolete and arbitrary purpose-oriented performance criteria defined by the user can be integrated without any further complications. In this paper we present an advanced ROPE method entitled the Advanced Robust Parameter Estimation by Monte Carlo algorithm (AROPEMC). The AROPEMC algorithm is a modified version of the original robust parameter estimation algorithm ROPEMC developed by Bárdossy and Singh (2008). AROPEMC performs by merging iterative Monte Carlo simulations, identifying well performing parameter vectors, the sampling of robust parameter vectors according to the principle of data depth and the application of a well-founded stopping criterion applied in supervised machine learning. The principals of the algorithm are illustrated by means of the Rosenbrock's and Rastrigin's function, two well known performance benchmarks for optimisation algorithms. Two case studies demonstrate the advantage of AROPEMC compared to state of the art global optimisation algorithms. A distributed process-oriented hydrological model is calibrated and
DEFF Research Database (Denmark)
Rasmussen, Thomas Kjær; Nielsen, Otto Anker; Watling, David P.
2017-01-01
Equilibrium model (DUE), by combining the strengths of the Boundedly Rational User Equilibrium model and the Restricted Stochastic User Equilibrium model (RSUE). Thereby, the RSUET model reaches an equilibrated solution in which the flow is distributed according to Random Utility Theory among a consistently...... model improves the behavioural realism, especially for high congestion cases. Also, fast and well-behaved convergence to equilibrated solutions among non-universal choice sets is observed across different congestion levels, choice model scale parameters, and algorithm step sizes. Clearly, the results...... highlight that the RSUET outperforms the MNP SUE in terms of convergence, calculation time and behavioural realism. The choice set composition is validated by using 16,618 observed route choices collected by GPS devices in the same network and observing their reproduction within the equilibrated choice sets...
Use of fuzzy sets in modeling of GIS objects
Mironova, Yu N.
2018-05-01
The paper discusses modeling and methods of data visualization in geographic information systems. Information processing in Geoinformatics is based on the use of models. Therefore, geoinformation modeling is a key in the chain of GEODATA processing. When solving problems, using geographic information systems often requires submission of the approximate or insufficient reliable information about the map features in the GIS database. Heterogeneous data of different origin and accuracy have some degree of uncertainty. In addition, not all information is accurate: already during the initial measurements, poorly defined terms and attributes (e.g., "soil, well-drained") are used. Therefore, there are necessary methods for working with uncertain requirements, classes, boundaries. The author proposes using spatial information fuzzy sets. In terms of a characteristic function, a fuzzy set is a natural generalization of ordinary sets, when one rejects the binary nature of this feature and assumes that it can take any value in the interval.
A compact cyclic plasticity model with parameter evolution
DEFF Research Database (Denmark)
Krenk, Steen; Tidemann, L.
2017-01-01
The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...
Borecki, M.; Prus, P.; Korwin-Pawlowski, M. L.; Rychlik, A.; Kozubel, W.
2017-08-01
Modern rims and wheels are tested at the design and production stages. Tests can be performed in laboratory conditions and on the ride. In the laboratory, complex and costly equipment is used, as for example wheel balancers and impact testers. Modern wheel balancers are equipped with electronic and electro-mechanical units that enable touch-less measurement of dimensions, including precision measurement of radial and lateral wheel run-out, automatic positioning and application of the counterweights, and vehicle wheel set monitoring - tread wear, drift angles and run-out unbalance. Those tests are performed by on-wheel axis measurements with laser distance meters. The impact tester enables dropping of weights from a defined height onto a wheel. Test criteria are the loss of pressure of the tire and generation of cracks in the wheel without direct impact of the falling weights. In the present paper, a set up composed of three accelerometers, a temperature sensor and a pressure sensor is examined as the base of a wheel tester. The sensor set-up configuration, on-line diagnostic and signal transmission are discussed.
An experimental methodology for a fuzzy set preference model
Turksen, I. B.; Willson, Ian A.
1992-01-01
A flexible fuzzy set preference model first requires approximate methodologies for implementation. Fuzzy sets must be defined for each individual consumer using computer software, requiring a minimum of time and expertise on the part of the consumer. The amount of information needed in defining sets must also be established. The model itself must adapt fully to the subject's choice of attributes (vague or precise), attribute levels, and importance weights. The resulting individual-level model should be fully adapted to each consumer. The methodologies needed to develop this model will be equally useful in a new generation of intelligent systems which interact with ordinary consumers, controlling electronic devices through fuzzy expert systems or making recommendations based on a variety of inputs. The power of personal computers and their acceptance by consumers has yet to be fully utilized to create interactive knowledge systems that fully adapt their function to the user. Understanding individual consumer preferences is critical to the design of new products and the estimation of demand (market share) for existing products, which in turn is an input to management systems concerned with production and distribution. The question of what to make, for whom to make it and how much to make requires an understanding of the customer's preferences and the trade-offs that exist between alternatives. Conjoint analysis is a widely used methodology which de-composes an overall preference for an object into a combination of preferences for its constituent parts (attributes such as taste and price), which are combined using an appropriate combination function. Preferences are often expressed using linguistic terms which cannot be represented in conjoint models. Current models are also not implemented an individual level, making it difficult to reach meaningful conclusions about the cause of an individual's behavior from an aggregate model. The combination of complex aggregate
On the effect of model parameters on forecast objects
Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott
2018-04-01
Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map. The field for some quantities generally consists of spatially coherent and disconnected objects. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.
Optimisation-Based Solution Methods for Set Partitioning Models
DEFF Research Database (Denmark)
Rasmussen, Matias Sevel
The scheduling of crew, i.e. the construction of work schedules for crew members, is often not a trivial task, but a complex puzzle. The task is complicated by rules, restrictions, and preferences. Therefore, manual solutions as well as solutions from standard software packages are not always su......_cient with respect to solution quality and solution time. Enhancement of the overall solution quality as well as the solution time can be of vital importance to many organisations. The _elds of operations research and mathematical optimisation deal with mathematical modelling of di_cult scheduling problems (among...... other topics). The _elds also deal with the development of sophisticated solution methods for these mathematical models. This thesis describes the set partitioning model which has been widely used for modelling crew scheduling problems. Integer properties for the set partitioning model are shown...
Global set of quadrupole deformation parameters for even-even nuclei
International Nuclear Information System (INIS)
Raman, S.; Nestor, C.W. Jr.
1986-01-01
A compilation of experimental results has been completed for the reduced electric quadrupole transition probability [B(E2)up arrow] between the 0 + ground state and the first 2 + state in even-even nuclei. This compilation together with certain simple relationships noted by other authors can be used to make reasonable predictions of unmeasured B(E2)up arrow values. The quadrupole deformation parameter β 2 immediately follows, because β 2 is proportional to [B(E2)up arrow]/sup 1/2/. 8 refs., 7 figs
Raymond, G M; Bassingthwaighte, J B
This is a practical example of a powerful research strategy: putting together data from studies covering a diversity of conditions can yield a scientifically sound grasp of the phenomenon when the individual observations failed to provide definitive understanding. The rationale is that defining a realistic, quantitative, explanatory hypothesis for the whole set of studies, brings about a "consilience" of the often competing hypotheses considered for individual data sets. An internally consistent conjecture linking multiple data sets simultaneously provides stronger evidence on the characteristics of a system than does analysis of individual data sets limited to narrow ranges of conditions. Our example examines three very different data sets on the clearance of salicylic acid from humans: a high concentration set from aspirin overdoses; a set with medium concentrations from a research study on the influences of the route of administration and of sex on the clearance kinetics, and a set on low dose aspirin for cardiovascular health. Three models were tested: (1) a first order reaction, (2) a Michaelis-Menten (M-M) approach, and (3) an enzyme kinetic model with forward and backward reactions. The reaction rates found from model 1 were distinctly different for the three data sets, having no commonality. The M-M model 2 fitted each of the three data sets but gave a reliable estimates of the Michaelis constant only for the medium level data (K m = 24±5.4 mg/L); analyzing the three data sets together with model 2 gave K m = 18±2.6 mg/L. (Estimating parameters using larger numbers of data points in an optimization increases the degrees of freedom, constraining the range of the estimates). Using the enzyme kinetic model (3) increased the number of free parameters but nevertheless improved the goodness of fit to the combined data sets, giving tighter constraints, and a lower estimated K m = 14.6±2.9 mg/L, demonstrating that fitting diverse data sets with a single model
Shim, Ji Suk; Lee, Jin Sook; Lee, Jeong Yol; Choi, Yeon Jo; Shin, Sang Wan; Ryu, Jae Jun
2015-10-01
This study investigated the marginal and internal adaptation of individual dental crowns fabricated using a CAD/CAM system (Sirona's BlueCam), also evaluating the effect of the software version used, and the specific parameter settings in the adaptation of crowns. Forty digital impressions of a master model previously prepared were acquired using an intraoral scanner and divided into four groups based on the software version and on the spacer settings used. The versions 3.8 and 4.2 of the software were used, and the spacer parameter was set at either 40 μm or 80 μm. The marginal and internal fit of the crowns were measured using the replica technique, which uses a low viscosity silicone material that simulates the thickness of the cement layer. The data were analyzed using a Friedman two-way analysis of variance (ANOVA) and paired t-tests with significance level set at psoftware version (psoftware showed a better fit than those designed with the version 3.8, particularly in the axial wall and in the inner margin. The spacer parameter was more accurately represented in the version 4.2 of the software than in the version 3.8. In addition, the use of the version 4.2 of the software combined with the spacer parameter set at 80 μm showed the least variation. On the other hand, the outer margin was not affected by the variables. Compared to the version 3.8 of the software, the version 4.2 can be recommended for the fabrication of well-fitting crown restorations, and for the appropriate regulation of the spacer parameter.
DEFF Research Database (Denmark)
Ruano, MV; Ribes, J; de Pauw, DJW
2007-01-01
to describe nitrogen and phosphorus removal in the Haaren WWTP (The Netherlands). The parameter significance ranking shows that the temperature correction coefficients are among the most influential parameters on the model output. This outcome confronts the previous identifiability studies and the experience...... based approaches which excluded them from their analysis. Systems analysis reveals that parameter significance ranking and size of the identifiable parameter subset depend on the information content of data available for calibration. However, it suffers from heavy computational demand. In contrast......, although the experience-based approach is computationally affordable, it is unable to take into account the information content issue and therefore can be either too optimistic (giving poorly identifiable sets) or pessimistic (small size of sets while much more can be estimated from the data...
MODIS/Terra+Aqua BRDF/Albedo Model Parameters 16-Day L3 Global 1km SIN Grid V005
National Aeronautics and Space Administration — The MODerate-resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo Model Parameters product (MCD43B1) contains three-dimensional (3D) data sets providing users...
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian
2011-01-01
of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....
Parameter estimation in nonlinear models for pesticide degradation
International Nuclear Information System (INIS)
Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.
1991-01-01
A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)
Zayane, Chadia
2014-06-01
In this paper, we address a special case of state and parameter estimation, where the system can be put on a cascade form allowing to estimate the state components and the set of unknown parameters separately. Inspired by the nonlinear Balloon hemodynamic model for functional Magnetic Resonance Imaging problem, we propose a hierarchical approach. The system is divided into two subsystems in cascade. The state and input are first estimated from a noisy measured signal using an adaptive observer. The obtained input is then used to estimate the parameters of a linear system using the modulating functions method. Some numerical results are presented to illustrate the efficiency of the proposed method.
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2006-06-05
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2006-01-01
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the
A review of Environmental Impact Assessment parameters required for set up of a hydropower project
International Nuclear Information System (INIS)
Roy, Pankaj Kumar; Mazumdar, Asis
2013-01-01
Environmental Impact Assessment in general, hydro-meteorological conditions, topography, hydrology, water availability analysis of a river system, importance of hydropower and feasibility study of Environmental Impact assessment due to the construction of the hydropower plant have been discussed in this research work. The site selection is one of the major components so far the hydropower is concerned and also the minimum flow should have known to us so that the capacity of a hydropower plant can be predicted. The sustainable flow, which refers the flow is available throughout the year, has been calculated based on flow duration curve. This study highlights the environmental impact assessment particularly related to hydropower project. Here the study area a district town located in the eastern region of India on the banks of river Kosi has been considered. The historical rainfall and the river discharge data have been collected from various organizations. The stage-discharge correlation and hydrological parameters related to hydropower have been analyzed and also to discuss the review of environmental impact assessment in hydropower project. The EIA analysis can be also carried out by using fuzzy logic wherein the EIA parameters can be given different weight-age based on the various survey reports that have been carried out at different places at different time. Such analysis has also been provided below based on the various data obtained.
Parameter set for computer-assisted texture analysis of fetal brain.
Gentillon, Hugues; Stefańczyk, Ludomir; Strzelecki, Michał; Respondek-Liberska, Maria
2016-11-25
Magnetic resonance data were collected from a diverse population of gravid women to objectively compare the quality of 1.5-tesla (1.5 T) versus 3-T magnetic resonance imaging of the developing human brain. MaZda and B11 computational-visual cognition tools were used to process 2D images. We proposed a wavelet-based parameter and two novel histogram-based parameters for Fisher texture analysis in three-dimensional space. Wavenhl, focus index, and dispersion index revealed better quality for 3 T. Though both 1.5 and 3 T images were 16-bit DICOM encoded, nearly 16 and 12 usable bits were measured in 3 and 1.5 T images, respectively. The four-bit padding observed in 1.5 T K-space encoding mimics noise by adding illusionistic details, which are not really part of the image. In contrast, zero-bit padding in 3 T provides space for storing more details and increases the likelihood of noise but as well as edges, which in turn are very crucial for differentiation of closely related anatomical structures. Both encoding modes are possible with both units, but higher 3 T resolution is the main difference. It contributes to higher perceived and available dynamic range. Apart from surprisingly larger Fisher coefficient, no significant difference was observed when testing was conducted with down-converted 8-bit BMP images.
Setting conservation management thresholds using a novel participatory modeling approach.
Addison, P F E; de Bie, K; Rumpff, L
2015-10-01
We devised a participatory modeling approach for setting management thresholds that show when management intervention is required to address undesirable ecosystem changes. This approach was designed to be used when management thresholds: must be set for environmental indicators in the face of multiple competing objectives; need to incorporate scientific understanding and value judgments; and will be set by participants with limited modeling experience. We applied our approach to a case study where management thresholds were set for a mat-forming brown alga, Hormosira banksii, in a protected area management context. Participants, including management staff and scientists, were involved in a workshop to test the approach, and set management thresholds to address the threat of trampling by visitors to an intertidal rocky reef. The approach involved trading off the environmental objective, to maintain the condition of intertidal reef communities, with social and economic objectives to ensure management intervention was cost-effective. Ecological scenarios, developed using scenario planning, were a key feature that provided the foundation for where to set management thresholds. The scenarios developed represented declines in percent cover of H. banksii that may occur under increased threatening processes. Participants defined 4 discrete management alternatives to address the threat of trampling and estimated the effect of these alternatives on the objectives under each ecological scenario. A weighted additive model was used to aggregate participants' consequence estimates. Model outputs (decision scores) clearly expressed uncertainty, which can be considered by decision makers and used to inform where to set management thresholds. This approach encourages a proactive form of conservation, where management thresholds and associated actions are defined a priori for ecological indicators, rather than reacting to unexpected ecosystem changes in the future. © 2015 The
The impact of structural error on parameter constraint in a climate model
McNeall, Doug; Williams, Jonny; Booth, Ben; Betts, Richard; Challenor, Peter; Wiltshire, Andy; Sexton, David
2016-11-01
Uncertainty in the simulation of the carbon cycle contributes significantly to uncertainty in the projections of future climate change. We use observations of forest fraction to constrain carbon cycle and land surface input parameters of the global climate model FAMOUS, in the presence of an uncertain structural error. Using an ensemble of climate model runs to build a computationally cheap statistical proxy (emulator) of the climate model, we use history matching to rule out input parameter settings where the corresponding climate model output is judged sufficiently different from observations, even allowing for uncertainty. Regions of parameter space where FAMOUS best simulates the Amazon forest fraction are incompatible with the regions where FAMOUS best simulates other forests, indicating a structural error in the model. We use the emulator to simulate the forest fraction at the best set of parameters implied by matching the model to the Amazon, Central African, South East Asian, and North American forests in turn. We can find parameters that lead to a realistic forest fraction in the Amazon, but that using the Amazon alone to tune the simulator would result in a significant overestimate of forest fraction in the other forests. Conversely, using the other forests to tune the simulator leads to a larger underestimate of the Amazon forest fraction. We use sensitivity analysis to find the parameters which have the most impact on simulator output and perform a history-matching exercise using credible estimates for simulator discrepancy and observational uncertainty terms. We are unable to constrain the parameters individually, but we rule out just under half of joint parameter space as being incompatible with forest observations. We discuss the possible sources of the discrepancy in the simulated Amazon, including missing processes in the land surface component and a bias in the climatology of the Amazon.
Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Onozato, Yusuke; Cho, Sang Yong; Kishi, Kazuma; Dobashi, Suguru; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi
2014-11-01
Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
International Nuclear Information System (INIS)
Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo
2014-01-01
Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. (author)
MODELLING BIOPHYSICAL PARAMETERS OF MAIZE USING LANDSAT 8 TIME SERIES
Directory of Open Access Journals (Sweden)
T. Dahms
2016-06-01
Full Text Available Open and free access to multi-frequent high-resolution data (e.g. Sentinel – 2 will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR, the leaf area index (LAI and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD: R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing
Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series
Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik
2016-06-01
Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model
Sagoo, Navjit; Valdes, Paul; Flecker, Rachel; Gregoire, Lauren J
2013-10-28
Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4.
Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E
2013-12-01
Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.
X-Parameter Based Modelling of Polar Modulated Power Amplifiers
DEFF Research Database (Denmark)
Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel
2013-01-01
X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....
Identifiability and error minimization of receptor model parameters with PET
International Nuclear Information System (INIS)
Delforge, J.; Syrota, A.; Mazoyer, B.M.
1989-01-01
The identifiability problem and the general framework for experimental design optimization are presented. The methodology is applied to the problem of the receptor-ligand model parameter estimation with dynamic positron emission tomography data. The first attempts to identify the model parameters from data obtained with a single tracer injection led to disappointing numerical results. The possibility of improving parameter estimation using a new experimental design combining an injection of the labelled ligand and an injection of the cold ligand (displacement experiment) has been investigated. However, this second protocol led to two very different numerical solutions and it was necessary to demonstrate which solution was biologically valid. This has been possible by using a third protocol including both a displacement and a co-injection experiment. (authors). 16 refs.; 14 figs
Rohmer, Jeremy
2016-04-01
Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g., time series of landslide displacements). Yet two major difficulties arise: 1. Global sensitivity analysis require running the landslide model a high number of times (> 1000), which may become impracticable when the landslide model has a high computation time cost (> several hours); 2. Landslide model outputs are not scalar, but function of time, i.e. they are n-dimensional vectors with n usually ranging from 100 to 1000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol' indices for each of these components are then achieved through meta-modelling, i.e. by replacing the landslide model by a "costless-to-evaluate" approximation (e.g., a projection pursuit regression model). The methodology combining "basis set expansion - meta-model - Sobol' indices" is then applied to the La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long running simulations. In particular, I identify the parameters, which trigger the occurrence of a turning point marking a shift between a regime of low values of landslide displacements and one of high values.
Mathematical models to predict rheological parameters of lateritic hydromixtures
Directory of Open Access Journals (Sweden)
Gabriel Hernández-Ramírez
2017-10-01
Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.
Averaging models: parameters estimation with the R-Average procedure
Directory of Open Access Journals (Sweden)
S. Noventa
2010-01-01
Full Text Available The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982, can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto & Vicentini, 2007 can be used to estimate the parameters of these models. By the use of multiple information criteria in the model selection procedure, R-Average allows for the identification of the best subset of parameters that account for the data. After a review of the general method, we present an implementation of the procedure in the framework of R-project, followed by some experiments using a Monte Carlo method.
"Economic microscope": The agent-based model set as an instrument in an economic system research
Berg, D. B.; Zvereva, O. M.; Akenov, Serik
2017-07-01
To create a valid model of a social or economic system one must consider a lot of parameters, conditions and restrictions. Systems and, consequently, the corresponding models are proved to be very complicated. The problem of such system model engineering can't be solved only with mathematical methods usage. The decision could be found in computer simulation. Simulation does not reject mathematical methods, mathematical expressions could become the foundation for a computer model. In these materials the set of agent-based computer models is under discussion. All the set models simulate productive agents communications, but every model is geared towards the specific goal, and, thus, has its own algorithm and its own peculiarities. It is shown that computer simulation can discover new features of the agents' behavior that can not be obtained by analytical solvation of mathematical equations and thus plays the role of some kind of economic microscope.
Comparisons of criteria in the assessment model parameter optimizations
International Nuclear Information System (INIS)
Liu Xinhe; Zhang Yongxing
1993-01-01
Three criteria (chi square, relative chi square and correlation coefficient) used in model parameter optimization (MPO) process that aims at significant reduction of prediction uncertainties were discussed and compared to each other with the aid of a well-controlled tracer experiment
Revised models and genetic parameter estimates for production and ...
African Journals Online (AJOL)
Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...
Determination of parameters in elasto-plastic models of aluminium.
Meuwissen, M.H.H.; Oomens, C.W.J.; Baaijens, F.P.T.; Petterson, R.; Janssen, J.D.; Sol, H.; Oomens, C.W.J.
1997-01-01
A mixed numerical-experimental method is used to determine parameters in elasto-plastic constitutive models. An aluminium plate of non-standard geometry is mounted in a uniaxial tensile testing machine at which some adjustments are made to carry out shear tests. The sample is loaded and the total
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
2002-01-01
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Do Lumped-Parameter Models Provide the Correct Geometrical Damping?
DEFF Research Database (Denmark)
Andersen, Lars
response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....
Key processes and input parameters for environmental tritium models
International Nuclear Information System (INIS)
Bunnenberg, C.; Taschner, M.; Ogram, G.L.
1994-01-01
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs
Key processes and input parameters for environmental tritium models
Energy Technology Data Exchange (ETDEWEB)
Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)
1994-12-31
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.
Time domain series system definition and gear set reliability modeling
International Nuclear Information System (INIS)
Xie, Liyang; Wu, Ningxiang; Qian, Wenxue
2016-01-01
Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.
A new level set model for cell image segmentation
Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun
2011-02-01
In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.
Integrating microbial diversity in soil carbon dynamic models parameters
Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie
2015-04-01
Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten
A framework for scalable parameter estimation of gene circuit models using structural information
Kuwahara, Hiroyuki
2013-06-21
Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. The Author 2013.
Utilising temperature differences as constraints for estimating parameters in a simple climate model
International Nuclear Information System (INIS)
Bodman, Roger W; Karoly, David J; Enting, Ian G
2010-01-01
Simple climate models can be used to estimate the global temperature response to increasing greenhouse gases. Changes in the energy balance of the global climate system are represented by equations that necessitate the use of uncertain parameters. The values of these parameters can be estimated from historical observations, model testing, and tuning to more complex models. Efforts have been made at estimating the possible ranges for these parameters. This study continues this process, but demonstrates two new constraints. Previous studies have shown that land-ocean temperature differences are only weakly correlated with global mean temperature for natural internal climate variations. Hence, these temperature differences provide additional information that can be used to help constrain model parameters. In addition, an ocean heat content ratio can also provide a further constraint. A pulse response technique was used to identify relative parameter sensitivity which confirmed the importance of climate sensitivity and ocean vertical diffusivity, but the land-ocean warming ratio and the land-ocean heat exchange coefficient were also found to be important. Experiments demonstrate the utility of the land-ocean temperature difference and ocean heat content ratio for setting parameter values. This work is based on investigations with MAGICC (Model for the Assessment of Greenhouse-gas Induced Climate Change) as the simple climate model.
A framework for scalable parameter estimation of gene circuit models using structural information
Kuwahara, Hiroyuki; Fan, Ming; Wang, Suojin; Gao, Xin
2013-01-01
Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. The Author 2013.
A framework for scalable parameter estimation of gene circuit models using structural information.
Kuwahara, Hiroyuki; Fan, Ming; Wang, Suojin; Gao, Xin
2013-07-01
Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. http://sfb.kaust.edu.sa/Pages/Software.aspx. Supplementary data are available at Bioinformatics online.
Model calibration and parameter estimation for environmental and water resource systems
Sun, Ne-Zheng
2015-01-01
This three-part book provides a comprehensive and systematic introduction to the development of useful models for complex systems. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get famili...
Mental models of audit and feedback in primary care settings.
Hysong, Sylvia J; Smitham, Kristen; SoRelle, Richard; Amspoker, Amber; Hughes, Ashley M; Haidet, Paul
2018-05-30
Audit and feedback has been shown to be instrumental in improving quality of care, particularly in outpatient settings. The mental model individuals and organizations hold regarding audit and feedback can moderate its effectiveness, yet this has received limited study in the quality improvement literature. In this study we sought to uncover patterns in mental models of current feedback practices within high- and low-performing healthcare facilities. We purposively sampled 16 geographically dispersed VA hospitals based on high and low performance on a set of chronic and preventive care measures. We interviewed up to 4 personnel from each location (n = 48) to determine the facility's receptivity to audit and feedback practices. Interview transcripts were analyzed via content and framework analysis to identify emergent themes. We found high variability in the mental models of audit and feedback, which we organized into positive and negative themes. We were unable to associate mental models of audit and feedback with clinical performance due to high variance in facility performance over time. Positive mental models exhibit perceived utility of audit and feedback practices in improving performance; whereas, negative mental models did not. Results speak to the variability of mental models of feedback, highlighting how facilities perceive current audit and feedback practices. Findings are consistent with prior research in that variability in feedback mental models is associated with lower performance.; Future research should seek to empirically link mental models revealed in this paper to high and low levels of clinical performance.
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rasmuson; K. Rautenstrauch
2004-09-14
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.
Evaluation of some infiltration models and hydraulic parameters
International Nuclear Information System (INIS)
Haghighi, F.; Gorji, M.; Shorafa, M.; Sarmadian, F.; Mohammadi, M. H.
2010-01-01
The evaluation of infiltration characteristics and some parameters of infiltration models such as sorptivity and final steady infiltration rate in soils are important in agriculture. The aim of this study was to evaluate some of the most common models used to estimate final soil infiltration rate. The equality of final infiltration rate with saturated hydraulic conductivity (Ks) was also tested. Moreover, values of the estimated sorptivity from the Philips model were compared to estimates by selected pedotransfer functions (PTFs). The infiltration experiments used the doublering method on soils with two different land uses in the Taleghan watershed of Tehran province, Iran, from September to October, 2007. The infiltration models of Kostiakov-Lewis, Philip two-term and Horton were fitted to observed infiltration data. Some parameters of the models and the coefficient of determination goodness of fit were estimated using MATLAB software. The results showed that, based on comparing measured and model-estimated infiltration rate using root mean squared error (RMSE), Hortons model gave the best prediction of final infiltration rate in the experimental area. Laboratory measured Ks values gave significant differences and higher values than estimated final infiltration rates from the selected models. The estimated final infiltration rate was not equal to laboratory measured Ks values in the study area. Moreover, the estimated sorptivity factor by Philips model was significantly different to those estimated by selected PTFs. It is suggested that the applicability of PTFs is limited to specific, similar conditions. (Author) 37 refs.
A measure on the set of compact Friedmann-Lemaitre-Robertson-Walker models
International Nuclear Information System (INIS)
Roukema, Boudewijn F; Blanloeil, Vincent
2010-01-01
Compact, flat Friedmann-Lemaitre-Robertson-Walker (FLRW) models have recently regained interest as a good fit to the observed cosmic microwave background temperature fluctuations. However, it is generally thought that a globally, exactly flat FLRW model is theoretically improbable. Here, in order to obtain a probability space on the set F of compact, comoving, 3-spatial sections of FLRW models, a physically motivated hypothesis is proposed, using the density parameter Ω as a derived rather than fundamental parameter. We assume that the processes that select the 3-manifold also select a global mass-energy and a Hubble parameter. The requirement that the local and global values of Ω are equal implies a range in Ω that consists of a single real value for any 3-manifold. Thus, the obvious measure over F is the discrete measure. Hence, if the global mass-energy and Hubble parameter are a function of 3-manifold choice among compact FLRW models, then probability spaces parametrized by Ω do not, in general, give a zero probability of a flat model. Alternatively, parametrization by a spatial size parameter, the injectivity radius r inj , suggests the Lebesgue measure. In this case, the probability space over the injectivity radius implies that flat models occur almost surely (a.s.), in the sense of probability theory, and non-flat models a.s. do not occur.
A measure on the set of compact Friedmann-Lemaitre-Robertson-Walker models
Energy Technology Data Exchange (ETDEWEB)
Roukema, Boudewijn F [Torun Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Torun (Poland); Blanloeil, Vincent [IRMA, Departement de Mathematiques, Universite de Strasbourg, 7 rue Rene Descartes, 67084 Strasbourg, Cedex (France)
2010-12-21
Compact, flat Friedmann-Lemaitre-Robertson-Walker (FLRW) models have recently regained interest as a good fit to the observed cosmic microwave background temperature fluctuations. However, it is generally thought that a globally, exactly flat FLRW model is theoretically improbable. Here, in order to obtain a probability space on the set F of compact, comoving, 3-spatial sections of FLRW models, a physically motivated hypothesis is proposed, using the density parameter {Omega} as a derived rather than fundamental parameter. We assume that the processes that select the 3-manifold also select a global mass-energy and a Hubble parameter. The requirement that the local and global values of {Omega} are equal implies a range in {Omega} that consists of a single real value for any 3-manifold. Thus, the obvious measure over F is the discrete measure. Hence, if the global mass-energy and Hubble parameter are a function of 3-manifold choice among compact FLRW models, then probability spaces parametrized by {Omega} do not, in general, give a zero probability of a flat model. Alternatively, parametrization by a spatial size parameter, the injectivity radius r{sub inj}, suggests the Lebesgue measure. In this case, the probability space over the injectivity radius implies that flat models occur almost surely (a.s.), in the sense of probability theory, and non-flat models a.s. do not occur.
Czaplik, Michael; Biener, Ingeborg; Leonhardt, Steffen; Rossaint, Rolf
2014-03-01
Since mechanical ventilation can cause harm to lung tissue it should be as protective as possible. Whereas numerous options exist to set ventilator parameters, an adequate monitoring is lacking up to date. The Electrical Impedance Tomography (EIT) provides a non-invasive visualization of ventilation which is relatively easy to apply and commercially available. Although there are a number of published measures and parameters derived from EIT, it is not clear how to use EIT to improve clinical outcome of e.g. patients suffering from acute respiratory distress syndrome (ARDS), a severe disease with a high mortality rate. On the one hand, parameters should be easy to obtain, on the other hand clinical algorithms should consider them to optimize ventilator settings. The so called Global inhomogeneity (GI) index bases on the fact that ARDS is characterized by an inhomogeneous injury pattern. By applying positive endexpiratory pressures (PEEP), homogeneity should be attained. In this study, ARDS was induced by a double hit procedure in six pigs. They were randomly assigned to either the EIT or the control group. Whereas in the control group the ARDS network table was used to set the PEEP according to the current inspiratory oxygen fraction, in the EIT group the GI index was calculated during a decremental PEEP trial. PEEP was kept when GI index was lowest. Interestingly, PEEP was significantly higher in the EIT group. Additionally, two of these animals died ahead of the schedule. Obviously, not only homogeneity of ventilation distribution matters but also limitation of over-distension.
Estimating model parameters in nonautonomous chaotic systems using synchronization
International Nuclear Information System (INIS)
Yang, Xiaoli; Xu, Wei; Sun, Zhongkui
2007-01-01
In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation
A fuzzy set preference model for market share analysis
Turksen, I. B.; Willson, Ian A.
1992-01-01
Consumer preference models are widely used in new product design, marketing management, pricing, and market segmentation. The success of new products depends on accurate market share prediction and design decisions based on consumer preferences. The vague linguistic nature of consumer preferences and product attributes, combined with the substantial differences between individuals, creates a formidable challenge to marketing models. The most widely used methodology is conjoint analysis. Conjoint models, as currently implemented, represent linguistic preferences as ratio or interval-scaled numbers, use only numeric product attributes, and require aggregation of individuals for estimation purposes. It is not surprising that these models are costly to implement, are inflexible, and have a predictive validity that is not substantially better than chance. This affects the accuracy of market share estimates. A fuzzy set preference model can easily represent linguistic variables either in consumer preferences or product attributes with minimal measurement requirements (ordinal scales), while still estimating overall preferences suitable for market share prediction. This approach results in flexible individual-level conjoint models which can provide more accurate market share estimates from a smaller number of more meaningful consumer ratings. Fuzzy sets can be incorporated within existing preference model structures, such as a linear combination, using the techniques developed for conjoint analysis and market share estimation. The purpose of this article is to develop and fully test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation), and how much to make (market share
Soil-Related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Smith, A. J.
2004-01-01
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This
Soil-Related Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
A. J. Smith
2004-09-09
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure
Snyder, James A; Abramyan, Tigran; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A
2012-12-01
Adsorption free energies for eight host-guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5-9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface.
Pinem, M.; Fauzi, R.
2018-02-01
One technique for ensuring continuity of wireless communication services and keeping a smooth transition on mobile communication networks is the soft handover technique. In the Soft Handover (SHO) technique the inclusion and reduction of Base Station from the set of active sets is determined by initiation triggers. One of the initiation triggers is based on the strong reception signal. In this paper we observed the influence of parameters of large-scale radio propagation models to improve the performance of mobile communications. The observation parameters for characterizing the performance of the specified mobile system are Drop Call, Radio Link Degradation Rate and Average Size of Active Set (AS). The simulated results show that the increase in altitude of Base Station (BS) Antenna and Mobile Station (MS) Antenna contributes to the improvement of signal power reception level so as to improve Radio Link quality and increase the average size of Active Set and reduce the average Drop Call rate. It was also found that Hata’s propagation model contributed significantly to improvements in system performance parameters compared to Okumura’s propagation model and Lee’s propagation model.
Investigation of RADTRAN Stop Model input parameters for truck stops
International Nuclear Information System (INIS)
Griego, N.R.; Smith, J.D.; Neuhauser, K.S.
1996-01-01
RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops
Updated climatological model predictions of ionospheric and HF propagation parameters
International Nuclear Information System (INIS)
Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.
1991-01-01
The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs
Statistical approach for uncertainty quantification of experimental modal model parameters
DEFF Research Database (Denmark)
Luczak, M.; Peeters, B.; Kahsin, M.
2014-01-01
Composite materials are widely used in manufacture of aerospace and wind energy structural components. These load carrying structures are subjected to dynamic time-varying loading conditions. Robust structural dynamics identification procedure impose tight constraints on the quality of modal models...... represent different complexity levels ranging from coupon, through sub-component up to fully assembled aerospace and wind energy structural components made of composite materials. The proposed method is demonstrated on two application cases of a small and large wind turbine blade........ This paper aims at a systematic approach for uncertainty quantification of the parameters of the modal models estimated from experimentally obtained data. Statistical analysis of modal parameters is implemented to derive an assessment of the entire modal model uncertainty measure. Investigated structures...
Influential input parameters for reflood model of MARS code
Energy Technology Data Exchange (ETDEWEB)
Oh, Deog Yeon; Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2012-10-15
Best Estimate (BE) calculation has been more broadly used in nuclear industries and regulations to reduce the significant conservatism for evaluating Loss of Coolant Accident (LOCA). Reflood model has been identified as one of the problems in BE calculation. The objective of the Post BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) program of OECD/NEA is to make progress the issue of the quantification of the uncertainty of the physical models in system thermal hydraulic codes, by considering an experimental result especially for reflood. It is important to establish a methodology to identify and select the parameters influential to the response of reflood phenomena following Large Break LOCA. For this aspect, a reference calculation and sensitivity analysis to select the dominant influential parameters for FEBA experiment are performed.
Four-parameter analytical local model potential for atoms
International Nuclear Information System (INIS)
Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang
2009-01-01
Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)
Gas ultracentrifuge separative parameters modeling using hybrid neural networks
International Nuclear Information System (INIS)
Crus, Maria Ursulina de Lima
2005-01-01
A hybrid neural network is developed for the calculation of the separative performance of an ultracentrifuge. A feed forward neural network is trained to estimate the internal flow parameters of a gas ultracentrifuge, and then these parameters are applied in the diffusion equation. For this study, a 573 experimental data set is used to establish the relation between the separative performance and the controlled variables. The process control variables considered are: the feed flow rate F, the cut θ and the product pressure Pp. The mechanical arrangements consider the radial waste scoop dimension, the rotating baffle size D s and the axial feed location Z E . The methodology was validated through the comparison of the calculated separative performance with experimental values. This methodology may be applied to other processes, just by adapting the phenomenological procedures. (author)
Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling.
Christophides, Damianos; Appelt, Ane L; Gusnanto, Arief; Lilley, John; Sebag-Montefiore, David
2018-07-01
To present a fully automatic method to generate multiparameter normal tissue complication probability (NTCP) models and compare its results with those of a published model, using the same patient cohort. Data were analyzed from 345 rectal cancer patients treated with external radiation therapy to predict the risk of patients developing grade 1 or ≥2 cystitis. In total, 23 clinical factors were included in the analysis as candidate predictors of cystitis. Principal component analysis was used to decompose the bladder dose-volume histogram into 8 principal components, explaining more than 95% of the variance. The data set of clinical factors and principal components was divided into training (70%) and test (30%) data sets, with the training data set used by the algorithm to compute an NTCP model. The first step of the algorithm was to obtain a bootstrap sample, followed by multicollinearity reduction using the variance inflation factor and genetic algorithm optimization to determine an ordinal logistic regression model that minimizes the Bayesian information criterion. The process was repeated 100 times, and the model with the minimum Bayesian information criterion was recorded on each iteration. The most frequent model was selected as the final "automatically generated model" (AGM). The published model and AGM were fitted on the training data sets, and the risk of cystitis was calculated. The 2 models had no significant differences in predictive performance, both for the training and test data sets (P value > .05) and found similar clinical and dosimetric factors as predictors. Both models exhibited good explanatory performance on the training data set (P values > .44), which was reduced on the test data sets (P values < .05). The predictive value of the AGM is equivalent to that of the expert-derived published model. It demonstrates potential in saving time, tackling problems with a large number of parameters, and standardizing variable selection in NTCP
Radcliffe, D E; Lin, Z; Risse, L M; Romeis, J J; Jackson, C R
2009-01-01
Lake Allatoona is a large reservoir north of Atlanta, GA, that drains an area of about 2870 km2 scheduled for a phosphorus (P) total maximum daily load (TMDL). The Soil and Water Assessment Tool (SWAT) model has been widely used for watershed-scale modeling of P, but there is little guidance on how to estimate P-related parameters, especially those related to in-stream P processes. In this paper, methods are demonstrated to individually estimate SWAT soil-related P parameters and to collectively estimate P parameters related to stream processes. Stream related parameters were obtained using the nutrient uptake length concept. In a manner similar to experiments conducted by stream ecologists, a small point source is simulated in a headwater sub-basin of the SWAT models, then the in-stream parameter values are adjusted collectively to get an uptake length of P similar to the values measured in the streams in the region. After adjusting the in-stream parameters, the P uptake length estimated in the simulations ranged from 53 to 149 km compared to uptake lengths measured by ecologists in the region of 11 to 85 km. Once the a priori P-related parameter set was developed, the SWAT models of main tributaries to Lake Allatoona were calibrated for daily transport. Models using SWAT P parameters derived from the methods in this paper outperformed models using default parameter values when predicting total P (TP) concentrations in streams during storm events and TP annual loads to Lake Allatoona.
Application of parameters space analysis tools for empirical model validation
Energy Technology Data Exchange (ETDEWEB)
Paloma del Barrio, E. [LEPT-ENSAM UMR 8508, Talence (France); Guyon, G. [Electricite de France, Moret-sur-Loing (France)
2004-01-01
A new methodology for empirical model validation has been proposed in the framework of the Task 22 (Building Energy Analysis Tools) of the International Energy Agency. It involves two main steps: checking model validity and diagnosis. Both steps, as well as the underlying methods, have been presented in the first part of the paper. In this part, they are applied for testing modelling hypothesis in the framework of the thermal analysis of an actual building. Sensitivity analysis tools have been first used to identify the parts of the model that can be really tested on the available data. A preliminary diagnosis is then supplied by principal components analysis. Useful information for model behaviour improvement has been finally obtained by optimisation techniques. This example of application shows how model parameters space analysis is a powerful tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison with residuals analysis techniques. (author)
A new method to estimate parameters of linear compartmental models using artificial neural networks
International Nuclear Information System (INIS)
Gambhir, Sanjiv S.; Keppenne, Christian L.; Phelps, Michael E.; Banerjee, Pranab K.
1998-01-01
At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models. (author)
Application of an Evolutionary Algorithm for Parameter Optimization in a Gully Erosion Model
Energy Technology Data Exchange (ETDEWEB)
Rengers, Francis; Lunacek, Monte; Tucker, Gregory
2016-06-01
Herein we demonstrate how to use model optimization to determine a set of best-fit parameters for a landform model simulating gully incision and headcut retreat. To achieve this result we employed the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), an iterative process in which samples are created based on a distribution of parameter values that evolve over time to better fit an objective function. CMA-ES efficiently finds optimal parameters, even with high-dimensional objective functions that are non-convex, multimodal, and non-separable. We ran model instances in parallel on a high-performance cluster, and from hundreds of model runs we obtained the best parameter choices. This method is far superior to brute-force search algorithms, and has great potential for many applications in earth science modeling. We found that parameters representing boundary conditions tended to converge toward an optimal single value, whereas parameters controlling geomorphic processes are defined by a range of optimal values.
Data Set for Emperical Validation of Double Skin Facade Model
DEFF Research Database (Denmark)
Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per
2008-01-01
During the recent years the attention to the double skin facade (DSF) concept has greatly increased. Nevertheless, the application of the concept depends on whether a reliable model for simulation of the DSF performance will be developed or pointed out. This is, however, not possible to do, until...... the International Energy Agency (IEA) Task 34 Annex 43. This paper describes the full-scale outdoor experimental test facility ‘the Cube', where the experiments were conducted, the experimental set-up and the measurements procedure for the data sets. The empirical data is composed for the key-functioning modes...
Test models for improving filtering with model errors through stochastic parameter estimation
International Nuclear Information System (INIS)
Gershgorin, B.; Harlim, J.; Majda, A.J.
2010-01-01
The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.
Directory of Open Access Journals (Sweden)
Andre Lamert
2018-03-01
Full Text Available We present and compare two flexible and effective methodologies to predict disturbance zones ahead of underground tunnels by using elastic full-waveform inversion. One methodology uses a linearized, iterative approach based on misfit gradients computed with the adjoint method while the other uses iterative, gradient-free unscented Kalman filtering in conjunction with a level-set representation. Whereas the former does not involve a priori assumptions on the distribution of elastic properties ahead of the tunnel, the latter introduces a massive reduction in the number of explicit model parameters to be inverted for by focusing on the geometric form of potential disturbances and their average elastic properties. Both imaging methodologies are validated through successful reconstructions of simple disturbances. As an application, we consider an elastic multiple disturbance scenario. By using identical synthetic time-domain seismograms as test data, we obtain satisfactory, albeit different, reconstruction results from the two inversion methodologies. The computational costs of both approaches are of the same order of magnitude, with the gradient-based approach showing a slight advantage. The model parameter space reduction approach compensates for this by additionally providing a posteriori estimates of model parameter uncertainty. Keywords: Tunnel seismics, Full waveform inversion, Seismic waves, Level-set method, Adjoint method, Kalman filter
Biosphere modelling for a HLW repository - scenario and parameter variations
International Nuclear Information System (INIS)
Grogan, H.
1985-03-01
In Switzerland high-level radioactive wastes have been considered for disposal in deep-lying crystalline formations. The individual doses to man resulting from radionuclides entering the biosphere via groundwater transport are calculated. The main recipient area modelled, which constitutes the base case, is a broad gravel terrace sited along the south bank of the river Rhine. An alternative recipient region, a small valley with a well, is also modelled. A number of parameter variations are performed in order to ascertain their impact on the doses. Finally two scenario changes are modelled somewhat simplistically, these consider different prevailing climates, namely tundra and a warmer climate than present. In the base case negligibly low doses to man in the long term, resulting from the existence of a HLW repository have been calculated. Cs-135 results in the largest dose (8.4E-7 mrem/y at 6.1E+6 y) while Np-237 gives the largest dose from the actinides (3.6E-8 mrem/y). The response of the model to parameter variations cannot be easily predicted due to non-linear coupling of many of the parameters. However, the calculated doses were negligibly low in all cases as were those resulting from the two scenario variations. (author)
International Nuclear Information System (INIS)
Mancusi, D; Charity, R J; Cugnon, J
2013-01-01
The de-excitation of compound nuclei has been successfully described for several decades by means of statistical models. However, accurate predictions require some fine-tuning of the model parameters. This task can be simplified by studying several entrance channels, which populate different regions of the parameter space of the compound nucleus. Fusion reactions play an important role in this strategy because they minimise the uncertainty on the entrance channel by fixing mass, charge and excitation energy of the compound nucleus. If incomplete fusion is negligible, the only uncertainty on the compound nucleus comes from the spin distribution. However, some de-excitation channels, such as fission, are quite sensitive to spin. Other entrance channels can then be used to discriminate between equivalent parameter sets. The focus of this work is on fission and intermediate-mass-fragment emission cross sections of compound nuclei with 70 70 ≲ A ≲ 240. 240. The statistical de-excitation model is GEMINI++. The choice of the observables is natural in the framework of GEMINI++, which describes fragment emission using a fissionlike formalism. Equivalent parameter sets for fusion reactions can be resolved using the spallation entrance channel. This promising strategy can lead to the identification of a minimal set of physical ingredients necessary for a unified quantitative description of nuclear de-excitation.
Fate modelling of chemical compounds with incomplete data sets
DEFF Research Database (Denmark)
Birkved, Morten; Heijungs, Reinout
2011-01-01
Impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. These data are used in multi-media fate and exposure models, to calculate risk levels...... in an approximate way. The idea is that not all data needed in a multi-media fate and exposure model are completely independent and equally important, but that there are physical-chemical and biological relationships between sets of chemical properties. A statistical model is constructed to underpin this assumption...... and other indicators. ERA typically addresses one specific chemical, but in an LCIA, the number of chemicals encountered may be quite high, up to hundreds or thousands. This study explores the development of meta-models, which are supposed to reflect the “true”multi-media fate and exposure model...
Contaminant transport in aquifers: improving the determination of model parameters
International Nuclear Information System (INIS)
Sabino, C.V.S.; Moreira, R.M.; Lula, Z.L.; Chausson, Y.; Magalhaes, W.F.; Vianna, M.N.
1998-01-01
Parameters conditioning the migration behavior of cesium and mercury are measured with their tracers 137 Cs and 203 Hg in the laboratory, using both batch and column experiments. Batch tests were used to define the sorption isotherm characteristics. Also investigated were the influences of some test parameters, in particular those due to the volume of water to mass of soil ratio (V/m). A provisional relationship between V/m and the distribution coefficient, K d , has been advanced, and a procedure to estimate K d 's valid for environmental values of the ratio V/m has been suggested. Column tests provided the parameters for a transport model. A major problem to be dealt with in such tests is the collimation of the radioactivity probe. Besides mechanically optimizing the collimator, a deconvolution procedure has been suggested and tested, with statistical criteria, to filter off both noise and spurious tracer signals. Correction procedures for the integrating effect introduced by sampling at the exit of columns have also been developed. These techniques may be helpful in increasing the accuracy required in the measurement of parameters conditioning contaminant migration in soils, thus allowing more reliable predictions based on mathematical model applications. (author)
Directory of Open Access Journals (Sweden)
Anthony Shannon
2006-04-01
Full Text Available This paper describes an approach to adaptive optimal control in the presence of model parameter calculation difficulties. This has wide application in a variety of biological and biomedical research and clinical problems. To illustrate the techniques, the approach is applied to the development and implementation of a practical adaptive insulin infusion algorithm for use with patients with Type 1 diabetes mellitus.
Assessment of parameter regionalization methods for modeling flash floods in China
Ragettli, Silvan; Zhou, Jian; Wang, Haijing
2017-04-01
Rainstorm flash floods are a common and serious phenomenon during the summer months in many hilly and mountainous regions of China. For this study, we develop a modeling strategy for simulating flood events in small river basins of four Chinese provinces (Shanxi, Henan, Beijing, Fujian). The presented research is part of preliminary investigations for the development of a national operational model for predicting and forecasting hydrological extremes in basins of size 10 - 2000 km2, whereas most of these basins are ungauged or poorly gauged. The project is supported by the China Institute of Water Resources and Hydropower Research within the framework of the national initiative for flood prediction and early warning system for mountainous regions in China (research project SHZH-IWHR-73). We use the USGS Precipitation-Runoff Modeling System (PRMS) as implemented in the Java modeling framework Object Modeling System (OMS). PRMS can operate at both daily and storm timescales, switching between the two using a precipitation threshold. This functionality allows the model to perform continuous simulations over several years and to switch to the storm mode to simulate storm response in greater detail. The model was set up for fifteen watersheds for which hourly precipitation and runoff data were available. First, automatic calibration based on the Shuffled Complex Evolution method was applied to different hydrological response unit (HRU) configurations. The Nash-Sutcliffe efficiency (NSE) was used as assessment criteria, whereas only runoff data from storm events were considered. HRU configurations reflect the drainage-basin characteristics and depend on assumptions regarding drainage density and minimum HRU size. We then assessed the sensitivity of optimal parameters to different HRU configurations. Finally, the transferability to other watersheds of optimal model parameters that were not sensitive to HRU configurations was evaluated. Model calibration for the 15
Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J
2011-09-01
When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Soares, T. A. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Daura, X. [Universitat Autonoma de Barcelona, InstitucioCatalana de Recerca i Estudis Avancats and Institut de Biotecnologia i Biomedicina (Spain); Oostenbrink, C. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Smith, L. J. [University of Oxford, Oxford Centre for Molecular Sciences, Central Chemistry Laboratory (United Kingdom); Gunsteren, W. F. van [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland)], E-mail: wfvgn@igc.phys.chem.ethz.ch
2004-12-15
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, {sup 3}J{sub NH{alpha}} and {sup 3}J{sub {alpha}}{sub {beta}} coupling constants, and {sup 1}5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone {sup 3}J{sub HN{alpha}}-coupling constants and {sup 1}H- {sup 1}5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain {sup 3}J{sub {alpha}}{sub {beta}}-coupling constants and {sup 1}H- {sup 1}5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the
International Nuclear Information System (INIS)
Soares, T. A.; Daura, X.; Oostenbrink, C.; Smith, L. J.; Gunsteren, W. F. van
2004-01-01
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, 3 J NHα and 3 J αβ coupling constants, and 1 5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone 3 J HNα -coupling constants and 1 H- 1 5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain 3 J αβ -coupling constants and 1 H- 1 5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result
Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.
El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher
2018-01-01
Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.
Propagation channel characterization, parameter estimation, and modeling for wireless communications
Yin, Xuefeng
2016-01-01
Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...
Empirical flow parameters : a tool for hydraulic model validity
Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.
2013-01-01
The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.
Energy Technology Data Exchange (ETDEWEB)
Eifler, Tim; Krause, Elisabeth; Dodelson, Scott; Zentner, Andrew; Hearin, Andrew; Gnedin, Nickolay
2014-05-28
Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys are likely to exceed statistical uncertainties of current and future LSS data sets, potentially limiting the extraction of cosmological information. Here we present a general framework (PCA marginalization) to consistently incorporate systematic effects into a likelihood analysis. This technique naturally accounts for degeneracies between nuisance parameters and can substantially reduce the dimension of the parameter space that needs to be sampled. As a practical application, we apply PCA marginalization to account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we use CosmoLike to run simulated likelihood analyses on three independent sets of numerical simulations, each covering a wide range of baryonic scenarios differing in cooling, star formation, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV (Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic physics is not accounted for. We then show that PCA marginalization (employing at most 3 to 4 nuisance parameters) removes this bias. Our study demonstrates that it is possible to obtain robust, precise constraints on the dark energy equation of state even in the presence of large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA marginalization technique is a powerful, general tool for addressing many of the challenges facing the precision cosmology program.
Lei, H.; Lu, Z.; Vesselinov, V. V.; Ye, M.
2017-12-01
Simultaneous identification of both the zonation structure of aquifer heterogeneity and the hydrogeological parameters associated with these zones is challenging, especially for complex subsurface heterogeneity fields. In this study, a new approach, based on the combination of the level set method and a parallel genetic algorithm is proposed. Starting with an initial guess for the zonation field (including both zonation structure and the hydraulic properties of each zone), the level set method ensures that material interfaces are evolved through the inverse process such that the total residual between the simulated and observed state variables (hydraulic head) always decreases, which means that the inversion result depends on the initial guess field and the minimization process might fail if it encounters a local minimum. To find the global minimum, the genetic algorithm (GA) is utilized to explore the parameters that define initial guess fields, and the minimal total residual corresponding to each initial guess field is considered as the fitness function value in the GA. Due to the expensive evaluation of the fitness function, a parallel GA is adapted in combination with a simulated annealing algorithm. The new approach has been applied to several synthetic cases in both steady-state and transient flow fields, including a case with real flow conditions at the chromium contaminant site at the Los Alamos National Laboratory. The results show that this approach is capable of identifying the arbitrary zonation structures of aquifer heterogeneity and the hydrogeological parameters associated with these zones effectively.
Low-dimensional modeling of a driven cavity flow with two free parameters
DEFF Research Database (Denmark)
Jørgensen, Bo Hoffmann; Sørensen, Jens Nørkær; Brøns, Morten
2003-01-01
. By carrying out such a procedure one obtains a low-dimensional model consisting of a reduced set of Ordinary Differential Equations (ODEs) which models the original equations. A technique called Sequential Proper Orthogonal Decomposition (SPOD) is developed to perform decompositions suitable for low...... parameters to appear in the inhomogeneous boundary conditions without the addition of any constraints. This is necessary because both the driving lid and the rotating rod are controlled simultaneously. Apparently, the results reported for this model are the first to be obtained for a low-dimensional model...
Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J
2014-01-01
Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.
Setting development goals using stochastic dynamical system models.
Ranganathan, Shyam; Nicolis, Stamatios C; Bali Swain, Ranjula; Sumpter, David J T
2017-01-01
The Millennium Development Goals (MDG) programme was an ambitious attempt to encourage a globalised solution to important but often-overlooked development problems. The programme led to wide-ranging development but it has also been criticised for unrealistic and arbitrary targets. In this paper, we show how country-specific development targets can be set using stochastic, dynamical system models built from historical data. In particular, we show that the MDG target of two-thirds reduction of child mortality from 1990 levels was infeasible for most countries, especially in sub-Saharan Africa. At the same time, the MDG targets were not ambitious enough for fast-developing countries such as Brazil and China. We suggest that model-based setting of country-specific targets is essential for the success of global development programmes such as the Sustainable Development Goals (SDG). This approach should provide clear, quantifiable targets for policymakers.
Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model
DEFF Research Database (Denmark)
Åberg, Andreas; Widd, Anders; Abildskov, Jens
2016-01-01
be used directly for accurate full-scale transient simulations. The model was validated against full-scale data with an engine following the European Transient Cycle. The validation showed that the predictive capability for nitrogen oxides (NOx) was satisfactory. After re-estimation of the adsorption...... and desorption parameters with full-scale transient data, the fit for both NOx and NH3-slip was satisfactory....
Mathematical models to predict rheological parameters of lateritic hydromixtures
Gabriel Hernández-Ramírez; Arístides A. Legrá-Lobaina; Beatriz Ramírez-Serrano; Liudmila Pérez-García
2017-01-01
The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to...
Determining the Walker exponent and developing a modified Smith-Watson-Topper parameter model
Energy Technology Data Exchange (ETDEWEB)
Lv, Zhiqiang; Huang, Hong Zhong; Wang, Hai Kun; Gao, Huiying; Zuo, Fang Jun [University of Electronic Science and Technology of China, Chengdu (China)
2016-03-15
Mean stress effects significantly influence the fatigue life of components. In general, tensile mean stresses are known to reduce the fatigue life of components, whereas compressive mean stresses are known to increase it. To date, various methods that account for mean stress effects have been studied. In this research, considering the high accuracy of mean stress correction and the difficulty in obtaining the material parameter of the Walker method, a practical method is proposed to describe the material parameter of this method. The test data of various materials are then used to verify the proposed practical method. Furthermore, by applying the Walker material parameter and the Smith-Watson-Topper (SWT) parameter, a modified strain-life model is developed to consider sensitivity to mean stress of materials. In addition, three sets of experimental fatigue data from super alloy GH4133, aluminum alloy 7075-T651, and carbon steel are used to estimate the accuracy of the proposed model. A comparison is also made between the SWT parameter method and the proposed strainlife model. The proposed strain-life model provides more accurate life prediction results than the SWT parameter method.
An Iterative Optimization Algorithm for Lens Distortion Correction Using Two-Parameter Models
Directory of Open Access Journals (Sweden)
Daniel Santana-Cedrés
2016-12-01
Full Text Available We present a method for the automatic estimation of two-parameter radial distortion models, considering polynomial as well as division models. The method first detects the longest distorted lines within the image by applying the Hough transform enriched with a radial distortion parameter. From these lines, the first distortion parameter is estimated, then we initialize the second distortion parameter to zero and the two-parameter model is embedded into an iterative nonlinear optimization process to improve the estimation. This optimization aims at reducing the distance from the edge points to the lines, adjusting two distortion parameters as well as the coordinates of the center of distortion. Furthermore, this allows detecting more points belonging to the distorted lines, so that the Hough transform is iteratively repeated to extract a better set of lines until no improvement is achieved. We present some experiments on real images with significant distortion to show the ability of the proposed approach to automatically correct this type of distortion as well as a comparison between the polynomial and division models.
Mathematical properties and parameter estimation for transit compartment pharmacodynamic models.
Yates, James W T
2008-07-03
One feature of recent research in pharmacodynamic modelling has been the move towards more mechanistically based model structures. However, in all of these models there are common sub-systems, such as feedback loops and time-delays, whose properties and contribution to the model behaviour merit some mathematical analysis. In this paper a common pharmacodynamic model sub-structure is considered: the linear transit compartment. These models have a number of interesting properties as the length of the cascade chain is increased. In the limiting case a pure time-delay is achieved [Milsum, J.H., 1966. Biological Control Systems Analysis. McGraw-Hill Book Company, New York] and the initial behaviour becoming increasingly sensitive to parameter value perturbation. It is also shown that the modelled drug effect is attenuated, though the duration of action is longer. Through this analysis the range of behaviours that such models are capable of reproducing are characterised. The properties of these models and the experimental requirements are discussed in order to highlight how mathematical analysis prior to experimentation can enhance the utility of mathematical modelling.
Methods of mathematical modeling using polynomials of algebra of sets
Kazanskiy, Alexandr; Kochetkov, Ivan
2018-03-01
The article deals with the construction of discrete mathematical models for solving applied problems arising from the operation of building structures. Security issues in modern high-rise buildings are extremely serious and relevant, and there is no doubt that interest in them will only increase. The territory of the building is divided into zones for which it is necessary to observe. Zones can overlap and have different priorities. Such situations can be described using formulas algebra of sets. Formulas can be programmed, which makes it possible to work with them using computer models.
IMPORTANCE OF PROBLEM SETTING BEFORE DEVELOPING A BUSINESS MODEL CANVAS
Bekhradi , Alborz; Yannou , Bernard; Cluzel , François
2016-01-01
International audience; In this paper, the importance of problem setting in front end of innovation to radically innovate is emphasized prior to the use of the BMC. After discussing the context of the Business Model Canvas usage, the failure reasons of a premature use (in early design stages) of the BMC tool is discussed through some real examples of innovative startups in Paris area. This paper ends with the proposition of three main rules to follow when one wants to use the Business Model C...
A new level set model for cell image segmentation
International Nuclear Information System (INIS)
Ma Jing-Feng; Chen Chun; Hou Kai; Bao Shang-Lian
2011-01-01
In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)
Estimation Parameters And Modelling Zero Inflated Negative Binomial
Directory of Open Access Journals (Sweden)
Cindy Cahyaning Astuti
2016-11-01
Full Text Available Regression analysis is used to determine relationship between one or several response variable (Y with one or several predictor variables (X. Regression model between predictor variables and the Poisson distributed response variable is called Poisson Regression Model. Since, Poisson Regression requires an equality between mean and variance, it is not appropriate to apply this model on overdispersion (variance is higher than mean. Poisson regression model is commonly used to analyze the count data. On the count data type, it is often to encounteredd some observations that have zero value with large proportion of zero value on the response variable (zero Inflation. Poisson regression can be used to analyze count data but it has not been able to solve problem of excess zero value on the response variable. An alternative model which is more suitable for overdispersion data and can solve the problem of excess zero value on the response variable is Zero Inflated Negative Binomial (ZINB. In this research, ZINB is applied on the case of Tetanus Neonatorum in East Java. The aim of this research is to examine the likelihood function and to form an algorithm to estimate the parameter of ZINB and also applying ZINB model in the case of Tetanus Neonatorum in East Java. Maximum Likelihood Estimation (MLE method is used to estimate the parameter on ZINB and the likelihood function is maximized using Expectation Maximization (EM algorithm. Test results of ZINB regression model showed that the predictor variable have a partial significant effect at negative binomial model is the percentage of pregnant women visits and the percentage of maternal health personnel assisted, while the predictor variables that have a partial significant effect at zero inflation model is the percentage of neonatus visits.
COMPREHENSIVE CHECK MEASUREMENT OF KEY PARAMETERS ON MODEL BELT CONVEYOR
Directory of Open Access Journals (Sweden)
Vlastimil MONI
2013-07-01
Full Text Available Complex measurements of characteristic parameters realised on a long distance model belt conveyor are described. The main objective was to complete and combine the regular measurements of electric power on drives of belt conveyors operated in Czech opencast mines with measurements of other physical quantities and to gain by this way an image of their mutual relations and relations of quantities derived from them. The paper includes a short description and results of the measurements on an experimental model conveyor with a closed material transport way.
Surrogate based approaches to parameter inference in ocean models
Knio, Omar
2016-01-06
This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.
Surrogate based approaches to parameter inference in ocean models
Knio, Omar
2016-01-01
This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.
Kim, Kyung Yong; Lee, Won-Chan
2017-01-01
This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…
Ordinary Mathematical Models in Calculating the Aviation GTE Parameters
Directory of Open Access Journals (Sweden)
E. A. Khoreva
2017-01-01
Full Text Available The paper presents the analytical review results of the ordinary mathematical models of the operating process used to study aviation GTE parameters and characteristics at all stages of its creation and operation. Considers the mathematical models of the zero and the first level, which are mostly used when solving typical problems in calculating parameters and characteristics of engines.Presents a number of practical problems arising in designing aviation GTE for various applications.The application of mathematical models of the zero-level engine can be quite appropriate when the engine is considered as a component in the aircraft system to estimate its calculated individual flight performance or when modeling the flight cycle of the aircrafts of different purpose.The paper demonstrates that introduction of correction functions into the first-level mathematical models in solving typical problems (influence of the Reynolds number, characteristics deterioration of the units during the overhaul period of engine, as well as influence of the flow inhomogeneity at the inlet because of manufacturing tolerance, etc. enables providing a sufficient engineering estimate accuracy to reflect a realistic operating process in the engine and its elements.
Uncertainty analyses of the calibrated parameter values of a water quality model
Rode, M.; Suhr, U.; Lindenschmidt, K.-E.
2003-04-01
For river basin management water quality models are increasingly used for the analysis and evaluation of different management measures. However substantial uncertainties exist in parameter values depending on the available calibration data. In this paper an uncertainty analysis for a water quality model is presented, which considers the impact of available model calibration data and the variance of input variables. The investigation was conducted based on four extensive flowtime related longitudinal surveys in the River Elbe in the years 1996 to 1999 with varying discharges and seasonal conditions. For the model calculations the deterministic model QSIM of the BfG (Germany) was used. QSIM is a one dimensional water quality model and uses standard algorithms for hydrodynamics and phytoplankton dynamics in running waters, e.g. Michaelis Menten/Monod kinetics, which are used in a wide range of models. The multi-objective calibration of the model was carried out with the nonlinear parameter estimator PEST. The results show that for individual flow time related measuring surveys very good agreements between model calculation and measured values can be obtained. If these parameters are applied to deviating boundary conditions, substantial errors in model calculation can occur. These uncertainties can be decreased with an increased calibration database. More reliable model parameters can be identified, which supply reasonable results for broader boundary conditions. The extension of the application of the parameter set on a wider range of water quality conditions leads to a slight reduction of the model precision for the specific water quality situation. Moreover the investigations show that highly variable water quality variables like the algal biomass always allow a smaller forecast accuracy than variables with lower coefficients of variation like e.g. nitrate.
Directory of Open Access Journals (Sweden)
Ji Suk SHIM
2015-10-01
Full Text Available Objective This study investigated the marginal and internal adaptation of individual dental crowns fabricated using a CAD/CAM system (Sirona’s BlueCam, also evaluating the effect of the software version used, and the specific parameter settings in the adaptation of crowns.Material and Methods Forty digital impressions of a master model previously prepared were acquired using an intraoral scanner and divided into four groups based on the software version and on the spacer settings used. The versions 3.8 and 4.2 of the software were used, and the spacer parameter was set at either 40 μm or 80 μm. The marginal and internal fit of the crowns were measured using the replica technique, which uses a low viscosity silicone material that simulates the thickness of the cement layer. The data were analyzed using a Friedman two-way analysis of variance (ANOVA and paired t-tests with significance level set at p<0.05.Results The two-way ANOVA analysis showed the software version (p<0.05 and the spacer parameter (p<0.05 significantly affected the crown adaptation. The crowns designed with the version 4.2 of the software showed a better fit than those designed with the version 3.8, particularly in the axial wall and in the inner margin. The spacer parameter was more accurately represented in the version 4.2 of the software than in the version 3.8. In addition, the use of the version 4.2 of the software combined with the spacer parameter set at 80 μm showed the least variation. On the other hand, the outer margin was not affected by the variables.Conclusion Compared to the version 3.8 of the software, the version 4.2 can be recommended for the fabrication of well-fitting crown restorations, and for the appropriate regulation of the spacer parameter.
Level-set techniques for facies identification in reservoir modeling
Iglesias, Marco A.; McLaughlin, Dennis
2011-03-01
In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.
Level-set techniques for facies identification in reservoir modeling
International Nuclear Information System (INIS)
Iglesias, Marco A; McLaughlin, Dennis
2011-01-01
In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil–water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301–29; 2004 Inverse Problems 20 259–82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg–Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush–Kuhn–Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies
A modified Leslie-Gower predator-prey interaction model and parameter identifiability
Tripathi, Jai Prakash; Meghwani, Suraj S.; Thakur, Manoj; Abbas, Syed
2018-01-01
In this work, bifurcation and a systematic approach for estimation of identifiable parameters of a modified Leslie-Gower predator-prey system with Crowley-Martin functional response and prey refuge is discussed. Global asymptotic stability is discussed by applying fluctuation lemma. The system undergoes into Hopf bifurcation with respect to parameters intrinsic growth rate of predators (s) and prey reserve (m). The stability of Hopf bifurcation is also discussed by calculating Lyapunov number. The sensitivity analysis of the considered model system with respect to all variables is performed which also supports our theoretical study. To estimate the unknown parameter from the data, an optimization procedure (pseudo-random search algorithm) is adopted. System responses and phase plots for estimated parameters are also compared with true noise free data. It is found that the system dynamics with true set of parametric values is similar to the estimated parametric values. Numerical simulations are presented to substantiate the analytical findings.
Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases
Energy Technology Data Exchange (ETDEWEB)
Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arimescu, Carmen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Napier, Bruce A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hay, Tristan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2012-11-01
The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 models are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.
A Review of Distributed Parameter Groundwater Management Modeling Methods
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Parameters of oscillation generation regions in open star cluster models
Danilov, V. M.; Putkov, S. I.
2017-07-01
We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.
A Comparison of the One-and Three-Parameter Logistic Models on Measures of Test Efficiency.
Benson, Jeri
Two methods of item selection were used to select sets of 40 items from a 50-item verbal analogies test, and the resulting item sets were compared for relative efficiency. The BICAL program was used to select the 40 items having the best mean square fit to the one parameter logistic (Rasch) model. The LOGIST program was used to select the 40 items…
da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G
2016-07-08
Process modeling can lead to of advantages such as helping in process control, reducing process costs and product quality improvement. This work proposes a solid-state fermentation distributed parameter model composed by seven differential equations with seventeen parameters to represent the process. Also, parameters estimation with a parameters identifyability analysis (PIA) is performed to build an accurate model with optimum parameters. Statistical tests were made to verify the model accuracy with the estimated parameters considering different assumptions. The results have shown that the model assuming substrate inhibition better represents the process. It was also shown that eight from the seventeen original model parameters were nonidentifiable and better results were obtained with the removal of these parameters from the estimation procedure. Therefore, PIA can be useful to estimation procedure, since it may reduce the number of parameters that can be evaluated. Further, PIA improved the model results, showing to be an important procedure to be taken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:905-917, 2016. © 2016 American Institute of Chemical Engineers.
Janardhanan, S.; Datta, B.
2011-12-01
Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of
Optimization of parameters for fitting linear accelerator photon beams using a modified CBEAM model
International Nuclear Information System (INIS)
Ayyangar, K.; Daftari, I.; Palta, J.; Suntharalingam, N.
1989-01-01
Measured beam profiles and central-axis depth-dose data for 6- and 25-MV photon beams are used to generate a dose matrix which represents the full beam. A corresponding dose matrix is also calculated using the modified CBEAM model. The calculational model uses the usual set of three parameters to define the intensity at beam edges and the parameter that accounts for collimator transmission. An additional set of three parameters is used for the primary profile factor, expressed as a function of distance from the central axis. An optimization program has been adapted to automatically adjust these parameters to minimize the χ 2 between the measured and calculated data. The average values of the parameters for small (6x6 cm 2 ), medium (10x10 cm 2 ), and large (20x20 cm 2 ) field sizes are found to represent the beam adequately for all field sizes. The calculated and the measured doses at any point agree to within 2% for any field size in the range 4x4 to 40x40 cm 2
Tension-compression asymmetry modelling: strategies for anisotropy parameters identification.
Directory of Open Access Journals (Sweden)
Barros Pedro
2016-01-01
Full Text Available This work presents details concerning the strategies and algorithms adopted in the fully implicit FE solver DD3IMP to model the orthotropic behavior of metallic sheets and the procedure for anisotropy parameters identification. The work is focused on the yield criterion developed by Cazacu, Plunkett and Barlat, 2006 [1], which accounts for both tension–compression asymmetry and orthotropic plastic behavior. The anisotropy parameters for a 2090-T3 aluminum alloy are identified accounting, or not, for the tension-compression asymmetry. The numerical simulation of a cup drawing is performed for this material, highlighting the importance of considering tension-compression asymmetry in the prediction of the earing profile, for materials with cubic structure, even if this phenomenon is relatively small.
Modelling Technical and Economic Parameters in Selection of Manufacturing Devices
Directory of Open Access Journals (Sweden)
Naqib Daneshjo
2017-11-01
Full Text Available Sustainable science and technology development is also conditioned by continuous development of means of production which have a key role in structure of each production system. Mechanical nature of the means of production is complemented by controlling and electronic devices in context of intelligent industry. A selection of production machines for a technological process or technological project has so far been practically resolved, often only intuitively. With regard to increasing intelligence, the number of variable parameters that have to be considered when choosing a production device is also increasing. It is necessary to use computing techniques and decision making methods according to heuristic methods and more precise methodological procedures during the selection. The authors present an innovative model for optimization of technical and economic parameters in the selection of manufacturing devices for industry 4.0.
Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty
Directory of Open Access Journals (Sweden)
K. Steffens
2014-02-01
Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.
distributed parameter model of spiral-wound sepralator for treatment of uranyl nitrate effluents
International Nuclear Information System (INIS)
El-Bialy, S.H; Elsherbiny, A.E.
2004-01-01
in this paper, mathematical formulation of spiral-wound sepralator was derived and applied for the treatment of effluent stream which is produced during nuclear fuel processing stage. the concentration of the stream has a value up to 200 ppm . cross-flow characteristic of both feed and permeate streams was taken into account and their mutual effects on the values of system variables were investigated. of course, such a flow pattern leads to a heterogeneous system which leads-in turn-to six partial differential equations, beside a set of algebraic equations. those were solved numerically and the results were used to estimate the average values of both permeate flux and percent solute rejection. then, these were compared with both experimental data in addition to the results of lumped parameter model. the study showed that distributed parameter model gives better results than lumped parameter one compared with experimental data
International Nuclear Information System (INIS)
Christensen, L.H.; Pind, N.
1982-01-01
A matrix-independent fundamental parameter-based calibration model for an energy-dispersive X-ray fluorescence spectrometer has been developed. This model, which is part of a fundamental parameter approach quantification method, accounts for both the excitation and detection probability. For each secondary target a number of relative calibration constants are calculated on the basis of knowledge of the irradiation geometry, the detector specifications, and tabulated fundamental physical parameters. The absolute calibration of the spectrometer is performed by measuring one pure element standard per secondary target. For sample systems where all elements can be analyzed by means of the same secondary target the absolute calibration constant can be determined during the iterative solution of the basic equation. Calculated and experimentally determined relative calibration constants agree to within 5-10% of each other and so do the results obtained from the analysis of an NBS certified alloy using the two sets of constants. (orig.)
Identification of grid model parameters using synchrophasor measurements
Energy Technology Data Exchange (ETDEWEB)
Boicea, Valentin; Albu, Mihaela [Politehnica University of Bucharest (Romania)
2012-07-01
Presently a critical element of the energy networks is represented by the active distribution grids, where generation intermittency and controllable loads contribute to a stochastic varability of the quantities characterizing the grid operation. The capability of controlling the electrical energy transfer is also limited by the incomplete knowledge of the detailed electrical model of each of the grid components. Asset management in distribution grids has to consider dynamic loads, while high loading of network sections might already have degraded some of the assets. Moreover, in case of functional microgrids, all elements need to be modelled accurately and an appropriate measurement layer enabling online control needs to be deployed. In this paper a method for online identification of the actual parameter values in grid electrical models is proposed. Laboratory results validating the proposed method are presented. (orig.)
Dynamic systems models new methods of parameter and state estimation
2016-01-01
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...
Luminescence model with quantum impact parameter for low energies
International Nuclear Information System (INIS)
Cruz G, H.S.; Michaelian, K.; Galindo U, S.; Martinez D, A.; Belmont M, E.
2000-01-01
The analytical model of induced light production in scintillator materials by energetic ions proposed by Michaelian and Menchaca (M-M) adjusts very well the luminescence substance data in a wide energy interval of the incident ions (10-100 MeV). However at low energies, that is, under to 10 MeV, the experimental deviations of the predictions of M-M model, show that the causes may be certain physical effects, all they important at low energies, which were not considered. We have modified lightly the M-M model using the basic fact that the Quantum mechanics gives to a different limit for the quantum impact parameter instead of the classic approximation. (Author)
Uniqueness of Gibbs measure for Potts model with countable set of spin values
International Nuclear Information System (INIS)
Ganikhodjaev, N.N.; Rozikov, U.A.
2004-11-01
We consider a nearest-neighbor Potts model with countable spin values 0,1,..., and non zero external field, on a Cayley tree of order k (with k+1 neighbors). We study translation-invariant 'splitting' Gibbs measures. We reduce the problem to the description of the solutions of some infinite system of equations. For any k≥1 and any fixed probability measure ν with ν(i)>0 on the set of all non negative integer numbers Φ={0,1,...} we show that the set of translation-invariant splitting Gibbs measures contains at most one point, independently on parameters of the Potts model with countable set of spin values on Cayley tree. Also we give a full description of the class of measures ν on Φ such that wit respect to each element of this class our infinite system of equations has unique solution {a i =1,2,...}, where a is an element of (0,1). (author)
A Bayesian approach for parameter estimation and prediction using a computationally intensive model
International Nuclear Information System (INIS)
Higdon, Dave; McDonnell, Jordan D; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M
2015-01-01
Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model η(θ), where θ denotes the uncertain, best input setting. Hence the statistical model is of the form y=η(θ)+ϵ, where ϵ accounts for measurement, and possibly other, error sources. When nonlinearity is present in η(⋅), the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model η(⋅). This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory. (paper)
Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation
International Nuclear Information System (INIS)
Schranz, C; Möller, K; Becher, T; Schädler, D; Weiler, N
2014-01-01
Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (p I ), inspiration and expiration time (t I , t E ) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal p I and adequate t E can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's ‘optimized’ settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end
Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.
Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K
2014-03-01
Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.
International Nuclear Information System (INIS)
Kumar, Prashant; Bansod, Baban K.S.; Debnath, Sanjit K.; Thakur, Praveen Kumar; Ghanshyam, C.
2015-01-01
Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper
Energy Technology Data Exchange (ETDEWEB)
Kumar, Prashant, E-mail: prashantkumar@csio.res.in [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Bansod, Baban K.S.; Debnath, Sanjit K. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Thakur, Praveen Kumar [Indian Institute of Remote Sensing (ISRO), Dehradun 248001 (India); Ghanshyam, C. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India)
2015-02-15
Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper.
Optimization of Experimental Model Parameter Identification for Energy Storage Systems
Directory of Open Access Journals (Sweden)
Rosario Morello
2013-09-01
Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.
Bayesian parameter estimation for stochastic models of biological cell migration
Dieterich, Peter; Preuss, Roland
2013-08-01
Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.
DeSmitt, Holly J; Domire, Zachary J
2016-12-01
Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.
Model parameters for representative wetland plant functional groups
Williams, Amber S.; Kiniry, James R.; Mushet, David M.; Smith, Loren M.; McMurry, Scott T.; Attebury, Kelly; Lang, Megan; McCarty, Gregory W.; Shaffer, Jill A.; Effland, William R.; Johnson, Mari-Vaughn V.
2017-01-01
Wetlands provide a wide variety of ecosystem services including water quality remediation, biodiversity refugia, groundwater recharge, and floodwater storage. Realistic estimation of ecosystem service benefits associated with wetlands requires reasonable simulation of the hydrology of each site and realistic simulation of the upland and wetland plant growth cycles. Objectives of this study were to quantify leaf area index (LAI), light extinction coefficient (k), and plant nitrogen (N), phosphorus (P), and potassium (K) concentrations in natural stands of representative plant species for some major plant functional groups in the United States. Functional groups in this study were based on these parameters and plant growth types to enable process-based modeling. We collected data at four locations representing some of the main wetland regions of the United States. At each site, we collected on-the-ground measurements of fraction of light intercepted, LAI, and dry matter within the 2013–2015 growing seasons. Maximum LAI and k variables showed noticeable variations among sites and years, while overall averages and functional group averages give useful estimates for multisite simulation modeling. Variation within each species gives an indication of what can be expected in such natural ecosystems. For P and K, the concentrations from highest to lowest were spikerush (Eleocharis macrostachya), reed canary grass (Phalaris arundinacea), smartweed (Polygonum spp.), cattail (Typha spp.), and hardstem bulrush (Schoenoplectus acutus). Spikerush had the highest N concentration, followed by smartweed, bulrush, reed canary grass, and then cattail. These parameters will be useful for the actual wetland species measured and for the wetland plant functional groups they represent. These parameters and the associated process-based models offer promise as valuable tools for evaluating environmental benefits of wetlands and for evaluating impacts of various agronomic practices in
Application of a free parameter model to plastic scintillation samples
Energy Technology Data Exchange (ETDEWEB)
Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)
2011-08-21
In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.
Microbial Communities Model Parameter Calculation for TSPA/SR
International Nuclear Information System (INIS)
D. Jolley
2001-01-01
This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed
Lumped-parameter fuel rod model for rapid thermal transients
International Nuclear Information System (INIS)
Perkins, K.R.; Ramshaw, J.D.
1975-07-01
The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company
Model atmospheres and parameters of central stars of planetary nebulae
International Nuclear Information System (INIS)
Patriarchi, P.; Cerruti-sola, M.; Perinotto, M.
1989-01-01
Non-LTE hydrogen and helium model atmospheres have been obtained for temperatures and gravities relevant to the central stars of planetary nebulae. Low-resolution and high-resolution observations obtained by the IUE satellite have been used along with optical data to determine Zanstra temperatures of the central stars of NGC 1535, NGC 6210, NGC 7009, IC 418, and IC 4593. Comparison of the observed stellar continuum of these stars with theoretical results allowed further information on the stellar temperature to be derived. The final temperatures are used to calculate accurate stellar parameters. 62 refs
Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator
Directory of Open Access Journals (Sweden)
CONSTANTINESCU, F.
2011-02-01
Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.
International Nuclear Information System (INIS)
Sarkar, S.; Kosson, D.S.; Mahadevan, S.; Meeussen, J.C.L.; Sloot, H. van der; Arnold, J.R.; Brown, K.G.
2012-01-01
Chemical equilibrium modeling of cementitious materials requires aqueous–solid equilibrium constants of the controlling mineral phases (K sp ) and the available concentrations of primary components. Inherent randomness of the input and model parameters, experimental measurement error, the assumptions and approximations required for numerical simulation, and inadequate knowledge of the chemical process contribute to uncertainty in model prediction. A numerical simulation framework is developed in this paper to assess uncertainty in K sp values used in geochemical speciation models. A Bayesian statistical method is used in combination with an efficient, adaptive Metropolis sampling technique to develop probability density functions for K sp values. One set of leaching experimental observations is used for calibration and another set is used for comparison to evaluate the applicability of the approach. The estimated probability distributions of K sp values can be used in Monte Carlo simulation to assess uncertainty in the behavior of aqueous–solid partitioning of constituents in cement-based materials.
Modelling of bio-optical parameters of open ocean waters
Directory of Open Access Journals (Sweden)
Vadim N. Pelevin
2001-12-01
Full Text Available An original method for estimating the concentration of chlorophyll pigments, absorption of yellow substance and absorption of suspended matter without pigments and yellow substance in detritus using spectral diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance data has been applied to sea waters of different types in the open ocean (case 1. Using the effective numerical single parameter classification with the water type optical index m as a parameter over the whole range of the open ocean waters, the calculations have been carried out and the light absorption spectra of sea waters tabulated. These spectra are used to optimize the absorption models and thus to estimate the concentrations of the main admixtures in sea water. The value of m can be determined from direct measurements of the downward irradiance attenuation coefficient at 500 nm or calculated from remote sensing data using the regressions given in the article. The sea water composition can then be readily estimated from the tables given for any open ocean area if that one parameter m characterizing the basin is known.
Application of regression model on stream water quality parameters
International Nuclear Information System (INIS)
Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.
2012-01-01
Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)
Energy Technology Data Exchange (ETDEWEB)
Paredes Tobar, Lenin Marcelo; Ruggieri, Claudio [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Naval e Oceanica
2009-12-19
This work presents an evaluation procedure to determine the elastic-plastic J-integral and CTOD for pin-loaded and clamped single edge notch tension (SE(T)) specimens based upon the eta-method. The primary objective is to derive estimation equations applicable to determine J and CTOD fracture parameters for a wide range of a/W-ratios and material flow properties. Very detailed non-linear finite element analyses for plane-strain and full-thickness, 3-D models provide the evolution of load with increased crack mouth opening displacement which is required for the estimation procedure. The present analyses, when taken together with previous studies provide a fairly extensive body of results which serve to determine parameters J and CTOD for different materials using tension specimens with varying geometries. (author)
Yakovenko, I A; Cheremushkin, E A; Kozlov, M K
2015-01-01
The research of changes of a beta rhythm parameters on condition of working memory loading by extension of a interstimuli interval between the target and triggering stimuli to 16 sec is investigated on 70 healthy adults in two series of experiments with set to a facial expression. In the second series at the middle of this interval for strengthening of the load was entered the additional cognitive task in the form of conditioning stimuli like Go/NoGo--circles of blue or green color. Data analysis of the research was carried out by means of continuous wavelet-transformation on the basis of "mather" complex Morlet-wavelet in the range of 1-35 Hz. Beta rhythm power was characterized by the mean level, maxima of wavelet-transformation coefficient (WLC) and latent periods of maxima. Introduction of additional cognitive task to pause between the target and triggering stimuli led to essential increase in absolute values of the mean level of beta rhythm WLC and relative sizes of maxima of beta rhythm WLC. In the series of experiments without conditioning stimulus subjects with large number of mistakes (from 6 to 40), i.e. rigid set, in comparison with subjects with small number of mistakes (to 5), i.e. plastic set, at the forming stage were characterized by higher values of the mean level of beta rhythm WLC. Introduction of the conditioning stimuli led to smoothing of intergroup distinctions throughout the experiment.
Directory of Open Access Journals (Sweden)
Xiao-meng Song
2013-01-01
Full Text Available Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1 a screening method (Morris for qualitative ranking of parameters, and (2 a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol. First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Distribution-centric 3-parameter thermodynamic models of partition gas chromatography.
Blumberg, Leonid M
2017-03-31
If both parameters (the entropy, ΔS, and the enthalpy, ΔH) of the classic van't Hoff model of dependence of distribution coefficients (K) of analytes on temperature (T) are treated as the temperature-independent constants then the accuracy of the model is known to be insufficient for the needed accuracy of retention time prediction. A more accurate 3-parameter Clarke-Glew model offers a way to treat ΔS and ΔH as functions, ΔS(T) and ΔH(T), of T. A known T-centric construction of these functions is based on relating them to the reference values (ΔS ref and ΔH ref ) corresponding to a predetermined reference temperature (T ref ). Choosing a single T ref for all analytes in a complex sample or in a large database might lead to practically irrelevant values of ΔS ref and ΔH ref for those analytes that have too small or too large retention factors at T ref . Breaking all analytes in several subsets each with its own T ref leads to discontinuities in the analyte parameters. These problems are avoided in the K-centric modeling where ΔS(T) and ΔS(T) and other analyte parameters are described in relation to their values corresponding to a predetermined reference distribution coefficient (K Ref ) - the same for all analytes. In this report, the mathematics of the K-centric modeling are described and the properties of several types of K-centric parameters are discussed. It has been shown that the earlier introduced characteristic parameters of the analyte-column interaction (the characteristic temperature, T char , and the characteristic thermal constant, θ char ) are a special chromatographically convenient case of the K-centric parameters. Transformations of T-centric parameters into K-centric ones and vice-versa as well as the transformations of one set of K-centric parameters into another set and vice-versa are described. Copyright © 2017 Elsevier B.V. All rights reserved.
Convergence of surface diffusion parameters with model crystal size
Cohen, Jennifer M.; Voter, Arthur F.
1994-07-01
A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.
Energy Technology Data Exchange (ETDEWEB)
Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A
2009-02-26
The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.
A distributed parameter wire model for transient electrical discharges
International Nuclear Information System (INIS)
Maier, W.B. II; Kadish, A.; Sutherland, C.D.; Robiscoe, R.T.
1990-01-01
A model for freely propagating transient electrical discharges, such as lightning and punch-through arcs, is developed in this paper. We describe the electromagnetic fields by Maxwell's equations and we represent the interaction of electric fields with the medium to produce current by ∂J/∂t=ω 2 (E-E*J)/4π, where ω and E* are parameters characteristic of the medium, J≡current density, and J≡J/|J|. We illustrate the properties of this model for small-diameter, guided, cylindrically symmetric discharges. Analytic, numerical, and approximate solutions are given for special cases. The model describes, in a new and comprehensive fashion, certain macroscopic discharge properties, such as threshold behavior, quenching and reignition, path tortuosity, discharge termination with nonzero charge density remaining along the discharge path, and other experimentally observed discharge phenomena. Fields, current densities, and charge densities are quantitatively determined from given boundary and initial conditions. We suggest that many macroscopic discharge properties are properly explained by the model as electromagnetic phenomena, and we discuss extensions of the model to include chemistry, principally ionization and recombination
International Nuclear Information System (INIS)
Gershgorin, B.; Harlim, J.; Majda, A.J.
2010-01-01
The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates
Standard model parameters and the search for new physics
International Nuclear Information System (INIS)
Marciano, W.J.
1988-04-01
In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs
Parameter Extraction Method for the Electrical Model of a Silicon Photomultiplier
Licciulli, Francesco; Marzocca, Cristoforo
2016-10-01
The availability of an effective electrical model, able to accurately reproduce the signals generated by a Silicon Photo-Multiplier coupled to the front-end electronics, is mandatory when the performance of a detection system based on this kind of detector has to be evaluated by means of reliable simulations. We propose a complete extraction procedure able to provide the whole set of the parameters involved in a well-known model of the detector, which includes the substrate ohmic resistance. The technique allows achieving very good quality of the fit between simulation results provided by the model and experimental data, thanks to accurate discrimination between the quenching and substrate resistances, which results in a realistic set of extracted parameters. The extraction procedure has been applied to a commercial device considering a wide range of different conditions in terms of input resistance of the front-end electronics and interconnection parasitics. In all the considered situations, very good correspondence has been found between simulations and measurements, especially for what concerns the leading edge of the current pulses generated by the detector, which strongly affects the timing performance of the detection system, thus confirming the effectiveness of the model and the associated parameter extraction technique.
Directory of Open Access Journals (Sweden)
H. C. Winsemius
2008-12-01
Full Text Available In this study, land surface related parameter distributions of a conceptual semi-distributed hydrological model are constrained by employing time series of satellite-based evaporation estimates during the dry season as explanatory information. The approach has been applied to the ungauged Luangwa river basin (150 000 (km^{2} in Zambia. The information contained in these evaporation estimates imposes compliance of the model with the largest outgoing water balance term, evaporation, and a spatially and temporally realistic depletion of soil moisture within the dry season. The model results in turn provide a better understanding of the information density of remotely sensed evaporation. Model parameters to which evaporation is sensitive, have been spatially distributed on the basis of dominant land cover characteristics. Consequently, their values were conditioned by means of Monte-Carlo sampling and evaluation on satellite evaporation estimates. The results show that behavioural parameter sets for model units with similar land cover are indeed clustered. The clustering reveals hydrologically meaningful signatures in the parameter response surface: wetland-dominated areas (also called dambos show optimal parameter ranges that reflect vegetation with a relatively small unsaturated zone (due to the shallow rooting depth of the vegetation which is easily moisture stressed. The forested areas and highlands show parameter ranges that indicate a much deeper root zone which is more drought resistent. Clustering was consequently used to formulate fuzzy membership functions that can be used to constrain parameter realizations in further calibration. Unrealistic parameter ranges, found for instance in the high unsaturated soil zone values in the highlands may indicate either overestimation of satellite-based evaporation or model structural deficiencies. We believe that in these areas, groundwater uptake into the root zone and lateral movement of
Information behavior versus communication: application models in multidisciplinary settings
Directory of Open Access Journals (Sweden)
Cecília Morena Maria da Silva
2015-05-01
Full Text Available This paper deals with the information behavior as support for models of communication design in the areas of Information Science, Library and Music. The communication models proposition is based on models of Tubbs and Moss (2003, Garvey and Griffith (1972, adapted by Hurd (1996 and Wilson (1999. Therefore, the questions arose: (i what are the informational skills required of librarians who act as mediators in scholarly communication process and informational user behavior in the educational environment?; (ii what are the needs of music related researchers and as produce, seek, use and access the scientific knowledge of your area?; and (iii as the contexts involved in scientific collaboration processes influence in the scientific production of information science field in Brazil? The article includes a literature review on the information behavior and its insertion in scientific communication considering the influence of context and/or situation of the objects involved in motivating issues. The hypothesis is that the user information behavior in different contexts and situations influence the definition of a scientific communication model. Finally, it is concluded that the same concept or a set of concepts can be used in different perspectives, reaching up, thus, different results.
Abidi, Yassine; Bellassoued, Mourad; Mahjoub, Moncef; Zemzemi, Nejib
2018-03-01
In this paper, we consider the inverse problem of space dependent multiple ionic parameters identification in cardiac electrophysiology modelling from a set of observations. We use the monodomain system known as a state-of-the-art model in cardiac electrophysiology and we consider a general Hodgkin-Huxley formalism to describe the ionic exchanges at the microscopic level. This formalism covers many physiological transmembrane potential models including those in cardiac electrophysiology. Our main result is the proof of the uniqueness and a Lipschitz stability estimate of ion channels conductance parameters based on some observations on an arbitrary subdomain. The key idea is a Carleman estimate for a parabolic operator with multiple coefficients and an ordinary differential equation system.
Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby
2013-12-01
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.
KFUPM-KAUST Red Sea model: Digital viscoelastic depth model and synthetic seismic data set
Al-Shuhail, Abdullatif A.; Mousa, Wail A.; Alkhalifah, Tariq Ali
2017-01-01
The Red Sea is geologically interesting due to its unique structures and abundant mineral and petroleum resources, yet no digital geologic models or synthetic seismic data of the Red Sea are publicly available for testing algorithms to image and analyze the area's interesting features. This study compiles a 2D viscoelastic model of the Red Sea and calculates a corresponding multicomponent synthetic seismic data set. The models and data sets are made publicly available for download. We hope this effort will encourage interested researchers to test their processing algorithms on this data set and model and share their results publicly as well.
KFUPM-KAUST Red Sea model: Digital viscoelastic depth model and synthetic seismic data set
Al-Shuhail, Abdullatif A.
2017-06-01
The Red Sea is geologically interesting due to its unique structures and abundant mineral and petroleum resources, yet no digital geologic models or synthetic seismic data of the Red Sea are publicly available for testing algorithms to image and analyze the area\\'s interesting features. This study compiles a 2D viscoelastic model of the Red Sea and calculates a corresponding multicomponent synthetic seismic data set. The models and data sets are made publicly available for download. We hope this effort will encourage interested researchers to test their processing algorithms on this data set and model and share their results publicly as well.
Performance Analysis of Different NeQuick Ionospheric Model Parameters
Directory of Open Access Journals (Sweden)
WANG Ningbo
2017-04-01
Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.
Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.
2008-12-01
A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems
Maijenburg, A W; Maas, M G; Rodijk, E J B; Ahmed, W; Kooij, E S; Carlen, E T; Blank, D H A; ten Elshof, J E
2011-03-15
Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of the as-formed nanowires and nanotubes between prepatterned electrodes. For reproducible nanowire alignment, a universal set of dielectrophoresis parameters to align any arbitrary nanowire material was determined. The parameters include peak-to-peak potential and frequency, thickness of the silicon oxide layer, grounding of the silicon substrate, and nature of the solvent medium used. It involves applying a field with a frequency >10(5) Hz, an insulating silicon oxide layer with a thickness of 2.5 μm or more, grounding of the underlying silicon substrate, and the use of a solvent medium with a low dielectric constant. In our experiments, we obtained good results by using a peak-to-peak potential of 2.1 V at a frequency of 1.2 × 10(5) Hz. Furthermore, an indirect alignment technique is proposed that prevents short circuiting of nanowires after contacting both electrodes. After alignment, a considerably lower resistivity was found for ZnO nanowires made by templated electrodeposition (2.2-3.4 × 10(-3) Ωm) compared to ZnO nanorods synthesized by electrodeposition (10 Ωm) or molecular beam epitaxy (MBE) (500 Ωm). Copyright © 2010 Elsevier Inc. All rights reserved.
Influence of smoothing of X-ray spectra on parameters of calibration model
International Nuclear Information System (INIS)
Antoniak, W.; Urbanski, P.; Kowalska, E.
1998-01-01
Parameters of the calibration model before and after smoothing of X-ray spectra have been investigated. The calibration model was calculated using multivariate procedure - namely the partial least square regression (PLS). Investigations have been performed on an example of six sets of various standards used for calibration of some instruments based on X-ray fluorescence principle. The smoothing methods were compared: regression splines, Savitzky-Golay and Discrete Fourier Transform. The calculations were performed using a software package MATLAB and some home-made programs. (author)
Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.
2017-03-01
Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.
Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith
2018-01-02
Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour
ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA
Sjogren, W. L.
1994-01-01
The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.
Bodmer, James E; English, Anthony; Brady, Megan; Blackwell, Ken; Haxhinasto, Kari; Fotedar, Sunaina; Borgman, Kurt; Bai, Er-Wei; Moy, Alan B
2005-09-01
Transendothelial impedance across an endothelial monolayer grown on a microelectrode has previously been modeled as a repeating pattern of disks in which the electrical circuit consists of a resistor and capacitor in series. Although this numerical model breaks down barrier function into measurements of cell-cell adhesion, cell-matrix adhesion, and membrane capacitance, such solution parameters can be inaccurate without understanding model stability and error. In this study, we have evaluated modeling stability and error by using a chi(2) evaluation and Levenberg-Marquardt nonlinear least-squares (LM-NLS) method of the real and/or imaginary data in which the experimental measurement is compared with the calculated measurement derived by the model. Modeling stability and error were dependent on current frequency and the type of experimental data modeled. Solution parameters of cell-matrix adhesion were most susceptible to modeling instability. Furthermore, the LM-NLS method displayed frequency-dependent instability of the solution parameters, regardless of whether the real or imaginary data were analyzed. However, the LM-NLS method identified stable and reproducible solution parameters between all types of experimental data when a defined frequency spectrum of the entire data set was selected on the basis of a criterion of minimizing error. The frequency bandwidth that produced stable solution parameters varied greatly among different data types. Thus a numerical model based on characterizing transendothelial impedance as a resistor and capacitor in series and as a repeating pattern of disks is not sufficient to characterize the entire frequency spectrum of experimental transendothelial impedance.
Inference of missing data and chemical model parameters using experimental statistics
Casey, Tiernan; Najm, Habib
2017-11-01
A method for determining the joint parameter density of Arrhenius rate expressions through the inference of missing experimental data is presented. This approach proposes noisy hypothetical data sets from target experiments and accepts those which agree with the reported statistics, in the form of nominal parameter values and their associated uncertainties. The data exploration procedure is formalized using Bayesian inference, employing maximum entropy and approximate Bayesian computation methods to arrive at a joint density on data and parameters. The method is demonstrated in the context of reactions in the H2-O2 system for predictive modeling of combustion systems of interest. Work supported by the US DOE BES CSGB. Sandia National Labs is a multimission lab managed and operated by Nat. Technology and Eng'g Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Intl, for the US DOE NCSA under contract DE-NA-0003525.
Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling
Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.
2017-12-01
Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.
Parameter estimation and hypothesis testing in linear models
Koch, Karl-Rudolf
1999-01-01
The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...
International Nuclear Information System (INIS)
Mutihac, R.; Mutihac, R.C.; Cicuttin, A.
2001-09-01
Parameter-search methods are problem-sensitive. All methods depend on some meta-parameters of their own, which must be determined experimentally in advance. A better choice of these intrinsic parameters for a certain parameter-search method may improve its performance. Moreover, there are various implementations of the same method, which may also affect its performance. The choice of the matching (error) function has a great impact on the search process in terms of finding the optimal parameter set and minimizing the computational cost. An initial assessment of the matching function ability to distinguish between good and bad models is recommended, before launching exhaustive computations. However, different runs of a parameter search method may result in the same optimal parameter set or in different parameter sets (the model is insufficiently constrained to accurately characterize the real system). Robustness of the parameter set is expressed by the extent to which small perturbations in the parameter values are not affecting the best solution. A parameter set that is not robust is unlikely to be physiologically relevant. Robustness can also be defined as the stability of the optimal parameter set to small variations of the inputs. When trying to estimate things like the minimum, or the least-squares optimal parameters of a nonlinear system, the existence of multiple local minima can cause problems with the determination of the global optimum. Techniques such as Newton's method, the Simplex method and Least-squares Linear Taylor Differential correction technique can be useful provided that one is lucky enough to start sufficiently close to the global minimum. All these methods suffer from the inability to distinguish a local minimum from a global one because they follow the local gradients towards the minimum, even if some methods are resetting the search direction when it is likely to get stuck in presumably a local minimum. Deterministic methods based on
Estimating demographic parameters using a combination of known-fate and open N-mixture models.
Schmidt, Joshua H; Johnson, Devin S; Lindberg, Mark S; Adams, Layne G
2015-10-01
Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.
Mathematical Modelling with Fuzzy Sets of Sustainable Tourism Development
Directory of Open Access Journals (Sweden)
Nenad Stojanović
2011-10-01
Full Text Available In the first part of the study we introduce fuzzy sets that correspond to comparative indicators for measuring sustainable development of tourism. In the second part of the study it is shown, on the base of model created, how one can determine the value of sustainable tourism development in protected areas based on the following established groups of indicators: to assess the economic status, to assess the impact of tourism on the social component, to assess the impact of tourism on cultural identity, to assess the environmental conditions and indicators as well as to assess tourist satisfaction, all using fuzzy logic.It is also shown how to test the confidence in the rules by which, according to experts, appropriate decisions can be created in order to protect biodiversity of protected areas.
Model-based gene set analysis for Bioconductor.
Bauer, Sebastian; Robinson, Peter N; Gagneur, Julien
2011-07-01
Gene Ontology and other forms of gene-category analysis play a major role in the evaluation of high-throughput experiments in molecular biology. Single-category enrichment analysis procedures such as Fisher's exact test tend to flag large numbers of redundant categories as significant, which can complicate interpretation. We have recently developed an approach called model-based gene set analysis (MGSA), that substantially reduces the number of redundant categories returned by the gene-category analysis. In this work, we present the Bioconductor package mgsa, which makes the MGSA algorithm available to users of the R language. Our package provides a simple and flexible application programming interface for applying the approach. The mgsa package has been made available as part of Bioconductor 2.8. It is released under the conditions of the Artistic license 2.0. peter.robinson@charite.de; julien.gagneur@embl.de.
International Nuclear Information System (INIS)
Fields, D.E.; Miller, C.W.
1980-05-01
The most commonly used approach for estimating the atmospheric concentration and deposition of material downwind from its point of release is the Gaussian plume atmospheric dispersion model. Two of the critical parameters in this model are sigma/sub y/ and sigma/sub z/, the horizontal and vertical dispersion parameters, respectively. A number of different sets of values for sigma/sub y/ and sigma/sub z/ have been determined empirically for different release heights and meteorological and terrain conditions. The computer code DWNWND, described in this report, is an interactive implementation of the Gaussian plume model. This code allows the user to specify any one of eight different sets of the empirically determined dispersion paramters. Using the selected dispersion paramters, ground-level normalized exposure estimates are made at any specified downwind distance. Computed values may be corrected for plume depletion due to deposition and for plume settling due to gravitational fall. With this interactive code, the user chooses values for ten parameters which define the source, the dispersion and deposition process, and the sampling point. DWNWND is written in FORTRAN for execution on a PDP-10 computer, requiring less than one second of central processor unit time for each simulation
Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters
Directory of Open Access Journals (Sweden)
Adeniyi Ganiyu Adeogun
2015-10-01
Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain. Keywords: Inundation, DEM, Sensitivity analysis, Model coupling, Flooding
International Nuclear Information System (INIS)
Kovtonyuk, A.; Petruzzi, A.; D'Auria, F.
2015-01-01
The objective of the Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark is to progress on the issue of the quantification of the uncertainty of the physical models in system thermal-hydraulic codes by considering a concrete case: the physical models involved in the prediction of core reflooding. The PREMIUM benchmark consists of five phases. This report presents the results of Phase II dedicated to the identification of the uncertain code parameters associated with physical models used in the simulation of reflooding conditions. This identification is made on the basis of the Test 216 of the FEBA/SEFLEX programme according to the following steps: - identification of influential phenomena; - identification of the associated physical models and parameters, depending on the used code; - quantification of the variation range of identified input parameters through a series of sensitivity calculations. A procedure for the identification of potentially influential code input parameters has been set up in the Specifications of Phase II of PREMIUM benchmark. A set of quantitative criteria has been as well proposed for the identification of influential IP and their respective variat