WorldWideScience

Sample records for model parameter choices

  1. Mode choice model parameters estimation

    OpenAIRE

    Strnad, Irena

    2010-01-01

    The present work focuses on parameter estimation of two mode choice models: multinomial logit and EVA 2 model, where four different modes and five different trip purposes are taken into account. Mode choice model discusses the behavioral aspect of mode choice making and enables its application to a traffic model. Mode choice model includes mode choice affecting trip factors by using each mode and their relative importance to choice made. When trip factor values are known, it...

  2. Parameter Estimation for Thurstone Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-24

    We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.

  3. Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice.

    Science.gov (United States)

    Scheibehenne, Benjamin; Pachur, Thorsten

    2015-04-01

    To be useful, cognitive models with fitted parameters should show generalizability across time and allow accurate predictions of future observations. It has been proposed that hierarchical procedures yield better estimates of model parameters than do nonhierarchical, independent approaches, because the formers' estimates for individuals within a group can mutually inform each other. Here, we examine Bayesian hierarchical approaches to evaluating model generalizability in the context of two prominent models of risky choice-cumulative prospect theory (Tversky & Kahneman, 1992) and the transfer-of-attention-exchange model (Birnbaum & Chavez, 1997). Using empirical data of risky choices collected for each individual at two time points, we compared the use of hierarchical versus independent, nonhierarchical Bayesian estimation techniques to assess two aspects of model generalizability: parameter stability (across time) and predictive accuracy. The relative performance of hierarchical versus independent estimation varied across the different measures of generalizability. The hierarchical approach improved parameter stability (in terms of a lower absolute discrepancy of parameter values across time) and predictive accuracy (in terms of deviance; i.e., likelihood). With respect to test-retest correlations and posterior predictive accuracy, however, the hierarchical approach did not outperform the independent approach. Further analyses suggested that this was due to strong correlations between some parameters within both models. Such intercorrelations make it difficult to identify and interpret single parameters and can induce high degrees of shrinkage in hierarchical models. Similar findings may also occur in the context of other cognitive models of choice.

  4. Nonlinear Calibration Model Choice between the Four and Five Parameter Logistic Models

    Science.gov (United States)

    Cumberland, William N.; Fong, Youyi; Yu, Xuesong; Defawe, Olivier; Frahm, Nicole; De Rosa, Stephen

    2014-01-01

    Both the four-parameter logistic (4PL) and the five-parameter logistic (5PL) models are widely used in nonlinear calibration. In this paper, we study the choice between 5PL and 4PL both by the accuracy and precision of the estimated concentrations and by the power to detect an association between a binary disease outcome and the estimated concentrations. Our results show that when the true curve is symmetric around its inflection point, the efficiency loss from using 5PL is negligible under the prevalent experimental design. When the true curve is asymmetric, 4PL may sometimes offer better performance due to bias-variance trade-off. We provide a practical guideline for choosing between 5PL and 4PL and illustrate its application with a real dataset from the HIV Vaccine Trials Network laboratory. PMID:24918306

  5. Cognitive Models of Risky Choice: Parameter Stability and Predictive Accuracy of Prospect Theory

    Science.gov (United States)

    Glockner, Andreas; Pachur, Thorsten

    2012-01-01

    In the behavioral sciences, a popular approach to describe and predict behavior is cognitive modeling with adjustable parameters (i.e., which can be fitted to data). Modeling with adjustable parameters allows, among other things, measuring differences between people. At the same time, parameter estimation also bears the risk of overfitting. Are…

  6. Fast Harmonic Splines and Parameter Choice Methods

    Science.gov (United States)

    Gutting, Martin

    2017-04-01

    Solutions to boundary value problems in geoscience where the boundary is the Earth's surface are constructed in terms of harmonic splines. These are localizing trial functions that allow regional modeling or the improvement of a global model in a part of the Earth's surface. Some cases of the occurring kernels can be equipped with a fast matrix-vector multiplication using the fast multipole method (FMM). The main idea of the fast multipole algorithm consists of a hierarchical decomposition of the computational domain into cubes and a kernel approximation for the more distant points. The numerical effort of the matrix-vector multiplication becomes linear in reference to the number of points for a prescribed accuracy of the kernel approximation. This fast spline approximation which also allows the treatment of noisy data requires the choice of a smoothing parameter. We investigate several methods to (ideally automatically) choose this parameter with and without prior knowledge of the noise level. However, in order to keep a fast solution algorithm we do no longer have access to the whole matrix or e.g. its singular values whose computation requires a much larger numerical effort. This must be reflected by the parameter choice methods. Therefore, in some cases a further approximation is necessary. The performance of these methods is considered for different types of noise in a large simulation study with applications to gravitational field modeling as well as to boundary value problems.

  7. On the choice of calibration periods and objective functions: A practical guide to model parameter identification

    Science.gov (United States)

    Romanowicz, Renata; Osuch, Marzena; Grabowiecka, Magdalena

    2013-12-01

    Despite the development of new measuring techniques, monitoring systems and advances in computer technology, rainfall-flow modelling is still a challenge. The reasons are multiple and fairly well known. They include the distributed, heterogeneous nature of the environmental variables affecting flow from the catchment. These are precipitation, evapotranspiration and in some seasons and catchments in Poland, snow melt also. This paper presents a review of work done on the calibration and validation of rainfall-runoff modelling, with a focus on the conceptual HBV model. We give a synthesis of the problems and propose a practical guide to the calibration and validation of rainfall-runoff models.

  8. Nonlinear model-based control of the Czochralski process III: Proper choice of manipulated variables and controller parameter scheduling

    Science.gov (United States)

    Neubert, M.; Winkler, J.

    2012-12-01

    This contribution continues an article series [1,2] about the nonlinear model-based control of the Czochralski crystal growth process. The key idea of the presented approach is to use a sophisticated combination of nonlinear model-based and conventional (linear) PI controllers for tracking of both, crystal radius and growth rate. Using heater power and pulling speed as manipulated variables several controller structures are possible. The present part tries to systematize the properties of the materials to be grown in order to get unambiguous decision criteria for a most profitable choice of the controller structure. For this purpose a material specific constant M called interface mobility and a more process specific constant S called system response number are introduced. While the first one summarizes important material properties like thermal conductivity and latent heat the latter one characterizes the process by evaluating the average axial thermal gradients at the phase boundary and the actual growth rate at which the crystal is grown. Furthermore these characteristic numbers are useful for establishing a scheduling strategy for the PI controller parameters in order to improve the controller performance. Finally, both numbers give a better understanding of the general thermal system dynamics of the Czochralski technique.

  9. Article choice parameters in L2

    NARCIS (Netherlands)

    Guella, H.; Déprez, V.; Sleeman, P.; Slabakova, R.; Rothman, J.; Kempchinsky, P.; Gavruseva, E.

    2008-01-01

    This article concerns Ionin's (2003) Article Choice Parameter Hypothesis, which proposes a new semantic classification of languages. Article-based languages distribute articles on the basis of either a definiteness or a specificity parameter. Ionin's (2003) study shows that Russian and Korean (artic

  10. Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models

    Science.gov (United States)

    Giesen, Joachim; Mueller, Klaus; Taneva, Bilyana; Zolliker, Peter

    Conjoint analysis is a family of techniques that originated in psychology and later became popular in market research. The main objective of conjoint analysis is to measure an individual's or a population's preferences on a class of options that can be described by parameters and their levels. We consider preference data obtained in choice-based conjoint analysis studies, where one observes test persons' choices on small subsets of the options. There are many ways to analyze choice-based conjoint analysis data. Here we discuss the intuition behind a classification based approach, and compare this approach to one based on statistical assumptions (discrete choice models) and to a regression approach. Our comparison on real and synthetic data indicates that the classification approach outperforms the discrete choice models.

  11. MULTINOMINAL LOGIT MODEL OF BICYCLIST ROUTE CHOICE

    Directory of Open Access Journals (Sweden)

    O. Chernyshova

    2016-06-01

    Full Text Available The paper presents the multinominal logit discrete choice model that allows determining parameters coefficients of the cyclists’ route. The basic model includes six parameters, however, only a number of signalized intersections, speed of motorized traffic and total physical work required from cyclist prove to be significant factors. The model provides a better understanding about cyclist traffic assignment.

  12. Social Networks and Choice Set Formation in Discrete Choice Models

    Directory of Open Access Journals (Sweden)

    Bruno Wichmann

    2016-10-01

    Full Text Available The discrete choice literature has evolved from the analysis of a choice of a single item from a fixed choice set to the incorporation of a vast array of more complex representations of preferences and choice set formation processes into choice models. Modern discrete choice models include rich specifications of heterogeneity, multi-stage processing for choice set determination, dynamics, and other elements. However, discrete choice models still largely represent socially isolated choice processes —individuals are not affected by the preferences of choices of other individuals. There is a developing literature on the impact of social networks on preferences or the utility function in a random utility model but little examination of such processes for choice set formation. There is also emerging evidence in the marketplace of the influence of friends on choice sets and choices. In this paper we develop discrete choice models that incorporate formal social network structures into the choice set formation process in a two-stage random utility framework. We assess models where peers may affect not only the alternatives that individuals consider or include in their choice sets, but also consumption choices. We explore the properties of our models and evaluate the extent of “errors” in assessment of preferences, economic welfare measures and market shares if network effects are present, but are not accounted for in the econometric model. Our results shed light on the importance of the evaluation of peer or network effects on inclusion/exclusion of alternatives in a random utility choice framework.

  13. A FUZZY CLOPE ALGORITHM AND ITS OPTIMAL PARAMETER CHOICE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Among the available clustering algorithms in data mining, the CLOPE algorithm attracts much more attention with its high speed and good performance. However, the proper choice of some parameters in the CLOPE algorithm directly affects the validity of the clustering results, which is still an open issue. For this purpose, this paper proposes a fuzzy CLOPE algorithm, and presents a method for the optimal parameter choice by defining a modified partition fuzzy degree as a clustering validity function. The experimental results with real data set illustrate the effectiveness of the proposed fuzzy CLOPE algorithm and optimal parameter choice method based on the modified partition fuzzy degree.

  14. New Route Choice Models

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker

    Artiklen præsenterer og diskuterer forskellige rutevalgsmodeller. Konklusionen er, at der for bytrafik altid bør benyttes modeller, der både er stokastiske og trafikafhængige. Af trafikafhængige modeller er det hidtil kun vist, at Successive Gennemsnits Metode (MSA) er konvergent. Stochastic User...

  15. A coordinate-invariant model for deforming geodetic networks: understanding rank deficiencies, non-estimability of parameters, and the effect of the choice of minimal constraints

    Science.gov (United States)

    Chatzinikos, Miltiadis; Dermanis, Athanasios

    2016-11-01

    By considering a deformable geodetic network, deforming in a linear-in-time mode, according to a coordinate-invariant model, it becomes possible to get an insight into the rank deficiency of the stacking procedure, which is the standard method for estimating initial station coordinates and constant velocities, from coordinate time series. Comparing any two out of the infinitely many least squares estimates of stacking unknowns (initial station coordinates, velocity components and transformation parameters for the reference system in each data epoch), it is proven that the two solutions differ only by a linear-in-time trend in the transformation parameters. These pass over to the initial coordinates (the constant term) and to the velocity estimates (the time coefficient part). While the difference in initial coordinates is equivalent to a change of the reference system at the initial epoch, the differences in velocity components do not comply with those predicted by the same change of reference system for all epochs. Consequently, the different velocity component estimates, obtained by introducing different sets of minimal constraints, correspond to physically different station velocities, which are therefore non-estimable quantities. The theoretical findings are numerically verified for a global, a regional and a local network, by obtaining solutions based on four different types of minimal constraints, three usual algebraic ones (inner or partial inner) and the lately introduced kinematic constraints. Finally, by resorting to the basic ideas of Felix Tisserand, it is explained why the station velocities are non-estimable quantities in a very natural way. The problem of the optimal choice of minimal constraints and, hence, of the corresponding spatio-temporal reference system is shortly discussed.

  16. A coordinate-invariant model for deforming geodetic networks: understanding rank deficiencies, non-estimability of parameters, and the effect of the choice of minimal constraints

    Science.gov (United States)

    Chatzinikos, Miltiadis; Dermanis, Athanasios

    2017-04-01

    By considering a deformable geodetic network, deforming in a linear-in-time mode, according to a coordinate-invariant model, it becomes possible to get an insight into the rank deficiency of the stacking procedure, which is the standard method for estimating initial station coordinates and constant velocities, from coordinate time series. Comparing any two out of the infinitely many least squares estimates of stacking unknowns (initial station coordinates, velocity components and transformation parameters for the reference system in each data epoch), it is proven that the two solutions differ only by a linear-in-time trend in the transformation parameters. These pass over to the initial coordinates (the constant term) and to the velocity estimates (the time coefficient part). While the difference in initial coordinates is equivalent to a change of the reference system at the initial epoch, the differences in velocity components do not comply with those predicted by the same change of reference system for all epochs. Consequently, the different velocity component estimates, obtained by introducing different sets of minimal constraints, correspond to physically different station velocities, which are therefore non-estimable quantities. The theoretical findings are numerically verified for a global, a regional and a local network, by obtaining solutions based on four different types of minimal constraints, three usual algebraic ones (inner or partial inner) and the lately introduced kinematic constraints. Finally, by resorting to the basic ideas of Felix Tisserand, it is explained why the station velocities are non-estimable quantities in a very natural way. The problem of the optimal choice of minimal constraints and, hence, of the corresponding spatio-temporal reference system is shortly discussed.

  17. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)

    2011-11-15

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used

  18. Alternative fuels and vehicles choice model

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L. [Oak Ridge National Lab., TN (United States). Center for Transportation Analysis

    1994-10-01

    This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the US Department of Energy`s Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, encompassing resource production, conversion processes, transportation, and consumption. The AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A unique feature of the AFVC is that its parameters are derived directly from the characteristics of alternative fuels and vehicle technologies, together with a few key assumptions about consumer behavior. This not only establishes a direct link between assumptions and model predictions, but facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is also described.

  19. Discrete Choice Models - Estimation of Passenger Traffic

    DEFF Research Database (Denmark)

    Sørensen, Majken Vildrik

    2003-01-01

    ), which simultaneously finds optimal coefficients values (utility elements) and parameter values (distributed terms) in the utility function. The shape of the distributed terms is specified prior to the estimation; hence, the validity is not tested during the estimation. The proposed method, assesses...... for data, a literature review follows. Models applied for estimation of discrete choice models are described by properties and limitations, and relations between these are established. Model types are grouped into three classes, Hybrid choice models, Tree models and Latent class models. Relations between...... the shape of the distribution from data, by means of repetitive model estimation. In particular, one model was estimated for each sub-sample of data. The shape of distributions is assessed from between model comparisons. This is not to be regarded as an alternative to MSL estimation, rather...

  20. A nested recursive logit model for route choice analysis

    DEFF Research Database (Denmark)

    Mai, Tien; Frejinger, Emma; Fosgerau, Mogens

    2015-01-01

    We propose a route choice model that relaxes the independence from irrelevant alternatives property of the logit model by allowing scale parameters to be link specific. Similar to the recursive logit (RL) model proposed by Fosgerau et al. (2013), the choice of path is modeled as a sequence of link...

  1. A nested recursive logit model for route choice analysis

    DEFF Research Database (Denmark)

    Mai, Tien; Frejinger, Emma; Fosgerau, Mogens

    2015-01-01

    We propose a route choice model that relaxes the independence from irrelevant alternatives property of the logit model by allowing scale parameters to be link specific. Similar to the recursive logit (RL) model proposed by Fosgerau et al. (2013), the choice of path is modeled as a sequence of link...

  2. Meta-analysis of choice set generation effects on route choice model estimates and predictions

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo

    2012-01-01

    Large scale applications of behaviorally realistic transport models pose several challenges to transport modelers on both the demand and the supply sides. On the supply side, path-based solutions to the user assignment equilibrium problem help modelers in enhancing the route choice behavior...... modeling, but require them to generate choice sets by selecting a path generation technique and its parameters according to personal judgments. This paper proposes a methodology and an experimental setting to provide general indications about objective judgments for an effective route choice set generation....... Initially, path generation techniques are implemented within a synthetic network to generate possible subjective choice sets considered by travelers. Next, ‘true model estimates’ and ‘postulated predicted routes’ are assumed from the simulation of a route choice model. Then, objective choice sets...

  3. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  4. Model choice in nonnested families

    CERN Document Server

    Pereira, Basilio de Bragança

    2016-01-01

    This book discusses the problem of model choice when the statistical models are separate, also called nonnested. Chapter 1 provides an introduction, motivating examples and a general overview of the problem. Chapter 2 presents the classical or frequentist approach to the problem as well as several alternative procedures and their properties. Chapter 3 explores the Bayesian approach, the limitations of the classical Bayes factors and the proposed alternative Bayes factors to overcome these limitations. It also discusses a significance Bayesian procedure. Lastly, Chapter 4 examines the pure likelihood approach. Various real-data examples and computer simulations are provided throughout the text.

  5. A practical test for the choice of mixing distribution in discrete choice models

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bierlaire, Michel

    2007-01-01

    The choice of a specific distribution for random parameters of discrete choice models is a critical issue in transportation analysis. Indeed, various pieces of research have demonstrated that an inappropriate choice of the distribution may lead to serious bias in model forecast and in the estimated...... means of random parameters. In this paper, we propose a practical test, based on seminonparametric techniques. The test is analyzed both on synthetic and real data, and is shown to be simple and powerful. (c) 2007 Elsevier Ltd. All rights reserved....

  6. Optimal choice of parameters for particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-ping; YU Huan-jun; HU Shang-xu

    2005-01-01

    The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically investigated based on some benchmark functions. The constriction factor, velocity constraint, and population size all have significant impact on the performance of CFM for PSO. The constriction factor and velocity constraint have optimal values in practical application, and improper choice of these factors will lead to bad results. Increasing population size can improve the solution quality, although the computing time will be longer. The characteristics of CFM parameters are described and guidelines for determining parameter values are given in this paper.

  7. Using Short-term Hindcast Skill to Add Confidence to the Choice of Uncertain Model Parameter Values in CESM Climate Change Simulations

    Science.gov (United States)

    Hannay, C.; Neale, R. B.; Rothstein, M.

    2016-12-01

    Projections of future climate change are inherently uncertain and regional details are heavily dependent on coupled climate model formulations. Bernstein and Neelin (2016) show that projections of future climate using the Community Earth System Model (CESM) can vary significantly depending on the (reasonable) value used for important but uncertain model parameters. This includes a wide variation in the tropical precipitation response due to perturbations of parameters inherent to the formulation of deep convection parameterization. The question is therefore which model formulation should be trusted most? Since true validation is, of course, not possible at present day, guidance has to be provided by other proxies. Using a simple metric that climate models that performing best in a standard present-day (AMIP-type) configuration should be trusted most for future climate projections is unsatisfactory here, as only a small tuning effort is required to produce simulations equally skillful to the unperturbed model configurations. Here we employ an alternative approach for "trusting" the future climate projections. It is based on using CESM for a series of CAPT-type hindcast simulations, mirroring the limited perturbed parameter ensemble approach of Bernstein and Neelin (2016). Simulation sets are run for the YOTC period of 2009-2010 using CAM5 at 1 degree resolution. In this talk we will show the regional variations of climate change signals in the hydrological cycle in response to deep convection dependent parameter sets (e.g., entrainment, timescale) and contrast them with the equivalent hindcast experiments using the same parameter set. With this analysis we are able to provide guidance as to which parameter value selections result in the highest skill in the hindcasts and how that corresponds with the equivalent CESM future climate change signals.

  8. Hyperbolic value addition and general models of animal choice.

    Science.gov (United States)

    Mazur, J E

    2001-01-01

    Three mathematical models of choice--the contextual-choice model (R. Grace, 1994), delay-reduction theory (N. Squires & E. Fantino, 1971), and a new model called the hyperbolic value-added model--were compared in their ability to predict the results from a wide variety of experiments with animal subjects. When supplied with 2 or 3 free parameters, all 3 models made fairly accurate predictions for a large set of experiments that used concurrent-chain procedures. One advantage of the hyperbolic value-added model is that it is derived from a simpler model that makes accurate predictions for many experiments using discrete-trial adjusting-delay procedures. Some results favor the hyperbolic value-added model and delay-reduction theory over the contextual-choice model, but more data are needed from choice situations for which the models make distinctly different predictions.

  9. A Simplified Model of Choice Behavior under Uncertainty

    OpenAIRE

    Lin, Ching-Hung; Lin, Yu-Kai; Song, Tzu-Jiun; Huang, Jong-Tsun; Chiu, Yao-Chu

    2016-01-01

    The Iowa Gambling Task (IGT) has been standardized as a clinical assessment tool (Bechara, 2007). Nonetheless, numerous research groups have attempted to modify IGT models to optimize parameters for predicting the choice behavior of normal controls and patients. A decade ago, most researchers considered the expected utility (EU) model (Busemeyer and Stout, 2002) to be the optimal model for predicting choice behavior under uncertainty. However, in recent years, studies have demonstrated that m...

  10. A simplified model of choice behavior under uncertainty

    OpenAIRE

    Ching-Hung Lin; Yu-Kai Lin; Tzu-Jiun Song; Jong-Tsun Huang; Yao-Chu Chiu

    2016-01-01

    The Iowa Gambling Task (IGT) has been standardized as a clinical assessment tool (Bechara, 2007). Nonetheless, numerous research groups have attempted to modify IGT models to optimize parameters for predicting the choice behavior of normal controls and patients. A decade ago, most researchers considered the expected utility (EU) model (Busemeyer and Stout, 2002) to be the optimal model for predicting choice behavior under uncertainty. However, in recent years, studies have demonstrated the pr...

  11. Lumped-parameter models

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. The lumped-parameter model development have been reported by (Wolf 1991b; Wolf 1991a; Wolf and Paronesso 1991; Wolf and Paronesso 19...

  12. Comparing parameter choice methods for the regularization in the SONAH algorithm

    DEFF Research Database (Denmark)

    Gomes, Jesper Skovhus

    2006-01-01

    is needed. A parameter choice method based on a priori information about the signal-to-noise-ratio (SNR) in the measurement setup is often chosen. However, this parameter choice method may be undesirable since SNR is difficult to determine in practice. In this paper, data based parameter choice methods...

  13. Influence of choice of null network on small-world parameters of structural correlation networks.

    Science.gov (United States)

    Hosseini, S M Hadi; Kesler, Shelli R

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures.

  14. Response model parameter linking

    NARCIS (Netherlands)

    Barrett, Michelle Derbenwick

    2015-01-01

    With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of equating observed scores on different test forms. This thesis argues, however, that the use of item response models does not require

  15. Distributed Parameter Modelling Applications

    DEFF Research Database (Denmark)

    2011-01-01

    Here the issue of distributed parameter models is addressed. Spatial variations as well as time are considered important. Several applications for both steady state and dynamic applications are given. These relate to the processing of oil shale, the granulation of industrial fertilizers and the d......Here the issue of distributed parameter models is addressed. Spatial variations as well as time are considered important. Several applications for both steady state and dynamic applications are given. These relate to the processing of oil shale, the granulation of industrial fertilizers...... sands processing. The fertilizer granulation model considers the dynamics of MAP-DAP (mono and diammonium phosphates) production within an industrial granulator, that involves complex crystallisation, chemical reaction and particle growth, captured through population balances. A final example considers...

  16. TAFV Alternative Fuels and Vehicles Choice Model Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2001-07-27

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model.

  17. Developing a Model of Occupational Choice

    Science.gov (United States)

    Egner, Joan Roos

    1974-01-01

    Rational and non-rational decision-making models of occupational choice are described. The Blau model provides an alternative to these. This model contains an occupational set of factors and a set related to the individual. Research supporting its conceptual utility and activities illustrating its pragmatic utility are discussed. (EAK)

  18. Consumer Vehicle Choice Model Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changzheng [ORNL; Greene, David L [ORNL

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  19. A link based network route choice model with unrestricted choice set

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Frejinger, Emma; Karlstrom, Anders

    2013-01-01

    This paper considers the path choice problem, formulating and discussing an econometric random utility model for the choice of path in a network with no restriction on the choice set. Starting from a dynamic specification of link choices we show that it is equivalent to a static model...... additive. The model is applied to data recording path choices in a network with more than 3000 nodes and 7000 links....

  20. A simplified model of choice behavior under uncertainty

    Directory of Open Access Journals (Sweden)

    Ching-Hung Lin

    2016-08-01

    Full Text Available The Iowa Gambling Task (IGT has been standardized as a clinical assessment tool (Bechara, 2007. Nonetheless, numerous research groups have attempted to modify IGT models to optimize parameters for predicting the choice behavior of normal controls and patients. A decade ago, most researchers considered the expected utility (EU model (Busemeyer and Stout, 2002 to be the optimal model for predicting choice behavior under uncertainty. However, in recent years, studies have demonstrated the prospect utility (PU models (Ahn et al., 2008 to be more effective than the EU models in the IGT. Nevertheless, after some preliminary tests, we propose that Ahn et al. (2008 PU model is not optimal due to some incompatible results between our behavioral and modeling data. This study aims to modify Ahn et al. (2008 PU model to a simplified model and collected 145 subjects’ IGT performance as the benchmark data for comparison. In our simplified PU model, the best goodness-of-fit was found mostly while α approaching zero. More specifically, we retested the key parameters α, λ , and A in the PU model. Notably, the power of influence of the parameters α, λ, and A has a hierarchical order in terms of manipulating the goodness-of-fit in the PU model. Additionally, we found that the parameters λ and A may be ineffective when the parameter α is close to zero in the PU model. The present simplified model demonstrated that decision makers mostly adopted the strategy of gain-stay-loss-shift rather than foreseeing the long-term outcome. However, there still have other behavioral variables that are not well revealed under these dynamic uncertainty situations. Therefore, the optimal behavioral models may not have been found. In short, the best model for predicting choice behavior under dynamic-uncertainty situations should be further evaluated.

  1. Street Choice Logit Model for Visitors in Shopping Districts

    Directory of Open Access Journals (Sweden)

    Ko Kawada

    2014-07-01

    Full Text Available In this study, we propose two models for predicting people’s activity. The first model is the pedestrian distribution prediction (or postdiction model by multiple regression analysis using space syntax indices of urban fabric and people distribution data obtained from a field survey. The second model is a street choice model for visitors using multinomial logit model. We performed a questionnaire survey on the field to investigate the strolling routes of 46 visitors and obtained a total of 1211 street choices in their routes. We proposed a utility function, sum of weighted space syntax indices, and other indices, and estimated the parameters for weights on the basis of maximum likelihood. These models consider both street networks, distance from destination, direction of the street choice and other spatial compositions (numbers of pedestrians, cars, shops, and elevation. The first model explains the characteristics of the street where many people tend to walk or stay. The second model explains the mechanism underlying the street choice of visitors and clarifies the differences in the weights of street choice parameters among the various attributes, such as gender, existence of destinations, number of people, etc. For all the attributes considered, the influences of DISTANCE and DIRECTION are strong. On the other hand, the influences of Int.V, SHOPS, CARS, ELEVATION, and WIDTH are different for each attribute. People with defined destinations tend to choose streets that “have more shops, and are wider and lower”. In contrast, people with undefined destinations tend to choose streets of high Int.V. The choice of males is affected by Int.V, SHOPS, WIDTH (positive and CARS (negative. Females prefer streets that have many shops, and couples tend to choose downhill streets. The behavior of individual persons is affected by all variables. The behavior of people visiting in groups is affected by SHOP and WIDTH (positive.

  2. Parental role models, gender and educational choice.

    Science.gov (United States)

    Dryler, H

    1998-09-01

    Parental role models are often put forward as an explanation for the choice of gender-atypical educational routes. This paper aims to test such explanations by examining the impact of family background variables like parental education and occupation, on choice of educational programme at upper secondary school. Using a sample of around 73,000 Swedish teenagers born between 1972 and 1976, girls' and boys' gender-atypical as well as gender-typical educational choices are analysed by means of logistic regression. Parents working or educated within a specific field increase the probability that a child will make a similar choice of educational programme at upper secondary school. This same-sector effect appeared to be somewhat stronger for fathers and sons, while no such same-sex influence was confirmed for girls. No evidence was found that, in addition to a same-sector effect, it matters whether parents' occupations represent gender-traditional or non-traditional models. Parents of the service classes or highly educated parents--expected to be the most gender egalitarian in attitudes and behaviours--have a positive influence upon children's choice of gender-atypical education.

  3. Process and Context in Choice Models

    DEFF Research Database (Denmark)

    Ben-Akiva, Moshe; Palma, André de; McFadden, Daniel

    2012-01-01

    We develop a general framework that extends choice models by including an explicit representation of the process and context of decision making. Process refers to the steps involved in decision making. Context refers to factors affecting the process, focusing in this paper on social networks. The...

  4. Modeling Stochastic Route Choice Behaviors with Equivalent Impedance

    Directory of Open Access Journals (Sweden)

    Jun Li

    2015-01-01

    Full Text Available A Logit-based route choice model is proposed to address the overlapping and scaling problems in the traditional multinomial Logit model. The nonoverlapping links are defined as a subnetwork, and its equivalent impedance is explicitly calculated in order to simply network analyzing. The overlapping links are repeatedly merged into subnetworks with Logit-based equivalent travel costs. The choice set at each intersection comprises only the virtual equivalent route without overlapping. In order to capture heterogeneity in perception errors of different sizes of networks, different scale parameters are assigned to subnetworks and they are linked to the topological relationships to avoid estimation burden. The proposed model provides an alternative method to model the stochastic route choice behaviors without the overlapping and scaling problems, and it still maintains the simple and closed-form expression from the MNL model. A link-based loading algorithm based on Dial’s algorithm is proposed to obviate route enumeration and it is suitable to be applied on large-scale networks. Finally a comparison between the proposed model and other route choice models is given by numerical examples.

  5. Airport choice model in multiple airport regions

    Directory of Open Access Journals (Sweden)

    Claudia Muñoz

    2017-02-01

    Full Text Available Purpose: This study aims to analyze travel choices made by air transportation users in multi airport regions because it is a crucial component when planning passenger redistribution policies. The purpose of this study is to find a utility function which makes it possible to know the variables that influence users’ choice of the airports on routes to the main cities in the Colombian territory. Design/methodology/approach: This research generates a Multinomial Logit Model (MNL, which is based on the theory of maximizing utility, and it is based on the data obtained on revealed and stated preference surveys applied to users who reside in the metropolitan area of Aburrá Valley (Colombia. This zone is the only one in the Colombian territory which has two neighboring airports for domestic flights. The airports included in the modeling process were Enrique Olaya Herrera (EOH Airport and José María Córdova (JMC Airport. Several structure models were tested, and the MNL proved to be the most significant revealing the common variables that affect passenger airport choice include the airfare, the price to travel the airport, and the time to get to the airport. Findings and Originality/value: The airport choice model which was calibrated corresponds to a valid powerful tool used to calculate the probability of each analyzed airport of being chosen for domestic flights in the Colombian territory. This is done bearing in mind specific characteristic of each of the attributes contained in the utility function. In addition, these probabilities will be used to calculate future market shares of the two airports considered in this study, and this will be done generating a support tool for airport and airline marketing policies.

  6. A Conditioned Model for Choice of Mode Under Information

    Directory of Open Access Journals (Sweden)

    Agha Faisal Habib Pathan

    2013-07-01

    Full Text Available This paper examines the influence of time and cost information obtained from different sources on choice of mode of Leeds' long distance travellers. The choice of mode was investigated through modal attributes provided by at least two different information sources which might provide contrary or corroborating information rather than on actual attributes. The experiment included telephone administered questionnaire including RP (Revealed Preference questions and an SP (Stated Preference exercise dealing with the choice of modes conditioned by the information received from various sources. Information on travel time and cost was provided from two different information sources for each mode to facilitate the conditioning of mode choice on corroborating/contradictory information. The research employs a wide range of modelling methodologies and examines a range of traditional and newly developed calibration and estimation procedures including Mixed Logit models with individual specific parameters and the newly developed RRM (Random Regret Minimisation framework. The study confirms that the market share of the modes increases when information sources show decreased travel time and cost values and shows that the maximum shares are achieved when different information sources give the same information to the travellers. The study found that pre-trip time information has more influence on mode choice when derived from websites than when derived from other sources. Pre-trip information on costs was, however, less influential when derived from websites than when derived from other sources.

  7. Engineering method of calculation and choice of main parameters of the linear induction accelerator inductors

    Directory of Open Access Journals (Sweden)

    В.Т. Чемерис

    2006-04-01

    Full Text Available  There is a method of simplified calculation and design parameters choice elaborated in this article with corresponding basing for the induction system of electron-beam sterilizer on the base of linear induction accelerator taking into account the parameters of magnetic material for production of cores and parameters of pulsed voltage.

  8. Model for understanding consumer textural food choice.

    Science.gov (United States)

    Jeltema, Melissa; Beckley, Jacqueline; Vahalik, Jennifer

    2015-05-01

    The current paradigm for developing products that will match the marketing messaging is flawed because the drivers of product choice and satisfaction based on texture are misunderstood. Qualitative research across 10 years has led to the thesis explored in this research that individuals have a preferred way to manipulate food in their mouths (i.e., mouth behavior) and that this behavior is a major driver of food choice, satisfaction, and the desire to repurchase. Texture, which is currently thought to be a major driver of product choice, is a secondary factor, and is important only in that it supports the primary driver-mouth behavior. A model for mouth behavior is proposed and the qualitative research supporting the identification of different mouth behaviors is presented. The development of a trademarked typing tool for characterizing mouth behavior is described along with quantitative substantiation of the tool's ability to group individuals by mouth behavior. The use of these four groups to understand textural preferences and the implications for a variety of areas including product design and weight management are explored.

  9. INFLUENCE OF ROLLING STOCK VIBROACOUSTICAL PARAMETERS ON THE CHOICE OF RATIONAL VALUES OF LOCOMOTIVE RUNNING GEAR

    Directory of Open Access Journals (Sweden)

    Yu. V. Zelenko

    2016-06-01

    Full Text Available Purpose.The success of the traffic on the railways of Ukraine depends on the number and the operational fleet of electric locomotives. Today, the locomotive depot exploit physically and morally outdated locomotives that have low reliability. Modernization of electric locomotives is not economically justified. The aim of this study is to improve the safety of the traction rolling stock by the frequency analysis of dynamical systems, which allows conducting the calculation of the natural (of resonant frequencies of the design and related forms of vibrations.Methodology.The study was conducted by methods of analytical mechanics and mathematical modeling of operating loads of freight locomotive when driving at different speeds on the straight and curved track sections. The theoretical value of the work is the technique of choice of constructive schemes and rational parameters of perspective electric locomotive taking into account the electric inertia ratios and stiffness coefficients of Lagrange second-order equations.Findings. The problems of theoretical research and the development of a mathematical model of the spatial electric vibrations are solved. The theoretical studies of the effect of inertia ratios and stiffness coefficients on the dynamic values and the parameter values of electric locomotive undercarriages are presented.Originality.The set of developed regulations and obtained results is a practical solution to selecting rational parameters of bogies of the freight mainline locomotive for railways of Ukraine. A concept of choice of constructive scheme and rational parameters of perspective locomotive is formulated. It is developed the method of calculation of spatial electric locomotive oscillations to determine its dynamic performance. The software complex for processing the data of experimental studies of dynamic parameters of electric locomotive and comparing the results of the theoretical calculations with the data of full

  10. A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS estimation and a Stochastic User Equilibrium (SUE assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers' route choice behavior.

  11. How the twain can meet: Prospect theory and models of heuristics in risky choice.

    Science.gov (United States)

    Pachur, Thorsten; Suter, Renata S; Hertwig, Ralph

    2017-03-01

    Two influential approaches to modeling choice between risky options are algebraic models (which focus on predicting the overt decisions) and models of heuristics (which are also concerned with capturing the underlying cognitive process). Because they rest on fundamentally different assumptions and algorithms, the two approaches are usually treated as antithetical, or even incommensurable. Drawing on cumulative prospect theory (CPT; Tversky & Kahneman, 1992) as the currently most influential instance of a descriptive algebraic model, we demonstrate how the two modeling traditions can be linked. CPT's algebraic functions characterize choices in terms of psychophysical (diminishing sensitivity to probabilities and outcomes) as well as psychological (risk aversion and loss aversion) constructs. Models of heuristics characterize choices as rooted in simple information-processing principles such as lexicographic and limited search. In computer simulations, we estimated CPT's parameters for choices produced by various heuristics. The resulting CPT parameter profiles portray each of the choice-generating heuristics in psychologically meaningful ways-capturing, for instance, differences in how the heuristics process probability information. Furthermore, CPT parameters can reflect a key property of many heuristics, lexicographic search, and track the environment-dependent behavior of heuristics. Finally, we show, both in an empirical and a model recovery study, how CPT parameter profiles can be used to detect the operation of heuristics. We also address the limits of CPT's ability to capture choices produced by heuristics. Our results highlight an untapped potential of CPT as a measurement tool to characterize the information processing underlying risky choice.

  12. Stochastic Technology Choice Model for Consequential Life Cycle Assessment.

    Science.gov (United States)

    Kätelhön, Arne; Bardow, André; Suh, Sangwon

    2016-12-06

    Discussions on Consequential Life Cycle Assessment (CLCA) have relied largely on partial or general equilibrium models. Such models are useful for integrating market effects into CLCA, but also have well-recognized limitations such as the poor granularity of the sectoral definition and the assumption of perfect oversight by all economic agents. Building on the Rectangular-Choice-of-Technology (RCOT) model, this study proposes a new modeling approach for CLCA, the Technology Choice Model (TCM). In this approach, the RCOT model is adapted for its use in CLCA and extended to incorporate parameter uncertainties and suboptimal decisions due to market imperfections and information asymmetry in a stochastic setting. In a case study on rice production, we demonstrate that the proposed approach allows modeling of complex production technology mixes and their expected environmental outcomes under uncertainty, at a high level of detail. Incorporating the effect of production constraints, uncertainty, and suboptimal decisions by economic agents significantly affects technology mixes and associated greenhouse gas (GHG) emissions of the system under study. The case study also shows the model's ability to determine both the average and marginal environmental impacts of a product in response to changes in the quantity of final demand.

  13. The Stay/Switch Model of Concurrent Choice

    Science.gov (United States)

    MacDonall, James S.

    2009-01-01

    This experiment compared descriptions of concurrent choice by the stay/switch model, which says choice is a function of the reinforcers obtained for staying at and for switching from each alternative, and the generalized matching law, which says choice is a function of the total reinforcers obtained at each alternative. For the stay/switch model…

  14. Photovoltaic module parameters acquisition model

    Science.gov (United States)

    Cibira, Gabriel; Koščová, Marcela

    2014-09-01

    This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I-V and P-V characteristics for PV module based on equivalent electrical circuit. Then, limited I-V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.

  15. Estimating hybrid choice models with the new version of Biogeme

    OpenAIRE

    Bierlaire, Michel

    2010-01-01

    Hybrid choice models integrate many types of discrete choice modeling methods, including latent classes and latent variables, in order to capture concepts such as perceptions, attitudes, preferences, and motivatio (Ben-Akiva et al., 2002). Although they provide an excellent framework to capture complex behavior patterns, their use in applications remains rare in the literature due to the difficulty of estimating the models. In this talk, we provide a short introduction to hybrid choice model...

  16. Rationality in a general model of choice

    Directory of Open Access Journals (Sweden)

    Somdeb Lahiri

    2015-09-01

    Full Text Available In this paper we consider choice correspondences which may be empty-valued. We study conditions under which such choice correspondences are rational, transitively rational, partially rational, partially almost transitive rational, partially almost quasi-transitive rational. This provides fresh impetus and understanding of multi-criteria decision making.

  17. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  18. Harvest choice and timber supply models for forest forecasting

    Science.gov (United States)

    Maksym Polyakov; David N Wear

    2010-01-01

    Timber supply has traditionally been modeled using aggregate data, whereas individual harvest choices have been shown to be sensitive to the vintage and condition of forest capital stocks. In this article, we build aggregate supply models for four roundwood products in a seven-state region of the US South directly from stand-level harvest choice models applied to...

  19. A Neurocomputational Model of Altruistic Choice and Its Implications.

    Science.gov (United States)

    Hutcherson, Cendri A; Bushong, Benjamin; Rangel, Antonio

    2015-07-15

    We propose a neurocomputational model of altruistic choice and test it using behavioral and fMRI data from a task in which subjects make choices between real monetary prizes for themselves and another. We show that a multi-attribute drift-diffusion model, in which choice results from accumulation of a relative value signal that linearly weights payoffs for self and other, captures key patterns of choice, reaction time, and neural response in ventral striatum, temporoparietal junction, and ventromedial prefrontal cortex. The model generates several novel insights into the nature of altruism. It explains when and why generous choices are slower or faster than selfish choices, and why they produce greater response in TPJ and vmPFC, without invoking competition between automatic and deliberative processes or reward value for generosity. It also predicts that when one's own payoffs are valued more than others', some generous acts may reflect mistakes rather than genuinely pro-social preferences.

  20. Hybrid Compensatory-Noncompensatory Choice Sets in Semicompensatory Models

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Bekhor, Shlomo; Shiftan, Yoram

    2013-01-01

    by a mathematical model that combines multinomial-response and ordered-response thresholds with a utility-based choice. The proposed model is applied to a stated preference experiment of off-campus rental apartment choices by students. Results demonstrate the applicability and feasibility of incorporating...

  1. Children's Conceptions of Career Choice and Attainment: Model Development

    Science.gov (United States)

    Howard, Kimberly A. S.; Walsh, Mary E.

    2011-01-01

    This article describes a model of children's conceptions of two key career development processes: career choice and career attainment. The model of children's understanding of career choice and attainment was constructed with developmental research and theory into children's understanding of allied phenomena such as their understanding of illness,…

  2. Estimation of an Occupational Choice Model when Occupations Are Misclassified

    Science.gov (United States)

    Sullivan, Paul

    2009-01-01

    This paper develops an empirical occupational choice model that corrects for misclassification in occupational choices and measurement error in occupation-specific work experience. The model is used to estimate the extent of measurement error in occupation data and quantify the bias that results from ignoring measurement error in occupation codes…

  3. Comparative study on mode split discrete choice models

    Institute of Scientific and Technical Information of China (English)

    Xianlong Chen; Xiaoqian Liu; Fazhi Li

    2013-01-01

    Discrete choice model acts as one of the most important tools for studies involving mode split in the context of transport demand forecast. As different types of discrete choice models display their merits and restrictions diversely, how to properly select the specific type among discrete choice models for realistic application still remains to be a tough problem. In this article, five typical discrete choice models for transport mode split are, respectively, discussed, which includes multinomial logit model, nested logit model (NL), heteroscedastic extreme value model, multinominal probit model and mixed multinomial logit model (MMNL). The theoretical basis and application attributes of these five models are especially analysed with great attention, and they are also applied to a realistic intercity case of mode split forecast, which results indi-cating that NL model does well in accommodating simi-larity and heterogeneity across alternatives, while MMNL model serves as the most effective method for mode choice prediction since it shows the highest reliability with the least significant prediction errors and even outperforms the other four models in solving the heterogeneity and similarity problems. This study indicates that conclusions derived from a single discrete choice model are not reli-able, and it is better to choose the proper model based on its characteristics.

  4. Bayesian methods for model choice and propagation of model uncertainty in groundwater transport modeling

    Science.gov (United States)

    Mendes, B. S.; Draper, D.

    2008-12-01

    The issue of model uncertainty and model choice is central in any groundwater modeling effort [Neuman and Wierenga, 2003]; among the several approaches to the problem we favour using Bayesian statistics because it is a method that integrates in a natural way uncertainties (arising from any source) and experimental data. In this work, we experiment with several Bayesian approaches to model choice, focusing primarily on demonstrating the usefulness of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) simulation method [Green, 1995]; this is an extension of the now- common MCMC methods. Standard MCMC techniques approximate posterior distributions for quantities of interest, often by creating a random walk in parameter space; RJMCMC allows the random walk to take place between parameter spaces with different dimensionalities. This fact allows us to explore state spaces that are associated with different deterministic models for experimental data. Our work is exploratory in nature; we restrict our study to comparing two simple transport models applied to a data set gathered to estimate the breakthrough curve for a tracer compound in groundwater. One model has a mean surface based on a simple advection dispersion differential equation; the second model's mean surface is also governed by a differential equation but in two dimensions. We focus on artificial data sets (in which truth is known) to see if model identification is done correctly, but we also address the issues of over and under-paramerization, and we compare RJMCMC's performance with other traditional methods for model selection and propagation of model uncertainty, including Bayesian model averaging, BIC and DIC.References Neuman and Wierenga (2003). A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. NUREG/CR-6805, Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission

  5. Incorporating Context Effects into a Choice Model

    NARCIS (Netherlands)

    Rooderkerk, Robert P.; Van Heerde, Harald J.; Bijmolt, Tammo H. A.

    The behavioral literature provides ample evidence that consumer preferences are partly driven by the context provided by the set of alternatives. Three important context effects are the compromise, attraction, and similarity effects. Because these context effects affect choices in a systematic and

  6. Incorporating Context Effects into a Choice Model

    NARCIS (Netherlands)

    Rooderkerk, Robert P.; Van Heerde, Harald J.; Bijmolt, Tammo H. A.

    2011-01-01

    The behavioral literature provides ample evidence that consumer preferences are partly driven by the context provided by the set of alternatives. Three important context effects are the compromise, attraction, and similarity effects. Because these context effects affect choices in a systematic and p

  7. Modeling Departure Time Choice with Stochastic Networks

    NARCIS (Netherlands)

    Li, H.; Bliemer, M.C.J.; Bovy, P.H.L.

    2010-01-01

    Stochastic supply and fluctuating travel demand lead to stochasticity in travel times and travel costs experienced by travelers from time to time within a day and at the same time from day to day. Many studies show that travel time un-reliability has significant impacts on traveler’s choice behavior

  8. The drift diffusion model as the choice rule in reinforcement learning.

    Science.gov (United States)

    Pedersen, Mads Lund; Frank, Michael J; Biele, Guido

    2016-12-13

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.

  9. Modeling Consideration Sets and Brand Choice Using Artificial Neural Networks

    NARCIS (Netherlands)

    B.L.K. Vroomen (Björn); Ph.H.B.F. Franses (Philip Hans); J.E.M. van Nierop

    2001-01-01

    textabstractThe concept of consideration sets makes brand choice a two-step process. House-holds first construct a consideration set which not necessarily includes all available brands and conditional on this set they make a final choice. In this paper we put forward a parametric econometric model f

  10. Estimating Route Choice Models from Stochastically Generated Choice Sets on Large-Scale Networks Correcting for Unequal Sampling Probability

    DEFF Research Database (Denmark)

    Vacca, Alessandro; Prato, Carlo Giacomo; Meloni, Italo

    2015-01-01

    is the dependency of the parameter estimates from the choice set generation technique. Bias introduced in model estimation has been corrected only for the random walk algorithm, which has problematic applicability to large-scale networks. This study proposes a correction term for the sampling probability of routes...... extracted with stochastic route generation. The term is easily applicable to large-scale networks and various environments, given its dependence only on a random number generator and the Dijkstra shortest path algorithm. The implementation for revealed preferences data, which consist of actual route choices...... collected in Cagliari, Italy, shows the feasibility of generating routes stochastically in a high-resolution network and calculating the correction factor. The model estimation with and without correction illustrates how the correction not only improves the goodness of fit but also turns illogical signs...

  11. Effect of Correlations Between Model Parameters and Nuisance Parameters When Model Parameters are Fit to Data

    CERN Document Server

    Roe, Byron

    2013-01-01

    The effect of correlations between model parameters and nuisance parameters is discussed, in the context of fitting model parameters to data. Modifications to the usual $\\chi^2$ method are required. Fake data studies, as used at present, will not be optimum. Problems will occur for applications of the Maltoni-Schwetz \\cite{ms} theorem. Neutrino oscillations are used as examples, but the problems discussed here are general ones, which are often not addressed.

  12. Sexual selection under parental choice: a revision to the model.

    Science.gov (United States)

    Apostolou, Menelaos

    2014-06-01

    Across human cultures, parents exercise considerable influence over their children's mate choices. The model of parental choice provides a good account of these patterns, but its prediction that male parents exercise more control than female ones is not well founded in evolutionary theory. To address this shortcoming, the present article proposes a revision to the model. In particular, parental uncertainty, residual reproductive value, reproductive variance, asymmetry in the control of resources, physical strength, and access to weaponry make control over mating more profitable for male parents than female ones; in turn, this produces an asymmetrical incentive for controlling mate choice. Several implications of this formulation are also explored.

  13. Model Adequacy Checks for Discrete Choice Dynamic Models

    CERN Document Server

    Kheifets, Igor

    2012-01-01

    This paper proposes new parametric model adequacy tests for possibly nonlinear and nonstationary time series models with noncontinuous data distribution, which is often the case in applied work. In particular, we consider the correct specification of parametric conditional distributions in dynamic discrete choice models, not only of some particular conditional characteristics such as moments or symmetry. Knowing the true distribution is important in many circumstances, in particular to apply efficient maximum likelihood methods, obtain consistent estimates of partial effects and appropriate predictions of the probability of future events. We propose a transformation of data which under the true conditional distribution leads to continuous uniform iid series. The uniformity and serial independence of the new series is then examined simultaneously. The transformation can be considered as an extension of the integral transform tool for noncontinuous data. We derive asymptotic properties of such tests taking into...

  14. Profile construction in experimental choice designs for mixed logit models

    NARCIS (Netherlands)

    Sandor, Z; Wedel, M

    2002-01-01

    A computationally attractive model for the analysis of conjoint choice experiments is the mixed multinomial logit model, a multinomial logit model in which it is assumed that the coefficients follow a (normal) distribution across subjects. This model offers the advantage over the standard

  15. A Bargaining Model of Collective Choice

    OpenAIRE

    Jeffrey S. Banks; John Duggan

    2013-01-01

    We analyze sequential bargaining in general political and economic environments, where proposers are recognized according to a random recognition rule and a proposal is implemented if it passes under an arbitrary voting rule. We prove existence of stationary equilibria, upper hemicontinuity of equilibrium proposals in structural and preference parameters, and core equivalence under certain conditions.

  16. A study on regularization parameter choice in near-field acoustical holography

    DEFF Research Database (Denmark)

    Gomes, Jesper; Hansen, Per Christian

    2008-01-01

    Cumulative Periodogram (NCP). The latter method is new within NAH and it is based on the Fourier transform of the residual vector. The methods are used in connection with three NAH methods: Statistically Optimized Near-field Acoustical Holography (SONAH), the Inverse Boundary Element Method (IBEM......Regularization plays an important role in Near-field Acoustical Holography (NAH), and choosing the right amount of regularization is crucial in order to get a meaningful solution. An automated method such as the L-curve or Generalized Cross-Validation (GCV) is often used in NAH to choose...... a regularization parameter. These parameter choice methods (PCMs) are attractive, since they require no a priori knowledge about the noise. However, there seems to be no clear understanding of when one PCM is better than the other. This paper presents comparisons of three PCMs: GCV, L-curve and Normalized...

  17. Combinatorial Model Involving Stochastic Choices of Destination, Mode and Route

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Traffic assignment models are one of the basic tools for the analysis and design of transportation systems. However, the existing models have some defects. Considering the characteristics of Chinese urban mixed traffic and the randomness of transportation information, the author develops a combinatorial model involving stochastic choices of destination, mode and route. Its uniqueness and equivalance are also proved by the optimization theory.

  18. The Effects of Land Use Patterns on Tour Type Choice. The Application of a Hybrid Choice Model

    DEFF Research Database (Denmark)

    de Abreu e Silva, João; Sottile, Eleonora; Cherchi, Elisabetta

    2014-01-01

    The relations between travel behavior and land use patterns have been the object of intensive research in the last two decades. Due to their immediate policy implications, mode choice and vehicle miles of travel (VMT) have been the main focus of attention. Other relevant dimensions, like trip...... chaining, tour type choice, and number of tours have received less attention. This work aims to contribute to the research dealing with the role of land use patterns on tour type choice. To pursue this objective, a tour type choice is modeled using a hybrid choice model that allows simulating the effect...

  19. The Effect of Choice Feeding Based on Threonine on Performance and Carcass Parameters of Male Broiler Chicks

    Directory of Open Access Journals (Sweden)

    Tugay Ayasan

    2014-04-01

    Full Text Available The aim of this study was to evaluate the effect of choice feeding based on threonine on performance characteristics and carcass parameters of male broiler chicks. Day old, thirty Ross 308 male chicks were divided into two dietary treatment groups. In the experiment, choice feding did not affect on body weight gain, feed conversion ratio. Feed intake and carcass parameters significantly affected by experimental treatments.

  20. A discussion of mode choice models

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker

    Artiklen diskuterer matematiske modeller for transportmiddelvalg med særlig fokus på modeller, der bygger på nyttefunktioner. I kapitel 3 refereres til et begrænset eksperiment, der viste at den sædvanlige lineære nyttefunktion ikke er tilstrækkelig til at beskrive selv en meget simpel...... rent fysiologiske be-tragtninger. Artiklen rummer en række anbefalinger vedr. den deterministiske del af nyttefunktionen. Kapitel 5 diskuterer fordelingen af den stokastiske del, og anbefaler brug af probit-modeller for valgsituatio-ner med flere alternativer, der er mere eller mindre indbyrdes...

  1. Structural Equation Modeling of Travel Choice Dynamics

    OpenAIRE

    Golob, Thomas F.

    1988-01-01

    This research has two objectives. The first objective is to explore the use of the modeling tool called "latent structural equations" (structural equations with latent variables) in the general field of travel behavior analysis and the more specific field of dynamic analysis of travel behavior. The second objective is to apply a latent structural equation model in order to determine the causal relationships between income, car ownership, and mobility. Many transportation researchers ...

  2. Discrete choice models with multiplicative error terms

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bierlaire, Michel

    2009-01-01

    differences. We develop some properties of this type of model and show that in several cases the change from an additive to a multiplicative formulation, maintaining a specification of V, may lead to a large improvement in fit, sometimes larger than that gained from introducing random coefficients in V....

  3. The Influence of Role Models on Women's Career Choices

    Science.gov (United States)

    Quimby, Julie L.; DeSantis, Angela M.

    2006-01-01

    This study of 368 female undergraduates examined self-efficacy and role model influence as predictors of career choice across J. L. Holland's (1997) 6 RIASEC (Realistic, Investigative, Artistic, Social, Enterprising, Conventional) types. Findings showed that levels of self-efficacy and role model influence differed across Holland types. Multiple…

  4. Epistemic Games in Integration: Modeling Resource Choice

    Science.gov (United States)

    Black, Katrina E.; Wittmann, Michael C.

    2007-11-01

    As part of an ongoing project to understand how mathematics is used in advanced physics to guide one's conceptual understanding of physics, we focus on students' interpretation and use of boundary and initial conditions when solving integrals. We discuss an interaction between two students working on a group quiz problem. After describing the interaction, we briefly discuss the procedural resources that we use to model the students' solutions. We then use the procedural resources introduced earlier to draw resources graphs describing the two epistemic game facets used by the students in our transcript.

  5. PARAMETER ESTIMATION OF ENGINEERING TURBULENCE MODEL

    Institute of Scientific and Technical Information of China (English)

    钱炜祺; 蔡金狮

    2001-01-01

    A parameter estimation algorithm is introduced and used to determine the parameters in the standard k-ε two equation turbulence model (SKE). It can be found from the estimation results that although the parameter estimation method is an effective method to determine model parameters, it is difficult to obtain a set of parameters for SKE to suit all kinds of separated flow and a modification of the turbulence model structure should be considered. So, a new nonlinear k-ε two-equation model (NNKE) is put forward in this paper and the corresponding parameter estimation technique is applied to determine the model parameters. By implementing the NNKE to solve some engineering turbulent flows, it is shown that NNKE is more accurate and versatile than SKE. Thus, the success of NNKE implies that the parameter estimation technique may have a bright prospect in engineering turbulence model research.

  6. Costly innovators versus cheap imitators: a discrete choice model

    NARCIS (Netherlands)

    Hommes, C.; Zeppini, P.

    2010-01-01

    Two alternative ways to an innovative product or process are R&D investment or imitation of others’ innovation. In this article we propose a discrete choice model with costly innovators and free imitators and study the endogenous dynamics of price and demand in a market with many firms producing a h

  7. Day-to-day route choice modeling incorporating inertial behavior

    NARCIS (Netherlands)

    Essen, van M.A.; Rakha, H.; Vreeswijk, J.D.; Wismans, L.J.J.; Berkum, van E.C.

    2015-01-01

    Accurate route choice modeling is one of the most important aspects when predicting the effects of transport policy and dynamic traffic management. Moreover, the effectiveness of intervention measures to a large extent depends on travelers’ response to the changes these measures cause. As a compleme

  8. Differential Role Models and the College Woman's Choice of Major.

    Science.gov (United States)

    Getz, Suzanne Kasper

    A two-part study investigated female college students' preferences for stereotyped or nonstereotyped role models and the relationship of such preferences to the choice of traditional versus nontraditional careers. A total of 211 women students from a mid-Atlantic state university (all the enrolled women) as well as a stratified-by-college…

  9. Medicare Care Choices Model Enables Concurrent Palliative and Curative Care.

    Science.gov (United States)

    2015-01-01

    On July 20, 2015, the federal Centers for Medicare & Medicaid Services (CMS) announced hospices that have been selected to participate in the Medicare Care Choices Model. Fewer than half of the Medicare beneficiaries use hospice care for which they are eligible. Current Medicare regulations preclude concurrent palliative and curative care. Under the Medicare Choices Model, dually eligible Medicare beneficiaries may elect to receive supportive care services typically provided by hospice while continuing to receive curative services. This report describes how CMS has expanded the model from an originally anticipated 30 Medicare-certified hospices to over 140 Medicare-certified hospices and extended the duration of the model from 3 to 5 years. Medicare-certified hospice programs that will participate in the model are listed.

  10. Dry granular avalanche down a flume: Choice of discrete element simulation parameters

    Science.gov (United States)

    Yang, F.-L.; Chang, W. T.; Huang, Y. T.; Hsieh, S. H.; Chen, C. S.

    2013-12-01

    This paper presents a method to assign soft-sphere contact model parameters in a discrete-element simulation with which we can reproduce the experimentally measured avalanche dynamics of finite dry granular mass down a flume. We adopt the simplest linear model in which interaction force is decomposed along or tangent to the contact normal. The model parameters are chosen uniquely to satisfy theoretical models or to meet experimental evidences at either the particle or the bulk size level. The normal mode parameters are chosen specifically to ensure Hertzian contact time (but not its force-displacement history) and the resulting loss of particle kinetic energy, characterized by a measured coefficient of restitution, for each pair of colliding surfaces. We follow the literature to assign the tangential spring constant according to an elasticity model but propose a method to assign the friction coefficient using a measured bulk property that characterizes the bulk discharge volume flow rate. The linear contact model with the assigned parameters are evaluated by comparing the simulated bulk avalanche dynamics down three slopes to the experimental data, including instantaneous particle trajectories and bulk unsteady velocity profile. Satisfying quantitative agreement can be obtained except at the free surface and the early-time front propagation velocity.

  11. Parameters of rewards on choice behavior in Siamese fighting fish (Betta splendens).

    Science.gov (United States)

    Shapiro, Martin S; Jensen, Ashley L

    2009-09-01

    Five experiments were conducted with Siamese fighting fish (Betta splendens) to investigate how choices in a T-maze were affected by parameters of a social reward (aggression display to another male): presence or absence, amount, delay and distance traveled. Bettas showed a preference for the side associated with the presence of another male rather than the side associated with nothing (Exp 1), a greater length of time of the reward (Exp 2) and shorter delay (Exp 3). The animals were indifferent when one side offered a longer delay to a longer reward time compared with a shorter delay to a shorter reward time (Exp 4). What was most surprising, however, was that fish preferred to choose the side that was associated with swimming a greater distance to reach an opponent male (Exp 5). These experiments demonstrate that, while some parameters of a visual reward affect behavior in predictable ways (greater amount, shorter delay), the complex motivations underlying inter-male aggression can produce what appear to be paradoxical results.

  12. Rational choice theory and Becker's model of random behavior

    Directory of Open Access Journals (Sweden)

    Krstić Miloš

    2015-01-01

    Full Text Available According to rational choice theory, rational consumers tend to maximize utility under a given budget constraints. This will be achieved if they choose a combination of goods that can satisfy their needs and provide the maximum level of utility. Gary Becker, on the other hand, imagines irrational consumers who choose bundle on the budget line. As irrational consumers have an equal probability of choosing any bundle on the budget line, on average, we expect that they will pick the bundle lying at the midpoint of the line. The results of research in which artificial Becker's agents choose among more than two commodities, rational choice theory is small and more than two budget/price situations show that the percentage of agents whose behavior violate. Adding some factors to Becker's model of random behavior, experimenters can minimize these minor violations. Therefore, rational choice theory is unfalsifiable. The results of our research have confirmed this theory. In addition, in the paper we discussed about explanatory value of rational choice theory in specific circumstances (positive substitution effect and we concluded that the explanatory value of rational choice theory was significantly reduced in specific cases.

  13. Binary choices in small and large groups: A unified model

    Science.gov (United States)

    Bischi, Gian-Italo; Merlone, Ugo

    2010-02-01

    Two different ways to model the diffusion of alternative choices within a population of individuals in the presence of social externalities are known in the literature. While Galam’s model of rumors spreading considers a majority rule for interactions in several groups, Schelling considers individuals interacting in one large group, with payoff functions that describe how collective choices influence individual preferences. We incorporate these two approaches into a unified general discrete-time dynamic model for studying individual interactions in variously sized groups. We first illustrate how the two original models can be obtained as particular cases of the more general model we propose, then we show how several other situations can be analyzed. The model we propose goes beyond a theoretical exercise as it allows modeling situations which are relevant in economic and social systems. We consider also other aspects such as the propensity to switch choices and the behavioral momentum, and show how they may affect the dynamics of the whole population.

  14. An integrated model of choices and response times in absolute identification.

    Science.gov (United States)

    Brown, Scott D; Marley, A A J; Donkin, Christopher; Heathcote, Andrew

    2008-04-01

    Recent theoretical developments in the field of absolute identification have stressed differences between relative and absolute processes, that is, whether stimulus magnitudes are judged relative to a shorter term context provided by recently presented stimuli or a longer term context provided by the entire set of stimuli. The authors developed a model (SAMBA: selective attention, mapping, and ballistic accumulation) that integrates shorter and longer term memory processes and accounts for both the choices made and the associated response time distributions, including sequential effects in each. The model's predictions arise as a consequence of its architecture and require estimation of only a few parameters with values that are consistent across numerous data sets. The authors show that SAMBA provides a quantitative account of benchmark choice phenomena in classical absolute identification experiments and in contemporary data involving both choice and response time.

  15. Consumer Choice Prediction: Artificial Neural Networks versus Logistic Models

    Directory of Open Access Journals (Sweden)

    Christopher Gan

    2005-01-01

    Full Text Available Conventional econometric models, such as discriminant analysis and logistic regression have been used to predict consumer choice. However, in recent years, there has been a growing interest in applying artificial neural networks (ANN to analyse consumer behaviour and to model the consumer decision-making process. The purpose of this paper is to empirically compare the predictive power of the probability neural network (PNN, a special class of neural networks and a MLFN with a logistic model on consumers’ choices between electronic banking and non-electronic banking. Data for this analysis was obtained through a mail survey sent to 1,960 New Zealand households. The questionnaire gathered information on the factors consumers’ use to decide between electronic banking versus non-electronic banking. The factors include service quality dimensions, perceived risk factors, user input factors, price factors, service product characteristics and individual factors. In addition, demographic variables including age, gender, marital status, ethnic background, educational qualification, employment, income and area of residence are considered in the analysis. Empirical results showed that both ANN models (MLFN and PNN exhibit a higher overall percentage correct on consumer choice predictions than the logistic model. Furthermore, the PNN demonstrates to be the best predictive model since it has the highest overall percentage correct and a very low percentage error on both Type I and Type II errors.

  16. Sample selection and taste correlation in discrete choice transport modelling

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard

    2008-01-01

    the question for a broader class of models. It is shown that the original result may be somewhat generalised. Another question investigated is whether mode choice operates as a self-selection mechanism in the estimation of the value of travel time. The results show that self-selection can at least partly...... explain counterintuitive results in value of travel time estimation. However, the results also point at the difficulty of finding suitable instruments for the selection mechanism. Taste heterogeneity is another important aspect of discrete choice modelling. Mixed logit models are designed to capture...... of taste correlation in willingness-to-pay estimation are presented. The first contribution addresses how to incorporate taste correlation in the estimation of the value of travel time for public transport. Given a limited dataset the approach taken is to use theory on the value of travel time as guidance...

  17. Understanding Predisposition in College Choice: Toward an Integrated Model of College Choice and Theory of Reasoned Action

    Science.gov (United States)

    Pitre, Paul E.; Johnson, Todd E.; Pitre, Charisse Cowan

    2006-01-01

    This article seeks to improve traditional models of college choice that draw from recruitment and enrollment management paradigms. In adopting a consumer approach to college choice, this article seeks to build upon consumer-related research, which centers on behavior and reasoning. More specifically, this article seeks to move inquiry beyond the…

  18. Closing the gap between behavior and models in route choice: The role of spatiotemporal constraints and latent traits in choice set formation

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    A considerable gap exists between the behavioral paradigm of choice set formation in route choice and its representation in route choice modeling. While travelers form their viable choice set by retaining routes that satisfy spatiotemporal constraints, existing route generation techniques do...... constraint-based choice set formation followed by compensatory choice. The model is applied to data focusing on habitual commuting route choice behavior in morning peak hours. Results show (i) the possibility of inferring spatiotemporal constraints from considered routes, (ii) the importance of incorporating...... spatiotemporal constraints and latent traits in route choice models, and (iii) the linkage between spatiotemporal constraints and time saving, spatial and mnemonic abilities....

  19. Representing hybrid compensatory non-compensatory choice set formation in semi-compensatory models

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Bekhor, Shlomo; Shigtan, Yoram

    2012-01-01

    Semi-compensatory models represent a choice process consisting of an elimination-based choice set formation upon satisfying criteria thresholds and a utility-based choice. Current semi-compensatory models assume a purely non-compensatory choice set formation and hence do not support multinomial c...

  20. Robustness of public choice models of voting behavior

    Directory of Open Access Journals (Sweden)

    Mihai UNGUREANU

    2013-05-01

    Full Text Available Modern economics modeling practice involves highly unrealistic assumptions. Since testing such models is not always an easy enterprise, researchers face the problem of determining whether a result is dependent (or not on the unrealistic details of the model. A solution for this problem is conducting robustness analysis. In its classical form, robustness analysis is a non-empirical method of confirmation – it raises our trust in a given result by implying it with from several different models. In this paper I argue that robustness analysis could be thought as a method of post-empirical failure. This form of robustness analysis involves assigning guilt for the empirical failure to a certain part of the model. Starting from this notion of robustness, I analyze a case of empirical failure from public choice theory or the economic approach of politics. Using the fundamental methodological principles of neoclassical economics, the first model of voting behavior implied that almost no one would vote. This was clearly an empirical failure. Public choice scholars faced the problem of either restraining the domain of their discipline or giving up to some of their neoclassical methodological features. The second solution was chosen and several different models of voting behavior were built. I will treat these models as a case for performing robustness analysis and I will determine which assumption from the original model is guilty for the empirical failure.

  1. Relationship between Cole-Cole model parameters and spectral decomposition parameters derived from SIP data

    Science.gov (United States)

    Weigand, M.; Kemna, A.

    2016-06-01

    Spectral induced polarization (SIP) data are commonly analysed using phenomenological models. Among these models the Cole-Cole (CC) model is the most popular choice to describe the strength and frequency dependence of distinct polarization peaks in the data. More flexibility regarding the shape of the spectrum is provided by decomposition schemes. Here the spectral response is decomposed into individual responses of a chosen elementary relaxation model, mathematically acting as kernel in the involved integral, based on a broad range of relaxation times. A frequently used kernel function is the Debye model, but also the CC model with some other a priorly specified frequency dispersion (e.g. Warburg model) has been proposed as kernel in the decomposition. The different decomposition approaches in use, also including conductivity and resistivity formulations, pose the question to which degree the integral spectral parameters typically derived from the obtained relaxation time distribution are biased by the approach itself. Based on synthetic SIP data sampled from an ideal CC response, we here investigate how the two most important integral output parameters deviate from the corresponding CC input parameters. We find that the total chargeability may be underestimated by up to 80 per cent and the mean relaxation time may be off by up to three orders of magnitude relative to the original values, depending on the frequency dispersion of the analysed spectrum and the proximity of its peak to the frequency range limits considered in the decomposition. We conclude that a quantitative comparison of SIP parameters across different studies, or the adoption of parameter relationships from other studies, for example when transferring laboratory results to the field, is only possible on the basis of a consistent spectral analysis procedure. This is particularly important when comparing effective CC parameters with spectral parameters derived from decomposition results.

  2. SPOTting Model Parameters Using a Ready-Made Python Package.

    Science.gov (United States)

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  3. SPOTting Model Parameters Using a Ready-Made Python Package.

    Directory of Open Access Journals (Sweden)

    Tobias Houska

    Full Text Available The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool, an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI. We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  4. On Model Complexity and Parameter Regionalization for Continental Scale Hydrologic Simulations

    Science.gov (United States)

    Rakovec, O.; Mizukami, N.; Newman, A. J.; Thober, S.; Kumar, R.; Wood, A.; Clark, M. P.; Samaniego, L. E.

    2016-12-01

    Assessing hydrologic model complexity and performing continental-domain model simulations has become an important objective in contemporary hydrology. We present a large-sample hydrologic modeling study to better understand (1) the benefits of parameter regionalization schemes, (2) the effects of spatially distributed/lumped model structures, and (3) the importance of selected hydrological processes on model performance. Four hydrological/land surface models (mHM, SAC, VIC, Noah-MP) are set up for 500 small to medium-sized unimpaired basins over the contiguous United States for two spatial scales: lumped and 12km grid. We performed model calibration at individual basins with and without parameter regionalization. For parameter regionalization, we use the well-established Multiscale Parameter Regionalization (MPR) technique, with the specific goal of assessing the transferability of model parameters across different time periods (from calibration to validation period), spatial scales (lumped basin scale to distributed) and locations, for different models. Our results reveal that large inter-model differences are dominated by the choice of model specific hydrological processes (in particular snow and soil moisture) over the choice of spatial discretization and/or parameter regionalization schemes. Nevertheless, parameter regionalization is crucial for parameter transferability across scale and to un-gauged locations. Last but not least, we observe that calibration of model parameters cannot always compensate for the choice of model structure.

  5. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  6. Considerations for parameter optimization and sensitivity in climate models.

    Science.gov (United States)

    Neelin, J David; Bracco, Annalisa; Luo, Hao; McWilliams, James C; Meyerson, Joyce E

    2010-12-14

    Climate models exhibit high sensitivity in some respects, such as for differences in predicted precipitation changes under global warming. Despite successful large-scale simulations, regional climatology features prove difficult to constrain toward observations, with challenges including high-dimensionality, computationally expensive simulations, and ambiguity in the choice of objective function. In an atmospheric General Circulation Model forced by observed sea surface temperature or coupled to a mixed-layer ocean, many climatic variables yield rms-error objective functions that vary smoothly through the feasible parameter range. This smoothness occurs despite nonlinearity strong enough to reverse the curvature of the objective function in some parameters, and to imply limitations on multimodel ensemble means as an estimator of global warming precipitation changes. Low-order polynomial fits to the model output spatial fields as a function of parameter (quadratic in model field, fourth-order in objective function) yield surprisingly successful metamodels for many quantities and facilitate a multiobjective optimization approach. Tradeoffs arise as optima for different variables occur at different parameter values, but with agreement in certain directions. Optima often occur at the limit of the feasible parameter range, identifying key parameterization aspects warranting attention--here the interaction of convection with free tropospheric water vapor. Analytic results for spatial fields of leading contributions to the optimization help to visualize tradeoffs at a regional level, e.g., how mismatches between sensitivity and error spatial fields yield regional error under minimization of global objective functions. The approach is sufficiently simple to guide parameter choices and to aid intercomparison of sensitivity properties among climate models.

  7. PARAMETER ESTIMATION IN BREAD BAKING MODEL

    OpenAIRE

    Hadiyanto Hadiyanto; AJB van Boxtel

    2012-01-01

    Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally pro...

  8. Parameter counting in models with global symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua [Institute for High Energy Phenomenology, Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 (United States)], E-mail: jb454@cornell.edu; Grossman, Yuval [Institute for High Energy Phenomenology, Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 (United States)], E-mail: yuvalg@lepp.cornell.edu

    2009-05-18

    We present rules for determining the number of physical parameters in models with exact flavor symmetries. In such models the total number of parameters (physical and unphysical) needed to described a matrix is less than in a model without the symmetries. Several toy examples are studied in order to demonstrate the rules. The use of global symmetries in studying the minimally supersymmetric standard model (MSSM) is examined.

  9. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian...... method is based on a modified version of the EM algorithm. Experimental results for a deformable template used for textile inspection are presented...

  10. Cosmological models with constant deceleration parameter

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.S.; de Mello Gomide, F.

    1988-02-01

    Berman presented elsewhere a law of variation for Hubble's parameter that yields constant deceleration parameter models of the universe. By analyzing Einstein, Pryce-Hoyle and Brans-Dicke cosmologies, we derive here the necessary relations in each model, considering a perfect fluid.

  11. Choice certainty in Discrete Choice Experiments

    DEFF Research Database (Denmark)

    Uggeldahl, Kennet; Jacobsen, Catrine; Lundhede, Thomas Hedemark;

    2016-01-01

    In this study, we conduct a Discrete Choice Experiment (DCE) using eye tracking technology to investigate if eye movements during the completion of choice sets reveal information about respondents’ choice certainty. We hypothesise that the number of times that respondents shift their visual...... attention between the alternatives in a choice set reflects their stated choice certainty. Based on one of the largest samples of eye tracking data in a DCE to date, we find evidence in favor of our hypothesis. We also link eye tracking observations to model-based choice certainty through parameterization...... of the scale function in a random parameters logit model. We find that choices characterized by more frequent gaze shifting do indeed exhibit a higher degree of error variance, however, this effects is insignificant once response time is controlled for. Overall, findings suggest that eye tracking can provide...

  12. Modal choice model for fare-free transit

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Goss, W.P.

    1977-03-01

    Using travel data collected at the University of Massachusetts during a research and demonstration project sponsored by the Urban Mass Transportation Administration, a disaggregate behavioral-mode choice model has been developed for predicting ridership on fare-free transit systems. The calibrated model suggests that access time to the fare-free transit stop, annual automobile parking fee, auto mode bias constant reflecting the comfort and convenience associated with auto travel, and number of autos available for commuting are the most significant attributes in explaining the mode choice between auto and fare-free transit. For this specific demonstration project, some level-of-service variables, such as the difference between in-vehicle travel time using auto and fare-free transit, auto operating cost, wait time at the fare-free transit stop, and some of the socio-economic attributes of the commuter, such as sex and status, were not found to be as important in affecting the mode choice. 14 references.

  13. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application

    Science.gov (United States)

    Zhang, Yongsheng; Wei, Heng; Zheng, Kangning

    2017-01-01

    Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188

  14. Trait Characteristics of Diffusion Model Parameters

    Directory of Open Access Journals (Sweden)

    Anna-Lena Schubert

    2016-07-01

    Full Text Available Cognitive modeling of response time distributions has seen a huge rise in popularity in individual differences research. In particular, several studies have shown that individual differences in the drift rate parameter of the diffusion model, which reflects the speed of information uptake, are substantially related to individual differences in intelligence. However, if diffusion model parameters are to reflect trait-like properties of cognitive processes, they have to qualify as trait-like variables themselves, i.e., they have to be stable across time and consistent over different situations. To assess their trait characteristics, we conducted a latent state-trait analysis of diffusion model parameters estimated from three response time tasks that 114 participants completed at two laboratory sessions eight months apart. Drift rate, boundary separation, and non-decision time parameters showed a great temporal stability over a period of eight months. However, the coefficients of consistency and reliability were only low to moderate and highest for drift rate parameters. These results show that the consistent variance of diffusion model parameters across tasks can be regarded as temporally stable ability parameters. Moreover, they illustrate the need for using broader batteries of response time tasks in future studies on the relationship between diffusion model parameters and intelligence.

  15. Parameter identification in the logistic STAR model

    DEFF Research Database (Denmark)

    Ekner, Line Elvstrøm; Nejstgaard, Emil

    We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th......We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter...

  16. Exploring the Influence of Attitudes to Walking and Cycling on Commute Mode Choice Using a Hybrid Choice Model

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2017-01-01

    Full Text Available Transport-related problems, such as automobile dependence, traffic congestion, and greenhouse emissions, lead to a great burden on the environment. In developing countries like China, in order to improve the air quality, promoting sustainable travel modes to reduce the automobile usage is gradually recognized as an emerging national concern. Though there are many studies related to the physically active modes (e.g., walking and cycling, the research on the influence of attitudes to active modes on travel behavior is limited, especially in China. To fill up this gap, this paper focuses on examining the impact of attitudes to walking and cycling on commute mode choice. Using the survey data collected in China cities, an integrated discrete choice model and the structural equation model are proposed. By applying the hybrid choice model, not only the role of the latent attitude played in travel mode choice, but also the indirect effects of social factors on travel mode choice are obtained. The comparison indicates that the hybrid choice model outperforms the traditional model. This study is expected to provide a better understanding for urban planners on the influential factors of green travel modes.

  17. Simple model for multiple-choice collective decision making.

    Science.gov (United States)

    Lee, Ching Hua; Lucas, Andrew

    2014-11-01

    We describe a simple model of heterogeneous, interacting agents making decisions between n≥2 discrete choices. For a special class of interactions, our model is the mean field description of random field Potts-like models and is effectively solved by finding the extrema of the average energy E per agent. In these cases, by studying the propagation of decision changes via avalanches, we argue that macroscopic dynamics is well captured by a gradient flow along E. We focus on the permutation symmetric case, where all n choices are (on average) the same, and spontaneous symmetry breaking (SSB) arises purely from cooperative social interactions. As examples, we show that bimodal heterogeneity naturally provides a mechanism for the spontaneous formation of hierarchies between decisions and that SSB is a preferred instability to discontinuous phase transitions between two symmetric points. Beyond the mean field limit, exponentially many stable equilibria emerge when we place this model on a graph of finite mean degree. We conclude with speculation on decision making with persistent collective oscillations. Throughout the paper, we emphasize analogies between methods of solution to our model and common intuition from diverse areas of physics, including statistical physics and electromagnetism.

  18. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  19. Application of lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil. Subsequently, the assembly of the dynamic stiffness matrix for the foundation is considered, and the solution for obtaining the steady state response, when using lumped-parameter models is given. (au)

  20. Guidance on the Choice of Threshold for Binary Forecast Modeling

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper proposes useful guidance on the choice of threshold for binary forecasts. In weather forecast systems, the probabilistic forecast cannot be used directly when estimated too smoothly. In this case, the binary forecast, whether a meteorological event will occur or not, is preferable to the probabilistic forecast.A threshold is needed to generate a binary forecast, and the guidance in this paper encompasses the use of skill scores for the choice of threshold according to the forecast pattern. The forecast pattern consists of distribution modes of estimated probabilities, occurrence rates of observations, and variation modes.This study is performed via Monte-Carlo simulation, with 48 forecast patterns considered. Estimated probabilities are generated by random variate sampling from five distributions separately. Varying the threshold from 0 to 1, binary forecasts are generated by threshold. For the assessment of binary forecast models, a 2×2 contingency table is used and four skill scores (Heidke skill score, hit rate, true skill statistic,and threat score) are compared for each forecast pattern. As a result, guidance on the choice of skill score to find the optimal threshold is proposed.

  1. PARAMETER ESTIMATION IN BREAD BAKING MODEL

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2012-05-01

    Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels.  Abstrak  PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan

  2. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    Science.gov (United States)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  3. Towards Analytical Modeling for Persuasive Design Choices in Mobile Apps

    Directory of Open Access Journals (Sweden)

    Hamid Mukhtar

    2016-11-01

    Full Text Available Persuasive technology has emerged as a new field of research in the past decade with its applications in various domains including web-designing, human-computer interaction, healthcare systems, and social networks. Although persuasive technology has its roots in psychology and cognitive sciences, researchers from the computing disciplines are also increasingly interested in it. Unfortunately, the existing theories, models, and frameworks for persuasive system design fall short due to absence of systematic design processes mostly used in the computing domains as well as lack of support for appropriate post-analysis. This work provides some insight into such limitations and identifies the importance of analytical modeling for persuasion in mobile applications design. The authors illustrate, using a case study, that appropriate mathematical models can be applied together with user modeling to develop a persuasive system that will allow the designer to consider several design choices simultaneously.

  4. Statefinder parameters in two dark energy models

    CERN Document Server

    Panotopoulos, Grigoris

    2007-01-01

    The statefinder parameters ($r,s$) in two dark energy models are studied. In the first, we discuss in four-dimensional General Relativity a two fluid model, in which dark energy and dark matter are allowed to interact with each other. In the second model, we consider the DGP brane model generalized by taking a possible energy exchange between the brane and the bulk into account. We determine the values of the statefinder parameters that correspond to the unique attractor of the system at hand. Furthermore, we produce plots in which we show $s,r$ as functions of red-shift, and the ($s-r$) plane for each model.

  5. Parameter Symmetry of the Interacting Boson Model

    CERN Document Server

    Shirokov, A M; Smirnov, Yu F; Shirokov, Andrey M.; Smirnov, Yu. F.

    1998-01-01

    We discuss the symmetry of the parameter space of the interacting boson model (IBM). It is shown that for any set of the IBM Hamiltonian parameters (with the only exception of the U(5) dynamical symmetry limit) one can always find another set that generates the equivalent spectrum. We discuss the origin of the symmetry and its relevance for physical applications.

  6. Wind Farm Decentralized Dynamic Modeling With Parameters

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran;

    2010-01-01

    Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...

  7. Setting Parameters for Biological Models With ANIMO

    NARCIS (Netherlands)

    Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran

    2014-01-01

    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions

  8. Endogenous Reactivity in a Dynamic Model of Consumer’s Choice

    Directory of Open Access Journals (Sweden)

    Ahmad K. Naimzada

    2012-01-01

    Full Text Available We move from a boundedly rational consumer model (Naimzada and Tramontana, 2008, 2010 characterized by a gradient-like decisional process in which, under particular parameters conditions, the asymptotical convergence to the optimal choice does not happen but it does under a least squared learning mechanism. In the present paper, we prove that even a less sophisticated learning mechanism leads to convergence to the rational choice and also prove that convergence is ensured when both learning mechanisms are available. The stability results that we obtain give more strength to the rational behavior assumption of the original model; in fact, the less demanding is the learning mechanism ensuring convergence to the rational behavior, the higher is the probability that even quite naive consumers will learn the composition of their optimum consumption bundles.

  9. Delineating Parameter Unidentifiabilities in Complex Models

    CERN Document Server

    Raman, Dhruva V; Papachristodoulou, Antonis

    2016-01-01

    Scientists use mathematical modelling to understand and predict the properties of complex physical systems. In highly parameterised models there often exist relationships between parameters over which model predictions are identical, or nearly so. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, and the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast timescale subsystems, as well as the regimes in which such approximations are valid. We base our algorithm on a novel quantification of regional parametric sensitivity: multiscale sloppiness. Traditional...

  10. A family of models for Schelling binary choices

    Science.gov (United States)

    Cavalli, Fausto; Naimzada, Ahmad; Pireddu, Marina

    2016-02-01

    We introduce and study a family of discrete-time dynamical systems to model binary choices based on the framework proposed by Schelling in 1973. The model we propose uses a gradient-like adjustment mechanism by means of a family of smooth maps and allows understanding and analytically studying the phenomena qualitatively described by Schelling. In particular, we investigate existence of steady states and their relation to the equilibria of the static model studied by Schelling, and we analyze local stability, linking several examples and considerations provided by Schelling with bifurcation theory. We provide examples to confirm the theoretical results and to numerically investigate the possible destabilizations, as well as the emergence of coexisting attractors. We show the existence of chaos for a particular example.

  11. Performance and Prediction: Bayesian Modelling of Fallible Choice in Chess

    Science.gov (United States)

    Haworth, Guy; Regan, Ken; di Fatta, Giuseppe

    Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.

  12. Parameter Estimation, Model Reduction and Quantum Filtering

    CERN Document Server

    Chase, Bradley A

    2009-01-01

    This dissertation explores the topics of parameter estimation and model reduction in the context of quantum filtering. Chapters 2 and 3 provide a review of classical and quantum probability theory, stochastic calculus and filtering. Chapter 4 studies the problem of quantum parameter estimation and introduces the quantum particle filter as a practical computational method for parameter estimation via continuous measurement. Chapter 5 applies these techniques in magnetometry and studies the estimator's uncertainty scalings in a double-pass atomic magnetometer. Chapter 6 presents an efficient feedback controller for continuous-time quantum error correction. Chapter 7 presents an exact model of symmetric processes of collective qubit systems.

  13. Impact of implementation choices on quantitative predictions of cell-based computational models

    Science.gov (United States)

    Kursawe, Jochen; Baker, Ruth E.; Fletcher, Alexander G.

    2017-09-01

    'Cell-based' models provide a powerful computational tool for studying the mechanisms underlying the growth and dynamics of biological tissues in health and disease. An increasing amount of quantitative data with cellular resolution has paved the way for the quantitative parameterisation and validation of such models. However, the numerical implementation of cell-based models remains challenging, and little work has been done to understand to what extent implementation choices may influence model predictions. Here, we consider the numerical implementation of a popular class of cell-based models called vertex models, which are often used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated as a tessellation of polygons and the vertices of these polygons move due to mechanical forces originating from the cells. Such models have been used extensively to study the mechanical regulation of tissue topology in the literature. Here, we analyse how the model predictions may be affected by numerical parameters, such as the size of the time step, and non-physical model parameters, such as length thresholds for cell rearrangement. We find that vertex positions and summary statistics are sensitive to several of these implementation parameters. For example, the predicted tissue size decreases with decreasing cell cycle durations, and cell rearrangement may be suppressed by large time steps. These findings are counter-intuitive and illustrate that model predictions need to be thoroughly analysed and implementation details carefully considered when applying cell-based computational models in a quantitative setting.

  14. A model of interacting multiple choices of continuous opinions

    CERN Document Server

    Chou, C -I

    2016-01-01

    We present a model of interacting multiple choices of opinions. At each step of the process, a listener is persuaded by his/her neighbour, the lobbyist, to modify his/her opinion on two different choices of event. Whether or not the listener will be convinced by the lobbyist depends on the difference between his/her opinion with that of the lobbyist, and with that of the revealed social opinion (the social pressure). If the listener is convinced, he/she will modify his/her opinion and update his/her revealed preference, and proceed to persuade his/her next neighbour. If the listener is not convinced by the lobbyist, he/she will retain his/her revealed preference, and try to persuade the lobbyist to change his/her opinion. In this case, the direction of opinion propagation is reversed. A consensus is reached when all the revealed preference is the same. Our numerical results show that consensus can always be attained in this model. However, the time needed to achieve consensus, or the so-called convergence tim...

  15. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  16. Modeling Army Applicants’ Job Choices: The Enlisted Personnel Allocation System (EPAS) Simulation Job Choice Model (JCM)

    Science.gov (United States)

    2006-11-01

    http://roso.epfl.ch/biogeme. Greene, W.H. (1990). Econometric analysis. New York: Macmillan Publishing. Hogan, P.F., Esponisa, J., Mackin, P.C...P. Zarembka (Ed.), Frontiers in Econometrics. New York: Academic Press. Simon, H.A. (1955). A behavioral model of rational choice. Quarterly Journal...Diff Ratio Family (E) (A) (A-E) (E/A) Catl -3A CL 2434 0.1070 0.1048 -0.0021 1.0204 CO 2148 0.3512 0.3605 0.0093 0.9741 EL 2256 0.1207 0.1213 0.0006

  17. CHOICE OF TECHNOLOGICAL PARAMETERS FOR PRODUCTION OF WIRE FOR ONBOARD RINGS WITH HEIGHTENED REQUIREMENTS TO ADHESION

    Directory of Open Access Journals (Sweden)

    A. V. Demidov

    2012-01-01

    Full Text Available The work on choice of the production technology of wire for bead rings of tires with diameter of 12,6 mm providing fulfilment of the customer requirements on size of adhesion and residual covering by rubber is carried out.

  18. Delineating parameter unidentifiabilities in complex models

    Science.gov (United States)

    Raman, Dhruva V.; Anderson, James; Papachristodoulou, Antonis

    2017-03-01

    Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call `multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κ B , uncovering unidentifiabilities.

  19. Systematic parameter inference in stochastic mesoscopic modeling

    Science.gov (United States)

    Lei, Huan; Yang, Xiu; Li, Zhen; Karniadakis, George Em

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are "sparse". The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

  20. The probit choice model under sequential search with an application to online retailing

    NARCIS (Netherlands)

    Bronnenberg, Bart; Kim, Jun B.; Albuquerque, P.

    2016-01-01

    We develop a probit choice model under optimal sequential search and apply it to the study of aggregate demand of consumer durable goods. In our joint model of search and choice, we derive a semi-closed form expression for the probability of choice that obeys the full set of restrictions imposed by

  1. Application of lumped-parameter models

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse...

  2. Models and parameters for environmental radiological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C W [ed.

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  3. Sensitivity of Human Choice to Manipulations of Parameters of Positive and Negative Sound Reinforcement

    OpenAIRE

    Lambert, Joseph Michael

    2013-01-01

    The purpose of this study was to determine whether altering parameters of positive and negative reinforcement in identical ways could influence behavior maintained by each in different ways. Three undergraduate students participated in a series of assessments designed to identify preferred and aversive sounds with similar reinforcing values. Following reinforcer identification, we conducted parameter sensitivity assessments for both positive and negative reinforcers. Parameter manipulation...

  4. Mode choice model for vulnerable motorcyclists in Malaysia.

    Science.gov (United States)

    Ibrahim Sheikh, A K; Radin Umar, R S; Habshah, M; Kassim, H; Stevenson, Mark; Ahmed, Hariza

    2006-06-01

    In developing countries, motorcycle use has grown in popularity in the past decades. Commensurate with this growth is the increase in death and casualties among motorcyclists in these countries. One of the strategic programs to minimize this problem is to reduce motorcyclists exposure by shifting them into safer modes of transport. This study aims to explore the differences in the characteristics of bus and motorcycle users. It identifies the factors contributing to their choice of transport mode and estimates the probability that motorcyclists might change their travel mode to a safer alternative; namely, bus travel. In this article, a survey of 535 motorcycle and bus users was conducted in seven districts of Selangor state, Malaysia. A binary logit model was developed for the two alternative modes, bus and motorcycle. It was found that travel time, travel cost, gender, age, and income level are significant in influencing motorcyclists' mode choice behavior. The probability of motorcycle riders shifting to public transport was also examined based on a scenario of a reduction in bus travel time and travel cost. Reduction of total travel time for the bus mode emerges as the most important element in a program aimed at attracting motorcyclists towards public transport and away from the motorcycle mode.

  5. Human nonindependent mate choice: is model female attractiveness everything?

    Science.gov (United States)

    Vakirtzis, Antonios; Roberts, S Craig

    2012-05-06

    Following two decades of research on non-human animals, there has recently been increased interest in human nonindependent mate choice, namely the ways in which choosing women incorporate information about a man's past or present romantic partners ('model females') into their own assessment of the male. Experimental studies using static facial images have generally found that men receive higher desirability ratings from female raters when presented with attractive (compared to unattractive) model females. This phenomenon has a straightforward evolutionary explanation: the fact that female mate value is more dependent on physical attractiveness compared to male mate value. Furthermore, due to assortative mating for attractiveness, men who are paired with attractive women are more likely to be of high mate value themselves. Here, we also examine the possible relevance of model female cues other than attractiveness (personality and behavioral traits) by presenting video recordings of model females to a set of female raters. The results confirm that the model female's attractiveness is the primary cue. Contrary to some earlier findings in the human and nonhuman literature, we found no evidence that female raters prefer partners of slightly older model females. We conclude by suggesting some promising variations on the present experimental design.

  6. Human Nonindependent Mate Choice: Is Model Female Attractiveness Everything?

    Directory of Open Access Journals (Sweden)

    Antonios Vakirtzis

    2012-04-01

    Full Text Available Following two decades of research on non-human animals, there has recently been increased interest in human nonindependent mate choice, namely the ways in which choosing women incorporate information about a man's past or present romantic partners (‘model females’ into their own assessment of the male. Experimental studies using static facial images have generally found that men receive higher desirability ratings from female raters when presented with attractive (compared to unattractive model females. This phenomenon has a straightforward evolutionary explanation: the fact that female mate value is more dependent on physical attractiveness compared to male mate value. Furthermore, due to assortative mating for attractiveness, men who are paired with attractive women are more likely to be of high mate value themselves. Here, we also examine the possible relevance of model female cues other than attractiveness (personality and behavioral traits by presenting video recordings of model females to a set of female raters. The results confirm that the model female's attractiveness is the primary cue. Contrary to some earlier findings in the human and nonhuman literature, we found no evidence that female raters prefer partners of slightly older model females. We conclude by suggesting some promising variations on the present experimental design.

  7. Complexity, parameter sensitivity and parameter transferability in the modelling of floodplain inundation

    Science.gov (United States)

    Bates, P. D.; Neal, J. C.; Fewtrell, T. J.

    2012-12-01

    In this we paper we consider two related questions. First, we address the issue of how much physical complexity is necessary in a model in order to simulate floodplain inundation to within validation data error. This is achieved through development of a single code/multiple physics hydraulic model (LISFLOOD-FP) where different degrees of complexity can be switched on or off. Different configurations of this code are applied to four benchmark test cases, and compared to the results of a number of industry standard models. Second we address the issue of how parameter sensitivity and transferability change with increasing complexity using numerical experiments with models of different physical and geometric intricacy. Hydraulic models are a good example system with which to address such generic modelling questions as: (1) they have a strong physical basis; (2) there is only one set of equations to solve; (3) they require only topography and boundary conditions as input data; and (4) they typically require only a single free parameter, namely boundary friction. In terms of complexity required we show that for the problem of sub-critical floodplain inundation a number of codes of different dimensionality and resolution can be found to fit uncertain model validation data equally well, and that in this situation Occam's razor emerges as a useful logic to guide model selection. We find also find that model skill usually improves more rapidly with increases in model spatial resolution than increases in physical complexity, and that standard approaches to testing hydraulic models against laboratory data or analytical solutions may fail to identify this important fact. Lastly, we find that in benchmark testing studies significant differences can exist between codes with identical numerical solution techniques as a result of auxiliary choices regarding the specifics of model implementation that are frequently unreported by code developers. As a consequence, making sound

  8. Alterations in choice behavior by manipulations of world model

    Science.gov (United States)

    Green, C. S.; Benson, C.; Kersten, D.; Schrater, P.

    2010-01-01

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) “probability matching”—a consistent example of suboptimal choice behavior seen in humans—occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning. PMID:20805507

  9. Estimation of Model Parameters for Steerable Needles

    Science.gov (United States)

    Park, Wooram; Reed, Kyle B.; Okamura, Allison M.; Chirikjian, Gregory S.

    2010-01-01

    Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable. We characterize the deviations in needle tip pose (position and orientation) by performing repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant speed without rotating, and the covariance of the distribution of the needle tip pose is computed from experimental data. We develop the closed-form equations to describe how the covariance varies with different model parameters. We estimate the model parameters by matching the closed-form covariance and the experimentally obtained covariance. In this work, we use a needle model modified from a previously developed model with two noise parameters. The modified needle model uses three noise parameters to better capture the stochastic behavior of the needle insertion. The modified needle model provides an improvement of the covariance error from 26.1% to 6.55%. PMID:21643451

  10. Estimation of Model Parameters for Steerable Needles.

    Science.gov (United States)

    Park, Wooram; Reed, Kyle B; Okamura, Allison M; Chirikjian, Gregory S

    2010-01-01

    Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable. We characterize the deviations in needle tip pose (position and orientation) by performing repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant speed without rotating, and the covariance of the distribution of the needle tip pose is computed from experimental data. We develop the closed-form equations to describe how the covariance varies with different model parameters. We estimate the model parameters by matching the closed-form covariance and the experimentally obtained covariance. In this work, we use a needle model modified from a previously developed model with two noise parameters. The modified needle model uses three noise parameters to better capture the stochastic behavior of the needle insertion. The modified needle model provides an improvement of the covariance error from 26.1% to 6.55%.

  11. An Optimization Model of Tunnel Support Parameters

    Directory of Open Access Journals (Sweden)

    Su Lijuan

    2015-05-01

    Full Text Available An optimization model was developed to obtain the ideal values of the primary support parameters of tunnels, which are wide-ranging in high-speed railway design codes when the surrounding rocks are at the III, IV, and V levels. First, several sets of experiments were designed and simulated using the FLAC3D software under an orthogonal experimental design. Six factors, namely, level of surrounding rock, buried depth of tunnel, lateral pressure coefficient, anchor spacing, anchor length, and shotcrete thickness, were considered. Second, a regression equation was generated by conducting a multiple linear regression analysis following the analysis of the simulation results. Finally, the optimization model of support parameters was obtained by solving the regression equation using the least squares method. In practical projects, the optimized values of support parameters could be obtained by integrating known parameters into the proposed model. In this work, the proposed model was verified on the basis of the Liuyang River Tunnel Project. Results show that the optimization model significantly reduces related costs. The proposed model can also be used as a reliable reference for other high-speed railway tunnels.

  12. Analysis of Modeling Parameters on Threaded Screws.

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  13. A multi-model multi-objective study to evaluate the role of metric choice on sensitivity assessment

    Science.gov (United States)

    Haghnegahdar, Amin; Razavi, Saman; Wheater, Howard; Gupta, Hoshin

    2016-04-01

    Sensitivity analysis (SA) is an essential tool for providing insight into model behavior, calibration, and uncertainty assessment. It is often overlooked that the metric choice can significantly change the assessment of model sensitivity. In order to identify important hydrological processes across various case studies, we conducted a multi-model multi-criteria sensitivity analysis using a novel and efficient technique, Variogram Analysis of Response Surfaces (VARS). The analysis was conducted using three physically-based hydrological models, applied at various scales ranging from small (hillslope) to large (watershed) scale. In each case, the sensitivity of simulated streamflow to model processes (represented through parameters) were measured using different metrics selected based on various hydrograph characteristics including high flows, low flows, and volume. It is demonstrated that metric choice has a significant influence on SA results and must be aligned with study objectives. Guidelines for identifying important model parameters from a multi-objective SA perspective is discussed as part of this study.

  14. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  15. SPOTting model parameters using a ready-made Python package

    Science.gov (United States)

    Houska, Tobias; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The selection and parameterization of reliable process descriptions in ecological modelling is driven by several uncertainties. The procedure is highly dependent on various criteria, like the used algorithm, the likelihood function selected and the definition of the prior parameter distributions. A wide variety of tools have been developed in the past decades to optimize parameters. Some of the tools are closed source. Due to this, the choice for a specific parameter estimation method is sometimes more dependent on its availability than the performance. A toolbox with a large set of methods can support users in deciding about the most suitable method. Further, it enables to test and compare different methods. We developed the SPOT (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of modules, to analyze and optimize parameters of (environmental) models. SPOT comes along with a selected set of algorithms for parameter optimization and uncertainty analyses (Monte Carlo, MC; Latin Hypercube Sampling, LHS; Maximum Likelihood, MLE; Markov Chain Monte Carlo, MCMC; Scuffled Complex Evolution, SCE-UA; Differential Evolution Markov Chain, DE-MCZ), together with several likelihood functions (Bias, (log-) Nash-Sutcliff model efficiency, Correlation Coefficient, Coefficient of Determination, Covariance, (Decomposed-, Relative-, Root-) Mean Squared Error, Mean Absolute Error, Agreement Index) and prior distributions (Binomial, Chi-Square, Dirichlet, Exponential, Laplace, (log-, multivariate-) Normal, Pareto, Poisson, Cauchy, Uniform, Weibull) to sample from. The model-independent structure makes it suitable to analyze a wide range of applications. We apply all algorithms of the SPOT package in three different case studies. Firstly, we investigate the response of the Rosenbrock function, where the MLE algorithm shows its strengths. Secondly, we study the Griewank function, which has a challenging response surface for

  16. Development of discrete choice model considering internal reference points and their effects in travel mode choice context

    Science.gov (United States)

    Sarif; Kurauchi, Shinya; Yoshii, Toshio

    2017-06-01

    In the conventional travel behavior models such as logit and probit, decision makers are assumed to conduct the absolute evaluations on the attributes of the choice alternatives. On the other hand, many researchers in cognitive psychology and marketing science have been suggesting that the perceptions of attributes are characterized by the benchmark called “reference points” and the relative evaluations based on them are often employed in various choice situations. Therefore, this study developed a travel behavior model based on the mental accounting theory in which the internal reference points are explicitly considered. A questionnaire survey about the shopping trip to the CBD in Matsuyama city was conducted, and then the roles of reference points in travel mode choice contexts were investigated. The result showed that the goodness-of-fit of the developed model was higher than that of the conventional model, indicating that the internal reference points might play the major roles in the choice of travel mode. Also shown was that the respondents seem to utilize various reference points: some tend to adopt the lowest fuel price they have experienced, others employ fare price they feel in perceptions of the travel cost.

  17. Modelling mode choice in short trips - shifting from car to bicycle

    DEFF Research Database (Denmark)

    Halldórsdóttir, Katrín; Christensen, Linda; Jensen, Thomas Christian

    2011-01-01

    This paper investigates the mode choice behaviour of Danish population from the Greater Copenhagen Area when travelling short trips. Data from the Danish National Transport Survey identify the travel behaviour of the Danish population through interviews collecting travel diaries and socio...... available for each period of the day in which the trip was conducted. The present study estimates a mixed logit model able to capture taste variations and differentiates travel time parameters across modes. The mixed logit model allows investigating the effect of level of service variables, individual...... characteristics of the travellers, purpose of the trips and environmental conditions. Results suggest heterogeneity among cyclists in the sensitivity to travel time, temperature and hilliness. The cost parameter is not significant, probably because of difficulties in the calculation, but possibly because of lower...

  18. The Lund Model at Nonzero Impact Parameter

    CERN Document Server

    Janik, R A; Janik, Romuald A.; Peschanski, Robi

    2003-01-01

    We extend the formulation of the longitudinal 1+1 dimensional Lund model to nonzero impact parameter using the minimal area assumption. Complete formulae for the string breaking probability and the momenta of the produced mesons are derived using the string worldsheet Minkowskian helicoid geometry. For strings stretched into the transverse dimension, we find probability distribution with slope linear in m_T similar to the statistical models but without any thermalization assumptions.

  19. IMPROVEMENT OF FLUID PIPE LUMPED PARAMETER MODEL

    Institute of Scientific and Technical Information of China (English)

    Kong Xiaowu; Wei Jianhua; Qiu Minxiu; Wu Genmao

    2004-01-01

    The traditional lumped parameter model of fluid pipe is introduced and its drawbacks are pointed out.Furthermore, two suggestions are put forward to remove these drawbacks.Firstly, the structure of equivalent circuit is modified, and then the evaluation of equivalent fluid resistance is change to take the frequency-dependent friction into account.Both simulation and experiment prove that this model is precise to characterize the dynamic behaviors of fluid in pipe.

  20. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...... velocity, and water level is presented. The stochastic model includes statistical uncertainty and dependency between the four stochastic variables. Further, a new stochastic model for annual maximum directional significant wave heights is presented. The model includes dependency between the maximum wave...... height from neighboring directional sectors. Numerical examples are presented where the models are calibrated using the Maximum Likelihood method to data from the central part of the North Sea. The calibration of the directional distributions is made such that the stochastic model for the omnidirectional...

  1. The Answering Process for Multiple-Choice Questions in Collaborative Learning: A Mathematical Learning Model Analysis

    Science.gov (United States)

    Nakamura, Yasuyuki; Nishi, Shinnosuke; Muramatsu, Yuta; Yasutake, Koichi; Yamakawa, Osamu; Tagawa, Takahiro

    2014-01-01

    In this paper, we introduce a mathematical model for collaborative learning and the answering process for multiple-choice questions. The collaborative learning model is inspired by the Ising spin model and the model for answering multiple-choice questions is based on their difficulty level. An intensive simulation study predicts the possibility of…

  2. Joint Residence-Workplace Location Choice Model Based on Household Decision Behavior

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2015-01-01

    Full Text Available Residence location and workplace are the two most important urban land-use types, and there exist strong interdependences between them. Existing researches often assume that one choice dimension is correlated to the other. Using the mixed logit framework, three groups of choice models are developed to illustrate such choice dependencies. First, for all households, this paper presents a basic methodology of the residence location and workplace choice without decision sequence based on the assumption that the two choice behaviors are independent of each other. Second, the paper clusters all households into two groups, choosing residence or workplace first, and formulates the residence location and workplace choice models under the constraint of decision sequence. Third, this paper combines the residence location and workplace together as the choice alternative and puts forward the joint choice model. A questionnaire survey is implemented in Beijing city to collect the data of 1994 households. Estimation results indicate that the joint choice model fits the data significantly better, and the elasticity effects analyses show that the joint choice model reflects the influences of relevant factors to the choice probability well and leads to the job-housing balance.

  3. Agent-based modelling of consumer energy choices

    Science.gov (United States)

    Rai, Varun; Henry, Adam Douglas

    2016-06-01

    Strategies to mitigate global climate change should be grounded in a rigorous understanding of energy systems, particularly the factors that drive energy demand. Agent-based modelling (ABM) is a powerful tool for representing the complexities of energy demand, such as social interactions and spatial constraints. Unlike other approaches for modelling energy demand, ABM is not limited to studying perfectly rational agents or to abstracting micro details into system-level equations. Instead, ABM provides the ability to represent behaviours of energy consumers -- such as individual households -- using a range of theories, and to examine how the interaction of heterogeneous agents at the micro-level produces macro outcomes of importance to the global climate, such as the adoption of low-carbon behaviours and technologies over space and time. We provide an overview of ABM work in the area of consumer energy choices, with a focus on identifying specific ways in which ABM can improve understanding of both fundamental scientific and applied aspects of the demand side of energy to aid the design of better policies and programmes. Future research needs for improving the practice of ABM to better understand energy demand are also discussed.

  4. Order Parameters of the Dilute A Models

    CERN Document Server

    Warnaar, S O; Seaton, K A; Nienhuis, B

    1993-01-01

    The free energy and local height probabilities of the dilute A models with broken $\\Integer_2$ symmetry are calculated analytically using inversion and corner transfer matrix methods. These models possess four critical branches. The first two branches provide new realisations of the unitary minimal series and the other two branches give a direct product of this series with an Ising model. We identify the integrable perturbations which move the dilute A models away from the critical limit. Generalised order parameters are defined and their critical exponents extracted. The associated conformal weights are found to occur on the diagonal of the relevant Kac table. In an appropriate regime the dilute A$_3$ model lies in the universality class of the Ising model in a magnetic field. In this case we obtain the magnetic exponent $\\delta=15$ directly, without the use of scaling relations.

  5. Testing Linear Models for Ability Parameters in Item Response Models

    NARCIS (Netherlands)

    Glas, Cees A.W.; Hendrawan, Irene

    2005-01-01

    Methods for testing hypotheses concerning the regression parameters in linear models for the latent person parameters in item response models are presented. Three tests are outlined: A likelihood ratio test, a Lagrange multiplier test and a Wald test. The tests are derived in a marginal maximum like

  6. Modelling spin Hamiltonian parameters of molecular nanomagnets.

    Science.gov (United States)

    Gupta, Tulika; Rajaraman, Gopalan

    2016-07-12

    Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.

  7. Exploiting residual information in the parameter choice for discrete ill-posed problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Kilmer, Misha E.; Kjeldsen, Rikke Høj

    2006-01-01

    Most algorithms for choosing the regularization parameter in a discrete ill-posed problem are based on the norm of the residual vector. In this work we propose a different approach, where we seek to use all the information available in the residual vector. We present important relations between...... periodogram, which is particularly suited for large-scale problems....

  8. Sensitivity of Human Choice to Manipulations of Parameters of Positive and Negative Sound Reinforcement

    Science.gov (United States)

    Lambert, Joseph M.

    2013-01-01

    The purpose of this study was to determine whether altering parameters of positive and negative reinforcement in identical ways could influence behavior maintained by each in different ways. Three undergraduate students participated in a series of assessments designed to identify preferred and aversive sounds with similar reinforcing values.…

  9. Over-parameterization: Destiny or choice for distributed, physically-based water quality models?

    Science.gov (United States)

    Grabs, Thomas; Seibert, Jan; Ledesma, José L. J.; Köhler, Stephan; Laudon, Hjalmar; Bishop, Kevin

    2014-05-01

    There seems to be an implicit view among modelers that 'physically-based' water quality models require many parameters due to their nature. Here we exemplify how over-parameterization can be avoided without much compromise on the representation of physical processes when modeling stream water quality in a boreal forest catchment. Our approach is based on the realization that stream water quality is not simply the sum of the contributions from different landscape elements and takes hydrological connectivity into account. When accounting for hydrological connectivity in boreal areas with forested till soils, wetlands and riparian zones emerge as hot spots that almost completely buffer the chemical signal from any more distant hydrological unit. Our choice to exclude less important processes from hydrologically disconnected locations lead to the development of the parameter-parsimonious but physically-based Riparian flow-concentration Integration Model (RIM). Linking RIM with topography-based pedotransfer functions allows spatio-temporal simulations of variable stream water quality at the catchment scale. More importantly, however, RIM could be used for hypothesis testing, which is often hardly feasible when using water quality models with many parameters and degrees of freedom.

  10. Systematic parameter inference in stochastic mesoscopic modeling

    CERN Document Server

    Lei, Huan; Li, Zhen; Karniadakis, George

    2016-01-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are sparse. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space....

  11. Kinetic exchange opinion model: solution in the single parameter map limit

    CERN Document Server

    Chowdhury, Krishanu Roy; Biswas, Soumyajyoti; Chakrabarti, Bikas K

    2011-01-01

    We study a recently proposed kinetic exchange opinion model (Lallouache et. al., Phys. Rev E 82, 056112 (2010)) in the limit of a single parameter map. Although it does not include the essentially complex behavior of the multiagent version, it provides us with the insight regarding the choice of order parameter for the system as well as some of its other dynamical properties. We also study the generalized two-parameter version of the model, and provide the exact phase diagram. The universal behavior along this phase boundary in terms of the suitably defined order parameter is seen.

  12. Behavioural Models for Route Choice of Passengers in Multimodal Public Transport Networks

    DEFF Research Database (Denmark)

    Anderson, Marie Karen

    The subject of this thesis is behavioural models for route choice of passengers in multimodal public transport networks. While research in sustainable transport has dedicated much attention toward the determinants of choice between car and sustainable travel options, it has devoted less attention...... in the estimation of route choice models of public transport users based upon observed choices. Public transport route choice models have not benefitted from the same technological enhancements as car models because of the necessity (i) to collect additional information concerning lines and transfers, and (ii......) to overcome technical limitations related to GPS signals not always being retrievable in tunnels that are used by metro and urban rail systems. In this PhD project, a questionnaire to collect details about the actual route choice behaviour in public transport networks was developed and tested in a full scale...

  13. Modelling tourists arrival using time varying parameter

    Science.gov (United States)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  14. The Effects of Land Use Patterns on Tour Type Choice. The Application of a Hybrid Choice Model

    DEFF Research Database (Denmark)

    de Abreu e Silva, João; Sottile, Eleonora; Cherchi, Elisabetta

    2014-01-01

    to travel. Workers who reside in more central, mixed and traditional urban spaces tend to have a higher propensity to travel. Workers who live in more diverse areas have a higher probability of engaging in more complex work related tours. Working in more suburban areas reduces the probability of engaging......The relations between travel behavior and land use patterns have been the object of intensive research in the last two decades. Due to their immediate policy implications, mode choice and vehicle miles of travel (VMT) have been the main focus of attention. Other relevant dimensions, like trip...... of the latent propensity to travel in the discrete choice among types of tours. This model is applied to a travel diary of workers collected in the Lisbon Metropolitan Area in 2009. Different model specifications were built, testing the inclusion of purportedly built land use factors, which have the advantage...

  15. Parameter estimation, model reduction and quantum filtering

    Science.gov (United States)

    Chase, Bradley A.

    This thesis explores the topics of parameter estimation and model reduction in the context of quantum filtering. The last is a mathematically rigorous formulation of continuous quantum measurement, in which a stream of auxiliary quantum systems is used to infer the state of a target quantum system. Fundamental quantum uncertainties appear as noise which corrupts the probe observations and therefore must be filtered in order to extract information about the target system. This is analogous to the classical filtering problem in which techniques of inference are used to process noisy observations of a system in order to estimate its state. Given the clear similarities between the two filtering problems, I devote the beginning of this thesis to a review of classical and quantum probability theory, stochastic calculus and filtering. This allows for a mathematically rigorous and technically adroit presentation of the quantum filtering problem and solution. Given this foundation, I next consider the related problem of quantum parameter estimation, in which one seeks to infer the strength of a parameter that drives the evolution of a probe quantum system. By embedding this problem in the state estimation problem solved by the quantum filter, I present the optimal Bayesian estimator for a parameter when given continuous measurements of the probe system to which it couples. For cases when the probe takes on a finite number of values, I review a set of sufficient conditions for asymptotic convergence of the estimator. For a continuous-valued parameter, I present a computational method called quantum particle filtering for practical estimation of the parameter. Using these methods, I then study the particular problem of atomic magnetometry and review an experimental method for potentially reducing the uncertainty in the estimate of the magnetic field beyond the standard quantum limit. The technique involves double-passing a probe laser field through the atomic system, giving

  16. Distinguishing between population bottleneck and population subdivision by a Bayesian model choice procedure.

    Science.gov (United States)

    Peter, Benjamin M; Wegmann, Daniel; Excoffier, Laurent

    2010-11-01

    Although most natural populations are genetically subdivided, they are often analysed as if they were panmictic units. In particular, signals of past demographic size changes are often inferred from genetic data by assuming that the analysed sample is drawn from a population without any internal subdivision. However, it has been shown that a bottleneck signal can result from the presence of some recent immigrants in a population. It thus appears important to contrast these two alternative scenarios in a model choice procedure to prevent wrong conclusions to be made. We use here an Approximate Bayesian Computation (ABC) approach to infer whether observed patterns of genetic diversity in a given sample are more compatible with it being drawn from a panmictic population having gone through some size change, or from one or several demes belonging to a recent finite island model. Simulations show that we can correctly identify samples drawn from a subdivided population in up to 95% of the cases for a wide range of parameters. We apply our model choice procedure to the case of the chimpanzee (Pan troglodytes) and find conclusive evidence that Western and Eastern chimpanzee samples are drawn from a spatially subdivided population. © 2010 Blackwell Publishing Ltd.

  17. MODELLING CONSUMER CHOICE IN THE MARKET SWITCHBOARD EQUIPMENT USING IBM SPSS STATISTICS

    Directory of Open Access Journals (Sweden)

    Sergey V. Mkhitaryan

    2014-01-01

    Full Text Available Modelling consumer choice in the marketswitch equipment will allow manufacturing enterprises to improve the efficiencyof design and marketing activities byreducing the financial and human losses associated with pre-treatment orders. Todevelop a model of consumer choice canbe used logistic regression.

  18. Parameter optimization in S-system models

    Directory of Open Access Journals (Sweden)

    Vasconcelos Ana

    2008-04-01

    Full Text Available Abstract Background The inverse problem of identifying the topology of biological networks from their time series responses is a cornerstone challenge in systems biology. We tackle this challenge here through the parameterization of S-system models. It was previously shown that parameter identification can be performed as an optimization based on the decoupling of the differential S-system equations, which results in a set of algebraic equations. Results A novel parameterization solution is proposed for the identification of S-system models from time series when no information about the network topology is known. The method is based on eigenvector optimization of a matrix formed from multiple regression equations of the linearized decoupled S-system. Furthermore, the algorithm is extended to the optimization of network topologies with constraints on metabolites and fluxes. These constraints rejoin the system in cases where it had been fragmented by decoupling. We demonstrate with synthetic time series why the algorithm can be expected to converge in most cases. Conclusion A procedure was developed that facilitates automated reverse engineering tasks for biological networks using S-systems. The proposed method of eigenvector optimization constitutes an advancement over S-system parameter identification from time series using a recent method called Alternating Regression. The proposed method overcomes convergence issues encountered in alternate regression by identifying nonlinear constraints that restrict the search space to computationally feasible solutions. Because the parameter identification is still performed for each metabolite separately, the modularity and linear time characteristics of the alternating regression method are preserved. Simulation studies illustrate how the proposed algorithm identifies the correct network topology out of a collection of models which all fit the dynamical time series essentially equally well.

  19. Multimodal route choice models of public transport passengers in the Greater Copenhagen Area

    DEFF Research Database (Denmark)

    Anderson, Marie Karen; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2014-01-01

    ,641 public transport users in the Greater Copenhagen Area.A two-stage approach consisting of choice set generation and route choice model estimation allowed uncovering the preferences of the users of this multimodal large-scale public transport network. The results illustrate the rates of substitution...... of their inherent complexity and challenges. In particular, choice set generation and modeling route choice behavior while accounting for similarity across alternatives and heterogeneity across travelers are non-trivial challenges. This paper tackles these challenges by focusing on the revealed preferences of 5...

  20. High speed e-beam writing for large area photonic nanostructures — a choice of parameters

    Science.gov (United States)

    Li, Kezheng; Li, Juntao; Reardon, Christopher; Schuster, Christian S.; Wang, Yue; Triggs, Graham J.; Damnik, Niklas; Müenchenberger, Jana; Wang, Xuehua; Martins, Emiliano R.; Krauss, Thomas F.

    2016-09-01

    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm2. Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications.

  1. High speed e-beam writing for large area photonic nanostructures - a choice of parameters.

    Science.gov (United States)

    Li, Kezheng; Li, Juntao; Reardon, Christopher; Schuster, Christian S; Wang, Yue; Triggs, Graham J; Damnik, Niklas; Müenchenberger, Jana; Wang, Xuehua; Martins, Emiliano R; Krauss, Thomas F

    2016-09-16

    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm(2). Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications.

  2. Choice of optimum explosive hydraulic treatment parameters during the first main roof subsidences

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, N.M.; Timofeev, V.I.

    1988-10-01

    Presents mathematical formulae for calculating the displacement in roof rock and produces a nomogram from these formula which may be used to determine the span of the main roof in relation to the type of weakening treatment used. The results show the depth of the roof weakening to be a significant parameter: the deflection of a difficult breaking roof and its maximum span have their lowest values when the main roof is completely filled with broken rock from the softened roof. A criterion for the effectiveness of the treatment is a reduction in the unit of advance of the subsidence of a fully filled main roof of 1.5-2.0 times. In mines belonging to the Sakhalinugol' coal production association, the use of this treatment with full filling of the main roof reduced intensity of rock pressure: the bearing pressure at the face fell by 10-15% and moved 10 m further into the rock and the pressure on the stope fell by 1.3-1.4 times. 2 refs.

  3. Modeling shortest path selection of the ant Linepithema humile using psychophysical theory and realistic parameter values.

    Science.gov (United States)

    von Thienen, Wolfhard; Metzler, Dirk; Witte, Volker

    2015-05-07

    The emergence of self-organizing behavior in ants has been modeled in various theoretical approaches in the past decades. One model explains experimental observations in which Argentine ants (Linepithema humile) selected the shorter of two alternative paths from their nest to a food source (shortest path experiments). This model serves as an important example for the emergence of collective behavior and self-organization in biological systems. In addition, it inspired the development of computer algorithms for optimization problems called ant colony optimization (ACO). In the model, a choice function describing how ants react to different pheromone concentrations is fundamental. However, the parameters of the choice function were not deduced experimentally but freely adapted so that the model fitted the observations of the shortest path experiments. Thus, important knowledge was lacking about crucial model assumptions. A recent study on the Argentine ant provided this information by measuring the response of the ants to varying pheromone concentrations. In said study, the above mentioned choice function was fitted to the experimental data and its parameters were deduced. In addition, a psychometric function was fitted to the data and its parameters deduced. Based on these findings, it is possible to test the shortest path model by applying realistic parameter values. Here we present the results of such tests using Monte Carlo simulations of shortest path experiments with Argentine ants. We compare the choice function and the psychometric function, both with parameter values deduced from the above-mentioned experiments. Our results show that by applying the psychometric function, the shortest path experiments can be explained satisfactorily by the model. The study represents the first example of how psychophysical theory can be used to understand and model collective foraging behavior of ants based on trail pheromones. These findings may be important for other

  4. Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models

    OpenAIRE

    Baker Syed; Poskar C; Junker Björn

    2011-01-01

    Abstract In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. Wh...

  5. Optimal experiment selection for parameter estimation in biological differential equation models

    Directory of Open Access Journals (Sweden)

    Transtrum Mark K

    2012-07-01

    Full Text Available Abstract Background Parameter estimation in biological models is a common yet challenging problem. In this work we explore the problem for gene regulatory networks modeled by differential equations with unknown parameters, such as decay rates, reaction rates, Michaelis-Menten constants, and Hill coefficients. We explore the question to what extent parameters can be efficiently estimated by appropriate experimental selection. Results A minimization formulation is used to find the parameter values that best fit the experiment data. When the data is insufficient, the minimization problem often has many local minima that fit the data reasonably well. We show that selecting a new experiment based on the local Fisher Information of one local minimum generates additional data that allows one to successfully discriminate among the many local minima. The parameters can be estimated to high accuracy by iteratively performing minimization and experiment selection. We show that the experiment choices are roughly independent of which local minima is used to calculate the local Fisher Information. Conclusions We show that by an appropriate choice of experiments, one can, in principle, efficiently and accurately estimate all the parameters of gene regulatory network. In addition, we demonstrate that appropriate experiment selection can also allow one to restrict model predictions without constraining the parameters using many fewer experiments. We suggest that predicting model behaviors and inferring parameters represent two different approaches to model calibration with different requirements on data and experimental cost.

  6. Moose models with vanishing $S$ parameter

    CERN Document Server

    Casalbuoni, R; Dominici, Daniele

    2004-01-01

    In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the $S$ parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on $K$ SU(2) gauge groups, $K+1$ chiral fields and electroweak groups $SU(2)_L$ and $U(1)_Y$ at the ends of the chain of the moose. $S$ vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical non local field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of $S$ through an exponential behavior of the link couplings as suggested by Randall Sundrum metric.

  7. Model parameters for simulation of physiological lipids

    Science.gov (United States)

    McGlinchey, Nicholas

    2016-01-01

    Coarse grain simulation of proteins in their physiological membrane environment can offer insight across timescales, but requires a comprehensive force field. Parameters are explored for multicomponent bilayers composed of unsaturated lipids DOPC and DOPE, mixed‐chain saturation POPC and POPE, and anionic lipids found in bacteria: POPG and cardiolipin. A nonbond representation obtained from multiscale force matching is adapted for these lipids and combined with an improved bonding description of cholesterol. Equilibrating the area per lipid yields robust bilayer simulations and properties for common lipid mixtures with the exception of pure DOPE, which has a known tendency to form nonlamellar phase. The models maintain consistency with an existing lipid–protein interaction model, making the force field of general utility for studying membrane proteins in physiologically representative bilayers. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26864972

  8. Consumer choice models on the effect of promotions in retailing

    NARCIS (Netherlands)

    Guyt, Jonne

    2015-01-01

    This doctoral thesis contains three empirical essays regarding the effect of promotions on consumer choices in a retailing context. The first essay studies the scheduling of featured price cuts for national brands, across retail chains. It shows that coordinating promotions across chains influences

  9. Fund choice behavior and estimation of switching models: an experiment*

    NARCIS (Netherlands)

    Anufriev, M.; Bao, T.; Tuinstra, J.

    2013-01-01

    We run a laboratory experiment that contributes to the finance literature on "return chasing behavior" studying how investors switch between mutual funds driven by past performance of the funds. The subjects in this experiment make discrete choices between several (2, 3 or 4) experimental funds in m

  10. The Use of Predictive Models in Forecasting Student Choice.

    Science.gov (United States)

    Tuckman, Howard P.

    This paper uses ordinary least squares regression to obtain probabilities for the post-graduation choices of high school seniors, and it presents an illustration of the use of these probabilities in calculating future income. Problems raised by the use of the least squares regression are discussed. The benefits of higher education and ways in…

  11. Modeling brand choice using boosted and stacked neural networks

    NARCIS (Netherlands)

    R. Potharst (Rob); M. van Rijthoven; M.C. van Wezel (Michiel)

    2005-01-01

    textabstractThe brand choice problem in marketing has recently been addressed with methods from computational intelligence such as neural networks. Another class of methods from computational intelligence, the so-called ensemble methods such as boosting and stacking have never been applied to the

  12. Using discrete choice modeling to evaluate the preferences and willingness to pay for leptospirosis vaccine.

    Science.gov (United States)

    Arbiol, Joseph; Yabe, Mitsuyasu; Nomura, Hisako; Borja, Maridel; Gloriani, Nina; Yoshida, Shin-ichi

    2015-01-01

    Leptospirosis is highly endemic in the Philippines and a serious concern to public health. Local research on candidate vaccine is moving through the development pipeline. The availability of vaccines alone does not guarantee acceptance because individuals' vaccination choice decision is influenced by several factors. This study assessed how vaccine attributes and socio-demographic factors affect the acceptability of leptospirosis vaccine; and estimated individuals' willingness to pay for leptospirosis vaccine. A discrete choice experiment was conducted among leptospirosis and non-leptospirosis case respondents (n = 342) living in Metro Manila. Random Parameters Logit model was used to estimate the relative importance of vaccine attributes and socio-demographic variables on respondents' leptospirosis vaccination choice decision. The estimated model coefficients were used to derive implicit prices and willingness to pay for leptospirosis vaccine. Both case respondents preferred leptospirosis vaccine with 70-100% efficacy, mild to moderate risk of side-effects, given in a single shot, and at a lower price. Non-leptospirosis case respondents preferred a vaccine with 7 to 10 y of protection, while leptospirosis case respondents preferred a vaccine with 10 y protection. The probability of leptospirosis vaccination acceptance was affected by respondents' age, education, family size and income, proximity of home to rivers and sewers, and leptospirosis awareness level. Respondents' willingness to pay for leptospirosis vaccine (US$ 31.14-US$ 65.89) was higher than the Japanese retail price (US$ 21.60-US$ 24.00). Our findings indicated significant potential for introducing leptospirosis vaccine in the Philippine vaccine market. Delivery strategies to ensure equitable access to future leptospirosis vaccine are recommended.

  13. Performance and Probabilistic Verification of Regional Parameter Estimates for Conceptual Rainfall-runoff Models

    Science.gov (United States)

    Franz, K.; Hogue, T.; Barco, J.

    2007-12-01

    Identification of appropriate parameter sets for simulation of streamflow in ungauged basins has become a significant challenge for both operational and research hydrologists. This is especially difficult in the case of conceptual models, when model parameters typically must be "calibrated" or adjusted to match streamflow conditions in specific systems (i.e. some of the parameters are not directly observable). This paper addresses the performance and uncertainty associated with transferring conceptual rainfall-runoff model parameters between basins within large-scale ecoregions. We use the National Weather Service's (NWS) operational hydrologic model, the SACramento Soil Moisture Accounting (SAC-SMA) model. A Multi-Step Automatic Calibration Scheme (MACS), using the Shuffle Complex Evolution (SCE), is used to optimize SAC-SMA parameters for a group of watersheds with extensive hydrologic records from the Model Parameter Estimation Experiment (MOPEX) database. We then explore "hydroclimatic" relationships between basins to facilitate regionalization of parameters for an established ecoregion in the southeastern United States. The impact of regionalized parameters is evaluated via standard model performance statistics as well as through generation of hindcasts and probabilistic verification procedures to evaluate streamflow forecast skill. Preliminary results show climatology ("climate neighbor") to be a better indicator of transferability than physical similarities or proximity ("nearest neighbor"). The mean and median of all the parameters within the ecoregion are the poorest choice for the ungauged basin. The choice of regionalized parameter set affected the skill of the ensemble streamflow hindcasts, however, all parameter sets show little skill in forecasts after five weeks (i.e. climatology is as good an indicator of future streamflows). In addition, the optimum parameter set changed seasonally, with the "nearest neighbor" showing the highest skill in the

  14. Departure time choice: Modelling individual preferences, intention and constraints

    DEFF Research Database (Denmark)

    Thorhauge, Mikkel

    working hours) as the penalty of late arrival is very likely to be higher for individuals with constraints on arrival time. However, flexibility is not only a matter of fixed arrival time. Activities can be mandatory or discretionary (Yamamoto and Kitamura, 1999), performed alone or jointly with family......D thesis is as follows. Firstly, it provides evidence of a fully efficient stated choice design for a departure time context. Using a pivot design (Rose et al., 2008) built around a reference trip (usually from the day before), the thesis shows that the efficient design performs well in cases where good...... whether they are constrained. The thesis also provides empirical evidences of the policy implication of not accounting for other activities and their constraints. Thirdly, the thesis shows that the departure time choice can be partly explained by psychological factors, which have previously been neglected...

  15. A comparative study of drift diffusion and linear ballistic accumulator models in a reward maximization perceptual choice task

    Directory of Open Access Journals (Sweden)

    Stephanie eGoldfarb

    2014-08-01

    Full Text Available We present new findings that distinguish drift diffusion models (DDMsfrom the linear ballistic accumulator (LBA model as descriptions ofhuman behavior in a two-alternative forced-choice reward maximization(Rmax task. Previous comparisons have not considered Rmax tasks, anddifferences identified between the models' predictions have centeredon practice effects. Unlike the parameter-free optimal performancecurves of the pure DDM, the extended DDM and LBA predict families ofcurves depending on their additional parameters, and those of the LBAshow significant differences from the DDMs, especially for poorlydiscriminable stimuli that incur high error rates. Moreover, fits tobehavior reveal that the LBA and DDM provide different interpretationsof behavior as stimulus discriminability increases. Trends forthreshold setting (caution in the DDMs are consistent between fits,while in the corresponding LBA fits, thresholds interact withdistributions of starting points in a complex manner that depends uponparameter constraints. Our results suggest that reinterpretation ofLBA parameters may be necessary in modeling the Rmax paradigm.

  16. A Two-Dimensional CA Traffic Model with Dynamic Route Choices Between Residence and Workplace

    CERN Document Server

    Fang, Jun; Chen, Xi-Qun; Qin, Zheng

    2015-01-01

    The Biham, Middleton and Levine (BML) model is extended to describe dynamic route choices between the residence and workplace in cities. The traffic dynamic in the city with a single workplace is studied from the velocity diagram, arrival time probability distribution, destination arrival rate and convergence time. The city with double workplaces is also investigated to compared with a single workplace within the framework of four modes of urban growth. The transitional region is found in the velocity diagrams where the system undergoes a continuous transition from a moving phase to a completely jamming phase. We perform a finite-size scaling analysis of the critical density from a statistical point of view and the order parameter of this jamming transition is estimated. It is also found that statistical properties of urban traffic are greatly influenced by the urban area, workplace area and urban layout.

  17. Interaction prediction between groundwater and quarry extension using discrete choice models and artificial neural networks

    CERN Document Server

    Barthélemy, Johan; Collier, Louise; Hallet, Vincent; Moriamé, Marie; Sartenaer, Annick

    2016-01-01

    Groundwater and rock are intensively exploited in the world. When a quarry is deepened the water table of the exploited geological formation might be reached. A dewatering system is therefore installed so that the quarry activities can continue, possibly impacting the nearby water catchments. In order to recommend an adequate feasibility study before deepening a quarry, we propose two interaction indices between extractive activity and groundwater resources based on hazard and vulnerability parameters used in the assessment of natural hazards. The levels of each index (low, medium, high, very high) correspond to the potential impact of the quarry on the regional hydrogeology. The first index is based on a discrete choice modelling methodology while the second is relying on an artificial neural network. It is shown that these two complementary approaches (the former being probabilistic while the latter fully deterministic) are able to predict accurately the level of interaction. Their use is finally illustrate...

  18. Accounting for choice of measurement scale in extreme value modeling

    OpenAIRE

    Wadsworth, J. L.; Tawn, J. A.; Jonathan, P.

    2010-01-01

    We investigate the effect that the choice of measurement scale has upon inference and extrapolation in extreme value analysis. Separate analyses of variables from a single process on scales which are linked by a nonlinear transformation may lead to discrepant conclusions concerning the tail behavior of the process. We propose the use of a Box--Cox power transformation incorporated as part of the inference procedure to account parametrically for the uncertainty surrounding the scale of extrapo...

  19. Uncertainty Quantification for Optical Model Parameters

    CERN Document Server

    Lovell, A E; Sarich, J; Wild, S M

    2016-01-01

    Although uncertainty quantification has been making its way into nuclear theory, these methods have yet to be explored in the context of reaction theory. For example, it is well known that different parameterizations of the optical potential can result in different cross sections, but these differences have not been systematically studied and quantified. The purpose of this work is to investigate the uncertainties in nuclear reactions that result from fitting a given model to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and transfer channels. We use statistical methods to determine a best fit and create corresponding 95\\% confidence bands. A simple model of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross sections. In this initial work, we assume that our model is correct, and the only uncertainties come from the variation of the fit parameters. We study a number of reactions involving neutron and deuteron p...

  20. Numerical modeling of partial discharges parameters

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad M.

    2016-01-01

    Full Text Available In recent testing of the partial discharges or the use for the diagnosis of insulation condition of high voltage generators, transformers, cables and high voltage equipment develops rapidly. It is a result of the development of electronics, as well as, the development of knowledge about the processes of partial discharges. The aim of this paper is to contribute the better understanding of this phenomenon of partial discharges by consideration of the relevant physical processes in isolation materials and isolation systems. Prebreakdown considers specific processes, and development processes at the local level and their impact on specific isolation material. This approach to the phenomenon of partial discharges needed to allow better take into account relevant discharge parameters as well as better numerical model of partial discharges.

  1. Considerations on the choice of experimental parameters in residual stress measurements by hole-drilling and ESPI

    Directory of Open Access Journals (Sweden)

    C. Barile

    2014-10-01

    Full Text Available Residual stresses occur in many manufactured structures and components. Great number of investigations have been carried out to study this phenomenon. Over the years, different techniques have been developed to measure residual stresses; nowadays the combination of Hole Drilling method (HD with Electronic Speckle Pattern Interferometry (ESPI has encountered great interest. The use of a high sensitivity optical technique instead of the strain gage rosette has the advantage to provide full field information without any contact with the sample by consequently reducing the cost and the time required for the measurement. The accuracy of the measurement, however, is influenced by the proper choice of several parameters: geometrical, analysis and experimental. In this paper, in particular, the effects of some of those parameters are investigated: misknowledgment in illumination and detection angles, the influence of the relative angle between the sensitivity vector of the system and the principal stress directions, the extension of the area of analysis and the adopted drilling rotation speed. In conclusion indications are provided to the scope of optimizing the measurement process together with the identification of the major sources of errors that can arise during the measuring and the analysis stages.

  2. Do Methodological Choices in Environmental Modeling Bias Rebound Effects? : A Case Study on Electric Cars

    NARCIS (Netherlands)

    Font Vivanco, D.; Tukker, A.; Kemp, R.

    2016-01-01

    Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes i

  3. Modeling the Bullying Prevention Program Preferences of Educators: A Discrete Choice Conjoint Experiment

    Science.gov (United States)

    Cunningham, Charles E.; Vaillancourt, Tracy; Rimas, Heather; Deal, Ken; Cunningham, Lesley; Short, Kathy; Chen, Yvonne

    2009-01-01

    We used discrete choice conjoint analysis to model the bullying prevention program preferences of educators. Using themes from computerized decision support lab focus groups (n = 45 educators), we composed 20 three-level bullying prevention program design attributes. Each of 1,176 educators completed 25 choice tasks presenting experimentally…

  4. Joint modeling of constrained path enumeration and path choice behavior: a semi-compensatory approach

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2010-01-01

    A behavioural and a modelling framework are proposed for representing route choice from a path set that satisfies travellers’ spatiotemporal constraints. Within the proposed framework, travellers’ master sets are constructed by path generation, consideration sets are delimited according to spatio...... constraints are related to travellers’ socio-economic characteristics and that path choice is related to minimizing time and avoiding congestion....

  5. Fuzzy social choice models explaining the government formation process

    CERN Document Server

    C Casey, Peter; A Goodman, Carly; Pook, Kelly Nelson; N Mordeson, John; J Wierman, Mark; D Clark, Terry

    2014-01-01

    This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made.  The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems.  Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes parties’ fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the pre...

  6. Modeling Subducting Slabs: Structural Variations due to Thermal Models, Latent Heat Feedback, and Thermal Parameter

    Science.gov (United States)

    Marton, F. C.

    2001-12-01

    The thermal, mineralogical, and buoyancy structures of thermal-kinetic models of subducting slabs are highly dependent upon a number of parameters, especially if the metastable persistence of olivine in the transition zone is investigated. The choice of starting thermal model for the lithosphere, whether a cooling halfspace (HS) or plate model, can have a significant effect, resulting in metastable wedges of olivine that differ in size by up to two to three times for high values of the thermal parameter (ǎrphi). Moreover, as ǎrphi is the product of the age of the lithosphere at the trench, convergence rate, and dip angle, slabs with similar ǎrphis can show great variations in structures as these constituents change. This is especially true for old lithosphere, as the lithosphere continually cools and thickens with age for HS models, but plate models, with parameters from Parson and Sclater [1977] (PS) or Stein and Stein [1992] (GDH1), achieve a thermal steady-state and constant thickness in about 70 My. In addition, the latent heats (q) of the phase transformations of the Mg2SiO4 polymorphs can also have significant effects in the slabs. Including q feedback in models raises the temperature and reduces the extent of metastable olivine, causing the sizes of the metastable wedges to vary by factors of up to two times. The effects of the choice of thermal model, inclusion and non-inclusion of q feedback, and variations in the constituents of ǎrphi are investigated for several model slabs.

  7. Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models

    CERN Document Server

    De Blasi, Pierpaolo; Lau, John W; 10.3150/09-BEJ233

    2011-01-01

    This paper develops nonparametric estimation for discrete choice models based on the mixed multinomial logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models derived under the assumption of random utility maximization, subject to the identification of an unknown distribution $G$. Noting the mixture model description of the MMNL, we employ a Bayesian nonparametric approach, using nonparametric priors on the unknown mixing distribution $G$, to estimate choice probabilities. We provide an important theoretical support for the use of the proposed methodology by investigating consistency of the posterior distribution for a general nonparametric prior on the mixing distribution. Consistency is defined according to an $L_1$-type distance on the space of choice probabilities and is achieved by extending to a regression model framework a recent approach to strong consistency based on the summability of square roots of prior probabilities. Moving to estimation, slightly different te...

  8. Choices and Changes: Eccles’ Expectancy-Value Model and Upper-Secondary School Students’ Longitudinal Reflections about their Choice of a STEM Education

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    During the past 30 years, Eccles’ comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students...... could be used to detect significant changes in the students’ educational choice processes. An important finding was that the quantitative EV-MBC surveys and the qualitative interviews gave quite different results concerning the students’ considerations about the choice of tertiary education......, and that significant changes in the students’ reflections were not captured by the factors of the EV-MBC model. This questions the validity of the EVMBC surveys. Moreover, the quantitative factors from the EV-MBC model did not sufficiently explain students’ dynamical educational choice processes where students...

  9. Understanding the formation and influence of attitudes in patients' treatment choices for lower back pain: Testing the benefits of a hybrid choice model approach

    DEFF Research Database (Denmark)

    Kløjgaard, Mirja Elisabeth; Hess, S.

    2014-01-01

    A growing number of studies across different fields are making use of a new class of choice models, labelled variably as hybrid model structures or integrated choice and latent variable models, and incorporating the role of attitudes in decision making. To date, this technique has not been used...... in health economics. The present paper looks at the formation of such attitudes and their role in patients treatment choices in the context of low back pain. We use stated choice data collected from a sample of 561 patients with 348 respondents referred to a regional spine centre in Middelfart, Denmark...... in spring/summer 2012. We show how the hybrid model structure is able to make a link between attitudinal questions and treatment choices, and also explains variation of these attitudes across key socio-demographic groups. However, we also show how, in this case, only a small share of the overall...

  10. Incorporating Latent Variables into Discrete Choice Models - A Simultaneous Estimation Approach Using SEM Software

    Directory of Open Access Journals (Sweden)

    Dirk Temme

    2008-12-01

    Full Text Available Integrated choice and latent variable (ICLV models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.

  11. Parameter Optimisation for the Behaviour of Elastic Models over Time

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method...... that will optimise parameters based on the behaviour of the elastic models over time....

  12. Model Identification of Linear Parameter Varying Aircraft Systems

    OpenAIRE

    Fujimore, Atsushi; Ljung, Lennart

    2007-01-01

    This article presents a parameter estimation of continuous-time polytopic models for a linear parameter varying (LPV) system. The prediction error method of linear time invariant (LTI) models is modified for polytopic models. The modified prediction error method is applied to an LPV aircraft system whose varying parameter is the flight velocity and model parameters are the stability and control derivatives (SCDs). In an identification simulation, the polytopic model is more suitable for expre...

  13. Choices and Changes: Eccles’ Expectancy-Value Model and Upper-Secondary School Students’ Longitudinal Reflections about their Choice of a STEM Education

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    in their last year in upper-secondary school concerning their choice of tertiary education were examined using quantitative EV-MBC surveys and repeated qualitative interviews. This article presents the analyses of three cases in detail. The analytical focus was whether the factors indicated in the EV-MBC model......During the past 30 years, Eccles’ comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students...... could be used to detect significant changes in the students’ educational choice processes. An important finding was that the quantitative EV-MBC surveys and the qualitative interviews gave quite different results concerning the students’ considerations about the choice of tertiary education...

  14. Specialty choice preference of medical students according to personality traits by Five-Factor Model

    National Research Council Canada - National Science Library

    Oh Young Kwon; So Youn Park

    2016-01-01

    Purpose: The purpose of this study was to determine the relationship between personality traits, using the Five-Factor Model, and characteristics and motivational factors affecting specialty choice in Korean medical students. Methods...

  15. [Calculation of parameters in forest evapotranspiration model].

    Science.gov (United States)

    Wang, Anzhi; Pei, Tiefan

    2003-12-01

    Forest evapotranspiration is an important component not only in water balance, but also in energy balance. It is a great demand for the development of forest hydrology and forest meteorology to simulate the forest evapotranspiration accurately, which is also a theoretical basis for the management and utilization of water resources and forest ecosystem. Taking the broadleaved Korean pine forest on Changbai Mountain as an example, this paper constructed a mechanism model for estimating forest evapotranspiration, based on the aerodynamic principle and energy balance equation. Using the data measured by the Routine Meteorological Measurement System and Open-Path Eddy Covariance Measurement System mounted on the tower in the broadleaved Korean pine forest, the parameters displacement height d, stability functions for momentum phi m, and stability functions for heat phi h were ascertained. The displacement height of the study site was equal to 17.8 m, near to the mean canopy height, and the functions of phi m and phi h changing with gradient Richarson number R i were constructed.

  16. Choices and changes: Eccles' Expectancy-Value model and upper-secondary school students' longitudinal reflections about their choice of a STEM education

    Science.gov (United States)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-03-01

    During the past 30 years, Eccles' comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students in their last year in upper-secondary school concerning their choice of tertiary education were examined using quantitative EV-MBC surveys and repeated qualitative interviews. This article presents the analyses of three cases in detail. The analytical focus was whether the factors indicated in the EV-MBC model could be used to detect significant changes in the students' educational choice processes. An important finding was that the quantitative EV-MBC surveys and the qualitative interviews gave quite different results concerning the students' considerations about the choice of tertiary education, and that significant changes in the students' reflections were not captured by the factors of the EV-MBC model. This questions the validity of the EV-MBC surveys. Moreover, the quantitative factors from the EV-MBC model did not sufficiently explain students' dynamical educational choice processes where students in parallel considered several different potential educational trajectories. We therefore call for further studies of the EV-MBC model's use in describing longitudinal choice processes and especially in investigating significant changes.

  17. A conceptual model for determining career choice of CHROME alumna based on farmer's conceptual models

    Science.gov (United States)

    Moore, Lisa Simmons

    This qualitative program evaluation examines the career decision-making processes and career choices of nine, African American women who participated in the Cooperating Hampton Roads Organization for Minorities in Engineering (CHROME) and who graduated from urban, rural or suburban high schools in the year 2000. The CHROME program is a nonprofit, pre-college intervention program that encourages underrepresented minority and female students to enter science, technically related, engineering, and math (STEM) career fields. The study describes career choices and decisions made by each participant over a five-year period since high school graduation. Data was collected through an Annual Report, Post High School Questionnaires, Environmental Support Questionnaires, Career Choice Questionnaires, Senior Reports, and standardized open-ended interviews. Data was analyzed using a model based on Helen C. Farmer's Conceptual Models, John Ogbu's Caste Theory and Feminist Theory. The CHROME program, based on its stated goals and tenets, was also analyzed against study findings. Findings indicated that participants received very low levels of support from counselors and teachers to pursue STEM careers and high levels of support from parents and family, the CHROME program and financial backing. Findings of this study also indicated that the majority of CHROME alumna persisted in STEM careers. The most successful participants, in terms of undergraduate degree completion and occupational prestige, were the African American women who remained single, experienced no critical incidents, came from a middle class to upper middle class socioeconomic background, and did not have children.

  18. A robotics-based approach to modeling of choice reaching experiments on visual attention

    Directory of Open Access Journals (Sweden)

    Soeren eStrauss

    2012-04-01

    Full Text Available The paper presents a robotics-based model for choice reaching experiments on visual attention. In these experiments participants were asked to make rapid reach movements towards a target in an odd-colour search task, i.e. reaching for a green square among red squares and vice versa (e.g. Song & Nakayama, 2008. Interestingly these studies found that in a high number of trials movements were initially directed towards a distractor and only later were adjusted towards the target. These curved trajectories occurred particularly frequently when the target in the directly preceding trial had a different colour (priming effect. Our model is embedded in a closed-loop control of a LEGO robot arm aiming to mimic these reach movements. The model is based on our earlier work which suggests that target selection in visual search is implemented through parallel interactions between competitive and cooperative processes in the brain (Heinke & Backhaus, 2011; Heinke & Humphreys, 2003. To link this model with the control of the robot arm we implemented a topological representation of movement parameters following the dynamic field theory (Erlhagen & Schoener, 2002. The robot arm is able to mimic the results of the odd-colour search task including the priming effect and also generates human-like trajectories with a bell-shaped velocity profile. Theoretical implications and predictions are discussed in the paper.

  19. A Robotics-Based Approach to Modeling of Choice Reaching Experiments on Visual Attention

    Science.gov (United States)

    Strauss, Soeren; Heinke, Dietmar

    2012-01-01

    The paper presents a robotics-based model for choice reaching experiments on visual attention. In these experiments participants were asked to make rapid reach movements toward a target in an odd-color search task, i.e., reaching for a green square among red squares and vice versa (e.g., Song and Nakayama, 2008). Interestingly these studies found that in a high number of trials movements were initially directed toward a distractor and only later were adjusted toward the target. These “curved” trajectories occurred particularly frequently when the target in the directly preceding trial had a different color (priming effect). Our model is embedded in a closed-loop control of a LEGO robot arm aiming to mimic these reach movements. The model is based on our earlier work which suggests that target selection in visual search is implemented through parallel interactions between competitive and cooperative processes in the brain (Heinke and Humphreys, 2003; Heinke and Backhaus, 2011). To link this model with the control of the robot arm we implemented a topological representation of movement parameters following the dynamic field theory (Erlhagen and Schoener, 2002). The robot arm is able to mimic the results of the odd-color search task including the priming effect and also generates human-like trajectories with a bell-shaped velocity profile. Theoretical implications and predictions are discussed in the paper. PMID:22529827

  20. Transfer function modeling of damping mechanisms in distributed parameter models

    Science.gov (United States)

    Slater, J. C.; Inman, D. J.

    1994-01-01

    This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems.

  1. Comparison of approaches for parameter estimation on stochastic models: Generic least squares versus specialized approaches.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven

    2016-04-01

    Parameter estimation for models with intrinsic stochasticity poses specific challenges that do not exist for deterministic models. Therefore, specialized numerical methods for parameter estimation in stochastic models have been developed. Here, we study whether dedicated algorithms for stochastic models are indeed superior to the naive approach of applying the readily available least squares algorithm designed for deterministic models. We compare the performance of the recently developed multiple shooting for stochastic systems (MSS) method designed for parameter estimation in stochastic models, a stochastic differential equations based Bayesian approach and a chemical master equation based techniques with the least squares approach for parameter estimation in models of ordinary differential equations (ODE). As test data, 1000 realizations of the stochastic models are simulated. For each realization an estimation is performed with each method, resulting in 1000 estimates for each approach. These are compared with respect to their deviation to the true parameter and, for the genetic toggle switch, also their ability to reproduce the symmetry of the switching behavior. Results are shown for different set of parameter values of a genetic toggle switch leading to symmetric and asymmetric switching behavior as well as an immigration-death and a susceptible-infected-recovered model. This comparison shows that it is important to choose a parameter estimation technique that can treat intrinsic stochasticity and that the specific choice of this algorithm shows only minor performance differences.

  2. On the modeling of internal parameters in hyperelastic biological materials

    CERN Document Server

    Giantesio, Giulia

    2016-01-01

    This paper concerns the behavior of hyperelastic energies depending on an internal parameter. First, the situation in which the internal parameter is a function of the gradient of the deformation is presented. Second, two models where the parameter describes the activation of skeletal muscle tissue are analyzed. In those models, the activation parameter depends on the strain and it is important to consider the derivative of the parameter with respect to the strain in order to capture the proper behavior of the stress.

  3. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, Jesus S. [Univ. Politecnica de Madrid (Spain); Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William BJ J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  4. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients, but it required sensitivities that were one to two significant digits less accurate than those that required using parameter correlation coefficients; and (3) both the SVD and parameter correlation coefficients identified extremely correlated parameters better when the parameters...

  5. Nonlinear adaptive synchronization rule for identification of a large amount of parameters in dynamical models

    Energy Technology Data Exchange (ETDEWEB)

    Ma Huanfei [Center for Computational Systems Biology, Fudan University, Shanghai 200433 (China)] [School of Computer Science, Fudan University, Shanghai 200433 (China); Lin Wei, E-mail: wlin@fudan.edu.c [Center for Computational Systems Biology, Fudan University, Shanghai 200433 (China)] [School of Mathematical Sciences, Fudan University, Shanghai 200433 (China)] [Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education (China)] [CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031 (China)

    2009-12-28

    The existing adaptive synchronization technique based on the stability theory and invariance principle of dynamical systems, though theoretically proved to be valid for parameters identification in specific models, is always showing slow convergence rate and even failed in practice when the number of parameters becomes large. Here, for parameters update, a novel nonlinear adaptive rule is proposed to accelerate the rate. Its feasibility is validated by analytical arguments as well as by specific parameters identification in the Lotka-Volterra model with multiple species. Two adjustable factors in this rule influence the identification accuracy, which means that a proper choice of these factors leads to an optimal performance of this rule. In addition, a feasible method for avoiding the occurrence of the approximate linear dependence among terms with parameters on the synchronized manifold is also proposed.

  6. Bayesian model choice for epidemic models with two levels of mixing.

    Science.gov (United States)

    Knock, Edward S; O'Neill, Philip D

    2014-01-01

    This paper considers the problem of choosing between competing models for infectious disease final outcome data in a population that is partitioned into households. The epidemic models are stochastic individual-based transmission models of the susceptible-infective-removed type. The main focus is on various algorithms for the estimation of Bayes factors, of which a path sampling-based algorithm is seen to give the best results. We also explore theoretical properties in the case where the within-model prior distributions become increasingly uninformative, which show the need for caution when using Bayes factors as a model choice tool. A suitable form of deviance information criterion is also considered for comparison. The theory and methods are illustrated with both artificial data, and influenza data from the Tecumseh study of illness.

  7. The Drift Diffusion Model can account for the accuracy and reaction time of value-based choices under high and low time pressure

    Directory of Open Access Journals (Sweden)

    Milica Milosavljevic

    2010-10-01

    Full Text Available An important open problem is how values are compared to make simple choices. A natural hypothesis is that the brain carries out the computations associated with the value comparisons in a manner consistent with the Drift Diffusion Model (DDM, since this model has been able to account for a large amount of data in other domains. We investigated the ability of four different versions of the DDM to explain the data in a real binary food choice task under conditions of high and low time pressure. We found that a seven-parameter version of the DDM can account for the choice and reaction time data with high-accuracy, in both the high and low time pressure conditions. The changes associated with the introduction of time pressure could be traced to changes in two key model parameters: the barrier height and the noise in the slope of the drift process.

  8. Model comparisons and genetic and environmental parameter ...

    African Journals Online (AJOL)

    arc

    South African Journal of Animal Science 2005, 35 (1) ... Genetic and environmental parameters were estimated for pre- and post-weaning average daily gain ..... and BWT (and medium maternal genetic correlations) indicates that these traits ...

  9. Measurement of charge with an active integrator in the presence of noise and pileup effects. A choice of parameters in the charge division method

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Lugol, J.C. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique Nucleaire)

    1991-03-01

    In the presence of electronics noise and pileup effects it is possible to measure charge with an active integrator. The subject of this paper is to deal with the choice of measurement parameters. An application of position sensing with the charge division method is studied and results are compared to those obtained with POMME polarimeter electronics. (orig.).

  10. NEW DOCTORAL DEGREE Parameter estimation problem in the Weibull model

    OpenAIRE

    Marković, Darija

    2009-01-01

    In this dissertation we consider the problem of the existence of best parameters in the Weibull model, one of the most widely used statistical models in reliability theory and life data theory. Particular attention is given to a 3-parameter Weibull model. We have listed some of the many applications of this model. We have described some of the classical methods for estimating parameters of the Weibull model, two graphical methods (Weibull probability plot and hazard plot), and two analyt...

  11. Partner choice promotes cooperation: the two faces of testing with agent-based models.

    Science.gov (United States)

    Campennì, Marco; Schino, Gabriele

    2014-03-07

    Reciprocity is one of the most debated among the mechanisms that have been proposed to explain the evolution of cooperation. While a distinction can be made between two general processes that can underlie reciprocation (within-pair temporal relations between cooperative events, and partner choice based on benefits received), theoretical modelling has concentrated on the former, while the latter has been often neglected. We developed a set of agent-based models in which agents adopted a strategy of obligate cooperation and partner choice based on benefits received. Our models tested the ability of partner choice both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation. Populations formed by agents adopting a strategy of obligate cooperation and partner choice based on benefits received showed differentiated "social relationships" and a positive correlation between cooperation given and received, two common phenomena in animal cooperation. When selection across multiple generations was added to the model, agents adopting a strategy of partner choice based on benefits received outperformed selfish agents that did not cooperate. Our results suggest partner choice is a significant aspect of cooperation and provides a possible mechanism for its evolution.

  12. Biostereometric Data Processing In ERGODATA: Choice Of Human Body Models

    Science.gov (United States)

    Pineau, J. C.; Mollard, R.; Sauvignon, M.; Amphoux, M.

    1983-07-01

    The definition of human body models was elaborated with anthropometric data from ERGODATA. The first model reduces the human body into a series of points and lines. The second model is well adapted to represent volumes of each segmentary element. The third is an original model built from the conventional anatomical points. Each segment is defined in space by a tri-angular plane located with its 3-D coordinates. This new model can answer all the processing possibilities in the field of computer-aided design (C.A.D.) in ergonomy but also biomechanics and orthopaedics.

  13. How urban environment affects travel behavior? Integrated Choice and Latent Variable Model for Travel Schedules

    DEFF Research Database (Denmark)

    La Paix, Lissy; Bierlaire, Michel; Cherchi, Elisabetta

    2013-01-01

    The relationship between urban environment and travel behaviour is not a new problem. Neighbourhood characteristics may affect mobility of dwellers in different ways, such as frequency of trips, mode used, structure of the tours, and so on. At the same time, qualitative issues related...... to the individual attitude towards specific behaviour have recently become important in transport modelling contributing to a better understanding of travel demand. Following this research line, in this paper we study the effect of neighbourhood characteristics in the choice of the type of tours performed, but we...... assume that neighbourhood characteristics can also affect the individual propensity to travel and hence the choice of the tours throughout the propensity to travel. Since the propensity to travel is not observed, we employ hybrid choice models to estimate jointly the discrete choice of tours...

  14. How urban environment affects travel behavior? Integrated Choice and Latent Variable Model for Travel Schedules

    DEFF Research Database (Denmark)

    La Paix, Lissy; Bierlaire, Michel; Cherchi, Elisabetta

    2013-01-01

    The relationship between urban environment and travel behaviour is not a new problem. Neighbourhood characteristics may affect mobility of dwellers in different ways, such as frequency of trips, mode used, structure of the tours, and so on. At the same time, qualitative issues related...... to the individual attitude towards specific behaviour have recently become important in transport modelling contributing to a better understanding of travel demand. Following this research line, in this paper we study the effect of neighbourhood characteristics in the choice of the type of tours performed, but we...... assume that neighbourhood characteristics can also affect the individual propensity to travel and hence the choice of the tours throughout the propensity to travel. Since the propensity to travel is not observed, we employ hybrid choice models to estimate jointly the discrete choice of tours...

  15. Parameter optimization model in electrical discharge machining process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper,artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters.

  16. Sensitivity of a Shallow-Water Model to Parameters

    CERN Document Server

    Kazantsev, Eugene

    2011-01-01

    An adjoint based technique is applied to a shallow water model in order to estimate the influence of the model's parameters on the solution. Among parameters the bottom topography, initial conditions, boundary conditions on rigid boundaries, viscosity coefficients Coriolis parameter and the amplitude of the wind stress tension are considered. Their influence is analyzed from three points of view: 1. flexibility of the model with respect to a parameter that is related to the lowest value of the cost function that can be obtained in the data assimilation experiment that controls this parameter; 2. possibility to improve the model by the parameter's control, i.e. whether the solution with the optimal parameter remains close to observations after the end of control; 3. sensitivity of the model solution to the parameter in a classical sense. That implies the analysis of the sensitivity estimates and their comparison with each other and with the local Lyapunov exponents that characterize the sensitivity of the mode...

  17. Airport Choice in Sao Paulo Metropolitan Area: An Application of the Conditional Logit Model

    Science.gov (United States)

    Moreno, Marcelo Baena; Muller, Carlos

    2003-01-01

    Using the conditional LOGIT model, this paper addresses the airport choice in the Sao Paulo Metropolitan Area. In this region, Guarulhos International Airport (GRU) and Congonhas Airport (CGH) compete for passengers flying to several domestic destinations. The airport choice is believed to be a result of the tradeoff passengers perform considering airport access characteristics, airline level of service characteristics and passenger experience with the analyzed airports. It was found that access time to the airports better explain the airport choice than access distance, whereas direct flight frequencies gives better explanation to the airport choice than the indirect (connections and stops) and total (direct plus indirect) flight frequencies. Out of 15 tested variables, passenger experience with the analyzed airports was the variable that best explained the airport choice in the region. Model specifications considering 1, 2 or 3 variables were tested. The model specification most adjusted to the observed data considered access time, direct flight frequencies in the travel period (morning or afternoon peak) and passenger experience with the analyzed airports. The influence of these variables was therefore analyzed across market segments according to departure airport and flight duration criteria. The choice of GRU (located neighboring Sao Paulo city) is not well explained by the rationality of access time economy and the increase of the supply of direct flight frequencies, while the choice of CGH (located inside Sao Paulo city) is. Access time was found to be more important to passengers flying shorter distances while direct flight frequencies in the travel period were more significant to those flying longer distances. Keywords: Airport choice, Multiple airport region, Conditional LOGIT model, Access time, Flight frequencies, Passenger experience with the analyzed airports, Transportation planning

  18. Applied welfare economics with discrete choice models: implications of theory for empirical specification

    DEFF Research Database (Denmark)

    Batley, Richard; Ibáñez Rivas, Juan Nicolás

    2013-01-01

    The apparatus of the Random Utility Model (RUM) first emerged in the early 1960s, with Marschak (1960) and Block and Marschak (1960) translating models originally developed for discriminant analysis in psychophysics (Thurstone, 1927) to the alternative domain of discrete choice analysis in econom......The apparatus of the Random Utility Model (RUM) first emerged in the early 1960s, with Marschak (1960) and Block and Marschak (1960) translating models originally developed for discriminant analysis in psychophysics (Thurstone, 1927) to the alternative domain of discrete choice analysis...

  19. Memory-Based Simple Heuristics as Attribute Substitution: Competitive Tests of Binary Choice Inference Models.

    Science.gov (United States)

    Honda, Hidehito; Matsuka, Toshihiko; Ueda, Kazuhiro

    2016-07-20

    Some researchers on binary choice inference have argued that people make inferences based on simple heuristics, such as recognition, fluency, or familiarity. Others have argued that people make inferences based on available knowledge. To examine the boundary between heuristic and knowledge usage, we examine binary choice inference processes in terms of attribute substitution in heuristic use (Kahneman & Frederick, 2005). In this framework, it is predicted that people will rely on heuristic or knowledge-based inference depending on the subjective difficulty of the inference task. We conducted competitive tests of binary choice inference models representing simple heuristics (fluency and familiarity heuristics) and knowledge-based inference models. We found that a simple heuristic model (especially a familiarity heuristic model) explained inference patterns for subjectively difficult inference tasks, and that a knowledge-based inference model explained subjectively easy inference tasks. These results were consistent with the predictions of the attribute substitution framework. Issues on usage of simple heuristics and psychological processes are discussed.

  20. Do Methodological Choices in Environmental Modeling Bias Rebound Effects? A Case Study on Electric Cars.

    Science.gov (United States)

    Font Vivanco, David; Tukker, Arnold; Kemp, René

    2016-10-18

    Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input-output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizes-from 26 to 59% and from 18 to 28%, respectively, depending on the methodological choices-with favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments.

  1. Estimation of shape model parameters for 3D surfaces

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen;

    2008-01-01

    Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D s...

  2. MATHEMATICAL MODELLING OF PREFERED SOLUTIONS CHOICE FUNCTION FOR TUBULAR GAS HEATERS BY EXPERIMENTAL INFORMATIONS

    Directory of Open Access Journals (Sweden)

    BARSUK R. V.

    2016-08-01

    Full Text Available Annotation. Problems formulation. The article deals with choice functions building of preferred solutions by experimental information for tubular gas heater working on fuel granules - pellets.Further choice functions using for making technical solutions by tubular gas heaters construction and designing. Recently research analysis. There are works about choice functions construction by separate presents are examined. But full chose functions building by separate presents are not examined. Aims and tasks. There are setting aim to develop full choice functions mathematical model on separate presents by authors. The expert are connect to primary experimental data’s evaluation that estimates separate results by output functions (criteria. Its evaluations issue in experimental points paired comparison’s table form. Thus, there are necessary construct binary choice relations presents on experimental “points” set by expert that then using for full choice function’s constructing. Conclusions. There are choice function’s construction’s sequence are sets. There are posed point comparison results that characterized tubular gas heater’s condition with expert’s evaluation using. Also posed output functions comparisons by which can be characterized improving tubular gas heater’s performance or vice versa.

  3. Modelling travel time perception in transport mode choices

    NARCIS (Netherlands)

    Varotto, S.F.; Glerum, A.; Stathopoulos, A.; Bierlaire, M.; Longo, G.

    2015-01-01

    Travel behaviour models typically rely on data afflicted by errors, in perception (e.g., over/under-estimation by traveller) and measurement (e.g., software or researcher imputation error). Such errors are shown to have a relevant impact on model outputs. So far a comprehensive framework to deal

  4. A LATENT TRAIT MODEL FOR DICHOTOMOUS CHOICE DATA

    NARCIS (Netherlands)

    HOIJTINK, H

    1990-01-01

    The PARELLA model is a probabilistic parallelogram model that can be used for the measurement of latent attitudes or latent preferences. The data analyzed are the dichotomous responses of persons to stimuli, with a one (zero) indicating agreement (disagreement) with the content of the stimulus. The

  5. Models of Teaching: Indicators Influencing Teachers' Perception of Pedagogical Choice

    Science.gov (United States)

    Nordyke, Alison Michelle

    2011-01-01

    The models of teaching are systematic tools that allow teachers to vary their classroom pedagogical practices to meet the needs of all learners in their classroom. This study was designed to determine key factors that influence teachers' decisions when determining a model of teaching for classroom instruction and to identify how teacher training…

  6. Evaluating choices in multi-process landscape evolution models

    NARCIS (Netherlands)

    Temme, A.J.A.M.; Claessens, L.; Veldkamp, A.; Schoorl, J.M.

    2011-01-01

    The interest in landscape evolution models (LEMs) that simulate multiple landscape processes is growing. However, modelling multiple processes constitutes a new starting point for which some aspects of the set up of LEMs must be re-evaluated. The objective of this paper is to demonstrate the practic

  7. Models of Teaching: Indicators Influencing Teachers' Perception of Pedagogical Choice

    Science.gov (United States)

    Nordyke, Alison Michelle

    2011-01-01

    The models of teaching are systematic tools that allow teachers to vary their classroom pedagogical practices to meet the needs of all learners in their classroom. This study was designed to determine key factors that influence teachers' decisions when determining a model of teaching for classroom instruction and to identify how teacher training…

  8. Modelling travel time perception in transport mode choices

    NARCIS (Netherlands)

    Varotto, S.F.; Glerum, A.; Stathopoulos, A.; Bierlaire, M.; Longo, G.

    2015-01-01

    Travel behaviour models typically rely on data afflicted by errors, in perception (e.g., over/under-estimation by traveller) and measurement (e.g., software or researcher imputation error). Such errors are shown to have a relevant impact on model outputs. So far a comprehensive framework to deal wit

  9. Compositional modelling of distributed-parameter systems

    NARCIS (Netherlands)

    Maschke, Bernhard; Schaft, van der Arjan; Lamnabhi-Lagarrigue, F.; Loría, A.; Panteley, E.

    2005-01-01

    The Hamiltonian formulation of distributed-parameter systems has been a challenging reserach area for quite some time. (A nice introduction, especially with respect to systems stemming from fluid dynamics, can be found in [26], where also a historical account is provided.) The identification of the

  10. Parameter Estimation and Experimental Design in Groundwater Modeling

    Institute of Scientific and Technical Information of China (English)

    SUN Ne-zheng

    2004-01-01

    This paper reviews the latest developments on parameter estimation and experimental design in the field of groundwater modeling. Special considerations are given when the structure of the identified parameter is complex and unknown. A new methodology for constructing useful groundwater models is described, which is based on the quantitative relationships among the complexity of model structure, the identifiability of parameter, the sufficiency of data, and the reliability of model application.

  11. Bayesian approach to decompression sickness model parameter estimation.

    Science.gov (United States)

    Howle, L E; Weber, P W; Nichols, J M

    2017-03-01

    We examine both maximum likelihood and Bayesian approaches for estimating probabilistic decompression sickness model parameters. Maximum likelihood estimation treats parameters as fixed values and determines the best estimate through repeated trials, whereas the Bayesian approach treats parameters as random variables and determines the parameter probability distributions. We would ultimately like to know the probability that a parameter lies in a certain range rather than simply make statements about the repeatability of our estimator. Although both represent powerful methods of inference, for models with complex or multi-peaked likelihoods, maximum likelihood parameter estimates can prove more difficult to interpret than the estimates of the parameter distributions provided by the Bayesian approach. For models of decompression sickness, we show that while these two estimation methods are complementary, the credible intervals generated by the Bayesian approach are more naturally suited to quantifying uncertainty in the model parameters.

  12. Model choice considerations and information integration using analytical hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Booker, Jane M [BOOKER SCIENTIFIC; Ross, Timothy J. [UNM

    2010-10-15

    Using the theory of information-gap for decision-making under severe uncertainty, it has been shown that model output compared to experimental data contains irrevocable trade-offs between fidelity-to-data, robustness-to-uncertainty and confidence-in-prediction. We illustrate a strategy for information integration by gathering and aggregating all available data, knowledge, theory, experience, similar applications. Such integration of information becomes important when the physics is difficult to model, when observational data are sparse or difficult to measure, or both. To aggregate the available information, we take an inference perspective. Models are not rejected, nor wasted, but can be integrated into a final result. We show an example of information integration using Saaty's Analytic Hierarchy Process (AHP), integrating theory, simulation output and experimental data. We used expert elicitation to determine weights for two models and two experimental data sets, by forming pair-wise comparisons between model output and experimental data. In this way we transform epistemic and/or statistical strength from one field of study into another branch of physical application. The price to pay for utilizing all available knowledge is that inferences drawn for the integrated information must be accounted for and the costs can be considerable. Focusing on inferences and inference uncertainty (IU) is one way to understand complex information.

  13. Integrating economic and psychological insights in binary choice models with social interactions

    CERN Document Server

    Ostasiewicz, K; Magnuszewski, P; Radosz, A; Sendzimir, J; Tyc, M H; Goliczewski, Piotr; Magnuszewski, Piotr; Ostasiewicz, Katarzyna; Radosz, Andrzej; Sendzimir, Jan; Tyc, Michal H.

    2006-01-01

    We investigate a class of binary choice models with social interactions. We propose a unifying perspective that integrates economic models using a utility function and psychological models using an impact function. A general approach for analyzing the equilibrium structure of these models within mean-field approximation is developed. It is shown that within a mean-field approach both the utility function and the impact function models are equivalent to threshold models. The interplay between heterogeneity and randomness in model formulation is discussed. A general framework is applied in a number of examples leading to some well-known models but also showing the possibility of more complex dynamics related to multiple equilibria. Our synthesis can provide a basis for many practical applications extending the scope of binary choice models.

  14. Extended cox regression model: The choice of timefunction

    Science.gov (United States)

    Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu

    2017-07-01

    Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.

  15. Parameter and Uncertainty Estimation in Groundwater Modelling

    DEFF Research Database (Denmark)

    Jensen, Jacob Birk

    The data basis on which groundwater models are constructed is in general very incomplete, and this leads to uncertainty in model outcome. Groundwater models form the basis for many, often costly decisions and if these are to be made on solid grounds, the uncertainty attached to model results must...... be quantified. This study was motivated by the need to estimate the uncertainty involved in groundwater models.Chapter 2 presents an integrated surface/subsurface unstructured finite difference model that was developed and applied to a synthetic case study.The following two chapters concern calibration...... and uncertainty estimation. Essential issues relating to calibration are discussed. The classical regression methods are described; however, the main focus is on the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The next two chapters describe case studies in which the GLUE methodology...

  16. A Stochastic Route Choice Model for Car Travellers in the Copenhagen Region

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker; Frederiksen, Rasmus Dyhr; Daly, A.

    2002-01-01

    The paper presents a large-scale stochastic road traffic assignment model for the Copenhagen Region. The model considers several classes of passenger cars (different trip purposes), vans and trucks, each with its own utility function on which route choices are based. The utility functions include...

  17. A discrete choice model with social interactions : an analysis of high school teen behavior

    NARCIS (Netherlands)

    Kooreman, Peter; Soetevent, Adriaan

    2002-01-01

    We develop an empirical discrete choice model that explicitly allows for endogenous social interactions. We analyze the issues of multiple equilibria, statistical coherency, and estimation of the model by means of simulation methods. In an empirical application, we analyze a data set containing info

  18. Perceived and Implicit Ranking of Academic Journals: An Optimization Choice Model

    Science.gov (United States)

    Xie, Frank Tian; Cai, Jane Z.; Pan, Yue

    2012-01-01

    A new system of ranking academic journals is proposed in this study and optimization choice model used to analyze data collected from 346 faculty members in a business discipline. The ranking model uses the aggregation of perceived, implicit sequencing of academic journals by academicians, therefore eliminating several key shortcomings of previous…

  19. Discrete choice modeling for the quantification of health states: the case of the EQ-5D.

    NARCIS (Netherlands)

    Stolk, E.A.; Oppe, M.; Scalone, L.; Krabbe, P.F.M.

    2010-01-01

    OBJECTIVES: Probabilistic models have been developed to establish the relative merit of subjective phenomena by means of specific judgmental tasks involving discrete choices (DCs). The attractiveness of these DC models is that they are embedded in a strong theoretical measurement framework and are b

  20. Discrete choice modeling for the quantification of health states : The case of the EQ-5D

    NARCIS (Netherlands)

    Stolk, Elly A; Oppe, Mark; Scalone, Luciana; Krabbe, Paul F M

    2010-01-01

    OBJECTIVES: Probabilistic models have been developed to establish the relative merit of subjective phenomena by means of specific judgmental tasks involving discrete choices (DCs). The attractiveness of these DC models is that they are embedded in a strong theoretical measurement framework and are b

  1. A discrete choice model with social interactions; with an application to high school teen behavior

    NARCIS (Netherlands)

    Soetevent, Adriaan R.; Kooreman, Peter

    2004-01-01

    We develop an empirical discrete choice interaction model with a finite number of agents. We characterize its equilibrium properties - in particular the correspondence between the interaction strength, the number of agents, and the set of equilibria - and propose to estimate the model by means of

  2. A discrete choice model with social interactions; with an application to high school teen behavior

    NARCIS (Netherlands)

    Soetevent, A.R.; Kooreman, P.

    2007-01-01

    We develop an empirical discrete-choice interaction model with a finite number of agents. We characterize its equilibrium properties - in particular the correspondence between interaction strength, number of agents, and the set of equilibria - and propose to estimate the model by means of simulation

  3. A discrete-choice model with social interactions : With an application to high school teen behavior

    NARCIS (Netherlands)

    Soetevent, Adriaan R.; Kooreman, Peter

    2007-01-01

    We develop an empirical discrete-choice interaction model with a finite number of agents. We characterize its equilibrium properties-in particular the correspondence between interaction strength, number of agents, and the set of equilibria-and propose to estimate the model by means of simulation

  4. A discrete choice model with social interactions : an analysis of high school teen behavior

    NARCIS (Netherlands)

    Kooreman, Peter; Soetevent, Adriaan

    2002-01-01

    We develop an empirical discrete choice model that explicitly allows for endogenous social interactions. We analyze the issues of multiple equilibria, statistical coherency, and estimation of the model by means of simulation methods. In an empirical application, we analyze a data set containing

  5. Decision-Tree Models of Categorization Response Times, Choice Proportions, and Typicality Judgments

    Science.gov (United States)

    Lafond, Daniel; Lacouture, Yves; Cohen, Andrew L.

    2009-01-01

    The authors present 3 decision-tree models of categorization adapted from T. Trabasso, H. Rollins, and E. Shaughnessy (1971) and use them to provide a quantitative account of categorization response times, choice proportions, and typicality judgments at the individual-participant level. In Experiment 1, the decision-tree models were fit to…

  6. Decision-Tree Models of Categorization Response Times, Choice Proportions, and Typicality Judgments

    Science.gov (United States)

    Lafond, Daniel; Lacouture, Yves; Cohen, Andrew L.

    2009-01-01

    The authors present 3 decision-tree models of categorization adapted from T. Trabasso, H. Rollins, and E. Shaughnessy (1971) and use them to provide a quantitative account of categorization response times, choice proportions, and typicality judgments at the individual-participant level. In Experiment 1, the decision-tree models were fit to…

  7. Parameter redundancy in discrete state‐space and integrated models

    Science.gov (United States)

    McCrea, Rachel S.

    2016-01-01

    Discrete state‐space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state‐space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state‐space models using discrete analogues of methods for continuous state‐space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. PMID:27362826

  8. Parameter redundancy in discrete state-space and integrated models.

    Science.gov (United States)

    Cole, Diana J; McCrea, Rachel S

    2016-09-01

    Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An automatic and effective parameter optimization method for model tuning

    Directory of Open Access Journals (Sweden)

    T. Zhang

    2015-11-01

    simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.

  10. Modeling anger and aggressive driving behavior in a dynamic choice-latent variable model.

    Science.gov (United States)

    Danaf, Mazen; Abou-Zeid, Maya; Kaysi, Isam

    2015-02-01

    This paper develops a hybrid choice-latent variable model combined with a Hidden Markov model in order to analyze the causes of aggressive driving and forecast its manifestations accordingly. The model is grounded in the state-trait anger theory; it treats trait driving anger as a latent variable that is expressed as a function of individual characteristics, or as an agent effect, and state anger as a dynamic latent variable that evolves over time and affects driving behavior, and that is expressed as a function of trait anger, frustrating events, and contextual variables (e.g., geometric roadway features, flow conditions, etc.). This model may be used in order to test measures aimed at reducing aggressive driving behavior and improving road safety, and can be incorporated into micro-simulation packages to represent aggressive driving. The paper also presents an application of this model to data obtained from a driving simulator experiment performed at the American University of Beirut. The results derived from this application indicate that state anger at a specific time period is significantly affected by the occurrence of frustrating events, trait anger, and the anger experienced at the previous time period. The proposed model exhibited a better goodness of fit compared to a similar simple joint model where driving behavior and decisions are expressed as a function of the experienced events explicitly and not the dynamic latent variable.

  11. Ternary interaction parameters in calphad solution models

    Energy Technology Data Exchange (ETDEWEB)

    Eleno, Luiz T.F., E-mail: luizeleno@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Schön, Claudio G., E-mail: schoen@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Computational Materials Science Laboratory. Department of Metallurgical and Materials Engineering

    2014-07-01

    For random, diluted, multicomponent solutions, the excess chemical potentials can be expanded in power series of the composition, with coefficients that are pressure- and temperature-dependent. For a binary system, this approach is equivalent to using polynomial truncated expansions, such as the Redlich-Kister series for describing integral thermodynamic quantities. For ternary systems, an equivalent expansion of the excess chemical potentials clearly justifies the inclusion of ternary interaction parameters, which arise naturally in the form of correction terms in higher-order power expansions. To demonstrate this, we carry out truncated polynomial expansions of the excess chemical potential up to the sixth power of the composition variables. (author)

  12. Predictive microbiology models vs. modeling microbial growth within Listeria monocytogenes risk assessment: what parameters matter and why.

    Science.gov (United States)

    Pouillot, Régis; Lubran, Meryl B

    2011-06-01

    Predictive microbiology models are essential tools to model bacterial growth in quantitative microbial risk assessments. Various predictive microbiology models and sets of parameters are available: it is of interest to understand the consequences of the choice of the growth model on the risk assessment outputs. Thus, an exercise was conducted to explore the impact of the use of several published models to predict Listeria monocytogenes growth during food storage in a product that permits growth. Results underline a gap between the most studied factors in predictive microbiology modeling (lag, growth rate) and the most influential parameters on the estimated risk of listeriosis in this scenario (maximum population density, bacterial competition). The mathematical properties of an exponential dose-response model for Listeria accounts for the fact that the mean number of bacteria per serving and, as a consequence, the highest achievable concentrations in the product under study, has a strong influence on the estimated expected number of listeriosis cases in this context.

  13. Portfolio Choice in a Monetary Open-Economy DSGE Model

    OpenAIRE

    Akito Matsumoto; Charles Engel

    2006-01-01

    This paper develops a two-country monetary DSGE model in which households choose a portfolio of home and foreign equities, and a forward position in foreign exchange. Some goods prices are set without full information of the state. We show that temporarily sticky nominal goods prices can have large effects on equity portfolios. Home and foreign portfolios are not identical in equilibrium. In response to technology shocks, sticky prices generate a negative correlation between labor income and ...

  14. The effects of Georgia's Choice curricular reform model on third grade science scores on the Georgia Criterion Referenced Competency Test

    Science.gov (United States)

    Phemister, Art W.

    The purpose of this study was to evaluate the effectiveness of the Georgia's Choice reading curriculum on third grade science scores on the Georgia Criterion Referenced Competency Test from 2002 to 2008. In assessing the effectiveness of the Georgia's Choice curriculum model this causal comparative study examined the 105 elementary schools that implemented Georgia's Choice and 105 randomly selected elementary schools that did not elect to use Georgia's Choice. The Georgia's Choice reading program used intensified instruction in an effort to increase reading levels for all students. The study used a non-equivalent control group with a pretest and posttest design to determine the effectiveness of the Georgia's Choice curriculum model. Findings indicated that third grade students in Non-Georgia's Choice schools outscored third grade students in Georgia's Choice schools across the span of the study.

  15. A Maximum Entropy Fixed-Point Route Choice Model for Route Correlation

    Directory of Open Access Journals (Sweden)

    Louis de Grange

    2014-06-01

    Full Text Available In this paper we present a stochastic route choice model for transit networks that explicitly addresses route correlation due to overlapping alternatives. The model is based on a multi-objective mathematical programming problem, the optimality conditions of which generate an extension to the Multinomial Logit models. The proposed model considers a fixed point problem for treating correlations between routes, which can be solved iteratively. We estimated the new model on the Santiago (Chile Metro network and compared the results with other route choice models that can be found in the literature. The new model has better explanatory and predictive power that many other alternative models, correctly capturing the correlation factor. Our methodology can be extended to private transport networks.

  16. Analysis Test of Understanding of Vectors with the Three-Parameter Logistic Model of Item Response Theory and Item Response Curves Technique

    Science.gov (United States)

    Rakkapao, Suttida; Prasitpong, Singha; Arayathanitkul, Kwan

    2016-01-01

    This study investigated the multiple-choice test of understanding of vectors (TUV), by applying item response theory (IRT). The difficulty, discriminatory, and guessing parameters of the TUV items were fit with the three-parameter logistic model of IRT, using the parscale program. The TUV ability is an ability parameter, here estimated assuming…

  17. Parameter estimation and error analysis in environmental modeling and computation

    Science.gov (United States)

    Kalmaz, E. E.

    1986-01-01

    A method for the estimation of parameters and error analysis in the development of nonlinear modeling for environmental impact assessment studies is presented. The modular computer program can interactively fit different nonlinear models to the same set of data, dynamically changing the error structure associated with observed values. Parameter estimation techniques and sequential estimation algorithms employed in parameter identification and model selection are first discussed. Then, least-square parameter estimation procedures are formulated, utilizing differential or integrated equations, and are used to define a model for association of error with experimentally observed data.

  18. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    Science.gov (United States)

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories.

  19. Modeling issues & choices in the data mining optimization ontology

    CSIR Research Space (South Africa)

    Keet, CM

    2013-05-01

    Full Text Available investigating aspects such as DMOP object prop- erties, the effects of ObjectInverseOf vs. InverseObjectProperties, and the deductions with respect to the DM algorithms branch and metamodeling. DMOP (version 5.2) has already been applied successfully to the meta...TransformationTask). These classes are further articulated in subclasses representing more fine-grained tasks for each category. An Induction- Task consumes data and produces hypotheses. It can be either a ModelingTask or a PatternDiscoveryTask, based on whether it generates...

  20. Removing Specification Errors from the Usual Formulation of Binary Choice Models

    Directory of Open Access Journals (Sweden)

    P.A.V.B. Swamy

    2016-06-01

    Full Text Available We develop a procedure for removing four major specification errors from the usual formulation of binary choice models. The model that results from this procedure is different from the conventional probit and logit models. This difference arises as a direct consequence of our relaxation of the usual assumption that omitted regressors constituting the error term of a latent linear regression model do not introduce omitted regressor biases into the coefficients of the included regressors.

  1. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  2. Parameter estimation of hydrologic models using data assimilation

    Science.gov (United States)

    Kaheil, Y. H.

    2005-12-01

    The uncertainties associated with the modeling of hydrologic systems sometimes demand that data should be incorporated in an on-line fashion in order to understand the behavior of the system. This paper represents a Bayesian strategy to estimate parameters for hydrologic models in an iterative mode. The paper presents a modified technique called localized Bayesian recursive estimation (LoBaRE) that efficiently identifies the optimum parameter region, avoiding convergence to a single best parameter set. The LoBaRE methodology is tested for parameter estimation for two different types of models: a support vector machine (SVM) model for predicting soil moisture, and the Sacramento Soil Moisture Accounting (SAC-SMA) model for estimating streamflow. The SAC-SMA model has 13 parameters that must be determined. The SVM model has three parameters. Bayesian inference is used to estimate the best parameter set in an iterative fashion. This is done by narrowing the sampling space by imposing uncertainty bounds on the posterior best parameter set and/or updating the "parent" bounds based on their fitness. The new approach results in fast convergence towards the optimal parameter set using minimum training/calibration data and evaluation of fewer parameter sets. The efficacy of the localized methodology is also compared with the previously used Bayesian recursive estimation (BaRE) algorithm.

  3. GIS-Based Hydrogeological-Parameter Modeling

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A regression model is proposed to relate the variation of water well depth with topographic properties (area and slope), the variation of hydraulic conductivity and vertical decay factor. The implementation of this model in GIS environment (ARC/TNFO) based on known water data and DEM is used to estimate the variation of hydraulic conductivity and decay factor of different lithoiogy units in watershed context.

  4. Fitting a Thurstonian IRT model to forced-choice data using Mplus.

    Science.gov (United States)

    Brown, Anna; Maydeu-Olivares, Alberto

    2012-12-01

    To counter response distortions associated with the use of rating scales (a.k.a. Likert scales), items can be presented in a comparative fashion, so that respondents are asked to rank the items within blocks (forced-choice format). However, classical scoring procedures for these forced-choice designs lead to ipsative data, which presents psychometric challenges that are well described in the literature. Recently, Brown and Maydeu-Olivares (Educational and Psychological Measurement 71: 460-502, 2011a) introduced a model based on Thurstone's law of comparative judgment, which overcomes the problems of ipsative data. Here, we provide a step-by-step tutorial for coding forced-choice responses, specifying a Thurstonian item response theory model that is appropriate for the design used, assessing the model's fit, and scoring individuals on psychological attributes. Estimation and scoring is performed using Mplus, and a very straightforward Excel macro is provided that writes full Mplus input files for any forced-choice design. Armed with these tools, using a forced-choice design is now as easy as using ratings.

  5. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens;

    2016-01-01

    A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests, or p...

  6. Mirror symmetry for two parameter models, 2

    CERN Document Server

    Candelas, Philip; Katz, S; Morrison, Douglas Robert Ogston; Philip Candelas; Anamaria Font; Sheldon Katz; David R Morrison

    1994-01-01

    We describe in detail the space of the two K\\"ahler parameters of the Calabi--Yau manifold \\P_4^{(1,1,1,6,9)}[18] by exploiting mirror symmetry. The large complex structure limit of the mirror, which corresponds to the classical large radius limit, is found by studying the monodromy of the periods about the discriminant locus, the boundary of the moduli space corresponding to singular Calabi--Yau manifolds. A symplectic basis of periods is found and the action of the Sp(6,\\Z) generators of the modular group is determined. From the mirror map we compute the instanton expansion of the Yukawa couplings and the generalized N=2 index, arriving at the numbers of instantons of genus zero and genus one of each degree. We also investigate an SL(2,\\Z) symmetry that acts on a boundary of the moduli space.

  7. Accuracy of Parameter Estimation in Gibbs Sampling under the Two-Parameter Logistic Model.

    Science.gov (United States)

    Kim, Seock-Ho; Cohen, Allan S.

    The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for estimation of item and ability parameters under the two-parameter logistic model. Memory test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were analyzed using Gibbs sampling and the marginal Bayesian method. The marginal…

  8. Approximate group context tree: applications to dynamic programming and dynamic choice models

    CERN Document Server

    Belloni, Alexandre

    2011-01-01

    The paper considers a variable length Markov chain model associated with a group of stationary processes that share the same context tree but potentially different conditional probabilities. We propose a new model selection and estimation method, develop oracle inequalities and model selection properties for the estimator. These results also provide conditions under which the use of the group structure can lead to improvements in the overall estimation. Our work is also motivated by two methodological applications: discrete stochastic dynamic programming and dynamic discrete choice models. We analyze the uniform estimation of the value function for dynamic programming and the uniform estimation of average dynamic marginal effects for dynamic discrete choice models accounting for possible imperfect model selection. We also derive the typical behavior of our estimator when applied to polynomially $\\beta$-mixing stochastic processes. For parametric models, we derive uniform rate of convergence for the estimation...

  9. Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Addy, Nathan; Kiliccote, Sila; Mathieu, Johanna; Callaway, Duncan S.

    2012-06-13

    Accurate evaluation of the performance of buildings participating in Demand Response (DR) programs is critical to the adoption and improvement of these programs. Typically, we calculate load sheds during DR events by comparing observed electric demand against counterfactual predictions made using statistical baseline models. Many baseline models exist and these models can produce different shed calculations. Moreover, modelers implementing the same baseline model can make different modeling implementation choices, which may affect shed estimates. In this work, using real data, we analyze the effect of different modeling implementation choices on shed predictions. We focused on five issues: weather data source, resolution of data, methods for determining when buildings are occupied, methods for aligning building data with temperature data, and methods for power outage filtering. Results indicate sensitivity to the weather data source and data filtration methods as well as an immediate potential for automation of methods to choose building occupied modes.

  10. On linear models and parameter identifiability in experimental biological systems.

    Science.gov (United States)

    Lamberton, Timothy O; Condon, Nicholas D; Stow, Jennifer L; Hamilton, Nicholas A

    2014-10-07

    A key problem in the biological sciences is to be able to reliably estimate model parameters from experimental data. This is the well-known problem of parameter identifiability. Here, methods are developed for biologists and other modelers to design optimal experiments to ensure parameter identifiability at a structural level. The main results of the paper are to provide a general methodology for extracting parameters of linear models from an experimentally measured scalar function - the transfer function - and a framework for the identifiability analysis of complex model structures using linked models. Linked models are composed by letting the output of one model become the input to another model which is then experimentally measured. The linked model framework is shown to be applicable to designing experiments to identify the measured sub-model and recover the input from the unmeasured sub-model, even in cases that the unmeasured sub-model is not identifiable. Applications for a set of common model features are demonstrated, and the results combined in an example application to a real-world experimental system. These applications emphasize the insight into answering "where to measure" and "which experimental scheme" questions provided by both the parameter extraction methodology and the linked model framework. The aim is to demonstrate the tools' usefulness in guiding experimental design to maximize parameter information obtained, based on the model structure.

  11. CHAMP: Changepoint Detection Using Approximate Model Parameters

    Science.gov (United States)

    2014-06-01

    positions as a Markov chain in which the transition probabilities are defined by the time since the last changepoint: p(τi+1 = t|τi = s) = g(t− s), (1...experimentally verified using artifi- cially generated data and are compared to those of Fearnhead and Liu [5]. 2 Related work Hidden Markov Models (HMMs) are...length α, and maximum number of particles M . Output: Viterbi path of changepoint times and models // Initialize data structures 1: max path, prev queue

  12. Species sensitivity distribution for chlorpyrifos to aquatic organisms: Model choice and sample size.

    Science.gov (United States)

    Zhao, Jinsong; Chen, Boyu

    2016-03-01

    Species sensitivity distribution (SSD) is a widely used model that extrapolates the ecological risk to ecosystem levels from the ecotoxicity of a chemical to individual organisms. However, model choice and sample size significantly affect the development of the SSD model and the estimation of hazardous concentrations at the 5th centile (HC5). To interpret their effects, the SSD model for chlorpyrifos, a widely used organophosphate pesticide, to aquatic organisms is presented with emphases on model choice and sample size. Three subsets of median effective concentration (EC50) with different sample sizes were obtained from ECOTOX and used to build SSD models based on parametric distribution (normal, logistic, and triangle distribution) and nonparametric bootstrap. The SSD models based on the triangle distribution are superior to the normal and logistic distributions according to several goodness-of-fit techniques. Among all parametric SSD models, the one with the largest sample size based on the triangle distribution gives the most strict HC5 with 0.141μmolL(-1). The HC5 derived from the nonparametric bootstrap is 0.159μmol L(-1). The minimum sample size required to build a stable SSD model is 11 based on parametric distribution and 23 based on nonparametric bootstrap. The study suggests that model choice and sample size are important sources of uncertainty for application of the SSD model. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. WINKLER'S SINGLE-PARAMETER SUBGRADE MODEL FROM ...

    African Journals Online (AJOL)

    Preferred Customer

    [3, 9]. However, mainly due to the simplicity of Winkler's model in practical applications and .... this case, the coefficient B takes the dimension of a ... In plane-strain problems, the assumption of ... loaded circular region; s is the radial coordinate.

  14. A regularized parameter choice in regularization for a common solution of a finite system of ill-posed equations involving Lipschitz continuous and accretive mappings

    Science.gov (United States)

    Buong, Nguyen; Dung, Nguyen Dinh

    2014-03-01

    In this paper, we present a regularized parameter choice in a new regularization method of Browder-Tikhonov type, for finding a common solution of a finite system of ill-posed operator equations involving Lipschitz continuous and accretive mappings in a real reflexive and strictly convex Banach space with a uniformly Gateaux differentiate norm. An estimate for convergence rates of regularized solution is also established.

  15. Improved Methodology for Parameter Inference in Nonlinear, Hydrologic Regression Models

    Science.gov (United States)

    Bates, Bryson C.

    1992-01-01

    A new method is developed for the construction of reliable marginal confidence intervals and joint confidence regions for the parameters of nonlinear, hydrologic regression models. A parameter power transformation is combined with measures of the asymptotic bias and asymptotic skewness of maximum likelihood estimators to determine the transformation constants which cause the bias or skewness to vanish. These optimized constants are used to construct confidence intervals and regions for the transformed model parameters using linear regression theory. The resulting confidence intervals and regions can be easily mapped into the original parameter space to give close approximations to likelihood method confidence intervals and regions for the model parameters. Unlike many other approaches to parameter transformation, the procedure does not use a grid search to find the optimal transformation constants. An example involving the fitting of the Michaelis-Menten model to velocity-discharge data from an Australian gauging station is used to illustrate the usefulness of the methodology.

  16. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  17. An alternative approach for choice models in transportation: Use of possibility theory for comparison of utilities

    Directory of Open Access Journals (Sweden)

    Dell’orco Mauro

    2004-01-01

    Full Text Available Modeling of human choice mechanism has been a topic of intense discussion in the transportation community for many years. The framework of modeling has been rooted in probability theory in which the analyst’s uncertainty about the integrity of the model is expressed in probability. In most choice situations, the decision-maker (traveler also experiences uncertainty because of the lack of complete information on the choices. In the traditional modeling framework, the uncertainty of the analyst and that of the decision-maker are both embedded in the same random term and not clearly separated. While the analyst's uncertainty may be represented by probability due to the statistical nature of events, that of the decision maker, however, is not always subjected to randomness; rather, it is the perceptive uncertainty. This paper proposes a modeling framework that attempts to account for the decision maker’s uncertainty by possibility theory and then the analyst's uncertainty by probability theory. The possibility to probability transformation is performed using the principle of uncertainty invariance. The proposed approach accounts for the quality of information on the changes in choice probability. The paper discusses the thought process, mathematics of possibility theory and probability transformation, and examples.

  18. Application of an Evolutionary Algorithm for Parameter Optimization in a Gully Erosion Model

    Energy Technology Data Exchange (ETDEWEB)

    Rengers, Francis; Lunacek, Monte; Tucker, Gregory

    2016-06-01

    Herein we demonstrate how to use model optimization to determine a set of best-fit parameters for a landform model simulating gully incision and headcut retreat. To achieve this result we employed the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), an iterative process in which samples are created based on a distribution of parameter values that evolve over time to better fit an objective function. CMA-ES efficiently finds optimal parameters, even with high-dimensional objective functions that are non-convex, multimodal, and non-separable. We ran model instances in parallel on a high-performance cluster, and from hundreds of model runs we obtained the best parameter choices. This method is far superior to brute-force search algorithms, and has great potential for many applications in earth science modeling. We found that parameters representing boundary conditions tended to converge toward an optimal single value, whereas parameters controlling geomorphic processes are defined by a range of optimal values.

  19. On retrial queueing model with fuzzy parameters

    Science.gov (United States)

    Ke, Jau-Chuan; Huang, Hsin-I.; Lin, Chuen-Horng

    2007-01-01

    This work constructs the membership functions of the system characteristics of a retrial queueing model with fuzzy customer arrival, retrial and service rates. The α-cut approach is used to transform a fuzzy retrial-queue into a family of conventional crisp retrial queues in this context. By means of the membership functions of the system characteristics, a set of parametric non-linear programs is developed to describe the family of crisp retrial queues. A numerical example is solved successfully to illustrate the validity of the proposed approach. Because the system characteristics are expressed and governed by the membership functions, more information is provided for use by management. By extending this model to the fuzzy environment, fuzzy retrial-queue is represented more accurately and analytic results are more useful for system designers and practitioners.

  20. Solar parameters for modeling interplanetary background

    CERN Document Server

    Bzowski, M; Tokumaru, M; Fujiki, K; Quemerais, E; Lallement, R; Ferron, S; Bochsler, P; McComas, D J

    2011-01-01

    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge excha...

  1. On selecting a prior for the precision parameter of Dirichlet process mixture models

    Science.gov (United States)

    Dorazio, R.M.

    2009-01-01

    In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter ?? and a base probability measure G0. In problems where ?? is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for ??. In this paper an approach is developed for computing a prior for the precision parameter ?? that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior.

  2. Linear Sigma Models With Strongly Coupled Phases -- One Parameter Models

    CERN Document Server

    Hori, Kentaro

    2013-01-01

    We systematically construct a class of two-dimensional $(2,2)$ supersymmetric gauged linear sigma models with phases in which a continuous subgroup of the gauge group is totally unbroken. We study some of their properties by employing a recently developed technique. The focus of the present work is on models with one K\\"ahler parameter. The models include those corresponding to Calabi-Yau threefolds, extending three examples found earlier by a few more, as well as Calabi-Yau manifolds of other dimensions and non-Calabi-Yau manifolds. The construction leads to predictions of equivalences of D-brane categories, systematically extending earlier examples. There is another type of surprise. Two distinct superconformal field theories corresponding to Calabi-Yau threefolds with different Hodge numbers, $h^{2,1}=23$ versus $h^{2,1}=59$, have exactly the same quantum K\\"ahler moduli space. The strong-weak duality plays a crucial r\\^ole in confirming this, and also is useful in the actual computation of the metric on t...

  3. Parameter identification in tidal models with uncertain boundaries

    NARCIS (Netherlands)

    Bagchi, Arunabha; ten Brummelhuis, P.G.J.; ten Brummelhuis, Paul

    1994-01-01

    In this paper we consider a simultaneous state and parameter estimation procedure for tidal models with random inputs, which is formulated as a minimization problem. It is assumed that some model parameters are unknown and that the random noise inputs only act upon the open boundaries. The

  4. Exploring the interdependencies between parameters in a material model.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Fermen-Coker, Muge

    2014-01-01

    A method is investigated to reduce the number of numerical parameters in a material model for a solid. The basis of the method is to detect interdependencies between parameters within a class of materials of interest. The method is demonstrated for a set of material property data for iron and steel using the Johnson-Cook plasticity model.

  5. An Alternative Three-Parameter Logistic Item Response Model.

    Science.gov (United States)

    Pashley, Peter J.

    Birnbaum's three-parameter logistic function has become a common basis for item response theory modeling, especially within situations where significant guessing behavior is evident. This model is formed through a linear transformation of the two-parameter logistic function in order to facilitate a lower asymptote. This paper discusses an…

  6. Parameter identification in tidal models with uncertain boundaries

    NARCIS (Netherlands)

    Bagchi, Arunabha; Brummelhuis, ten Paul

    1994-01-01

    In this paper we consider a simultaneous state and parameter estimation procedure for tidal models with random inputs, which is formulated as a minimization problem. It is assumed that some model parameters are unknown and that the random noise inputs only act upon the open boundaries. The hyperboli

  7. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    , and it is demonstrated that this simple formulation enables very accurate representation of experimental results. An extension of the theory to account for model parameter evolution effects, e.g. in the form of changing yield level, is included in the form of extended evolution equations for the model parameters...

  8. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  9. NWP model forecast skill optimization via closure parameter variations

    Science.gov (United States)

    Järvinen, H.; Ollinaho, P.; Laine, M.; Solonen, A.; Haario, H.

    2012-04-01

    We present results of a novel approach to tune predictive skill of numerical weather prediction (NWP) models. These models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. The current practice is to specify manually the numerical parameter values, based on expert knowledge. We developed recently a concept and method (QJRMS 2011) for on-line estimation of the NWP model parameters via closure parameter variations. The method called EPPES ("Ensemble prediction and parameter estimation system") utilizes ensemble prediction infra-structure for parameter estimation in a very cost-effective way: practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating an ensemble of predictions so that each member uses different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In this presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an ensemble prediction system emulator, based on the ECHAM5 atmospheric GCM show that the model tuning capability of EPPES scales up to realistic models and ensemble prediction systems. Finally, preliminary results of EPPES in the context of ECMWF forecasting system are presented.

  10. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  11. A Research Brief: A Novel Characteristic of Role Model Choice by Black Male College Students

    Science.gov (United States)

    Bennett, B. J.; Davis, R.; Harris, A.; Brown, K.; Wood, P.; Jones, D. R.; Spencer, S.; Nelson, L.; Brown, J.; Waddell, T.; Jones, C. B.

    2004-01-01

    The purpose of the present research brief is to report a novel characteristic of role model choice that may be unreported in the literature for black males and to assess this finding in relation to perceived attractiveness of self and a member of the opposite sex. The study found that the proportion of males choosing themselves as their own role…

  12. A Regime Switching Model of Schooling Choice as a Job Search Process

    Directory of Open Access Journals (Sweden)

    Yong Hyun Shin

    2015-01-01

    Full Text Available We propose a regime switching model of schooling choice as a job search process. We adopt a two-state Markov process and the derived coupled Bellman equations are solved by seeking the root of an auxiliary algebraic equation. Some numerical examples are also considered.

  13. Cognitive Diagnostic Models for Tests with Multiple-Choice and Constructed-Response Items

    Science.gov (United States)

    Kuo, Bor-Chen; Chen, Chun-Hua; Yang, Chih-Wei; Mok, Magdalena Mo Ching

    2016-01-01

    Traditionally, teachers evaluate students' abilities via their total test scores. Recently, cognitive diagnostic models (CDMs) have begun to provide information about the presence or absence of students' skills or misconceptions. Nevertheless, CDMs are typically applied to tests with multiple-choice (MC) items, which provide less diagnostic…

  14. Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups

    NARCIS (Netherlands)

    Harst, van der E.J.M.; Potting, J.; Kroeze, C.

    2014-01-01

    This study used multiple data sets and modelling choices in an environmental life cycle assessment (LCA) to compare typical disposable beverage cups made from polystyrene (PS), polylactic acid (PLA; bioplastic) and paper lined with bioplastic (biopaper). Incineration and recycling were considered as

  15. Stochastic user equilibrium with equilibrated choice sets: Part I - Model formulations under alternative distributions and restrictions

    DEFF Research Database (Denmark)

    Watling, David Paul; Rasmussen, Thomas Kjær; Prato, Carlo Giacomo

    2015-01-01

    the advantages of the two principles, namely the definition of unused routes in DUE and of mis-perception in SUE, such that the resulting choice sets of used routes are equilibrated. Two model families are formulated to address this issue: the first is a general version of SUE permitting bounded and discrete...

  16. Probabilistic choice models in health-state valuation research : background, theories, assumptions and applications

    NARCIS (Netherlands)

    Arons, Alexander M M; Krabbe, Paul F M

    2013-01-01

    Interest is rising in measuring subjective health outcomes, such as treatment outcomes that are not directly quantifiable (functional disability, symptoms, complaints, side effects and health-related quality of life). Health economists in particular have applied probabilistic choice models in the ar

  17. Probabilistic choice models in health-state valuation research: background, theories, assumptions and applications

    NARCIS (Netherlands)

    Arons, A.M.M.; Krabbe, P.F.M.

    2013-01-01

    Interest is rising in measuring subjective health outcomes, such as treatment outcomes that are not directly quantifiable (functional disability, symptoms, complaints, side effects and health-related quality of life). Health economists in particular have applied probabilistic choice models in the ar

  18. Longitudinal Test of the Social Cognitive Model of Choice in Engineering Students at Historically Black Universities

    Science.gov (United States)

    Lent, Robert W.; Sheu, Hung-Bin; Gloster, Clay S.; Wilkins, Gregory

    2010-01-01

    We tested the social cognitive model of choice (Lent, Brown, & Hackett, 1994) using a longitudinal design. Participants were 116 students taking beginning engineering courses at two historically Black universities. They completed measures of self-efficacy, outcome expectations, interests, goals, and environmental supports and barriers near the end…

  19. The Forced Choice Dilemma: A Model Incorporating Idiocentric/Allocentric Cultural Orientation

    Science.gov (United States)

    Jung, Jae Yup; McCormick, John; Gross, Miraca U. M.

    2012-01-01

    This study developed and tested a new model of the forced choice dilemma (i.e., the belief held by some intellectually gifted students that they must choose between academic achievement and peer acceptance) that incorporates individual-level cultural orientation variables (i.e., vertical allocentrism and vertical idiocentrism). A survey that had…

  20. Generalized behavioral framework for choice models of social influence: Behavioral and data concerns in travel behavior

    NARCIS (Netherlands)

    Maness, M.; Cirillo, C.; Dugundji, E.R.

    2015-01-01

    Over the past two decades, transportation has begun a shift from an individual focus to a social focus. Accordingly, discrete choice models have begun to integrate social context into its framework. Social influence, the process of having one’s behavior be affected by others, has been one approach t

  1. A comparison of methods for representing random taste heterogeneity in discrete choice models

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Hess, Stephane

    2009-01-01

    This paper reports the findings of a systematic study using Monte Carlo experiments and a real dataset aimed at comparing the performance of various ways of specifying random taste heterogeneity in a discrete choice model. Specifically, the analysis compares the performance of two recent advanced...

  2. Worldwide Diversity in Funded Pension Plans : Four Role Models on Choice and Participation

    NARCIS (Netherlands)

    Garcia Huitron, Manuel; Ponds, Eduard

    2015-01-01

    This paper provides an in-depth comparison of funded pension savings plans around the world. The large variety in plan designs is a reflection of historical, cultural and institutional diversity. We postulate a new classification of four role models of funded pension plans, primarily based on choice

  3. On competition in a Stackelberg location-design model with deterministic supplier choice

    NARCIS (Netherlands)

    Hendrix, E.M.T.

    2016-01-01

    We study a market situation where two firms maximize market capture by deciding on the location in the plane and investing in a competing quality against investment cost. Clients choose one of the suppliers; i.e. deterministic supplier choice. To study this situation, a game theoretic model is formu

  4. Processing of recognition information and additional cues: A model-based analysis of choice, confidence, and response time

    Directory of Open Access Journals (Sweden)

    Andreas Glockner

    2011-02-01

    Full Text Available Research on the processing of recognition information has focused on testing the recognition heuristic (RH. On the aggregate, the noncompensatory use of recognition information postulated by the RH was rejected in several studies, while RH could still account for a considerable proportion of choices. These results can be explained if either a a part of the subjects used RH or b nobody used it but its choice predictions were accidentally in line with predictions of the strategy used. In the current study, which exemplifies a new approach to model testing, we determined individuals' decision strategies based on a maximum-likelihood classification method, taking into account choices, response times and confidence ratings simultaneously. Unlike most previous studies of the RH, our study tested the RH under conditions in which we provided information about cue values of unrecognized objects (which we argue is fairly common and thus of some interest. For 77.5% of the subjects, overall behavior was best explained by a compensatory parallel constraint satisfaction (PCS strategy. The proportion of subjects using an enhanced RH heuristic (RHe was negligible (up to 7.5%; 15% of the subjects seemed to use a take the best strategy (TTB. A more-fine grained analysis of the supplemental behavioral parameters conditional on strategy use supports PCS but calls into question process assumptions for apparent users of RH, RHe, and TTB within our experimental context. Our results are consistent with previous literature highlighting the importance of individual strategy classification as compared to aggregated analyses.

  5. Accounting for crop rotations in acreage choice modeling: a tractable modeling framework

    OpenAIRE

    Carpentier, Alain; Gohin, Alexandre

    2014-01-01

    Crop rotation effects and constraints are major determinants of farmers’ crop choices. Crop rotations are also keystone elements of most environmentally friendly cropping systems. The aim of this paper is twofold. First, it proposes simple tools for investigating optimal dynamic crop acreage choices accounting for crop rotation effects and constraints in an uncertain context. Second, it illustrates the impacts of crop rotation effects and constraints on farmers’ acreage choices through simple...

  6. Quantum Cournot equilibrium for the Hotelling-Smithies model of product choice

    CERN Document Server

    Rahaman, Ramij; Basu, B

    2012-01-01

    This paper demonstrates the quantization of a spatial Cournot duopoly model with product choice, a two stage game focusing on non-cooperation in locations and quantities. With quantization, the players can access a continuous set of strategies, using continuous variable quantum mechanical approach. The presence of quantum entanglement in the initial state identifies a quantity equilibrium for every location pair choice with any transport cost. Also higher profit is obtained by the firms at Nash equilibrium. Adoption of quantum strategies rewards us by the existence of a larger quantum strategic space at equilibrium.

  7. Preference pulses and the win-stay, fix-and-sample model of choice.

    Science.gov (United States)

    Hachiga, Yosuke; Sakagami, Takayuki; Silberberg, Alan

    2015-11-01

    Two groups of six rats each were trained to respond to two levers for a food reinforcer. One group was trained on concurrent variable-ratio 20 extinction schedules of reinforcement. The second group was trained on a concurrent variable-interval 27-s extinction schedule. In both groups, lever-schedule assignments changed randomly following reinforcement; a light cued the lever providing the next reinforcer. In the next condition, the light cue was removed and reinforcer assignment strictly alternated between levers. The next two conditions redetermined, in order, the first two conditions. Preference pulses, defined as a tendency for relative response rate to decline to the just-reinforced alternative with time since reinforcement, only appeared during the extinction schedule. Although the pulse's functional form was well described by a reinforcer-induction equation, there was a large residual between actual data and a pulse-as-artifact simulation (McLean, Grace, Pitts, & Hughes, 2014) used to discern reinforcer-dependent contributions to pulsing. However, if that simulation was modified to include a win-stay tendency (a propensity to stay on the just-reinforced alternative), the residual was greatly reduced. Additional modifications of the parameter values of the pulse-as-artifact simulation enabled it to accommodate the present results as well as those it originally accommodated. In its revised form, this simulation was used to create a model that describes response runs to the preferred alternative as terminating probabilistically, and runs to the unpreferred alternative as punctate with occasional perseverative response runs. After reinforcement, choices are modeled as returning briefly to the lever location that had been just reinforced. This win-stay propensity is hypothesized as due to reinforcer induction. © Society for the Experimental Analysis of Behavior.

  8. Some tests for parameter constancy in cointegrated VAR-models

    DEFF Research Database (Denmark)

    Hansen, Henrik; Johansen, Søren

    1999-01-01

    Some methods for the evaluation of parameter constancy in vector autoregressive (VAR) models are discussed. Two different ways of re-estimating the VAR model are proposed; one in which all parameters are estimated recursively based upon the likelihood function for the first observations, and anot...... be applied to test the constancy of the long-run parameters in the cointegrated VAR-model. All results are illustrated using a model for the term structure of interest rates on US Treasury securities. ...

  9. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  10. Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models

    Directory of Open Access Journals (Sweden)

    Baker Syed

    2011-01-01

    Full Text Available Abstract In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF, rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison.

  11. Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models.

    Science.gov (United States)

    Baker, Syed Murtuza; Poskar, C Hart; Junker, Björn H

    2011-10-11

    In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison.

  12. Estimasi Parameter Item dan Latent Class dengan Model Dina untuk Diagnosis Kesulitan Belajar

    Directory of Open Access Journals (Sweden)

    - Kusaeri

    2013-07-01

    Full Text Available Abstract: Estimation of Item Parameter and Latent Class with DINA Model to Diagnose Learning Difficulties. This study aims to estimate item parameter of diagnostic test developed with DINA model and identify attribute profiles of each test participant. The instrument of this study was diagnostic test using multiple choice format with 4 options. The data were analyzed using Mplus software, R program and ITEMAN. The results show that out of 8 items measuring social arithmetic and comparison, there was on ly one item that had low guessing and slip parameter. The study also found that basic operation and concept in arithmetic and verbal questions were problematic f or most students. Abstrak: Estimasi Parameter Item dan Latent Class dengan Model DINA untuk Diagnosis Kesulitan Belajar. Penelitian ini bertujuan untuk mengestimasi parameter item dari tes diagnostik yang dikembangkan dengan model DINA dan mengidentifikasi profil atribut setiap peserta tes. Instrumen penelitian ini berupa tes diagnostik berbentuk pilihan ganda dengan 4 pilihan jawaban. Data dianalisis dengan menggunakan software Mplus, program R dan ITEMAN. Hasil penelitian menunjukkan bahwa dari 8 item yang mengukur materi aritmetika sosial dan perbandingan, hanya ada satu item dengan parameter guessing dan slip rendah. Temuan lain operasi dan konsep dasar dalam aritmetika serta soal bentuk verbal masih menjadi m asalah bagi sebagian besar siswa.

  13. Specialty choice preference of medical students according to personality traits by Five-Factor Model

    Directory of Open Access Journals (Sweden)

    Oh Young Kwon

    2016-03-01

    Full Text Available Purpose: The purpose of this study was to determine the relationship between personality traits, using the Five-Factor Model, and characteristics and motivational factors affecting specialty choice in Korean medical students. Methods: A questionnaire survey of Year 4 medical students (n=110 in July 2015 was administered. We evaluated the personality traits of Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness by using the Korean version of Big Five Inventory. Questions about general characteristics, medical specialties most preferred as a career, motivational factors in determining specialty choice were included. Data between five personality traits and general characteristics and motivational factors affecting specialty choice were analyzed using Student t-test, Mann-Whitney test and analysis of variance. Results: Of the 110 eligible medical students, 105 (95.4% response rate completed the questionnaire. More Agreeableness students preferred clinical medicine to basic medicine (p=0.010 and more Openness students preferred medical departments to others (p=0.031. Personal interest was the significant motivational factors in more Openness students (p=0.003 and Conscientiousness students (p=0.003. Conclusion: Medical students with more Agreeableness were more likely to prefer clinical medicine and those with more Openness preferred medical departments. Personal interest was a significant influential factor determining specialty choice in more Openness and Conscientiousness students. These findings may be helpful to medical educators or career counselors in the specialty choice process.

  14. Specialty choice preference of medical students according to personality traits by Five-Factor Model.

    Science.gov (United States)

    Kwon, Oh Young; Park, So Youn

    2016-03-01

    The purpose of this study was to determine the relationship between personality traits, using the Five-Factor Model, and characteristics and motivational factors affecting specialty choice in Korean medical students. A questionnaire survey of Year 4 medical students (n=110) in July 2015 was administered. We evaluated the personality traits of Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness by using the Korean version of Big Five Inventory. Questions about general characteristics, medical specialties most preferred as a career, motivational factors in determining specialty choice were included. Data between five personality traits and general characteristics and motivational factors affecting specialty choice were analyzed using Student t-test, Mann-Whitney test and analysis of variance. Of the 110 eligible medical students, 105 (95.4% response rate) completed the questionnaire. More Agreeableness students preferred clinical medicine to basic medicine (p=0.010) and more Openness students preferred medical departments to others (p=0.031). Personal interest was the significant motivational factors in more Openness students (p=0.003) and Conscientiousness students (p=0.003). Medical students with more Agreeableness were more likely to prefer clinical medicine and those with more Openness preferred medical departments. Personal interest was a significant influential factor determining specialty choice in more Openness and Conscientiousness students. These findings may be helpful to medical educators or career counselors in the specialty choice process.

  15. Identification of hydrological model parameter variation using ensemble Kalman filter

    Science.gov (United States)

    Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao

    2016-12-01

    Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.

  16. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  17. Universally sloppy parameter sensitivities in systems biology models.

    Directory of Open Access Journals (Sweden)

    Ryan N Gutenkunst

    2007-10-01

    Full Text Available Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.

  18. The Comprehensive Retrieval Method of Electromagnetic Parameters Using the Scattering Parameters of Metamaterials for Two Choices of Time-Dependent Factors

    Institute of Scientific and Technical Information of China (English)

    HOU Zhi-Ling; KONG Ling-Bao; JIN Hai-Bo; CAO Mao-Sheng; LI Xiao; QI Xin

    2012-01-01

    The electromagnetic parameters (permittivity and permeability) method, retrieved from the reflection and transmission coefficients of a slab, is presented. Improvements over existing methods, including the determination of the permittivity, permeability and impedance of the slab, are expressed as explicit functions of the S parameters for both the time-dependent factors, eiωt and e-iωt (ω is the angular frequency of the incident electromagnetic wave), and the proper selection of the sign of impedance and the real part of the refractive index. Moreover, based on the retrieving method, the calculations of the electromagnetic parameters of the conventional-material teflon slab standard sample through the experimental data of the S parameters are performed, which confirm the validity of the technique for the retrieval of electromagnetic parameters.%The electromagnetic parameters (permittivity and permeability) method,retrieved from the reflection and transmission coefficients of a slab,is presented.Improvements over existing methods,including the determination of the permittivity,permeability and impedance of the slab,are expressed as explicit functions of the S parameters for both the time-dependent factors,eiwt and e-iwt (ω is the angular frequency of the incident electromagnetic wave),and the proper selection of the sign of impedance and the real part of the refractive index.Moreover,based on the retrieving method,the calculations of the electromagnetic parameters of the conventional-material teflon slab standard sample through the experimental data of the S parameters are performed,which confirm the validity of the technique for the retrieval of electromagnetic parameters.

  19. Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics

    Directory of Open Access Journals (Sweden)

    Guanqun eZhang

    2011-11-01

    Full Text Available A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel while being defined by only a few parameters (unlike comprehensive distributed-parameter models. As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications.

  20. Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics

    Science.gov (United States)

    Zhang, Guanqun; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2011-01-01

    A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel) while being defined by only a few parameters (unlike comprehensive distributed-parameter models). As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications. PMID:22053157

  1. Parameter estimation and investigation of a bolted joint model

    Science.gov (United States)

    Shiryayev, O. V.; Page, S. M.; Pettit, C. L.; Slater, J. C.

    2007-11-01

    Mechanical joints are a primary source of variability in the dynamics of built-up structures. Physical phenomena in the joint are quite complex and therefore too impractical to model at the micro-scale. This motivates the development of lumped parameter joint models with discrete interfaces so that they can be easily implemented in finite element codes. Among the most important considerations in choosing a model for dynamically excited systems is its ability to model energy dissipation. This translates into the need for accurate and reliable methods to measure model parameters and estimate their inherent variability from experiments. The adjusted Iwan model was identified as a promising candidate for representing joint dynamics. Recent research focused on this model has exclusively employed impulse excitation in conjunction with neural networks to identify the model parameters. This paper presents an investigation of an alternative parameter estimation approach for the adjusted Iwan model, which employs data from oscillatory forcing. This approach is shown to produce parameter estimates with precision similar to the impulse excitation method for a range of model parameters.

  2. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  3. Parameter estimation of hidden periodic model in random fields

    Institute of Scientific and Technical Information of China (English)

    何书元

    1999-01-01

    Two-dimensional hidden periodic model is an important model in random fields. The model is used in the field of two-dimensional signal processing, prediction and spectral analysis. A method of estimating the parameters for the model is designed. The strong consistency of the estimators is proved.

  4. Belief in the "free choice" model of homosexuality: a correlate of homophobia in registered nurses.

    Science.gov (United States)

    Blackwell, Christopher W

    2007-01-01

    A great amount of social science research has supported the positive correlation between heterosexuals' belief in the free choice model of homosexuality and homophobia. Heterosexuals who believe gay, lesbian, bisexual, and transgender (GLBT) persons consciously choose their sexual orientation and practice a lifestyle conducive to that choice are much more likely to possess discriminatory, homophobic, homonegative, and heterosexist beliefs. In addition, these individuals are less likely to support gay rights initiatives such as nondiscrimination policies or same-sex partner benefits in the workplace or hate crime enhancement legislation inclusive of GLBT persons. Although researchers have demonstrated this phenomenon in the general population, none have specifically assessed it in the nursing workforce. The purpose of this study was to examine registered nurses' overall levels of homophobia and attitudes toward a workplace policy protective of gays and lesbians. These variables were then correlated with belief in the free choice model of homosexuality. Results indicated that belief in the free choice model of homosexuality was the strongest predictor of homophobia in nurses. Implications for nursing leadership and management, nursing education, and future research are discussed.

  5. Identification of parameters of discrete-continuous models

    Energy Technology Data Exchange (ETDEWEB)

    Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)

    2015-03-10

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.

  6. Estimating parameters for generalized mass action models with connectivity information

    Directory of Open Access Journals (Sweden)

    Voit Eberhard O

    2009-05-01

    Full Text Available Abstract Background Determining the parameters of a mathematical model from quantitative measurements is the main bottleneck of modelling biological systems. Parameter values can be estimated from steady-state data or from dynamic data. The nature of suitable data for these two types of estimation is rather different. For instance, estimations of parameter values in pathway models, such as kinetic orders, rate constants, flux control coefficients or elasticities, from steady-state data are generally based on experiments that measure how a biochemical system responds to small perturbations around the steady state. In contrast, parameter estimation from dynamic data requires time series measurements for all dependent variables. Almost no literature has so far discussed the combined use of both steady-state and transient data for estimating parameter values of biochemical systems. Results In this study we introduce a constrained optimization method for estimating parameter values of biochemical pathway models using steady-state information and transient measurements. The constraints are derived from the flux connectivity relationships of the system at the steady state. Two case studies demonstrate the estimation results with and without flux connectivity constraints. The unconstrained optimal estimates from dynamic data may fit the experiments well, but they do not necessarily maintain the connectivity relationships. As a consequence, individual fluxes may be misrepresented, which may cause problems in later extrapolations. By contrast, the constrained estimation accounting for flux connectivity information reduces this misrepresentation and thereby yields improved model parameters. Conclusion The method combines transient metabolic profiles and steady-state information and leads to the formulation of an inverse parameter estimation task as a constrained optimization problem. Parameter estimation and model selection are simultaneously carried out

  7. BAYES ESTIMATES FOR THE PARAMETERS OF POISSON TYPE LENGTH BIASED EXPONENTIAL CLASS MODEL USING NON-INFORMATIVE PRIORS

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2016-06-01

    Full Text Available In this paper, the failure intensity has been characterized by one parameter length biased exponential class Software Reliability Growth Model (SRGM considering the Poisson process of occurrence of software failures. This proposed length biased exponential class model is a function of parameters namely; total number of failures θ0 and scale parameter θ1. It is assumed that very little or no information is available about both these parameters. The Bayes estimators for parameters θ0 and θ1 have been obtained using non-informative priors for each parameter under square error loss function. The Monte Carlo simulation technique is used to study the performance of proposed Bayes estimators against their corresponding maximum likelihood estimators on the basis of risk efficiencies. It is concluded that both the proposed Bayes estimators of total number of failures and scale parameter perform well for proper choice of execution time.

  8. Efficient simulation of diffusion-based choice RT models on CPU and GPU.

    Science.gov (United States)

    Verdonck, Stijn; Meers, Kristof; Tuerlinckx, Francis

    2016-03-01

    In this paper, we present software for the efficient simulation of a broad class of linear and nonlinear diffusion models for choice RT, using either CPU or graphical processing unit (GPU) technology. The software is readily accessible from the popular scripting languages MATLAB and R (both 64-bit). The speed obtained on a single high-end GPU is comparable to that of a small CPU cluster, bringing standard statistical inference of complex diffusion models to the desktop platform.

  9. The Role of Preference Axioms and Respondent Behaviour in Statistical Models for Discrete Choice

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tjur, Tue; Østerdal, Lars Peter

    , ordering effects, dominance, etc. Unfortunatelythere seems to be some confusion about what is actually being tested,and the link between the statistical tests performed and the relevantunderlying model of respondent behaviour has not been explored inthis literature. The present paper tries to clarify...... the notions involvedand discuss what can be tested in a general frequency of choice frame-work and more specifically in a random utility model....

  10. DERIVED DEMAND ELASTICITIES: MARKETING MARGIN METHODS VERSUS AN INVERSE DEMAND MODEL FOR CHOICE BEEF

    OpenAIRE

    Marsh, John M.

    1991-01-01

    Three methods of calculating the derived elasticity of demand for Choice slaughter beef are used: (a) a traditional marketing margin approach, (b) a modified marketing margin approach, and (c) an econometric, inverse demand model approach. The first method is more restrictive than the second but both tend to overestimate beef price flexibility and revenue changes. The econometric model, though an incomplete demand system, yields demand elasticities that are more consistent with marketing flex...

  11. Estimation of Dynamic Discrete Choice Models in Continuous Time with an Application to Retail Competition

    OpenAIRE

    Peter Arcidiacono; Patrick Bayer; Jason R. Blevins; Paul B. Ellickson

    2012-01-01

    This paper develops a dynamic model of retail competition and uses it to study the impact of the expansion of a new national competitor on the structure of urban markets. In order to accommodate substantial heterogeneity (both observed and unobserved) across agents and markets, the paper first develops a general framework for estimating and solving dynamic discrete choice models in continuous time that is computationally light and readily applicable to dynamic games. In the proposed framework...

  12. Towards predictive food process models: A protocol for parameter estimation.

    Science.gov (United States)

    Vilas, Carlos; Arias-Méndez, Ana; Garcia, Miriam R; Alonso, Antonio A; Balsa-Canto, E

    2016-05-31

    Mathematical models, in particular, physics-based models, are essential tools to food product and process design, optimization and control. The success of mathematical models relies on their predictive capabilities. However, describing physical, chemical and biological changes in food processing requires the values of some, typically unknown, parameters. Therefore, parameter estimation from experimental data is critical to achieving desired model predictive properties. This work takes a new look into the parameter estimation (or identification) problem in food process modeling. First, we examine common pitfalls such as lack of identifiability and multimodality. Second, we present the theoretical background of a parameter identification protocol intended to deal with those challenges. And, to finish, we illustrate the performance of the proposed protocol with an example related to the thermal processing of packaged foods.

  13. Estimation of the input parameters in the Feller neuronal model

    Science.gov (United States)

    Ditlevsen, Susanne; Lansky, Petr

    2006-06-01

    The stochastic Feller neuronal model is studied, and estimators of the model input parameters, depending on the firing regime of the process, are derived. Closed expressions for the first two moments of functionals of the first-passage time (FTP) through a constant boundary in the suprathreshold regime are derived, which are used to calculate moment estimators. In the subthreshold regime, the exponentiality of the FTP is utilized to characterize the input parameters. The methods are illustrated on simulated data. Finally, approximations of the first-passage-time moments are suggested, and biological interpretations and comparisons of the parameters in the Feller and the Ornstein-Uhlenbeck models are discussed.

  14. An automatic and effective parameter optimization method for model tuning

    Directory of Open Access Journals (Sweden)

    T. Zhang

    2015-05-01

    Full Text Available Physical parameterizations in General Circulation Models (GCMs, having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.

  15. Optimal parameters for the FFA-Beddoes dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Mert, M. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)

  16. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation of struct......This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation...... response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....

  17. Optimal Choice of Soil Hydraulic Parameters for Simulating the Unsaturated Flow: A Case Study on the Island of Miyakojima, Japan

    Directory of Open Access Journals (Sweden)

    Ken Okamoto

    2015-10-01

    Full Text Available We examined the influence of input soil hydraulic parameters on HYDRUS-1D simulations of evapotranspiration and volumetric water contents (VWCs in the unsaturated zone of a sugarcane field on the island of Miyakojima, Japan. We first optimized the parameters for root water uptake and examined the influence of soil hydraulic parameters (water retention curve and hydraulic conductivity on simulations of evapotranspiration. We then compared VWCs simulated using measured soil hydraulic parameters with those using pedotransfer estimates obtained with the ROSETTA software package. Our results confirm that it is important to always use soil hydraulic parameters based on measured data, if available, when simulating evapotranspiration and unsaturated water flow processes, rather than pedotransfer functions.

  18. A New Approach for Parameter Optimization in Land Surface Model

    Institute of Scientific and Technical Information of China (English)

    LI Hongqi; GUO Weidong; SUN Guodong; ZHANG Yaocun; FU Congbin

    2011-01-01

    In this study,a new parameter optimization method was used to investigate the expansion of conditional nonlinear optimal perturbation (CNOP) in a land surface model (LSM) using long-term enhanced field observations at Tongyn station in Jilin Province,China,combined with a sophisticated LSM (common land model,CoLM).Tongyu station is a reference site of the international Coordinated Energy and Water Cycle Observations Project (CEOP) that has studied semiarid regions that have undergone desertification,salination,and degradation since late 1960s.In this study,three key land-surface parameters,namely,soil color,proportion of sand or clay in soil,and leaf-area index were chosen as parameters to be optimized.Our study comprised three experiments:First,a single-parameter optimization was performed,while the second and third experiments performed triple- and six-parameter optinizations,respectively.Notable improvements in simulating sensible heat flux (SH),latent heat flux (LH),soil temperature (TS),and moisture (MS) at shallow layers were achieved using the optimized parameters.The multiple-parameter optimization experiments performed better than the single-parameter experminent.All results demonstrate that the CNOP method can be used to optimize expanded parameters in an LSM.Moreover,clear mathematical meaning,simple design structure,and rapid computability give this method great potential for further application to parameter optimization in LSMs.

  19. The effects of nutrition labeling on consumer food choice: a psychological experiment and computational model.

    Science.gov (United States)

    Helfer, Peter; Shultz, Thomas R

    2014-12-01

    The widespread availability of calorie-dense food is believed to be a contributing cause of an epidemic of obesity and associated diseases throughout the world. One possible countermeasure is to empower consumers to make healthier food choices with useful nutrition labeling. An important part of this endeavor is to determine the usability of existing and proposed labeling schemes. Here, we report an experiment on how four different labeling schemes affect the speed and nutritional value of food choices. We then apply decision field theory, a leading computational model of human decision making, to simulate the experimental results. The psychology experiment shows that quantitative, single-attribute labeling schemes have greater usability than multiattribute and binary ones, and that they remain effective under moderate time pressure. The computational model simulates these psychological results and provides explanatory insights into them. This work shows how experimental psychology and computational modeling can contribute to the evaluation and improvement of nutrition-labeling schemes.

  20. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    . Second, it permits incorporation of prior information on parameter values. Third, it can be applied in the absence of copious data. Finally, it supplies measures of the capacity of the model to reproduce the historical record and the statistical significance of parameter estimates. The method is applied...

  1. Estimating winter wheat phenological parameters: Implications for crop modeling

    Science.gov (United States)

    Crop parameters, such as the timing of developmental events, are critical for accurate simulation results in crop simulation models, yet uncertainty often exists in determining the parameters. Factors contributing to the uncertainty include: a) sources of variation within a plant (i.e., within diffe...

  2. Variation in LCA results for disposable polystyrene beverage cups due to multiple data sets and modelling choices

    NARCIS (Netherlands)

    Harst, van der E.J.M.; Potting, J.

    2014-01-01

    Life Cycle Assessments (LCAs) of the same products often result in different, sometimes even contradictory outcomes. Reasons for these differences include using different data sets and deviating modelling choices. This paper purposely used different data sets and modelling choices to identify how th

  3. Modeling mode choice behavior incorporating household and individual sociodemographics and travel attributes based on rough sets theory.

    Science.gov (United States)

    Cheng, Long; Chen, Xuewu; Wei, Ming; Wu, Jingxian; Hou, Xianyao

    2014-01-01

    Most traditional mode choice models are based on the principle of random utility maximization derived from econometric theory. Alternatively, mode choice modeling can be regarded as a pattern recognition problem reflected from the explanatory variables of determining the choices between alternatives. The paper applies the knowledge discovery technique of rough sets theory to model travel mode choices incorporating household and individual sociodemographics and travel information, and to identify the significance of each attribute. The study uses the detailed travel diary survey data of Changxing county which contains information on both household and individual travel behaviors for model estimation and evaluation. The knowledge is presented in the form of easily understood IF-THEN statements or rules which reveal how each attribute influences mode choice behavior. These rules are then used to predict travel mode choices from information held about previously unseen individuals and the classification performance is assessed. The rough sets model shows high robustness and good predictive ability. The most significant condition attributes identified to determine travel mode choices are gender, distance, household annual income, and occupation. Comparative evaluation with the MNL model also proves that the rough sets model gives superior prediction accuracy and coverage on travel mode choice modeling.

  4. The stay/switch model describes choice among magnitudes of reinforcers.

    Science.gov (United States)

    MacDonall, James S

    2008-06-01

    The stay/switch model is an alternative to the generalized matching law for describing choice in concurrent procedures. The purpose of the present experiment was to extend this model to choice among magnitudes of reinforcers. Rats were exposed to conditions in which the magnitude of reinforcers (number of food pellets) varied for staying at alternative 1, switching from alternative 1, staying at alternative 2 and switching from alternative 2. A changeover delay was not used. The results showed that the stay/switch model provided a good account of the data overall, and deviations from fits of the generalized matching law to response allocation data were in the direction predicted by the stay/switch model. In addition, comparisons among specific conditions suggested that varying the ratio of obtained reinforcers, as in the generalized matching law, was not necessary to change the response and time allocations. Other comparisons suggested that varying the ratio of obtained reinforcers was not sufficient to change response allocation. Taken together these results provide additional support for the stay/switch model of concurrent choice.

  5. Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations

    Science.gov (United States)

    Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.

    2016-11-01

    Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.

  6. Sensorimotor learning biases choice behavior: a learning neural field model for decision making.

    Directory of Open Access Journals (Sweden)

    Christian Klaes

    Full Text Available According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action

  7. Retrospective forecast of ETAS model with daily parameters estimate

    Science.gov (United States)

    Falcone, Giuseppe; Murru, Maura; Console, Rodolfo; Marzocchi, Warner; Zhuang, Jiancang

    2016-04-01

    We present a retrospective ETAS (Epidemic Type of Aftershock Sequence) model based on the daily updating of free parameters during the background, the learning and the test phase of a seismic sequence. The idea was born after the 2011 Tohoku-Oki earthquake. The CSEP (Collaboratory for the Study of Earthquake Predictability) Center in Japan provided an appropriate testing benchmark for the five 1-day submitted models. Of all the models, only one was able to successfully predict the number of events that really happened. This result was verified using both the real time and the revised catalogs. The main cause of the failure was in the underestimation of the forecasted events, due to model parameters maintained fixed during the test. Moreover, the absence in the learning catalog of an event similar to the magnitude of the mainshock (M9.0), which drastically changed the seismicity in the area, made the learning parameters not suitable to describe the real seismicity. As an example of this methodological development we show the evolution of the model parameters during the last two strong seismic sequences in Italy: the 2009 L'Aquila and the 2012 Reggio Emilia episodes. The achievement of the model with daily updated parameters is compared with that of same model where the parameters remain fixed during the test time.

  8. Assessing the accuracy of subject-specific, muscle-model parameters determined by optimizing to match isometric strength.

    Science.gov (United States)

    DeSmitt, Holly J; Domire, Zachary J

    2016-12-01

    Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.

  9. The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties.

    Science.gov (United States)

    Rouder, Jeffrey N; Province, Jordan M; Morey, Richard D; Gomez, Pablo; Heathcote, Andrew

    2015-06-01

    We present a cognitive process model of response choice and response time performance data that has excellent psychometric properties and may be used in a wide variety of contexts. In the model there is an accumulator associated with each response option. These accumulators have bounds, and the first accumulator to reach its bound determines the response time and response choice. The times at which accumulator reaches its bound is assumed to be lognormally distributed, hence the model is race or minima process among lognormal variables. A key property of the model is that it is relatively straightforward to place a wide variety of models on the logarithm of these finishing times including linear models, structural equation models, autoregressive models, growth-curve models, etc. Consequently, the model has excellent statistical and psychometric properties and can be used in a wide range of contexts, from laboratory experiments to high-stakes testing, to assess performance. We provide a Bayesian hierarchical analysis of the model, and illustrate its flexibility with an application in testing and one in lexical decision making, a reading skill.

  10. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers...... seek to minimize their anticipated regret from their corrective actions. The model accounts for driver attributes and behavior, critical events that made the crash imminent, vehicle and road characteristics, and environmental conditions. Analyzed data are retrieved from the General Estimates System......-based model, suggesting that both models should serve as a basis for evaluating crash scenarios and driver warning systems....

  11. A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models

    Directory of Open Access Journals (Sweden)

    Masamune Iwasawa

    2015-09-01

    Full Text Available Estimation results obtained by parametric models may be seriously misleading when the model is misspecified or poorly approximates the true model. This study proposes a test that jointly tests the specifications of multiple response probabilities in unordered multinomial choice models. The test statistic is asymptotically chi-square distributed, consistent against a fixed alternative and able to detect a local alternative approaching to the null at a rate slower than the parametric rate. We show that rejection regions can be calculated by a simple parametric bootstrap procedure, when the sample size is small. The size and power of the tests are investigated by Monte Carlo experiments.

  12. Parameter Estimates in Differential Equation Models for Population Growth

    Science.gov (United States)

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  13. Dynamic Modeling and Parameter Identification of Power Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ The generator, the excitation system, the steam turbine and speed governor, and the load are the so called four key models of power systems. Mathematical modeling and parameter identification for the four key models are of great importance as the basis for designing, operating, and analyzing power systems.

  14. Dynamic Load Model using PSO-Based Parameter Estimation

    Science.gov (United States)

    Taoka, Hisao; Matsuki, Junya; Tomoda, Michiya; Hayashi, Yasuhiro; Yamagishi, Yoshio; Kanao, Norikazu

    This paper presents a new method for estimating unknown parameters of dynamic load model as a parallel composite of a constant impedance load and an induction motor behind a series constant reactance. An adequate dynamic load model is essential for evaluating power system stability, and this model can represent the behavior of actual load by using appropriate parameters. However, the problem of this model is that a lot of parameters are necessary and it is not easy to estimate a lot of unknown parameters. We propose an estimating method based on Particle Swarm Optimization (PSO) which is a non-linear optimization method by using the data of voltage, active power and reactive power measured at voltage sag.

  15. Parameter Estimation for the Thurstone Case III Model.

    Science.gov (United States)

    Mackay, David B.; Chaiy, Seoil

    1982-01-01

    The ability of three estimation criteria to recover parameters of the Thurstone Case V and Case III models from comparative judgment data was investigated via Monte Carlo techniques. Significant differences in recovery are shown to exist. (Author/JKS)

  16. Optimal Parameter and Uncertainty Estimation of a Land Surface Model: Sensitivity to Parameter Ranges and Model Complexities

    Institute of Scientific and Technical Information of China (English)

    Youlong XIA; Zong-Liang YANG; Paul L. STOFFA; Mrinal K. SEN

    2005-01-01

    Most previous land-surface model calibration studies have defined global ranges for their parameters to search for optimal parameter sets. Little work has been conducted to study the impacts of realistic versus global ranges as well as model complexities on the calibration and uncertainty estimates. The primary purpose of this paper is to investigate these impacts by employing Bayesian Stochastic Inversion (BSI)to the Chameleon Surface Model (CHASM). The CHASM was designed to explore the general aspects of land-surface energy balance representation within a common modeling framework that can be run from a simple energy balance formulation to a complex mosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem, importance sampling, and very fast simulated annealing.The model forcing data and surface flux data were collected at seven sites representing a wide range of climate and vegetation conditions. For each site, four experiments were performed with simple and complex CHASM formulations as well as realistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parameter sets were used for each run. The results show that the use of global and realistic ranges gives similar simulations for both modes for most sites, but the global ranges tend to produce some unreasonable optimal parameter values. Comparison of simple and complex modes shows that the simple mode has more parameters with unreasonable optimal values. Use of parameter ranges and model complexities have significant impacts on frequency distribution of parameters, marginal posterior probability density functions, and estimates of uncertainty of simulated sensible and latent heat fluxes.Comparison between model complexity and parameter ranges shows that the former has more significant impacts on parameter and uncertainty estimations.

  17. Comparing spatial and temporal transferability of hydrological model parameters

    Science.gov (United States)

    Patil, Sopan D.; Stieglitz, Marc

    2015-06-01

    Operational use of hydrological models requires the transfer of calibrated parameters either in time (for streamflow forecasting) or space (for prediction at ungauged catchments) or both. Although the effects of spatial and temporal parameter transfer on catchment streamflow predictions have been well studied individually, a direct comparison of these approaches is much less documented. Here, we compare three different schemes of parameter transfer, viz., temporal, spatial, and spatiotemporal, using a spatially lumped hydrological model called EXP-HYDRO at 294 catchments across the continental United States. Results show that the temporal parameter transfer scheme performs best, with lowest decline in prediction performance (median decline of 4.2%) as measured using the Kling-Gupta efficiency metric. More interestingly, negligible difference in prediction performance is observed between the spatial and spatiotemporal parameter transfer schemes (median decline of 12.4% and 13.9% respectively). We further demonstrate that the superiority of temporal parameter transfer scheme is preserved even when: (1) spatial distance between donor and receiver catchments is reduced, or (2) temporal lag between calibration and validation periods is increased. Nonetheless, increase in the temporal lag between calibration and validation periods reduces the overall performance gap between the three parameter transfer schemes. Results suggest that spatiotemporal transfer of hydrological model parameters has the potential to be a viable option for climate change related hydrological studies, as envisioned in the "trading space for time" framework. However, further research is still needed to explore the relationship between spatial and temporal aspects of catchment hydrological variability.

  18. Modelling the Choices of Romanian Consumers in the Context of the Current Economic Crisis

    Directory of Open Access Journals (Sweden)

    Madalina Balau

    2012-05-01

    Full Text Available Consumption is a key factor of the nowadays post-industrial society, while it is a real engine ofproduction, diversity of offer and demand, and motive for innovation. On the other side, consumption can beharmful to the same society and to environment if it develops in an un-sustainable way. That is why,understanding the consumer behaviour is of great importance not only to satisfy his or her needs but also tofind appropriate means to educate people and issue policies that can lead to sustainable consumption anddevelopment. The paper presents some models and theories regarding the consumer behaviour and proposesmeans to influence consumption characteristics and habits of people. The modelling approach isdeterministic, using Expectancy-Value theory, taking into account not only explicit (rational choices but alsohabits or incentives (non-rational choices, in a weighted quantitative model. The novelty of the approachconsists in the way non-rational choices are taken into consideration for the existing model, and on how it isused in determining directions for sustainable consumption. The study is developed on public data regardingconsumers of general goods in Romania.

  19. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  20. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  1. Parameter estimation for groundwater models under uncertain irrigation data

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  2. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    the parameters, including the noise terms. The parameter estimation method is a maximum likelihood method (ML) where the likelihood function is evaluated using a Kalman filter technique. The ML method estimates the parameters in a prediction error settings, i.e. the sum of squared prediction error is minimized....... For a comparison the parameters are also estimated by an output error method, where the sum of squared simulation error is minimized. The former methodology is optimal for short-term prediction whereas the latter is optimal for simulations. Hence, depending on the purpose it is possible to select whether...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  3. Transformations among CE–CVM model parameters for multicomponent systems

    Indian Academy of Sciences (India)

    B Nageswara Sarma; Shrikant Lele

    2005-06-01

    In the development of thermodynamic databases for multicomponent systems using the cluster expansion–cluster variation methods, we need to have a consistent procedure for expressing the model parameters (CECs) of a higher order system in terms of those of the lower order subsystems and to an independent set of parameters which exclusively represent interactions of the higher order systems. Such a procedure is presented in detail in this communication. Furthermore, the details of transformations required to express the model parameters in one basis from those defined in another basis for the same system are also presented.

  4. The role of model female quality in the mate choice copying behaviour of sailfin mollies.

    Science.gov (United States)

    Hill, Sarah E; Ryan, Michael J

    2006-06-22

    Female mate choice copying is a socially mediated mate choice behaviour, in which a male's attractiveness to females increases if he was previously chosen by another female as a mate. Although copying has been demonstrated in numerous species, little is known about the specific benefits it confers to copying females. Here we demonstrate that the mate choice behaviour of female sailfin mollies (Poecilia latipinna) is influenced by the phenotypic quality of model females with whom males are observed consorting. Test females choosing between two males of similar body length were found to significantly increase time spent with previously non-preferred males after having observed them with a relatively high-quality female. Conversely, females were found to significantly decrease time spent with previously preferred males after having observed them with a relatively low-quality female. Female mate choice copying might be maintained by selection based on the heuristic value it provides females choosing between males whose quality differences are not easily distinguishable.

  5. Numerical modeling of piezoelectric transducers using physical parameters.

    Science.gov (United States)

    Cappon, Hans; Keesman, Karel J

    2012-05-01

    Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and experimental data can be used to acquire valid estimates of the material parameters. In our design application, a finite element (FE) model of an ultrasonic particle separator, driven by an ultrasonic transducer in thickness mode, is required. A limited set of material parameters for the piezoelectric transducer were obtained from the manufacturer, thus preserving prior physical knowledge to a large extent. The remaining unknown parameters were estimated from impedance analysis with a simple experimental setup combined with a numerical optimization routine using 2-D and 3-D FE models. Thus, a full set of physically interpretable material parameters was obtained for our specific purpose. The approach provides adequate accuracy of the estimates of the material parameters, near 1%. These parameter estimates will subsequently be applied in future design simulations, without the need to go through an entire series of characterization experiments. Finally, a sensitivity study showed that small variations of 1% in the main parameters caused changes near 1% in the eigenfrequency, but changes up to 7% in the admittance peak, thus influencing the efficiency of the system. Temperature will already cause these small variations in response; thus, a frequency control unit is required when actually manufacturing an efficient ultrasonic separation system.

  6. Parameter estimation and model selection in computational biology.

    Directory of Open Access Journals (Sweden)

    Gabriele Lillacci

    2010-03-01

    Full Text Available A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection.

  7. An Effective Parameter Screening Strategy for High Dimensional Watershed Models

    Science.gov (United States)

    Khare, Y. P.; Martinez, C. J.; Munoz-Carpena, R.

    2014-12-01

    Watershed simulation models can assess the impacts of natural and anthropogenic disturbances on natural systems. These models have become important tools for tackling a range of water resources problems through their implementation in the formulation and evaluation of Best Management Practices, Total Maximum Daily Loads, and Basin Management Action Plans. For accurate applications of watershed models they need to be thoroughly evaluated through global uncertainty and sensitivity analyses (UA/SA). However, due to the high dimensionality of these models such evaluation becomes extremely time- and resource-consuming. Parameter screening, the qualitative separation of important parameters, has been suggested as an essential step before applying rigorous evaluation techniques such as the Sobol' and Fourier Amplitude Sensitivity Test (FAST) methods in the UA/SA framework. The method of elementary effects (EE) (Morris, 1991) is one of the most widely used screening methodologies. Some of the common parameter sampling strategies for EE, e.g. Optimized Trajectories [OT] (Campolongo et al., 2007) and Modified Optimized Trajectories [MOT] (Ruano et al., 2012), suffer from inconsistencies in the generated parameter distributions, infeasible sample generation time, etc. In this work, we have formulated a new parameter sampling strategy - Sampling for Uniformity (SU) - for parameter screening which is based on the principles of the uniformity of the generated parameter distributions and the spread of the parameter sample. A rigorous multi-criteria evaluation (time, distribution, spread and screening efficiency) of OT, MOT, and SU indicated that SU is superior to other sampling strategies. Comparison of the EE-based parameter importance rankings with those of Sobol' helped to quantify the qualitativeness of the EE parameter screening approach, reinforcing the fact that one should use EE only to reduce the resource burden required by FAST/Sobol' analyses but not to replace it.

  8. Interactive Web service choice-making based on extended QoS model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Quality of Service (QoS) is a key factor in Web service advertising, choosing and runtime monitoring. Web service QoS is multi-faceted, fuzzy and dynamic. Current researches focus on implementation level performance assurance, ignoring domain specific or application level metrics which are also very important to service users. Industry Web service standards lack QoS expression. The support for QoS based service choice-making is very limited. We proposed an extended Web service QoS model based on configurable fuzzy synthetic evaluation system. Web service QoS is evaluated dynamically according to the service context. A QoS requirement description model is also given for service QoS requirement definition. An interactive Web service choice-making process is described, which takes QoS as a key factor when choosing from functionally equivalent services.

  9. DYNAMIC MATHEMATICAL MODEL OF URBAN SPATIAL PATTERN (RESIDENTIAL CHOICE OF LOCATION: MOBILITY VS EXTERNALITY

    Directory of Open Access Journals (Sweden)

    Rahma Fitriani

    2015-01-01

    Full Text Available Household’s residential choice of location determines urban spatial pattern (e.g sprawl. The static model which assumes that the choice has been affected by distance to the CBD and location specific externality, fails to capture the evoution of the pattern over time. Therefore this study proposes a dynamic version of the model. It analyses the effects of externalities on the optimal solution of development decision as function of time. It also derives the effect of mobility and externality on the rate of change of development pattern through time. When the increasing rate of utility is not as significant as the increasing rate of income, the externalities will delay the change of urban spatial pattern over time. If the mobility costs increase by large amount relative to the increase of income and inflation rate, then the mobility effect dominates the effects of externalities in delaying the urban expansion.

  10. A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units

    Science.gov (United States)

    Bhat, Chandra R.; Sener, Ipek N.

    2009-09-01

    This study focuses on accommodating spatial dependency in data indexed by geographic location. In particular, the emphasis is on accommodating spatial error correlation across observational units in binary discrete choice models. We propose a copula-based approach to spatial dependence modeling based on a spatial logit structure rather than a spatial probit structure. In this approach, the dependence between the logistic error terms of different observational units is directly accommodated using a multivariate logistic distribution based on the Farlie-Gumbel-Morgenstein (FGM) copula. The approach represents a simple and powerful technique that results in a closed-form analytic expression for the joint probability of choice across observational units, and is straightforward to apply using a standard and direct maximum likelihood inference procedure. There is no simulation machinery involved, leading to substantial computation gains relative to current methods to address spatial correlation. The approach is applied to teenagers’ physical activity participation levels, a subject of considerable interest in the public health, transportation, sociology, and adolescence development fields. The results indicate that failing to accommodate heteroscedasticity and spatial correlation can lead to inconsistent and inefficient parameter estimates, as well as incorrect conclusions regarding the elasticity effects of exogenous variables.

  11. Minor hysteresis loops model based on exponential parameters scaling of the modified Jiles-Atherton model

    Energy Technology Data Exchange (ETDEWEB)

    Hamimid, M., E-mail: Hamimid_mourad@hotmail.com [Laboratoire de modelisation des systemes energetiques LMSE, Universite de Biskra, BP 145, 07000 Biskra (Algeria); Mimoune, S.M., E-mail: s.m.mimoune@mselab.org [Laboratoire de modelisation des systemes energetiques LMSE, Universite de Biskra, BP 145, 07000 Biskra (Algeria); Feliachi, M., E-mail: mouloud.feliachi@univ-nantes.fr [IREENA-IUT, CRTT, 37 Boulevard de l' Universite, BP 406, 44602 Saint Nazaire Cedex (France)

    2012-07-01

    In this present work, the minor hysteresis loops model based on parameters scaling of the modified Jiles-Atherton model is evaluated by using judicious expressions. These expressions give the minor hysteresis loops parameters as a function of the major hysteresis loop ones. They have exponential form and are obtained by parameters identification using the stochastic optimization method 'simulated annealing'. The main parameters influencing the data fitting are three parameters, the pinning parameter k, the mean filed parameter {alpha} and the parameter which characterizes the shape of anhysteretic magnetization curve a. To validate this model, calculated minor hysteresis loops are compared with measured ones and good agreements are obtained.

  12. Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups.

    Science.gov (United States)

    van der Harst, Eugenie; Potting, José; Kroeze, Carolien

    2014-10-01

    This study used multiple data sets and modelling choices in an environmental life cycle assessment (LCA) to compare typical disposable beverage cups made from polystyrene (PS), polylactic acid (PLA; bioplastic) and paper lined with bioplastic (biopaper). Incineration and recycling were considered as waste processing options, and for the PLA and biopaper cup also composting and anaerobic digestion. Multiple data sets and modelling choices were systematically used to calculate average results and the spread in results for each disposable cup in eleven impact categories. The LCA results of all combinations of data sets and modelling choices consistently identify three processes that dominate the environmental impact: (1) production of the cup's basic material (PS, PLA, biopaper), (2) cup manufacturing, and (3) waste processing. The large spread in results for impact categories strongly overlaps among the cups, however, and therefore does not allow a preference for one type of cup material. Comparison of the individual waste treatment options suggests some cautious preferences. The average waste treatment results indicate that recycling is the preferred option for PLA cups, followed by anaerobic digestion and incineration. Recycling is slightly preferred over incineration for the biopaper cups. There is no preferred waste treatment option for the PS cups. Taking into account the spread in waste treatment results for all cups, however, none of these preferences for waste processing options can be justified. The only exception is composting, which is least preferred for both PLA and biopaper cups. Our study illustrates that using multiple data sets and modelling choices can lead to considerable spread in LCA results. This makes comparing products more complex, but the outcomes more robust.

  13. The potential of electromobility in Austria: An analysis based on hybrid choice models

    OpenAIRE

    Francisco J. Bahamonde-Birke; Hanappi, Tibor

    2015-01-01

    This paper analyses the impact of the introduction of electromobility in Austria, focusing specifically on the potential demand for electric vehicles in the automotive market. We estimate discrete choice behavioral mixture models considering latent variables; these allows us to deal with this potential demand as well as to analyze the effect of different attributes of the alternatives over the potential market penetration. We find out that some usual assumptions regarding electromobilityalso ...

  14. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  15. Mathematically Modeling Parameters Influencing Surface Roughness in CNC Milling

    Directory of Open Access Journals (Sweden)

    Engin Nas

    2012-01-01

    Full Text Available In this study, steel AISI 1050 is subjected to process of face milling in CNC milling machine and such parameters as cutting speed, feed rate, cutting tip, depth of cut influencing the surface roughness are investigated experimentally. Four different experiments are conducted by creating different combinations for parameters. In conducted experiments, cutting tools, which are coated by PVD method used in forcing steel and spheroidal graphite cast iron are used. Surface roughness values, which are obtained by using specified parameters with cutting tools, are measured and correlation between measured surface roughness values and parameters is modeled mathematically by using curve fitting algorithm. Mathematical models are evaluated according to coefficients of determination (R2 and the most ideal one is suggested for theoretical works. Mathematical models, which are proposed for each experiment, are estipulated.

  16. Regionalization parameters of conceptual rainfall-runoff model

    Science.gov (United States)

    Osuch, M.

    2003-04-01

    Main goal of this study was to develop techniques for the a priori estimation parameters of hydrological model. Conceptual hydrological model CLIRUN was applied to around 50 catchment in Poland. The size of catchments range from 1 000 to 100 000 km2. The model was calibrated for a number of gauged catchments with different catchment characteristics. The parameters of model were related to different climatic and physical catchment characteristics (topography, land use, vegetation and soil type). The relationships were tested by comparing observed and simulated runoff series from the gauged catchment that were not used in the calibration. The model performance using regional parameters was promising for most of the calibration and validation catchments.

  17. Simulations of a epidemic model with parameters variation analysis for the dengue fever

    Science.gov (United States)

    Jardim, C. L. T. F.; Prates, D. B.; Silva, J. M.; Ferreira, L. A. F.; Kritz, M. V.

    2015-09-01

    Mathematical models can be widely found in the literature for describing and analyzing epidemics. The models that use differential equations to represent mathematically such description are specially sensible to parameters involved in the modelling. In this work, an already developed model, called SIR, is analyzed when applied to a scenario of a dengue fever epidemic. Such choice is powered by the existence of useful tools presented by a variation of this original model, which allow an inclusion of different aspects of the dengue fever disease, as its seasonal characteristics, the presence of more than one strain of the vector and of the biological factor of cross-immunity. The analysis and results interpretation are performed through numerical solutions of the model in question, and a special attention is given to the different solutions generated by the use of different values for the parameters present in this model. Slight variations are performed either dynamically or statically in those parameters, mimicking hypothesized changes in the biological scenario of this simulation and providing a source of evaluation of how those changes would affect the outcomes of the epidemic in a population.

  18. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2010-01-01

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  19. Weibull Parameters Estimation Based on Physics of Failure Model

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Reliability estimation procedures are discussed for the example of fatigue development in solder joints using a physics of failure model. The accumulated damage is estimated based on a physics of failure model, the Rainflow counting algorithm and the Miner’s rule. A threshold model is used...... distribution. Methods from structural reliability analysis are used to model the uncertainties and to assess the reliability for fatigue failure. Maximum Likelihood and Least Square estimation techniques are used to estimate fatigue life distribution parameters....

  20. MODELING PARAMETERS OF ARC OF ELECTRIC ARC FURNACE

    Directory of Open Access Journals (Sweden)

    R.N. Khrestin

    2015-08-01

    Full Text Available Purpose. The aim is to build a mathematical model of the electric arc of arc furnace (EAF. The model should clearly show the relationship between the main parameters of the arc. These parameters determine the properties of the arc and the possibility of optimization of melting mode. Methodology. We have built a fairly simple model of the arc, which satisfies the above requirements. The model is designed for the analysis of electromagnetic processes arc of varying length. We have compared the results obtained when testing the model with the results obtained on actual furnaces. Results. During melting in real chipboard under the influence of changes in temperature changes its properties arc plasma. The proposed model takes into account these changes. Adjusting the length of the arc is the main way to regulate the mode of smelting chipboard. The arc length is controlled by the movement of the drive electrode. The model reflects the dynamic changes in the parameters of the arc when changing her length. We got the dynamic current-voltage characteristics (CVC of the arc for the different stages of melting. We got the arc voltage waveform and identified criteria by which possible identified stage of smelting. Originality. In contrast to the previously known models, this model clearly shows the relationship between the main parameters of the arc EAF: arc voltage Ud, amperage arc id and length arc d. Comparison of the simulation results and experimental data obtained from real particleboard showed the adequacy of the constructed model. It was found that character of change of magnitude Md, helps determine the stage of melting. Practical value. It turned out that the model can be used to simulate smelting in EAF any capacity. Thus, when designing the system of control mechanism for moving the electrode, the model takes into account changes in the parameters of the arc and it can significantly reduce electrode material consumption and energy consumption

  1. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  2. Constraining snow model choices in a transitional snow environment with intensive observations

    Science.gov (United States)

    Wayand, N. E.; Massmann, A.; Clark, M. P.; Lundquist, J. D.

    2014-12-01

    The performance of existing energy balance snow models exhibits a large spread in the simulated snow water equivalent, snow depth, albedo, and surface temperature. Indentifying poor model representations of physical processes within intercomparison studies is difficult due to multiple differences between models as well as non-orthogonal metrics used. Efforts to overcome these obstacles for model development have focused on a modeling framework that allows multiple representations of each physical process within one structure. However, there still exists a need for snow study sites within complex terrain that observe enough model states and fluxes to constrain model choices. In this study we focus on an intensive snow observational site located in the maritime-transitional snow climate of Snoqualmie Pass WA (Figure 1). The transitional zone has been previously identified as a difficult climate to simulate snow processes; therefore, it represents an ideal model-vetting site. From two water years of intensive observational data, we have learned that a more honest comparison with observations requires that the modeled states or fluxes be as similar to the spatial and temporal domain of the instrument, even if it means changing the model to match what is being observed. For example, 24-hour snow board observations do not capture compaction of the underlying snow; therefore, a modeled "snow board" was created that only includes new snow accumulation and new snow compaction. We extend this method of selective model validation to all available Snoqualmie observations to constrain model choices within the Structure for Understanding Multiple Modeling Alternatives (SUMMA) framework. Our end goal is to provide a more rigorous and systematic method for diagnosing problems within snow models at a site given numerous snow observations.

  3. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  4. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-06-27

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699

  5. Construction of constant-Q viscoelastic model with three parameters

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-yu; YIN Xing-yao

    2007-01-01

    The popularly used viscoelastic models have some shortcomings in describing relationship between quality factor (Q) and frequency, which is not consistent with the observation data. Based on the theory of viscoelasticity, a new approach to construct constant-Q viscoelastic model in given frequency band with three parameters is developed. The designed model describes the frequency-independence feature of quality factor very well, and the effect of viscoelasticity on seismic wave field can be studied relatively accurate in theory with this model. Furthermore, the number of required parameters in this model has been reduced fewer than that of other constant-Q models, this can simplify the solution of the viscoelastic problems to some extent. At last, the accuracy and application range have been analyzed through numerical tests. The effect of viscoelasticity on wave propagation has been briefly illustrated through the change of frequency spectra and waveform in several different viscoelastic models.

  6. Global-scale regionalization of hydrologic model parameters

    Science.gov (United States)

    Beck, Hylke E.; van Dijk, Albert I. J. M.; de Roo, Ad; Miralles, Diego G.; McVicar, Tim R.; Schellekens, Jaap; Bruijnzeel, L. Adrian

    2016-05-01

    Current state-of-the-art models typically applied at continental to global scales (hereafter called macroscale) tend to use a priori parameters, resulting in suboptimal streamflow (Q) simulation. For the first time, a scheme for regionalization of model parameters at the global scale was developed. We used data from a diverse set of 1787 small-to-medium sized catchments (10-10,000 km2) and the simple conceptual HBV model to set up and test the scheme. Each catchment was calibrated against observed daily Q, after which 674 catchments with high calibration and validation scores, and thus presumably good-quality observed Q and forcing data, were selected to serve as donor catchments. The calibrated parameter sets for the donors were subsequently transferred to 0.5° grid cells with similar climatic and physiographic characteristics, resulting in parameter maps for HBV with global coverage. For each grid cell, we used the 10 most similar donor catchments, rather than the single most similar donor, and averaged the resulting simulated Q, which enhanced model performance. The 1113 catchments not used as donors were used to independently evaluate the scheme. The regionalized parameters outperformed spatially uniform (i.e., averaged calibrated) parameters for 79% of the evaluation catchments. Substantial improvements were evident for all major Köppen-Geiger climate types and even for evaluation catchments > 5000 km distant from the donors. The median improvement was about half of the performance increase achieved through calibration. HBV with regionalized parameters outperformed nine state-of-the-art macroscale models, suggesting these might also benefit from the new regionalization scheme. The produced HBV parameter maps including ancillary data are available via www.gloh2o.org.

  7. Bayesian parameter estimation for nonlinear modelling of biological pathways

    Directory of Open Access Journals (Sweden)

    Ghasemi Omid

    2011-12-01

    Full Text Available Abstract Background The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. Results We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC method. We applied this approach to the biological pathways involved in the left ventricle (LV response to myocardial infarction (MI and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly

  8. Mirror symmetry for two-parameter models, 1

    CERN Document Server

    Candelas, Philip; Font, A; Katz, S; Morrison, Douglas Robert Ogston; Candelas, Philip; Ossa, Xenia de la; Font, Anamaria; Katz, Sheldon; Morrison, David R.

    1994-01-01

    We study, by means of mirror symmetry, the quantum geometry of the K\\"ahler-class parameters of a number of Calabi-Yau manifolds that have $b_{11}=2$. Our main interest lies in the structure of the moduli space and in the loci corresponding to singular models. This structure is considerably richer when there are two parameters than in the various one-parameter models that have been studied hitherto. We describe the intrinsic structure of the point in the (compactification of the) moduli space that corresponds to the large complex structure or classical limit. The instanton expansions are of interest owing to the fact that some of the instantons belong to families with continuous parameters. We compute the Yukawa couplings and their expansions in terms of instantons of genus zero. By making use of recent results of Bershadsky et al. we compute also the instanton numbers for instantons of genus one. For particular values of the parameters the models become birational to certain models with one parameter. The co...

  9. Estimating Parameters in Physical Models through Bayesian Inversion: A Complete Example

    KAUST Repository

    Allmaras, Moritz

    2013-02-07

    All mathematical models of real-world phenomena contain parameters that need to be estimated from measurements, either for realistic predictions or simply to understand the characteristics of the model. Bayesian statistics provides a framework for parameter estimation in which uncertainties about models and measurements are translated into uncertainties in estimates of parameters. This paper provides a simple, step-by-step example-starting from a physical experiment and going through all of the mathematics-to explain the use of Bayesian techniques for estimating the coefficients of gravity and air friction in the equations describing a falling body. In the experiment we dropped an object from a known height and recorded the free fall using a video camera. The video recording was analyzed frame by frame to obtain the distance the body had fallen as a function of time, including measures of uncertainty in our data that we describe as probability densities. We explain the decisions behind the various choices of probability distributions and relate them to observed phenomena. Our measured data are then combined with a mathematical model of a falling body to obtain probability densities on the space of parameters we seek to estimate. We interpret these results and discuss sources of errors in our estimation procedure. © 2013 Society for Industrial and Applied Mathematics.

  10. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    2007-01-01

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines...

  11. Muscle parameters for musculoskeletal modelling of the human neck

    NARCIS (Netherlands)

    Borst, J.; Forbes, P.A.; Happee, R.; Veeger, H.E.J.

    2011-01-01

    Background: To study normal or pathological neuromuscular control, a musculoskeletal model of the neck has great potential but a complete and consistent anatomical dataset which comprises the muscle geometry parameters to construct such a model is not yet available. Methods: A dissection experiment

  12. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    2007-01-01

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines...

  13. Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies

    Science.gov (United States)

    Smith, Carrie E.; Cribbie, Robert A.

    2013-01-01

    When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…

  14. Muscle parameters for musculoskeletal modelling of the human neck

    NARCIS (Netherlands)

    Borst, J.; Forbes, P.A.; Happee, R.; Veeger, H.E.J.

    2011-01-01

    Background: To study normal or pathological neuromuscular control, a musculoskeletal model of the neck has great potential but a complete and consistent anatomical dataset which comprises the muscle geometry parameters to construct such a model is not yet available. Methods: A dissection experiment

  15. Geometry parameters for musculoskeletal modelling of the shoulder system

    NARCIS (Netherlands)

    Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H

    1992-01-01

    A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of geomet

  16. Precise correction to parameter ρ in the littlest Higgs model

    Institute of Scientific and Technical Information of China (English)

    Farshid Tabbak; F.Farnoudi

    2008-01-01

    In this paper tree-level violation of weak isospin parameter,ρ in the flame of the littlest Higgs model is studied.The potentially large deviation from the standard model prediction for the ρ in terms of the littlest Higgs model parameters is calculated.The maximum value for ρ for f = 1 TeV,c = 0.05,c'= 0.05and v'= 1.5 GeV is ρ = 1.2973 which means a large enhancement than the SM.

  17. Analyzing Multiple-Choice Questions by Model Analysis and Item Response Curves

    Science.gov (United States)

    Wattanakasiwich, P.; Ananta, S.

    2010-07-01

    In physics education research, the main goal is to improve physics teaching so that most students understand physics conceptually and be able to apply concepts in solving problems. Therefore many multiple-choice instruments were developed to probe students' conceptual understanding in various topics. Two techniques including model analysis and item response curves were used to analyze students' responses from Force and Motion Conceptual Evaluation (FMCE). For this study FMCE data from more than 1000 students at Chiang Mai University were collected over the past three years. With model analysis, we can obtain students' alternative knowledge and the probabilities for students to use such knowledge in a range of equivalent contexts. The model analysis consists of two algorithms—concentration factor and model estimation. This paper only presents results from using the model estimation algorithm to obtain a model plot. The plot helps to identify a class model state whether it is in the misconception region or not. Item response curve (IRC) derived from item response theory is a plot between percentages of students selecting a particular choice versus their total score. Pros and cons of both techniques are compared and discussed.

  18. Comparative Analysis of Visco-elastic Models with Variable Parameters

    Directory of Open Access Journals (Sweden)

    Silviu Nastac

    2010-01-01

    Full Text Available The paper presents a theoretical comparative study for computational behaviour analysis of vibration isolation elements based on viscous and elastic models with variable parameters. The changing of elastic and viscous parameters can be produced by natural timed evolution demo-tion or by heating developed into the elements during their working cycle. It was supposed both linear and non-linear numerical viscous and elastic models, and their combinations. The results show the impor-tance of numerical model tuning with the real behaviour, as such the characteristics linearity, and the essential parameters for damping and rigidity. Multiple comparisons between linear and non-linear simulation cases dignify the basis of numerical model optimization regarding mathematical complexity vs. results reliability.

  19. Improvement of Continuous Hydrologic Models and HMS SMA Parameters Reduction

    Science.gov (United States)

    Rezaeian Zadeh, Mehdi; Zia Hosseinipour, E.; Abghari, Hirad; Nikian, Ashkan; Shaeri Karimi, Sara; Moradzadeh Azar, Foad

    2010-05-01

    Hydrological models can help us to predict stream flows and associated runoff volumes of rainfall events within a watershed. There are many different reasons why we need to model the rainfall-runoff processes of for a watershed. However, the main reason is the limitation of hydrological measurement techniques and the costs of data collection at a fine scale. Generally, we are not able to measure all that we would like to know about a given hydrological systems. This is very particularly the case for ungauged catchments. Since the ultimate aim of prediction using models is to improve decision-making about a hydrological problem, therefore, having a robust and efficient modeling tool becomes an important factor. Among several hydrologic modeling approaches, continuous simulation has the best predictions because it can model dry and wet conditions during a long-term period. Continuous hydrologic models, unlike event based models, account for a watershed's soil moisture balance over a long-term period and are suitable for simulating daily, monthly, and seasonal streamflows. In this paper, we describe a soil moisture accounting (SMA) algorithm added to the hydrologic modeling system (HEC-HMS) computer program. As is well known in the hydrologic modeling community one of the ways for improving a model utility is the reduction of input parameters. The enhanced model developed in this study is applied to Khosrow Shirin Watershed, located in the north-west part of Fars Province in Iran, a data limited watershed. The HMS SMA algorithm divides the potential path of rainfall onto a watershed into five zones. The results showed that the output of HMS SMA is insensitive with the variation of many parameters such as soil storage and soil percolation rate. The study's objective is to remove insensitive parameters from the model input using Multi-objective sensitivity analysis. Keywords: Continuous Hydrologic Modeling, HMS SMA, Multi-objective sensitivity analysis, SMA Parameters

  20. A software for parameter estimation in dynamic models

    Directory of Open Access Journals (Sweden)

    M. Yuceer

    2008-12-01

    Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.

  1. Condition Parameter Modeling for Anomaly Detection in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yonglong Yan

    2014-05-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.

  2. Parameter Estimation of Photovoltaic Models via Cuckoo Search

    Directory of Open Access Journals (Sweden)

    Jieming Ma

    2013-01-01

    Full Text Available Since conventional methods are incapable of estimating the parameters of Photovoltaic (PV models with high accuracy, bioinspired algorithms have attracted significant attention in the last decade. Cuckoo Search (CS is invented based on the inspiration of brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior. In this paper, a CS-based parameter estimation method is proposed to extract the parameters of single-diode models for commercial PV generators. Simulation results and experimental data show that the CS algorithm is capable of obtaining all the parameters with extremely high accuracy, depicted by a low Root-Mean-Squared-Error (RMSE value. The proposed method outperforms other algorithms applied in this study.

  3. Coupled Ising models and interdependent discrete choices under social influence in homogeneous populations

    CERN Document Server

    del Río, Ana Fernández

    2011-01-01

    The use of statistical physics to study problems of social sciences is motivated and its current state of the art briefly reviewed, in particular for the case of discrete choice making. The coupling of two binary choices is studied in some detail, using an Ising model for each of the decision variables (the opinion or choice moments or spins, socioeconomic equivalents to the magnetic moments or spins). Toy models for two different types of coupling are studied analytically and numerically in the mean field (infinite range) approximation. This is equivalent to considering a social influence effect proportional to the fraction of adopters or average magnetisation. In the nonlocal case, the two spin variables are coupled through a Weiss mean field type term. In a socioeconomic context, this can be useful when studying individuals of two different groups, making the same decision under social influence of their own group, when their outcome is affected by the fraction of adopters of the other group. In the local ...

  4. A Personal Value-Based Model of College Students' Aptitudes and Expected Choice Behavior Regarding Retailing Careers.

    Science.gov (United States)

    Shim, Soyeon; Warrington, Patti; Goldsberry, Ellen

    1999-01-01

    A study of 754 retail management students developed a value-based model of career attitude and expected choice behavior. Findings indicate that personal values had an influence on all aspects of retail career attitudes, which then had a direct effect on expected choice behavior. (Contains 55 references.) (Author/JOW)

  5. Parameter estimation and uncertainty quantification in a biogeochemical model using optimal experimental design methods

    Science.gov (United States)

    Reimer, Joscha; Piwonski, Jaroslaw; Slawig, Thomas

    2016-04-01

    The statistical significance of any model-data comparison strongly depends on the quality of the used data and the criterion used to measure the model-to-data misfit. The statistical properties (such as mean values, variances and covariances) of the data should be taken into account by choosing a criterion as, e.g., ordinary, weighted or generalized least squares. Moreover, the criterion can be restricted onto regions or model quantities which are of special interest. This choice influences the quality of the model output (also for not measured quantities) and the results of a parameter estimation or optimization process. We have estimated the parameters of a three-dimensional and time-dependent marine biogeochemical model describing the phosphorus cycle in the ocean. For this purpose, we have developed a statistical model for measurements of phosphate and dissolved organic phosphorus. This statistical model includes variances and correlations varying with time and location of the measurements. We compared the obtained estimations of model output and parameters for different criteria. Another question is if (and which) further measurements would increase the model's quality at all. Using experimental design criteria, the information content of measurements can be quantified. This may refer to the uncertainty in unknown model parameters as well as the uncertainty regarding which model is closer to reality. By (another) optimization, optimal measurement properties such as locations, time instants and quantities to be measured can be identified. We have optimized such properties for additional measurement for the parameter estimation of the marine biogeochemical model. For this purpose, we have quantified the uncertainty in the optimal model parameters and the model output itself regarding the uncertainty in the measurement data using the (Fisher) information matrix. Furthermore, we have calculated the uncertainty reduction by additional measurements depending on time

  6. Parameter Estimation for Single Diode Models of Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.

    2015-03-01

    Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.

  7. Automatic Determination of the Conic Coronal Mass Ejection Model Parameters

    Science.gov (United States)

    Pulkkinen, A.; Oates, T.; Taktakishvili, A.

    2009-01-01

    Characterization of the three-dimensional structure of solar transients using incomplete plane of sky data is a difficult problem whose solutions have potential for societal benefit in terms of space weather applications. In this paper transients are characterized in three dimensions by means of conic coronal mass ejection (CME) approximation. A novel method for the automatic determination of cone model parameters from observed halo CMEs is introduced. The method uses both standard image processing techniques to extract the CME mass from white-light coronagraph images and a novel inversion routine providing the final cone parameters. A bootstrap technique is used to provide model parameter distributions. When combined with heliospheric modeling, the cone model parameter distributions will provide direct means for ensemble predictions of transient propagation in the heliosphere. An initial validation of the automatic method is carried by comparison to manually determined cone model parameters. It is shown using 14 halo CME events that there is reasonable agreement, especially between the heliocentric locations of the cones derived with the two methods. It is argued that both the heliocentric locations and the opening half-angles of the automatically determined cones may be more realistic than those obtained from the manual analysis

  8. PRO-ECOLOGICAL ACTIONS AND CONSUMER CHOICES IN THE MODEL OF RESPONSIBLE BUSINESS

    Directory of Open Access Journals (Sweden)

    Katarzyna Olejniczak

    2015-09-01

    Full Text Available The current farming conditions cause that recent social and environmental aspects of management play an important role for the functioning of modern enterprises. This results from the fact that on the one hand the activities of modern enterprises are determined by the surroundings’ increasing complexity, on the other hand the growing demands of various groups of stakeholders build company’s success based not only on a quest to maximize their profi t, but primarily on taking the responsibility for the consequences of their actions. Additionally, the growing awareness of consumers makes more and more enterprises implement the concept of corporate social responsibility (CSR in their actions. For this reason, it is important to discuss about the actions and choices of consumers in the model of CSR. The aim of this article is to present the results of the research on customers‘s environmentally conscious activities and choices.

  9. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers...... seek to minimize their anticipated regret from their corrective actions. The model accounts for driver attributes and behavior, critical events that made the crash imminent, vehicle and road characteristics, and environmental conditions. Analyzed data are retrieved from the General Estimates System...... (GES) crash database for the period between 2005 and 2009. The predictive ability of the RRM-based model is slightly superior to its RUM-based counterpart, namely the multinomial logit model (MNL) model. The marginal effects predicted by the RRM-based model are greater than those predicted by the RUM-based...

  10. Estimation of the parameters of ETAS models by Simulated Annealing

    OpenAIRE

    Lombardi, Anna Maria

    2015-01-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is...

  11. CADLIVE optimizer: web-based parameter estimation for dynamic models

    Directory of Open Access Journals (Sweden)

    Inoue Kentaro

    2012-08-01

    Full Text Available Abstract Computer simulation has been an important technique to capture the dynamics of biochemical networks. In most networks, however, few kinetic parameters have been measured in vivo because of experimental complexity. We develop a kinetic parameter estimation system, named the CADLIVE Optimizer, which comprises genetic algorithms-based solvers with a graphical user interface. This optimizer is integrated into the CADLIVE Dynamic Simulator to attain efficient simulation for dynamic models.

  12. Sensitivity of computed uranium-238 self-shielding factors to the choice of the unresolved average resonance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobos, J.L.; de Saussure, G.; Perez, R.B.

    1982-05-01

    The influence of different representations of the unresolved resonances of /sup 238/U on the computed self-shielding factors is examined. It is shown that the evaluated infinitely diluted average capture cross section does not provide sufficient information to determine a unique set of unresolved resonance parameters; different sets of unresolved resonance parameters equally consistent with the evaluated average capture cross section yield significantly different computed self-shielding factors. In the conclusion it is recommended that the resolved resonance description of the evaluated /sup 238/U cross sections be extended to higher energies and that thick sample transmission data and self-indication data be used to improve the evaluation of the unresolved resonance region.

  13. Reference physiological parameters for pharmacodynamic modeling of liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Travis, C.C.; Arms, A.D.

    1988-01-01

    This document presents a compilation of measured values for physiological parameters used in pharamacodynamic modeling of liver cancer. The physiological parameters include body weight, liver weight, the liver weight/body weight ratio, and number of hepatocytes. Reference values for use in risk assessment are given for each of the physiological parameters based on analyses of valid measurements taken from the literature and other reliable sources. The proposed reference values for rodents include sex-specific measurements for the B6C3F{sub 1}, mice and Fishcer 344/N, Sprague-Dawley, and Wistar rats. Reference values are also provided for humans. 102 refs., 65 tabs.

  14. Uncertainty of Modal Parameters Estimated by ARMA Models

    DEFF Research Database (Denmark)

    Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders

    1990-01-01

    In this paper the uncertainties of identified modal parameters such as eidenfrequencies and damping ratios are assed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the parameters...... by simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been choosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore...

  15. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...

  16. A Bayesian framework for parameter estimation in dynamical models.

    Directory of Open Access Journals (Sweden)

    Flávio Codeço Coelho

    Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.

  17. Modelling of Water Turbidity Parameters in a Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    A. S. KOVO

    2005-01-01

    Full Text Available The high cost of chemical analysis of water has necessitated various researches into finding alternative method of determining portable water quality. This paper is aimed at modelling the turbidity value as a water quality parameter. Mathematical models for turbidity removal were developed based on the relationships between water turbidity and other water criteria. Results showed that the turbidity of water is the cumulative effect of the individual parameters/factors affecting the system. A model equation for the evaluation and prediction of a clarifier’s performance was developed:Model: T = T0(-1.36729 + 0.037101∙10λpH + 0.048928t + 0.00741387∙alkThe developed model will aid the predictive assessment of water treatment plant performance. The limitations of the models are as a result of insufficient variable considered during the conceptualization.

  18. Simultaneous estimation of parameters in the bivariate Emax model.

    Science.gov (United States)

    Magnusdottir, Bergrun T; Nyquist, Hans

    2015-12-10

    In this paper, we explore inference in multi-response, nonlinear models. By multi-response, we mean models with m > 1 response variables and accordingly m relations. Each parameter/explanatory variable may appear in one or more of the relations. We study a system estimation approach for simultaneous computation and inference of the model and (co)variance parameters. For illustration, we fit a bivariate Emax model to diabetes dose-response data. Further, the bivariate Emax model is used in a simulation study that compares the system estimation approach to equation-by-equation estimation. We conclude that overall, the system estimation approach performs better for the bivariate Emax model when there are dependencies among relations. The stronger the dependencies, the more we gain in precision by using system estimation rather than equation-by-equation estimation.

  19. Models of care choices in today's nursing workplace: where does team nursing sit?

    Science.gov (United States)

    Fairbrother, Greg; Chiarella, Mary; Braithwaite, Jeffrey

    2015-11-01

    This paper provides an overview of the developmental history of models of care (MOC) in nursing since Florence Nightingale introduced nurse training programs in a drive to make nursing a discipline-based career option. The four principal choices of models of nursing care delivery (primary nursing, individual patient allocation, team nursing and functional nursing) are outlined and discussed, and recent MOC literature reviewed. The paper suggests that, given the ways work is being rapidly reconfigured in healthcare services and the pressures on the nursing workforce projected into the future, team nursing seems to offer the best solutions.

  20. Application of a New Hybrid Fuzzy AHP Model to the Location Choice

    Directory of Open Access Journals (Sweden)

    Chien-Chang Chou

    2013-01-01

    Full Text Available The purpose of this paper is to propose a new hybrid fuzzy Analytic Hierarchy Process (AHP algorithm to deal with the decision-making problems in an uncertain and multiple-criteria environment. In this study, the proposed hybrid fuzzy AHP model is applied to the location choices of international distribution centers in international ports from the view of multiple-nation corporations. The results show that the proposed new hybrid fuzzy AHP model is an appropriate tool to solve the decision-making problems in an uncertain and multiple-criteria environment.

  1. [The model of the reward choice basing on the theory of reinforcement learning].

    Science.gov (United States)

    Smirnitskaia, I A; Frolov, A A; Merzhanova, G Kh

    2007-01-01

    We developed the model of alimentary instrumental conditioned bar-pressing reflex for cats making a choice between either immediate small reinforcement ("impulsive behavior") or delayed more valuable reinforcement ("self-control behavior"). Our model is based on the reinforcement learning theory. We emulated dopamine contribution by discount coefficient of this theory (a subjective decrease in the value of a delayed reinforcement). The results of computer simulation showed that "cats" with large discount coefficient demonstrated "self-control behavior"; small discount coefficient was associated with "impulsive behavior". This data are in agreement with the experimental data indicating that the impulsive behavior is due to a decreased amount of dopamine in striatum.

  2. Shape parameter estimate for a glottal model without time position

    OpenAIRE

    Degottex, Gilles; Roebel, Axel; Rodet, Xavier

    2009-01-01

    cote interne IRCAM: Degottex09a; None / None; National audience; From a recorded speech signal, we propose to estimate a shape parameter of a glottal model without estimating his time position. Indeed, the literature usually propose to estimate the time position first (ex. by detecting Glottal Closure Instants). The vocal-tract filter estimate is expressed as a minimum-phase envelope estimation after removing the glottal model and a standard lips radiation model. Since this filter is mainly b...

  3. Light-Front Spin-1 Model: Parameters Dependence

    CERN Document Server

    Mello, Clayton S; de Melo, J P B C; Frederico, T

    2015-01-01

    We study the structure of the $\\rho$-meson within a light-front model with constituent quark degrees of freedom. We calculate electroweak static observables: magnetic and quadrupole moments, decay constant and charge radius. The prescription used to compute the electroweak quantities is free of zero modes, which makes the calculation implicitly covariant. We compare the results of our model with other ones found in the literature. Our model parameters give a decay constant close to the experimental one.

  4. Cosmological Models with Variable Deceleration Parameter in Lyra's Manifold

    CERN Document Server

    Pradhan, A; Singh, C B

    2006-01-01

    FRW models of the universe have been studied in the cosmological theory based on Lyra's manifold. A new class of exact solutions has been obtained by considering a time dependent displacement field for variable deceleration parameter from which three models of the universe are derived (i) exponential (ii) polynomial and (iii) sinusoidal form respectively. The behaviour of these models of the universe are also discussed. Finally some possibilities of further problems and their investigations have been pointed out.

  5. Fear of Floating and Pegging: A Simultaneous Choice Model of De Jure and De Facto Exchange Rate Regimes

    OpenAIRE

    von Hagen, Jürgen; Zhou, Jizhong

    2008-01-01

    We present an analysis of the determinants of de jure and de facto exchange rate regimes based on a panel probit model with simultaneous equations. The model is estimated using simulation-based maximum likelihood methods. The empirical results suggest a triangular structure of the model such that the choice of de facto regimes depends on the choice of de jure regimes but not vice versa. This gives rise to a novel interpretation of regime discrepancies.

  6. Identification of slow molecular order parameters for Markov model construction

    CERN Document Server

    Perez-Hernandez, Guillermo; Giorgino, Toni; de Fabritiis, Gianni; Noé, Frank

    2013-01-01

    A goal in the kinetic characterization of a macromolecular system is the description of its slow relaxation processes, involving (i) identification of the structural changes involved in these processes, and (ii) estimation of the rates or timescales at which these slow processes occur. Most of the approaches to this task, including Markov models, Master-equation models, and kinetic network models, start by discretizing the high-dimensional state space and then characterize relaxation processes in terms of the eigenvectors and eigenvalues of a discrete transition matrix. The practical success of such an approach depends very much on the ability to finely discretize the slow order parameters. How can this task be achieved in a high-dimensional configuration space without relying on subjective guesses of the slow order parameters? In this paper, we use the variational principle of conformation dynamics to derive an optimal way of identifying the "slow subspace" of a large set of prior order parameters - either g...

  7. Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes

    CERN Document Server

    Bandyopadhyay, A; Goswami, S; Petcov, S T; Bandyopadhyay, Abhijit; Choubey, Sandhya; Goswami, Srubabati

    2006-01-01

    We explore a novel possibility of determining the solar model parameters, which serve as input in the calculations of the solar neutrino fluxes, by exploiting the data from direct measurements of the fluxes. More specifically, we use the rather precise value of the $^8B$ neutrino flux, $\\phi_B$ obtained from the global analysis of the solar neutrino and KamLAND data, to derive constraints on each of the solar model parameters on which $\\phi_B$ depends. We also use more precise values of $^7Be$ and $pp$ fluxes as can be obtained from future prospective data and discuss whether such measurements can help in reducing the uncertainties of one or more input parameters of the Standard Solar Model.

  8. IP-Sat: Impact-Parameter dependent Saturation model; revised

    CERN Document Server

    Rezaeian, Amir H; Van de Klundert, Merijn; Venugopalan, Raju

    2013-01-01

    In this talk, we present a global analysis of available small-x data on inclusive DIS and exclusive diffractive processes, including the latest data from the combined HERA analysis on reduced cross sections within the Impact-Parameter dependent Saturation (IP-Sat) Model. The impact-parameter dependence of dipole amplitude is crucial in order to have a unified description of both inclusive and exclusive diffractive processes. With the parameters of model fixed via a fit to the high-precision reduced cross-section, we compare model predictions to data for the structure functions, the longitudinal structure function, the charm structure function, exclusive vector mesons production and Deeply Virtual Compton Scattering (DVCS). Excellent agreement is obtained for the processes considered at small x in a wide range of Q^2.

  9. QCD-inspired determination of NJL model parameters

    CERN Document Server

    Springer, Paul; Rechenberger, Stefan; Rennecke, Fabian

    2016-01-01

    The QCD phase diagram at finite temperature and density has attracted considerable interest over many decades now, not least because of its relevance for a better understanding of heavy-ion collision experiments. Models provide some insight into the QCD phase structure but usually rely on various parameters. Based on renormalization group arguments, we discuss how the parameters of QCD low-energy models can be determined from the fundamental theory of the strong interaction. We particularly focus on a determination of the temperature dependence of these parameters in this work and comment on the effect of a finite quark chemical potential. We present first results and argue that our findings can be used to improve the predictive power of future model calculations.

  10. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  11. Modelling of intermittent microwave convective drying: parameter sensitivity

    Directory of Open Access Journals (Sweden)

    Zhang Zhijun

    2017-06-01

    Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  12. Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations

    Science.gov (United States)

    Hanson, Andrea; Reed, Erik; Cavanagh, Peter

    2011-01-01

    Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.

  13. Modelling of intermittent microwave convective drying: parameter sensitivity

    Science.gov (United States)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  14. Consistent parameter fixing in the quark-meson model with vacuum fluctuations

    Science.gov (United States)

    Carignano, Stefano; Buballa, Michael; Elkamhawy, Wael

    2016-08-01

    We revisit the renormalization prescription for the quark-meson model in an extended mean-field approximation, where vacuum quark fluctuations are included. At a given cutoff scale the model parameters are fixed by fitting vacuum quantities, typically including the sigma-meson mass mσ and the pion decay constant fπ. In most publications the latter is identified with the expectation value of the sigma field, while for mσ the curvature mass is taken. When quark loops are included, this prescription is however inconsistent, and the correct identification involves the renormalized pion decay constant and the sigma pole mass. In the present article we investigate the influence of the parameter-fixing scheme on the phase structure of the model at finite temperature and chemical potential. Despite large differences between the model parameters in the two schemes, we find that in homogeneous matter the effect on the phase diagram is relatively small. For inhomogeneous phases, on the other hand, the choice of the proper renormalization prescription is crucial. In particular, we show that if renormalization effects on the pion decay constant are not considered, the model does not even present a well-defined renormalized limit when the cutoff is sent to infinity.

  15. An improved cognitive model of the Iowa and Soochow Gambling Tasks with regard to model fitting performance and tests of parameter consistency

    Science.gov (United States)

    Dai, Junyi; Kerestes, Rebecca; Upton, Daniel J.; Busemeyer, Jerome R.; Stout, Julie C.

    2015-01-01

    The Iowa Gambling Task (IGT) and the Soochow Gambling Task (SGT) are two experience-based risky decision-making tasks for examining decision-making deficits in clinical populations. Several cognitive models, including the expectancy-valence learning (EVL) model and the prospect valence learning (PVL) model, have been developed to disentangle the motivational, cognitive, and response processes underlying the explicit choices in these tasks. The purpose of the current study was to develop an improved model that can fit empirical data better than the EVL and PVL models and, in addition, produce more consistent parameter estimates across the IGT and SGT. Twenty-six opiate users (mean age 34.23; SD 8.79) and 27 control participants (mean age 35; SD 10.44) completed both tasks. Eighteen cognitive models varying in evaluation, updating, and choice rules were fit to individual data and their performances were compared to that of a statistical baseline model to find a best fitting model. The results showed that the model combining the prospect utility function treating gains and losses separately, the decay-reinforcement updating rule, and the trial-independent choice rule performed the best in both tasks. Furthermore, the winning model produced more consistent individual parameter estimates across the two tasks than any of the other models. PMID:25814963

  16. An Improved Cognitive Model of the Iowa and Soochow Gambling Tasks With Regard to Model Fitting Performance and Tests of Parameter Consistency

    Directory of Open Access Journals (Sweden)

    Junyi eDai

    2015-03-01

    Full Text Available The Iowa Gambling Task (IGT and the Soochow Gambling Task (SGT are two experience-based risky decision-making tasks for examining decision-making deficits in clinical populations. Several cognitive models, including the expectancy-valence learning model (EVL and the prospect valence learning model (PVL, have been developed to disentangle the motivational, cognitive, and response processes underlying the explicit choices in these tasks. The purpose of the current study was to develop an improved model that can fit empirical data better than the EVL and PVL models and, in addition, produce more consistent parameter estimates across the IGT and SGT. Twenty-six opiate users (mean age 34.23; SD 8.79 and 27 control participants (mean age 35; SD 10.44 completed both tasks. Eighteen cognitive models varying in evaluation, updating, and choice rules were fit to individual data and their performances were compared to that of a statistical baseline model to find a best fitting model. The results showed that the model combining the prospect utility function treating gains and losses separately, the decay-reinforcement updating rule, and the trial-independent choice rule performed the best in both tasks. Furthermore, the winning model produced more consistent individual parameter estimates across the two tasks than any of the other models.

  17. Comparing spatial and temporal transferability of hydrological model parameters

    Science.gov (United States)

    Patil, Sopan; Stieglitz, Marc

    2015-04-01

    Operational use of hydrological models requires the transfer of calibrated parameters either in time (for streamflow forecasting) or space (for prediction at ungauged catchments) or both. Although the effects of spatial and temporal parameter transfer on catchment streamflow predictions have been well studied individually, a direct comparison of these approaches is much less documented. In our view, such comparison is especially pertinent in the context of increasing appeal and popularity of the "trading space for time" approaches that are proposed for assessing the hydrological implications of anthropogenic climate change. Here, we compare three different schemes of parameter transfer, viz., temporal, spatial, and spatiotemporal, using a spatially lumped hydrological model called EXP-HYDRO at 294 catchments across the continental United States. Results show that the temporal parameter transfer scheme performs best, with lowest decline in prediction performance (median decline of 4.2%) as measured using the Kling-Gupta efficiency metric. More interestingly, negligible difference in prediction performance is observed between the spatial and spatiotemporal parameter transfer schemes (median decline of 12.4% and 13.9% respectively). We further demonstrate that the superiority of temporal parameter transfer scheme is preserved even when: (1) spatial distance between donor and receiver catchments is reduced, or (2) temporal lag between calibration and validation periods is increased. Nonetheless, increase in the temporal lag between calibration and validation periods reduces the overall performance gap between the three parameter transfer schemes. Results suggest that spatiotemporal transfer of hydrological model parameters has the potential to be a viable option for climate change related hydrological studies, as envisioned in the "trading space for time" framework. However, further research is still needed to explore the relationship between spatial and temporal

  18. A Day-to-Day Route Choice Model Based on Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Fangfang Wei

    2014-01-01

    Full Text Available Day-to-day traffic dynamics are generated by individual traveler’s route choice and route adjustment behaviors, which are appropriate to be researched by using agent-based model and learning theory. In this paper, we propose a day-to-day route choice model based on reinforcement learning and multiagent simulation. Travelers’ memory, learning rate, and experience cognition are taken into account. Then the model is verified and analyzed. Results show that the network flow can converge to user equilibrium (UE if travelers can remember all the travel time they have experienced, but which is not necessarily the case under limited memory; learning rate can strengthen the flow fluctuation, but memory leads to the contrary side; moreover, high learning rate results in the cyclical oscillation during the process of flow evolution. Finally, both the scenarios of link capacity degradation and random link capacity are used to illustrate the model’s applications. Analyses and applications of our model demonstrate the model is reasonable and useful for studying the day-to-day traffic dynamics.

  19. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  20. Estimation of the parameters of ETAS models by Simulated Annealing

    Science.gov (United States)

    Lombardi, Anna Maria

    2015-02-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context.

  1. J-A Hysteresis Model Parameters Estimation using GA

    Directory of Open Access Journals (Sweden)

    Bogomir Zidaric

    2005-01-01

    Full Text Available This paper presents the Jiles and Atherton (J-A hysteresis model parameter estimation for soft magnetic composite (SMC material. The calculation of Jiles and Atherton hysteresis model parameters is based on experimental data and genetic algorithms (GA. Genetic algorithms operate in a given area of possible solutions. Finding the best solution of a problem in wide area of possible solutions is uncertain. A new approach in use of genetic algorithms is proposed to overcome this uncertainty. The basis of this approach is in genetic algorithm built in another genetic algorithm.

  2. A new estimate of the parameters in linear mixed models

    Institute of Scientific and Technical Information of China (English)

    王松桂; 尹素菊

    2002-01-01

    In linear mixed models, there are two kinds of unknown parameters: one is the fixed effect, theother is the variance component. In this paper, new estimates of these parameters, called the spectral decom-position estimates, are proposed, Some important statistical properties of the new estimates are established,in particular the linearity of the estimates of the fixed effects with many statistical optimalities. A new methodis applied to two important models which are used in economics, finance, and mechanical fields. All estimatesobtained have good statistical and practical meaning.

  3. Models wagging the dog: are circuits constructed with disparate parameters?

    Science.gov (United States)

    Nowotny, Thomas; Szücs, Attila; Levi, Rafael; Selverston, Allen I

    2007-08-01

    In a recent article, Prinz, Bucher, and Marder (2004) addressed the fundamental question of whether neural systems are built with a fixed blueprint of tightly controlled parameters or in a way in which properties can vary largely from one individual to another, using a database modeling approach. Here, we examine the main conclusion that neural circuits indeed are built with largely varying parameters in the light of our own experimental and modeling observations. We critically discuss the experimental and theoretical evidence, including the general adequacy of database approaches for questions of this kind, and come to the conclusion that the last word for this fundamental question has not yet been spoken.

  4. Do land parameters matter in large-scale hydrological modelling?

    Science.gov (United States)

    Gudmundsson, Lukas; Seneviratne, Sonia I.

    2013-04-01

    Many of the most pending issues in large-scale hydrology are concerned with predicting hydrological variability at ungauged locations. However, current-generation hydrological and land surface models that are used for their estimation suffer from large uncertainties. These models rely on mathematical approximations of the physical system as well as on mapped values of land parameters (e.g. topography, soil types, land cover) to predict hydrological variables (e.g. evapotranspiration, soil moisture, stream flow) as a function of atmospheric forcing (e.g. precipitation, temperature, humidity). Despite considerable progress in recent years, it remains unclear whether better estimates of land parameters can improve predictions - or - if a refinement of model physics is necessary. To approach this question we suggest scrutinizing our perception of hydrological systems by confronting it with the radical assumption that hydrological variability at any location in space depends on past and present atmospheric forcing only, and not on location-specific land parameters. This so called "Constant Land Parameter Hypothesis (CLPH)" assumes that variables like runoff can be predicted without taking location specific factors such as topography or soil types into account. We demonstrate, using a modern statistical tool, that monthly runoff in Europe can be skilfully estimated using atmospheric forcing alone, without accounting for locally varying land parameters. The resulting runoff estimates are used to benchmark state-of-the-art process models. These are found to have inferior performance, despite their explicit process representation, which accounts for locally varying land parameters. This suggests that progress in the theory of hydrological systems is likely to yield larger improvements in model performance than more precise land parameter estimates. The results also question the current modelling paradigm that is dominated by the attempt to account for locally varying land

  5. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.

    Science.gov (United States)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-10-15

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future.

  6. Cosmological Parameter Estimation from SN Ia data: a Model-Independent Approach

    CERN Document Server

    Benitez-Herrera, S; Maturi, M; Hillebrandt, W; Bartelmann, M; Röpke, F; .,

    2013-01-01

    We perform a model independent reconstruction of the cosmic expansion rate based on type Ia supernova data. Using the Union 2.1 data set, we show that the Hubble parameter behaviour allowed by the data without making any hypothesis about cosmological model or underlying gravity theory is consistent with a flat LCDM universe having H_0 = 70.43 +- 0.33 and Omega_m=0.297 +- 0.020, weakly dependent on the choice of initial scatter matrix. This is in closer agreement with the recently released Planck results (H_0 = 67.3 +- 1.2, Omega_m = 0.314 +- 0.020) than other standard analyses based on type Ia supernova data. We argue this might be an indication that, in order to tackle subtle deviations from the standard cosmological model present in type Ia supernova data, it is mandatory to go beyond parametrized approaches.

  7. Socio-demographic characteristics affecting sport tourism choices: A structural model

    Directory of Open Access Journals (Sweden)

    Nataša Slak Valek

    2014-03-01

    Full Text Available Background: Effective tourism management in the field of sports tourism requires an understanding of differences in socioeconomic characteristics both within and between different market segments. Objective: In the broad tourism market demographic characteristics have been extensively analyzed for differences in destination choices, however little is known about demographic factors affecting sport tourists' decisions. Methods: A sample of Slovenian sports tourists was analyzed using data from a comprehensive survey of local and outbound tourist activity conducted by the Statistical Office of the Republic of Slovenia in 2008. After data weighting the information for 353,783 sports related trips were available for analysis. The research model adopted suggests that four socio-demographic characteristics (gender, age, level of education and income significantly affect a tourist's choice of sports related travel either locally within Slovenia or to a foreign country. Furthermore the destination (local or foreign has an influence on the choice of the type of accommodation selected and the tourist's total expenditure for the trip. For testing the first part of our model (the socio-demographic characteristics effects a linear regression was used, and for the final part of the model (the selection of accommodation type and travel expenditure t-test were applied. Results: The result shows the standardized β regression coefficients are all statistically significant at the .001 level for the tested socio-demographic characteristics and also the overall regression model was statistically significant at .001 level. Conclusions: With these results the study confirmed that all the selected socio-demographic characteristics have a significant influence on the sport-active tourist when choosing between a domestic and foreign tourism destination which in turn affect the type of accommodation chosen and the level of expenditure while travelling.

  8. Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Man Zhu

    2017-03-01

    Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.

  9. Model Validation for Shipboard Power Cables Using Scattering Parameters%Model Validation for Shipboard Power Cables Using Scattering Parameters

    Institute of Scientific and Technical Information of China (English)

    Lukas Graber; Diomar Infante; Michael Steurer; William W. Brey

    2011-01-01

    Careful analysis of transients in shipboard power systems is important to achieve long life times of the com ponents in future all-electric ships. In order to accomplish results with high accuracy, it is recommended to validate cable models as they have significant influence on the amplitude and frequency spectrum of voltage transients. The authors propose comparison of model and measurement using scattering parameters. They can be easily obtained from measurement and simulation and deliver broadband information about the accuracy of the model. The measurement can be performed using a vector network analyzer. The process to extract scattering parameters from simulation models is explained in detail. Three different simulation models of a 5 kV XLPE power cable have been validated. The chosen approach delivers an efficient tool to quickly estimate the quality of a model.

  10. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  11. Uncertainty of Modal Parameters Estimated by ARMA Models

    DEFF Research Database (Denmark)

    Jensen, Jakob Laigaard; Brincker, Rune; Rytter, Anders

    In this paper the uncertainties of identified modal parameters such as eigenfrequencies and damping ratios are assessed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the param......In this paper the uncertainties of identified modal parameters such as eigenfrequencies and damping ratios are assessed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty...... by a simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been chosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore...

  12. 考虑偏好差异与备选方案相关性的居民出行方式选择模型%Travel Mode Choice Model Accounting for Individual Preference Heterogeneity and Correlation among Choice Alternatives

    Institute of Scientific and Technical Information of China (English)

    杨励雅; 赵鹏军

    2012-01-01

    为克服传统logit模型的ⅡA缺陷,构建合适的居民出行方式选择模型.尝试结合广义极值模型与潜在类别模型,选取出行费用、出行时间、停车费用及等待时间等作为方式选择效用变量,选取个人收入、出行目的与出行距离作为类属函数变量,构建一种区分潜在类别的配对巢式logit模型,该模型能同时刻画备选方式之间的相关性以及出行者的偏好差异.利用2005年北京市第三次居民出行调查数据,对模型参数进行估计和检验.参数估计结果表明:1)相较于传统MNL模型与不区分潜在类别的配对巢式logit模型,区分潜在类别的配对巢式logit模型具有更优的统计学特征;2)对出行费用敏感的出行者比例大于对出行时间敏感的出行者比例,提供交通服务时,降低费用将比缩短时间更为有效.%The authors proposed a new travel mode choice model to overcome the limitation of traditional logit model. Combining generalized extreme value model and latent class model, the authors present a modeling methodology capable of accounting for individual preference heterogeneity and correlation across choice alternatives. Travel cost, travel time, parking fee, and waiting time are defined as utility variables for mode choice, while individual income, travel purpose, and travel distance are selected as variables of segment membership function. This model can depict the correlation among choice alternatives and individual preference heterogeneity simultaneously. Using Beijing traffic survey data of 2005, the model parameters are estimated. Estimation results show that the latent class paired nested logit model outperforms the traditional models. Most travelers are cost-sensitive to travel modes, and thus strategies that reduce the travel cost can be more effective than reducing the travel time.

  13. Iterative integral parameter identification of a respiratory mechanics model

    Directory of Open Access Journals (Sweden)

    Schranz Christoph

    2012-07-01

    Full Text Available Abstract Background Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. Methods An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS patients. Results The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. Conclusion These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.

  14. Estimation of growth parameters using a nonlinear mixed Gompertz model.

    Science.gov (United States)

    Wang, Z; Zuidhof, M J

    2004-06-01

    In order to maximize the utility of simulation models for decision making, accurate estimation of growth parameters and associated variances is crucial. A mixed Gompertz growth model was used to account for between-bird variation and heterogeneous variance. The mixed model had several advantages over the fixed effects model. The mixed model partitioned BW variation into between- and within-bird variation, and the covariance structure assumed with the random effect accounted for part of the BW correlation across ages in the same individual. The amount of residual variance decreased by over 55% with the mixed model. The mixed model reduced estimation biases that resulted from selective sampling. For analysis of longitudinal growth data, the mixed effects growth model is recommended.

  15. Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series

    Science.gov (United States)

    Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik

    2016-06-01

    Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model

  16. Integrated Mode Choice, Small Aircraft Demand, and Airport Operations Model User's Guide

    Science.gov (United States)

    Yackovetsky, Robert E. (Technical Monitor); Dollyhigh, Samuel M.

    2004-01-01

    A mode choice model that generates on-demand air travel forecasts at a set of GA airports based on changes in economic characteristics, vehicle performance characteristics such as speed and cost, and demographic trends has been integrated with a model to generate itinerate aircraft operations by airplane category at a set of 3227 airports. Numerous intermediate outputs can be generated, such as the number of additional trips diverted from automobiles and schedule air by the improved performance and cost of on-demand air vehicles. The total number of transported passenger miles that are diverted is also available. From these results the number of new aircraft to service the increased demand can be calculated. Output from the models discussed is in the format to generate the origin and destination traffic flow between the 3227 airports based on solutions to a gravity model.

  17. Joint Dynamics Modeling and Parameter Identification for Space Robot Applications

    Directory of Open Access Journals (Sweden)

    Adenilson R. da Silva

    2007-01-01

    Full Text Available Long-term mission identification and model validation for in-flight manipulator control system in almost zero gravity with hostile space environment are extremely important for robotic applications. In this paper, a robot joint mathematical model is developed where several nonlinearities have been taken into account. In order to identify all the required system parameters, an integrated identification strategy is derived. This strategy makes use of a robust version of least-squares procedure (LS for getting the initial conditions and a general nonlinear optimization method (MCS—multilevel coordinate search—algorithm to estimate the nonlinear parameters. The approach is applied to the intelligent robot joint (IRJ experiment that was developed at DLR for utilization opportunity on the International Space Station (ISS. The results using real and simulated measurements have shown that the developed algorithm and strategy have remarkable features in identifying all the parameters with good accuracy.

  18. Mathematical Modelling and Parameter Optimization of Pulsating Heat Pipes

    CERN Document Server

    Yang, Xin-She; Luan, Tao; Koziel, Slawomir

    2014-01-01

    Proper heat transfer management is important to key electronic components in microelectronic applications. Pulsating heat pipes (PHP) can be an efficient solution to such heat transfer problems. However, mathematical modelling of a PHP system is still very challenging, due to the complexity and multiphysics nature of the system. In this work, we present a simplified, two-phase heat transfer model, and our analysis shows that it can make good predictions about startup characteristics. Furthermore, by considering parameter estimation as a nonlinear constrained optimization problem, we have used the firefly algorithm to find parameter estimates efficiently. We have also demonstrated that it is possible to obtain good estimates of key parameters using very limited experimental data.

  19. The influences of model parameters on the characteristics of memristors

    Institute of Scientific and Technical Information of China (English)

    Zhou Jing; Huang Da

    2012-01-01

    As the fourth passive circuit component,a memristor is a nonlinear resistor that can "remember" the amount of charge passing through it.The characteristic of "remembering" the charge and non-volatility makes memristors great potential candidates in many fields.Nowadays,only a few groups have the ability to fabricate memristors,and most researchers study them by theoretic analysis and simulation.In this paper,we first analyse the theoretical base and characteristics of memristors,then use a simulation program with integrated circuit emphasis as our tool to simulate the theoretical model of memristors and change the parameters in the model to see the influence of each parameter on the characteristics.Our work supplies researchers engaged in memristor-based circuits with advice on how to choose the proper parameters.

  20. Prediction of interest rate using CKLS model with stochastic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Khor Chia [Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Hin, Pooi Ah [Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor (Malaysia)

    2014-06-19

    The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.

  1. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    Science.gov (United States)

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  2. Factors Affecting the Choice of Software Life Cycle Models in the Software Industry-An Empirical Study

    National Research Council Canada - National Science Library

    Vandana Bhattacherjee; M. S. Neogi; Rupa Mahanti

    2012-01-01

    .... Results and Conclusion: The survey results revealed that the level of understanding of the user requirements is the most important fact in the choice of the life cycle model used in the software project...

  3. Comparison of Parameter Estimation Methods for Transformer Weibull Lifetime Modelling

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dan; LI Chengrong; WANG Zhongdong

    2013-01-01

    Two-parameter Weibull distribution is the most widely adopted lifetime model for power transformers.An appropriate parameter estimation method is essential to guarantee the accuracy of a derived Weibull lifetime model.Six popular parameter estimation methods (i.e.the maximum likelihood estimation method,two median rank regression methods including the one regressing X on Y and the other one regressing Y on X,the Kaplan-Meier method,the method based on cumulative hazard plot,and the Li's method) are reviewed and compared in order to find the optimal one that suits transformer's Weibull lifetime modelling.The comparison took several different scenarios into consideration:10 000 sets of lifetime data,each of which had a sampling size of 40 ~ 1 000 and a censoring rate of 90%,were obtained by Monte-Carlo simulations for each scienario.Scale and shape parameters of Weibull distribution estimated by the six methods,as well as their mean value,median value and 90% confidence band are obtained.The cross comparison of these results reveals that,among the six methods,the maximum likelihood method is the best one,since it could provide the most accurate Weibull parameters,i.e.parameters having the smallest bias in both mean and median values,as well as the shortest length of the 90% confidence band.The maximum likelihood method is therefore recommended to be used over the other methods in transformer Weibull lifetime modelling.

  4. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    Science.gov (United States)

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  5. Calculation of Thermodynamic Parameters for Freundlich and Temkin Isotherm Models

    Institute of Scientific and Technical Information of China (English)

    ZHANGZENGQIANG; ZHANGYIPING; 等

    1999-01-01

    Derivation of the Freundlich and Temkin isotherm models from the kinetic adsorption/desorption equations was carried out to calculate their thermodynamic equilibrium constants.The calculation formulase of three thermodynamic parameters,the standard molar Gibbs free energy change,the standard molar enthalpy change and the standard molar entropy change,of isothermal adsorption processes for Freundlich and Temkin isotherm models were deduced according to the relationship between the thermodynamic equilibrium constants and the temperature.

  6. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  7. Parabolic problems with parameters arising in evolution model for phytromediation

    Science.gov (United States)

    Sahmurova, Aida; Shakhmurov, Veli

    2012-12-01

    The past few decades, efforts have been made to clean sites polluted by heavy metals as chromium. One of the new innovative methods of eradicating metals from soil is phytoremediation. This uses plants to pull metals from the soil through the roots. This work develops a system of differential equations with parameters to model the plant metal interaction of phytoremediation (see [1]).

  8. Lumped-parameter Model of a Bucket Foundation

    DEFF Research Database (Denmark)

    Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten

    2009-01-01

    As an alternative to gravity footings or pile foundations, offshore wind turbines at shallow water can be placed on a bucket foundation. The present analysis concerns the development of consistent lumped-parameter models for this type of foundation. The aim is to formulate a computationally effic...

  9. Improved parameter estimation for hydrological models using weighted object functions

    NARCIS (Netherlands)

    Stein, A.; Zaadnoordijk, W.J.

    1999-01-01

    This paper discusses the sensitivity of calibration of hydrological model parameters to different objective functions. Several functions are defined with weights depending upon the hydrological background. These are compared with an objective function based upon kriging. Calibration is applied to pi

  10. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  11. PARAMETER ESTIMATION IN LINEAR REGRESSION MODELS FOR LONGITUDINAL CONTAMINATED DATA

    Institute of Scientific and Technical Information of China (English)

    QianWeimin; LiYumei

    2005-01-01

    The parameter estimation and the coefficient of contamination for the regression models with repeated measures are studied when its response variables are contaminated by another random variable sequence. Under the suitable conditions it is proved that the estimators which are established in the paper are strongly consistent estimators.

  12. Modeling and simulation of HTS cables for scattering parameter analysis

    Science.gov (United States)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Chang, Seung Jin; Lee, Chun-Kwon; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2016-11-01

    Most of modeling and simulation of high temperature superconducting (HTS) cables are inadequate for high frequency analysis since focus of the simulation's frequency is fundamental frequency of the power grid, which does not reflect transient characteristic. However, high frequency analysis is essential process to research the HTS cables transient for protection and diagnosis of the HTS cables. Thus, this paper proposes a new approach for modeling and simulation of HTS cables to derive the scattering parameter (S-parameter), an effective high frequency analysis, for transient wave propagation characteristics in high frequency range. The parameters sweeping method is used to validate the simulation results to the measured data given by a network analyzer (NA). This paper also presents the effects of the cable-to-NA connector in order to minimize the error between the simulated and the measured data under ambient and superconductive conditions. Based on the proposed modeling and simulation technique, S-parameters of long-distance HTS cables can be accurately derived in wide range of frequency. The results of proposed modeling and simulation can yield the characteristics of the HTS cables and will contribute to analyze the HTS cables.

  13. Models in cooperative game theory crisp, fuzzy, and multi-choice games

    CERN Document Server

    Branzei, Rodica; Tijs, Stef

    2005-01-01

    This book investigates models in cooperative game theory in which the players have the possibility to cooperate partially. In a crisp game the agents are either fully involved or not involved at all in coperation with some other agents, while in a fuzzy game players are allowed to cooperate with infinite many different participation levels, varying from non-cooperation to full cooperation. A multi-choice game describes the intermediate case in which each player may have a fixed number of activity levels. Different set and one-point solution concepts for these games are presented. The propertie

  14. Development of the Model of Decision Support for Alternative Choice in the Transportation Transit System

    Directory of Open Access Journals (Sweden)

    Kabashkin Igor

    2015-02-01

    Full Text Available The decision support system is one of the instruments for choosing the most effective decision for cargo owner in constant fluctuated business environment. The objective of this Paper is to suggest the multiple-criteria approach for evaluation and choice the alternatives of cargo transportation in the large scale transportation transit system for the decision makers - cargo owners. The large scale transportation transit system is presented by directed finite graph. Each of 57 alternatives is represented by the set of key performance indicators Kvi and set of parameters Paj. There has been developed a two-level hierarchy system of criteria with ranging expert evaluations based on Analytic Hierarchy Process Method. The best alternatives were suggested according to this method.

  15. Industrial fuel choice analysis model. Volume II. Appendices to model documentation

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-08

    Descriptions, documentation, and other information are included in these appendices dealing with industrial fuel choices: Energy Consumption Data Base; Major Fuel Burning Installation Survey; American Boiler Manufacturers Association Data File; Midrange Energy Forecasting System; Projection Method; Capacity Utilization Rates; Nonboiler Characteristics; Boiler Capital and O and M Cost Data; Nonboiler Capital and O and M Cost Data; Approach to Estimating Energy Impacts of the Coal Conversion Regulatory Program; Index or Acronyms.

  16. Investigation of design parameters and choice of substrate resistivity and crystal orientation for the CMS silicon microstrip detector

    CERN Document Server

    Braibant, S

    2000-01-01

    The electrical characteristics ( interstrip and backplane capacitance, leakage current, depletion and breakdown voltage) of silicon microstrip detectors were measured for strip pitches between 60 um and 240 um and various strip implant and metal widths on multi-geometry devices. Both AC and DC coupled devices wereinvestigated. Measurements on detectors were performed before and after irradiation with 24 GeV/c protons up to a fluence of 4.1x10E14 cm-2. We found that the total strip capacitance can be parametrized as a linear function of the ratio of the implant width over the read-out pitch only. We found a significant increase in the interstrip capacitance after radiation on detectors with standard <111> crystal orientation but not on sensors with <100> crystal orientation. We analyzed the measured depletion voltages as a function of the detector geometrical parameters ( read-out pitch, strip width and substrate thickness) found in the literature and we found a linear dependence in...

  17. Investigating attribute non-attendance and its consequences in choice experiments with latent class models.

    Science.gov (United States)

    Lagarde, Mylene

    2013-05-01

    A growing literature, mainly from transport and environment economics, has started to explore whether respondents violate some of the axioms about individuals' preferences in Discrete Choice Experiments (DCEs) and use simple strategies to make their choices. One of these strategies, termed attribute non-attendance (ANA), consists in ignoring one or more attributes. Using data from a DCE administered to healthcare providers in Ghana to evaluate their potential resistance to changes in clinical guidelines, this study illustrates how latent class models can be used in a step-wise approach to account for all possible ANA strategies used by respondents and explore the consequences of such behaviours. Results show that less than 3% of respondents considered all attributes when choosing between the two hypothetical scenarios proposed, with a majority looking at only one or two attributes. Accounting for ANA strategies improved the goodness-of-fit of the model and affected the magnitude of some of the coefficient and willingness-to-pay estimates. However, there was no difference in the predicted probabilities of the model taking into account ANA and the standard approach. Although the latter result is reassuring about the ability of DCEs to produce unbiased policy guidance, it should be confirmed by other studies.

  18. Evaluation of some infiltration models and hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, F.; Gorji, M.; Shorafa, M.; Sarmadian, F.; Mohammadi, M. H.

    2010-07-01

    The evaluation of infiltration characteristics and some parameters of infiltration models such as sorptivity and final steady infiltration rate in soils are important in agriculture. The aim of this study was to evaluate some of the most common models used to estimate final soil infiltration rate. The equality of final infiltration rate with saturated hydraulic conductivity (Ks) was also tested. Moreover, values of the estimated sorptivity from the Philips model were compared to estimates by selected pedotransfer functions (PTFs). The infiltration experiments used the doublering method on soils with two different land uses in the Taleghan watershed of Tehran province, Iran, from September to October, 2007. The infiltration models of Kostiakov-Lewis, Philip two-term and Horton were fitted to observed infiltration data. Some parameters of the models and the coefficient of determination goodness of fit were estimated using MATLAB software. The results showed that, based on comparing measured and model-estimated infiltration rate using root mean squared error (RMSE), Hortons model gave the best prediction of final infiltration rate in the experimental area. Laboratory measured Ks values gave significant differences and higher values than estimated final infiltration rates from the selected models. The estimated final infiltration rate was not equal to laboratory measured Ks values in the study area. Moreover, the estimated sorptivity factor by Philips model was significantly different to those estimated by selected PTFs. It is suggested that the applicability of PTFs is limited to specific, similar conditions. (Author) 37 refs.

  19. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  20. Fertility behavior and labor force participation: a model of lexicographic choice.

    Science.gov (United States)

    Encarnacion, J J

    1982-01-01

    Evidence exists that a smaller family size is usually associated with female employment and that fertility rises with family income and the wife's education at relatively low levels of income and education. Only at higher levels is there the generally expected relationship that fertility declines with more education or income. Due to the fact that a woman's labor force participation and her fertility are aspects of behavior of the same person (or couple), they should be explained by a model of choice. Such a model is presented, and empirical evidence is cited. In particular, the model allows for a fertility decline even before a decline in mortality during the demographic transition. The model of choice involves threshold values of education and income, such that the marginal effects of these variables on fertility and labor supply are qualitatively different below and above the threshold. The model is in conformity with cross-section regressions using Philippine data and appears to explain why various studies give positive, zero, or negative regression coefficients relating fertility to education and income when standard linear regression specifications are used. Such results would depend on the proportions of families falling below and above the thresholds in the sample of observations. The model also implies that the fertility effects of a child mortality decline on those proportions, meaning that one could have lower mortality without affecting fertility levels. From a policy perspective, the broad implications of the model are distrubing. Development that raises very low income and education levels would increase fertility and so would a more egalitarian distribution of the same low aggregate income. It is necessary to shift the underlying functions so that the thresholds become as low as possible, but general economic development may be too slow for this purpose.