WorldWideScience

Sample records for model oxidative stress

  1. Finite element modelling of the oxidation kinetics of Zircaloy-4 with a controlled metal-oxide interface and the influence of growth stress

    International Nuclear Information System (INIS)

    Zumpicchiat, Guillaume; Pascal, Serge; Tupin, Marc; Berdin-Méric, Clotilde

    2015-01-01

    Highlights: We developed two finite element models of zirconium-based alloy oxidation using the CEA Cast3M code to simulate the oxidation kinetics of Zircaloy-4: the diffuse interface model and the sharp interface model. We also studied the effect of stresses on the oxidation kinetics. The main results are: • Both models lead to parabolic oxidation kinetics in agreement with the Wagner’s theory. • The modellings enable to calculate the stress distribution in the oxide as well as in the metal. • A strong effect of the hydrostatic stress on the oxidation kinetics has been evidenced. • The stress gradient effect changes the parabolic kinetics into a sub-parabolic law closer to the experimental kinetics because of the stress gradient itself, but also because of the growth stress increase with the oxide thickness. - Abstract: Experimentally, zirconium-based alloys oxidation kinetics is sub-parabolic, by contrast with the Wagner theory which predicts a parabolic kinetics. Two finite element models have been developed to simulate this phenomenon: the diffuse interface model and the sharp interface model. Both simulate parabolic oxidation kinetics. The growth stress effects on oxygen diffusion are studied to try to explain the gap between theory and experience. Taking into account the influence of the hydrostatic stress and its gradient into the oxygen flux expression, sub-parabolic oxidation kinetics have been simulated. The sub-parabolic behaviour of the oxidation kinetics can be explained by a non-uniform compressive stress level into the oxide layer.

  2. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    Science.gov (United States)

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (pstress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress

  3. Oxidative Stress Associated with Neuronal Apoptosis in Experimental Models of Epilepsy

    Directory of Open Access Journals (Sweden)

    Marisela Méndez-Armenta

    2014-01-01

    Full Text Available Epilepsy is considered one of the most common neurological disorders worldwide. Oxidative stress produced by free radicals may play a role in the initiation and progression of epilepsy; the changes in the mitochondrial and the oxidative stress state can lead mechanism associated with neuronal death pathway. Bioenergetics state failure and impaired mitochondrial function include excessive free radical production with impaired synthesis of antioxidants. This review summarizes evidence that suggest what is the role of oxidative stress on induction of apoptosis in experimental models of epilepsy.

  4. Chemometrics models for assessment of oxidative stress risk in chrome-electroplating workers.

    Science.gov (United States)

    Zendehdel, Rezvan; Shetab-Boushehri, Seyed Vahid; Azari, Mansoor R; Hosseini, Vajihe; Mohammadi, Hamidreza

    2015-04-01

    Oxidative stress is the main cause of hexavalant chromium-induced damage in chrome electroplating workers. The main goal of this study is toxicity analysis and the possibility of toxicity risk categorizing in the chrome electroplating workers based on oxidative stress parameters as prognostic variables. We assessed blood chromium levels and biomarkers of oxidative stress such as lipid peroxidation, thiol (SH) groups and antioxidant capacity of plasma. Data were subjected to principle component analysis (PCA) and artificial neuronal network (ANN) to obtain oxidative stress pattern for chrome electroplating workers. Blood chromium levels increased from 4.42 ppb to 10.6 ppb. Induction of oxidative stress was observed by increased in lipid peroxidation (22.38 ± 10.47 μM versus 14.74 ± 4.82 μM, p chrome electroplaters. The result showed multivariate modeling can be interpreted as the induced biochemical toxicity in the workers exposed to hexavalent chromium. Different occupation groups were assessed on the basis of risk level of oxidative stress which could further justify proceeding engineering control measures.

  5. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  6. Oxidative stress of crystalline lens in rat menopausal model.

    Science.gov (United States)

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    To evaluate lenticular oxidative stress in rat menopausal models. Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3), and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4). Total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) measurements of the crystalline lenses were analyzed. The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05). The mean TOS values were similar between the groups (p >0.05), whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001). Our results indicate that menopause may not promote cataract formation.

  7. Effects of Photobiomodulation Therapy on Oxidative Stress in Muscle Injury Animal Models: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Solange Almeida dos Santos

    2017-01-01

    Full Text Available This systematic review was performed to identify the role of photobiomodulation therapy on experimental muscle injury models linked to induce oxidative stress. EMBASE, PubMed, and CINAHL were searched for studies published from January 2006 to January 2016 in the areas of laser and oxidative stress. Any animal model using photobiomodulation therapy to modulate oxidative stress was included in analysis. Eight studies were selected from 68 original articles targeted on laser irradiation and oxidative stress. Articles were critically assessed by two independent raters with a structured tool for rating the research quality. Although the small number of studies limits conclusions, the current literature indicates that photobiomodulation therapy can be an effective short-term approach to reduce oxidative stress markers (e.g., thiobarbituric acid-reactive and to increase antioxidant substances (e.g., catalase, glutathione peroxidase, and superoxide dismutase. However, there is a nonuniformity in the terminology used to describe the parameters and dose for low-level laser treatment.

  8. Oxidative stress of crystalline lens in rat menopausal model

    Directory of Open Access Journals (Sweden)

    Semra Acer

    Full Text Available ABSTRACT Purpose: To evaluate lenticular oxidative stress in rat menopausal models. Methods: Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1. From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2, 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3, and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4. Total oxidant status (TOS, total antioxidant capacity (TAC, and oxidative stress index (OSI measurements of the crystalline lenses were analyzed. Results: The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05. The mean TOS values were similar between the groups (p >0.05, whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001. Conclusions: Our results indicate that menopause may not promote cataract formation.

  9. Rhesus monkey lens as an in vitro model for studying oxidative stress

    International Nuclear Information System (INIS)

    Zigler, J.S. Jr.; Lucas, V.A.; Du, X.Y.

    1989-01-01

    Lenses from young rhesus monkeys were incubated in the presence of H 2 O 2 or oxygen radical generating systems to determine their suitability as a model for investigating lenticular oxidative stress. Additionally, direct comparisons were made between the effects found with the monkey lenses and those observed with cultured rat lenses exposed to the same oxidizing systems. As in earlier studies with rat lenses the monkey lenses exhibited impaired ability to actively accumulate from the medium radioactively labelled rubidium and choline following exposure to oxidative stress. Based on the effects of various scavengers of oxygen radicals it appeared that the mechanisms responsible for lens damage were the same for both rat and monkey lenses. However, rat lenses were damaged by lower concentrations of oxidants than were monkey lenses. It was concluded that oxidative stress affects both rat and monkey lenses by similar mechanisms but that lenses from monkeys, and probably other primates, are more resistant to these effects because they have better endogenous antioxidant defenses

  10. Endothelin receptor antagonist attenuates oxidative stress in a neonatal sepsis piglet model.

    Science.gov (United States)

    Goto, Tatenobu; Hussein, Mohamed Hamed; Kato, Shin; Daoud, Ghada Abdel-Hamid; Kato, Takenori; Sugiura, Takahiro; Kakita, Hiroki; Nobata, Masanori; Kamei, Michi; Mizuno, Haruo; Imai, Masaki; Ito, Tetsuya; Kato, Ineko; Suzuki, Satoshi; Okada, Noriko; Togari, Hajime; Okada, Hidechika

    2012-12-01

    Oxidative stress (oxidant-antioxidant imbalance) plays an important role in the pathophysiology of neonatal sepsis. This study evaluated whether an antisense peptide endothelin receptor antagonist, ETR-P1/fl, could attenuate oxidative stress in a neonatal sepsis model. A total of 18 3-d-old piglets were anesthetized and mechanically ventilated. Six piglets received cecal ligation and perforation (CLP group) for induction of sepsis. Six piglets also received continuous infusion (0.05 mg/kg/h) of ETR-P1/fl 30 min after CLP (ETR-P1/fl group). Six piglets received a sham operation. Serum total hydroperoxide (TH), biological antioxidant potentials (BAPs), oxidative stress index (OSI, calculated as TH/BAP), interleukin (IL)-6, serum glutamic oxaloacetic transaminase (GOT), and creatinine were measured before CLP and at 1, 3, and 6 h after CLP. CLP evoked a state of shock resulting in elevated TH, OSI, and IL-6 levels. ETR-P1/fl administration after CLP resulted in lower serum TH at 1 and 3 h after CLP, OSI at 1 and 3 h after CLP, IL-6 at 1 and 3 h after CLP, and GOT at 3 and 6 h after CLP as compared with the CLP group. ETR-P1/fl treatment significantly attenuated the elevation of serum oxidative stress markers (TH and OSI), IL-6, and GOT in a progressive neonatal sepsis CLP model.

  11. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  12. Systemic oxidative stress markers in animal model for depression

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Kravtsova, Violetta; Aalkjær, Christian

    Involvement of oxidative stress (OxS) in development of major depressive disorder has recently become evident, though mechanisms behind this remain elusive. We analyzed therefore OxS pathways in rat Chronic Mild Stress (CMS) model of depression. Rats are exposed to chronic unpredictable mild...... mg/kg/day). Saline injections were done to control the vehicle effect. Escitalopram treated rats were sub-divided into 2 groups: responders and non-responders, according to their hedonic state and compared to non-stressed rats, treated with either saline or Escitalopram. Measurement of total...... glutathione and malondialdehyde (MDA) in lungs, heart, skeletal muscles, liver, saphenous, mesenteric, and tail arteries were used as estimates for OxS. In heart, glutathione was increased in CMS rats in comparison with non-stressed vehicle group. Accordingly, an estimate for free radical activity, MDA...

  13. Oxidative stress of crystalline lens in rat menopausal model

    OpenAIRE

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    ABSTRACT Purpose: To evaluate lenticular oxidative stress in rat menopausal models. Methods: Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Gro...

  14. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    Science.gov (United States)

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations

  15. Fatty acid oxidation changes and the correlation with oxidative stress in different preeclampsia-like mouse models.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ding

    Full Text Available BACKGROUND: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD expression is decreased in placenta of some cases of preeclampsia (PE which may result in free fatty acid (FFA increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. METHODS: PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA or lipopolysaccharide (LPS and the antiphospholipid syndrome (APS mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups. The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre and mid-pregnancy (Mid subgroups by injection time. RESULTS: All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05. LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05 but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. CONCLUSIONS: Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway.

  16. Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia

    Directory of Open Access Journals (Sweden)

    Patricia P. Jumbo-Lucioni

    2013-01-01

    Classic galactosemia is a genetic disorder that results from profound loss of galactose-1P-uridylyltransferase (GALT. Affected infants experience a rapid escalation of potentially lethal acute symptoms following exposure to milk. Dietary restriction of galactose prevents or resolves the acute sequelae; however, many patients experience profound long-term complications. Despite decades of research, the mechanisms that underlie pathophysiology in classic galactosemia remain unclear. Recently, we developed a Drosophila melanogaster model of classic galactosemia and demonstrated that, like patients, GALT-null Drosophila succumb in development if exposed to galactose but live if maintained on a galactose-restricted diet. Prior models of experimental galactosemia have implicated a possible association between galactose exposure and oxidative stress. Here we describe application of our fly genetic model of galactosemia to the question of whether oxidative stress contributes to the acute galactose sensitivity of GALT-null animals. Our first approach tested the impact of pro- and antioxidant food supplements on the survival of GALT-null and control larvae. We observed a clear pattern: the oxidants paraquat and DMSO each had a negative impact on the survival of mutant but not control animals exposed to galactose, and the antioxidants vitamin C and α-mangostin each had the opposite effect. Biochemical markers also confirmed that galactose and paraquat synergistically increased oxidative stress on all cohorts tested but, interestingly, the mutant animals showed a decreased response relative to controls. Finally, we tested the expression levels of two transcripts responsive to oxidative stress, GSTD6 and GSTE7, in mutant and control larvae exposed to galactose and found that both genes were induced, one by more than 40-fold. Combined, these results implicate oxidative stress and response as contributing factors in the acute galactose sensitivity of GALT-null Drosophila and, by

  17. Using multiple biomarkers and determinants to obtain a better measurement of oxidative stress: a latent variable structural equation model approach.

    Science.gov (United States)

    Eldridge, Ronald C; Flanders, W Dana; Bostick, Roberd M; Fedirko, Veronika; Gross, Myron; Thyagarajan, Bharat; Goodman, Michael

    2017-09-01

    Since oxidative stress involves a variety of cellular changes, no single biomarker can serve as a complete measure of this complex biological process. The analytic technique of structural equation modeling (SEM) provides a possible solution to this problem by modelling a latent (unobserved) variable constructed from the covariance of multiple biomarkers. Using three pooled datasets, we modelled a latent oxidative stress variable from five biomarkers related to oxidative stress: F 2 -isoprostanes (FIP), fluorescent oxidation products, mitochondrial DNA copy number, γ-tocopherol (Gtoc) and C-reactive protein (CRP, an inflammation marker closely linked to oxidative stress). We validated the latent variable by assessing its relation to pro- and anti-oxidant exposures. FIP, Gtoc and CRP characterized the latent oxidative stress variable. Obesity, smoking, aspirin use and β-carotene were statistically significantly associated with oxidative stress in the theorized directions; the same exposures were weakly and inconsistently associated with the individual biomarkers. Our results suggest that using SEM with latent variables decreases the biomarker-specific variability, and may produce a better measure of oxidative stress than do single variables. This methodology can be applied to similar areas of research in which a single biomarker is not sufficient to fully describe a complex biological phenomenon.

  18. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  19. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  20. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  1. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.

  2. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches.

    Science.gov (United States)

    Balmus, Ioana Miruna; Ciobica, Alin; Antioch, Iulia; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.

  3. Oxidative stress in a rat model of cotton smoke inhalation-induced ...

    African Journals Online (AJOL)

    Background: Smoke inhalation injury refers to airway and lung parenchyma injury and general chemical damage caused by inhaling toxic gases and substances. The aim of this study was to explore the oxidative stress mechanism of cotton smoke inhalation-induced pulmonary injury in a rat model. Materials and Methods: ...

  4. Caenorhabditis elegans: A Useful Model for Studying Metabolic Disorders in Which Oxidative Stress Is a Contributing Factor

    Directory of Open Access Journals (Sweden)

    Elizabeth Moreno-Arriola

    2014-01-01

    Full Text Available Caenorhabditis elegans is a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic level in vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes. C. elegans displays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance of C. elegans as an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.

  5. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  6. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  7. Three job stress models/concepts and oxidative DNA damage in a sample of workers in Japan.

    Science.gov (United States)

    Inoue, Akiomi; Kawakami, Norito; Ishizaki, Masao; Tabata, Masaji; Tsuchiya, Masao; Akiyama, Miki; Kitazume, Akiko; Kuroda, Mitsuyo; Shimazu, Akihito

    2009-04-01

    Three job stress models/concepts (the job demands-control [DC] model, the effort-reward imbalance [ERI] model, and organizational justice) have been linked to coronary heart disease (CHD) at work. In recent years, oxidative DNA damage has been identified as a new risk factor for CHD. However, evidence for the association between these job stressors and oxidative DNA damage is limited. The present cross-sectional study investigated the association between these job stress models/concepts and oxidative DNA damage as a possible mediator of the adverse health effects of job stress. A total of 166 male and 51 female workers of a manufacturing factory in Japan were surveyed using a mailed questionnaire regarding job stressors and demographic, occupational, and lifestyle variables. Urinary concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, were also measured. In male subjects, the urinary concentrations of 8-OHdG were significantly higher among the group with lower interactional justice, one of the two components of organizational justice; however, no association was observed with the DC model or the ERI model. In female subjects, high job demands/control ratio was significantly and positively associated with the urinary concentrations of 8-OHdG. Interactional justice among male workers and the DC model-based strain among female workers may be associated with increased urinary concentrations of 8-OHdG which possibly reflects oxidative DNA damage.

  8. Does oxidative stress shorten telomeres?

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling

  9. Association between prenatal psychological stress and oxidative stress during pregnancy.

    Science.gov (United States)

    Eick, Stephanie M; Barrett, Emily S; van 't Erve, Thomas J; Nguyen, Ruby H N; Bush, Nicole R; Milne, Ginger; Swan, Shanna H; Ferguson, Kelly K

    2018-03-30

    Prenatal psychological stress during pregnancy has been associated with adverse reproductive outcomes. A growing animal literature supports an association between psychological stress and oxidative stress. We assessed this relationship in pregnant women, hypothesising that psychological stress is associated with higher concentrations of oxidative stress biomarkers during pregnancy. Psychosocial status and stressful life events (SLE) were self-reported. 8-iso-prostaglandin F 2α (8-iso-PGF 2α ) was measured as a biomarker of oxidative stress in urine samples at median 32 weeks' gestation. We examined SLEs individually (ever vs never) and in summary (any vs none) and psychosocial status as measured by individual subscales and in summary (poor vs good). Linear models estimated associations between these parameters and urinary 8-iso-PGF 2α concentrations after adjusting for covariates. The geometric mean of 8-iso-PGF 2α was significantly higher among pregnant women who were non-White, smokers, had less than a college education, higher pre-pregnancy BMI and were unmarried. Having ever had a death in the family (n = 39) during pregnancy was associated with a 22.9% increase in 8-iso-PGF 2α in unadjusted models (95% confidence interval [CI] 1.50, 48.8). Poor psychosocial status was associated with a 13.1% (95% CI 2.43, 25.0) greater mean 8-iso-PGF 2α in unadjusted analyses. Associations were attenuated, but remained suggestive, after covariate adjustment. These data suggest that 8-iso-PGF 2α is elevated in pregnant women with who are at a sociodemographic disadvantage and who have higher psychological stress in pregnancy. Previous studies have observed that 8-iso-PGF 2α levels are associated with adverse birth outcomes, oxidative stress could be a mediator in these relationships. © 2018 John Wiley & Sons Ltd.

  10. Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?

    Science.gov (United States)

    Voronova, Veronika; Zhudenkov, Kirill; Helmlinger, Gabriel; Peskov, Kirill

    2017-01-01

    Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose.

  11. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas

    2009-01-01

    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  13. Early induction of oxidative stress in mouse model of Alzheimer disease with reduced mitochondrial superoxide dismutase activity.

    Directory of Open Access Journals (Sweden)

    Hyun-Pil Lee

    Full Text Available While oxidative stress has been linked to Alzheimer's disease, the underlying pathophysiological relationship is unclear. To examine this relationship, we induced oxidative stress through the genetic ablation of one copy of mitochondrial antioxidant superoxide dismutase 2 (Sod2 allele in mutant human amyloid precursor protein (hAPP transgenic mice. The brains of young (5-7 months of age and old (25-30 months of age mice with the four genotypes, wild-type (Sod2(+/+, hemizygous Sod2 (Sod2(+/-, hAPP/wild-type (Sod2(+/+, and hAPP/hemizygous (Sod2(+/- were examined to assess levels of oxidative stress markers 4-hydroxy-2-nonenal and heme oxygenase-1. Sod2 reduction in young hAPP mice resulted in significantly increased oxidative stress in the pyramidal neurons of the hippocampus. Interestingly, while differences resulting from hAPP expression or Sod2 reduction were not apparent in the neurons in old mice, oxidative stress was increased in astrocytes in old, but not young hAPP mice with either Sod2(+/+ or Sod2(+/-. Our study shows the specific changes in oxidative stress and the causal relationship with the pathological progression of these mice. These results suggest that the early neuronal susceptibility to oxidative stress in the hAPP/Sod2(+/- mice may contribute to the pathological and behavioral changes seen in this animal model.

  14. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  15. Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging?

    Science.gov (United States)

    Ghatreh-Samani, Mahdi; Esmaeili, Nafiseh; Soleimani, Masoud; Asadi-Samani, Majid; Ghatreh-Samani, Keihan; Shirzad, Hedayatolah

    2016-01-01

    Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients.

  16. Glutamine prevents gastric oxidative stress in an animal model of portal hypertension gastropathy.

    Science.gov (United States)

    Marques, Camila; Mauriz, José L; Simonetto, Douglas; Marroni, Claudio A; Tuñon, María J; González-Gallego, Javier; Marrón, Norma P

    2011-01-01

    Portal hypertension (PHI) is a clinical syndrome characterized by increases of the blood flow and/or of the vascular resistance in the portal system. A direct consequence of PHI can appearance different lesions on the gastric mucosa and submucosa, cumulatively termed portal hypertensive gastropathy (PHG). To investigate the effects of glutamine on oxidative stress in an experimental model of PHG induced by partial portal vein ligation (PPVL). Portal pressure, transaminase and alkaline phosphatase activity were quantified. Gastric tissue damage was assessed by histological analysis. Oxidative stress was measured by quantification of cytosolic concentration of thiobarbituric acid reactive substances (TBARS), hydroperoxide-initiated chemiluminescence (QL), and nitric oxide (NO) production. Moreover, activities of the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were analyzed. Transaminase and alkaline phosphatase activities were not significantly modified by PPVL, indicating absence of liver injury. Histological analysis of gastric sections showed a lost of normal architecture, with edema and vasodilatation. TBARS, QL, and NO production were significantly increased in PPVL animals. A reduction of SOD activity was found. Glutamine administration markedly alleviated histological abnormalities and oxidative stress, normalized SOD activity, and blocked NO overproduction. Our results confirm that the use of molecules with antioxidant capacity can provide protection of the gastric tissue in portal hypertension. Glutamine treatment can be useful to reduce the oxidative damage induced by PHI on gastric tissue.

  17. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  18. Anti-oxidative effects of Rooibos tea (Aspalathus linearis on immobilization-induced oxidative stress in rat brain.

    Directory of Open Access Journals (Sweden)

    In-Sun Hong

    Full Text Available Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i reverse the increase in stress-related metabolites (5-HIAA and FFA, (ii prevent lipid peroxidation (LPO, (iii restore stress-induced protein degradation (PD, (iv regulate glutathione metabolism (GSH and GSH/GSSG ratio, and (v modulate changes in the activities of antioxidant enzymes (SOD and CAT.

  19. IGF-1, oxidative stress, and atheroprotection

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  20. Pulmonary oxidative stress, inflammation and dysregulated iron homeostatis in rat models of cardiovascular disease

    Science.gov (United States)

    Underlying cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms ofvariation in susceptibility. Pulmonary oxidative stress, inflammation and altere...

  1. BRCA1 and Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Yong Weon; Kang, Hyo Jin [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Bae, Insoo, E-mail: ib42@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2014-04-03

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  2. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness

    Science.gov (United States)

    Shetty, Geetha A.; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K.

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity (Hmox1, Sepp1, and Srxn1), reactive oxygen species metabolism (Fmo2, Sod2, and Ucp2) and oxygen transport (Ift172 and Slc38a1). Furthermore, multiple genes relevant to mitochondrial respiration (Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10, and Ucp1) and neuroinflammation (Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac, and Prkaca) were up-regulated, alongside 73–88% reduction in the expression of anti-inflammatory genes IL4 and IL10, and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines and chemokines

  3. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness.

    Science.gov (United States)

    Shetty, Geetha A; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity ( Hmox1, Sepp1 , and Srxn1 ), reactive oxygen species metabolism ( Fmo2, Sod2 , and Ucp2 ) and oxygen transport ( Ift172 and Slc38a1 ). Furthermore, multiple genes relevant to mitochondrial respiration ( Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10 , and Ucp1 ) and neuroinflammation ( Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac , and Prkaca ) were up-regulated, alongside 73-88% reduction in the expression of anti-inflammatory genes IL4 and IL10 , and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines

  4. The role of oxidative stress in nervous system aging.

    Directory of Open Access Journals (Sweden)

    Catrina Sims-Robinson

    Full Text Available While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/- mice, a mouse model of increased oxidative stress. Sod1(-/- mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+ mice at 30 months and the Sod1(-/- mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  5. The role of oxidative stress in nervous system aging.

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  6. [Study on the oxidative stress in the ovaries of a rat model of polycystic ovary].

    Science.gov (United States)

    Gong, Jin; Wu, Dong-bo; Zhang, Lan-lan; Li, Jia; Zhao, Xing; Zhang, Dan

    2015-03-01

    To establish a pathological animal model of polycystic ovary (PCO) by letrozole in rats. Investigate whether PCO were mediated by the effect of oxidative stress by measuring oxidative stress levels in this cohort of rats with PCO, and proceed a new way of treatment for polycystic ovary syndrom (PCOS). 90 SD female rats aged 6 weeks were randomly divided into two groups, including a control group of 45 rats that received vehicle only [19% aqueous solution of carboxmethlycellulose (CMC), 1 mL/d] once daily orally (p.o.), and an experimental group of 45 rats, which were administered letrozole at concentrations of 1 mg/kg p.o. dissolved in 1% CMC (1 mL/d) once daily. The treatment period was 28 d. During this period, vaginal smears were collected daily for estrus cycle determination and body masses were measured every 7 d. On the day subsequent to the last letrozole dose administration, rats were killed; Uteri and ovaries were then excised and weighed for the calculation of organ indexes. Serum hormone levels, SHBG and histologic changes in the ovaries were examined. Then testosterone free index (FAD) was calculated. Oxidant status was evaluated by determination of ovarian total oxidant status (TOS), malondialdehyde (MDA) concentration and intracellular reactive oxygen species (ROS) level, while antioxidant status was evaluated by determination of total antioxidant status (TAS) and superoxide dismutase (SOD) concentration. Vaginal smear test showed the estrus cycle began to disappear from day 12 to day 15. A statistically significant difference in growth curves, ovarian weights, uterine weights and organ indexes between the groups were also observed. In rats with PCO serum testosterone (T), follicle-stimulating hormone (FSH) concentrations and free androgen index (FADI) were significantly increased compared with the control group (rats without PCO). However, rats with PCO had decreased levels of estrogen (E2), luteinizing hormone (LH), and progesterone (P) compared

  7. Limited Link between Oxidative Stress and Ochratoxin A—Induced Renal Injury in an Acute Toxicity Rat Model

    Directory of Open Access Journals (Sweden)

    Liye Zhu

    2016-12-01

    Full Text Available Ochratoxin A (OTA displays nephrotoxicity and hepatotoxicity. However, in the acute toxicity rat model, there is no evidence on the relationship between OTA and nephrotoxicity and hepatotoxicity. Based on this, the integrated analysis of physiological status, damage biomarkers, oxidative stress, and DNA damage were performed. After OTA treatment, the body weight decreased and AST, ALP, TP, and BUN levels in serum increased. Hydropic degeneration, swelling, vacuolization, and partial drop occurred in proximal tubule epithelial cells. PCNA and Kim-1 were dose-dependently increased in the kidney, but Cox-2 expression and proliferation were not found in the liver. In OTA-treated kidneys, the mRNA expressions of Kim-1, Cox-2, Lcn2, and Clu were dose-dependently increased. The mRNA expressions of Vim and Cox-2 were decreased in OTA-treated livers. Some oxidative stress indicators were altered in the kidneys (ROS and SOD and livers (SOD and GSH. DNA damage and oxidative DNA damage were not found. In conclusion, there is a limited link between oxidative stress and OTA-induced renal injury in an acute toxicity rat model.

  8. Residual stresses in high temperature corrosion of pure zirconium using elasto-viscoplastic model: Application to the deflection test in monofacial oxidation

    Science.gov (United States)

    Fettré, D.; Bouvier, S.; Favergeon, J.; Kurpaska, L.

    2015-12-01

    The paper is devoted to modeling residual stresses and strains in an oxide film formed during high temperature oxidation. It describes the deflection test in isothermal high-temperature monofacial oxidation (DTMO) of pure zirconium. The model incorporates kinetics and mechanism of oxidation and takes into account elastic, viscoplastic, growth and chemical strains. Different growth strains models are considered, namely, isotropic growth strains given by Pilling-Bedworth ratio, anisotropic growth strains defined by Parise and co-authors and physically based model for growth strain proposed by Clarke. Creep mechanisms based on dislocation slip and core diffusion, are used. A mechanism responsible for through thickness normal stress gradient in the oxide film is proposed. The material parameters are identified using deflection tests under 400 °C, 500 °C and 600 °C. The effect of temperature on creep and stress relaxation is analyzed. Numerical sensitivity study of the DTMO experiment is proposed in order to investigate the effects of the initial foil thickness and platinum coating on the deflection curves.

  9. Infertility and recurrent miscarriage with complex II deficiency-dependent mitochondrial oxidative stress in animal models.

    Science.gov (United States)

    Ishii, Takamasa; Yasuda, Kayo; Miyazawa, Masaki; Mitsushita, Junji; Johnson, Thomas E; Hartman, Phil S; Ishii, Naoaki

    2016-04-01

    Oxidative stress is associated with some forms of both male and female infertility. However, there is insufficient knowledge of the influence of oxidative stress on the maintenance of a viable pregnancy, including pregnancy complications and fetal development. There are a number of animal models for understanding age-dependent decrease of reproductive ability and diabetic embryopathy, especially abnormal spermatogenesis, oogenesis and embryogenesis with mitochondrial dysfunctions. Several important processes occur in mitochondria, including ATP synthesis, calcium ion storage, induction of apoptosis and production of reactive oxygen species (ROS). These events have different effects on the several aspects of reproductive function. Tet-mev-1 conditional transgenic mice, developed after studies with the mev-1 mutant of the nematode C. elegans, offer the ability to carefully regulate expression of doxycycline-induced mutated SDHC(V69E) levels and hence modulate endogenous oxidative stress. The mev-1 models have served to illuminate the effects of complex II deficiency-dependent mitochondrial ROS production, although interestingly they maintain normal mitochondrial and intracellular ATP levels. In this review, the reproductive dysfunctions are presented focusing on fertility potentials in each gamete, early embryogenesis, maternal conditions with placental function and neonatal development. Copyright © 2016. Published by Elsevier Ireland Ltd.

  10. Sleep Deprivation and Oxidative Stress in Animal Models: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Gabriel Villafuerte

    2015-01-01

    Full Text Available Because the function and mechanisms of sleep are partially clear, here we applied a meta-analysis to address the issue whether sleep function includes antioxidative properties in mice and rats. Given the expansion of the knowledge in the sleep field, it is indeed ambitious to describe all mammals, or other animals, in which sleep shows an antioxidant function. However, in this paper we reviewed the current understanding from basic studies in two species to drive the hypothesis that sleep is a dynamic-resting state with antioxidative properties. We performed a systematic review of articles cited in Medline, Scopus, and Web of Science until March 2015 using the following search terms: Sleep or sleep deprivation and oxidative stress, lipid peroxidation, glutathione, nitric oxide, catalase or superoxide dismutase. We found a total of 266 studies. After inclusion and exclusion criteria, 44 articles were included, which are presented and discussed in this study. The complex relationship between sleep duration and oxidative stress is discussed. Further studies should consider molecular and genetic approaches to determine whether disrupted sleep promotes oxidative stress.

  11. Oxidative stress adaptation with acute, chronic, and repeated stress.

    Science.gov (United States)

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Association of Oxidative Stress with Psychiatric Disorders.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Castro-Gomes, Vitor; Mohammadzai, Imdadullah; da Rocha, Joao Batista Teixeira; Landeira-Fernandez, J

    2016-01-01

    When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: "oxidative stress and affective disorders," "free radicals and neurodegenerative disorders," "oxidative stress and psychological disorders," "oxidative stress, free radicals, and psychiatric disorders," and "association of oxidative stress." These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders and World Health Organization's International Statistical Classification of Diseases and Related Health Problems. Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.

  13. IMMORTALIZED MICROGLIAL CELLS AS A MODEL SYSTEM FOR OXIDATIVE STRESS: PESTICIDE-INDUCED GENOMIC GHANGES.

    Science.gov (United States)

    In risk assessment there is a need to accelerate toxicological evaluation of vast numbers of chemicals. New programs focus on identifying common modes of action and on model systems for rapid screening. In this study we address both these issues. Oxidative stress is a good can...

  14. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation.

    Science.gov (United States)

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X; Villoslada, Pablo

    2013-01-01

    Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines

  15. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  16. The Role of Oxidative Stress in Nervous System Aging

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  17. Oxidative stress status in congenital hypogonadism: an appraisal.

    Science.gov (United States)

    Haymana, C; Aydoğdu, A; Soykut, B; Erdem, O; Ibrahimov, T; Dinc, M; Meric, C; Basaran, Y; Sonmez, A; Azal, O

    2017-07-01

    Patients with hypogonadism are at increased risk of cardiac and metabolic diseases. However, the pathogenesis of increased cardiometabolic risk in patients with hypogonadism is not clear. Oxidative stress plays an important role in the pathogenesis of cardiometabolic diseases. This study aimed to investigate possible differences in oxidative stress conditions between patients with hypogonadism and healthy controls. In this study, 38 male patients with congenital hypogonadotropic hypogonadism (CHH) (mean age: 21.7 ± 1.6 years) and 44 healthy male controls (mean age: 22.3 ± 1.4 years) with almost equal body mass index were enrolled. The demographic parameters, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total and free testosterone, homeostatic model assessment of insulin resistance (HOMA-IR) and oxidative stress parameters, such as superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA), were compared between both groups. Compared to the healthy controls, triglycerides (p = .02), insulin levels, HOMA-IR values, CAT activities and MDA levels (p treatment-naïve patients with congenital hypogonadism had an increased status of oxidative stress.

  18. Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse.

    Science.gov (United States)

    Martínez-Alfaro, Minerva; Cárabez-Trejo, Alfonso; Gallegos-Corona, Marco-Antonio; Pedraza-Aboytes, Gustavo; Hernández-Chan, Nancy Georgina; Leo-Amador, Guillermo Enrique

    2010-04-01

    Humans can come into contact with thinner by occupational exposure or by intentional inhalation abuse. Numerous studies of workers for genotoxic effects of thinner exposure have yielded conflicting results, perhaps because co-exposure to variable other compounds cannot be avoided in workplace exposure studies. In contrast, there is no data concerning the genotoxic effects of intentional inhalation abuse. The aim of this project was to examine the genotoxic effects of thinner inhalation in an animal model of thinner abuse (rats exposed to 3000 ppm toluene, a high solvent concentration over a very short, 15 min time period, twice a day for 6 weeks). The data presented here provides evidence that thinner inhalation in our experimental conditions is able to induce weight loss, lung abnormalities and oxidative stress. This oxidative stress induces oxidative DNA damage that is not a characteristic feature of genotoxic damage. No significant difference in DNA damage and DNA repair (biomarkers of genotoxicity) in lymphocytes from thinner-treated and control rats was found. Lead treatment was used as a positive control in these assays. Finally, bone marrow was evaluated as a biomarker of cellular alteration associated with thinner inhalation. The observed absence of hemopoietic and genetic toxicity could be explained in part by the absence of benzene, the only carcinogenic component of thinner; however, benzene is no longer a common component of thinner. In conclusion, thinner did not cause genotoxic effects in an experimental model of intentional abuse despite the fact that thinner inhalation induces oxidative stress. (c) 2009 John Wiley & Sons, Ltd.

  19. Bartter/Gitelman syndromes as a model to study systemic oxidative stress in humans.

    Science.gov (United States)

    Maiolino, Giuseppe; Azzolini, Matteo; Rossi, Gian Paolo; Davis, Paul A; Calò, Lorenzo A

    2015-11-01

    Reactive oxygen species (ROS) are intermediates in reduction-oxidation reactions that begin with the addition of one electron to molecular oxygen, generating the primary ROS superoxide, which in turn interacts with other molecules to produce secondary ROS, such as hydrogen peroxide, hydroxyl radical, and peroxynitrite. ROS are continuously produced during metabolic processes and are deemed to play an important role in cardiovascular diseases, namely, myocardial hypertrophy and fibrosis and atherosclerosis, via oxidative damage of lipids, proteins, and deoxyribonucleic acid. Angiotensin II (Ang II) is a potent vasoactive agent that also exerts mitogenic, proinflammatory, and profibrotic effects through several signaling pathways, in part involving ROS, particularly superoxide and hydrogen peroxide. Moreover, Ang II stimulates NADPH oxidases, leading to higher ROS generation and oxidative stress. Bartter/Gitelman syndrome patients, despite elevated plasma renin activity, Ang II, and aldosterone levels, exhibit reduced peripheral resistance, normal/low blood pressure, and blunted pressor effect of vasoconstrictors. In addition, notwithstanding the activation of the renin-angiotensin system and the increased plasma levels of Ang II, these patients display decreased production of ROS, reduced oxidative stress, and increased antioxidant defenses. In fact, Bartter/Gitelman syndrome patients are characterized by reduced levels of p22(phox) gene expression and undetectable plasma peroxynitrite levels, while showing increased plasma antioxidant power and expression of antioxidant enzymes, such as heme oxygenase-1. In conclusion, multifarious data suggest that Bartter and Gitelman syndrome patients are a model of low oxidative stress and high antioxidant defenses. The contribution offered by the study of these syndromes in elucidating the molecular mechanisms underlying this favorable status could offer chances for new therapeutic targets in disease characterized by high

  20. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants.

    Science.gov (United States)

    Carini, Francesco; Mazzola, Margherita; Rappa, Francesca; Jurjus, Abdo; Geagea, Alice Gerges; Al Kattar, Sahar; Bou-Assi, Tarek; Jurjus, Rosalyn; Damiani, Provvidenza; Leone, Angelo; Tomasello, Giovanni

    2017-09-01

    One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield definitive results and were performed mostly in vitro on cell populations, or in vivo in experimental animal models. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven

    2015-01-01

    SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino ac....... The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.......SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino...... acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous...

  2. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Allison L Weber

    Full Text Available Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

  3. Oxidative stress associated with exercise, psychological stress and life-style factors

    DEFF Research Database (Denmark)

    Møller, P; Wallin, H; Knudsen, Lisbeth E.

    1996-01-01

    generation. Here, we review the effect of alcohol, air pollution, cigarette smoke, diet, exercise, non-ionizing radiation (UV and microwaves) and psychological stress on the development of oxidative stress. Regular exercise and carbohydrate-rich diets seem to increase the resistance against oxidative stress....... Air pollution, alcohol, cigarette smoke, non-ionizing radiation and psychological stress seem to increase oxidative stress. Alcohol in lower doses may act as an antioxidant on low density lipoproteins and thereby have an anti-atherosclerotic property....

  4. Obesity decreases the oxidant stress induced by tobacco smoke in a rat model.

    Science.gov (United States)

    Montaño, Martha; Pérez-Ramos, J; Esquivel, A; Rivera-Rosales, R; González-Avila, G; Becerril, C; Checa, M; Ramos, C

    2016-09-01

    Obesity and emphysema are associated with low-grade systemic inflammation and oxidant stress. Assuming that the oxidant stress induced by emphysema would be decreased by obesity, we analyzed the oxidant/antioxidant state in a rat model combining both diseases simultaneously. Obesity was induced using sucrose, while emphysema by exposure to tobacco smoke. End-points evaluated were: body weight, abdominal fat, plasma dyslipidemia and malondialdehyde (MDA), insulin and glucose AUC, activities of Mn-superoxide dismutase (Mn-SOD), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GPx); lung MnSOD and 3-nitrotyrosine (3-NT) immunostaining, and expression of αV and β6 integrin subunits. In rats with obesity, the body weight, abdominal fat, plasma triglyceride levels, glucose AUC, insulin levels, GST activity, and αV and β6 integrin expressions were amplified. The rats with emphysema had lower values of body weight, abdominal fat, plasma insulin, triglycerides and glucose AUC but higher values of plasma MDA, GPx activity, and the lung expression of the αV and β6 integrins. The combination of obesity and emphysema compared to either condition alone led to diminished body weight, abdominal fat, plasma insulin MDA levels, GPx and GST activities, and αV and β6 integrin expressions; these parameters were all previously increased by obesity. Immunostaining for MnSOD augmented in all experimental groups, but the staining for 3-NT only increased in rats treated with tobacco alone or combined with sucrose. Results showed that obesity reduces oxidant stress and integrin expression, increasing antioxidant enzyme activities; these changes seem to partly contribute to a protective mechanism of obesity against emphysema development.

  5. Nutrients and Oxidative Stress: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Bee Ling Tan

    2018-01-01

    Full Text Available There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB- mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD, and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs. Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  6. Nutrients and Oxidative Stress: Friend or Foe?

    Science.gov (United States)

    Tan, Bee Ling; Norhaizan, Mohd Esa; Liew, Winnie-Pui-Pui

    2018-01-01

    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF- κ B-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  7. Beneficial effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea.

    Science.gov (United States)

    Xiao, Fan; Cui, Hua; Zhong, Xiao

    2018-05-01

    Present investigation evaluates the effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Briefly, electron spine resonance was used for the estimation of radical scavenging activity of daidzin and COX Fluorescent Activity Assay Kit was used for the estimation of PGS activity. Dry eye rat model was developed by removing the lacrimal gland and effect of daidzin was evaluated in dry eye rat model by estimating the fluorescein score, tear volume and expressions of heme oxigenase (HO-1), TNF α, Interlukin 6 (IL-6), matrix metallopeptidase 9 (MMP-9) and PGS-2. Result of the present study suggested that daidzin possess tyrosyl radical scavenging activity and thereby decreases the oxidative stress. Activity of PGS significantly increases in dry eye which was inhibited by daidzin treatment due to competitive inhibition of PGS. It also recovers the tear volume in dry eye rat model in which lacrimal gland was removed. Thus corneal erosion was improved by daidzin in dry eye rat model. Thus present study concludes that treatment with daidzin protects the cornea in dry eye rat model by suppression inflammation and oxidative stress.

  8. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress.

    Science.gov (United States)

    Patki, Gaurav; Solanki, Naimesh; Atrooz, Fatin; Allam, Farida; Salim, Samina

    2013-11-20

    In the present study, we have examined the behavioral and biochemical effect of induction of psychological stress using a modified version of the resident-intruder model for social stress (social defeat). At the end of the social defeat protocol, body weights, food and water intake were recorded, depression and anxiety-like behaviors as well as memory function was examined. Biochemical analysis including oxidative stress measurement, inflammatory markers and other molecular parameters, critical to behavioral effects were examined. We observed a significant decrease in the body weight in the socially defeated rats as compared to the controls. Furthermore, social defeat increased anxiety-like behavior and caused memory impairment in rats (PSocially defeated rats made significantly more errors in long term memory tests (Psocially defeated rats, when compared to control rats. We suggest that social defeat stress alters ERK1/2, IL-6, GLO1, GSR1, CAMKIV, CREB, and BDNF levels in specific brain areas, leading to oxidative stress-induced anxiety-depression-like behaviors and as well as memory impairment in rats. © 2013 Published by Elsevier B.V.

  9. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome.

    Science.gov (United States)

    Berkowitz, Bruce A; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y; Berri, Ali M; Dernay, Kristin; Haacke, E Mark; Shafie-Khorassani, Fatema; Podolsky, Robert H; Gant, John C; Maimaiti, Shaniya; Thibault, Olivier; Murphy, Geoffrey G; Bennett, Brian M; Roberts, Robin

    2017-09-01

    Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/ T 1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. © FASEB.

  10. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    Science.gov (United States)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  11. Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model.

    Science.gov (United States)

    Wilson, C Brad; McLaughlin, Leslie D; Nair, Anand; Ebenezer, Philip J; Dange, Rahul; Francis, Joseph

    2013-01-01

    This study sought to analyze specific pathophysiological mechanisms involved in the progression of post-traumatic stress disorder (PTSD) by utilizing an animal model. To examine PTSD pathophysiology, we measured damaging reactive oxygen species and inflammatory cytokines to determine if oxidative stress and inflammation in the brain, adrenal glands, and systemic circulation were upregulated in response to constant stress. Pre-clinical PTSD was induced in naïve, male Sprague-Dawley rats via a predator exposure/psychosocial stress regimen. PTSD group rats were secured in Plexiglas cylinders and placed in a cage with a cat for one hour on days 1 and 11 of a 31-day stress regimen. In addition, PTSD group rats were subjected to psychosocial stress whereby their cage cohort was changed daily. This model has been shown to cause heightened anxiety, exaggerated startle response, impaired cognition, and increased cardiovascular reactivity, all of which are common symptoms seen in humans with PTSD. At the conclusion of the predator exposure/psychosocial stress regimen, the rats were euthanized and their brains were dissected to remove the hippocampus, amygdala, and pre-frontal cortex (PFC), the three areas commonly associated with PTSD development. The adrenal glands and whole blood were also collected to assess systemic oxidative stress. Analysis of the whole blood, adrenal glands, and brain regions revealed oxidative stress increased during PTSD progression. In addition, examination of pro-inflammatory cytokine (PIC) mRNA and protein demonstrated neurological inflammatory molecules were significantly upregulated in the PTSD group vs. controls. These results indicate oxidative stress and inflammation in the brain, adrenal glands, and systemic circulation may play a critical role in the development and further exacerbation of PTSD. Thus, PTSD may not be solely a neurological pathology but may progress as a systemic condition involving multiple organ systems.

  12. Nutrigenetics and modulation of oxidative stress.

    Science.gov (United States)

    Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed

    2012-01-01

    Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.

  13. Effects of Laminaria japonica polysaccharides on exercise endurance and oxidative stress in forced swimming mouse model.

    Science.gov (United States)

    Yan, Feiwei; Hao, Haitao

    2016-12-01

    Polysaccharides are the major active ingredients responsible for the bioactivities of Laminaria japonica. However, the effects of L. japonica polysaccharides (LJP) on exercise endurance and oxidative stress have never been investigated. Therefore, this study was conducted to investigate the effects of LJP on exercise endurance and oxidative stress in a forced swimming mouse model. The animals were divided into four groups, namely the control (C), LJP-75, LJP-150, and LJP-300 groups, which received physiological saline and 75, 150, and 300 mg kg(-1) LJP, respectively, by gavage once a day for 28 days. This was followed by a forced swimming test and measurements of various biochemical parameters. LJP increased swimming time to exhaustion, the liver and muscle glycogen content, and levels of superoxide dismutase, glutathione peroxidase, and catalase in the serum, liver, and muscle, which were accompanied by corresponding decreases in the malondialdehyde (MDA) content of the same tissues. Furthermore, decreases in blood lactic acid and serum myeloperoxidase (MPO) levels were observed. LJP enhanced exercise endurance and protected mice against exhaustive exercise-induced oxidative stress.

  14. A new oxidative stress model, 2,2-azobis(2-amidinopropane dihydrochloride induces cardiovascular damages in chicken embryo.

    Directory of Open Access Journals (Sweden)

    Rong-Rong He

    Full Text Available It is now well established that the developing embryo is very sensitive to oxidative stress, which is a contributing factor to pregnancy-related disorders. However, little is known about the effects of reactive oxygen species (ROS on the embryonic cardiovascular system due to a lack of appropriate ROS control method in the placenta. In this study, a small molecule called 2,2-azobis(2-amidinopropane dihydrochloride (AAPH, a free radicals generator, was used to study the effects of oxidative stress on the cardiovascular system during chick embryo development. When nine-day-old (stage HH 35 chick embryos were treated with different concentrations of AAPH inside the air chamber, it was established that the LD50 value for AAPH was 10 µmol/egg. At this concentration, AAPH was found to significantly reduce the density of blood vessel plexus that was developed in the chorioallantoic membrane (CAM of HH 35 chick embryos. Impacts of AAPH on younger embryos were also examined and discovered that it inhibited the development of vascular plexus on yolk sac in HH 18 embryos. AAPH also dramatically repressed the development of blood islands in HH 3+ embryos. These results implied that AAPH-induced oxidative stress could impair the whole developmental processes associated with vasculogenesis and angiogenesis. Furthermore, we observed heart enlargement in the HH 40 embryo following AAPH treatment, where the left ventricle and interventricular septum were found to be thickened in a dose-dependent manner due to myocardiac cell hypertrophy. In conclusion, oxidative stress, induced by AAPH, could lead to damage of the cardiovascular system in the developing chick embryo. The current study also provided a new developmental model, as an alternative for animal and cell models, for testing small molecules and drugs that have anti-oxidative activities.

  15. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Xiaochun Duan

    2016-01-01

    Full Text Available Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH. Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  16. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Science.gov (United States)

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  17. Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation

    Science.gov (United States)

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo

    2013-01-01

    Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of

  18. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  19. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  20. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  1. The role of lager beer yeast in oxidative stability of model beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Arneborg, Nils

    2012-01-01

    that the oxidative stress resistance was strain dependent. Fermentation of model wort in European Brewing Convention tubes using three yeast strains with varying oxidative stress resistances resulted in three model beers with different rates of radical formation as measured by electron spin resonance in forced......AIMS: In this study, we investigated the relationship between the ability of lager brewing yeast strains to tolerate oxidative stress and their ability to produce oxidative stable model beer. METHODS AND RESULTS: Screening of 21 lager brewing yeast strains against diamide and paraquat showed...... in the model beers. CONCLUSIONS: A more oxidative stable beer is not obtained by a more-oxidative-stress-tolerant lager brewing yeast strain, exhibiting a higher secretion of thioredoxin, but rather by a less-oxidative-stress-tolerant strain, exhibiting a higher iron uptake. SIGNIFICANCE AND IMPACT...

  2. Oxidative stress and the ageing endocrine system.

    Science.gov (United States)

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  3. Influence of Turmeric Rhizome Powder diets on decreasing oxidative stress caused by heat stress inbroiler model

    Directory of Open Access Journals (Sweden)

    Seyyed Javad Hosseini-Vashan

    2012-08-01

    Full Text Available Background and Aim: Production of reactive oxygen species (ROS increases during oxidative stress conditions, which stimulates diabetes, inflammatory reactions, rheumatism and anemia. Some antioxidant properties of turmeric rhizome powder (TRP were revealed by previous researchers. The present study was conducted to evaluate the influence of TRP on decreasing effects of oxidative stress resulted from heat stress in broiler chickens.   Materials and Methods: In this experimental study, two-hundred-sixty-four 1-day-old broilers were divided into 3 dietary treatments. The dietary treatments involved 0(control, 0.4 and 0.8% turmeric rhizome powder (cases. In order to create oxidative stress, the ambient temperature was daily raised from 21 to 33oc for 5 hours (11a.m-4p.m throughout the 28th-42nd days. Blood lipids, Glutathione peroxidase (GPx ,superoxide dismutase (SOD, and Tiobarbituric acid reaction score (TBARS were determined at the end of the experiment.   Results: The results revealed that total cholesterol and triglyceride were not affected. The 0.4 TRP diet decreased blood LDL (46.7±3.01 compared to basal group (52.0±2.17. HDL increased in broilers fed 0.8% TRP (74.0 ± 3.87 compared to chickens with basal diet (63.7± 2.98. Enzyme activity of GPx improved in broilers fed TRP diets (225.9± 11.52 as compared to chickens with basal diet(183.1± 8.52 however, the TRP diet did not affect enzyme activity of SOD (P > 0.05. The TBARS index decreased in broilers fed TRP (0.76 ± 0.0052 in basal vs.0.49 ± 0.0032 in 0.8% TRP.   Conclusion: The major bioactive component of TRP is Curcumin that can improve the antioxidant properties under oxidative stress and high ambient temperature.

  4. A Model of Oxidative Stress Management: Moderation of Carbohydrate Metabolizing Enzymes in SOD1-Null Drosophila melanogaster

    Science.gov (United States)

    Bernard, Kristine E.; Parkes, Tony L.; Merritt, Thomas J. S.

    2011-01-01

    The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain. PMID

  5. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  6. Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy.

    Science.gov (United States)

    Sharma, Rachana D; Katkar, Gajanan D; Sundaram, Mahalingam S; Swethakumar, Basavarajaiah; Girish, Kesturu S; Kemparaju, Kempaiah

    2017-05-01

    Snakebite is a neglected health hazard. Its patho-physiology has largely been focused on systemic and local toxicities; whereas, venom and antivenom induced oxidative stress has long been ignored. Antivenom therapy although neutralizes venom lethality and saves many lives, remains ineffective against oxidative stress. This prompted us to complement antivenom with an antioxidant molecule melatonin that would protect against oxidative stress and increase the efficacy of the existing snakebite therapy. Here we show that D. russelli and E. carinatus venoms induce strong oxidative stress that persists even after antivenom administration in mice model. Additionally, antivenoms also induce oxidative stress. Polyvalent antivenom induce more oxidative stress than monovalent antivenom. Strikingly, antivenom and melatonin together not only inhibit venom and antivenom induced oxidative stress but also significantly reduce the neutralizing antivenom dose. This study provides a therapeutic potential for enhancing the existing snakebite therapy. The combined treatment of antivenom+melatonin would prevent the upsurge of oxidative stress as well as minimize the antivenom load. Thus the investigation offers immense scope for physicians and toxinologists to reinvestigate, design new strategies and think beyond the conventional mode of antivenom therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy.

    Science.gov (United States)

    Liu, Dexiang; Ke, Zunji; Luo, Jia

    2017-09-01

    Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.

  8. Beneficial effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2018-05-01

    Full Text Available Present investigation evaluates the effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Briefly, electron spine resonance was used for the estimation of radical scavenging activity of daidzin and COX Fluorescent Activity Assay Kit was used for the estimation of PGS activity. Dry eye rat model was developed by removing the lacrimal gland and effect of daidzin was evaluated in dry eye rat model by estimating the fluorescein score, tear volume and expressions of heme oxigenase (HO-1, TNF α, Interlukin 6 (IL-6, matrix metallopeptidase 9 (MMP-9 and PGS-2. Result of the present study suggested that daidzin possess tyrosyl radical scavenging activity and thereby decreases the oxidative stress. Activity of PGS significantly increases in dry eye which was inhibited by daidzin treatment due to competitive inhibition of PGS. It also recovers the tear volume in dry eye rat model in which lacrimal gland was removed. Thus corneal erosion was improved by daidzin in dry eye rat model. Thus present study concludes that treatment with daidzin protects the cornea in dry eye rat model by suppression inflammation and oxidative stress. Keywords: Daidzin, Dry eye, Radical scavenging activity, Inflammation

  9. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  10. Oxidative stress and partial migration in brown trout (Salmo trutta)

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Peiman, K. S.; Larsen, Martin Hage

    2017-01-01

    of oxidative status in migration biology, particularly in fish. Semi-anadromous brown trout (Salmo trutta, Linnaeus 1758) exhibit partial migration, where some individuals smoltify and migrate to sea, and others become stream residents, providing us with an excellent model to investigate the link between...... oxidative stress and migration. Using the brown trout, we obtained blood samples from juveniles from a coastal stream in Denmark in the fall prior to peak seaward migration which occurs in the spring, and assayed for antioxidant capacity (oxygen radical absorbance capacity) and oxidative stress levels...

  11. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Okazawa, H.; Tsujikawa, T.; Kiyono, Y.; Ikawa, M.; Yoneda, M.

    2014-01-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases

  12. Transcriptome-Based Modeling Reveals that Oxidative Stress Induces Modulation of the AtfA-Dependent Signaling Networks in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Erzsébet Orosz

    2017-01-01

    Full Text Available To better understand the molecular functions of the master stress-response regulator AtfA in Aspergillus nidulans, transcriptomic analyses of the atfA null mutant and the appropriate control strains exposed to menadione sodium bisulfite- (MSB-, t-butylhydroperoxide- and diamide-induced oxidative stresses were performed. Several elements of oxidative stress response were differentially expressed. Many of them, including the downregulation of the mitotic cell cycle, as the MSB stress-specific upregulation of FeS cluster assembly and the MSB stress-specific downregulation of nitrate reduction, tricarboxylic acid cycle, and ER to Golgi vesicle-mediated transport, showed AtfA dependence. To elucidate the potential global regulatory role of AtfA governing expression of a high number of genes with very versatile biological functions, we devised a model based on the comprehensive transcriptomic data. Our model suggests that an important function of AtfA is to modulate the transduction of stress signals. Although it may regulate directly only a limited number of genes, these include elements of the signaling network, for example, members of the two-component signal transduction systems. AtfA acts in a stress-specific manner, which may increase further the number and diversity of AtfA-dependent genes. Our model sheds light on the versatility of the physiological functions of AtfA and its orthologs in fungi.

  13. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Techasen, Anchalee [Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Hou, Bo [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Jamnongkan, Wassana; Armartmuntree, Napat [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Yongvanit, Puangrat, E-mail: puangrat@kku.ac.th [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Murata, Mariko, E-mail: mmurata@doc.medic.mie-u.ac.jp [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan)

    2015-08-14

    Oxidative stress is a cause of inflammation–related diseases, including cancers. Cholangiocarcinoma is a liver cancer with bile duct epithelial cell phenotypes. Our previous studies in animal and human models indicated that oxidative stress is a major cause of cholangiocarcinoma development. Hydrogen peroxide (H{sub 2}O{sub 2}) can generate hydroxyl radicals, which damage lipids, proteins, and nucleic acids, leading to cell death. However, some cells can survive by adapting to oxidative stress conditions, and selective clonal expansion of these resistant cells would be involved in oxidative stress-related carcinogenesis. The present study aimed to establish H{sub 2}O{sub 2}-resistant cell line from an immortal cholangiocyte cell line (MMNK1) by chronic treatment with low-concentration H{sub 2}O{sub 2} (25 μM). After 72 days of induction, H{sub 2}O{sub 2}-resistant cell lines (ox-MMNK1-L) were obtained. The ox-MMNK1-L cell line showed H{sub 2}O{sub 2}-resistant properties, increasing the expression of the anti-oxidant genes catalase (CAT), superoxide dismutase-1 (SOD1), superoxide dismutase-2 (SOD2), and superoxide dismutase-3 (SOD3) and the enzyme activities of CAT and intracellular SODs. Furthermore, the resistant cells showed increased expression levels of an epigenetics-related gene, DNA methyltransferase-1 (DNMT1), when compared to the parental cells. Interestingly, the ox-MMNK1-L cell line had a significantly higher cell proliferation rate than the MMNK1 normal cell line. Moreover, ox-MMNK1-L cells showed pseudopodia formation and the loss of cell-to-cell adhesion (multi-layers) under additional oxidative stress (100 μM H{sub 2}O{sub 2}). These findings suggest that H{sub 2}O{sub 2}-resistant cells can be used as a model of oxidative stress-related cholangiocarcinoma genesis through molecular changes such as alteration of gene expression and epigenetic changes. - Highlights: • An H{sub 2}O{sub 2}-resistant ox-MMNK1-L cells was established from

  14. Role of catalase and superoxide dismutase activities on oxidative stress in the brain of a phenylketonuria animal model and the effect of lipoic acid.

    Science.gov (United States)

    Moraes, Tarsila Barros; Jacques, Carlos Eduardo Diaz; Rosa, Andrea Pereira; Dalazen, Giovana Reche; Terra, Melaine; Coelho, Juliana Gonzalez; Dutra-Filho, Carlos Severo

    2013-03-01

    Phenylketonuria (PKU) is an inherited metabolic disorder caused by deficiency of phenylalanine hydroxylase which leads to accumulation of phenylalanine and its metabolites in tissues of patients with severe neurological involvement. Recently, many studies in animal models or patients have reported the role of oxidative stress in PKU. In the present work we studied the effect of lipoic acid against oxidative stress in rat brain provoked by an animal model of hyperphenylalaninemia (HPA), induced by repetitive injections of phenylalanine and α-methylphenylalanine (a phenylalanine hydroxylase inhibitor) for 7 days, on some oxidative stress parameters. Lipoic acid prevented alterations on catalase (CAT) and superoxide dismutase (SOD), and the oxidative damage of lipids, proteins, and DNA observed in HPA rats. In addition, lipoic acid diminished reactive species generation compared to HPA group which was positively correlated to SOD/CAT ratio. We also observed that in vitro Phe inhibited CAT activity while phenyllactic and phenylacetic acids stimulated superoxide dismutase activity. These results demonstrate the efficacy of lipoic acid to prevent oxidative stress induced by HPA model in rats. The possible benefits of lipoic acid administration to PKU patients should be considered.

  15. Oxidative Stress in BPH.

    Science.gov (United States)

    Savas, M; Verit, A; Ciftci, H; Yeni, E; Aktan, E; Topal, U; Erel, O

    2009-01-01

    In the present study, we investigated the relationship between potency of oxidative stress and BPH and this may assist to contribute to the realistic explanation of the ethiopathogenesis of BPH. Seventy four newly diagnosed men with BPH (mean age: 54+/-11.2), who had not undergone any previous treatment for BPH, and 62 healthy volunteers (mean age: 55+/-14) were enrolled in the present study. To determine the antioxidative status of plasma, total antioxidant capacity (TAC) was calculated, and to determine the oxidative status of plasma (TOS) total peroxide levels were measured. The ratio of TAC to total peroxide was accepted as an indicator of oxidative stress (OSI). Data are presented as mean SD +/- unless specified. Student t-test and correlation analyses were used to evaluate the statistical significance differences in the median values recorded for all parameters between BPH and control group. Plasma TAC TOS were found in patients and controls (1.70 +/- 0.32, 1.68 +/- 0.19 micromol Trolox Equiv./L), (12.48 +/- 1.98, 12.40 +/- 1.14 micromol / L) respectively. OSI was calculated as 7.57 +/- 1.91, 7.48 +/- 1.33, respectively. Plasma TAC, TOS and OSI levels were not found to be significantly difference between patients and control subjects (p>0.05, p>0.05, p>0.05). The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis.

  16. Cardiovascular Complications of Sleep Apnea: Role of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Mohammad Badran

    2014-01-01

    Full Text Available Obstructive sleep apnea (OSA occurs in 2% of middle-aged women and 4% of middle-aged men with a higher prevalence among obese subjects. This condition is considered as an independent risk factor for cerebrovascular and cardiovascular diseases. One of the major pathophysiological characteristics of OSA is intermittent hypoxia. Hypoxia can lead to oxidative stress and overproduction of reactive oxygen species, which can lead to endothelial dysfunction, a hallmark of atherosclerosis. Many animal models, such as the rodent model of intermittent hypoxia, mimic obstructive sleep apnea in human patients and allow more in-depth investigation of biological and cellular mechanisms of this condition. This review discusses the role of oxidative stress in cardiovascular disease resulting from OSA in humans and animal models.

  17. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    2007-06-01

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  18. Clinical Perspective of Oxidative Stress in Sporadic ALS

    Science.gov (United States)

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  19. extract attenuates MPTP-induced oxidative stress and behavioral

    African Journals Online (AJOL)

    on oxidative stress levels were assessed by estimating enzyme status, including superoxide dismutase. (SOD), catalase ... in both non-human primates and mice models. [12,13]. ..... Polyphenol composition and antioxidant activity of cumin.

  20. Synthesis, structuring and characterization of rare earth oxide thin films: Modeling of the effects of stress and defects on the phase stability

    International Nuclear Information System (INIS)

    Gaboriaud, R.J.; Paumier, F.; Lacroix, B.

    2014-01-01

    This work studies the effects of the deposition parameters on the microstructure and the related residual stress in a rare earth oxide thin film. This study is focused on the yttrium sesquioxide (Y 2 O 3 ) thin films deposited on Si (100) substrates using the ion beam sputtering technique. This technique allows the control of the microstructure and the related residual stress in the thin films by monitoring the energy of the argon beam used in the deposition process. Measurements of the stresses within the oxide layer were performed by the X-ray diffraction-sin 2 Ψ method. The results show that the classic model of a pure biaxial in-plane model of stress, generally proposed in thin films, is not satisfying. A model that includes a hydrostatic stress due to the crystalline defects generated during the deposition process and a biaxial stress called a fixation stress, gives a good agreement with the experimental results. This modeling of the residual stress, based on nanometer-scale inclusions (point, extended defects) inducing a hydrostatic stress field, leads to a quantitative analysis of the nature and the concentration of the defects. This work shows results that establish a relationship between residual stress, defects and non-equilibrium phase stabilization during growth. - Highlights: • Microstructure of Y 2 O 3 thin films • Measurements of residual stresses in the thin films • Modeling of a triaxial residual stress state • Stress-induced stabilization of non-equilibrium phase

  1. ESR imaging for estimation oxidative stress in the brain of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hidekatsu; Itoh, Osam; Aoyama, Masaaki; Obara, Heitaro; Ohya, Hiroaki; Kamada, Hitoshi [Inst. for Life Support Technology, Matsuei, Yamagata (Japan)

    2002-04-01

    ESR imaging for estimating intracerebral oxidative stress of rats was performed. An acyl-protected hydroxylamine, 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP), is a very stable non-radical compound outside cells, however, within cells, it is easily deprotected with esterase to yield 1-hydroxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine, which is oxidized by oxidative stress to yield an ESR-detectable stable nitroxide radical, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl. Thus signal intensity in the ESR image reflects the strength of intracellular oxidative stress. From in vivo ESR image data of the brain of rats that received ACP, the average values of ESR signal intensity from the hippocampus, striatum, and cerebral cortex were computed. This imaging technique was applied to an epileptic seizure model. As a result, it was found that following a kainic acid-induced seizure, the oxidative stress in the hippocampus and striatum is enhanced, but not so in the cerebral cortex. (author)

  2. Less Stress : Oxidative stress and glutathione kinetics in preterm infants

    NARCIS (Netherlands)

    D. Rook (Denise)

    2013-01-01

    textabstractDue to immature antioxidant defenses, preterm infants are at susceptible to oxidative stress, which is associated with bronchopulmonary dysplasia, retinopathy of prematurity and periventricular leukomalacia. The general aim of this thesis was to study oxidative stress in preterm infants

  3. Muscle Aging and Oxidative Stress in Wild-Caught Shrews

    Science.gov (United States)

    Hindle, Allyson G.; Lawler, John M.; Campbell, Kevin L.; Horning, Markus

    2010-01-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free radical theory of aging in wild mammals, given their short (<18 month) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  4. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  5. Disorder–order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects

    International Nuclear Information System (INIS)

    Gaboriaud, R.J.; Paumier, F.; Lacroix, B.

    2016-01-01

    This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y_2O_3. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability

  6. Disorder–order phase transformation in a fluorite-related oxide thin film: In-situ X-ray diffraction and modelling of the residual stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Gaboriaud, R.J.; Paumier, F. [Institut Pprime, Department of Material Sciences, CNRS-University of Poitiers SP2MI-BP 30179, 86962 Futuroscope-Chasseneuil cedex (France); Lacroix, B. [CSIC, Institut de Ciencia de Materiales, University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2016-02-29

    This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y{sub 2}O{sub 3}. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability.

  7. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers

    International Nuclear Information System (INIS)

    Evans, H.E.; Norfolk, D.J.; Swan, T.

    1978-01-01

    A frequent observation in metal oxidation is the development of subparabolic kinetics, variously described as cubic or quartic. Although a number of detailed mechanisms have been proposed to account for this effect, none seem generally applicable. A model is presented of the oxidation process which is divorced from such restrictions. It is argued that deviations from parabolic behavior occur as a result of the concurrent development of stresses within the oxide. It is shown that the presence of stress fields can influence significantly the rate of transport of vacancy defects within the oxide such that tensile stresses produce positive deviations and compressive stresses, negative deviations from parabolic behavior. The model is applied in detail to Zircaloy-2 oxidation at 773 0 K. It is predicted that the kinetics should be insensitive to the oxygen potential of the environment and this has been confirmed by previous experimental work. 31 refs

  9. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  10. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  11. Impact of Oxidative Stress in Fetal Programming

    OpenAIRE

    Thompson, Loren P.; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that pr...

  12. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  13. Oxidative stress in primary glomerular diseases

    DEFF Research Database (Denmark)

    Markan, Suchita; Kohli, Harbir Singh; Sud, Kamal

    2008-01-01

    To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure.......To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure....

  14. Oxidative stress and psychological functioning among medical students

    Directory of Open Access Journals (Sweden)

    Rani Srivastava

    2014-01-01

    Full Text Available Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA levels and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression among medical/paramedical students of 1 st and 3 rd year. Materials and Methods: A total of 150 students; 75 from 1 st year (2010-2011 and75 from 3 rd year (2009-2010; of medical and paramedical background were assessed on level of MDA (oxidative stress and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3 rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given.

  15. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH, respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.

  16. A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: promising preclinical evidence from animal models.

    Science.gov (United States)

    Gharagozloo, P; Gutiérrez-Adán, A; Champroux, A; Noblanc, A; Kocer, A; Calle, A; Pérez-Cerezales, S; Pericuesta, E; Polhemus, A; Moazamian, A; Drevet, J R; Aitken, R J

    2016-02-01

    Does a novel antioxidant formulation designed to restore redox balance within the male reproductive tract, reduce sperm DNA damage and increase pregnancy rates in mouse models of sperm oxidative stress? Oral administration of a novel antioxidant formulation significantly reduced sperm DNA damage in glutathione peroxidase 5 (GPX5), knockout mice and restored pregnancy rates to near-normal levels in mice subjected to scrotal heat stress. Animal and human studies have documented the adverse effect of sperm DNA damage on fertilization rates, embryo quality, miscarriage rates and the transfer of de novo mutations to offspring. Semen samples of infertile men are known to be deficient in several key antioxidants relative to their fertile counterparts. Antioxidants alone or in combination have demonstrated limited efficacy against sperm oxidative stress and DNA damage in numerous human clinical trials, however these studies have not been definitive and an optimum combination has remained elusive. The efficacy of the antioxidant formulation was evaluated in two well-established mouse models of oxidative stress, scrotal heating and Gpx5 knockout (KO) mice, (n = 12 per experimental group), by two independent laboratories. Mice were provided the antioxidant product in their drinking water for 2-8 weeks and compared with control groups for sperm DNA damage and pregnancy rates. In the Gpx5 KO model, oxidative DNA damage was monitored in spermatozoa by immunocytochemical detection of 8-hydroxy-2'-deoxyguanosine (8OHdG). In the scrotal heat stress model, male fertility was tested by partnering with three females for 5 days. The percentage of pregnant females, number of vaginal plugs, resorptions per litter, and litter size were recorded. Using immunocytochemical detection of 8OHdG as a biomarker of DNA oxidation, analysis of control mice revealed that around 30% of the sperm population was positively stained. This level increased to about 60% in transgenic mice deficient in the

  17. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  18. Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Niemann-Pick type C (NPC disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.

  19. Free radicals, reactive oxygen species, oxidative stress and its classification.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Impact of Oxidative Stress in Fetal Programming

    Directory of Open Access Journals (Sweden)

    Loren P. Thompson

    2012-01-01

    Full Text Available Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  1. Oxidative Stress and Programmed Cell Death in Yeast

    International Nuclear Information System (INIS)

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.

  2. An in vitro liver model--assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Gaiser, Birgit K; Hutchison, Gary R

    2012-01-01

    Following exposure via inhalation, intratracheal instillation or ingestion some nanomaterials (NM) have been shown to translocate to the liver. Since oxidative stress has been implicated as a possible mechanism for NM toxicity this study aimed to investigate the effects of various materials (five...... titanium dioxide (TiO2), two zinc oxide (ZnO), two multi-walled carbon nanotubes (MWCNT) and one silver (Ag) NM) on oxidative responses of C3A cell line as a model for potential detrimental properties of nanomaterials on the liver.......Following exposure via inhalation, intratracheal instillation or ingestion some nanomaterials (NM) have been shown to translocate to the liver. Since oxidative stress has been implicated as a possible mechanism for NM toxicity this study aimed to investigate the effects of various materials (five...

  3. Possible role of oxidative stress and immunological activation in mouse model of chronic fatigue syndrome and its attenuation by olive extract.

    Science.gov (United States)

    Gupta, Amit; Vij, Garima; Chopra, Kanwaljit

    2010-09-14

    Various putative theories involved in the development of chronic fatigue syndrome revolve around the role of stress, infection and oxidative stress. Scientific evidence highlighting the protective role of nutritional supplements in chronic fatigue syndrome is lacking. Based on these assumptions, the present study was designed to evaluate the effect of olive extract in a mouse model of immunologically-induced fatigue, wherein purified lipopolysaccharide (LPS) and Brucella abortus (BA) antigen were used as immunogens. The assessment of chronic fatigue syndrome was based on immobility period during chronic water-immersion stress test for 10 min daily. The stress-induced hyperalgesia was measured by tail withdrawal latency. Mice challenged with LPS or BA for 19 days showed significant increase in the immobility time, hyperalgesia and oxidative stress on the 19th day. Serum tumor necrosis factor-alpha (TNF-α) levels were also markedly increased with LPS or BA challenge. Concurrent treatment with olive extract resulted in a significant decrease in the immobility time as well as hyperalgesia. There was significant attenuation of oxidative stress as well as serum TNF-α levels. The results of the present study strongly indicate the role of oxidative stress and immunological activation in the pathophysiology of chronic fatigue syndrome and highlight the valuable role of olive extract in combating chronic fatigue syndrome. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. The effect of oxidative stress on the progression of Hashimoto's thyroiditis.

    Science.gov (United States)

    Ates, Ihsan; Arikan, Mehmet Fettah; Altay, Mustafa; Yilmaz, Fatma Meric; Yilmaz, Nisbet; Berker, Dilek; Guler, Serdar

    2017-11-29

    We aimed to investigate the effects of oxidative stress in the pathogenesis and progression of Hashimoto's thyroiditis (HT). Forty euthyroid and 40 subclinical hypothyroid patients older than 18 years and not yet had received treatment were enrolled in the study. In the 9 months follow-up, 14 of the HT patients developed overt hypothyroidism. The mean total oxidant status (TOS) and oxidative stress index (OSI) were higher in patients who developed overt hypothyroidism than those who did not (p  .05). Multivariable Cox regression model showed thyroid stimulating hormone level (HR = 1.348, p OSI ratio (HR = 2.349, p OSI level, being over 2.96 with 92.9% sensitivity and 62.5% specificity, predicts the risk of hypothyroidism. Oxidative stress may be an effective risk factor in the development of overt hypothyroidism in HT.

  5. Hypoxia, Oxidative Stress and Fat

    Directory of Open Access Journals (Sweden)

    Nikolaus Netzer

    2015-06-01

    Full Text Available Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators.

  6. Experimental and Clinical Studies of Oxidative Stress in Pre-Eclampsia

    OpenAIRE

    Nash, Peppi

    2007-01-01

    Impaired placentation and oxidative stress are proposed to play major roles in the pathogenesis of pre-eclampsia (PE). It has recently been pointed out that PE might be more than one disease and may have several different pathogeneses. This thesis describes a new animal model for PE and examines the role of oxidative stress in early respective late onset PE. The effects of Suramin injections on day 10 and 11 of pregnancy were investigated in normal and diabetic rats of two strains (U and H), ...

  7. Depression and oxidative stress: results from a meta-analysis of observational studies.

    Science.gov (United States)

    Palta, Priya; Samuel, Laura J; Miller, Edgar R; Szanton, Sarah L

    2014-01-01

    To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen's d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen's d effect size of 0.55 (95% confidence interval = 0.47-0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I(2) = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen's d = -0.24, 95% confidence interval = -0.33 to -0.15). This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress.

  8. The role of oxidative stress and antioxidant supplementation in pregnancy disorders

    OpenAIRE

    Poston, Lucilla; Igosheva, Natalia; Mistry, Hiten D.; Seed, Paul T.; Shennan, Andrew H.; Rana, Sarosh; Karumanchi, S. Ananth; Chappell, Lucy C.

    2011-01-01

    Oxidative stress is widely implicated in failed reproductive performance including infertility, miscarriage, diabetes-related congenital malformations and preeclampsia. Maternal obesity is a strong risk factor for preeclampsia, and recently, in an animal model of maternal obesity we have reported evidence of oxidative stress in the oocytes of obese animals prior to pregnancy as well as in early stage embryos. This adds to the growing evidence for a greater focus on the pre-conceptual period i...

  9. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  10. Obesity, reproduction and oxidative stress

    Directory of Open Access Journals (Sweden)

    Tamara V. Zhuk

    2017-12-01

    Full Text Available The prevalence of obesity and overweight is one of the most pressing problems nowadays. Obesity as a comorbid condition affects all body systems. Obesity has been reported to be a risk factor not only for cardiovascular diseases and oncopathology, but also for fertility problems, many obstetric and perinatal complications worsening the maternal and infant health. The balance between the oxidative and antioxidant system is one of the indicators of the state of human homeostasis. Today it is proved that obesity is associated with an increase in oxidative stress and a decrease in antioxidant protection. This review reveals a close relationship between obesity, oxidative stress and reproductive problems.

  11. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  12. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  13. Simvastatin and oxidative stress in humans

    DEFF Research Database (Denmark)

    Rasmussen, Sanne Tofte; Andersen, Jon Thor Trærup; Nielsen, Torben Kjær

    2016-01-01

    in mitochondrial respiratory complexes I and II and might thereby reduce the formation of reactive oxygen species, which have been implicated in the pathogenesis of arteriosclerosis. Therefore, we hypothesized that simvastatin may reduce oxidative stress in humans in vivo. We conducted a randomized, double......-blinded, placebo-controlled study in which subjects were treated with either 40 mg of simvastatin or placebo for 14 days. The endpoints were six biomarkers for oxidative stress, which represent intracellular oxidative stress to nucleic acids, lipid peroxidation and plasma antioxidants, that were measured in urine.......1% in the placebo group for DNA oxidation and 7.3% in the simvastatin group compared to 3.4% in the placebo group. The differences in biomarkers related to plasma were not statistically significant between the treatments groups, with the exception of total vitamin E levels, which, as expected, were reduced...

  14. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    Directory of Open Access Journals (Sweden)

    Anu Rahal

    2014-01-01

    Full Text Available Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.

  15. Genetics of Oxidative Stress in Obesity

    Directory of Open Access Journals (Sweden)

    Azahara I. Rupérez

    2014-02-01

    Full Text Available Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  16. Genetics of oxidative stress in obesity.

    Science.gov (United States)

    Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M

    2014-02-20

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  17. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  18. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  19. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  20. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    Science.gov (United States)

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  1. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    Science.gov (United States)

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  2. Simvastatin Attenuates the Oxidative Stress, Endothelial Thrombogenicity and the Inducibility of Atrial Fibrillation in a Rat Model of Ischemic Heart Failure

    Directory of Open Access Journals (Sweden)

    Kyoung-Im Cho

    2014-08-01

    Full Text Available Increased atrial oxidative stress has an important role in inducing and maintaining atrial fibrillation (AF, and the activation of the small GTPase Rac1 contributes to the oxidative stress. We investigated the relationship of Rac1, atrial endothelial thromboprotective markers and AF inducibility and if simvastatin has a potential beneficial effect on a myocardial infarction (MI-induced heart failure (HF rat model. Rats were randomized into three groups (shams, MI group and simvastatin treatment group and underwent echocardiography, AF induction studies and left atrial (LA fibrosis analysis. Atrial Rac 1, sodium calcium exchanger (INCX, sarcoplasmic reticulum calcium ATPase (SERCA, endothelial nitric oxide synthase (eNOS and induced nitric oxide synthase (iNOS were measured. AF inducibility, AF duration and LA fibrosis were significantly higher in the MI group (p < 0.001 vs. sham, which were significantly reduced by simvastatin (p < 0.05 vs. MI. The reduced expressions of atrial eNOS, SERCA, thrombomodulin, tissue factor pathway inhibitor and tissue plasminogen activator in the MI group were significantly improved by simvastatin. Furthermore, the increased expression of atrial iNOS, INCX and Rac1 activity were significantly decreased by the simvastatin. Oxidative stress, endothelial dysfunction and thrombogenicity are associated with the promotion of AF in a rat model of ischemic HF. These were associated with increased Rac1 activity, and simvastatin treatment prevents these changes.

  3. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  4. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  5. Biochemical basis of the high resistance to oxidative stress

    Indian Academy of Sciences (India)

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments.

  6. Oxidative stress, neuroendocrine function and behavior in an animal model of extended longevity

    NARCIS (Netherlands)

    Berry, Alessandra

    2010-01-01

    Stress and oxidative stress (OS) might act synergistically to exacerbate the neuronal decay associated with aging. Recent evidence has shown a redox regulation of the function of the glucocorticoid receptors as nuclear transcription factors. The lack of the p66Shc gene reduces OS and increases

  7. Oxidative stress and mechanisms of ochronosis in alkaptonuria.

    Science.gov (United States)

    Braconi, Daniela; Millucci, Lia; Bernardini, Giulia; Santucci, Annalisa

    2015-11-01

    Alkaptonuria (AKU) is a rare metabolic disease due to a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD), involved in Phe and Tyr catabolism. Due to such a deficiency, AKU patients undergo accumulation of the metabolite homogentisic acid (HGA), which is prone to oxidation/polymerization reactions causing the production of a melanin-like pigment. Once the pigment is deposited onto connective tissues (mainly in joints, spine, and cardiac valves), a classical bluish-brown discoloration is imparted, leading to a phenomenon known as "ochronosis", the hallmark of AKU. A clarification of the molecular mechanisms for the production and deposition of the ochronotic pigment in AKU started only recently with a range of in vitro and ex vivo human models used for the study of HGA-induced effects. Thanks to redox-proteomic analyses, it was found that HGA could induce significant oxidation of a number of serum and chondrocyte proteins. Further investigations allowed highlighting how HGA-induced proteome alteration, lipid peroxidation, thiol depletion, and amyloid production could contribute to oxidative stress generation and protein oxidation in AKU. This review briefly summarizes the most recent findings on HGA-induced oxidative stress in AKU, helping in the clarification of the molecular mechanisms of ochronosis and potentially providing the basis for its pharmacological treatment. Future work should be undertaken in order to validate in vivo the results so far obtained in in vitro AKU models. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Oxidative stress and life histories: unresolved issues and current needs.

    Science.gov (United States)

    Speakman, John R; Blount, Jonathan D; Bronikowski, Anne M; Buffenstein, Rochelle; Isaksson, Caroline; Kirkwood, Tom B L; Monaghan, Pat; Ozanne, Susan E; Beaulieu, Michaël; Briga, Michael; Carr, Sarah K; Christensen, Louise L; Cochemé, Helena M; Cram, Dominic L; Dantzer, Ben; Harper, Jim M; Jurk, Diana; King, Annette; Noguera, Jose C; Salin, Karine; Sild, Elin; Simons, Mirre J P; Smith, Shona; Stier, Antoine; Tobler, Michael; Vitikainen, Emma; Peaker, Malcolm; Selman, Colin

    2015-12-01

    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting

  9. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  10. Relationship between hyposalivation and oxidative stress in aging mice.

    Science.gov (United States)

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  11. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review.

    Science.gov (United States)

    Shingnaisui, Khanchuila; Dey, Tapan; Manna, Prasenjit; Kalita, Jatin

    2018-06-28

    Houttuynia cordata Thunb. (Family: Saururaceae) is an herbaceous perennial plant that grows in moist and shady places. The plant is well known among the people of diverse cultures across Japan, Korea, China and North-East India for its medicinal properties. Traditionally the plant is used for its various beneficial properties against inflammation, pneumonia, severe acute respiratory syndrome, muscular sprain, stomach ulcer etc. Oxidative stress and inflammation were found to be linked with most of the diseases in recent times. Many ancient texts from Chinese Traditional Medicine, Ayurveda and Siddha, and Japanese Traditional medicine have documented the efficacy of H. cordata against oxidative stress and inflammation. This review aims to provide up-to-date and comprehensive information on the efficacy of H. cordata extracts as well as its bioactive compounds both in vitro and in vivo, against oxidative stress and inflammation MATERIALS AND METHODS: Relevant information on H. cordata against oxidative stress and inflammation were collected from the established scientific databases such as NCBI, Web of Science, ScienceDirect, Elsevier, and Springer. Additionally, a few books and magazines were also consulted to get the important information. Herbal medicines or plant products were traditionally being used for treating the oxidative stress and inflammation related diseases in diverse communities across the world. Scientifically, H. cordata has shown to target several signaling pathways and found to effectively reduce the oxidative stress and inflammation. Phyto-constituents such as afzelin, hyperoside and quercitrin have shown to reduce inflammation both in vitro and in vivo models. These molecules were also shown to have strong antioxidant properties both in vivo and in vitro models. H. cordata extracts and its bioactive molecules were shown to have both anti-inflammatory and anti-oxidative properties. As both in vitro and in vivo studies were shown that H. cordata

  12. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  13. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, Maarten; Abee, Tjakko

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  14. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, J.M.; Abee, T.

    2011-01-01

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  15. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes*

    Science.gov (United States)

    Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130

  16. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  17. Oxidative Stress in Patients With Nongenital Warts

    Directory of Open Access Journals (Sweden)

    Sezai Sasmaz

    2005-01-01

    Full Text Available Comparison of oxidative stress status between subjects with or without warts is absent in the literature. In this study, we evaluated 31 consecutive patients with warts (15 female, 16 male and 36 control cases with no evidence of disease to determine the effects of oxidative stress in patients with warts. The patients were classified according to the wart type, duration, number, and location of lesions. We measured the indicators of oxidative stress such as catalase (CAT, glucose-6-phosphate dehydrogenase (G6PD, superoxide dismutase (SOD, and malondialdehyde (MDA in the venous blood by spectrophotometry. There was a statistically significant increase in levels of CAT, G6PD, SOD activities and MDA in the patients with warts compared to the control group (P<.05. However, we could not define a statistically significant correlation between these increased enzyme activities and MDA levels and the type, the duration, the number, and the location of lesions. We determined possible suppression of T cells during oxidative stress that might have a negative effect on the prognosis of the disease. Therefore, we propose an argument for the appropriateness to give priority to immunomodulatory treatment alternatives instead of destructive methods in patients with demonstrated oxidative stress.

  18. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini

    2013-01-01

    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  19. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Science.gov (United States)

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  20. Morin mitigates oxidative stress, apoptosis and inflammation in ...

    African Journals Online (AJOL)

    Background: Morin is a flavanoid which exhibits potent antioxidant activity in various oxidative stress related diseases. The current study was attempted to scrutinize the preclinical bio-efficacy of morin on focal ischemia. Methods: The animal model of focal cerebral ischemic injury was done by midbrain carotid artery ...

  1. Hypertension and physical exercise: The role of oxidative stress.

    Science.gov (United States)

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Vitamin E-Mediated Modulation of Glutamate Receptor Expression in an Oxidative Stress Model of Neural Cells Derived from Embryonic Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Afifah Abd Jalil

    2017-01-01

    Full Text Available Glutamate is the primary excitatory neurotransmitter in the central nervous system. Excessive concentrations of glutamate in the brain can be excitotoxic and cause oxidative stress, which is associated with Alzheimer’s disease. In the present study, the effects of vitamin E in the form of tocotrienol-rich fraction (TRF and alpha-tocopherol (α-TCP in modulating the glutamate receptor and neuron injury markers in an in vitro model of oxidative stress in neural-derived embryonic stem (ES cell cultures were elucidated. A transgenic mouse ES cell line (46C was differentiated into a neural lineage in vitro via induction with retinoic acid. These cells were then subjected to oxidative stress with a significantly high concentration of glutamate. Measurement of reactive oxygen species (ROS was performed after inducing glutamate excitotoxicity, and recovery from this toxicity in response to vitamin E was determined. The gene expression levels of glutamate receptors and neuron-specific enolase were elucidated using real-time PCR. The results reveal that neural cells derived from 46C cells and subjected to oxidative stress exhibit downregulation of NMDA, kainate receptor, and NSE after posttreatment with different concentrations of TRF and α-TCP, a sign of neurorecovery. Treatment of either TRF or α-TCP reduced the levels of ROS in neural cells subjected to glutamate-induced oxidative stress; these results indicated that vitamin E is a potent antioxidant.

  3. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain.

    Science.gov (United States)

    Valvassori, Samira S; Dal-Pont, Gustavo C; Steckert, Amanda V; Varela, Roger B; Lopes-Borges, Jéssica; Mariot, Edemilson; Resende, Wilson R; Arent, Camila O; Carvalho, André F; Quevedo, João

    2016-01-30

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidence indicates that epigenetic regulations have been implicated in the pathophysiology of mood disorders. Considering these evidences, the present study aimed to investigate the effects of sodium butyrate (SB), a histone deacetylase (HDAC)inhibitor, on manic-like behavior and oxidative stress parameters (TBARS and protein carbonyl content and SOD and CAT activities) in frontal cortex and hippocampus of rats subjected to the animal model of mania induced by intracerebroventricular (ICV) ouabain administration.The results showed that SB reversed ouabain-induced hyperactivity, which represents a manic-like behavior in rats. In addition, the ouabain ICV administration induced oxidative damage to lipid and protein and alters antioxidant enzymes activity in all brain structures analyzed. The treatment with SB was able to reversesboth behavioral and oxidative stress parameters alteration induced by ouabain.In conclusion, we suggest that SB can be considered a potential new mood stabilizer by acts on manic-like behavior and regulatesthe antioxidant enzyme activities, protecting the brain against oxidative damage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  5. Oxidative stress, aging, and diseases

    Directory of Open Access Journals (Sweden)

    Liguori I

    2018-04-01

    Full Text Available Ilaria Liguori,1 Gennaro Russo,1 Francesco Curcio,1 Giulia Bulli,1 Luisa Aran,1 David Della-Morte,2,3 Gaetano Gargiulo,4 Gianluca Testa,1,5 Francesco Cacciatore,1,6 Domenico Bonaduce,1 Pasquale Abete1 1Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy; 2Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; 3San Raffaele Roma Open University, Rome, Italy; 4Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy; 5Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; 6Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy Abstract: Reactive oxygen and nitrogen species (RONS are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer, including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of

  6. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2018-02-01

    Full Text Available Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp, and Stearoyl-Coenzyme A desaturase 1 (Scd1 were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1 relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage

  7. Fatty acids and oxidative stress in psychiatric disorders

    OpenAIRE

    Tonello Lucio; Cocchi Massimo; Tsaluchidu Sofia; Puri Basant K

    2008-01-01

    Abstract Background The aim of this study was to determine whether there is published evidence for increased oxidative stress in neuropsychiatric disorders. Methods A PubMed search was carried out using the MeSH search term 'oxidative stress' in conjunction with each of the DSM-IV-TR diagnostic categories of the American Psychiatric Association in order to identify potential studies. Results There was published evidence of increased oxidative stress in the following DSM-IV-TR diagnostic categ...

  8. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Benoist d’Azy, Cédric; Pereira, Bruno; Chiambaretta, Frédéric

    2016-01-01

    Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P stress increased in glaucoma, both in serum and aqueous humor. Malonyldialdehyde seemed the best biomarkers of oxidative stress in serum. The increase of some

  9. Oxidative stress parameters in localized scleroderma patients.

    Science.gov (United States)

    Kilinc, F; Sener, S; Akbaş, A; Metin, A; Kirbaş, S; Neselioglu, S; Erel, O

    2016-11-01

    Localized scleroderma (LS) (morphea) is a chronic, inflammatory skin disease with unknown cause that progresses with sclerosis in the skin and/or subcutaneous tissues. Its pathogenesis is not completely understood. Oxidative stress is suggested to have a role in the pathogenesis of localized scleroderma. We have aimed to determine the relationship of morphea lesions with oxidative stress. The total oxidant capacity (TOC), total antioxidant capacity (TAC), paroxonase (PON) and arylesterase (ARES) activity parameters of PON 1 enzyme levels in the serum were investigated in 13 LS patients (generalized and plaque type) and 13 healthy controls. TOC values of the patient group were found higher than the TOC values of the control group (p < 0.01). ARES values of the patient group was found to be higher than the control group (p < 0.0001). OSI was significantly higher in the patient group when compared to the control (p < 0.005). Oxidative stress seems to be effective in the pathogenesis. ARES levels have increased in morphea patients regarding to the oxidative stress and its reduction. Further controlled studies are required in wider series.

  10. Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Jaroslava eFolbergrová

    2016-05-01

    Full Text Available Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus and, on the other hand, evidence of oxidative stress in immature brain during a specific model of status epilepticus. To solve this dilemma, we have decided to investigate oxidative stress following status epilepticus induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. FluoroJade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ~60 % in the hippocampus, cerebral cortex and thalamus of immature rats during status. Status epilepticus lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complex II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy

  11. Oxidative Stress Type Influences the Properties of Antioxidants Containing Polyphenols in RINm5F Beta Cells

    Directory of Open Access Journals (Sweden)

    Nathalie Auberval

    2015-01-01

    Full Text Available The in vitro methods currently used to screen bioactive compounds focus on the use of a single model of oxidative stress. However, this simplistic view may lead to conflicting results. The aim of this study was to evaluate the antioxidant properties of two natural extracts (a mix of red wine polyphenols (RWPs and epigallocatechin gallate (EGCG with three models of oxidative stress induced with hydrogen peroxide (H2O2, a mixture of hypoxanthine and xanthine oxidase (HX/XO, or streptozotocin (STZ in RINm5F beta cells. We employed multiple approaches to validate their potential as therapeutic treatment options, including cell viability, reactive oxygen species production, and antioxidant enzymes expression. All three oxidative stresses induced a decrease in cell viability and an increase in apoptosis, whereas the level of ROS production was variable depending on the type of stress. The highest level of ROS was found for the HX/XO-induced stress, an increase that was reflected by higher expression antioxidant enzymes. Further, both antioxidant compounds presented beneficial effects during oxidative stress, but EGCG appeared to be a more efficient antioxidant. These data indicate that the efficiency of natural antioxidants is dependent on both the nature of the compound and the type of oxidative stress generated.

  12. Comparison of the protective effects of seven selected herbs against oxidative stress

    Directory of Open Access Journals (Sweden)

    Lee-Wen Chang

    2015-07-01

    Full Text Available Objective: To compare the protective effects of the water extracts of seven herbs, including Solanum indicum L., Mallotus repandus (Wild Muell-Arg. (MRM, Bombax malabarica DC (BMDC, Tadehagi triquetrum (L. Ohashi (TTLO, Clinacanthus nutans (Burm f. Lindau, Salvia plebeia R. Br (SPRB, Ixeris chinensis Mak (ICM, against tert-butylhydroperoxide (t-BHP-induced oxidative stress in Clone 9 cells. Methods: To evaluate the antioxidant properties of water extracts from seven herbs, reducing ability, metal-chelating activity and radical-scavenging activity such as 2,2′-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid radical cation and 1,1-diphenyl-2-picrylhydrazyl (DPPH were determined. In cellular systems, t-BHP was used as a model oxidant to induce oxidative stress. 2′,7′-Dichlorofluorescin diacetate and chloromethylfluorescein-diacetate were used as fluorescence probe to determine reactive oxygen species generation and glutathione level in t-BHP-induced Clone 9 cells, respectively. In addition, total tannins, total anthocyanins, total polyphenolics and flavonoids were determined. Results: According to the data obtained from the trolox equivalent antioxidant capacity method, DPPH radical scavenging assay and reducing ability determination, MRM, SPRB, and BMDC showed relatively high antioxidant properties while TTLO and ICM were in the middle and Solanum indicum and Clinacanthus nutans had relatively low activity. In cellular model systems, SPRB, BMDC, and TTLO showed higher protective effects against t-BHP-induced oxidative stress. BMDC, ICM, and TTLO displayed higher inhibitory effects on reactive oxygen species generation in t-BHP-induced Clone 9 cells. In addition, SPRB, MRM, and BMDC showed significantly positive modulated glutathione levels. Tannins, anthocyanins, flavonoids and polyphenolics were present in the herbs, which may in part contribute to regulating the oxidative stress. Conclusions: These results indicated that the seven

  13. Proteomic Insights into the Protective Mechanisms of an In Vitro Oxidative Stress Model of Early Stage Parkinson’s Disease

    OpenAIRE

    Bauereis, Brian; Haskins, William E.; LeBaron, Richard G.; Renthal, Robert

    2010-01-01

    Previous studies in Parkinson's disease (PD) models suggest that early events along the path to neurodegeneration involve activation of the ubiquitin-proteasome system (UPS), endoplasmic reticulum-associated degradation (ERAD), and the unfolded protein response (UPR) pathways, in both the sporadic and familial forms of the disease, and thus ER stress may be a common feature. Furthermore, impairments in protein degradation have been linked to oxidative stress as well as pathways associated wit...

  14. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.

    Science.gov (United States)

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2016-05-01

    Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641;

  15. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy.

    Science.gov (United States)

    Vanova, Nela; Pejchal, Jaroslav; Herman, David; Dlabkova, Alzbeta; Jun, Daniel

    2018-08-01

    Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L

    2012-08-01

    Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (Ppenis. Apocynin treatment of sickle mice reversed (P0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. © 2012 International Society for Sexual Medicine.

  17. Controlled reperfusion decreased reperfusion induced oxidative stress and evoked inflammatory response in experimental aortic-clamping animal model.

    Science.gov (United States)

    Jancsó, G; Arató, E; Hardi, P; Nagy, T; Pintér, Ö; Fazekas, G; Gasz, B; Takacs, I; Menyhei, G; Kollar, L; Sínay, L

    2016-09-12

    Revascularization after long term aortic ischaemia in vascular surgery induces reperfusion injury accompanied with oxidative stress and inflammatory responses. The hypothesis of this study was that the aortic occlusion followed by controlled reperfusion (CR) can reduce the ischaemia-reperfusion injury, the systemic and local inflammatory response induced by oxidative stress.Animal model was used. animals underwent a 4-hour infrarenal aortic occlusion followed by continuous reperfusion. Treated group: animals were treated with CR: after a 4-hour infrarenal aortic occlusion we made CR for 30 minutes with the crystalloid reperfusion solution (blood: crystalloid solution ratio 1:1) on pressure 60 Hgmm. Blood samples were collected different times. The developing oxidative stress was detected by the plasma levels of malondialdehyde, reduced glutathion, thiol groups and superoxide dismutase. The inflammatory response was measured by phorbol myristate acetate-induced leukocyte reactive oxygen species production and detection of change in myeloperoxidase levels. The animals were anaesthetized one week after terminating ligation and biopsy was taken from quadriceps muscle and large parenchymal organs.CR significantly reduced the postischaemic oxydative stress and inflammatory responses in early reperfusion period. Pathophysiological results: The rate of affected muscle fibers by degeneration was significantly higher in the untreated animal group. The infiltration of leukocytes in muscle and parenchymal tissues was significantly lower in the treatedgroup.CR can improve outcome after acute lower-limb ischaemia. The results confirm that CR might be also a potential therapeutic approach in vascular surgery against reperfusion injury in acute limb ischaemia. Supported by OTKA K108596.

  18. Low voltage stress-induced leakage current and traps in ultrathin oxide (1.2 2.5 nm) after constant voltage stresses

    Science.gov (United States)

    Petit, C.; Zander, D.

    2007-10-01

    It has been shown that the low voltage gate current in ultrathin oxide metal-oxide-semiconductor devices is very sensitive to electrical stresses. Therefore, it can be used as a reliability monitor when the oxide thickness becomes too small for traditional electrical measurements to be used. In this work, we present a study on n-MOSCAP devices at negative gate bias in the direct tunneling (DT) regime. If the low voltage stress-induced leakage current (LVSILC) depends strongly on the low sense voltages, it also depends strongly on the stress voltage magnitude. We show that two LVSILC peaks appear as a function of the sense voltage in the LVSILC region and that their magnitude, one compared to the other, depends strongly on the stress voltage magnitude. One is larger than the other at low stress voltage and smaller at high stress voltage. From our experimental results, different conduction mechanisms are analyzed. To explain LVSILC variations, we propose a model of the conduction through the ultrathin gate oxide based on two distinctly different trap-assisted tunneling mechanisms: inelastic of gate electron (INE) and trap-assisted electron (ETAT).

  19. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203 (China)

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD

  20. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A.; Ke, Zun-ji; Luo, Jia

    2017-01-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD

  1. Oxidative Stress in Alzheimer’s Disease: Why Did Antioxidant Therapy Fail?

    Directory of Open Access Journals (Sweden)

    Torbjörn Persson

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia in the elderly, with increasing prevalence and no disease-modifying treatment available yet. A remarkable amount of data supports the hypothesis that oxidative stress is an early and important pathogenic operator in AD. However, all clinical studies conducted to date did not prove a clear beneficial effect of antioxidant treatment in AD patients. In the current work, we review the current knowledge about oxidative stress in AD pathogeny and we suggest future paths that are worth to be explored in animal models and clinical studies, in order to get a better approach of oxidative imbalance in this inexorable neurodegenerative disease.

  2. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  3. Light-induced oxidative stress, N-formylkynurenine, and oxygenic photosynthesis.

    Directory of Open Access Journals (Sweden)

    Tina M Dreaden Kasson

    Full Text Available Light stress in plants results in damage to the water oxidizing reaction center, photosystem II (PSII. Redox signaling, through oxidative modification of amino acid side chains, has been proposed to participate in this process, but the oxidative signals have not yet been identified. Previously, we described an oxidative modification, N-formylkynurenine (NFK, of W365 in the CP43 subunit. The yield of this modification increases under light stress conditions, in parallel with the decrease in oxygen evolving activity. In this work, we show that this modification, NFK365-CP43, is present in thylakoid membranes and may be formed by reactive oxygen species produced at the Mn(4CaO(5 cluster in the oxygen-evolving complex. NFK accumulation correlates with the extent of photoinhibition in PSII and thylakoid membranes. A modest increase in ionic strength inhibits NFK365-CP43 formation, and leads to accumulation of a new, light-induced NFK modification (NFK317 in the D1 polypeptide. Western analysis shows that D1 degradation and oligomerization occur under both sets of conditions. The NFK modifications in CP43 and D1 are found 17 and 14 Angstrom from the Mn(4CaO(5 cluster, respectively. Based on these results, we propose that NFK is an oxidative modification that signals for damage and repair in PSII. The data suggest a two pathway model for light stress responses. These pathways involve differential, specific, oxidative modification of the CP43 or D1 polypeptides.

  4. Study on radioprotective efficacy of indazolone derivative on γ-radiation induced oxidative stress

    International Nuclear Information System (INIS)

    Mohan, B.J.; Sarojini, B.K.; Narayana, B.; Sanjeev, Ganesh

    2014-01-01

    The present study describes the potency of 6-(4-bromophenyl)-4-(4-fluorophenyl)-1,2,4,5-tetrahydro-3H-indazol-3-one (IND) as radioprotective agent. Drosophila melanogaster was used as a model organism for the study. Oxidative stress was induced by irradiating the flies with 6 Gy γ-radiation.The control and irradiated flies were assayed for oxidative stress markers namely, lipid peroxidation (MDA), SOD and CATenzyme. (author)

  5. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  6. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-01-01

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  7. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  8. Oxidative Stress in Myopia

    Directory of Open Access Journals (Sweden)

    Bosch-Morell Francisco

    2015-01-01

    Full Text Available Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  9. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch

    2015-01-01

    Full Text Available Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C. However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t was used, compared to wild-type (WT mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.

  10. 13 reasons why the brain is susceptible to oxidative stress

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2018-05-01

    Full Text Available The human brain consumes 20% of the total basal oxygen (O2 budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity through redox signalling (i.e. positive functionality. Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality. To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.

  11. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze, E-mail: mfkhan@utmb.edu

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  12. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2013-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  13. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  14. [Effect of occupational stress on oxidation/antioxidant capacity in nurses].

    Science.gov (United States)

    Cao, Lili; Tian, Honger; Zhang, Qingdong; Zhu, Xinyun; Zhan, Yongguo; Su, Jingguo; Xu, Tian; Zhu, Huabin; Liu, Ling

    2014-02-01

    To investigate the effect of occupational stress on the oxidation/antioxidant capacity in nurses. A total of 131 nurses were included as study subjects. The occupational health information collection system (based on the Internet of things) was used for measurement of occupational stress. Levels of hydroxyl free radicals and antioxidant enzymes were determined. The serum level of superoxide dismutase (SOD) was the highest in nurses under the age of 30 and the lowest in those over 45 (P occupational stress factors for SOD. Job hazards were negative occupational stress factors for POD. Psychological satisfaction was negative occupational stress reaction for hydroxyl free radicals. Calmness was positive occupational stress reaction for SOD, and daily stress was a negative one. The positive occupational stress reactions for GSH-Px were psychological satisfaction and job satisfaction, and daily stress was negative reaction. Nurses with higher occupational stress have stronger oxidation and weaker antioxidant capacity, which intensifies oxidant-antioxidant imbalance and leads to oxidative stress damage.

  15. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Wang, Xiao-Li; Li, Ting; Li, Ji-Hong; Miao, Shu-Ying; Xiao, Xian-Zhong

    2017-09-12

    Oxidative stress and inflammation are hypothesized to contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Resveratrol (trans-3,5,4'-trihydroxystilbene) is known for its antioxidant and anti-inflammatory properties. The study aimed to investigate the effects of resveratrol in a rat model with COPD on the regulation of oxidative stress and inflammation via the activation of Sirtuin1 (SIRTl) and proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thirty Wistar rats were randomly divided into three groups: control group, COPD group and resveratrol intervention group. The COPD model was established by instilling with lipopolysaccharide (LPS) and challenging with cigarette smoke (CS). The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) in serum were measured. The levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured. The expression levels of SIRT1 and PGC-1α in the lung tissues were examined by immunohistochemistry as well as real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and western blotting analysis. After the treatment with resveratrol (50 mg/kg), compared with the COPD group, alleviation of inflammation and reconstruction in the small airways of the lungs were seen. Resveratrol might be correlated not only with the lower level of MDA and the higher activity of SOD, but also with the upregulation of SIRT1 and PGC-1α expression. Resveratrol treatment decreased serum levels of IL-6 and IL-8. Our findings indicate that resveratrol had a therapeutic effect in our rat COPD model, which is related to the inhibition of oxidative stress and inflammatory response. The mechanism may be related to the activation and upgrading of the SIRT1/PGC-1α signaling pathways. Thus resveratrol might be a therapeutic modality in COPD.

  16. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Srinivas Bharath, Muchukunte Mukunda

    2014-01-03

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases.

  17. Oxidative stress markers imbalance in late-life depression.

    Science.gov (United States)

    Diniz, Breno S; Mendes-Silva, Ana Paula; Silva, Lucelia Barroso; Bertola, Laiss; Vieira, Monica Costa; Ferreira, Jessica Diniz; Nicolau, Mariana; Bristot, Giovana; da Rosa, Eduarda Dias; Teixeira, Antonio L; Kapczinski, Flavio

    2018-03-20

    Oxidative stress has been implicated in the pathophysiology of mood disorders in young adults. However, there is few data to support its role in the elderly. The primary aim of this study was to evaluate whether subjects with late-life depression (LLD) presented with changes in oxidative stress response in comparison with the non-depressed control group. We then explored how oxidative stress markers associated with specific features of LLD, in particular cognitive performance and age of onset of major depressive disorder in these individuals. We included a convenience sample of 124 individuals, 77 with LLD and 47 non-depressed subjects (Controls). We measure the plasma levels of 6 oxidative stress markers: thiobarbituric acid reactive substances (TBARS), protein carbonil content (PCC), free 8-isoprostane, glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, and glutathione S-transferase (GST) activity. We found that participants with LLD had significantly higher free 8-isoprostane levels (p = 0.003) and lower glutathione peroxidase activity (p = 0.006) compared to controls. Free 8-isoprostane levels were also significantly correlated with worse scores in the initiation/perseverance (r = -0.24, p = 0.01), conceptualization (r = -0.22, p = 0.02) sub-scores, and the total scores (r = -0.21, p = 0.04) on the DRS. Our study provides robust evidence of the imbalance between oxidative stress damage, in particular lipid peroxidation, and anti-oxidative defenses as a mechanism related to LLD, and cognitive impairment in this population. Interventions aiming to reduce oxidative stress damage can have a potential neuroprotective effect for LLD subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  19. Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucoma.

    Science.gov (United States)

    Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem

    2014-10-01

    Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.

  20. Obstructive Sleep Apnea, Oxidative Stress and Cardiovascular Disease: Lessons from Animal Studies

    Directory of Open Access Journals (Sweden)

    Rio Dumitrascu

    2013-01-01

    Full Text Available Obstructive sleep apnea (OSA is an independent risk factor for cardiovascular (CV diseases such as arterial hypertension, heart failure, and stroke. Based on human research, sympathetic activation, inflammation, and oxidative stress are thought to play major roles in the pathophysiology of OSA-related CV diseases. Animal models of OSA have shown that endothelial dysfunction, vascular remodelling, and systemic and pulmonary arterial hypertension as well as heart failure can develop in response to chronic intermittent hypoxia (CIH. The available animal data are clearly in favour of oxidative stress playing a key role in the development of all of these CV manifestations of OSA. Presumably, the oxidative stress is due to an activation of NADPH oxidase and other free oxygen radicals producing enzymes within the CV system as evidenced by data from knockout mice and pharmacological interventions. It is hoped that animal models of OSA-related CV disease will continue to contribute to a deeper understanding of their underlying pathophysiology and will foster the way for the development of cardioprotective treatment options other than conventional CPAP therapy.

  1. Nrf2 Inhibits Periodontal Ligament Stem Cell Apoptosis under Excessive Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2017-05-01

    Full Text Available The present study aimed to analyze novel mechanisms underlying Nrf2-mediated anti-apoptosis in periodontal ligament stem cells (PDLSCs in the periodontitis oxidative microenvironment. We created an oxidative stress model with H2O2-treated PDLSCs. We used real-time PCR, Western blotting, TUNEL staining, fluorogenic assay and transfer genetics to confirm the degree of oxidative stress and apoptosis as well as the function of nuclear factor-erythroid 2-related factor 2 (Nrf2. We demonstrated that with upregulated levels of reactive oxygen species (ROS and malondialdehyde (MDA, the effect of oxidative stress was obvious under H2O2 treatment. Oxidative molecules were altered after the H2O2 exposure, whereby the signaling of Nrf2 was activated with an increase in its downstream effectors, heme oxygenase-1 (HO-1, NAD(PH:quinone oxidoreductase 1 (NQO1 and γ-glutamyl cysteine synthetase (γ-GCS. Additionally, the apoptosis levels gradually increased with oxidative stress by the upregulation of caspase-9, caspase-3, Bax and c-Fos levels in addition to the downregulation of Bcl-2. However, there was no alterations in levels of caspase-8. The enhanced antioxidant effect could not mitigate the occurrence of apoptosis. Furthermore, Nrf2 overexpression effectively improved the anti-oxidative levels and increased cell proliferation. At the same time, overexpression effectively restrained TUNEL staining and decreased the molecular levels of caspase-9, caspase-3, Bax and c-Fos, but not that of caspase-8. In contrast, silencing the expression of Nrf2 levels had the opposite effect. Collectively, Nrf2 alleviates PDLSCs via its effects on regulating oxidative stress and anti-intrinsic apoptosis by the activation of oxidative enzymes.

  2. N-Hydroxylation of 4-Aminobiphenyl by CYP2E1 Produces Oxidative Stress in a Mouse Model of Chemically Induced Liver Cancer

    Science.gov (United States)

    Wang, Shuang; Sugamori, Kim S.; Tung, Aveline; McPherson, J. Peter; Grant, Denis M.

    2015-01-01

    4-Aminobiphenyl (ABP) is a trace component of cigarette smoke and hair dyes, a suspected human carcinogen and a potent rodent liver carcinogen. Postnatal exposure of mice to ABP results in a higher incidence of liver tumors in males than in females, paralleling the sex difference in human liver cancer incidence. A traditional model of ABP tumorigenesis involves initial CYP1A2-mediated N-hydroxylation, which eventually leads to production of mutagenic ABP-DNA adducts that initiate tumor growth. However, several studies have found no correlation between sex or CYP1A2 function and the DNA-damaging, mutagenic, or tumorigenic effects of ABP. Oxidative stress may be an important etiological factor for liver cancer, and it has also been linked to ABP exposure. The goals of this study were to identify novel enzyme(s) that contribute to ABP N-oxidation, and to investigate a potential role for oxidative stress in ABP liver tumorigenicity. Isozyme-selective inhibition experiments using liver microsomes from wild-type and genetically modified mice identified CYP2E1 as a major ABP N-hydroxylating enzyme. The N-hydroxylation of ABP by transiently expressed CYP2E1 produced oxidative stress in cultured mouse hepatoma cells. In vivo postnatal exposure of mice to a tumorigenic dose of ABP also produced oxidative stress in male wild-type mice, but not in male Cyp2e1(−/−) mice or in female mice. However, a stronger NRF2-associated antioxidant response was observed in females. Our results identify CYP2E1 as a novel ABP-N-oxidizing enzyme, and suggest that sex differences in CYP2E1-dependent oxidative stress and antioxidant responses to ABP may contribute to the observed sex difference in tumor incidence. PMID:25601990

  3. Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension.

    Science.gov (United States)

    Boshra, Vivian; Abbas, Amr M

    2017-07-26

    Renovascular hypertension (RVH) is a result of renal artery stenosis, which is commonly due to astherosclerosis. In this study, we aimed to clarify the central and peripheral effects of ghrelin on the renin-angiotensin system (RAS) in a rat model of RVH. RVH was induced in rats by partial subdiaphragmatic aortic constriction. Experiment A was designed to assess the central effect of ghrelin via the intracerebroventricular (ICV) injection of ghrelin (5 μg/kg) or losartan (0.01 mg/kg) in RVH rats. Experiment B was designed to assess the peripheral effect of ghrelin via the subcutaneous (SC) injection of ghrelin (150 μg/kg) or losartan (10 mg/kg) for 7 consecutive days. Mean arterial blood pressure (MAP), heart rate, plasma renin activity (PRA), and oxidative stress markers were measured in all rats. In addition, angiotensin II receptor type 1 (AT1R) concentration was measured in the hypothalamus of rats in Experiment B. RVH significantly increased brain AT1R, PRA, as well as the brain and plasma oxidative stress. Either SC or ICV ghrelin or losartan caused a significant decrease in MAP with no change in the heart rate. Central ghrelin or losartan caused a significant decrease in brain AT1R with significant alleviation of the brain oxidative stress. Central ghrelin caused a significant decrease in PRA, whereas central losartan caused a significant increase in PRA. SC ghrelin significantly decreased PRA and plasma oxidative stress, whereas SC losartan significantly increased PRA and decreased plasma oxidative stress. The hypotensive effect of ghrelin is mediated through the amelioration of oxidative stress, which is induced by RAS centrally and peripherally.

  4. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  5. Plant Polyphenol Antioxidants and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    INES URQUIAGA

    2000-01-01

    Full Text Available In recent years there has been a remarkable increment in scientific articles dealing with oxidative stress. Several reasons justify this trend: knowledge about reactive oxygen and nitrogen species metabolism; definition of markers for oxidative damage; evidence linking chronic diseases and oxidative stress; identification of flavonoids and other dietary polyphenol antioxidants present in plant foods as bioactive molecules; and data supporting the idea that health benefits associated with fruits, vegetables and red wine in the diet are probably linked to the polyphenol antioxidants they contain.In this review we examine some of the evidence linking chronic diseases and oxidative stress, the distribution and basic structure of plant polyphenol antioxidants, some biological effects of polyphenols, and data related to their bioavailability and the metabolic changes they undergo in the intestinal lumen and after absorption into the organism.Finally, we consider some of the challenges that research in this area currently faces, with particular emphasis on the contributions made at the International Symposium "Biology and Pathology of Free Radicals: Plant and Wine Polyphenol Antioxidants" held July 29-30, 1999, at the Catholic University, Santiago, Chile and collected in this special issue of Biological Research

  6. Neuromodulatory Effects of Hesperidin in Mitigating Oxidative Stress in Streptozotocin Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mohammad Ashafaq

    2014-01-01

    Full Text Available Oxidative stress has been implicated in pathogenesis of streptozotocin- (STZ- induced diabetes mellitus and its complication in central nervous system (CNS. Recent studies have provided insights on antioxidants and their emergence as potential therapeutic and nutraceutical. The present study examined the hypothesis that hesperidin (HP ameliorates oxidative stress and may be a limiting factor in the extent of CNS complication following diabetes. To test this hypothesis rats were divided into four groups: control, diabetic, diabetic-HP treated, and vehicle for HP treatment group. Diabetes mellitus was induced by a single injection of STZ (65 mg/kg body weight. Three days after STZ injection, HP was given (50 mg/kg b.wt. orally once daily for four weeks. The results of the present investigation suggest that the significant elevated levels of oxidative stress markers were observed in STZ-treated animals, whereas significant depletion in the activity of nonenzymatic antioxidants and enzymatic antioxidants was witnessed in diabetic rat brain. Neurotoxicity biomarker activity was also altered significantly. HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers. Our results demonstrate that HP exhibits potent antioxidant and neuroprotective effects on the brain tissue against the diabetic oxidative damage in STZ-induced rodent model.

  7. Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock.

    Science.gov (United States)

    Duvigneau, Johanna Catharina; Kozlov, Andrey V; Zifko, Clara; Postl, Astrid; Hartl, Romana T; Miller, Ingrid; Gille, Lars; Staniek, Katrin; Moldzio, Rudolf; Gregor, Wolfgang; Haindl, Susanne; Behling, Tricia; Redl, Heinz; Bahrami, Soheyl

    2010-03-01

    Oxidative stress is believed to accompany reperfusion and to mediate dysfunction of the liver after traumatic-hemorrhagic shock (THS). Recently, endoplasmic reticulum (ER) stress has been suggested as an additional factor. This study investigated whether reperfusion after THS leads to increased oxidative and/or ER stress in the liver. In a rat model, including laparotomy, bleeding until decompensation, followed by inadequate or adequate reperfusion phase, three time points were investigated: 40 min, 3 h, and 18 h after shock. The reactive oxygen and nitrogen species and its scavenging capacity (superoxide dismutase 2), the nitrotyrosine formation in proteins, and the lipid peroxidation together with the status of endogenous antioxidants (alpha-tocopherylquinone-alpha-tocopherol ratio) were investigated as markers for oxidative or nitrosylative stress. Mitochondrial function and cytochrome P450 isoform 1A1 activity were analyzed as representatives for hepatocyte function. Activation of the inositol-requiring enzyme 1/X-box binding protein pathway and up-regulation of the 78-kDa glucose-regulated protein were recorded as ER stress markers. Plasma levels of alanine aminotransferase and Bax/Bcl-XL messenger RNA (mRNA) ratio were used as indicators for hepatocyte damage and apoptosis induction. Oxidative or nitrosylative stress markers or representatives of hepatocyte function were unchanged during and short after reperfusion (40 min, 3 h after shock). In contrast, ER stress markers were elevated and paralleled those of hepatocyte damage. Incidence for sustained ER stress and subsequent apoptosis induction were found at 18 h after shock. Thus, THS or reperfusion induces early and persistent ER stress of the liver, independent of oxidative or nitrosylative stress. Although ER stress was not associated with depressed hepatocyte function, it may act as an early trigger of protracted cell death, thereby contributing to delayed organ failure after THS.

  8. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4

  9. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay [Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow (India); Kalita, Jayantee, E-mail: jayanteek@yahoo.com [Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow (India); Bora, Himangsu K. [National Laboratory Animal Centre, CSIR-Central Drug Research Institute, Lucknow (India); Misra, Usha K. [Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow (India)

    2016-02-15

    Copper (Cu) at a higher level becomes toxic and it can catalyze the formation of highly reactive hydroxyl radical. We report the vulnerability of liver, kidney and brain to different dose of copper sulfate (CuSO{sub 4}) induced oxidative stress at different time duration. Fifty-four male Wistar rats (weight range = 205 ± 10 g) were equally divided into three groups. CuSO{sub 4} was administered orally to the experimental groups (Group-II and III) up to 90 days in a dose of 100 and 200 mg/Kg body weight per day. Saline water was given to the control group (Group-I). At the end of 30, 60 and 90 days of administration, neurobehavioral studies were done and six rats from each group were sacrificed. Their liver, kidney and brain tissues were subjected for Cu, glutathione (GSH), malondialdehyde (MDA) and total antioxidant capacity (TAC) assay. Blood urea nitrogen (BUN), serum creatinine, bilirubin and transaminases were measured. GSH, TAC and MDA levels were correlated with the markers of respective organ dysfunction. Administration of CuSO{sub 4} resulted in increased free Cu and MDA level, and decrease GSH and TAC levels in group-II and III compared with group-I. In experimental groups, the reduction in TAC and GSH levels was maximum in liver tissue followed by brain and kidney; whereas increase in MDA level was highest in liver followed by brain and kidney at 30, 60 and 90 days. TAC and GSH levels in the liver inversely correlated with serum transaminases and bilirubin, and tissue free Cu, and positively correlated with MDA levels. Free Cu level in kidney tissue and BUN inversely correlated with TAC and GSH, and positively with MDA level. Grip-strength, rotarod and Y-maze findings were inversely correlated with brain free Cu and MDA levels and positively with GSH and TAC levels. The oxidative stress was highest in liver followed by brain and kidney after oral CuSO{sub 4} exposure in a rat model. These levels correlated with the respective organ dysfunction and tissue

  10. Role of Renin-Angiotensin System and Oxidative Stress on Vascular Inflammation in Insulin Resistence Model

    OpenAIRE

    Renna, N. F.; Lembo, C.; Diez, E.; Miatello, R. M.

    2013-01-01

    (1) is study aims to demonstrate the causal involvement of renin angiotensin system (RAS) and oxidative stress (OS) on vascular inammation in an experimental model of metabolic syndrome (MS) achieved by fructose administration to spontaneously hypertensive rats (FFHR) during 12 weeks. (2) Chronic treatment with candesartan (C) (10 mg/kg per day for the last 6 weeks) or 4OH-Tempol (T) (10−3 mmol/L in drinking water for the last 6 weeks) reversed the increment in metabolic variables and systo...

  11. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  12. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  13. Engineered myocardium model to study the roles of HIF-1α and HIF1A-AS1 in paracrine-only signaling under pathological level oxidative stress.

    Science.gov (United States)

    Acun, Aylin; Zorlutuna, Pinar

    2017-08-01

    Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated. We encapsulated CMs in photo-crosslinkable, biomimetic hydrogels with or without ECs, then exposed to oxidative stress followed by normoxia. With precisely controlled microenvironment provided by the model tissues, cell-cell interactions were restricted to be solely through the secreted factors. CM survival after oxidative stress was significantly improved, in the presence of ECs, when cells were in the model tissues that were functionalized with cell attachment motifs. Importantly, the cardioprotective effect of ECs was reduced when HIF-1α expression was knocked down suggesting that HIF-1α is involved in cardioprotection from oxidative damage, provided through secreted factors conferred by the ECs. Using model tissues, we showed that cell survival increased with increased cell-cell communication and enhanced cell-matrix interactions. In addition, whole genome transcriptome analysis showed, for the first time to our knowledge, a possible role for HIF1A-AS1 in oxidative regulation of HIF-1α. We showed that although HIF1A-AS1 knockdown helps CM survival, its effect is overridden by CM-EC bidirectional interactions as we showed that the conditioned media taken from the CM-EC co-cultures improved CM survival, regardless of HIF1A-AS1 expression. Cardiovascular diseases, most of which are associated with oxidative stress, is the most common cause of death worldwide. Thus, understanding

  14. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah; Fischle, Wolfgang

    2016-01-01

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences

  15. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  16. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells.

    Science.gov (United States)

    Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia

    2015-01-01

    Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.

  17. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  18. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  20. Oxygen and oxidative stress in the perinatal period

    Directory of Open Access Journals (Sweden)

    Isabel Torres-Cuevas

    2017-08-01

    Full Text Available Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes.In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality.Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100% has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30–60%. A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties

  1. Protective Effect against Oxidative Stress in Medicinal Plant Extracts

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Lee, Eun Ju; Shin, Dong O; Hong, Sung Eun; Kim, Jin Kyu

    2000-01-01

    Protective effect of medicinal plant extracts against oxidative stress were screened in this study. Methanol extracts from 48 medicinal plants, which were reported to have antioxidative or anti-inflammatory effect were prepared and screened for their protective activity against chemically-induced and radiation-induced oxidative stress by using MTT assay. Thirty three samples showed protective activity against chemically-induced oxidative stress in various extent. Among those samples, extract of Glycyrrhiza uralensis revealed the strongest activity (25.9% at 100 μg/ml) with relatively lower cytotoxicity. Seven other samples showed higher than 20% protection at 100 μg/ml. These samples were tested for protection activity against radiation-induced oxidative stress. Methanol extract of Alpina officinarum showed the highest activity (17.8% at 20 μg/ml). Five fractions were prepared from the each 10 methanol extracts which showed high protective activity against oxidative stress. Among those fraction samples butanol fractions of Areca catechu var. dulcissima and Spirodela polyrrhiza showed the highest protective activities (78.8% and 77.2%, respectively, at 20 μg/ml)

  2. Oxidative stress in hepatitis C infected end-stage renal disease subjects.

    Science.gov (United States)

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Filiz F; Aslan, Mehmet; Koylu, Ahmet O; Selek, Sahbettin; Erel, Ozcan

    2006-07-14

    Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p total peroxide level and oxidative stress index were significantly lower (all p total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  3. Oxidative stress in diabetic patients with retinopathy | Kundu ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus (DM) is known to induce oxidative stress along with deranging various metabolisms; one of the late complications of diabetes mellitus is diabetic retinopathy, which is a leading cause of acquired blindness. Poor glycemic control and oxidative stress have been attributed to the development of ...

  4. Time series analysis of blood oxidative stress value in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Indirect effect of ionizing-radiation causes free radicals and reactive oxgen species (ROS). These ROS interact with DNA or other organella, and cause oxidative damage to nucleic acids, membrane lipoprotein, mitchondria and others. The purpose of this study is to evaluate oxidative damage by irradiation using d-ROMs test. Electron beam was irradiated to the thigh of Wistar strain female rats, and reactive oxygen metabolites in the blood from these rats were measured and analysed. From the results, 2 Gy group shows significantly higher oxidative stress level than those of 0 Gy group especially in day 3 after irradiation. This oxidative stress definitely seemed to be caused by exposure to ionizing-radiation. In contrast, the group of 30 Gy-irradiation showed no significant increase of oxidative stress level. It was thought that oxidative stress caused by radiation was neutralized by expression of stress-induced antioxidant enzymes. These data resulted that d-ROMs test is useful for measuring oxidative stress levels of irradiated mammalian animals. (author)

  5. Oxidative DNA damage and oxidative stress in lead-exposed workers.

    Science.gov (United States)

    Dobrakowski, M; Pawlas, N; Kasperczyk, A; Kozłowska, A; Olewińska, E; Machoń-Grecka, A; Kasperczyk, S

    2017-07-01

    There are many discrepancies among the results of studies on the genotoxicity of lead. The aim of the study was to explore lead-induced DNA damage, including oxidative damage, in relation to oxidative stress intensity parameters and the antioxidant defense system in human leukocytes. The study population consisted of 100 male workers exposed to lead. According to the blood lead (PbB) levels, they were divided into the following three subgroups: a group with PbB of 20-35 μg/dL (low exposure to lead (LE) group), a group with a PbB of 35-50 µg/dL (medium exposure to lead (ME) group), and a group with a PbB of >50 μg/dL (high exposure to lead (HE) group). The control group consisted of 42 healthy males environmentally exposed to lead (PbB lead exposure induces DNA damage, including oxidative damage, in human leukocytes. The increase in DNA damage was accompanied by an elevated intensity of oxidative stress.

  6. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  7. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  8. Oxidative Stress and Anesthesia in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Peivandi Yazdi A

    2014-04-01

    Full Text Available Free radical and peroxide production lead to intracellular damage. On the other hand, free radicals are used by the human immune system to defend against pathogens. The aging process could be limited by oxidative stress in the short term. Chronic diseases like diabetes mellitus (DM are full-stress conditions in which remarkable metabolic functional destructions might happen. There is strong evidence regarding antioxidant impairment in diabetes. Performing a particular method for anesthesia in diabetic patients might prevent or modify excessive free radical formation and oxidative stress. It seems that prescribing antioxidant drugs could promote wound healing in diabetics.  

  9. Evaluation of oxidative stress in hunting dogs during exercise.

    Science.gov (United States)

    Pasquini, A; Luchetti, E; Cardini, G

    2010-08-01

    Exercise has been shown to increase the production of reactive oxygen species (ROS) to a point that can exceed antioxidant defenses, to cause oxidative stress. The aim of our trials was to evaluate oxidative stress and recovery times in trained dogs during two different hunting exercises, with reactive oxygen metabolites-derivatives (d-ROMs) and biological antioxidant potential (BAP) tests. A group of nine privately owned Italian hounds were included. A 20-min aerobic exercise and a 4-h aerobic exercise, after 30 days of rest, were performed by the dogs. Our results show an oxidative stress after exercise due to both the high concentration of oxidants (d-ROMs) and the low level of antioxidant power (BAP). Besides, the recovery time is faster after the 4-h aerobic exercise than the 20-min aerobic exercise. Oxidative stress monitoring during dogs exercise could become an interesting aid to establish ideal adaptation to training. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone)

    Science.gov (United States)

    Hara, Hideaki

    2017-01-01

    Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress. PMID:28194256

  11. The role of cold work and applied stress on surface oxidation of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Perez, Sergio, E-mail: sergio.lozano-perez@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Kruska, Karen [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Iyengar, Ilya [Winchester College, College Street, Winchester SO23 9LX (United Kingdom); Terachi, Takumi; Yamada, Takuyo [Institute of Nuclear Safety System (INSS), 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIB 3D sequential sectioning is an ideal technique to characterize surface oxidation. Black-Right-Pointing-Pointer 3D models of the oxide can be produced with nanometre resolution. Black-Right-Pointing-Pointer The effects of stress and cold work in grain boundary oxidation have been analysed. Black-Right-Pointing-Pointer At least three different oxidation modes are observed when stress is applied. - Abstract: FIB 3-dimensional (3D) sequential sectioning has been used to characterize environmental degradation of 304 stainless steels in pressurized water reactor (PWR) simulated primary water. In particular, the effects of cold work and applied stress on oxidation have been studied in detail. It was found that a description of the oxidation behaviour of this alloy is only complete if it is treated statistically, since it can suffer from high variability depending on the feature described.

  12. Piracetam improves mitochondrial dysfunction following oxidative stress

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  13. Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet.

    Science.gov (United States)

    Auberval, Nathalie; Dal, Stéphanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Valérie; Sigrist, Séverine

    2014-01-01

    Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome.

  14. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Weinstein-Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester (United States); Szyf, Moshe [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2014-05-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  15. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Guillemin, Claire; Neeman-azulay, Meytal; Weinstein-Fudim, Liza; Stodgell, Christopher J.; Miller, Richard K.; Szyf, Moshe; Ornoy, Asher

    2014-01-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  16. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    Science.gov (United States)

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  17. Chrononutrition against Oxidative Stress in Aging

    Directory of Open Access Journals (Sweden)

    M. Garrido

    2013-01-01

    Full Text Available Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases.

  18. Oxidative stress in ageing of hair.

    Science.gov (United States)

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia.

  19. Dichlone-induced oxidative stress in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Ahmad, S; Zaman, K; MacGill, R S; Batcabe, J P; Pardini, R S

    1995-11-01

    Southern armyworm, Spodoptera eridania, larvae were provided ad libitum 0.002-0.25% w/w dichlone, 2,3-dichloro-1,4-naphthoquinone (CNQ). Larval mortality occurred in a time-and-dose dependent manner, with an LC17 of 0.01% and an LC50 of 0.26% CNQ at day-5. Extracts of larvae fed control, 0.01, and 0.25% CNQ diets for 5 days were assayed for antioxidant enzymes. While 0.01% CNQ had a mild effect, 0.25% CNQ profoundly increased levels of all antioxidant enzymes that were examined. The increases as compared to control were: 5.3-, 1.9-, 3.2-, 2.6-, 2.8-, and 3.5-fold higher for superoxide dismutase, catalase, glutathione transferase and its peroxidase activity, glutathione reductase and DT-diaphorase, respectively. At 0.01% CNQ, the thiobarbituric acid reactive substances (TBARS) were similar to the control group. However, despite the induction from 0.25% CNQ of all enzymes examined, the lipid peroxidation was not attenuated; the TBARS were 29.7% over the control value. High mortalities and CNQ-induced pathologies reflected in retarded growth, wasting syndrome, and diuresis clearly indicated that the insect sustained severe oxidant-induced injuries before appropriate defenses were fully mobilized. Thus, this quinone causes an oxidative stress in a model insect species analogous to that observed in mammalian species.

  20. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  1. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  2. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs

    Directory of Open Access Journals (Sweden)

    Nikolai Engedal

    2018-01-01

    Full Text Available Oxidative stress can alter the expression level of many microRNAs (miRNAs, but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.

  3. Oxidative stress and lung function profiles of male smokers free from ...

    African Journals Online (AJOL)

    Oxidative stress and lung function profiles of male smokers free from COPD compared to those with COPD: A case-control study. ... However, conclusions about the role of blood or lung oxidative stress markers were disparate. Aims: To ... Keywords: inflammation; lung disease; spirometry; tobacco; sedentarily; stress oxidant ...

  4. Oxidative Stress-Mediated Aging during the Fetal and Perinatal Periods

    Directory of Open Access Journals (Sweden)

    Lucia Marseglia

    2014-01-01

    Full Text Available Oxidative stress is worldwide recognized as a fundamental component of the aging, a process that begins before birth. There is a critical balance between free radical generation and antioxidant defenses. Oxidative stress is caused by an imbalance between the production of free radicals and the ability of antioxidant system to detoxify them. Oxidative stress can occur early in pregnancy and continue in the postnatal period; this damage is implicated in the pathophysiology of pregnancy-related disorders, including recurrent pregnancy loss, preeclampsia and preterm premature rupture of membranes. Moreover, diseases of the neonatal period such as bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, and periventricular leukomalacia are related to free radical damage. The specific contribution of oxidative stress to the pathogenesis and progression of these neonatal diseases is only partially understood. This review summarizes what is known about the role of oxidative stress in pregnancy and in the pathogenesis of common disorders of the newborn, as a component of the early aging process.

  5. Effect of oxidative stress on homer scaffolding proteins.

    Directory of Open Access Journals (Sweden)

    Igor Nepliouev

    Full Text Available Homer proteins are a family of multifaceted scaffolding proteins that participate in the organization of signaling complexes at the post-synaptic density and in a variety of tissues including striated muscle. Homer isoforms form multimers via their C-terminal coiled coil domains, which allows for the formation of a polymeric network in combination with other scaffolding proteins. We hypothesized that the ability of Homer isoforms to serve as scaffolds would be influenced by oxidative stress. We have found by standard SDS-PAGE of lysates from adult mouse skeletal muscle exposed to air oxidation that Homer migrates as both a dimer and monomer in the absence of reducing agents and solely as a monomer in the presence of a reducing agent, suggesting that Homer dimers exposed to oxidation could be modified by the presence of an inter-molecular disulfide bond. Analysis of the peptide sequence of Homer 1b revealed the presence of only two cysteine residues located adjacent to the C-terminal coiled-coil domain. HEK 293 cells were transfected with wild-type and cysteine mutant forms of Homer 1b and exposed to oxidative stress by addition of menadione, which resulted in the formation of disulfide bonds except in the double mutant (C246G, C365G. Exposure of myofibers from adult mice to oxidative stress resulted in decreased solubility of endogenous Homer isoforms. This change in solubility was dependent on disulfide bond formation. In vitro binding assays revealed that cross-linking of Homer dimers enhanced the ability of Homer 1b to bind Drebrin, a known interacting partner. Our results show that oxidative stress results in disulfide cross-linking of Homer isoforms and loss of solubility of Homer scaffolds. This suggests that disulfide cross-linking of a Homer polymeric network may contribute to the pathophysiology seen in neurodegenerative diseases and myopathies characterized by oxidative stress.

  6. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  7. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury.

    Science.gov (United States)

    Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng

    2017-02-08

    Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.

  8. The bad, the good, and the ugly about oxidative stress.

    Science.gov (United States)

    Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2012-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the "oxidative stress model" in neurodegeneration and cancer.

  9. Oxidative stress in birds along a NOx and urbanisation gradient: An interspecific approach.

    Science.gov (United States)

    Salmón, Pablo; Stroh, Emilie; Herrera-Dueñas, Amparo; von Post, Maria; Isaksson, Caroline

    2018-05-01

    Urbanisation is regarded as one of the most threatening global issues for wildlife, however, measuring its impact is not always straight forward. Oxidative stress physiology has been suggested to be a useful biomarker of health and therefore, a potentially important indicator of the impact that urban environmental stressors, especially air pollution, can have on wildlife. For example, nitrogen oxides (NO x ), released during incomplete combustion of fossil fuels, are highly potent pro-oxidants, thus predicted to affect either the protective antioxidants and/or cause oxidative damage to bio-molecules. To date, epidemiological modelling of the predicted association between oxidative stress and NO x exposure has not been performed in wild animals. Here, we address this short-coming, by investigating multiple oxidative stress markers in four common passerine bird species, the blue tit (Cyanistes caeruleus), great tit (Parus major), house sparrow (Passer domesticus) and tree sparrow (Passer montanus), living along a gradient of NO x and urbanisation levels in southern Sweden. First of all, the results revealed that long- and medium-term (one month and one week, respectively) NO x levels were highly correlated with the level of urbanisation. This confirms that the commonly used urbanisation index is a reliable proxy for urban air pollution. Furthermore, in accordance to our prediction, individuals exposed to higher long- and medium-term NO x levels/urbanisation had higher plasma antioxidant capacity. However, only tree sparrows showed higher oxidative damage (protein carbonyls) in relation to NO x levels and this association was absent with urbanisation. Lipid peroxidation, glutathione and superoxide dismutase levels did not co-vary with NO x /urbanisation. Given that most oxidative stress biomarkers showed strong species-specificity, independent of variation in NO x /urbanisation, the present study highlights the need to study variation in oxidative stress across

  10. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    Science.gov (United States)

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.

  11. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    Science.gov (United States)

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  12. Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster.

    Science.gov (United States)

    Niveditha, S; Deepashree, S; Ramesh, S R; Shivanandappa, T

    2017-10-01

    Gender differences in lifespan and aging are known across species. Sex differences in longevity within a species can be useful to understand sex-specific aging. Drosophila melanogaster is a good model to study the problem of sex differences in longevity since females are longer lived than males. There is evidence that stress resistance influences longevity. The objective of this study was to investigate if there is a relationship between sex differences in longevity and oxidative stress resistance in D. melanogaster. We observed a progressive age-dependent decrease in the activity of SOD and catalase, major antioxidant enzymes involved in defense mechanisms against oxidative stress in parallel to the increased ROS levels over time. Longer-lived females showed lower ROS levels and higher antioxidant enzymes than males as a function of age. Using ethanol as a stressor, we have shown differential susceptibility of the sexes to ethanol wherein females exhibited higher resistance to ethanol-induced mortality and locomotor behavior compared to males. Our results show strong correlation between sex differences in oxidative stress resistance, antioxidant defenses and longevity. The study suggests that higher antioxidant defenses in females may confer resistance to oxidative stress, which could be a factor that influences sex-specific aging in D. melanogaster.

  13. Possible effects of rosuvastatin on noise-induced oxidative stress in rat brain

    Directory of Open Access Journals (Sweden)

    Alevtina Ersoy

    2014-01-01

    Full Text Available The problem of noise has recently gained more attention as it has become an integral part of our daily lives. However, its influence has yet to be fully elucidated. Other than being an unpleasant stimulus, noise may cause health disorders through annoyance and stress, including oxidative stress. Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, may possess antioxidant properties. Based on rat models, our project investigates the effect of rosuvastatin on noise-induced oxidative stress in the brain tissue. Thirty-two male Wistar albino rats were used. The rats were divided into four groups: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage, and control. After the data had been collected, oxidant and antioxidant parameters were analyzed in the cerebral cortex, brain stem, and cerebellum. Results indicated that superoxide dismutase values were significantly decreased in the cerebral cortex, while malondialdehyde values in the brainstem and cerebellum were significantly increased in the group with only noise exposure. Superoxide dismutase values in the brainstem were significantly increased, but nitric oxide values in the cerebellum and brainstem and malondialdehyde values in the cerebellum and cerebral cortex were significantly decreased in the group where only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased superoxide dismutase values in the cerebral cortex and brainstem, but significantly reduced malondialdehyde values in the brain stem. Consequently, our data show that brain tissue was affected by oxidative stress due to continued exposure to noise. This noise-induced stress decreases with rosuvastatin therapy.

  14. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    Science.gov (United States)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  15. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone

    Directory of Open Access Journals (Sweden)

    Tomomi Masuda

    2017-01-01

    Full Text Available Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD, glaucoma, diabetic retinopathy (DR, and retinal vein occlusion (RVO. An excess amount of reactive oxygen species (ROS can lead to functional and morphological impairments in retinal pigment epithelium (RPE, endothelial cells, and retinal ganglion cells (RGCs. Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.

  17. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  18. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    International Nuclear Information System (INIS)

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  19. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis.

    Science.gov (United States)

    Findeisen, Hannes M; Pearson, Kevin J; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; de Cabo, Rafael; Bruemmer, Dennis

    2011-04-14

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G(1)→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction.

  20. Effect of chronic exposure to aspartame on oxidative stress in the ...

    Indian Academy of Sciences (India)

    2012-08-03

    Aug 3, 2012 ... Aspartame; blood methanol; oxidative stress; rat folate-deficient model; free radical. Published online: 3 ... other chemicals were of analytical grade obtained from .... 0.5 mL of homogenate was mixed with 0.5 mL of ethanol.

  1. Insulin resistance in H pylori infection and its association with oxidative stress.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Nazligul, Yasar; Bolukbas, Cengiz; Bolukbas, F Fusun; Selek, Sahbettin; Celik, Hakim; Erel, Ozcan

    2006-11-14

    To determine the insulin resistance (IR) and oxidative status in H pylori infection and to find out if there is any relationship between these parameters and insulin resistance. Fifty-five H pylori positive and 48 H pylori negative patients were enrolled. The homeostasis model assessment (HOMA) was used to assess insulin resistance. Serum total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) were determined in all subjects. The total antioxidant capacity was significantly lower in H pylori positive group than in H pylori negative group (1.36 +/- 0.33 and 1.70 +/- 0.50, respectively; P total oxidant status and oxidative stress index were significantly higher in H pylori positive group than in H pylori negative group (6.79 +/- 3.40 and 5.08 +/- 0.95, and 5.42 +/- 3.40 and 3.10 +/- 0.92, respectively; P total antioxidant capacity (r = -0.251, P total oxidant status (r = 0.365, P antioxidant vitamins to H pylori eradication therapy on insulin resistance during H pylori infection.

  2. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  3. Glutamine prevents oxidative stress in a model of portal hypertension.

    Science.gov (United States)

    Zabot, Gilmara Pandolfo; Carvalhal, Gustavo Franco; Marroni, Norma Possa; Licks, Francielli; Hartmann, Renata Minuzzo; da Silva, Vinícius Duval; Fillmann, Henrique Sarubbi

    2017-07-07

    To evaluate the protective effects of glutamine in a model of portal hypertension (PH) induced by partial portal vein ligation (PPVL). Male Wistar rats were housed in a controlled environment and were allowed access to food and water ad libitum . Twenty-four male Wistar rats were divided into four experimental groups: (1) control group (SO) - rats underwent exploratory laparotomy; (2) control + glutamine group (SO + G) - rats were subjected to laparotomy and were treated intraperitoneally with glutamine; (3) portal hypertension group (PPVL) - rats were subjected to PPVL; and (4) PPVL + glutamine group (PPVL + G) - rats were treated intraperitoneally with glutamine for seven days. Local injuries were determined by evaluating intestinal segments for oxidative stress using lipid peroxidation and the activities of glutathione peroxidase (GPx), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) after PPVL. Lipid peroxidation of the membrane was increased in the animals subjected to PH ( P 0.05). The activity of the antioxidant enzyme GTx was decreased in the gut of animals subjected to PH compared with that in the control group of animals not subjected to PH ( P 0.05). At least 10 random, non-overlapping images of each histological slide with 200 × magnification (44 pixel = 1 μm) were captured. The sum means of all areas, of each group were calculated. The mean areas of eNOS staining for both of the control groups were similar. The PPVL group showed the largest area of staining for eNOS. The PPVL + G group had the second highest amount of staining, but the mean value was much lower than that of the PPVL group ( P < 0.01). For iNOS, the control (SO) and control + G (SO + G) groups showed similar areas of staining. The PPVL group contained the largest area of iNOS staining, followed by the PPVL + G group; however, this area was significantly smaller than that of the group that underwent PH without glutamine ( P < 0.01). Treatment with

  4. Differential Effects of Acute (Extenuating and Chronic (Training Exercise on Inflammation and Oxidative Stress Status in an Animal Model of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Edite Teixeira de Lemos

    2011-01-01

    Full Text Available This study compares the effects of a single bout of exercise (acute extenuating with those promoted by an exercise training program (chronic, focusing on low-grade chronic inflammation profile and on oxidative stress status, using the obese ZDF rats as a model of type 2 diabetes mellitus (T2DM. Animals were sacrificed after 12 weeks of a swimming training program and after a single bout of acute extenuating exercise. Glycaemic, insulinemic, and lipidic profile (triglycerides, total-cholesterol were evaluated, as well as inflammatory (serum CRPhs, TNF-α, adiponectin and oxidative (lipidic peroxidation and uric acid status. When compared to obese diabetic sedentary rats, the animals submitted to acute exercise presented significantly lower values of glycaemia and insulinaemia, with inflammatory profile and oxidative stress significantly aggravated. The trained animals showed amelioration of glycaemic and lipidic dysmetabolism, accompanied by remarkable reduction of inflammatory and oxidative markers. In conclusion, the results presented herein suggessted that exercise pathogenesis-oriented interventions should not exacerbate underlying inflammatory stress associated with T2DM.

  5. Optical imaging of oxidative stress in retinitis pigmentosa (RP) in rodent model

    Science.gov (United States)

    Ghanian, Zahra; Maleki, Sepideh; Gopalakrishnan, Sandeep; Sepehr, Reyhaneh; Eells, Janis T.; Ranji, Mahsa

    2013-02-01

    Oxidative stress (OS), which increases during retinal degenerative disorders, contributes to photoreceptor cell loss. The objective of this study was to investigate the changes in the metabolic state of the eye tissue in rodent models of retinitis pigmentosa by using the cryofluorescence imaging technique. The mitochondrial metabolic coenzymes NADH and FADH2 are autofluorescent and can be monitored without exogenous labels using optical techniques. The NADH redox ratio (RR), which is the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), was used as a quantitative diagnostic marker. The NADH RR was examined in an established rodent model of retinitis pigmentosa (RP), the P23H rat, and compared to that of control Sprague-Dawley (SD) rats and P23H NIR treated rats. Our results demonstrated 24% decrease in the mean NADH RR of the eyes from P23H transgenic rats compared to normal rats and 20% increase in the mean NADH RR of the eyes from the P23H NIR treated rats compared to P23H non-treated rats.

  6. Pharmacological inhibition of arachidonate 15-lipoxygenase (ALOX15) protects human spermatozoa against oxidative stress.

    Science.gov (United States)

    Walters, Jessica L H; De Iuliis, Geoffry N; Dun, Matthew D; Aitken, Robert John; McLaughlin, Eileen A; Nixon, Brett; Bromfield, Elizabeth G

    2018-03-13

    One of the leading causes of male infertility is defective sperm function, a pathology that commonly arises from oxidative stress in the germline. Lipid peroxidation events in the sperm plasma membrane result in the generation of cytotoxic aldehydes such as 4-hydroxynonenal (4HNE), which accentuate the production of reactive oxygen species (ROS) and cause cellular damage. One of the key enzymes involved in the metabolism of polyunsaturated fatty acids to 4HNE in somatic cells is arachidonate 15-lipoxygenase (ALOX15). Although ALOX15 has yet to be characterized in human spermatozoa, our previous studies have revealed a strong link between ALOX15 activity and the levels of oxidative stress and 4HNE in mouse germ cell models. In view of these data, we sought to assess the function of ALOX15 in mature human spermatozoa and determine whether the pharmacological inhibition of this enzyme could influence the level of oxidative stress experienced by these cells. By driving oxidative stress in vitro with exogenous H2O2, our data reveal that 6,11-dihydro[1]benzothiopyrano[4,3-b]indole (PD146176; a selective ALOX15 inhibitor), was able to significantly reduce several deleterious, oxidative insults in spermatozoa. Indeed, PD146176 attenuated the production of ROS, as well as membrane lipid peroxidation and 4HNE production in human spermatozoa. Accordingly, ALOX15 inhibition also protected the functional competence of these cells to acrosome react and bind homologous human zonae pellucidae. Together, these results implicate ALOX15 in the propagation of an oxidative stress cascade within human spermatozoa and offer insight into potential therapeutic avenues to address male fertility that arises from oxidative stress.

  7. Symbiosis-induced adaptation to oxidative stress.

    Science.gov (United States)

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  8. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  9. Role of sulfiredoxin in systemic diseases influenced by oxidative stress

    Directory of Open Access Journals (Sweden)

    Asha Ramesh

    2014-01-01

    Full Text Available Sulfiredoxin is a recently discovered member of the oxidoreductases family which plays a crucial role in thiol homoeostasis when under oxidative stress. A myriad of systemic disorders have oxidative stress and reactive oxygen species as the key components in their etiopathogenesis. Recent studies have evaluated the role of this enzyme in oxidative stress mediated diseases such as atherosclerosis, chronic obstructive pulmonary disease and a wide array of carcinomas. Its action is responsible for the normal functioning of cells under oxidative stress and the promotion of cell survival in cancerous cells. This review will highlight the cumulative effects of sulfiredoxin in various systemic disorders with a strong emphasis on its target activity and the factors influencing its expression in such conditions.

  10. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs.

    Science.gov (United States)

    Smith, Samson W; Latta, Leigh C; Denver, Dee R; Estes, Suzanne

    2014-07-24

    The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.

  11. Is rosuvastatin protective against on noise-induced oxidative stress in rat serum?

    Directory of Open Access Journals (Sweden)

    Emine Rabia Koc

    2015-01-01

    Full Text Available Noise, one of the main components of modern society, has become an important environmental problem. Noise is not only an irritating sound, but also a stress factor leading to serious health problems. In this study, we have investigated possible effects of rosuvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, thought to have an antioxidant effect, on noise-induced oxidative stress in the serum of rat models. Thirty-two male Wistar albino rats were used. In order to ease their adaptation, 2 weeks before the experiment, the rats were divided into four groups (with eight rats per each group: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage and control. After the data had been collected, oxidant (Malondialdehyde, nitric oxide [NO], protein carbonyl [PC] and antioxidant (superoxide dismutase [SOD], glutathione peroxidase [GSH-PX], catalase [CAT] parameters were analyzed in the serum. Results indicated that SOD values were found to be significantly lower, while PC values in serum were remarkably higher in the group that was exposed to only noise. GSH-Px values in serum dramatically increased in the group on which only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased CAT values, whereas it resulted in reduced PC and NO values in serum. In conclusion, our data show that noise exposure leads to oxidative stress in rat serum; however, rosuvastatin therapy decreases the oxidative stress caused by noise exposure.

  12. Oxidative stress may be involved in distant organ failure in tourniquet shock model mice.

    Science.gov (United States)

    Nishikata, Rie; Kato, Naho; Hiraiwa, Kouichi

    2014-03-01

    Crush syndrome is characterized by prolonged shock resulting from extensive muscle damage and multiple organ failure. However, the pathogenesis of multiple organ failure has not yet been completely elucidated. Therefore, we investigated the molecular biological and histopathological aspects of distant organ injury in crush syndrome by using tourniquet shock model mice. DNA microarray analysis of the soleus muscle showed an increase in the mRNA levels of Cox-2, Hsp70, c-fos, and IL-6, at 3h after ischemia/reperfusion injury at the lower extremity. In vivo staining with hematoxylin and eosin (HE) showed edema and degeneration in the soleus muscle, but no change in the distant organs. Immunohistological staining of the HSP70 protein revealed nuclear translocation in the soleus muscle, kidney, liver, and lung. The c-fos mRNA levels were elevated in the soleus muscle, kidney, and liver, displaying nuclear translocation of c-FOS protein. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis suggested the involvement of apoptosis in ischemia/reperfusion injury in the soleus muscle. Apoptotic cells were not found in greater quantities in the kidney. Oxidative stress, as determined using a free radical elective evaluator (d-ROM test), markedly increased after ischemia/reperfusion injury. Therefore, examination of immunohistological changes and determination of oxidative stress are proposed to be useful in evaluating the extent of tourniquet shock, even before changes are observed by HE staining. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Periodontitis and increase in circulating oxidative stress

    OpenAIRE

    Takaaki Tomofuji; Koichiro Irie; Toshihiro Sanbe; Tetsuji Azuma; Daisuke Ekuni; Naofumi Tamaki; Tatsuo Yamamoto; Manabu Morita

    2009-01-01

    Reactive oxygen species (ROS) are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress). Such oxidation may be detrimental to systemic health. Fo...

  14. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  15. Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry.

    Science.gov (United States)

    Ge, Yanhu; Jiao, Yingfu; Li, Peiying; Xiang, Zhenghua; Li, Zhi; Wang, Long; Li, Wenqian; Gao, Hao; Shao, Jiayun; Wen, Daxiang; Yu, Weifeng

    2018-05-01

    The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen leads to ER stress, which is related to cellular reactive oxygen species production. Neuropathic pain may result from spinal dorsal horn (SDH) ER stress. In this study, we examined the cause-effect relationship between ER stress and neuropathic pain using the spinal nerve ligation (SNL) rat model. We showed that ER stress was mutually promotive with oxidative stress during the process. We also tested the hypothesis that spinal sensitization arose from reduced activities of GABA-ergic interneurons and that spinal sensitization was mediated by SDH ER stress. Other important findings in this study including the following: (1) nociceptive behavior was alleviated in SNL rat as long as tauroursodeoxycholic acid injections were repeated to inhibit ER stress; (2) inducing SDH ER stress in healthy rat resulted in mechanical hyperalgesia; (3) blocking protein disulfide isomerase pharmacologically reduced ER stress and nociceptive behavior in SNL rat; (4) cells in the dorsal horn with elevated ER stress were mainly neurons; and (5) whole-cell recordings made in slide preparations revealed significant inhibition of GABA-ergic interneuron activity in the dorsal horn with ER stress vs in the healthy dorsal horn. Taken together, results of the current study demonstrate that coregulation of ER stress and oxidative stress played an important role in neuropathic pain process. Inhibiting SDH ER stress could be a potential novel strategy to manage neuropathic pain.

  16. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    Science.gov (United States)

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Limitations in Using Chemical Oxidative Potential to Understand Oxidative Stress from Particulate Matter

    Science.gov (United States)

    Chan, A. W. H.; Wang, S.; Wang, X.; Kohl, L.; Chow, C. W.

    2017-12-01

    Particulate matter (PM) in the atmosphere is known to cause adverse cardiorespiratory health effects. It has been suggested that the ability of PM to generate oxidative stress leads to a proinflammatory response. In this work, we study the biological relevance of using a chemical oxidative potential (OP) assay to evaluate proinflammatory response in airway epithelial cells. Here we study the OPs of laboratory secondary organic aerosol (SOA) and metal mixtures, ambient PM from India, ash from the 2016 Alberta wildfires, and diesel exhaust particles. We use SOA derived from naphthalene and from monoterpenes as model systems for SOA. We measure OP using the dithiothreitol (DTT) assay, and cytosolic reactive oxygen species (ROS) production in BEAS-2B cell culture was measured using CellROX assay. We found that both SOA and copper show high OPs individually, but the OP of the combined SOA/copper mixture, which is more atmospherically relevant, was lower than either of the individual OPs. The reduced activity is attributed to chelation between metals and organic compounds using proton nuclear magnetic resonance. There is reasonable association between DTT activity and cellular ROS production within each particle type, but weak association across different particle types, suggesting that particle composition plays an important role in distinguishing between antioxidant consumption and ROS production. Our results highlight that while oxidative potential is a useful metric of PM's ability to generate oxidative stress, the chemical composition and cellular environment should be considered in understanding health impacts of PM.

  18. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-01-01

    Full Text Available Diabetic retinopathy (DR is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.

  19. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    Science.gov (United States)

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  20. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    Directory of Open Access Journals (Sweden)

    Koylu Ahmet O

    2006-07-01

    Full Text Available Abstract Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+ hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p 0.05/3. Conclusion Oxidative stress is increased in both hepatitis C (+ and hepatitis C (- hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  1. Stress analysis of local blisters coupling Raman spectroscopy and X-ray diffraction. Correlation between experimental results and continuous damage modelling for buckling in an iron oxide/phosphated iron system

    Energy Technology Data Exchange (ETDEWEB)

    Panicaud, B., E-mail: benoit.panicaud@utt.fr [Universite de Technologie de Troyes (UTT), CNRS UMR 6279, 12 rue Marie Curie, 10010 Troyes (France); Grosseau-Poussard, J.L. [LEMMA, Pole Sciences et Technologie, Universite de La Rochelle, Av. M. Crepeau, 17042 La Rochelle Cedex (France)

    2010-12-01

    In this present work, local stress development in the iron oxide layers growing on phosphated {alpha}-Fe at 400 deg. C in ambient air is investigated by Raman spectroscopy. Coupled with X-ray diffraction it enables to obtain directly local stresses' maps in the oxide layers. Use of Raman spectroscopy allows obtaining better accuracy on mechanical behaviour at local scale. This characterisation technique is very useful to study systems developing mechanical heterogeneities on surface, especially in case of buckling phenomenon. Investigations on particular local blisters have been done to measure some characteristic lengths at local scale. From local measurements, we are able to evaluate general effect of buckling from simplified scale transition. So, a macroscopic approach has been performed to calculate global stress evolution of the oxide layer, based on continuous damage mechanics. Consequently, it leads to good comparison between modelling and experimental values (global stresses versus oxidation time) in {alpha}-Fe{sub 2}O{sub 3} oxide.

  2. [Role of green tea in oxidative stress prevention].

    Science.gov (United States)

    Metro, D; Muraca, U; Manasseri, L

    2006-01-01

    Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.

  3. Oxidative stress tolerance of early stage diabetic endothelial progenitor cell

    Directory of Open Access Journals (Sweden)

    Dewi Sukmawati

    2015-06-01

    Conclusions: Primitive BM-EPCs showed vasculogenic dysfunction in early diabetes. However the oxidative stress is not denoted as the major initiating factor of its cause. Our results suggest that primitive BM-KSL cell has the ability to compensate oxidative stress levels in early diabetes by increasing the expression of anti-oxidative enzymes.

  4. Effect of Free Radicals & Antioxidants on Oxidative Stress: A Review

    Directory of Open Access Journals (Sweden)

    Ashok Shinde

    2012-01-01

    Full Text Available Recently free radicals have attracted tremendous importance in the field of medicine including dentistry and molecular biology. Free radicals can be either harmful or helpful to the body. When there is an imbalance between formation and removal of free radicals then a condition called as oxidative stress is developed in body. To counteract these free radicals body has protective antioxidant mechanisms which have abilities to lower incidence of various human morbidities and mortalities. Many research groups in the past have tried to study and confirm oxidative stress. Many authors also have studied role of antioxidants in reducing oxidative stress. They have come across with controversial results and furthermore it is not yet fully confirmed whether oxidative stress increases the need for dietary antioxidants. Recently, an association between periodontitis and cardiovascular disease has received considerable attention. Various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. The implication of oxidative stress in the etiology of many chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. This study was conducted with the objective of reviewing articles relating to this subject. A Pub Med search of all articles containing key words free radicals, oxidative stress, and antioxidants was done. A review of these articles was undertaken.

  5. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    Science.gov (United States)

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  6. Oxygen and oxidative stress in the perinatal period.

    Science.gov (United States)

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  7. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency

    International Nuclear Information System (INIS)

    Giordano, Gennaro; Afsharinejad, Zhara; Guizzetti, Marina; Vitalone, Annabella; Kavanagh, Terrance J.; Costa, Lucio G.

    2007-01-01

    Over the past several years evidence has been accumulating from in vivo animal studies, observations in humans, and in vitro studies, that organophosphorus (OP) insecticides may induce oxidative stress. Such effects may contribute to some of the toxic manifestations of OPs, particularly upon chronic or developmental exposures. The aim of this study was to investigate the role of oxidative stress in the neurotoxicity of two commonly used OPs, chlorpyrifos (CPF) and diazinon (DZ), their oxygen analogs (CPO and DZO), and their 'inactive' metabolites (TCP and IMP), in neuronal cells from a genetic model of glutathione deficiency. Cerebellar granule neurons from wild type mice (Gclm +/+) and mice lacking the modifier subunit of glutamate cysteine ligase (Gclm -/-), the first and limiting step in the synthesis of glutathione (GSH), were utilized. The latter display very low levels of GSH and are more susceptible to the toxicity of agents that increase oxidative stress. CPO and DZO were the most cytotoxic compounds, followed by CPF and DZ, while TCP and IMP displayed lower toxicity. Toxicity was significantly higher (10- to 25-fold) in neurons from Gclm (-/-) mice, and was antagonized by various antioxidants. Depletion of GSH from Gclm (+/+) neurons significantly increased their sensitivity to OP toxicity. OPs increased intracellular levels of reactive oxygen species and lipid peroxidation and in both cases the effects were greater in neurons from Gclm (-/-) mice. OPs did not alter intracellular levels of GSH, but significantly increased those of oxidized glutathione (GSSG). Cytotoxicity was not antagonized by cholinergic antagonists, but was decreased by the calcium chelator BAPTA-AM. These studies indicate that cytotoxicity of OPs involves generation of reactive oxygen species and is modulated by intracellular GSH, and suggest that it may involve disturbances in intracellular homeostasis of calcium

  8. Effects of silver nanoparticles to soil invertebrates: Oxidative stress biomarkers in Eisenia fetida

    International Nuclear Information System (INIS)

    Gomes, Susana I.L.; Hansen, Ditte; Scott-Fordsmand, Janeck J.; Amorim, Mónica J.B.

    2015-01-01

    Silver nanoparticles (Ag-NPs) are among the most produced NPs worldwide having several applications in consumer products. Ag-NPs are known to cause oxidative stress in several organisms and cell lines, however comparatively less information is available regarding their effects on soil living invertebrates. The purpose of this study was to investigate if Ag-NPs cause oxidative stress on soil invertebrates. The model soil species Eisenia fetida was used. Our results showed that total glutathione (TG) is the first mechanism triggered by Ag-NPs, followed by glutathione peroxidase (GPx) and glutathione reductase (GR), however oxidative damage was observed for higher doses and exposure time (increased lipid peroxidation, LPO). AgNO 3 exposure caused impairment in GPx and glutathione-S-transferase (GST), probably as result of the higher bioavailability of Ag in the salt-form. The current results indicate that effects are partly caused by Ag ions released from Ag-NPs, but specific particle effects cannot be excluded. - Highlights: • Oxidative stress of Ag-NPs and AgNO 3 was assessed in Eisenia fetida. • Both Ag forms induced oxidative damage (LPO) via different mechanisms. • Ag-NPs activated total glutathione, followed by GPx and GR. • AgNO 3 impaired GPx and GST. • Overall results indicated effects from Ag ionization and NPs specific effects. - Oxidative stress to Ag in Eisenia fetida occurs via different mechanisms for Ag nanoparticles and AgNO 3

  9. A Different Approach to Assess Oxidative Stress in Dengue Hemorrhagic Fever Patients Through The Calculation of Oxidative Stress Index

    Directory of Open Access Journals (Sweden)

    Edi Hartoyo

    2017-09-01

    Full Text Available The objectives of this study were to determine the involvement of Oxidative Stress (OS in the pathogenesis of dengue hemorrhagic fever (DHF through the analysis of oxidative stress Index (OSI. The levels of malondialdehyde (MDA, superoxide dismutase (SOD and catalase (CAT activity, and OSI were measured in 61 child dengue patients and (aged 6 months–18 years with three different stages of DHF, i.e stage I, II, and III. The results show that the levels of MDA, SOD and CAT activity, and OSI significantly different between the group. The all parameters that investigated in this present study seems higher MDA level and OSI in the higher grade of DHF, except for SOD and CAT activity. From this result, it can be concluded that oxidative stress pathways might be involved in the pathomechanism of DHF and OSI might be used as a biomarker for OS and the severity in DHF patients.

  10. Adiponectin, leptin and oxidative stress in preeclampsia in Egyptian ...

    African Journals Online (AJOL)

    Adiponectin and Leptin are closely related adipokines that are associated with the oxidative stresses and endothelial dysfunction and proposed to participate in preeclampsia (PE) pathogenesis. This study is to determine changes in serum levels of adiponectin, leptin and oxidative stress in PE women in order to speculate a ...

  11. Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.

    Science.gov (United States)

    Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana

    2017-05-01

    Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  12. Medical ozone therapy reduces oxidative stress and testicular damage in an experimental model of testicular torsion in rats

    Directory of Open Access Journals (Sweden)

    Mustafa Tusat

    Full Text Available ABSTRACT Objective: Testicular torsion (TT refers to rotation of the testis and twisting of the spermatic cord. TT results in ischemia-reperfusion (I/R injury involving increased oxidative stress, inflammation and apoptosis, and can even lead to infertility. The aim of this study was to investigate the effect of ozone therapy on testicular damage due to I/R injury in an experimental torsion model. Materials and Methods: 24 male Sprague-Dawley rats were divided into 3 groups; shamoperated, torsion/detorsion (T/D, and T/D+ozone. Ozone (1mg/kg was injected intraperitoneally 120 minutes before detorsion and for the following 24h. Blood and tissue samples were collected at the end of 24h. Johnsen score, ischemia modified albumin (IMA, total antioxidant status (TAS, total oxidant status (TOS, and oxidative stress index (OSI levels were determined. Results: Levels of IMA, TOS, OSI, and histopathological scores increased in the serum/tissue of the rats in the experimental T/D group. Serum IMA, TOS, and OSI levels and tissue histopathological scores were lower in the rats treated with ozone compared with the T/D group. Conclusion: Our study results suggest that ozone therapy may exhibit beneficial effects on both biochemical and histopathological findings. Clinical trials are now necessary to confirm this.

  13. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    Science.gov (United States)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  14. Radical Roles for RAGE in the Pathogenesis of Oxidative Stress in Cardiovascular Diseases and Beyond

    Directory of Open Access Journals (Sweden)

    Radha Ananthakrishnan

    2013-10-01

    Full Text Available Oxidative stress is a central mechanism by which the receptor for advanced glycation endproducts (RAGE mediates its pathological effects. Multiple experimental inquiries in RAGE-expressing cultured cells have demonstrated that ligand-RAGE interaction mediates generation of reactive oxygen species (ROS and consequent downstream signal transduction and regulation of gene expression. The primary mechanism by which RAGE generates oxidative stress is via activation of NADPH oxidase; amplification mechanisms in the mitochondria may further drive ROS production. Recent studies indicating that the cytoplasmic domain of RAGE binds to the formin mDia1 provide further support for the critical roles of this pathway in oxidative stress; mDia1 was required for activation of rac1 and NADPH oxidase in primary murine aortic smooth muscle cells treated with RAGE ligand S100B. In vivo, in multiple distinct disease models in animals, RAGE action generates oxidative stress and modulates cellular/tissue fate in range of disorders, such as in myocardial ischemia, atherosclerosis, and aneurysm formation. Blockade or genetic deletion of RAGE was shown to be protective in these settings. Indeed, beyond cardiovascular disease, evidence is accruing in human subjects linking levels of RAGE ligands and soluble RAGE to oxidative stress in disorders such as doxorubicin toxicity, acetaminophen toxicity, neurodegeneration, hyperlipidemia, diabetes, preeclampsia, rheumatoid arthritis and pulmonary fibrosis. Blockade of RAGE signal transduction may be a key strategy for the prevention of the deleterious consequences of oxidative stress, particularly in chronic disease.

  15. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  16. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  17. Oxidative stress and regulation of Pink1 in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Madhusmita Priyadarshini

    Full Text Available Oxidative stress-mediated neuronal dysfunction is characteristic of several neurodegenerative disorders, including Parkinson's disease (PD. The enzyme tyrosine hydroxylase (TH catalyzes the formation of L-DOPA, the rate-limiting step in the biosynthesis of dopamine. A lack of dopamine in the striatum is the most characteristic feature of PD, and the cause of the most dominant symptoms. Loss of function mutations in the PTEN-induced putative kinase (PINK1 gene cause autosomal recessive PD. This study explored the basic mechanisms underlying the involvement of pink1 in oxidative stress-mediated PD pathology using zebrafish as a tool. We generated a transgenic line, Tg(pink1:EGFP, and used it to study the effect of oxidative stress (exposure to H2O2 on pink1 expression. GFP expression was enhanced throughout the brain of zebrafish larvae subjected to oxidative stress. In addition to a widespread increase in pink1 mRNA expression, mild oxidative stress induced a clear decline in tyrosine hydroxylase 2 (th2, but not tyrosine hydroxylase 1 (th1 expression, in the brain of wild-type larvae. The drug L-Glutathione Reduced (LGR has been associated with anti-oxidative and possible neuroprotective properties. Administration of LGR normalized the increased fluorescence intensity indicating pink1 transgene expression and endogenous pink1 mRNA expression in larvae subjected to oxidative stress by H2O2. In the pink1 morpholino oliogonucleotide-injected larvae, the reduction in the expression of th1 and th2 was partially rescued by LGR. The pink1 gene is a sensitive marker of oxidative stress in zebrafish, and LGR effectively normalizes the consequences of mild oxidative stress, suggesting that the neuroprotective effects of pink1 and LGR may be significant and useful in drug development.

  18. Biochemical basis of the high resistance to oxidative stress in ...

    Indian Academy of Sciences (India)

    Unknown

    581. Keywords. Apoptosis; D. discoideum; oxidative stress; antioxidant enzymes; lipid peroxidation ..... multiple toxic effects of oxidative stress that is related to several pathological conditions ... culture. This work was supported by a grant to RB.

  19. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  20. Oxidative stress and male reproductive health

    Directory of Open Access Journals (Sweden)

    Robert J Aitken

    2014-02-01

    Full Text Available One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high levels of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER pathway, 8-oxoguanine glycosylase 1 (OGG1. The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1 needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceivedin vitro and serves as a driver for current research into the origins of free radical generation in the germ line.

  1. Oxidative Stress and Periodontal Disease in Obesity.

    Science.gov (United States)

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  2. Study on the serum oxidative stress status in silicosis patients

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... oxidative stress parameters were investigated in silicosis patients and controls group. 128 silicosis ... to help clinicians to further delineate the role of oxidative- stress .... in age, working duration smoking, total cholesterol, ALT,.

  3. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    Background: Chronic hyperglycaemia in diabetes mellitus leads to increased lipid peroxidation in the body, followed by the development of chronic complications due to oxidative stress. Objective: The aim of this study was to compare total antioxidant (TAO) levels and oxidative stress in type 2 diabetes mellitus (T2DM) ...

  4. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells.

    Science.gov (United States)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia

    2017-04-01

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress.

    Science.gov (United States)

    André, Lucas; Gouzi, Fares; Thireau, Jérôme; Meyer, Gregory; Boissiere, Julien; Delage, Martine; Abdellaoui, Aldja; Feillet-Coudray, Christine; Fouret, Gilles; Cristol, Jean-Paul; Lacampagne, Alain; Obert, Philippe; Reboul, Cyril; Fauconnier, Jérémy; Hayot, Maurice; Richard, Sylvain; Cazorla, Olivier

    2011-11-01

    Arrhythmias following cardiac stress are a key predictor of death in healthy population. Carbon monoxide (CO) is a ubiquitous pollutant promoting oxidative stress and associated with hospitalization for cardiovascular disease and cardiac mortality. We investigated the effect of chronic CO exposure on the occurrence of arrhythmic events after a cardiac stress test and the possible involvement of related oxidative stress. Wistar rats exposed chronically (4 weeks) to sustained urban CO pollution presented more arrhythmic events than controls during recovery after cardiac challenge with isoprenaline in vivo. Sudden death occurred in 22% of CO-exposed rats versus 0% for controls. Malondialdehyde (MDA), an end-product of lipid peroxidation, was increased in left ventricular tissue of CO-exposed rats. Cardiomyocytes isolated from CO-exposed rats showed higher reactive oxygen species (ROS) production (measured with MitoSox Red dye), higher diastolic Ca(2+) resulting from SR calcium leak and an higher occurrence of irregular Ca(2+) transients (measured with Indo-1) in comparison to control cells after a high pacing sequence. Acute treatment with a ROS scavenger (N-acetylcysteine, 20 mmol/L, 1 h) prevented this sequence of alterations and decreased the number of arrhythmic cells following high pacing. Chronic CO exposure promotes oxidative stress that alters Ca(2+) homeostasis (through RYR2 and SERCA defects) and thereby mediates the triggering of ventricular arrhythmia after cardiac stress that can lead to sudden death.

  6. Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria.

    Science.gov (United States)

    Almerich-Silla, Jose Manuel; Montiel-Company, Jose María; Pastor, Sara; Serrano, Felipe; Puig-Silla, Miriam; Dasí, Francisco

    2015-01-01

    To determine the association between oxidative stress parameters with periodontal disease, bleeding, and the presence of different periodontal bacteria. A cross-sectional study in a sample of eighty-six patients, divided into three groups depending on their periodontal status. Thirty-three with chronic periodontitis, sixteen with gingivitis, and thirty-seven with periodontal healthy as control. Oxidative stress biomarkers (8-OHdG and MDA), total antioxidant capacity (TAOC), and the activity of two antioxidant enzymes (GPx and SOD) were determined in saliva. Subgingival plaque samples were obtained from the deepest periodontal pocket and PCR was used to determine the presence of the 6 fimA genotypes of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Treponema denticola. Periodontal disease was found to be associated with increased oxidative stress parameter levels. These levels rose according to the number and type of different periodontal bacteria found in the periodontal pockets. The presence of different types of periodontal bacteria is predictive independent variables in linear regresion models of oxidative stress parameters as dependent variable, above all 8-OHdG. Oxidative stress parameter levels are correlated with the presence of different types of bacteria. Determination of these levels and periodontal bacteria could be a potent tool for controlling periodontal disease development.

  7. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  8. Increase in peripheral oxidative stress during hypercholesterolemia is not reflected in the central nervous system: evidence from two mouse models.

    Science.gov (United States)

    Ding, Tao; Yao, Yeumang; Praticò, Domenico

    2005-05-01

    In recent years oxidative stress has been widely implicated as a pathogenetic mechanism of several diseases, and a variety of indices and assays have been developed to assess this phenomenon in complex biological systems. Most of these biomarkers can be measured virtually in every biological fluid and tissue, providing us with the opportunity to assess their formation at local site of oxidative injury. However, despite their widespread use, it is still not completely clear how their peripheral formation correlates with the levels measured in the central nervous system. For this reason, we utilized two well-characterized animal models of chronic peripheral oxidative stress, low-density lipoprotein receptor (LDLR)-deficient and C57BL/6 mice on a high fat diet. After 8 weeks on the diet, we assessed isoprostane, marker of lipid peroxidation, and carbonyls, marker of protein oxidation, in several organs of these animals. Compared with animals on chow, mice on the high fat diet showed a significant increase in both biomarkers in plasma, heart, aorta and liver but not in brain tissues. This observation was confirmed by the selective accumulation of radioactivity in the peripheral organs but not in the brains of mice injected with tritiated isoprostane. Our findings indicate that in hypercholesterolemia the peripheral formation of oxidative products does not contribute to their levels found in the central nervous system.

  9. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai

    2015-09-01

    Full Text Available Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.

  10. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Science.gov (United States)

    Tóthová, L'ubomíra; Celec, Peter

    2017-01-01

    Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status. PMID:29311982

  11. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Directory of Open Access Journals (Sweden)

    L'ubomíra Tóthová

    2017-12-01

    Full Text Available Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status.

  12. Modulatory effects of caffeine on oxidative stress and anxiety-like behavior in ovariectomized rats.

    Science.gov (United States)

    Caravan, Ionut; Sevastre Berghian, Alexandra; Moldovan, Remus; Decea, Nicoleta; Orasan, Remus; Filip, Gabriela Adriana

    2016-09-01

    Menopause is accompanied by enhanced oxidative stress and behavioral changes, effects attenuated by antioxidants. The aim of this study was to evaluate the effects of caffeine on behavior and oxidative stress in an experimental model of menopause. Female rats were divided into the following groups: sham-operated (CON), sham-operated and caffeine-treated (CAF), ovariectomized (OVX), ovariectomized and caffeine-treated (OVX+CAF). Caffeine (6 mg/kg) and vehicle were administered for 21 days (subchronic) and 42 days (chronic), using 2 experimental subsets. Behavioral tests and oxidative stress parameters in the blood, whole brain, and hippocampus were assessed. The subchronic administration of caffeine decreased the lipid peroxidation and improved the antioxidant defense in the blood and brain. The GSH/GGSG ratio in the brain was improved by chronic administration, with reduced activities of antioxidant enzymes and enhanced nitric oxide and malondialdehyde levels. In particular, the lipid peroxidation in the hippocampus decreased in both experiments. The rats became hyperactive after 21 days of treatment, but no effect was observed after chronic administration. In both experimental subsets, caffeine had anxiolytic effects as tested in elevated plus maze. The administration of low doses of caffeine, for a short period of time, may be a new therapeutic approach to modulating the oxidative stress and anxiety in menopause.

  13. Oxidative Metabolism Genes Are Not Responsive to Oxidative Stress in Rodent Beta Cell Lines

    Directory of Open Access Journals (Sweden)

    Faer Morrison

    2012-01-01

    Full Text Available Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L, ambient (11 mmol/L, and high (28 mmol/L glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS production was evident in INS-1 cells after 48 hours (P<0.05. TLDA analysis revealed a significant (P<0.05 upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

  14. Protection by 6-aminonicotinamide against oxidative stress in cardiac cells

    DEFF Research Database (Denmark)

    Hofgaard, Johannes P; Sigurdardottir, Kristin Sigridur; Treiman, Marek

    2006-01-01

    necrosis following global ischemia in an isolated rat heart, apparently by limiting the oxidative injury component. We therefore explored the antioxidative potential of 6AN in a model using H9C2(2-1) rat cardiac myoblasts exposed to H2O2 stress. Dependent on the specific protocol, 6AN pretreatment for 6...

  15. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    Science.gov (United States)

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress

    Directory of Open Access Journals (Sweden)

    Rafael A. de Sá

    2013-09-01

    Full Text Available Propolis is a natural product widely used for humans. Due to its complex composition, a number of applications (antimicrobial, antiinflammatory, anesthetic, cytostatic and antioxidant have been attributed to this substance. Using Saccharomyces cerevisiae as a eukaryotic model we investigated the mechanisms underlying the antioxidant effect of propolis from Guarapari against oxidative stress. Submitting a wild type (BY4741 and antioxidant deficient strains (ctt1∆, sod1∆, gsh1∆, gtt1∆ and gtt2∆ either to 15 mM menadione or to 2 mM hydrogen peroxide during 60 min, we observed that all strains, except the mutant sod1∆, acquired tolerance when previously treated with 25 µg/mL of alcoholic propolis extract. Such a treatment reduced the levels of ROS generation and of lipid peroxidation, after oxidative stress. The increase in Cu/Zn-Sod activity by propolis suggests that the protection might be acting synergistically with Cu/Zn-Sod.

  17. Protective effects of flavonoids from corn silk on oxidative stress ...

    African Journals Online (AJOL)

    Protective effects of flavonoids from corn silk on oxidative stress induced by ... The present study aims at exploring the effects of flavonoids from corn silk (FCS) on oxidative stress induced by exhaustive exercise in mice. ... from 32 Countries:.

  18. Role of Magnesium in Oxidative Stress in Individuals with Obesity.

    Science.gov (United States)

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Santos, Loanne Rocha Dos; de Sousa Melo, Stéfany Rodrigues; de Oliveira Santos, Raisa; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; do Nascimento Marreiro, Dilina

    2017-03-01

    Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords 'magnesium', 'oxidative stress', 'malondialdehyde', 'superoxide dismutase', 'glutathione peroxidase', 'reactive oxygen species', 'inflammation' and 'obesity'. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

  19. A study of oxidative stress in paucibacillary and multibacillary leprosy

    Directory of Open Access Journals (Sweden)

    Jyothi P

    2008-01-01

    Full Text Available Background: The study and assessment of oxidative stress plays a significant role in the arena of leprosy treatment. Once the presence of oxidative stress is proved, antioxidant supplements can be provided to reduce tissue injury and deformity. Aim: To study oxidative stress in paucibacillary (PB and multibacillary (MB leprosy and to compare it with that in a control group. Methods: Fifty-eight untreated leprosy patients (23 PB and 35 MB cases were studied and compared with 58 healthy controls. Superoxide dismutase (SOD level as a measure of antioxidant status; malondialdehyde (MDA level, an indicator of lipid peroxidation; and MDA/SOD ratio, an index of oxidative stress were estimated in the serum. Results: The SOD level was decreased in leprosy patients, especially in MB leprosy. The MDA level was increased in PB and MB leprosy. The MDA/SOD ratio was significantly elevated in MB patients. There was a steady increase in this ratio along the spectrum from tuberculoid to lepromatous leprosy (LL. Conclusion: There is increased oxidative stress in MB leprosy, especially in LL. This warrants antioxidant supplements to prevent tissue injury.

  20. Amelioration of oxidative stress-induced phenotype loss of parvalbumin interneurons might contribute to the beneficial effects of environmental enrichment in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Sun, Xiao R; Zhang, Hui; Zhao, Hong T; Ji, Mu H; Li, Hui H; Wu, Jing; Li, Kuan Y; Yang, Jian J

    2016-10-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, which is characterized by anxiety- and depression-like behaviors and cognitive impairment. However, the underlying mechanisms remain elusive. Parvalbumin (PV) interneurons that are susceptible to oxidative stress are a subset of inhibitory GABAergic neurons regulating the excitability of pyramidal neurons, while dysfunction of PV interneurons is casually linked to many mental disorders including PTSD. We therefore hypothesized that environmental enrichment (EE), a method of enhanced cognitive, sensory and motor stimulation, can reverse the behavioral impairments by normalizing PV interneurons in a rat model of PTSD induced by inescapable foot shocks (IFS). Behavioral changes were determined by the open field, elevated plus maze, fear conditioning, and Morris water maze tests. The levels of nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), NOX4, PV, glutamic acid decarboxylase 67 (GAD-67), and 8-hydroxy-2-deoxyguanosine (8-OH-dG) in the hippocampus and prefrontal cortex were determined. Our results showed that in this PTSD model, rats displayed the anxiety-like behavior, enhanced fear learning behavior, and hippocampus- dependent spatial memory deficit, which were accompanied by the up-regulation of NOX2, 8-OH-dG, and down-regulation of PV and GAD-67. Notably, EE reversed all these abnormalities. These results suggest that restoration of PV interneurons by inhibiting oxidative stress in the hippocampus and prefrontal cortex might represent a mechanism through which EE reverses the behavioral impairments in a rat model of PTSD induced by IFS. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents

    DEFF Research Database (Denmark)

    Franken, Carmen; Lambrechts, Nathalie; Govarts, Eva

    2017-01-01

    Background In Belgium, around 8.5% of the children have asthmatic symptoms. Increased asthma risk in children has been reported in relation to exposure to phthalate plasticizers but the underlying mechanisms are largely unknown. Aim The aim of this study was to identify if oxidative stress......BP) and mono-ethyl phthalate (MEP). Analysis of 8-OHdG in urine was used as a sensitive biomarker of oxidative stress at the level of DNA. The presence of doctor-diagnosed asthma was elicited by a self-administered questionnaire. Associations were assessed using multiple linear and logistic regression models...

  2. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress.

    Science.gov (United States)

    Louis, Xavier Lieben; Thandapilly, Sijo Joseph; Kalt, Wilhelmina; Vinqvist-Tymchuk, Melinda; Aloud, Basma Milad; Raj, Pema; Yu, Liping; Le, Hoa; Netticadan, Thomas

    2014-08-01

    The purpose of this study was to examine the efficacy of an aqueous wild blueberry extract and five wild blueberry polyphenol fractions on an in vitro model of heart disease. Adult rat cardiomyocytes were pretreated with extract and fractions, and then exposed to norepinephrine (NE). Cardiomyocyte hypertrophy, cell death, oxidative stress, apoptosis and cardiomyocyte contractile function as well as the activities of calpain, superoxide dismutase (SOD) and catalase (CAT) were measured in cardiomyocytes treated with and without NE and blueberry fraction (BF). Four of five blueberry fractions prevented cell death and cardiomyocyte hypertrophy induced by NE. Total phenolic fraction was used for all further analysis. The NE-induced increase in oxidative stress, nuclear condensation, calpain activity and lowering of SOD and CAT activities were prevented upon pretreatment with BF. Reduced contractile function was also significantly improved with BF pretreatment. Blueberry polyphenols prevent NE-induced adult cardiomyocyte hypertrophy and cell death. The protective effects of BF may be in part attributed to a reduction in calpain activity and oxidative stress.

  3. The Role of Oxidative Stress in Aging and Dementia

    Directory of Open Access Journals (Sweden)

    Joana Teixeira

    2014-12-01

    Full Text Available Introduction: Biologic aging is a process, and oxidative stress theory, which is one of the most accepted biological theories for aging, states that oxidative stress causes cumulative damage to mitochondrial DNA resulting in cellular senescence. Dementia is a neurodegenerative disorder whose major risk factor is aging. Although the exact neuronal lesion mechanisms underlying neurodegenerative disorders, including dementia, are not yet known, most recent studies suggest oxidative stress and mitochondrial dynamics’ role in the process.Objective: Literature review on the role of oxidative stress’ role in aging and dementia.Methods: Literature review of selected arti-cles and books deemed relevant by the authors, supplemented by Medline/Pubmed database search using combinations of the following key-words: “oxidative stress”, “de-mentia”, “aging” and “pathogenesis”, published between 1950 and 2013. References of the selected articles and books were also considered.Results: In the last five years new research has been undertaken that enlightens the relation between oxidative stress and aging. One of the considered hypotheses states that during aging, the homeostatic regulation of biogenesis, dynamics and autophagic turnover of mitochondria disturbs their functioning, resulting in cellular senescence. Consequently, the oxidative burden may reach a critical threshold above which apoptosis is triggered, leading to irreversible mitochondrial derangement and cellular death. Although the exact neuronal lesion mechanisms underlying dementias are not known, multiple studies have consistently found increased oxidative damage in brain of patients with Alzheimer disease and recent data suggests involvement of mitochondrial dynamics in dementia processes, such as in aging.Conclusions: Most recent studies suggest the role of oxidative stress and mitochondrial dynamics’ in aging and dementia, either directly or

  4. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147

  5. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.

    Science.gov (United States)

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-12-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.

  6. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms.

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Levin, Yishai; Vardi, Assaf

    2016-10-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered "ocean deserts" due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom's response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (chronic (>5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Oxidative stress in Alzheimer disease: a possibility for prevention.

    Science.gov (United States)

    Bonda, David J; Wang, Xinglong; Perry, George; Nunomura, Akihiko; Tabaton, Massimo; Zhu, Xiongwei; Smith, Mark A

    2010-01-01

    Oxidative stress is at the forefront of Alzheimer disease (AD) research. While its implications in the characteristic neurodegeneration of AD are vast, the most important aspect is that it seems increasingly apparent that oxidative stress is in fact a primary progenitor of the disease, and not merely an epiphenomenon. Moreover, evidence indicates that a long "dormant period" of gradual oxidative damage accumulation precedes and actually leads to the seemingly sudden appearance of clinical and pathological AD symptoms, including amyloid-beta deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. These findings provide important insights into the development of potential treatment regimens and even allude to the possibility of a preventative cure. In this review, we elaborate on the dynamic role of oxidative stress in AD and present corresponding treatment strategies that are currently under investigation. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Oxidative stress and maternal obesity: feto-placental unit interaction.

    Science.gov (United States)

    Malti, N; Merzouk, H; Merzouk, S A; Loukidi, B; Karaouzene, N; Malti, A; Narce, M

    2014-06-01

    To determine oxidative stress markers in maternal obesity during pregnancy and to evaluate feto-placental unit interaction, especially predictors of fetal metabolic alterations. 40 obese pregnant women (prepregnancy BMI > 30 kg/m²) were compared to 50 control pregnant women. Maternal, cord blood and placenta samples were collected at delivery. Biochemical parameters (total cholesterol and triglycerides) and oxidative stress markers (malondialdehyde, carbonyl proteins, superoxide anion expressed as reduced Nitroblue Tetrazolium, nitric oxide expressed as nitrite, reduced glutathione, catalase, superoxide dismutase) were assayed by biochemical methods. Maternal, fetal and placental triglyceride levels were increased in obese group compared to control. Maternal malondialdehyde, carbonyl proteins, nitric oxide and superoxide anion levels were high while reduced glutathione concentrations and superoxide dismutase activity were low in obesity. In the placenta and in newborns of these obese mothers, variations of redox balance were also observed indicating high oxidative stress. Maternal and placental interaction constituted a strong predictor of fetal redox variations in obese pregnancies. Maternal obesity compromised placental metabolism and antioxidant status which strongly impacted fetal redox balance. Oxidative stress may be one of the key downstream mediators that initiate programming of the offspring. Maternal obesity is associated with metabolic alterations and dysregulation of redox balance in the mother-placenta - fetus unit. These perturbations could lead to maternal and fetal complications and should be carefully considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants.

    Science.gov (United States)

    Rayner, Cassie L; Bottle, Steven E; Gole, Glen A; Ward, Micheal S; Barnett, Nigel L

    2016-01-01

    Nitroxides have been exploited as profluorescent probes for the detection of oxidative stress. In addition, they deliver potent antioxidant action and attenuate reactive oxygen species (ROS) in various models of oxidative stress, with these results ascribed to superoxide dismutase or redox and radical-scavenging actions. Our laboratory has developed a range of novel, biostable, isoindoline nitroxide-based antioxidants, DCTEIO and CTMIO. In this study we compared the efficiency of these novel compounds as antioxidant therapies in reducing ROS both in vivo (rat model) and in vitro (661W photoreceptor cells), with the established antioxidant resveratrol. By assessing changes in fluorescence intensity of a unique redox-responsive probe in the rat retina in vivo, we evaluated the ability of antioxidant therapy to (1) ameliorate ROS production and (2) reverse the accumulation of ROS after complete, acute ischemia followed by reperfusion (I/R). I/R injury induced a marked decrease in fluorescence intensity over 60 min of reperfusion, which was successfully ameliorated with each of the antioxidants. DCTEIO and CTMIO reversed the accumulation of ROS when administered intraocularly post ischemic insult, whereas, the effect of resveratrol was not significant. We also investigated our novel agents' capacity to prevent ROS-mediated metabolic dysfunction in the 661W photoreceptor cell line. Cellular stress induced by the oxidant, tert-butyl hydroperoxide, resulted in a loss of spare mitochondrial respiratory capacity (SMRC) and in the extracellular acidification rate in 661W cells. DCTEIO antioxidant administration successfully reduced the loss of SMRC. Together, these findings show we can quantify dynamic changes in cellular oxidative status in vivo and suggest that nitroxide-based antioxidants may provide greater protection against oxidative stress than the current state-of-the-art antioxidant treatments for ROS-mediated diseases. Copyright © 2015 Elsevier Ltd. All rights

  10. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    OpenAIRE

    Koylu Ahmet O; Aslan Mehmet; Bolukbas Filiz F; Bolukbas Cengiz; Horoz Mehmet; Selek Sahbettin; Erel Ozcan

    2006-01-01

    Abstract Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results T...

  11. Role of Choline-Docosahexaenoic acid and Trigonella foenum graecum Seed Extract on Ovariectomy Induced Dyslipidemia and Oxidative Stress in Rat Model

    Directory of Open Access Journals (Sweden)

    Nagamma Takkella

    2018-01-01

    Full Text Available Background: Menopause is characterized by the deficiency of ovarian hormones, mainly estrogen. The decline in estrogen hormone is contributing the cardiovascular disorders in women. Hormone replacement therapy has disadvantages especially a higher risk of breast, ovarian and endometrial cancers upon chronic use. Phytoestrogens may be used as an alternative to hormone replacement therapy. Aim and Objectives: This study was designed to scientifically evaluate the role of Choline- Docosahexaenoic Acid (DHA and Trigonella foenum graecum (TFG seed extract on Ovariectomy (OVX induced dyslipidemia and oxidative stress in rat model. Material and Methods: Female Wistar rats were allocated into four groups (n=6:1 Sham control, 2 ovariectomized, 3 ovariectomized+ choline-DHA and 4 ovariectomized + choline-DHA+TFG. After 30 days of treatment, fasting blood samples and liver tissues were collected. Serum was analyzed for lipid profile and liver homogenates were used for assessment of oxidative stress and antioxidant activity. Results: Ovariectomized rats showed significantly increased (P<0.05 Total Cholesterol (TC, Low Density Lipoprotein (LDL levels and decreased High Density Lipoprotein (HDL levels. Treating ovariectomized rats with choline-DHA and TFG seed extract significantly lowered (P<0.05 total cholesterol, LDL and markedly increased the HDL. Significantly increased (P≤0.01 Thiobarbituric Acid Reactive Substances (TBARS and reduced (P<0.05 glutathione levels were observed in OVX group. The synergetic effect of choline-DHA and fenugreek showed a significant reduction ((P≤0.01 in TBARS levels. Conclusion: These results showed that choline-DHA with TFG supplementation have a favorable effect on OVX induced hyperlipidemia and oxidative stress. Therefore, these components may be a therapeutic agent for treating the menopause induced hyperlipidemia or oxidative stress.

  12. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    Science.gov (United States)

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  13. Investigations of oxidative stress effects and their mechanisms in rat brain after systemic administration of ceria engineered nanomaterials

    Science.gov (United States)

    Hardas, Sarita S.

    (hippocampus, cortex and cerebellum) were harvested from control and ceria treated rats after various exposure periods for oxidative stress assessment. The levels of oxidative stress markers viz. protein carbonyl (PC), 3-nitrotyrosine (3NT), and protein bound 4-hydroxy-2-trans-nonenal (HNE) were evaluated for each treatment in each control and treated rat organ. Further, the levels and activities of antioxidant proteins, such as catalase, glutathione peroxidase (GPx), glutathione reductase (GR), super oxide dismutase (SOD), were measured together with levels of heat shock proteins heme oxygenase -1 and 70 (HO-1 and Hsp-70). In addition, the levels of pro-inflammatory cytokines IL-1beta, TNF-alpha, pro-caspase-3, and autophagy marker LC-3A/B were measured by Western blot technique. In agreement with the literature-proposed model of oxidative stress hierarchy mechanism of ENM-toxicity, the statistical analysis of all the results revealed that the ceria ENM-induced oxidative stress mediated biological response strongly depends on the exposure period and to some extent on the size of ceria ENM. More specifically, a single intravenous injection of ceria ENM induced tier-1 (phase-II antioxidant) response after shorter exposure periods (1 h and 20 h) in rat brain. Upon failure of tier-1 response after longer exposure periods (1 d to 30 d), escalated oxidative stress consequently induced tier-2 and tier-3 oxidative stress responses. Based on our observations made at chronic exposure period (90 d) after the single i.v. injection of ceria ENM, we could extend the model of oxidative stress hierarchy mechanisms for ceria-ENM-induced toxicity. Considering the evaluation of all the oxidative stress indices measured in 3-brain regions, oxidative stress effects were more prominent in hippocampus and the least in cerebellum, but no specific pattern or any significant difference was deduced. Keyword: Ceria, cerium oxide, nanomaterial, nanoparticles, nanotoxicity, oxidative stress, phase

  14. Implications of red Panax ginseng in oxidative stress associated chronic diseases

    Directory of Open Access Journals (Sweden)

    Yoon-Mi Lee

    2017-04-01

    Full Text Available The steaming process of Panax ginseng has been reported to increase its major known bioactive components, ginsenosides, and, therefore, its biological properties as compared to regular Panax ginseng. Biological functions of red Panax ginseng attenuating pro-oxidant environments associated with chronic diseases are of particular interest, since oxidative stress can be a key contributor to the pathogenesis of chronic diseases. Additionally, proper utilization of various biomarkers for evaluating antioxidant activities in natural products, such as ginseng, can also be important to providing validity to their activities. Thus, studies on the effects of red ginseng against various diseases as determined in cell lines, animal models, and humans were reviewed, along with applied biomarkers for verifying such effects. Limitations and future considerations of studying red ginseng were been discussed. Although further clinical studies are warranted, red ginseng appears to be beneficial for attenuating disease-associated symptoms via its antioxidant activities, as well as for preventing oxidative stress-associated chronic diseases.

  15. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  16. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis

    NARCIS (Netherlands)

    Conde de la Rosa, Laura; Vrenken, Titia E; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    The majority of chronic liver diseases are accompanied by oxidative stress, which induces apoptosis in hepatocytes and liver injury. Recent studies suggest that oxidative stress and insulin resistance are important in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the

  17. Long-term stability of oxidative stress biomarkers in human serum.

    NARCIS (Netherlands)

    Jansen, Eugène H J M; Beekhof, Piet K; Viezeliene, Dale; Muzakova, Vladimira; Skalicky, Jiri

    2017-01-01

    The storage time and storage temperature might affect stability of oxidative stress biomarkers, therefore, they have to be analyzed after long-term storage of serum samples. The stability of three biomarkers reflecting oxidative stress: reactive oxygen metabolites (ROM) for hydroperoxides, total

  18. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Jose Luis Martin-Ventura

    2017-11-01

    Full Text Available Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of the main sources of reactive oxygen species (ROS in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.

  19. Oxidative stress and dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease.

    NARCIS (Netherlands)

    Visser, J.E.; Smith, D.W.; Moy, S.S.; Breese, G.R.; Friedmann, T.; Rothstein, J.D.; Jinnah, H.A.

    2002-01-01

    Lesch-Nyhan disease, a neurogenetic disorder caused by congenital deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase, is associated with a prominent loss of striatal dopamine. The current studies address the hypothesis that oxidant stress causes damage or

  20. [Biological consequences of oxidative stress induced by pesticides].

    Science.gov (United States)

    Grosicka-Maciąg, Emilia

    2011-06-17

    Pesticides are used to protect plants and numerous plant products. They are also utilized in several industrial branches. These compounds are highly toxic to living organisms. In spite of close supervision in the use of pesticides there is a serious risk that these agents are able to spread into the environment and contaminate water, soil, food, and feedstuffs. Recently, more and more studies have been focused on understanding the toxic mechanisms of pesticide actions. The data indicate that the toxic action of pesticides may include the induction of oxidative stress and accumulation of free radicals in the cell. Long-lasting or acute oxidative stress disturbs cell metabolism and is able to produce permanent changes in the structure of proteins, lipids, and DNA. The proteins that are oxidized may lose or enhance their activity. Moreover, the proteins oxidized are able to form aggregates that inhibit the systems responsible for protein degradation and lead to alterations of proteins in the cell. Once oxidized, lipids have the capacity to damage and depolarize cytoplasmic membranes. Free oxygen radicals are harmful to DNA including damage to single nitric bases, DNA strand breaks and adduct production. Many studies indicate that oxidative stress may accelerate development of numerous diseases including cancer and neurodegenerative ones such as Alzheimer’s and Parkinson’s disease and may also be responsible for infertility.

  1. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    Science.gov (United States)

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    Science.gov (United States)

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  4. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    Science.gov (United States)

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  5. Resveratrol Prevents Cardiovascular Complications in the SHR/STZ Rat by Reductions in Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Rebecca K. Vella

    2015-01-01

    Full Text Available The cardioprotective effects of resveratrol are well established in animal models of metabolic disease but are yet to be investigated in a combined model of hypertension and diabetes. This study investigated the ability of resveratrol’s antioxidant and anti-inflammatory effects to prevent cardiovascular complications in the spontaneously hypertensive streptozotocin-induced diabetic rat. Diabetes was induced in eight-week-old male spontaneously hypertensive rats via a single intravenous injection of streptozotocin. Following this, resveratrol was administered orally for an eight-week period until the animals were sixteen weeks of age. Upon completion of the treatment regime assessments of oxidative stress, lipid peroxidation, inflammation, and cardiovascular function were made. Resveratrol administration to hypertensive-diabetic animals did not impact upon blood glucose or haemodynamics but significantly reduced oxidative stress, lipid peroxidation, and inflammatory cytokines. Reductions in systemic levels of oxidative stress and inflammation conferred improvements in vascular reactivity and left ventricular pump function and electrophysiology. This study demonstrates that resveratrol administration to hypertensive diabetic animals can elicit cardioprotective properties via antioxidant and anti-inflammatory effects. The observed preservation of cardiovascular function was independent of changes in blood glucose concentration and haemodynamics, suggesting that oxidative stress and inflammation are key components within the pathological cascade associated with hypertension and diabetes.

  6. Asymmetrical cross-talk between the endoplasmic reticulum stress and oxidative stress caused by dextrose.

    Science.gov (United States)

    Mooradian, Arshag D; Onstead-Haas, Luisa; Haas, Michael J

    2016-01-01

    Oxidative and endoplasmic reticulum (ER) stresses are implicated in premature cardiovascular disease in people with diabetes. The aim of the present study was to characterize the nature of the interplay between the oxidative and ER stresses to facilitate the development of therapeutic agents that can ameliorate these stresses. Human coronary artery endothelial cells were treated with varying concentrations of dextrose in the presence or absence of three antioxidants (alpha tocopherol, ascorbate and ebselen) and two ER stress modifiers (ERSMs) (4-phenylbutyrate and taurodeoxycholic acid). ER stress was measured using the placental alkaline phosphatase assay and superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence. The SO generation was increased with increasing concentrations of dextrose. The ER stress was increased with both low (0 and 2.75 mM) and high (13.75 and 27.5 mM) concentrations of dextrose. The antioxidants inhibited the dextrose induced SO production while in high concentrations they aggravated ER stress. The ERSM reduced ER stress and potentiated the efficacy of the three antioxidants. Tunicamycin-induced ER stress was not associated with increased SO generation. Time course experiments with a high concentration of dextrose or by overexpressing glucose transporter one in endothelial cells revealed that dextrose induced SO generation undergoes adaptive down regulation within 2 h while the ER stress is sustained throughout 72 h of observation. The nature of the cross talk between oxidative stress and ER stress induced by dextrose may explain the failure of antioxidant therapy in reducing diabetes complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    Science.gov (United States)

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  8. The Nutraceutic Silybin Counteracts Excess Lipid Accumulation and Ongoing Oxidative Stress in an In Vitro Model of Non-Alcoholic Fatty Liver Disease Progression

    Directory of Open Access Journals (Sweden)

    Giulia Vecchione

    2017-09-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a major cause of liver-related morbidity and mortality. Oxidative stress and release of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα, are major consequences of hepatic lipid overload, which can contribute to progression of NAFLD to non-alcoholic steatohepatitis (NASH. Also, mitochondria are involved in the NAFLD pathogenesis for their role in hepatic lipid metabolism. Definitive treatments for NAFLD/NASH are lacking so far. Silybin, the extract of the milk thistle seeds, has previously shown beneficial effects in NAFLD. Sequential exposure of hepatocytes to high concentrations of fatty acids (FAs and TNFα resulted in fat overload and oxidative stress, which mimic in vitro the progression of NAFLD from simple steatosis (SS to steatohepatitis (SH. The exposure to 50 µM silybin for 24 h reduced fat accumulation in the model of NAFLD progression. The in vitro progression of NAFLD from SS to SH resulted in reduced hepatocyte viability, increased apoptosis and oxidative stress, reduction in lipid droplet size, and up-regulation of IκB kinase β-interacting protein and adipose triglyceride lipase expressions. The direct action of silybin on SS or SH cells and the underlying mechanisms were assessed. Beneficial action of silybin was sustained by changes in expression/activity of peroxisome proliferator-activated receptors and enzymes for FA oxidation. Moreover, silybin counteracted the FA-induced mitochondrial damage by acting on complementary pathways: (i increased the mitochondrial size and improved the mitochondrial cristae organization; (ii stimulated mitochondrial FA oxidation; (iii reduced basal and maximal respiration and ATP production in SH cells; (iv stimulated ATP production in SS cells; and (v rescued the FA-induced apoptotic signals and oxidative stress in SH cells. We provide new insights about the direct protective effects of the nutraceutic silybin on hepatocytes

  9. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms1

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Vardi, Assaf

    2016-01-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered “ocean deserts” due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom’s response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. PMID:27503604

  10. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    Science.gov (United States)

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  11. Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review.

    Science.gov (United States)

    Molnár, Gergő A; Kun, Szilárd; Sélley, Eszter; Kertész, Melinda; Szélig, Lívia; Csontos, Csaba; Böddi, Katalin; Bogár, Lajos; Miseta, Attila; Wittmann, István

    2016-01-01

    Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2(nd) and 3(rd) days (ptyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (ptyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + orthotyrosine)/ para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases.

  12. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  13. Haptoglobin is required to prevent oxidative stress and muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Enrico Bertaggia

    Full Text Available BACKGROUND: Oxidative stress (OS plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. RESULTS: We used Hp knockout mice (Hp-/- to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD, OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. CONCLUSIONS: Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.

  14. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Science.gov (United States)

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  15. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Elena Lima-Cabello

    2016-01-01

    Full Text Available Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome.

  16. Combating oxidative stress as a hallmark of cancer and aging: Computational modeling and synthesis of phenylene diamine analogs as potential antioxidant.

    Science.gov (United States)

    Abou-Zeid, Laila; Baraka, Hany N

    2014-07-01

    The cross talk between the over expression of oxygen-free radicals is known as reactive oxygen species (ROS) that is associated with the excessive telomerase activity (TA). Telomerase activity is an invariable finding where human telomerase (hTERT) has been implicated in tumor oxidative stress and redox-mediated malignancy. The hTERT over expression is a novel tumor marker and is promising as a novel class of therapeutic weapons to fight against cancer. A new series of phenylene diamines were designed, synthesized, and evaluated for their in vitro antioxidant as an indicator of inhibiting the oxidative stress tumor. Compounds 3b and 7b proved to be the most active antioxidants with high percentage ABTS inhibition ranged from 89.40% to 88.59% respectively. Molecular modeling studies indicated that the crest configuration of phenylene diamine nucleus with substitutions of trimethoxy benzamido functional proved to be crucial for enhancing the free radical scavenging activity. Molecular modeling exploration indicated the proper binding selectivity of the 3b and 7b to the 3KYL pocket with promising hTERT inhibitors as a hallmark of cancer.

  17. Protective Effect of Wheat Peptides against Indomethacin-Induced Oxidative Stress in IEC-6 Cells

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  18. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis.

    Science.gov (United States)

    Bian, Meng; Xu, Qingxia; Xu, Yanquan; Li, Shan; Wang, Xiaoyun; Sheng, Jiahe; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-01-01

    Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.

  19. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease

    Science.gov (United States)

    Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; Reyes-Hernández, Cynthia G.; López de Pablo, Angel L.; González, M. Carmen; Arribas, Silvia M.

    2018-01-01

    Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria. PMID:29875698

  20. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases

    Directory of Open Access Journals (Sweden)

    Jaya Kumar

    2017-09-01

    Full Text Available Oxidative stress occurs in diabetes, various cancers, liver diseases, stroke, rheumatoid arthritis, chronic inflammation, and other degenerative diseases related to the nervous system. The free radicals have deleterious effect on various organs of the body. This is due to lipid peroxidation and irreversible protein modification that leads to cellular apoptosis or programmed cell death. During recent years, there is a rise in the oral diseases related to oxidative stress. Oxidative stress in oral disease is related to other systemic diseases in the body such as periodontitis, cardiovascular, pancreatic, gastric, and liver diseases. In the present review, we discuss the various pathways that mediate oxidative cellular damage. Numerous pathways mediate oxidative cellular damage and these include caspase pathway, PERK/NRF2 pathway, NADPH oxidase 4 pathways and JNK/mitogen-activated protein (MAP kinase pathway. We also discuss the role of inflammatory markers, lipid peroxidation, and role of oxygen species linked to oxidative stress. Knowledge of different pathways, role of inflammatory markers, and importance of low-density lipoprotein, fibrinogen, creatinine, nitric oxide, nitrates, and highly sensitive C-reactive proteins may be helpful in understanding the pathogenesis and plan better treatment for oral diseases which involve oxidative stress.

  1. How does the macula protect itself from oxidative stress?

    Science.gov (United States)

    Handa, James T

    2012-08-01

    Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Oxidative stress measured in vivo without an exogenous contrast agent using QUEST MRI

    Science.gov (United States)

    Berkowitz, Bruce A.

    2018-06-01

    Decades of experimental studies have implicated excessive generation of reactive oxygen species (ROS) in the decline of tissue function during normal aging, and as a pathogenic factor in a vast array of fatal or debilitating morbidities. This massive body of work has important clinical implications since many antioxidants are FDA approved, readily cross blood-tissue barriers, and are effective at improving disease outcomes. Yet, the potential benefits of antioxidants have remained largely unrealized in patients because conventional methods cannot determine the dose, timing, and drug combinations to be used in clinical trials to localize and decrease oxidative stress. To address this major problem and improve translational success, new methods are urgently needed that non-invasively measure the same ROS biomarker both in animal models and patients with high spatial resolution. Here, we summarize a transformative solution based on a novel method: QUEnch-assiSTed MRI (QUEST MRI). The QUEST MRI index is a significant antioxidant-induced improvement in pathophysiology, or a reduction in 1/T1 (i.e., R1). The latter form of QUEST MRI provides a unique measure of uncontrolled production of endogenous, paramagnetic reactive oxygen species (ROS). QUEST MRI results to-date have been validated by gold standard oxidative stress assays. QUEST MRI has high translational potential because it does not use an exogenous contrast agent and requires only standard MRI equipment. Summarizing, QUEST MRI is a powerful non-invasive approach with unprecedented potential for (i) bridging antioxidant treatment in animal models and patients, (ii) identifying tissue subregions exhibiting oxidative stress, and (iii) coupling oxidative stress localization with behavioral dysfunction, disease pathology, and genetic vulnerabilities to serve as a marker of susceptibility.

  3. Zearalenone altered the cytoskeletal structure via ER stress- autophagy- oxidative stress pathway in mouse TM4 Sertoli cells.

    Science.gov (United States)

    Zheng, Wanglong; Wang, Bingjie; Si, Mengxue; Zou, Hui; Song, Ruilong; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Zhu, Guoqiang; Bai, Jianfa; Bian, Jianchun; Liu, ZongPing

    2018-02-20

    The aim of this study was to investigate the molecular mechanisms of the destruction of cytoskeletal structure by Zearalenone (ZEA) in mouse-derived TM4 cells. In order to investigate the role of autophagy, oxidative stress and endoplasmic reticulum(ER) stress in the process of destruction of cytoskeletal structure, the effects of ZEA on the cell viability, cytoskeletal structure, autophagy, oxidative stress, ER stress, MAPK and PI3K- AKT- mTOR signaling pathways were studied. The data demonstrated that ZEA damaged the cytoskeletal structure through the induction of autophagy that leads to the alteration of cytoskeletal structure via elevated oxidative stress. Our results further showed that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in TM4 cells. In addition, ZEA also induced the ER stress which was involved in the induction of the autophagy through inhibiting the ERK signal pathway to suppress the phosphorylation of mTOR. ER stress was involved in the damage of cytoskeletal structure through induction of autophagy by producing ROS. Taken together, this study revealed that ZEA altered the cytoskeletal structure via oxidative stress - autophagy- ER stress pathway in mouse TM4 Sertoli cells.

  4. Oxidative stress status in elite athletes engaged in different sport disciplines.

    Science.gov (United States)

    Hadžović-Džuvo, Almira; Valjevac, Amina; Lepara, Orhan; Pjanić, Samra; Hadžimuratović, Adnan; Mekić, Amel

    2014-05-01

    Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players): 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP) and malondialdehyde (MDA), as markers of oxidative stress and the total antioxidative capacity (ImAnOX) using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively). Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L), wrestlers (342.5 ± 36.2 μmol/L) and basketball players (347.95 ± 31.3 μmol/L). Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL) compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003). In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball) have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  5. Oxidative stress status in elite athletes engaged in different sport disciplines

    Directory of Open Access Journals (Sweden)

    Almira Hadžović - Džuvo

    2014-05-01

    Full Text Available Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players: 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP and malondialdehyde (MDA, as markers of oxidative stress and the total antioxidative capacity (ImAnOX using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively. Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L, wrestlers (342.5 ± 36.2 μmol/L and basketball players (347.95 ± 31.3 μmol/L. Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003. In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  6. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress.

    Science.gov (United States)

    Gao, Mingjing; Zhao, Zhen; Lv, Pengyu; Li, YuFang; Gao, Juntao; Zhang, Michael; Zhao, Baolu

    2015-12-01

    Insulin resistance and abdominal obesity are present in the majority of people with the metabolic syndrome. Antioxidant therapy might be a useful strategy for type 2 diabetes and other insulin-resistant states. The combination of vitamin C (Vc) and vitamin E has synthetic scavenging effect on free radicals and inhibition effect on lipid peroxidation. However, there are few studies about how to define the best combination of more than three anti-oxidants as it is difficult or impossible to test the anti-oxidant effect of the combination of every concentration of each ingredient experimentally. Here we present a math model, which is based on the classical Hill equation to determine the best combination, called Fixed Dose Combination (FDC), of several natural anti-oxidants, including Vc, green tea polyphenols (GTP) and grape seed extract proanthocyanidin (GSEP). Then we investigated the effects of FDC on oxidative stress, blood glucose and serum lipid levels in cultured 3T3-L1 adipocytes, high fat diet (HFD)-fed rats which serve as obesity model, and KK-ay mice as diabetic model. The level of serum malondialdehyde (MDA) in the treated rats was studied and Hematoxylin-Eosin (HE) staining or Oil red slices of liver and adipose tissue in the rats were examined as well. FDC shows excellent antioxidant and anti-glycation activity by attenuating lipid peroxidation. FDC determined in this investigation can become a potential solution to reduce obesity, to improve insulin sensitivity and be beneficial for the treatment of fat and diabetic patients. It is the first time to use the math model to determine the best ratio of three anti-oxidants, which can save much more time and chemical materials than traditional experimental method. This quantitative method represents a potentially new and useful strategy to screen all possible combinations of many natural anti-oxidants, therefore may help develop novel therapeutics with the potential to ameliorate the worldwide metabolic

  7. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  8. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    of these proteins by MALDI tandem mass spectrometry (MALDI MS/MS). As a result we obtained 24 different proteins which can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  9. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  10. White tea (Camellia sinensis extract reduces oxidative stress and triacylglycerols in obese mice

    Directory of Open Access Journals (Sweden)

    Lílian Gonçalves Teixeira

    2012-12-01

    Full Text Available White tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. Although its levels of catechins are higher than those of green tea (derived from the same plant, there are no studies addressing the relationship between this tea and obesity associated with oxidative stress.The objective of this study was to evaluate the effect of white tea on obesity and its complications using a diet induced obesity model. Forty male C57BL/6 mice were fed a high-fat diet to induce obesity (Obese group or the same diet supplemented with 0.5% white tea extract (Obese + WTE for 8 weeks. Adipose tissue, serum lipid profile, and oxidative stress were studied. White tea supplementation was not able to reduce food intake, body weight, or visceral adiposity. Similarly, there were no changes in cholesterol rich lipoprotein profile between the groups. A reduction in blood triacylglycerols associated with increased cecal lipids was observed in the group fed the diet supplemented with white tea. White tea supplementation also reduced oxidative stress in liver and adipose tissue. In conclusion, white tea extract supplementation (0.5% does not influence body weight or adiposity in obese mice. Its benefits are restricted to the reduction in oxidative stress associated with obesity and improvement of hypertriacylglycerolemia.

  11. Role of oxidative stress in female reproduction

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh K

    2005-07-01

    Full Text Available Abstract In a healthy body, ROS (reactive oxygen species and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause. OS results from an imbalance between prooxidants (free radical species and the body's scavenging ability (antioxidants. ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal

  12. Effects of previous physical exercise to chronic stress on long-term aversive memory and oxidative stress in amygdala and hippocampus of rats.

    Science.gov (United States)

    Dos Santos, Tiago Marcon; Kolling, Janaína; Siebert, Cassiana; Biasibetti, Helena; Bertó, Carolina Gessinger; Grun, Lucas Kich; Dalmaz, Carla; Barbé-Tuana, Florencia María; Wyse, Angela T S

    2017-02-01

    Since stressful situations are considered risk factors for the development of depression and there are few studies evaluating prevention therapies for this disease, in the present study we evaluated the effect of previous physical exercise in animals subjected to chronic variable stress (CVS), an animal model of depression, on behavior tasks. We also investigated some parameters of oxidative stress and Na + , K + -ATPase activity, immunocontent and gene expression of alpha subunits in amygdala and hippocampus of rats. Young male rats were randomized into four study groups (control, exercised, stressed, exercised+stressed). The animals were subjected to controlled exercise treadmill for 20min,three times a week, for two months prior to submission to the CVS (40days). Results show that CVS impaired performance in inhibitory avoidance at 24h and 7days after training session. CVS induced oxidative stress, increasing reactive species, lipoperoxidation and protein damage, and decreasing the activity of antioxidant enzymes. The activity of Na + , K + -ATPase was decreased, but the immunocontents and gene expression of catalytic subunits were not altered. The previous physical exercise was able to improve performance in inhibitory avoidance at 24h after training; additionally, exercise prevented oxidative damage, but was unable to reverse completely the changes observed on the enzymatic activities. Our findings suggest that physical exercise during the developmental period may protect against aversive memory impairment and brain oxidative damage caused by chronic stress exposure later in life. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Cardiovascular disease-related parameters and oxidative stress in SHROB rats, a model for metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Eunice Molinar-Toribio

    Full Text Available SHROB rats have been suggested as a model for metabolic syndrome (MetS as a situation prior to the onset of CVD or type-2 diabetes, but information on descriptive biochemical parameters for this model is limited. Here, we extensively evaluate parameters related to CVD and oxidative stress (OS in SHROB rats. SHROB rats were monitored for 15 weeks and compared to a control group of Wistar rats. Body weight was recorded weekly. At the end of the study, parameters related to CVD and OS were evaluated in plasma, urine and different organs. SHROB rats presented statistically significant differences from Wistar rats in CVD risk factors: total cholesterol, LDL-cholesterol, triglycerides, apoA1, apoB100, abdominal fat, insulin, blood pressure, C-reactive protein, ICAM-1 and PAI-1. In adipose tissue, liver and brain, the endogenous antioxidant systems were activated, yet there was no significant oxidative damage to lipids (MDA or proteins (carbonylation. We conclude that SHROB rats present significant alterations in parameters related to inflammation, endothelial dysfunction, thrombotic activity, insulin resistance and OS measured in plasma as well as enhanced redox defence systems in vital organs that will be useful as markers of MetS and CVD for nutrition interventions.

  14. Oxidative stress and CCN1 protein in human skin connective tissue aging

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    2016-06-01

    Full Text Available Reactive oxygen species (ROS is an important pathogenic factor involved in human aging. Human skin is a primary target of oxidative stress from ROS generated from both extrinsic and intrinsic sources, like ultraviolet irradiation (UV and endogenous oxidative metabolism. Oxidative stress causes the alterations of collagen-rich extracellular matrix (ECM, the hallmark of skin connective tissue aging. Age-related alteration of dermal collagenous ECM impairs skin structural integrity and creates a tissue microenvironment that promotes age-related skin diseases, such as poor wound healing and skin cancer. Here, we review recent advances in our understanding of oxidative stress and CCN1 protein (first member of CCN family proteins, a critical mediator of oxidative stress-induced skin connective tissue aging.

  15. Oxidative stress in resuscitation and in ventilation of newborns.

    Science.gov (United States)

    Gitto, E; Pellegrino, S; D'Arrigo, S; Barberi, I; Reiter, R J

    2009-12-01

    The lungs of newborns are especially prone to oxidative damage induced by both reactive oxygen and reactive nitrogen species. Yet, these infants are often 1) exposed to high oxygen concentrations, 2) have infections or inflammation, 3) have reduced antioxidant defense, and 4) have high free iron levels which enhance toxic radical generation. Oxidative stress has been postulated to be implicated in several newborn conditions with the phrase "oxygen radical diseases of neonatology" having been coined. There is, however, reason to believe that oxidative stress is increased more when resuscitation is performed with pure oxygen compared with ambient air and that the most effective ventilatory strategy is the avoidance of mechanical ventilation with the use of nasopharyngeal continuous positive airway pressure whenever possible. Multiple ventilation strategies have been attempted to reduce injury and improve outcomes in newborn infants. In this review, the authors summarise the scientific evidence concerning oxidative stress as it relates to resuscitation in the delivery room and to the various modalities of ventilation.

  16. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    OpenAIRE

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the ...

  17. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs.

    Science.gov (United States)

    Hou, Gang; Lu, Huading; Chen, Mingjuan; Yao, Hui; Zhao, Huiqing

    2014-01-01

    Aging is a major factor associated with lumber intervertebral disc degeneration, and oxidative stress is known to play an essential role in the pathogenesis of many age-related diseases. In this study, we investigated oxidative stress in intervertebral discs of Wistar rats in three different age groups: youth, adult, and geriatric. Age-related intervertebral disc changes were examined by histological analysis. In addition, oxidative stress was evaluated by assessing nitric oxide (NO), superoxide dismutase (SOD), malondialdehyde (MDA), and advanced oxidation protein products (AOPPs). Intervertebral disc, but not serum, NO concentrations significantly differed between the three groups. Serum and intervertebral disc SOD activity gradually decreased with age. Furthermore, both serum and intervertebral disc MDA and AOPP levels gradually increased with age. Our studies suggest that oxidative stress is associated with age-related intervertebral disc changes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Oxidative stress in normal hematopoietic stem cells and leukemia.

    Science.gov (United States)

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  19. RAGE polymorphisms and oxidative stress levels in Hashimoto's thyroiditis.

    Science.gov (United States)

    Giannakou, Maria; Saltiki, Katerina; Mantzou, Emily; Loukari, Eleni; Philippou, Georgios; Terzidis, Konstantinos; Lili, Kiriaki; Stavrianos, Charalampos; Kyprianou, Miltiades; Alevizaki, Maria

    2017-05-01

    Polymorphisms of the receptor for advanced glycation end products (RAGE) gene have been studied in various autoimmune disorders, but not in Hashimoto's thyroiditis. Also, increased oxidative stress has been described in patients with Hashimoto's thyroiditis. The aim of this study was to investigate the possible role of two common RAGE polymorphisms (-429T>C, -374T>A) in Hashimoto's thyroiditis; in parallel, we studied oxidative stress levels. A total of 300 consecutive euthyroid women were examined and classified into three groups: Hashimoto's thyroiditis with treatment (n = 96), Hashimoto's thyroiditis without treatment (n = 109) and controls (n = 95). For a rough evaluation of oxidative stress, total lipid peroxide levels in serum were measured. The -429T>C AluI and -374T>A MfeI polymorphisms of RAGE were studied in genomic DNA. Significant association of the RAGE system with Hashimoto's thyroiditis was found only with regard to the prevalence of the -429T>C, but not with -374T>A polymorphism. The levels of oxidative stress were significantly elevated in Hashimoto's thyroiditis patients under treatment. Further analysis demonstrated that an oxidative stress cut-off value of 590 μmol/L is associated with an increased risk of progression of Hashimoto's thyroiditis from euthyroidism to hypothyroidism; this risk is further increased in carriers of the RAGE -429T>C polymorphism. Our findings indicate that both examined risk factors may be implicated in the occurrence of Hashimoto's thyroiditis, but this covers only a fraction of the pathophysiology of the disease. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  20. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  1. Oxidative stress, thyroid dysfunction & Down syndrome

    Directory of Open Access Journals (Sweden)

    Carlos Campos

    2015-01-01

    Full Text Available Down syndrome (DS is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1 is coded on chromosome 21 and it is overexpressed (~50% resulting in an increase of reactive oxygen species (ROS due to overproduction of hydrogen peroxide (H 2 O 2 . ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS.

  2. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Aparna Areti

    2014-01-01

    Full Text Available Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.

  3. An update on oxidative stress-mediated organ pathophysiology.

    Science.gov (United States)

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Oxidative Stress as an Important Factor in the Pathophysiology of alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Tanise Gemelli,

    2013-06-01

    Full Text Available Oxidative stress has been associated to play a crucial role in the pathogenesis of many diseases, including neurodegenerative diseases. Alzheimer's disease is an age-related neurodegenerative disorder, which is recognized as the most common form of dementia. In this article, the aim was to review the involvement of oxidative stress on Alzheimer's disease. Alzheimer's disease is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid-? peptide and loss of synapses. Moreover, the brain and the nervous system are more prone to oxidative stress and oxidative damage influences the neurodegenerative diseases. However, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in proteins constitute complex intertwined pathologies that lead to neuronal cell death. Mitochondrial mutations on deoxyribonucleic acid and oxidative stress contribute to aging, affecting different cell signaling systems, as well as the connectivity and neuronal cell death may lead to the largest risk factor for neurodegenerative diseases such as Alzheimer's Disease.

  5. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  6. Metabolic and oxidative stress markers in Wistar rats after 2?months on a high-fat diet

    OpenAIRE

    Auberval, Nathalie; Dal, St?phanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Val?rie; Sigrist, S?verine

    2014-01-01

    Background Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Materials and methods Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared ...

  7. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    Science.gov (United States)

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  8. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Jessica R. Terrill

    2016-10-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl. There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys.

  9. Ageing-Associated Oxidative Stress and Inflammation Are Alleviated by Products from Grapes

    Directory of Open Access Journals (Sweden)

    K. S. Petersen

    2016-01-01

    Full Text Available Advanced age is associated with increased incidence of a variety of chronic disease states which share oxidative stress and inflammation as causative role players. Furthermore, data point to a role for both cumulative oxidative stress and low grade inflammation in the normal ageing process, independently of disease. Therefore, arguably the best route with which to address premature ageing, as well as age-associated diseases such as diabetes, cardiovascular disease, and dementia, is preventative medicine aimed at modulation of these two responses, which are intricately interlinked. In this review, we provide a detailed account of the literature on the communication of these systems in the context of ageing, but with inclusion of relevant data obtained in other models. In doing so, we attempted to more clearly elucidate or identify the most probable cellular or molecular targets for preventative intervention. In addition, given the absence of a clear pharmaceutical solution in this context, together with the ever-increasing consumer bias for natural medicine, we provide an overview of the literature on grape (Vitis vinifera derived products, for which beneficial effects are consistently reported in the context of both oxidative stress and inflammation.

  10. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    Science.gov (United States)

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Making Sense of Oxidative Stress in Obstructive Sleep Apnea: Mediator or Distracter in Brain Injury?

    Directory of Open Access Journals (Sweden)

    Jing eZhang

    2012-12-01

    Full Text Available Obstructive sleep apnea is increasingly recognized as an important contributor to cognitive impairment, metabolic derangements and cardiovascular disease and mortality. Identifying the mechanisms by which this prevalent disorder influences health outcomes is now of utmost importance. As the prevalence of this disorder steadily increases, therapies are needed to prevent or reverse sleep apnea morbidities now more than ever before. Oxidative stress is implicated in cardiovascular morbidities of sleep apnea. What role oxidative stress plays in neural injury and cognitive impairments has been difficult to understand without readily accessible tissue to biopsy in persons with and without sleep apnea. An improved understanding of the role oxidative stress plays in neural injury in sleep apnea may be developed by integrating information gained examining neural tissue in animal models of sleep apnea with key features of redox biochemistry and clinical sleep apnea studies where extra-neuronal oxidative stress characterizations have been performed. Collectively, this information sets the stage for developing and testing novel therapeutic approaches to treat and prevent, not only central nervous system injury and dysfunction in sleep apnea, but also the cardiovascular and potentially metabolic conditions associated with this prevalent, disabling disorder.

  12. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Kim, You Jung; Kim, Young Ae; Yokozawa, Takako

    2010-01-01

    Gravinol, a proanthocyanidin from grape seeds, has polyphenolic properties with powerful anti-oxidative effects. Although, increasing evidence strongly suggests that polyphenolic antioxidants suppress diabetic nephropathy that is causally associated with oxidative stress and inflammation, gravinol's protective action against diabetic nephropathy has not been fully explored to date. In the current study, we investigated the protective action of gravinol against oxidative stress and inflammation using the experimental diabetic nephropathy cell model, high glucose-exposed renal tubular epithelial cells. To elucidate the underlying actions of gravinol, several oxidative and inflammatory markers were estimated. Included are measurements of lipid peroxidation, total reactive species (RS), superoxide (·O 2 ), nitric oxide (NO·), and peroxynitrite (ONOO - ), as well as nuclear factor-kappa B (NF-κB) nuclear translocation. Results indicate that gravinol had a potent inhibitory action against lipid peroxidation, total RS, ·O 2 , NO·, ONOO - , the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and more importantly, against NF-κB nuclear translocation. We propose that gravinol's strong protective effect against high glucose-induced renal tubular epithelial cell damage attenuates diabetic nephropathy by suppressing oxidative stress and inflammation.

  13. Evaluation of oxidative stress in D-serine induced nephrotoxicity

    International Nuclear Information System (INIS)

    Orozco-Ibarra, Marisol; Medina-Campos, Omar Noel; Sanchez-Gonzalez, Dolores Javier; Martinez-Martinez, Claudia Maria; Floriano-Sanchez, Esau; Santamaria, Abel; Ramirez, Victoria; Bobadilla, Norma A.; Pedraza-Chaverri, Jose

    2007-01-01

    It has been suggested that oxidative stress is involved in D-serine-induced nephrotoxicity. The purpose of this study was to assess if oxidative stress is involved in this experimental model using several approaches including (a) the determination of several markers of oxidative stress and the activity of some antioxidant enzymes in kidney and (b) the use of compounds with antioxidant or prooxidant effects. Rats were sacrificed at several periods of time (from 3 to 24 h) after a single i.p. injection of D-serine (400 mg/kg). Control rats were injected with L-serine (400 mg/kg) and sacrificed 24 h after. The following markers were used to assess the temporal aspects of renal damage: (a) urea nitrogen (BUN) and creatinine in blood serum, (b) kidney injury molecule (KIM-1) mRNA levels, and (c) tubular necrotic damage. In addition, creatinine clearance, proteinuria, and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) were measured 24 h after D-serine injection. Protein carbonyl content, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), fluorescent products of lipid peroxidation, reactive oxygen species (ROS), glutathione (GSH) content, and heme oxygenase-1 (HO-1) expression were measured as markers of oxidative stress in the kidney. Additional experiments were performed using the following compounds with antioxidant or pro-oxidant effects before D-serine injection: (a) α-phenyl-tert-butyl-nitrone (PBN), a spin trapping agent; (b) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) (FeTPPS), a soluble complex able to metabolize peroxynitrite; (c) aminotriazole (ATZ), a catalase (CAT) inhibitor; (d) stannous chloride (SnCl 2 ), an HO-1 inductor; (e) tin mesoporphyrin (SnMP), an HO inhibitor. In the time-course study, serum creatinine and BUN increased significantly on 15-24 and 20-24 h, respectively, and KIM-1 mRNA levels increased significantly on 6-24 h. Histological analyses revealed tubular necrosis at 12 h. The activity of antioxidant enzymes

  14. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

    Science.gov (United States)

    Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo

    2016-02-01

    In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide

  15. Stress effects in cylindrical tubes of austenitic and ferritic/martensitic steels with oxide scales. Materials selection for a HPLWR

    International Nuclear Information System (INIS)

    Steiner, H.

    2002-11-01

    In the frame of the studies for a high performance concept of a light water reactor (LWR) different materials for the cladding are investigated, among them are austenitic and ferritic/martensitic (f/m) steels of different Cr content. Due to the envisaged very extended life times of the fuel elements in the reactor, corrosion problems may arise. Thus, cracking and/or spalling effects in oxide scales on metallic components may play an important role in the corrosion process as they lead, in general, to a drastic enhancement in the oxidation rates. Analytical models for different fundamental stress problems in the compound oxide scale/metallic substrate have been developed and implemented in the computer code OXSPA. These models concern the growth stresses in the cylindrical tubes, the stresses due to temperature changes and radial temperature gradients and the stresses due to inside and outside pressures. (orig.)

  16. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  17. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  18. Phototherapy with blue and green mixed-light is as effective against unconjugated jaundice as blue light and reduces oxidative stress in the Gunn rat model.

    Science.gov (United States)

    Uchida, Yumiko; Morimoto, Yukihiro; Uchiike, Takao; Kamamoto, Tomoyuki; Hayashi, Tamaki; Arai, Ikuyo; Nishikubo, Toshiya; Takahashi, Yukihiro

    2015-07-01

    Phototherapy using blue light-emitting diodes (LED) is effective against neonatal jaundice. However, green light phototherapy also reduces unconjugated jaundice. We aimed to determine whether mixed blue and green light can relieve jaundice with minimal oxidative stress as effectively as either blue or green light alone in a rat model. Gunn rats were exposed to phototherapy with blue (420-520 nm), filtered blue (FB; 440-520 nm without 1.00), respectively. Blue plus green phototherapy is as effective as blue phototherapy and it attenuates irradiation-induced oxidative stress. Combined blue and green spectra might be effective against neonatal hyperbilirubinemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Oxidative stress and plasma lipoproteins in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Fernanda Maria Machado; Santos, Emanuelly Barbosa; Reis, Germana Elias [Universidade Estadual do Ceará, Fortaleza, CE (Brazil)

    2014-07-01

    To evaluate the relation between oxidative stress and lipid profile in patients with different types of cancer. This was an observational cross-sectional. A total of 58 subjects were evaluated, 33 males, divided into two groups of 29 patients each: Group 1, patients with cancer of the digestive tract and accessory organs; Group 2 patients with other types of cancers, all admitted to a public hospital. The plasma levels (lipoproteins and total cholesterol, HDL, and triglycerides, for example) were analyzed by enzymatic kits, and oxidative stress based on thiobarbituric acid-reactive substances, by assessing the formation of malondialdehyde. In general the levels of malondialdehyde of patients were high (5.00μM) as compared to 3.31μM for healthy individuals. The median values of lipids exhibited normal triacylglycerol (138.78±89.88mg/dL), desirable total cholesterol values (163.04±172.38mg/dL), borderline high LDL (151.30±178.25mg/dL) and low HDL (31.70±22.74mg/dL). Median HDL levels in Group 1 were lower (31.32mg/dL) than the cancer patients in Group 2 (43.67mg/dL) (p=0.038). Group 1 also showed higher levels of oxidative stress (p=0.027). The lipid profile of patients with cancer was not favorable, which seems to have contributed to higher lipid peroxidation rate, generating a significant oxidative stress.

  20. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Elżbieta Miller

    2014-01-01

    Full Text Available Accumulating data shows that oxidative stress plays a crucial role in neurodegenerative disorders. The literature data indicate that in vivo or postmortem cerebrospinal fluid and brain tissue levels of F2-isoprostanes (F2-IsoPs especially F4-neuroprotanes (F4-NPs are significantly increased in some neurodegenerative diseases: multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease. Central nervous system is the most metabolically active organ of the body characterized by high requirement for oxygen and relatively low antioxidative activity, what makes neurons and glia highly susceptible to destruction by reactive oxygen/nitrogen species and neurodegeneration. The discovery of F2-IsoPs and F4-NPs as markers of lipid peroxidation caused by the free radicals has opened up new areas of investigation regarding the role of oxidative stress in the pathogenesis of human neurodegenerative diseases. This review focuses on the relationship between F2-IsoPs and F4-NPs as biomarkers of oxidative stress and neurodegenerative diseases. We summarize the knowledge of these novel biomarkers of oxidative stress and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases.

  1. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis.

    Science.gov (United States)

    Richier, Sophie; Sabourault, Cécile; Courtiade, Juliette; Zucchini, Nathalie; Allemand, Denis; Furla, Paola

    2006-09-01

    Symbiosis between cnidarian and photosynthetic protists is widely distributed over temperate and tropical seas. These symbioses can periodically breakdown, a phenomenon known as cnidarian bleaching. This event can be irreversible for some associations subjected to acute and/or prolonged environmental disturbances, and leads to the death of the animal host. During bleaching, oxidative stress has been described previously as acting at molecular level and apoptosis is suggested to be one of the mechanisms involved. We focused our study on the role of apoptosis in bleaching via oxidative stress in the association between the sea anemone Anemonia viridis and the dinoflagellates Symbiodinium species. Characterization of caspase-like enzymes were conducted at the biochemical and molecular level to confirm the presence of a caspase-dependent apoptotic phenomenon in the cnidarian host. We provide evidence of oxidative stress followed by induction of caspase-like activity in animal host cells after an elevated temperature stress, suggesting the concomitant action of these components in bleaching.

  2. The Role of Oxidative Stress in Diabetes Mellitus: A 24-year Review ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus is a widespread and devastating disease. Diabetes is associated with several mechanisms of tissue damage, one of which is oxidative stress. Oxidative stress and oxidative damage to tissues are common end points to chronic diseases such as atherosclerosis, diabetes and cardiovascular ...

  3. No effect of creatine supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Alves Christiano RR

    2012-04-01

    Full Text Available Abstract Background Exacerbated oxidative stress is thought to be a mediator of arterial hypertension. It has been postulated that creatine (Cr could act as an antioxidant agent preventing increased oxidative stress. The aim of this study was to investigate the effects of nine weeks of Cr or placebo supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats (SHR. Findings Lipid hydroperoxidation, one important oxidative stress marker, remained unchanged in the coronary artery (Cr: 12.6 ± 1.5 vs. Pl: 12.2 ± 1.7 nmol·mg-1; p = 0.87, heart (Cr: 11.5 ± 1.8 vs. Pl: 14.6 ± 1.1 nmol·mg-1; p = 0.15, plasma (Cr: 67.7 ± 9.1 vs. Pl: 56.0 ± 3.2 nmol·mg-1; p = 0.19, plantaris (Cr: 10.0 ± 0.8 vs. Pl: 9.0 ± 0.8 nmol·mg-1; p = 0.40, and EDL muscle (Cr: 14.9 ± 1.4 vs. Pl: 17.2 ± 1.5 nmol·mg-1; p = 0.30. Additionally, Cr supplementation affected neither arterial blood pressure nor heart structure in SHR (p > 0.05. Conclusions Using a well-known experimental model of systemic arterial hypertension, this study did not confirm the possible therapeutic effects of Cr supplementation on oxidative stress and cardiovascular dysfunction associated with arterial hypertension.

  4. The Impact of Rapid Weight Loss on Oxidative Stress Markers and the Expression of the Metabolic Syndrome in Obese Individuals

    Directory of Open Access Journals (Sweden)

    Eva Tumova

    2013-01-01

    Full Text Available Objective. Obesity is linked with a state of increased oxidative stress, which plays an important role in the etiology of atherosclerosis and type 2 diabetes mellitus. The aim of our study was to evaluate the effect of rapid weight loss on oxidative stress markers in obese individuals with metabolic syndrome (MetS. Design and Methods. We measured oxidative stress markers in 40 obese subjects with metabolic syndrome (MetS+, 40 obese subjects without metabolic syndrome (MetS−, and 20 lean controls (LC at baseline and after three months of very low caloric diet. Results. Oxidized low density lipoprotein (ox-LDL levels decreased by 12% in MetS+ subjects, associated with a reduction in total cholesterol (TC, even after adjustment for age and sex. Lipoprotein associated phospholipase A2 (Lp-PLA2 activity decreased by 4.7% in MetS+ subjects, associated with a drop in LDL-cholesterol (LDL-C, TC, and insulin levels. Multivariate logistic regression analysis showed that a model including ox-LDL, LpPLA2 activity, and myeloperoxidase (MPO improved prediction of MetS status among obese individuals compared to each oxidative stress marker alone. Conclusions. Oxidative stress markers were predictive of MetS in obese subjects, suggesting a higher oxidative stress. Rapid weight loss resulted in a decline in oxidative stress markers, especially in MetS+ patients.

  5. Nitric oxide in the stress axis.

    Science.gov (United States)

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  6. Coenzyme Q10 supplementation and exercise-induced oxidative stress in humans

    DEFF Research Database (Denmark)

    Östman, Bengt; Sjödin, Anders Mikael; Michaëlsson, Karl

    2012-01-01

    Objective: The theoretically beneficial effects of coenzyme Q10 (Q10) on exercise-related oxidative stress and physical capacity have not been confirmed to our knowledge by interventional supplementation studies. Our aim was to investigate further whether Q10 supplementation at a dose recommended...... the groups were detected for hypoxanthine or uric acid (serum markers of oxidative stress) or creatine kinase (a marker of skeletal muscle damage). Conclusion: Although in theory Q10 could be beneficial for exercise capacity and in decreasing oxidative stress, the present study could not demonstrate...

  7. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum group II CF-1

    Directory of Open Access Journals (Sweden)

    Gloria Paz Levicán

    2016-05-01

    Full Text Available Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species. Cobalamin (vitamin B12 is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular reactive oxygen species and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  8. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson's disease model.

    Science.gov (United States)

    Sharma, Shrestha; Narang, Jasjeet K; Ali, Javed; Baboota, Sanjula

    2016-09-16

    Oxidative stress is the leading cause in the pathogenesis of Parkinson's disease. Rutin is a naturally occurring strong antioxidant molecule with wide therapeutic applications. It suffers from the problem of low oral bioavailability which is due to its poor aqueous solubility. In order to increase the solubility self-nanoemulsifying drug delivery systems (SNEDDS) of rutin were prepared. The oil, surfactant and co-surfactant were selected based on solubility/miscibility studies. Optimization was done by a three-factor, four-level (34) Box-Behnken design. The independent factors were oil, surfactant and co-surfactant concentration and the dependent variables were globule size, self-emulsification time, % transmittance and cumulative percentage of drug release. The optimized SNEDDS formulation (RSE6) was evaluated for various release studies. Antioxidant activity was assessed by various in vitro tests such as 2,2-diphenyl-1-picrylhydrazyl and reducing power assay. Oxidative stress models which had Parkinson's-type symptoms were used to determine the antioxidant potential of rutin SNEDDS in vivo. Permeation was assessed through confocal laser scanning microscopy. An optimized SNEDDS formulation consisting of Sefsol + vitamin E-Solutol HS 15-Transcutol P at proportions of 25:35:17.5 (w/w) was prepared and characterized. The globule size and polydispersity index of the optimized formulation was found to be 16.08 ± 0.02 nm and 0.124 ± 0.01, respectively. A significant (p < 0.05) increase in the percentage of drug release was achieved in the case of the optimized formulation as compared to rutin suspension. Pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability. The optimized formulation had significant in vitro and in vivo antioxidant activity. Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing the oral bioavailability and efficacy of rutin, thus helping in ameliorating oxidative stress in

  9. Oxidative stress biomarkers in amniotic fluid of pregnant women with hypothyroidism.

    Science.gov (United States)

    Novakovic, Tanja R; Dolicanin, Zana C; Djordjevic, Natasa Z

    2017-11-15

    Hypothyroidism in pregnancy is the serious state that may lead to fetal morbidity and mortality. Oxidative stress biomarkers in the amniotic fluid can provide important information on the health, development and maturation of the fetus during pregnancy. In this study, we examined whether maternal hypothyroidism contributes to increased oxidative stress biomarkers in the amniotic fluid during the first trimester of pregnancy. The study was conducted on healthy pregnant women and pregnant women with hypothyroidism (gestational age: 16-18 weeks). Oxidative stress biomarkers, such as superoxide anion (O 2 •- ), hydrogen peroxide (H 2 O 2 ), nitric oxide (NO), peroxynitrite (ONOO - ), lipid peroxide (LPO), reduced glutathione (GSH) and oxidized glutathione (GSSG) were assayed in the amniotic fluid. The results of this study indicated that concentrations of O 2 •- and NO are significantly higher, while the concentration of H 2 O 2 is significantly lower in the amniotic fluid of pregnant women with hypothyroidism in comparison to healthy pregnant women. There were no differences in concentrations of LPO, GSH and GSSG among tested groups. Also, we found that amniotic fluid concentration of O 2 •- is negatively correlated with the body weight and Apgar score values of the newborns. These results suggest that pregnancy hypothyroidism is characterized by the amniotic fluid oxidative stress. Incorporation of the oxidative stress biomarkers measurement in the amniotic fluid may be of clinical importance in the management of pregnancy hypothyroidism.

  10. Oxidative and nitrosative stress markers in bus drivers.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Santella, Regina M; Sram, Radim J

    2007-04-01

    Exposure to ambient air pollution is associated with many diseases. Oxidative and nitrosative stress are believed to be two of the major sources of particulate matter (PM)-mediated adverse health effects. PM in ambient air arises from industry, local heating, and vehicle emissions and poses a serious problem mainly in large cities. In the present study we analyzed the level of oxidative and nitrosative stress among 50 bus drivers from Prague, Czech Republic, and 50 matching controls. We assessed simultaneously the levels of 15-F(2t)-isoprostane (15-F(2t)-IsoP) and 8-oxodeoxyguanosine (8-oxodG) in urine and protein carbonyl groups and 3-nitrotyrosine (NT) in blood plasma. For the analysis of all four markers we used ELISA techniques. We observed significantly increased levels of oxidative and nitrosative stress markers in bus drivers. The median levels (min, max) of individual markers in bus drivers versus controls were as follows: 8-oxodG: 7.79 (2.64-12.34)nmol/mmol versus 6.12 (0.70-11.38)nmol/mmol creatinine (p<0.01); 15-F(2t)-IsoP: 0.81 (0.38-1.55)nmol/mmol versus 0.68 (0.39-1.79)nmol/mmol creatinine (p<0.01); carbonyl levels: 14.1 (11.8-19.0)nmol/ml versus 12.9 (9.8-16.6)nmol/ml plasma (p<0.001); NT: 694 (471-3228)nmol/l versus 537 (268-13833)nmol/l plasma (p<0.001). 15-F(2t)-IsoP levels correlated with vitamin E (R=0.23, p<0.05), vitamin C (R=-0.33, p<0.01) and cotinine (R=0.47, p<0.001) levels. Vitamin E levels also positively correlated with 8-oxodG (R=0.27, p=0.01) and protein carbonyl levels (R=0.32, p<0.001). Both oxidative and nitrosative stress markers positively correlated with PM2.5 and PM10 exposure. In conclusion, our study indicates that exposure to PM2.5 and PM10 results in increased oxidative and nitrosative stress.

  11. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    International Nuclear Information System (INIS)

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-01-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  12. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Simone ePelliciari

    2015-08-01

    Full Text Available The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress.Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur towards apo-operators, while the binding towards holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur towards the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to

  13. Comparative studies on the effects of clinically used anticonvulsants on the oxidative stress biomarkers in pentylenetetrazole-induced kindling model of epileptogenesis in mice.

    Science.gov (United States)

    Mazhar, Faizan; Malhi, Saima M; Simjee, Shabana U

    2017-01-01

    Oxidative stress plays a key role in the pathogenesis of epilepsy and contributes in underlying epileptogenesis process. Anticonvulsant drugs targeting the oxidative stress domain of epileptogenesis may provide better control of seizure. The present study was carried out to investigate the effect of clinically used anti-epileptic drugs (AEDs) on the course of pentylenetetrazole (PTZ)-induced kindling and oxidative stress markers in mice. Six mechanistically heterogeneous anticonvulsants: phenobarbital, phenytoin, levetiracetam, pregabalin, topiramate, and felbamate were selected and their redox profiles were determined. Diazepam was used as a drug control for comparison. Kindling was induced by repeated injections of a sub-convulsive dose of PTZ (50 mg/kg, s.c.) on alternate days until seizure score 5 was evoked in the control kindled group. Anticonvulsants were administered daily. Following PTZ kindling, oxidative stress biomarkers were assessed in homogenized whole brain samples and estimated for the levels of nitric oxide, peroxide, malondialdehyde, protein carbonyl, reduced glutathione, and activities of nitric oxide synthase and superoxide dismutase. Biochemical analysis revealed a significant increase in the levels of reactive oxygen species with a parallel decrease in endogenous anti-oxidants in PTZ-kindled control animals. Daily treatment with levetiracetam and felbamate significantly decreased the PTZ-induced seizure score as well as the levels of nitric oxide (panticonvulsant effect by the diversified mechanism of action such as levetiracetam, felbamate, and topiramate exhibited superior anti-oxidative stress activity in addition to their anticonvulsant activity.

  14. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    Science.gov (United States)

    Buccigrossi, Vittoria; Laudiero, Gabriella; Russo, Carla; Miele, Erasmo; Sofia, Morena; Monini, Marina; Ruggeri, Franco Maria; Guarino, Alfredo

    2014-01-01

    Rotavirus (RV) infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4) enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS) in Caco-2 cells. The ratio between reduced (GSH) and oxidized (GSSG) glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC), a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb) has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  15. [The role of oxidative stress in placental-related diseases of pregnancy].

    Science.gov (United States)

    Jauniaux, E; Burton, G J

    2016-10-01

    In normal pregnancies, the earliest stages of development take place in a low oxygen (O 2 ) environment. This physiological hypoxia of the early gestational sac protects the developing fetus against the deleterious and teratogenic effects of O 2 free radicals. Oxidative stress is manifested at the maternal-fetal interface from early pregnancy onwards. In early pregnancy, a well-controlled oxidative stress plays a role in modulating placental development, functions and remodelling. Focal trophoblastic oxidative damage and progressive villous degeneration trigger the formation of the fetal membranes, which is an essential developmental step enabling vaginal delivery. Our data have demonstrated that the first trimester placenta in humans is histiotrophic and not haemochorial. The development and maintenance of a physiological O 2 gradient between the uterine and fetal circulations is also essential for placental functions, such as transport and hormonal synthesis. Pathological oxidative stress arises when the production of reactive O 2 species overwhelms the intrinsic anti-oxidant defences causing indiscriminate damage to biological molecules, leading to loss of function and cell death. We here review the role of oxidative stress in the pathophysiology of miscarriage, pre-eclampsia and fetal growth restriction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.

    Science.gov (United States)

    de Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Kober, Helena; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-12-01

    Preeclampsia is an important pregnancy-specific multisystem disorder characterized by the onset of hypertension and proteinuria. It is of unknown etiology and involves serious risks for the pregnant women and fetus. One of the main factors involved in the pathophysiology of preeclampsia is oxidative stress, where excess free radicals produce harmful effects, including damage to macromolecules such as lipids, proteins and DNA. In addition, the sulfhydryl delta-aminolevulinate dehydratase enzyme (δ-ALA-D) that is part of the heme biosynthetic pathway in pro-oxidant conditions can be inhibited, which may result in the accumulation of 5-aminolevulinic acid (ALA), associated with the overproduction of free radicals, suggesting it to be an indirect marker of oxidative stress. As hypertensive pregnancy complications are a major cause of morbidity and mortality maternal and fetal where oxidative stress appears to be an important factor involved in preeclampsia, the aim of this study was to evaluate the activity of δ-ALA-D and classic oxidative stress markers in the blood of pregnant women with mild and severe preeclampsia. The analysis and quantification of the following oxidative stress markers were performed: thiobarbituric acid-reactive species (TBARS); presence of protein and non-protein thiol group; quantification of vitamin C; Catalase and δ-ALA--D activities in samples of blood of pregnant women with mild preeclampsia (n=25), with severe preeclampsia (n=30) and in a control group of healthy pregnant women (n=30). TBARS was significantly higher in women with preeclampsia, while the presence of thiol groups, levels of vitamin C, catalase and δ-ALA-D activity were significantly lower in groups of pregnant women with preeclampsia compared with healthy women. In addition, the results showed no significant difference between groups of pregnant women with mild and severe preeclampsia. The data suggest a state of increased oxidative stress in pregnant women with

  17. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.

    Science.gov (United States)

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.

  18. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  19. Linking Alzheimer's disease to insulin resistance: the FoxO response to oxidative stress.

    Science.gov (United States)

    Manolopoulos, K N; Klotz, L-O; Korsten, P; Bornstein, S R; Barthel, A

    2010-11-01

    Oxidative stress is an important determinant not only in the pathogenesis of Alzheimer's disease (AD), but also in insulin resistance (InsRes) and diabetic complications. Forkhead box class O (FoxO) transcription factors are involved in both insulin action and the cellular response to oxidative stress, thereby providing a potential integrative link between AD and InsRes. For example, the expression of intra- and extracellular antioxidant enzymes, such as manganese-superoxide dismutase and selenoprotein P, is regulated by FoxO proteins, as is the expression of important hepatic enzymes of gluconeogenesis. Here, we review the molecular mechanisms involved in the pathogenesis of AD and InsRes and discuss the function of FoxO proteins in these processes. Both InsRes and oxidative stress may promote the transcriptional activity of FoxO proteins, resulting in hyperglycaemia and a further increased production of reactive oxygen species (ROS). The consecutive activation of c-Jun N-terminal kinases and inhibition of Wingless (Wnt) signalling may result in the formation of β-amyloid plaques and τ protein phosphorylation. Wnt inhibition may also result in a sustained activation of FoxO proteins with induction of apoptosis and neuronal loss, thereby completing a vicious circle from oxidative stress, InsRes and hyperglycaemia back to the formation of ROS and consecutive neurodegeneration. In view of their central function in this model, FoxO proteins may provide a potential molecular target for the treatment of both InsRes and AD.

  20. Phospholamban Is Downregulated by pVHL-Mediated Degradation through Oxidative Stress in Failing Heart

    Directory of Open Access Journals (Sweden)

    Shunichi Yokoe

    2017-10-01

    Full Text Available The E3 ubiquitin ligase, von Hippel–Lindau (VHL, regulates protein expression by polyubiquitination. Although the protein VHL (pVHL was reported to be involved in the heart function, the underlying mechanism is unclear. Here, we show that pVHL was upregulated in hearts from two types of genetically dilated cardiomyopathy (DCM mice models. In comparison with the wild-type mouse, both DCM mice models showed a significant reduction in the expression of phospholamban (PLN, a potent inhibitor of sarco(endoplasmic reticulum Ca2+-ATPase, and enhanced interaction between pVHL and PLN. To clarify whether pVHL is involved in PLN degradation in failing hearts, we used carbonylcyanide m-chlorophenylhydrazone (CCCP, a mitochondrial membrane potential (MMP-lowering reagent, to mimic the heart failure condition in PLN-expressing HEK293 cells and found that CCCP treatment resulted in PLN degradation and increased interaction between PLN and pVHL. However, these effects were reversed with the addition of N-acetyl-l-cysteine. Furthermore, the co-transfection of VHL and PLN in HEK293 cells decreased PLN expression under oxidative stress, whereas knockdown of VHL increased PLN expression both under normal and oxidative stress conditions. Together, we propose that oxidative stress upregulates pVHL expression to induce PLN degradation in failing hearts.

  1. Oxidative Stress in the Pathogenesis of Colorectal Cancer: Cause or Consequence?

    Directory of Open Access Journals (Sweden)

    Martina Perše

    2013-01-01

    Full Text Available There is a growing support for the concept that reactive oxygen species, which are known to be implicated in a range of diseases, may be important progenitors in carcinogenesis, including colorectal cancer (CRC. CRC is one of the most common cancers worldwide, with the highest incidence rates in western countries. Sporadic human CRC may be attributable to various environmental and lifestyle factors, such as dietary habits, obesity, and physical inactivity. In the last decades, association between oxidative stress and CRC has been intensively studied. Recently, numerous genetic and lifestyle factors that can affect an individual's ability to respond to oxidative stress have been identified. The aim of this paper is to review evidence linking oxidative stress to CRC and to provide essential background information for accurate interpretation of future research on oxidative stress and CRC risk. Brief introduction of different endogenous and exogenous factors that may influence oxidative status and modulate the ability of gut epithelial cells to cope with damaging metabolic challenges is also provided.

  2. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  3. Neuro-oxidative-nitrosative stress in sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-01-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding...

  4. Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature.

    NARCIS (Netherlands)

    Remans, T.; Opdenakker, G.; Guisez, Y.; Carleer, R.; Schat, H.; Vangronsveld, J.; Cuypers, A.

    2012-01-01

    Zinc (Zn) is an essential micronutrient for plants, but accumulation of excess Zn causes oxidative stress, even though the element is not redox-active. An oxidative stress signature, consisting of multiple oxidative stress related parameters, is indicative of disturbance of redox homeostasis and

  5. Oxidative Stress and Huntington's Disease: The Good, The Bad, and The Ugly.

    Science.gov (United States)

    Kumar, Amit; Ratan, Rajiv R

    2016-10-01

    Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.

  6. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke.

    Science.gov (United States)

    Taylor, Mark; Carr, Tony; Oke, Oluwatobiloba; Jaunky, Tomasz; Breheny, Damien; Lowe, Frazer; Gaça, Marianna

    2016-07-01

    Tobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking. E-cigarette vapor contains significantly lower levels of toxicants than cigarette smoke, but standardized methods to assess cellular responses to exposure are not well established. We investigated whether an in vitro model of the airway epithelium (human bronchial epithelial cells) and commercially available assays could differentiate cellular stress responses to aqueous aerosol extracts (AqE) generated from cigarette smoke and e-cigarette aerosols. After exposure to AqE concentrations of 0.063-0.500 puffs/mL, we measured the intracellular glutathione ratio (GSH:GSSG), intracellular generation of oxidant species, and activation of the nuclear factor erythroid-related factor 2 (Nrf2)-controlled antioxidant response elements (ARE) to characterize oxidative stress. Apoptotic and necrotic responses were characterized by increases in caspase 3/7 activity and reductions in viable cell protease activities. Concentration-dependent responses indicative of oxidative stress were obtained for all endpoints following exposure to cigarette smoke AqE: intracellular generation of oxidant species increased by up to 83%, GSH:GSSG reduced by 98.6% and transcriptional activation of ARE increased by up to 335%. Caspase 3/7 activity was increased by up to 37% and the viable cell population declined by up to 76%. No cellular stress responses were detected following exposure to e-cigarette AqE. The methods used were suitably sensitive to be employed for comparative studies of tobacco and nicotine products.

  7. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  8. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Terrill, Jessica R; Duong, Marisa N; Turner, Rufus; Le Guiner, Caroline; Boyatzis, Amber; Kettle, Anthony J; Grounds, Miranda D; Arthur, Peter G

    2016-10-01

    Duchenne Muscular Dystrophy (DMD) is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD) dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl). There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs.

    Science.gov (United States)

    Liu, Fan; Celi, Pietro; Chauhan, Surinder Singh; Cottrell, Jeremy James; Leury, Brian Joseph; Dunshea, Frank Rowland

    2018-02-01

    Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all prespiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  10. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival

    Science.gov (United States)

    Navarro-Yepes, Juliana; Burns, Michaela; Anandhan, Annadurai; Khalimonchuk, Oleh; del Razo, Luz Maria; Quintanilla-Vega, Betzabet; Pappa, Aglaia; Panayiotidis, Mihalis I.

    2014-01-01

    Abstract Significance: The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recent Advances: To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. Critical Issues: In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. Future Directions: Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders. Antioxid. Redox Signal. 21, 66–85. PMID:24483238

  11. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yanli Zhao

    Full Text Available Heme oxygenase-1 (HO-1 has been implicated in cardiac dysfunction, oxidative stress, inflammation, apoptosis and autophagy associated with heart failure, and atherosclerosis, in addition to its recognized role in metabolic syndrome and diabetes. Numerous studies have presented contradictory findings about the role of HO-1 in diabetic cardiomyopathy (DCM. In this study, we explored the role of HO-1 in myocardial dysfunction, myofibril structure, oxidative stress, inflammation, apoptosis and autophagy using a streptozotocin (STZ-induced diabetes model in mice systemically overexpressing HO-1 (Tg-HO-1 or mutant HO-1 (Tg-mutHO-1. The diabetic mouse model was induced by multiple peritoneal injections of STZ. Two months after injection, left ventricular (LV function was measured by echocardiography. In addition, molecular biomarkers related to oxidative stress, inflammation, apoptosis and autophagy were evaluated using classical molecular biological/biochemical techniques. Mice with DCM exhibited severe LV dysfunction, myofibril structure disarray, aberrant cardiac oxidative stress, inflammation, apoptosis, autophagy and increased levels of HO-1. In addition, we determined that systemic overexpression of HO-1 ameliorated left ventricular dysfunction, myofibril structure disarray, oxidative stress, inflammation, apoptosis and autophagy in DCM mice. Furthermore, serine/threonine-specific protein kinase (Akt and AMP-activated protein kinase (AMPK phosphorylation is normally inhibited in DCM, but overexpression of the HO-1 gene restored the phosphorylation of these kinases to normal levels. In contrast, the functions of HO-1 in DCM were significantly reversed by overexpression of mutant HO-1. This study underlines the unique roles of HO-1, including the inhibition of oxidative stress, inflammation and apoptosis and the enhancement of autophagy, in the pathogenesis of DCM.

  12. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Effect of Vitamin E on the Survival Rate of unc-13 Caenorhabditis elegans mutants under Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jessica Porcelan

    2012-01-01

    Full Text Available Caenorhabditis elegans unc-13 mutants express decreased neuronal activity and thus are a good model strain for examining defective nervous systems. These unc-13 mutants as well as wild type N2 strains, show rapid mortality when under oxidative stress. However, the antioxidant vitamin E may prolong survival in unc-13 mutant and N2 strains under oxidative stress. The addition of vitamin E to organisms under oxidative stress has a protective effect in both N2 and unc-13 C. elegans strains. Interestingly, vitamin E resulted in a greater increase in survival rate in N2 worms than with unc-13 mutant worms. While both strains displayed lower mortality rates with the addition of vitamin E, this finding suggests that vitamin E more efficiently increases survival rates of C. elegans with typical nervous system function. The efficacy of vitamin E implies that use of antioxidants may lessen the damage caused by oxidative stress in both N2 and mutant worms.

  14. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans

    Directory of Open Access Journals (Sweden)

    Ilaria Marrocco

    2017-01-01

    Full Text Available Oxidative stress is the result of the imbalance between reactive oxygen species (ROS formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1 ROS in leukocytes and platelets by flow cytometry, (2 markers based on ROS-induced modifications of lipids, DNA, and proteins, (3 enzymatic players of redox status, and (4 total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions.

  15. Effects of l-carnitine on oxidative stress parameters in ...

    African Journals Online (AJOL)

    Emel Peri Canbolat

    2016-08-10

    Aug 10, 2016 ... Nitric oxide (NO), malondialdehyde (MDA), total antioxidant status (TAS), total oxidative stress .... Erel's method was used for measuring TOS.19 TOS was ..... antioxidant capacity using a new generation, more stable ABTS.

  16. Oxidative stress evoked damages leading to attenuated memory and inhibition of NMDAR–CaMKII–ERK/CREB signalling on consumption of aspartame in rat model

    Directory of Open Access Journals (Sweden)

    Ashok Iyaswamy

    2018-04-01

    Full Text Available Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposes to investigate whether long term (90 days aspartame (40 mg/kg b.wt administration could induce oxidative stress and alter the memory in Wistar strain male albino rats. To mimic the human methanol metabolism, methotrexate (MTX-treated rats were included as a model to study the effects of aspartame. Wistar strain albino rats were administered with aspartame (40 mg/kg b.wt orally and studied along with controls and MTX-treated controls. Aspartame interfered in the body weight and corticosterone levels in the rats. A marked increase in the mRNA and protein expression of neuronal nitric oxide synthase (nNOS and induced nitric oxide synthase (iNOS which resulted in the increased nitric oxide radical's level indicating that aspartame is a stressor. These reactive nitrogen species could be responsible for the altered cell membrane integrity and even cause death of neurons by necrosis or apoptosis. The animals showed a marked decrease in learning, spatial working and spatial recognition memory deficit in the Morris water maze and Y-maze performance task which could have resulted due to reduced hippocampal acetylcholine esterase (AChE activity. The animal brain homogenate also revealed the decrease in the phosphorylation of NMDAR1–CaMKII–ERK/CREB signalling pathway, which well documents the inhibition of phosphorylation leads to the excitotoxicity of the neurons and memory decline. This effect may be due to methanol which may also activate the NOS levels, microglia and astrocytes, inducing neurodegeneration in brain. Neuronal shrinkage of hippocampal layer due to degeneration of pyramidal cells revealed the abnormal neuronal morphology of pyramidal cell layers in the aspartame treated animals. These findings demonstrate that aspartame metabolites could be a contributing factor for the

  17. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction

    International Nuclear Information System (INIS)

    Kumagai, Yoshito; Pi Jingbo

    2004-01-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed

  18. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  19. Tocopherol And Tocotrienol: Therapeutic Potential In Animal Models of Stress.

    Science.gov (United States)

    Azlina, Mohd Fahami Nur; Kamisah, Yusof; Qodriyah, Mohd Saad

    2017-11-22

    Scientific reports had shown that stress is related to numerous pathological changes in the body. These pathological changes can bring about numerous diseases and can significantly cause negative effects in an individual. These include gastric ulcer, liver pathology and neurobehavioral changes. A common pathogenesis in many diseases related to stress involves oxidative damage. Therefore, the administration of antioxidants such as vitamin E is a reasonable therapeutic approach. However, there is conflicting evidence about antioxidant supplementation. The aim of this work was to summarize documented reports on the effects of tocopherol and tocotrienol on various pathological changes induced by stress. This review will reveal the scientific evidence of enteral supplementation of vitamin E in the forms of tocotrienol and tocopherol in animal models of stress. These models mimic the stress endured by critically ill patients in a clinical setting and psychological stress in individuals. Positive outcomes from enteral feeding of vitamin E in reducing the occurrence of stress-induced pathological changes are discussed in this review. These positive findings include their ability to reduced stress-induced gastric ulcers, elevated liver enzymes and improved locomotors activity. Evidences showing tocotrienol and tocopherol effects are not just related to its ability to reduce oxidative stress but also acting on other mechanism are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    Science.gov (United States)

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p stress groups. Malondialdehyde (MDA) content was significantly increased (p stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  1. Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Directory of Open Access Journals (Sweden)

    Edwin Ho

    2013-01-01

    Full Text Available Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.

  2. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    Science.gov (United States)

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  3. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    Science.gov (United States)

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  4. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  5. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    Science.gov (United States)

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The effects of anesthetic agents on oxidative stress

    Science.gov (United States)

    Yakan, Selvinaz; Düzgüner, Vesile

    2016-04-01

    Oxidative stress can be defined as the instability between antioxidant defense of the body and the production of free radical that causes peroxydation on the lipid layer. Free radicals are reactive oxygen species that are produced in the course of normal metabolisms of aerobe organisms and they may cause disorders in cell structure and organelles by interacting macromolecules, like lipid, protein, nucleic acids. Therefore, they may cause cardiovascular, immune system, liver, kidney illnesses and many other illnesses like cancer, aging, cataract, diabetes. It is known that many drugs used for the purpose of anesthetizing may cause lipid peroxidation in organism. For these reasons, determining the Oxidative stress index of anaesthetic stress chosen in the ones that are exposed to long term anaesthetic agents and anaesthesia appliccations, is so substantial.

  7. Physical exercise and oxidative stress in muscular dystrophies: is there a good balance?

    Science.gov (United States)

    Chico, L; Ricci, G; Cosci O Di Coscio, M; Simoncini, C; Siciliano, G

    2017-07-01

    The effect of oxidative stress on muscle damage inducted by physical exercise is widely debated. It is generally agreed that endurance and intense exercise can increase oxidative stress and generate changes in antioxidant power inducing muscle damage; however, regular and moderate exercise can be beneficial for the health improving the antioxidant defense mechanisms in the majority of cases. Growing evidences suggest that an increased oxidative/nitrosative stress is involved in the pathogenesis of several muscular dystrophies (MDs). Notably, physical training has been considered useful for patients with these disorders. This review will focus on the involvement of oxidative stress in MDs and on the possible effects of physical activities to decrease oxidative damage and improve motor functions in MDs patients.

  8. Hepatic Antioxidant, Oxidative Stress And Histopathological ...

    African Journals Online (AJOL)

    Hepatic Antioxidant, Oxidative Stress And Histopathological Changes Induced By Nicotine In A Gender Based Study In Adult Rats. ... Antioxidant status was assessed in liver by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and ...

  9. Characterization of the Bat proteins in the oxidative stress response of Leptospira biflexa.

    Science.gov (United States)

    Stewart, Philip E; Carroll, James A; Dorward, David W; Stone, Hunter H; Sarkar, Amit; Picardeau, Mathieu; Rosa, Patricia A

    2012-12-13

    Leptospires lack many of the homologs for oxidative defense present in other bacteria, but do encode homologs of the Bacteriodes aerotolerance (Bat) proteins, which have been proposed to fulfill this function. Bat homologs have been identified in all families of the phylum Spirochaetes, yet a specific function for these proteins has not been experimentally demonstrated. We investigated the contribution of the Bat proteins in the model organism Leptospira biflexa for their potential contributions to growth rate, morphology and protection against oxidative challenges. A genetically engineered mutant strain in which all bat ORFs were deleted did not exhibit altered growth rate or morphology, relative to the wild-type strain. Nor could we demonstrate a protective role for the Bat proteins in coping with various oxidative stresses. Further, pre-exposing L. biflexa to sublethal levels of reactive oxygen species did not appear to induce a general oxidative stress response, in contrast to what has been shown in other bacterial species. Differential proteomic analysis of the wild-type and mutant strains detected changes in the abundance of a single protein only - HtpG, which is encoded by the gene immediately downstream of the bat loci. The data presented here do not support a protective role for the Leptospira Bat proteins in directly coping with oxidative stress as previously proposed. L. biflexa is relatively sensitive to reactive oxygen species such as superoxide and H2O2, suggesting that this spirochete lacks a strong, protective defense against oxidative damage despite being a strict aerobe.

  10. Oxidative Stress in Aging: Advances in Proteomic Approaches

    Directory of Open Access Journals (Sweden)

    Daniel Ortuño-Sahagún

    2014-01-01

    Full Text Available Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual’s Quality of Life (QOL. Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS], which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8, naked mole-rat (Heterocephalus glaber, and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS and oxidative stress in aging.

  11. Study on the serum oxidative stress status in silicosis patients | He ...

    African Journals Online (AJOL)

    To determine whether oxidative-stress damage play an important role in the mechanism of silicosis, the oxidative stress parameters were investigated in silicosis patients and controls group. 128 silicosis patients and 130 healthy controls were included. The serum superoxide dismutase (SOD) activity and the levels of ...

  12. MicroRNA-122 is involved in oxidative stress in isoniazid-induced liver injury in mice.

    Science.gov (United States)

    Song, L; Zhang, Z R; Zhang, J L; Zhu, X B; He, L; Shi, Z; Gao, L; Li, Y; Hu, B; Feng, F M

    2015-10-27

    Many studies have shown that the pathogenesis of liver injury includes oxidative stress. MicroRNA-122 may be a marker for the early diagnosis of drug-induced liver injury. However, the relationship between microRNA-122 and oxidative stress in anti-tuberculosis drug-induced liver injury remains unknown. We measured changes in tissue microRNA-122 levels and indices of oxidative stress during liver injury in mice after administration of isoniazid, a first-line anti-tuberculosis drug. We quantified microRNA-122 expression and indices of oxidative stress at 7 time points, including 1, 3, and 5 days and 1, 2, 3, and 4 weeks. The tissue microRNA-122 levels and oxidative stress significantly changed at 3 and 5 days, suggesting that isoniazid-induced liver injury reduces oxidative stress and microRNA-122 expression compared to in the control group (P microRNA-122, began to change at 5 days (P microRNA-122 profile may affect oxidative stress by regulating mitochondrial ribosome protein S11 gene during isoniazid-induced liver injury, which may contribute to the response mechanisms of microRNA-122 and oxidative stress.

  13. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis.

    Science.gov (United States)

    Wu, Yanqing; Reece, E Albert; Zhong, Jianxiang; Dong, Daoyin; Shen, Wei-Bin; Harman, Christopher R; Yang, Peixin

    2016-09-01

    Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene

  14. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ayşin Akıncı; Mukaddes Eşrefoğlu; Elif Taşlıdere; Burhan Ateş

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino...

  15. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ak?nc?, Ay?in; E?refo?lu, Mukaddes; Ta?l?dere, Elif; Ate?, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were...

  16. [Oxidative stress in station service workers].

    Science.gov (United States)

    Basso, A; Elia, G; Petrozzi, M T; Zefferino, R

    2004-01-01

    The aim of this study is to identify an oxidative stress in service station workers. Previous studies verified an increased incidence of leukemia and myeloma, however other authors haven't verified it. There are reports of nasal, pharyngeal, laryngeal, and lung cancer in service station workers. Our study wants to evaluate the oxidative balance in the fuel workers. We studied 44 subjects with gasoline exposure and 29 control subjects. We determined the blood concentrations of Glutathione reduced and oxidized, Protein sulfhydrylic (PSH) Vitamine E, Vitamine C, Malondialdehyde, Protein oxidized (OX-PROT) and beta carotene. The t test was performed to analyze the differences between the means, the Chi square was used to evaluate the statistical significance of associations between variable categorical (redox index). The Anova test excluded the confusing effect of age, smoke and alcohol habit. The mean age of the workers was 36.6 years, instead the control group was 38. In the workers Glutathione reduced, Vit. E and Beta carotene were lower than in the control subjects, this difference was statistically significant (p < 0.01). The Malondialdehyde concentration was higher in the workers higher than in the control group, but this difference wasn't statistically significant. Our data demonstrated Glutathione, Vit. E, and Beta carotene are useful to verify a reduction of the antioxidant activity. The only marker of the presence of oxidative injury that correlated to work exposure was the malondialdehyde. The redox index was surest marker. The limit of our study is the number of control group, it was little and lower than workers. Conclusively we believe it's useful to continue our studies and, if our results are going to be confirmed, we retain that stress oxidative determination would be verified in occupational medicine using these markers, especially to study exposure of the fuel workers who were investigated less and, in our opinion, would receive more attention.

  17. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats.

    Science.gov (United States)

    Asgharzadeh, Fereshteh; Bargi, Rahimeh; Beheshti, Farimah; Hosseini, Mahmoud; Farzadnia, Mehdi; Khazaei, Majid

    2017-01-01

    Liver fibrosis is the primary sign of chronic liver injury induced by various causes. Thymoquinone (TQ) is the major ingredient of Nigella sativa with several beneficial effects on the body. In the present study, we aimed to investigate the effect of TQ on liver fibrosis in a lipopolysaccharide (LPS)-induced inflammation in male rats. Fifty male Wistar rats were randomly divided into five groups (n=10 in each group) as follow: (1) control; (2) LPS (1 mg/kg/day; i.p); (3) LPS+TQ 2 mg/kg/day (i.p) (LPs+TQ2); (4) LPS+TQ 5 mg/kg/day (LPS+TQ5); (5) LPS+ TQ 10 mg/kg/day (LPS+ TQ10). After three weeks, blood samples were taken for evaluation of liver function tests. Then, the livers were harvested for histological evaluation of fibrosis and collagen content and measurement of oxidative stress markers including malondialdehyde (MDA), total thiol groups, superoxide dismutase (SOD) and catalase activity in tissue homogenates. LPS group showed higher levels of fibrosis and collagen content stained by Masson's trichrome in liver tissue with impaired liver function test and increased oxidative stress markers (pliver fibrosis, improved liver function tests and increased the levels of anti-oxidative enzymes (SOD and catalase), while reduced MDA concentration (pliver fibrosis possibly through affecting oxidative stress status. It seems that administration of TQ can be considered as a part of liver fibrosis management.

  18. [Protective effect and mechanism of compound Ginkgo biloba granules on oxidative stress injury of HUVEC].

    Science.gov (United States)

    Li, Qi; Chen, Xi; Kan, Xiao-Xi; Li, Yu-Jie; Yang, Qing; Wang, Ya-Jie; Chen, Ying; Weng, Xiao-Gang; Cai, Wei-Yan; Huang, He-Fei; Zhu, Xiao-Xin

    2016-02-01

    To reveal the protective and anti-apoptosis effect of compound Ginkgo biloba granules on oxidative stress injury of human umbilical vein endothelial cells (HUVEC). Negative control group, H2O2 model group and 4 drug pretreatment groups (80, 160, 320, 640 mg• L⁻¹) were established. The cell proliferation, morphological changes in each group after oxidative stress injury was detected by MTT assay and through microscope observation respectively. The content of LDH, MDA, SOD and NO and SOD activity in supernatant were detected to judge the protection effect of the drugs on endothelial cells. The protective effect on HUVEC apoptosis was analyzed by Caspase-3 activity test and Annexin V-FITC/PI staining. Western blot was used to observe the expression of apoptosis-related proteins Bcl-2 and Bax. Results showed that 1 200 μmol• L⁻¹ H2O2 can induce oxidative stress injury in endothelial cells and reduce the cell survival rate; cell proliferation inhibition degree is positively correlated with the effect time of H2O2. Besides, 80, 160, 320 640 mg•L⁻¹ compound Ginkgo biloba granules can protect HUVEC from oxidative stress injury, recover the normal proliferation level of cells, improve their state, prohibit cell apoptosis, and can up-regulate and down-regulate the expression level of Bcl-2 and Bax respectively. In conclusion, compound G. biloba granules can protect HUVEC from the oxidative stress injury induced by H2O2, its mechanism may be correlated with inhibition of the mitochondrial apoptotic pathway in HUVEC. Copyright© by the Chinese Pharmaceutical Association.

  19. Investigating Endothelial Activation and Oxidative Stress in relation to Glycaemic Control in a Multiethnic Population

    Science.gov (United States)

    Brady, E. M.; Webb, D. R.; Morris, D. H.; Khunti, K.; Talbot, D. S. C.; Sattar, N.; Davies, M. J.

    2012-01-01

    Aim. An exploration of ethnic differences in measures of oxidative stress and endothelial activation in relation to known cardiovascular risk factors within South Asians (SA) and White Europeans (WE) residing in the UK. Methods. 202 participants within a UK multiethnic population provided biomedical and anthropometric data. Human urinary 2,3-dinor-8-iso-prostaglandin-F1α and plasma ICAM-1 were quantified as measures of oxidative stress and endothelial activation, respectively. Results. 2,3-Dinor-8-iso-prostaglandin-F1α levels were significantly higher in the SA group compared to WE group (10.36 (95% CI: 9.09, 11.79) versus 8.46 (7.71, 9.29), P = 0.021) after adjustment for age, gender, smoking status, body weight, HbA1c, and medication. Oxidative stress was positively associated with HbA1c (β = 1.08, 95% CI:1.02, 1.14, P = 0.009), fasting (β = 1.06, 95% CI: 1.02, 1.10, P = 0.002), and 2 hr glucose (β = 1.02, 95% CI: 1.00, 1.04, P = 0.052). In each adjusted model, SA continued to have elevated levels of oxidative stress compared to WE. ICAM-1 levels were significantly higher in the composite IGR group compared to the normoglycaemic group (P < 0.001). No ethnic differences in ICAM-1 were observed. Conclusion. These results suggest that SA are more susceptible to the detrimental effects of hyperglycaemia-induced oxidative stress at lower blood glucose thresholds than WE. Further research into the potential mechanisms involved is warranted. PMID:23304116

  20. Investigating Endothelial Activation and Oxidative Stress in relation to Glycaemic Control in a Multiethnic Population

    Directory of Open Access Journals (Sweden)

    E. M. Brady

    2012-01-01

    Full Text Available Aim. An exploration of ethnic differences in measures of oxidative stress and endothelial activation in relation to known cardiovascular risk factors within South Asians (SA and White Europeans (WE residing in the UK. Methods. 202 participants within a UK multiethnic population provided biomedical and anthropometric data. Human urinary 2,3-dinor-8-iso-prostaglandin-F1α and plasma ICAM-1 were quantified as measures of oxidative stress and endothelial activation, respectively. Results. 2,3-Dinor-8-iso-prostaglandin-F1α levels were significantly higher in the SA group compared to WE group (10.36 (95% CI: 9.09, 11.79 versus 8.46 (7.71, 9.29, P=0.021 after adjustment for age, gender, smoking status, body weight, HbA1c, and medication. Oxidative stress was positively associated with HbA1c (β=1.08, 95% CI:1.02, 1.14, P=0.009, fasting (β=1.06, 95% CI: 1.02, 1.10, P=0.002, and 2 hr glucose (β=1.02, 95% CI: 1.00, 1.04, P=0.052. In each adjusted model, SA continued to have elevated levels of oxidative stress compared to WE. ICAM-1 levels were significantly higher in the composite IGR group compared to the normoglycaemic group (P<0.001. No ethnic differences in ICAM-1 were observed. Conclusion. These results suggest that SA are more susceptible to the detrimental effects of hyperglycaemia-induced oxidative stress at lower blood glucose thresholds than WE. Further research into the potential mechanisms involved is warranted.

  1. Correlation between oxidation and stress corrosion cracking of U-4.5 wt.% Nb

    International Nuclear Information System (INIS)

    Magnani, N.J.; Holloway, P.H.

    1976-01-01

    To investigate the mechanisms causing stress corrosion cracking on uranium alloys, the kinetics of crack propagation and oxide film growth for U-4.5 percent Nb were investigated at temperatures between 0 0 C and 200 0 C in oxygen, water vapor and oxygen-water vapor mixtures. Three regions of crack velocity rate versus stress intensity were observed in laboratory air. At low stress intensities (but above an effective K/sub ISCC/ of 22 MN/m/sup 3 / 2 /) crack velocity varied approximately as K 70 . In an intermediate stress intensity region (region II) the crack velocity was dependent upon K 4 . In the high stress intensity region, mechanical overloading was observed and crack velocities varied approximately as K 12 . Both cracking (region II) and oxidation rates were characterized by an activation energy of 7 kcal/mole. For stress corrosion cracking it was shown that oxygen was the primary stress corrodent, but a synergistic effect upon crack propagation rates was observed for oxygen-water vapor mixtures. Crack velocities were dependent upon the pressure of oxygen (P/sub O 2 //sup 1 / 3 /) and water vapor, while the oxidation rate was essentially independent of the pressure of these species. Stress sorption and oxide film formation stress corrosion cracking mechanisms were considered and reconciled with the stress corrosion and oxidation data

  2. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-01-01

    Full Text Available Methamphetamine (MA leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS. The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA, and MA plus TBHQ-treated group (MA + TBHQ. Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  3. A systematic review of observational studies on oxidative/nitrosative stress involvement in dengue pathogenesis

    OpenAIRE

    Castro, Raimundo; Pinzón, Hernando Samuel; Alvis-Guzman, Nelson

    2015-01-01

    Objective: Our objective was to systematically review the published observational research related to the role of oxidative-nitrosative stress in pathogenesis of dengue. Methods: We searched electronic databases (PubMed, EMBASE, The COCHRANE library, ScienceDirect, Scopus, SciELO, LILACS via Virtual Health Library, Google Scholar) using the term: dengue, dengue virus, severe dengue, oxidative stress, nitrosative stress, antioxidants, oxidants, free radicals, oxidized lipid products, lipid per...

  4. Degradation of Ultra-Thin Gate Oxide NMOSFETs under CVDT and SHE Stresses

    International Nuclear Information System (INIS)

    Shi-Gang, Hu; Yan-Rong, Cao; Yue, Hao; Xiao-Hua, Ma; Chi, Chen; Xiao-Feng, Wu; Qing-Jun, Zhou

    2008-01-01

    Degradation of device under substrate hot-electron (SHE) and constant voltage direct-tunnelling (CVDT) stresses are studied using NMOSFET with 1.4-nm gate oxides. The degradation of device parameters and the degradation of the stress induced leakage current (SILC) under these two stresses are reported. The emphasis of this paper is on SILC and breakdown of ultra-thin-gate-oxide under these two stresses. SILC increases with stress time and several soft breakdown events occur during direct-tunnelling (DT) stress. During SHE stress, SILC firstly decreases with stress time and suddenly jumps to a high level, and no soft breakdown event is observed. For DT injection, the positive hole trapped in the oxide and hole direct-tunnelling play important roles in the breakdown. For SHE injection, it is because injected hot electrons accelerate the formation of defects and these defects formed by hot electrons induce breakdown. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  6. Oxidative Stress and Endometriosis: A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Gennaro Scutiero

    2017-01-01

    Full Text Available Endometriosis is one of the most common gynaecologic diseases in women of reproductive age. It is characterized by the presence of endometrial tissue outside the uterine cavity. The women affected suffer from pelvic pain and infertility. The complex etiology is still unclear and it is based on three main theories: retrograde menstruation, coelomic metaplasia, and induction theory. Genetics and epigenetics also play a role in the development of endometriosis. Recent studies have put the attention on the role of oxidative stress, defined as an imbalance between reactive oxygen species (ROS and antioxidants, which may be implicated in the pathophysiology of endometriosis causing a general inflammatory response in the peritoneal cavity. Reactive oxygen species are intermediaries produced by normal oxygen metabolism and are inflammatory mediators known to modulate cell proliferation and to have deleterious effects. A systematic review was performed in order to clarify the different roles of oxidative stress and its role in the development of endometriosis. Several issues have been investigated: iron metabolism, oxidative stress markers (in the serum, peritoneal fluid, follicular fluid, peritoneal environment, ovarian cortex, and eutopic and ectopic endometrial tissue, genes involved in oxidative stress, endometriosis-associated infertility, and cancer development.

  7. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2018-02-01

    Full Text Available Objective Heat stress (HS triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. Methods A total of 24 pigs were given either a control diet (17 IU/kg VE or a high VE (200 IU/kg VE; HiVE diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity or HS (35°C, 35% to 45% humidity, 8 h daily conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Results Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature the loss of blood CO2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003 plasma biological antioxidant potential (BAP and tended to increase (p = 0.067 advanced oxidized protein products (AOPP in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature. Conclusion A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  8. Soft-food diet induces oxidative stress in the rat brain.

    Science.gov (United States)

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Food-derived bioactive peptides on inflammation and oxidative stress.

    Science.gov (United States)

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  10. Association of oxidative stress with the pathophysiology of depresion and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Lačković Maja

    2013-01-01

    Full Text Available The production of free radicals in an organism is under the control of various antioxidant mechanisms. If their production overcomes the capacity of antioxidant protection, oxidative stress occurs which is capable of damaging different cellular structures and biomolecules, leading to various diseases. The importance of oxidative stress was proven in many psychiatric diseases among which are depression and bipolar disorder. Different studies show the significant improvement of clinical presentation when antioxidant substances are administered, suggesting that redox imbalance can influence their symptoms appearance and severity. In addition, oxidative stress is intercrossed with the different comorbidities that appear among depressive and bipolar patients. Beside the clinical presentation, oxidative stress influences the chronicity of depression, which was demonstrated in patients with recurrent depressive disorder. Better understanding of oxidant/antioxidant imbalance and its role in the pathophysiology of depression and bipolar disorder could be useful for the development of a novel therapeutic approach to the management of these diseases.

  11. Oxidative stress in the pathophysiology of metabolic syndrome: which mechanisms are involved?

    Directory of Open Access Journals (Sweden)

    Thalia M. T. Avelar

    2015-08-01

    Full Text Available ABSTRACTMetabolic syndrome (MS is a combination of cardiometabolic risk factors, including obesity, hyperglycemia, hypertriglyceridemia, dyslipidemia and hypertension. Several studies report that oxidative condition caused by overproduction of reactive oxygen species (ROS plays an important role in the development of MS. Our body has natural antioxidant system to reduce oxidative stress, which consists of numerous endogenous and exogenous components and antioxidants enzymes that are able to inactivate ROS. The main antioxidant defense enzymes that contribute to reduce oxidative stress are superoxide dismutase (SOD, catalase (CAT and gluthatione peroxidase (GPx. The high-density lipoprotein cholesterol (HDL-c is also associated with oxidative stress because it presents antioxidant and anti-inflammatory properties. HDL-c antioxidant activity may be attributed at least in part, to serum paraoxonase 1 (PON1 activity. Furthermore, derivatives of reactive oxygen metabolites (d-ROMs also stand out as acting in cardiovascular disease and diabetes, by the imbalance in ROS production, and close relationship with inflammation. Recent reports have indicated the gamma-glutamyl transferase (GGT as a promising biomarker for diagnosis of MS, because it is related to oxidative stress, since it plays an important role in the metabolism of extracellular glutathione. Based on this, several studies have searched for better markers for oxidative stress involved in development of MS.

  12. Antioxidants Attenuate Oxidative Stress-Induced Hidden Blood Loss in Rats

    Directory of Open Access Journals (Sweden)

    Hong Qian

    2017-12-01

    Full Text Available Objective: Hidden blood loss (HBL, commonly seen after total knee or hip arthroplasty, causes postoperative anemia even after reinfusion or blood transfusion based on the visible blood loss volume. Recent studies demonstrated that oxidative stress might be involved in HBL. However, whether the antioxidants proanthocyanidin (PA or hydrogen water (HW can ameliorate HBL remains poorly understood. The aim of this study was to evaluate the effects of PA and HW on HBL. Materials and Methods: A rat HBL model was established through administration of linoleic acid with or without treatment with PA or HW. The levels of hemoglobin (Hb, red blood cell (RBC count, superoxide dismutase (SOD activity, glutathione peroxidase (GSH-PX activity, malondialdehyde (MDA, and ferryl Hb were measured. Results: RBC and Hb values as well as the activity of SOD and GSH-PX were reduced after administration of linoleic acid, which was ameliorated by treatment with PA or HW. In addition, the quantity of MDA was significantly decreased with the administration of PA or HW. Conclusion: PA and HW could ameliorate HBL in a rat model by reducing oxidative stress, suggesting that they might be used as a novel therapeutic approach in the prophylaxis or treatment of HBL in clinics.

  13. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.

    Science.gov (United States)

    Chen, Li; Xu, Wen Ming; Zhang, Dan

    2014-10-01

    To study the expression of insulin signaling-related genes and oxidative stress markers in the visceral adipose tissue obtained from polycystic ovary syndrome (PCOS) patients and healthy control subjects and to investigate the relationships among abdominal obesity, insulin resistance, and oxidative stress at the tissue level. Case-control study. University teaching hospital. In total, 30 PCOS patients and 30 healthy control subjects, who underwent laparoscopic surgery, were included in the study. Abdominal obesity was defined based on waist circumference (WC). The homeostasis model index was used to assess insulin resistance (HOMA-IR). Gene expression of glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS1) in visceral adipose tissue (VAT) and the parameters of oxidative stress, such as superoxide dismutase, enzyme glutathione reductase, and dimethylarginine, were measured, and the expression of protein oxidative damage product 3-nitro-tyrosine residues (nitrotyrosine) in VAT was identified with the use of immunohistochemistry. PCOS was associated with lower expression of GLUT4 and IRS1 and a higher level of oxidative stress in VAT, which was strongly correlated with WC and HOMA-IR. Presence of abdominal obesity further intensified the correlations observed in our measurements. The nitrotyrosine expression in VAT was stronger in PCOS patients. The strong correlation of insulin resistance with oxidative stress at the VAT level suggests that local oxidative stress and abnormalities of insulin signaling in adipose tissue play critical roles in the pathogenesis of PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  15. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes.

    Directory of Open Access Journals (Sweden)

    Vittoria Buccigrossi

    Full Text Available Rotavirus (RV infection causes watery diarrhea via multiple mechanisms, primarily chloride secretion in intestinal epithelial cell. The chloride secretion largely depends on non-structural protein 4 (NSP4 enterotoxic activity in human enterocytes through mechanisms that have not been defined. Redox imbalance is a common event in cells infected by viruses, but the role of oxidative stress in RV infection is unknown. RV SA11 induced chloride secretion in association with an increase in reactive oxygen species (ROS in Caco-2 cells. The ratio between reduced (GSH and oxidized (GSSG glutathione was decreased by RV. The same effects were observed when purified NSP4 was added to Caco-2 cells. N-acetylcysteine (NAC, a potent antioxidant, strongly inhibited the increase in ROS and GSH imbalance. These results suggest a link between oxidative stress and RV-induced diarrhea. Because Saccharomyces boulardii (Sb has been effectively used to treat RV diarrhea, we tested its effects on RV-infected cells. Sb supernatant prevented RV-induced oxidative stress and strongly inhibited chloride secretion in Caco-2 cells. These results were confirmed in an organ culture model using human intestinal biopsies, demonstrating that chloride secretion induced by RV-NSP4 is oxidative stress-dependent and is inhibited by Sb, which produces soluble metabolites that prevent oxidative stress. The results of this study provide novel insights into RV-induced diarrhea and the efficacy of probiotics.

  16. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress.

    Science.gov (United States)

    Dorier, Marie; Béal, David; Marie-Desvergne, Caroline; Dubosson, Muriel; Barreau, Frédérick; Houdeau, Eric; Herlin-Boime, Nathalie; Carriere, Marie

    2017-08-01

    The whitening and opacifying properties of titanium dioxide (TiO 2 ) are commonly exploited when it is used as a food additive (E171). However, the safety of this additive can be questioned as TiO 2 nanoparticles (TiO 2 -NPs) have been classed at potentially toxic. This study aimed to shed some light on the mechanisms behind the potential toxicity of E171 on epithelial intestinal cells, using two in vitro models: (i) a monoculture of differentiated Caco-2 cells and (ii) a coculture of Caco-2 with HT29-MTX mucus-secreting cells. Cells were exposed to E171 and two different types of TiO 2 -NPs, either acutely (6-48 h) or repeatedly (three times a week for 3 weeks). Our results confirm that E171 damaged these cells, and that the main mechanism of toxicity was oxidation effects. Responses of the two models to E171 were similar, with a moderate, but significant, accumulation of reactive oxygen species, and concomitant downregulation of the expression of the antioxidant enzymes catalase, superoxide dismutase and glutathione reductase. Oxidative damage to DNA was detected in exposed cells, proving that E171 effectively induces oxidative stress; however, no endoplasmic reticulum stress was detected. E171 effects were less intense after acute exposure compared to repeated exposure, which correlated with higher Ti accumulation. The effects were also more intense in cells exposed to E171 than in cells exposed to TiO 2 -NPs. Taken together, these data show that E171 induces only moderate toxicity in epithelial intestinal cells, via oxidation.

  17. Effect of influenza vaccination on oxidative stress products in breath.

    Science.gov (United States)

    Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Danaher, Patrick J; Devadiga, Anantrai; Legendre, David A; Nail, Kim L; Schmitt, Peter; Wai, James

    2010-06-01

    Viral infections cause increased oxidative stress, so a breath test for oxidative stress biomarkers (alkanes and alkane derivatives) might provide a new tool for early diagnosis. We studied 33 normal healthy human subjects receiving scheduled treatment with live attenuated influenza vaccine (LAIV). Each subject was his or her own control, since they were studied on day 0 prior to vaccination, and then on days 2, 7 and 14 following vaccination. Breath volatile organic compounds (VOCs) were collected with a breath collection apparatus, then analyzed by automated thermal desorption with gas chromatography and mass spectroscopy. A Monte Carlo simulation technique identified non-random VOC biomarkers of infection based on their C-statistic values (area under curve of receiver operating characteristic). Treatment with LAIV was followed by non-random changes in the abundance of breath VOCs. 2, 8-Dimethyl-undecane and other alkane derivatives were observed on all days. Conservative multivariate models identified vaccinated subjects on day 2 (C-statistic = 0.82, sensitivity = 63.6% and specificity = 88.5%); day 7 (C-statistic = 0.94, sensitivity = 88.5% and specificity = 92.3%); and day 14 (C-statistic = 0.95, sensitivity = 92.3% and specificity = 92.3%). The altered breath VOCs were not detected in live attenuated influenza vaccine, excluding artifactual contamination. LAIV vaccination in healthy humans elicited a prompt and sustained increase in breath biomarkers of oxidative stress. A breath test for these VOCs could potentially identify humans who are acutely infected with influenza, but who have not yet developed clinical symptoms or signs of disease.

  18. Higher oxidative stress in skeletal muscle of McArdle disease patients

    Directory of Open Access Journals (Sweden)

    Jan J. Kaczor

    2017-09-01

    Full Text Available McArdle disease (MCD is an autosomal recessive condition resulting from skeletal muscle glycogen phosphorylase deficiency. The resultant block in glycogenolysis leads to an increased flux through the xanthine oxidase pathway (myogenic hyperuricemia and could lead to an increase in oxidative stress. We examined markers of oxidative stress (8-isoprostane and protein carbonyls, NAD(PH-oxidase, xanthine oxidase and antioxidant enzyme (superoxide dismutase, catalase and glutathione peroxidase activity in skeletal muscle of MCD patients (N = 12 and controls (N = 12. Eight-isoprostanes and protein carbonyls were higher in MCD patients as compared to controls (p < 0.05. There was a compensatory up-regulation of catalase protein content and activity (p < 0.05, mitochondrial superoxide dismutase (MnSOD protein content (p < 0.01 and activity (p < 0.05 in MCD patients, yet this increase was not sufficient to protect the muscle against elevated oxidative damage. These results suggest that oxidative stress in McArdle patients occurs and future studies should evaluate a potential role for oxidative stress contributing to acute pathology (rhabdomyolysis and possibly later onset fixed myopathy.

  19. Oxidative Stress: A New Target for Pancreatic Cancer Prognosis and Treatment

    Directory of Open Access Journals (Sweden)

    Javier Martinez-Useros

    2017-03-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal types of tumors, and its incidence is rising worldwide. Survival can be improved when tumors are detected at an early stage; however, this cancer is usually asymptomatic, and the disease only becomes apparent after metastasis. Several risk factors are associated to this disease. Chronic pancreatitis, diabetes, and some infectious disease are the most relevant risk factors. Incidence of PDAC has increased in the last decades. It is hypothesized it could be due to other acquired risk habits, like smoking, high alcohol intake, and obesity. Indeed, adipose tissue is a dynamic endocrine organ that secretes different pro-inflammatory cytokines, enzymes, and other factors that activate oxidative stress. Reactive oxygen species caused by oxidative stress, damage DNA, proteins, and lipids, and produce several toxic and high mutagenic metabolites that could modify tumor behavior, turning it into a malignant phenotype. Anti-oxidant compounds, like vitamins, are considered protective factors against cancer. Here, we review the literature on oxidative stress, the molecular pathways that activate or counteract oxidative stress, and potential treatment strategies that target reactive oxygen species suitable for this kind of cancer.

  20. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants.

    Science.gov (United States)

    Lee, Seung-Yup; Lee, Soo-Jung; Han, Changsu; Patkar, Ashwin A; Masand, Prakash S; Pae, Chi-Un

    2013-10-01

    The brain is an organ predisposed to oxidative/nitrosative stress. This is especially true in the case of aging as well as several neurodegenerative diseases. Under such circumstances, a decline in the normal antioxidant defense mechanisms leads to an increase in the vulnerability of the brain to the deleterious effects of oxidative damage. Highly reactive oxygen/nitrogen species damage lipids, proteins, and mitochondrial and neuronal genes. Unless antioxidant defenses react appropriately to damage inflicted by radicals, neurons may experience microalteration, microdysfunction, and degeneration. We reviewed how oxidative and nitrosative stresses contribute to the pathogenesis of depressive disorders and reviewed the clinical implications of various antioxidants as future targets for antidepressant treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Influence of Acute Coffee Consumption on Postprandial Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Richard J. Bloomer

    2013-01-01

    Full Text Available Background Coffee has been reported to be rich in antioxidants, with both acute and chronic consumption leading to enhanced blood antioxidant capacity. High-fat feeding is known to result in excess production of reactive oxygen and nitrogen species, promoting a condition of postprandial oxidative stress. Methods We tested the hypothesis that coffee intake following a high-fat meal would attenuate the typical increase in blood oxidative stress during the acute postprandial period. On 3 different occasions, 16 men and women consumed a high-fat milk shake followed by either 16 ounces of caffeinated or decaffeinated coffee or bottled water. Blood samples were collected before and at 2 and 4 hours following intake of the milk shake and analyzed for triglycerides (TAG, malondialdehyde (MDA, hydrogen peroxide (H 2 O 2 , and Trolox equivalent antioxidant capacity (TEAC. Results Values for TAG and MDA ( P 0.05. Conclusions Acute coffee consumption following a high-fat milk shake has no impact on postprandial oxidative stress.

  2. Total Glucosides of Danggui Buxue Tang Attenuate BLM-Induced Pulmonary Fibrosis via Regulating Oxidative Stress by Inhibiting NOX4

    Science.gov (United States)

    Zhao, Ping; Zhou, Wen-Cheng; Li, De-Lin; Mo, Xiao-Ting; Xu, Liang; Li, Liu-Cheng; Cui, Wen-Hui; Gao, Jian

    2015-01-01

    Pulmonary fibrosis (PF) is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4), a main source of reactive oxygen species (ROS), is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG), an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT), attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP) and type I collagen (Col-I) were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1) and expression of alpha smooth muscle actin (α-SMA) were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD) activity, total antioxidant capacity (T-AOC), and the increase in malondialdehyde (MDA), 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4. PMID:26347805

  3. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  4. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Rajib Paul

    Full Text Available Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  5. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Science.gov (United States)

    Paul, Rajib; Choudhury, Amarendranath; Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat; Borah, Anupom

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  6. Oxidative stress in tumor microenvironment——Its role in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Armando ROJAS; Raúl SILVA; Héctor FIGUEROA; Miguel A MORALES

    2008-01-01

    The tumor angiogenesis process is believed to be dependent on an "angiogenic switch" formed by a cascade of biologic events as a consequence of the "cross-talk" between tumor cells and several components of local microenvironment including endothelial cells, macrophages, mast cells and stromal components. Oxidative stress represents an important stimulus that widely contributes to this angiogenic switch, which is particularly relevant in lungs,where oxidative stress is originated from different sources including the incomplete reduction of oxygen during respiration,exposure to hypoxia/reoxygenation, stimulated resident or chemoattracted immune ceils to lung tissues, as well as by a variety of chemicals compounds. In the present review we highlight the role of oxidative stress in tumor angiogenesis as a key signal linked to other relevant actors in this complex process.

  7. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Luciane B. Ceretta

    2012-01-01

    Full Text Available Diabetes Mellitus (DM is associated with pathological changes in the central nervous system (SNC as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg, and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD, and catalase (CAT were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals’ recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes.

  8. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.

    Science.gov (United States)

    Ipson, Brett R; Fisher, Alfred L

    2016-05-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. Published by Elsevier B.V.

  9. The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress.

    Science.gov (United States)

    Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John

    2017-01-09

    Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Oxidative Stress Control by Apicomplexan Parasites

    Directory of Open Access Journals (Sweden)

    Soraya S. Bosch

    2015-01-01

    Full Text Available Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis.

  11. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  12. The measurement of stress and phase fraction distributions in pre and post-transition Zircaloy oxides using nano-beam synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Swan, H., E-mail: helen.swan@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Blackmur, M.S., E-mail: matthew.s.blackmur@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Hyde, J.M., E-mail: jonathan.m.hyde@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Laferrere, A., E-mail: alice.laferrere@atkinsglobal.com [W.S.Atkins, The Hub, Aztec West, 500 Park Ave, Almondsbury, Bristol BS32 4RZ (United Kingdom); Ortner, S.R., E-mail: susan.r.ortner@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Styman, P.D., E-mail: paul.d.styman@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Staines, C., E-mail: cassie.staines@nnl.co.uk [National Nuclear Laboratory, 102B, Stonehouse Park, Stonehouse, Gloucestershire, GL10 3UT (United Kingdom); Gass, M., E-mail: mhairi.gass@amecfw.com [Amec Foster Wheeler Clean Energy Europe, Walton House, Birchwood, WA3 6GA (United Kingdom); Hulme, H., E-mail: helen.hulme@amecfw.com [Amec Foster Wheeler Clean Energy Europe, Walton House, Birchwood, WA3 6GA (United Kingdom); Cole-Baker, A., E-mail: aidan.cole-baker@rolls-royce.com [Rolls-Royce plc, PO Box 2000, Derby, DE21 7XX (United Kingdom); Frankel, P., E-mail: philipp.frankel@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2016-10-15

    Zircaloy-4 oxide stress profiles and tetragonal:monoclinic oxide phase fraction distributions were studied using nano-beam transmission X-ray diffraction. Continuous stress relief and phase transformation during the first cycle of oxide growth was observed. The in-plane monoclinic stress was shown to relax strongly up to each transition, whereas in-plane tetragonal stress-relief (near the metal-oxide interface) was only observed post transition. The research demonstrates that plasticity in the metal and the development of a band of in-plane cracking both relax the monoclinic in-plane stress. The observations are consistent with a model of transition in which in-plane cracking becomes interlinked prior to transition. These cracks, combined with the development of cracks with a through-thickness component (driven primarily by plasticity in the metal) and/or a porous network of fine cracks (associated with phase transformation), form a percolation path through the oxide layer. The oxidising species can then percolate from the oxide surface to the metal/oxide interface, at which stage transition then ensues. - Highlights: • Measurement of stress in Zr-4 oxides using nano-beam transmission X-ray diffraction. • In-plane monoclinic stress relaxes strongly up to each transition. • In-plane tetragonal stress relaxation is only observed post transition. • Development of band of cracking is related to monoclinic in-plane stress relaxation. • Linking of in-plane cracking with through-plane crack/porosity leads to transition.

  13. Blue light-induced oxidative stress in live skin.

    Science.gov (United States)

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Condition of pro-oxidant and antioxidant systems in guinea pigs’ lungs under the condition of immobilization stress

    Directory of Open Access Journals (Sweden)

    Mykhailo Stepanovych Reheda

    2017-11-01

    Full Text Available We have investigated the results of alterations in indices of pro-oxidant (conjugated diene and malondialdehyde and antioxidant (superoxide dismutase, ceruloplasmin, catalase systems in guinea pigs’ lungs  under the conditions of immobilization stress. The experiment was conducted on 40 female guinea pigs weighing 0.18-0.20 kg. The animals were divided into 4 groups, each contained 10 guinea pigs: I – intact guinea pigs ( control, II–guinea pigs with model of IS on1st day of experiment;Ш–animals on 2nd  day of experiment;IV- group of animals on 34th day of experimental model of IS. The results of our experimental work showed  a significant accumulation of lipid peroxidation products in the lung`s tissure in different periods ( on 1st, 2nd and 34th days of immobilization stress. The state of antioxidant defence was characterized by moderate decrease of inzymes activity (superoxide dismutase, catalase and ceruloplasmin. disorders of balance between pro-oxidant and antioxidant systems couse oxidative stress development.

  15. Oxidative stress and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Javier eBlesa

    2015-07-01

    Full Text Available Parkinson disease is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in Parkinson’s Disease. Environmental factors, such as neurotoxins, insecticides like rotenone, pesticides like Paraquat, dopamine itself and genetic mutations in Parkinson’s Disease related proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process.

  16. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms.

    Directory of Open Access Journals (Sweden)

    Vemanna S Ramu

    Full Text Available In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.

  17. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    Science.gov (United States)

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (pAsparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  18. Cytokines and Oxidative Stress Status Following a Handball Game in Elite Male Players

    Science.gov (United States)

    Marin, Douglas Popp; Macedo dos Santos, Rita de Cassia; Bolin, Anaysa Paola; Guerra, Beatriz Alves; Hatanaka, Elaine; Otton, Rosemari

    2011-01-01

    Background. Handball is considered an intermittent sport that places an important stress on a player's aerobic and anaerobic metabolism. However, the oxidative stress responses following a handball game remain unknown. We investigated the responses of plasma and erythrocyte antioxidant system and oxidative stress biomarkers following a single handball game. Methods. Fourteen male elite Brazilian handball athletes were recruited in the present study. Blood samples were taken before, immediately, and 24 hours after the game. Results. After the game and during 24 hours of recovery, the concentration of all oxidative stress indices changed significantly in a way indicating increased oxidative stress in the blood (thiol groups and reduced glutathione decreased, whereas TBARS and plasma antioxidant capacity was increased) as well as in erythrocyte (increased levels of TBARS and protein carbonyls). Erythrocyte antioxidant enzyme activities were also significantly changed by handball. Muscle damage indices (creatine kinase and lactate dehydrogenase) increased significantly after exercise. In addition, IL-6 increased after the game, whereas TNF-α decreased during recovery. Conclusion. This study demonstrates that a single handball game in elite athletes induces a marked state of oxidative stress evidenced by the oxidative modification in plasma and erythrocyte macromolecules, as well as by changes in the enzymatic and nonenzymatic antioxidant system. PMID:21922038

  19. Cytokines and Oxidative Stress Status Following a Handball Game in Elite Male Players

    Directory of Open Access Journals (Sweden)

    Douglas Popp Marin

    2011-01-01

    Full Text Available Background. Handball is considered an intermittent sport that places an important stress on a player's aerobic and anaerobic metabolism. However, the oxidative stress responses following a handball game remain unknown. We investigated the responses of plasma and erythrocyte antioxidant system and oxidative stress biomarkers following a single handball game. Methods. Fourteen male elite Brazilian handball athletes were recruited in the present study. Blood samples were taken before, immediately, and 24 hours after the game. Results. After the game and during 24 hours of recovery, the concentration of all oxidative stress indices changed significantly in a way indicating increased oxidative stress in the blood (thiol groups and reduced glutathione decreased, whereas TBARS and plasma antioxidant capacity was increased as well as in erythrocyte (increased levels of TBARS and protein carbonyls. Erythrocyte antioxidant enzyme activities were also significantly changed by handball. Muscle damage indices (creatine kinase and lactate dehydrogenase increased significantly after exercise. In addition, IL-6 increased after the game, whereas TNF-α decreased during recovery. Conclusion. This study demonstrates that a single handball game in elite athletes induces a marked state of oxidative stress evidenced by the oxidative modification in plasma and erythrocyte macromolecules, as well as by changes in the enzymatic and nonenzymatic antioxidant system.

  20. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pongrac, I. M.; Pavičić, I.; Milić, M.; Brkić Ahmed, L.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 11, 26 April (2016), s. 1701-1715 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic iron oxide nanoparticles * biocompatibility * oxidative stress Subject RIV: CD - Macromolecular Chemistry